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TECHNICAL MEMORANDUM 

HYBRID RESIDUAL FLEXIBILITYAMASS-ADDITIVE METHOD 
FOR STRUCTURAL DYNAMIC TESTING 

1. INTRODUCTION AND BACKGROUND 

A large fixture was designed and constructed for modal vibration testing of International Space 
Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a 
massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate 
Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered 
during a checkout test of the common module prototype structure, mainly due to undesirable friction and 
excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequen- 
cies were not representative of orbiter-constrained modes due to the friction and clearance effects in the 
bearings. As a result, a major redesign effort for the interface mechanisms was undertaken, The total 
cost of the fixture design, construction and checkout, and redesign was over $2 million. 

Because of the problems experienced with fixed-base testing, alternative free-suspension meth- 
ods were studied, including the residual flexibility and mass-additive approaches. Free-suspension 
structural dynamics test methods utilize soft elastic “bungee” cords and overhead frame suspension 
systems that are less complex and much less expensive than fixed-base systems. The cost of free- 
suspension fixturing is on the order of tens of thousands of dollars, as opposed to millions, for large 
fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to 
be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-I 
Shuttle payload was done at the Kennedy Space Center launch site.* In the following sections, the mass- 
additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach 
that combines the best characteristics of each method follows and is the focus of study described in this 
Technical Memorandum (TM). 

1.1 Mass-Additive Modal Test Method 

It is well known that, for coupled substructures, the interfaces must be adequately characterized 
to allow accurate transient response and operational loads analyses. This is especially true for Shuttle 
payloads that are constrained at a number of discrete points (fig. 1). The dynamic response of the pay- 
load is largely controlled by the stiffness of the interfaces (trunnions and keel). For this reason, one 
of the primary objectives of modal testing of Shuttle payloads is to measure interface characteristics 
so that the mathematical model can be refined at the interfaces. 



Trunnions 

Trunnions 

Figure 1. Shuttle payload carrier with orbiter connections. 

Obviously, a constrained-boundary test allows direct measurement of the modes that are con- 
trolled by the interfaces. However, in a free-boundary support configuration, the interface modes occur 
at higher frequency than the structure global modes. Due to the large frequency bandwidth involved, this 
increases the time required to measure both the local interface modes and the global modes in one test. 
Further, it is difficult to develop a mathematical model with fidelity over a large frequency range. 

In the mass-additive the structure boundaries are mass loaded to lower the frequen- 
cies of the interface modes and bring the modes into the frequency bandwidth of the global modes. This 
allows global free-free modes and the local interface modes to be easily measured in a single test. The 
idea of attaching masses to structure boundary degrees of freedom (DOFs) in modal testing is similar to 
the concept presented by Benfield and Hruda9 for modal synthesis. A Shuttle payload with mass-loaded 
boundaries is shown in figure 2. In addition to narrowing the frequency bandwidth, the added masses 
allow the interfaces to be exercised to a greater degree than is possible in a usual free-boundary configu- 
ration. Interface modes are obtained due to extensive excitation of the structure in the interface regions. 

From a modeling standpoint, the added masses are easily included as rigid bodies having known 
mass and inertia attached to the boundary DOFs. Constrained-boundary modes and frequencies can be 
obtained from a finite element model that has been updated to agree with measured free-free mass- 
additive modal data. First the masses are analytically removed from the updated model, then the bound- 
ary DOFs are constrained. Alternatively, the test-verified model with boundary masses removed can be 
coupled to a model of the launch vehicle and used for liftoff and/or landing loads analysis. 
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Figure 2. Materials Science Laboratory payload in mass-additive test configuration. 

A disadvantage of the mass-additive technique is that, when properly applied in a component 
mode synthesis approach, many mass-added free-boundary modes are required to derive accurate con- 
strained modes and frequencies, In reference 4, it is shown that for some structures the number of modes 
required is impractical. Advantages of the method are general ease of performing the measurements 
in the context of the global modal test and ease of understanding the methodology. Further, it is possible 
to obtain rotational measurements for the locations where masses are attached to the structure. As shown 
in figure 2, rectangular masses are typically used in the mass-additive technique. Accelerometers can be 
attached at the corners and outer edges of the masses to obtain rotational data indirectly, or rotational 
sensors can be attached at the mass center for direct measurements. If rotational accelerometers are used, 
more accurate measurements are possible in comparison to non-mass-loaded cases due to the increased 
amplitudes of the rotational motion. This can be of particular importance for torsional measurements. 
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1.2 Residual Flexibility Test Method 

The concept behind the residual flexibility approachlo is that a subset of the structure’s free-free 
(unconstrained) mode shapes, along with the residual flexibility of the boundary DOFs, can be used 
to derive the constrained-boundary modes and frequencies. This can be easily understood for the case 
of Shuttle payloads, where the interface or boundary DOFs are the translational coordinates of the 
payload trunnions and keel that are constrained by the orbiter (fig. 1). Residual flexibility of the 
interfaces provides an approximation of the global free-free modes not measured. Further, it has been 
shown for simple structures that residual flexibility for a given boundary DOF is simply the flexibility 
of that boundary. This technique of using an approximation of the effects of neglected higher-order 
modes, or residual modes, to improve the accuracy of reduced-basis mathematical models was first 
presented by MacNeal. l 1  An improvement of the basic residual approach by including second-order 
effects, or residual inertia, was presented by Rubin. l 2  References 13-27 also present investigations 
of the residual flexibility approach and related techniques. 

Reference 10 describes the application of the residual flexibility approach to the Space Station 
common module prototype (fig. 3). The general test procedure is as follows: (1) Free-boundary mode 
shapes and frequencies are obtained in the usual manner by using shakers to excite the structure at the 
boundary DOFs; (2) modal parameters are then obtained by curve-fitting the resulting responses as 
functions of frequency over the desired bandwidth; and (3) residual functions, or residual flexibilities, 
are obtained by subtracting a curve-fitted frequency response function (FRF), which only covers a 
frequency band of interest, from the full measured FRF, which covers a larger bandwidth. Figure 4 
shows two residual functions in acceleration/force format for the common module prototype. For most 
Shuttle payloads, there are seven of these residual functions to be measured-one for each trunnion/keel 
translational DOF that is constrained in the orbiter. After the required test data are obtained, the math- 
ematical model of the structure is modified to obtain the best possible agreement with test mode shapes, 
frequencies, and residual functions. The model is then used in either of two ways: (1) With boundary 
DOFs analytically constrained to obtain fixed-base modes or (2) with boundary DOFs connected to the 
orbiter interfaces for coupled Shuttle/payload loads analysis. This general procedure applies for any kind 
of structure that could be constrained or coupled to other structures in service. 

The main drawback using the residual flexibility method is the difficulty in obtaining accurate 
measurements for the boundary or interface residual functions. Although the functions in figure 4 are 
clean, they represent average values generated using modal testing software. Most residual measure- 
ments are very noisy, making it difficult to identify the residual function. Residual flexibility values 
are also very small numbers, typically ranging from 1.OE-3 to 1.0E-6 in/lb for translational terms. 
In addition, the interface FRF must have a well-defined stiffness line (a general upward-sloping trend 
in acceleration/force format, as evident for higher frequencies in fig. 4) for accurate residual values 
to be obtainable. The major advantage of this approach is the quick convergence of constrained modes 
which are derived from free-free modes and residuals, with a reasonably small number of modes. 

I 4 



Figure 3. Space Station common module prototype in free-suspension test configuration. 
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2. DEVELOPMENT OF THE HYBRID TEST METHOD 

Comparative analysis of the mass-additive and residual flexibility modal test methods described 
in the previous section shows the following, in summary: 

Residual flexibility approach 

I - Major advantage: More accurate in terms of deriving constrained modes from free- 
suspension data; that is, the convergence rate is higher in the component mode synthesis 
formulation. 

- Major disadvantages: Difficult to accurately measure residual flexibility values, 
and rotational data for structure boundaries can only be obtained using expensive 
rotational sensors. 

Mass-additive technique 

- Major advantages: Very attractive in terms of simplicity of the methodology and general 
ease of performing measurements; rotational boundary responses can be measured rather 
easily using translational accelerometers. 

- Major disadvantages: Large number of mass-added modes are required in deriving fixed- 
boundary modes, making the method impractical for some structures. 

I Consideration of the advantages and disadvantages of each technique led to the development 
of a hybrid free-suspension test/analysis approach with more general applicability and flexibility than 
either of the methods alone. The hybrid formulation is essentially the residual flexibility approach 
modified to allow mass loading of the structure boundary DOFs for which residual values are to be 
obtained. Such a formulation overcomes or helps in solving at least three problem areas identified 
in the comparative analysis: 

Large number of mass-additive modes required for deriving constrained-boundary modes: 
Overcome because the inclusion of residual flexibility terms with mass-additive modes 
results in a high rate of convergence for derivation of constrained modes. 

Inability in the residual approach to measure rotations at boundary DOFs: Overcomedue 
to the possibility of attaching translational accelerometers to corners and edges of boundary 
masses. Viewed a different way, rotational motion is enhanced allowing the possibility of 
more accurate measurements with rotational sensors if such instrumentation is available. 
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Large bandwidth required for measuring residual terms: Large bandwidth required 
for measuring residual terms is reduced due to presence of boundary masses, which lowers 
the frequency of local boundary or interface modes. 

A hybrid approach of this type should make free-suspension modal test methods applicable 
to a wider variety of payloads and structures. For example, a Shuttle payload could be considered 
for testing using the residual flexibility method even though it has interface FRFs exhibiting a large 
number of modes that effectively hide the stiffness lines. In such a case, the interfaces could be mass 
loaded to bring each fundamental interface mode to a lower frequency-below some of the modes that 
mask the stiffness lines. As discussed in the previous section, a characteristic of the mass-additive 
approach is that interface bending frequencies can be lowered into the frequency bandwidth of the test. 
The use of mass loading in residual flexibility testing should also make the technique feasible for indus- 
trial applications where rotational residual flexibilities may be required. Application of the method for 
general boundary conditions has been hindered due to difficulties in performing rotational measure- 
ments. Reference 7 describes the use of rectangular masses and translational accelerometers to estimate 
the rotational FRF of a structure. Such an approach, or use of rotational sensors with boundary masses, 
should allow rotational residual functions to be measured with greater accuracy than in the past. 

2.1 Derivation of Governing Equations for Hybrid Method 

2.1.1 Development of Hybrid Transformation Matrix 

In a hybrid residual flexibility/mass-additive modal test, rectangular masses are attached 
to boundary or interface DOFs, as shown in figure 2. For this configuration, the undamped equations 
of motion are written as 

or 

where the mass matrix for the structure with boundary mass loading is [a] = [MI + [AM], and [AM] 
represents the added mass. Free-free elastic and rigid-body modes [ an] and [ aR] are obtained from an 
eigensolution of equation (1) for the case { F }  = 0 and are used in subsequent equations discussed in this 
section. These eigenvectors are referred to as the mass-additive or mass-loaded mode shapes. 

Rubin12 showed that flexible-body displacements for a structure can be written as a first-order 
approximation of residual effects, 

where [GI and [G, I are the free-free and constrained flexibility matrices, respectively, and for configura- 
tions discussed in this TM, apply to the mass-loaded structure. Generally, terms in the equations 

I 
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presented in this section refer to quantities for the structure with mass-loaded boundaries unless noted 
otherwise. The flexibility transformation matrix is [ A ]  = [ I ]  - [a] [@R] [ M R ] - ' [ @ R ] ~ .  It is noted that 
the mode shape matrices in the transformation matrix [A]  are the rigid-body modes of the mass-loaded 
structure (from eigensolution of eq. (1) with {F}= 0), and the generalized mass [MR] is generated using 
the rigid-body modes. If the contribution of modes to be retained or measured is removed from the 
deflection for the flexible structure, the residual flexibility matrix is obtained, as shown in equation (4): 

Note that [G,] = [ @,][K,]-l[@,]Tis the flexibility corresponding to the retained or measured elastic 
mass-additive modes [Qn], and that the generalized stiffness in this expression is based on the retained 
modes. Equation (4) demonstrates the physical meaning of the residual flexibility [G,]: it is the differ- 
ence in the full flexibility of the structure and the flexibility based on a set of retained or measured 
modes. That is, it provides an approximation of mode shapes not retained in a reduced model or not 
measured in a modal test. If desired, this procedure can be carried a step further to include second-order 
residual effects.12 but these will not be shown until later in this TM. 

Both MacNeal l 1  and Rubinl* developed a stiffness matrix formulation for component mode 
synthesis using residual flexibility. Martinez, Carne, and Miller13 discussed the MacNeal and Rubin 
representation expressed in a form similar to the Craig-Bampton component synthesis approach.28 
This was a significant step in facilitating practical use of the residual flexibility method, due to wide use 
of the Craig-Bampton method for model reduction in the aerospace industry. Following the approach 
of reference 13, but utilizing quantities for boundary DOFs with mass loading, structure displacements 
can be written in the partitioned form 

where [ @] is the ( N  x n) matrix of retained mass-additive modes, and [G rb 1 is the boundary partition 
of the ( N  x N )  residual flexibility matrix defined in equation (4). Note that N is the size of the original 
or unreduced model, and n is the number of retained modes. If the lower partition of equation (5) is 
solved for the boundary forces { F b } ,  and the resulting expression is substituted back in to equation (3, 
it can be shown that 

This form of displacement for the mass-loaded structure results in modified free-free elastic modes 
(coefficient of ( 9 )  in eq. (6)) and modified residual attachment modes (coefficient of { u b } ) .  Assembly 
of equation (6) with the identity { u b }  = { u b }  results in the final expression for displacements of the 
mass-loaded structure, 
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and the overbar is used in [ F ]  to indicate mass-added conditions. 

2.1.2 Free-Free Unloaded Model in Terms of Mass-Added Modes and Residuals 

In the process of deriving constrained-boundary mode shapes and frequencies from a free-free 
mass-added model, it is first necessary to express the equations of motion for the free-free structure with 
unloaded boundaries in terms of mass-additive modes and residual flexibility. This step is essential since 
constraining the boundary DOFs without first analytically removing the masses would yield incorrect 
results in most cases. For example, for a structural model of a Shuttle payload that has only certain 
translational boundary DOFs constrained in flight, the unconstrained mass-loaded DOF would experi- 
ence undesired inertia loading influencing the mode shapes and frequencies. 

The unloading process is accomplished by subtracting the added mass terms, [MI, from equa- 
tion (2), yielding an alternate expression for the model without boundary masses, 

which can also be written in partitioned form: 

In equation (9), the mass addition affects all six DOFs at an attachment point, with the possibility arising 
that a boundary mass can load interior DOFs, and not just the DOFs partitioned to the matrix boundary. 
The implications of this are discussed further later in this section. The partitioned form of the residual 
flexibility matrix corresponding to equation (9) is given by 

Substitution of equation (7) into equation (8) allows the equations of motion to be written 
in terms of generalized coordinates and physical boundary coordinates: 

9 



I ,  

(1 1) 

- T  Premultiplication of equation (1 1) by [ T ] yields the desired reduced model with unloaded boundary 

! DOFs in terms of mass-additive modes and residual flexibility, 

which can be written in the form 

0 

Fb 

where [z] = [TIT[M] [TI and [z] = [TIT[K]  [TI. For mass-additive modes normalized to unit modal 

mass, it can be shown using the approach of reference 13 that 

[z]= 

-@$G-' 
'bb 

G-' 
%'bb 

where SZ,, is the diagonal matrix of retained frequencies con, and Qnh is the boundary partition ~ of the .. . -1  T -  
retained - -  modes. Also in equation (14), [Jbb]=[Grbb]  [Hbb][Grbb]-' and [Hbb]=[Grb]  [ M ] [ G r b ] ,  
where Grb contains the two partitions of the residual flexibility matrix shown in equation (5). 
The second-order residual effects for the mass-loaded configuration, or residual inertia effects, 
are contained in [Hbb]. The mass and stiffness matrices in equation (14) represent the full-residual or 
Rubin method, with only residual damping effects neglected. If the residual inertia effects are neglected 
in equation (14), the MacNeal formulation is obtained and the generalized mass matrix for the structure 

I 1  
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with mass-loaded boundaries, [z], becomes the identity matrix. Neglecting residual inertia is a com- 
monly used approximation to simplify the technique.l3?l4 In subsequent references to mode shapes in 
this TM, it is understood that retained modes are under discussion, and the rz subscript is dropped. 

2.1.2.1 Development of the Generalized Added-Mass Matrix. It remains to evaluate the 
generalized added mass term in equation (13). Use of the transformation defined in equation (7) with 
[AM] from equation (9) yields the following expression: 

['l'[dM][T]=[dM]= 

which can also be written in the form 

where 

Mii M i b  

[" [ A M ]  [ .]= [ ..I= 
[ i b i  i b b l  ' 

These equations for the generalized added-mass matrix are for the general case where only a portion 
of the DOFs at a given mass attachment point are to be constrained or coupled to another structure, 
which is the case for Shuttle payloads. The implication of this is that some of the interior DOFs have 
mass loading, as can be seen in equations (17)-(20). For the case where all six DOFs at each mass 
attachment point are constrained or used in coupling, the problem is greatly simplified, since all mass- 
loaded DOFs are partitioned to the matrix boundaries, and [AMj i ]  = [AMib] = [AMbi] = 0. In the case 
where no interior DOFs are mass loaded, it can be seen from equations (17)-(20) that the generalized 
added-mass matrix reduces to 
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I .  
Also for equation (21), [dMbb) has dimensions (nbxnb), where nb= 6 n,, and n, is the number of bound- 
ary masses. It should be noted that in the context of this discussion, interior DOFs can include part of the 
mass attach point DOF, such as rotational coordinates. The term interior does not imply that the DOFs 
are actually on the physical interior of the structure, far removed from the physical boundaries, but rather 
that the DOFs have been partitioned in the mathematical model to the interior of the matrices. 

Although equations (17)-(20) are very useful for seeing the effects of constraining or coupling 
all six DOFs at each mass attach point versus using only a portion of the mass attach point DOFs, they 
do not show which added-mass terms correspond to residual inertia. This is important because generally 
the residual inertia terms are not utilized due to difficulty in accurately measuring them, and the 
MacNeal formulation is used. In order to observe which terms in equation (16) (or eqs. (17)-(20)) are 
residual inertia effects, it is necessary to perform the transformation shown in equation (15) in two steps. 
As shown in reference 13, the transformation defined in equation (7) can be written as the product of 
two transformation matrices, 

, 
I 

where [TI ]  is given in equation (3, and [GI is the transformation that allows the elimination of bound- 
ary forces in going from equation (5) to equation (7). 

If the transformation of the equations of motion for the structure with unloaded boundaries, 
equation (S), is done in two steps using [TI] and [G] separately, the following expression is obtained: 

[..I’ [ TIT {[MI-[ I} [ TI] [ ..I 

The resulting transformed mass and stiffness, [z] and [F], respectivley, are identical to equation (14), 
but the transformed added-mass matrix [dM] shown in equations (24)-(28) looks different than 
equations (16)-(20) because the original added-mass matrix [AMI appears in full form without 
partitioning: 
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where 

[dMii]=~TAM@-%TG-lGTAM@-~TAMGr G-’%+% T G -1 G T AMG, G-’% 
‘bb ‘b ‘bb ‘bb ‘b ‘bb 

‘bb 

[E jb]=pTAMGrbG-’ -@b T G -1 G T AMG,G- 
‘bb ‘bb ‘b 

[Ebi]=[G-’GTAM@-G- 1 T  G AMG, G-I 
‘bb ‘b ‘bb ‘b ‘bb 

Analogous to the discussion following equation (14) and similar to an approach discussed 
in references 12-14, the residual added inertia effects can be found in equations (25)-(28). Defining 
[ d l b b ]  = [Grbh]-’[AHbb][Grbb ]-’, where [AHbb] = [Grb]T[AM] [Grb],  it can be seen that the second- 
order residual effects for the added-mass matrix, [ AM],  are contained in [ AHbb] just as the residual 
inertia effects for the mass-loaded configuration are contained in [ Hbb I. Using the expressions for 
[AHbb] and l d lbb ] ,  equations (25)-(28) can be written in more compact form: 

2.1.2.2 Equations of Motion in Terms of Mass-Added Modes and Residuals. Equations (29)- 
(32), along with equations (12)-( 14), define the hybrid method for the general case where not all mass 
attach points are to be constrained or coupled to another structure, and mass addition can occur for 
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interior terms of the mass matrix. Both residual flexibility and residual inertia effects are also included at 
this stage. Repeating equation (13) as equation (33) and utilizing equations (29)-(32) for [dM] results in 
the following general formulation for the free-free unloaded model equations of motion in terms of 
mass-additive modes and residuals: 

where 

[E] - [rn] = 

(34) 
and the generalized stiffness is unchanged from equation (14), 

sym. 
‘bb 

(35) 

The general hybrid method formulation given in equations (33)-(35), which corresponds to the 
1 and Rubin method, can be simplified considerably if the residual inertia effects corresponding to [ 

[MI, which are [ Jbb 1 and [AJbb 1, respectively, are neglected. In that case, 

r - 
I - ~ ~ A M ~ + % ~ G - I  G~ M ~ + ~ ~ A M G  G-’ q, - Q ~ A M G  G-’ 

‘bb ‘b ‘b ‘bb ‘b ‘bb 

-G-’G AM@ 0 
‘bb ‘b 

which corresponds to the MacNeal approach. The generalized stiffness is unchanged and is given 
by equation (35). 
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Finally, for the case where all six DOFs at each mass attachment points are to be constrained 
or coupled to another structure, and all mass-loaded DOFs are partitioned to the matrix boundary, 
the formulation is simplified further. In that case, the transformed added-mass matrix[dM] is given 
by equation (21), and the transformed mass for the unloaded model in terms of mass-additive modes 
and full residuals is given by 

which differs only in the boundary partition from the basic Rubin formulation with no mass loading. 
If residual inertia is neglected in equation (37), the transformed mass matrix for the unloaded model 
becomes 

[E]-[dM]=l I . 

Neglecting [ h t f b b ]  is justified on the basis of equations (20), (28), and (32), which show that 
[ A J b b ] = [ m b b ]  for the case of mass loading limited to boundary DOFs. Further, [dMbb] is small 
in comparison to the diagonal terms of the identity matrix in equation (38). An alternative formulation 
neglecting [Jbb] in equation (37) but retaining I&k fbb]  could also be investigated. Numerical results for 
this case were not investigated in the context of the current study. In either case described in equations 
(37) and (38) for mass loading limited to boundary DOFs, the generalized stiffness is unchanged and is 
defined in equation (35). 

2.1.3 Constrained Unloaded Model in Terms of Mass-Added Modes and Residuals 

The reduced hybrid model defined by equation (33) is the form used for coupling to other struc- 
tures or components. For cases where it is desired to derive fixed-boundary modes and frequencies, 
another step remains in the analysis. Starting with the most general formulation given by equations (33)- 
(35), the hybrid reduced model with constrained boundaries is obtained by setting boundary displace- 
ments to zero and striking all matrix rows and columns with boundary terms. This operation results in 
the following expression: 

where for use of full residuals and mass loading possible for interior and boundary DOFs, the general- 
ized mass matrix is, from equation (34), 
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and the generalized stiffness is given by 

If residual inertia is neglected, the constrained-boundary generalized mass reduces to 

[ ( M - M ) n n ] = [ I - Q T d M ~ + ~ T G - l  'bb GT 'b dMQ+QTdMGrbG-' 'bb cQ, 1 . 
For the case of mass loading limited to boundary DOFs, but including full residuals, the constrained- 
boundary generalized mass becomes 

Further, if residual inertia is neglected, the generalized mass becomes the identity matrix. In all of these 
cases, the constrained-boundary generalized stiffness is unchanged and given by equation (4 1). 

Interestingly, equation (43) has the same form as the constrained-boundary generalized mass 
matrix for the basic Rubin method with no mass loading. However, it must be kept in mind that the 
mode shapes shown in equation (43) are mass-additive modes, so the effect of mass loading does appear 
upon the dynamics of the structure. The observation that no AM terms appear in equation (43) does point 
out an interesting fact, however. If mass loading is limited to boundary DOFs, that is, DOFs partitioned 
to the matrix boundary, it is not necessary to analytically remove the added mass before constraining the 
model. However, as shown in equations (40) and (42), if mass loading of interior DOFs occurs, the 
added mass must be removed before constraining the model. If the model is to be used for substructuring 
and coupling to other components, the added mass must always be analytically removed before the 
coupling is done. 

The frequencies obtained from eigensolution of equation (39) are the constrained frequencies 
of interest. However, to obtain physical constrained-boundary mode shapes, a back-transformation 
of the modes obtained in the eigensolution of equation (39), [@,,,I, must be done. This is accomplished 
by using the transformation matrix defined in equation (7) and forming the following matrix equation 
for constrained physical modes, 

Zeros must be added in the last nb rows of the free-free mode shape matrix to make it compatible 
with [TI, since nb DOFs were eliminated by constraining the boundaries in equation (39). 
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2.2 Frequency Response Formulation of Hybrid Method 

The hybrid matrix equations of motion developed in the preceding sections are extremely 
useful for pretest analysis to determine which residual terms are needed and how many mode shapes 
are required in dynamic testing of the mass-loaded test article. If it is desired to develop a test-verified 
constrained model, these equations allow convergence studies to determine if a selected number of mode 
shapes and residual terms is sufficient for obtaining accurate constrained modes and frequencies. How- 
ever, when it comes to experimental implementation of the hybrid method, an FRF formulation is more 
practical because test residual functions and mode shapes are obtained from measured FRFs. Further, it 
can be seen from the matrix formulation in equation (4) that computation of residual flexibility requires 
the full flexibility (inverted stiffness) matrix. Obviously, the full flexibility matrix is not available 
experimentally. 

By developing a frequency response formulation, a practical implementation for developing a 
test-verified model involves the following: (1) Comparison of free-free modes for model and test, with 
appropriate model updates; (2) comparison of measured and predicted boundary FRFs and residual 
functions (obtained from FRFs), with model updates as required; and (3) constraining of the model 
boundary DOFs or coupling to another structural component. The response function equations are 
discussed in the following paragraphs. 

As described by Rubin in reference 12, displacement can be written as a function of frequency, 

where [Y] is the displacement/force FRF matrix and (F} is the applied force vector, both as functions 
of frequency. However, it must be noted that in contrast to reference 12, all terms in equation (45) and 
following equations in this section refer to the mass-loaded structure. The residual FRF matrix, or 
residual function matrix as it will be designated here, is obtained by subtracting from the full FRFs in 
equation (45) the modal FRFs containing rigid-body and elastic free-free modes that are to be measured 
or retained. The undamped modal FRF matrix is given by 

where [M,] is the generalized mass associated with the measured or retained modes [ @,I,and [A,l is the 
diagonal matrix [ o, - m2].  The residual function matrix becomes 

which can be approximated over the frequency range of interest by the undamped form, 
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corresponding to the residual flexibility matrix given by equation (4). The residual inertia matrix in 
equation (48) is given by [H,] = [G,] [MI [G,]. For comparison of residual flexibility values, the 
undamped forms of equations (46)-(48) should be sufficient. However, if analytical and test FRF results 
are being compared, inclusion of damping may be desirable in some instances. In that case, 
[An]  = [o,' + i 2 ~ , w n  - w in equation (46) and the residual function takes the form 

T -  

'I 

where [ B ,  I is the residual damping matrix. 

For practical computations, residual functions are obtained individually as functions of frequency 
I rather than in matrix form. Residual flexibility for a particular residual function is the value of the 

function at zero frequency, as can be easily seen from equations (48) and (49). Each value of [ G,] 
obtained in this manner is equal to the corresponding value from equations (4) and (10). 

It is noted that the second-order term [H,] in equations (48) and (49), the residual inertia, was 
only used in this TM for obtaining smooth curve fits of residual functions. Residual inertia was not 
included in reduced models or in the model correlation work described in subsequent sections. In sec- 
tion 2.3, the curve-fitting procedure for estimating residual flexibility values from experimental residual 
functions is described. 

2.3 Statistical Least-Squares Curve-Fitting Procedure for Identification 
of Experimental Residual Flexibility Values 

As will be shown later in this TM, noisy frequency response and residual test data are often 
observed at low frequencies, particularly in antiresonance regions of the FRF. In addition, undesired 
peaks or spikes generally occur in experimental residual functions at system resonances. These spikes 
are observed due to inaccuracies in approximating damping in the synthesized FRF, which are generated 
using system identification software in modal testing. Because of these effects, a second-order polyno- 
mial curve fit of experimental residual functions is required to determine the residual flexibility (con- 
stant coefficient) and the residual inertia (second-order coefficient) shown in equations (48) and (49). 
The procedure for determining experimental residual terms is presented for the damped form of the 
residual function, equation (49), for generality. The approach presented in this section is the curve-fitting 
method developed by Bookout,22 and also used by Tinker and B o ~ k o u t . ~ ~  First, it can be seen that 
the residual function appears in the general complex form a+ib. This general form can be equated 
to equation (49), 

a + ib = [ G, ] + m2 [ H ,  ] - iw[B,] , (50) 

and like terms can be separated to yield 

[B,] = - b / o  



directly from the imaginary term. Real terms are given by 

a = [G,]+02 [ H,-]  

and must be determined by curve fitting. The least-squares conditions are obtained by expressing 
equation (52) in matrix coefficient form, 

where 

[R]=[l 02] 

and 

(54) 

The residual flexibility and residual inertia terms are then obtained as 

[ X ]  = [ R ] -  ' a . (56) 

These residual values are compared to analytical residuals in the test/model correlation process. 

A theoretical residual function in displacement/force format is relatively flat at low frequencies 
and has slight upward curvature at higher frequencies. Variations of consecutive values of the residual 
function should therefore be small. When examining the residual functions produced from test data, 
these characteristics can be seen in an overall sense. However, in regions of poor or noisy data, consecu- 
tive residual values can have large variations in magnitude. It is apparent that a weighting function is 
needed that applies low weighting to data points having large variation with respect to neighboring 
points and high weighting to data in regions of small variations. 

The required weighting function can be expressed statistically in terms of sample variance, where 
each sample consists of two or more neighboring data points. Since the variance represents the amount 
of variation between data points in the sample, regions of the residual function with high variation 
(containing spikes and noise) can be given low weight by defining the weighting function as the inverse 
of the sample variance, 
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i=l 

where s2 is the sample variance, k is the total number of data points, p is the number of data points 
in the sample, and x is the mean of the sample.22 

Premultiplying both sides of equation (53) by the weighting function W gives 

Next, premultiplying both sides of equation (58) by [RITand solving for [X l  results in the final form 
of the residual flexibility and residual inertia terms, 

In this form, there is no need to normalize the weighting function W. 

By stepping through the test data, the variance of each data point with respect to the neighboring 
points can be calculated. The weighting value for each data point is set equal to the inverse of the vari- 
ance assigned to that data point. This gives the desired effect that, when the variances of neighboring 
data points are high, the weighting function value is low, and vise versa. Incorporating the weighting 
function of equation (57) into the least-squares curve fit allows determination of smooth experimental 
residual functions having the characteristics previously described for theoretical displacement/force 
functions. 

In previous studies, different weighting matrices generated by examining samples with two, 
three, and four data points were used in the curve fit  process. The error range for the residual flexibility 
term produced by examining different sample sizes was found to vary considerably, with best results 
achieved using three data points. Based on these earlier findings, sample sizes of three data points were 
used in the curve fitting described in this TM. In addition, the frequency range of curve-fitted data was 
varied to determine the effect on accuracy of the residual flexibility value. This was done because 
experimental residual functions typically are very noisy at low frequencies. Further description 
of the statistically weighted curve-fitting procedure is given in reference 22. 
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3. ANALYTICAL APPLICATION OF HYBRID METHOD 
TO SHUTTLE PAYLOAD SIMULATOR 

A simple Shuttle payload simulator was designed specifically for studies of free-suspension 
modal test techniques. This payload simulator has frequency content somewhat similar to real payloads, 
with a number of well-spaced global mode shapes, and it also has prominent flexible interfaces (simulat- 
ing Shuttle payload trunnions which interface with the orbiter). This structure, shown in figures 5-7, was 
also designed to be simple enough that high confidence could be obtained for the model through correla- 
tion to free-free test data. Dimensions of the beam-like interfaces (trunnions) were chosen to provide 
prominent stiffness lines, or well-defined linear regions in the frequency responses at higher frequencies, 
for enhancing the measurement of residual flexibility values. 

Initially, the basic residual flexibility method,1° based on equation (14) but with no mass loading 
of the trunnion interfaces, was applied to the payload simulator. However, the procedures are the same 
when mass loading of the boundaries is utilized; such mass loading is discussed later in this section. The 
procedure followed in this approach was to (1) measure a set of free-free modes and frequencies using 
shaker excitation (fig. 6);  (2) measure the acceleration/force frequency response functions in X ,  Y,  Z 
directions at the ends of all four trunnions (fig. 7 ) ,  this time using impact hammer excitation; (3) modify 
the model in a global sense to obtain the best possible agreement with test frequencies and mode shapes, 
(4) modify the model in the trunnion regions to match the experimental response functions in both the 
minima (antiresonances) and maxima (peaks or resonances); and (5) compare the measured and pre- 
dicted residual flexibility functions and values. It is noted that normally a 5-percent frequency error or 
less is the goal for such model correlation activities, but in this case a 1-percent goal was established so 
that insight could also be gained into accuracy of residual measurements. In addition, hammer impact 
excitation was used for the small, lightweight trunnions because it was believed that connecting a shaker 
to them would unacceptably modify their dynamic behavior. 

3.1 Correlation of Free-Boundary Mode Shapes and Frequencies 

The procedures for mode shape correlation have little difference for residual flexibility and 
hybrid method testing compared to any free-suspension test. It should be noted, however, that a higher 
number of modes may need to be measured and used in model correlation than for a standard free-free 
test. Also, it is possible that the frequency errors should be lower than the standard 5-percent limit 
currently used in model correlation. These potential differences, which are still in the process of being 
fully verified and quantified, are due to the synthesis process described in the previous section of this 
TM, where the free-suspension modes and boundary residual flexibility values are used to derive 
constrained-boundary modes. 
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Figure 5. Space Shuttle payload simulator structure. 
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Figure 6. Shuttle payload simulator in free-suspension modal test configuration. 

Figure 7. Trunnion interface region of payload simulator. 
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To correlate the model to the measured modal data, the analyst compares the predicted and 
measured frequencies and mode shapes to identify errors in geometry, material properties, and modeling 
assumptions. These comparisons are done based on engineering judgment, either alone or in combina- 
tion with the use of analytical tools, to find errors and shortcomings in the model. In the cases described 
in this TM, the mode shape correlations were done based on engineering judgment and visual inspection 
of the modes. For the payload simulator, the welded intersections of the hollow box beams comprising 
the model (fig. 5 )  were found to be the critical areas for global model updating. This was due to the 
nature of the welds-they were outer surface welds, having widely varying stiffness from one weld to 
another and having lower stiffness than the box beam cross sections. Beam elements were used to model 
the welds, and a trial-and-error approach was used to find proper material and geometric properties. 
Table 1 contains the first 10 test/analysis frequency comparisons and mode shape orthogonalities after 
model correlation. For this simple structure, it was possible to obtain frequency errors of 1 percent 
or less. 

Table 1. Comparison of test and analytical free-free modes for pay- 
load simulator, after model correlation (zero mass loading). 

Mode 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Test 
Frequency 

16.56 

21.21 

46.49 

51.40 

75.73 

83.80 

96.78 

98.68 

105.72 

11 2.87 

135.70 

136.70 

138.70 

167.36 

Analytical 
Frequency 

16.52 

21.29 

46.10 

51.57 

75.33 

84.32 

96.1 1 

98.37 

105.98 

113.03 

136.02 

137.79 

139.39 

167.41 

Percent 
Error 

0.28 

-0.37 

0.86 

-0.33 

0.52 

-0.62 

0.70 

0.32 

-0.24 

-0.14 

-0.25 

-0.80 

-0.50 

-0.03 

XOtihog. 
Diagonal 

0.99498 

0.99469 

0.99384 

0.99003 

0.99905 

0.99015 

0.98078 

0.99246 

0.98155 

0.98598 

0.94888 

0.93058 

0.99716 

0.98405 

3.2 Model Updating for Boundary Frequency Response 

Using initial test data for drive point FRF at one of the trunnion simulators, a large discrepancy 
was observed between the predicted and measured antiresonance frequency (at the function minimum). 
Parameter studies were performed to identify modifications to the model that would improve the agree- 
ment. It was found that drastic, unreasonable changes in geometry and material properties of the 
trunnion still did not produce acceptable agreement with the measured data. Finally, additional measure- 
ments were taken to determine if errors existed in the test data. It was found that by using various impact 



hammer tips of different hardnesses, the measured antiresonance frequency shifted by several hertz. Use 
of the softest tip available provided the data considered most accurate. This is explained by the fact that 
soft tips provide more energy at lower frequencies, while hard tips excite higher frequencies of the 
structure. It is also quite difficult in general to measure clean antiresonances in FRFs due to the very low 
response amplitudes in the vicinity of a function minimum. Antiresonance response amplitudes with 
hammer excitation can be near the “noise floor” or response limit of the accelerometers. 

After more accurate frequency response measurements had been obtained, model correlation 
for the trunnion regions of the payload simulator was done. By varying the trunnion stiffness (modulus 
or area moments of inertia), the antiresonance frequencies were shifted to obtain the best possible 
agreement with test. The problem encountered in this process is that when good antiresonance agree- 
ment was obtained, the FRF peaks did not agree well. In the test configuration, a considerable amount 
of lumped mass was present on each trunnion due to accelerometers at the midpoints and ends, tape, 
adhesive, and wires connected to the accelerometers. By varying the amount of mass lumped at the 
center and end of each trunnion in the model, it was found that the FRF peaks and stiffness lines could 
be shifted to provide better agreement with measured data. A justification for the final net increase in 
lumped mass on each trunnion is the fact that the wires, adhesive, and tape were initially ignored in the 
model. It can be seen in figure 8 that excellent agreement was finally obtained between the test and 
model trunnion interface FRFs. 

l.OOE+OO 1 i 
i 
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Figure 8. Test/analysis trunnion response functions, after model updates (zero mass loading). 

3.3 Comparison of Residual Flexibility Values for Boundary Degrees of Freedom 

The next step in the process was to compare the boundary residual flexibility values from test 
and the model that had been correlated to both the global free-free modes and trunnion response data. 
As discussed previously, residual functions, which are obtained by subtracting interface FRFs based 
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on the measured modes from full measured interface FRFs, are typically very noisy. To obtain accurate 
estimates of measured residual flexibility, the statistical least-squares curve-fitting approach described in 
a previous section was used.22 This curve-fitting technique provides an estimate of both residual flexibil- 
ity and residual inertia. However, only the residual flexibility values were used in model correlation. 
Initially, the percent error was not as low as desired (within a few percent of test), so the trunnion stiff- 
ness and mass properties were further modified as described in the previous section to obtain acceptable 
correlation. As a note of interest, in error analysis for the Materials Science Laboratory, the Shuttle 
payload structure in figure 2 showed that up to 10-15 percent error in the residual values can be present 
and still yield constrained frequencies within 5 percent error. However, for this simple payload simula- 
tor. higher accuracy was desired. 

Test 
Residuals, 

(innb) 

1.1597E-05 
1.2277E-03 
1.2853E-03 

1.7254E-05 * 
1.2335E-03 
1.2784E-03 

_-------- 
1.2368E-03 
1.3057E-03 

1.0012E-05 * 
1.2359E-03 

Table 2 compares the analytical residual values (both before and after final model correlation to 
FRF data) and test results for each trunnion in the X, Y, and Z directions. It is noted that the X direction 
was along the main axis of each trunnion, while Y and Z were both bending directions. Excellent agree- 
ment with test (near 2 percent error and below) was obtained for all eight residual flexibility values in 
bending directions, but poor agreement was obtained for the axial direction. This is a problem that will 
not likely be overcome in hybrid and residual flexibility testing of Shuttle payload-type structures in the 
near future due to several reasons, including the following: (1) Dominant stiffness lines are not observed 
in trunnion axial-direction data, making the curve-fitting process for test data generally inaccurate; 
(2) the residual flexibility values are even smaller for the axial direction than for bending; and (3) the 
trunnion axial FRF test data are typically very noisy, which, when combined with the approximations 
in modal parameter estimation, yields very noisy residual functions that are difficult to interpret. Fortu- 
nately for Shuttle payloads, inaccurate axial-direction residuals for trunnions is not an issue since such 
payloads are only constrained in bending directions of the trunnions and keel. At this point, the analyti- 
cal model with zero mass loading had been correlated with test as well as could be done. 

Analytical Residuals 
Before 

Updates (innb) 

4.8099E-06 
1.3852E-03 
1.4049E-03 

4.9603E-06 
1.3856E-03 
1.4051 E-03 

4.831 8E-06 
1.4083E-03 
1.4269E-03 

4.7943E-06 
1.3632E-03 

Table 2. Residual flexibility values for Shuttle payload simulator, before and after 
model updates to trunnions (zero mass loading, 14 free-free modes). 

Initial 
Percent 

Error 

---_----- 
12.83 
9.31 

-----_--_ 
12.33 
9.91 

--------- 
13.87 
9.28 

--------- 
10.30 

~ 

Model 
Location 

51 X 
Y 
Z 

53x  
Y 
Z 

55x 
Y 
Z 

57x 
Y 
Z 

Analytical Residuals Final 

Updates (innb) Error 
After Percent 

4.7566E-06 -__------ 
1.2420E-03 1.16 
1.261 1 E-03 -1.88 

4.9068E46 --------- 
1.2424E-03 0.72 
1.2614E-03 -1.33 

4.7784E-06 ---_---_- 
1.2635E-03 2.16 
1.2815E-03 -1.85 

_ _ _ _ _ _ - _ _  4.741 OE-06 
1.221 6E-03 -1.16 

1.2250E-03 I 1.3830E-03 ' 12.90 1 1.2408E-03 1.29 

+ Confidence in experimental residual flexibility values for the X-direction is low because stiffness lines are not 
present in the response functions and cutve-fitting breaks down. These directions are unimportant for Shuttle 
payloads. 
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3.4 Use of Payload Simulator Model for Hybrid Method Parameter Studies 

Investigation of the equations presented in this TM has been done through parameter studies 
using the payload simulator model. For these parameter studies, the model had been updated to agree 
with measured free-free modes and frequencies but had not been correlated with trunnion interface 
response functions and residual flexibility values. However, as shown in table 2, percent error between 
model and test residual values was under 14 percent for the trunnion bending directions, which for some 
cases is within the error bounds identified in the Materials Science Laboratory error analysis mentioned 
in the previous section. Further, the parameter studies were mainly comparative in nature for (1) differ- 
ent boundary mass configurations, (2) different residual terms, and ( 3 )  different numbers of mode 
shapes, so that the partially correlated model was sufficiently accurate for the objectives of the studies. 
It is noted that for the parameter studies described in this section, rectangular masses were added 
symmetrically to all four trunnions of the payload simulator model. 

3.4.1 Hybrid Method With Full Residuals (Modified Rubin Method) 

Initially the payload simulator model was used for investigations of the hybrid Rubin method, 
which includes both residual flexibility and residual inertia, along with mass loading of the structure 
boundaries. This is the most general technique described in this TM, as stated previously, though not 
necessarily the most practical for test implementation, due to the requirement of measuring residual 
inertia effects. These second-order effects are very small, and differences between test and model can be 
greater than one or two orders of magnitude. 

For all the hybrid/Rubin method cases discussed, 20 mass-additive mode shapes, including 
6 rigid-body modes, were retained in the modal synthesis. In the first cases studied, all 6 DOFs at the 
end of each payload simulator trunnion (fig. 5 ) ,  a total of 24 DOFs, were placed in the boundary parti- 
tions of the matrices in the equations of motion, equations (33)-(35) .  As discussed in section 2. I .2.1, 
near equation (21), mass loading is limited to the boundary DOFs in this case, since all mass loaded 
DOFs are to be constrained. Three different mass loading conditions were evaluated: (1) Zero mass 
loading reference case, (2) 0.5 Ib attached to each trunnion, and ( 3 )  5-lb masses on each trunnion. 

In table 3 ,  derived constrained frequencies and mode shape cross-orthogonality values are com- 
pared for the unloaded, 0.5-lb mass, and 5-lb mass loading conditions. As stated in the previous para- 
graph, 24 boundary DOFs were constrained in each case, and 20 free-free mass-additive modes were 
used. With the exception of mode 15 for the unloaded case, all derived frequencies are nearly exact, with 
errors below 0.1 percent, and the diagonal orthogonality values are near 1. It can be seen from table 3 
that considerably more constrained-boundary modes could be derived for the zero mass loading case 
compared to either of the loaded-boundary cases. This is due to the fact that the added boundary masses 
lowered the bending frequencies of the trunnions, with the result that in the selected sets of 20 modes 
there were fewer global modes and more localized trunnion modes than for the unloaded case. A thor- 
ough pretest analysis must always be done when using boundary mass loading to determine the best 
mass properties for a given structure and test configuration. This will assure that the desired constrained 
modes are derived from the measured or retained mass-additive modes. 
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Table 3. Effect of different boundary mass loadings on derived constrained frequencies 
and mode orthogonality for hybrid Rubin method (24 boundary DOFs, 20 modes). 

Exact 
requency 

9.2768 

18.7627 

20.6366 

23.9799 

32.8235 

40.7146 

40.8733 

56.3890 

60.0858 

79.8798 

91.6779 

96.6930 

07.9900 

16.7489 

26.1755 

38.8683 

41.6920 

42.5079 

Derived 
Frequency 

(0 Ib) 

9.2768 

18.7627 

20.6366 

23.9800 

32.8236 

40.71 46 

40.8734 

56.3896 

60.0862 

79.881 0 

91.6815 

96.6936 

107.9949 

11 6.7606 

129.1 603 

138.881 6 

141.7253 

142.5607 

XOrthog. 
Diagonal 

(0 Ib) 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 
.oooo 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9964 

0.9999 

0.9991 

0.9990 

Derived 
Frequency 

(0.5 Ib) 

9.2768 

18.7627 

20.6366 

23.9800 

32.8247 

40.7146 

40.8734 

56.3900 

60.086 1 

79.8814 

91.6869 

96.7022 

xorthog. 
Diagonal 
(0.5 Ib) 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9999 

Derived 
Frequency 

(5 la) 

9.2768 

18.7627 

20.6366 

23.9800 

32.8235 

40.7503 

40.8733 

56.3893 

60.0861 

XOrthog. 
Diagonal 

(5 Ib) 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

It was also desirable to observe the effects of having mass loading of interior DOFs; i.e., cases 
where not all DOFs affected by the added masses are to be constrained. This more general case was 
investigated for the hybrid Rubin method by constraining only translations at the end of each trunnion 
(12 DOFs total) for the payload simulator. Results are shown in table 4 for 0.5-lb mass loading at each 
trunnion and 20 modes retained. Of course, the constrained frequencies are generally lower than for the 
six-DOF-constrained cases, but no loss in accuracy of derived modes is seen when mass loading of 
interior DOFs occurs. Again, the derived modes and frequencies are almost exact when both residual 
flexibility and residual inertia are included. 

These results point out the great accuracy achievable for reduced models and derived constrained 
modes using the hybrid full residual or Rubin approach. However, the disadvantage of the method is 
the difficulty of measuring residual inertia as stated earlier in this section. For this reason, the hybrid 
residual flexibility method, or hybrid MacNeal formulation, will be emphasized for the remainder of this 
TM. However, estimates of residual inertia are required when curve-fitting experimental residual func- 
tions to obtain residual flexibility values. 
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Table 4. Derived constrained modes for hybrid Rubin method 
(0.5-lb mass, 12 boundary DOFs, 20 modes). 

Exact 
Frequency 

6.9501 
9.6823 

12.4921 
13.7879 
22.8302 
28.6450 
34.1 967 
50.5303 
53.6326 
77.4622 
87.1 822 
96.2350 

(Hz) 

Derived 
Frequency 

(Hz) 

6.9501 
9.6823 

12.4921 
13.7879 
22.8302 
28.6450 
34.1968 
50.5305 
53.6330 
77.4636 
87.1 881 
96.2400 

XOrthog. 
Diagonal 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9999 

3.4.2 Hybrid Residual Flexibility Technique (Modified MacNeal Approach) 

Due to the great practical importance of the hybrid residual flexibility formulation for experi- 
mental implementation, the effects of the following variables were investigated in a highly detailed 
parameter study: (1) Size and weight of added masses, (2) number of retained mass-additive modes, 
(3) residual flexibility terms retained, and (4) number of constrained DOFs. In addition, results for basic 
residual flexibility method with no mass loading and for basic mass-additive approach with no residual 
terms were obtained as reference cases for (1) and (3). 

The studies are broken down into two broad categories: 

(1) Six DOFs constrained at each mass attach point (24 DOFs total), described by equations (33), 
( 3 3 ,  and (38) 

(2) Three DOFs constrained at each mass attach point (translations only, total 12 DOFs), 
governed by equations (33) and (35)-(36). 

Convergence characteristics of the derived constrained modes for these two configurations 
are described in the following sections. 

3.4.2.1 Results for Six Degrees of Freedom Constrained at Each Mass Attach Point. The 
first parameter to be discussed, weight of added masses, was investigated for three cases: (1) No  mass 
loading, (2) 0.5-lb masses, and (3) 5-lb masses. Of course, the case for no mass loading represents the 
basic residual flexibility approach. Table 5 shows a comparison of derived constrained frequencies and 
mode cross-orthogonalities (with exact modes) for the three mass loading cases, using 20 retained mass- 
additive modes and full residual flexibility matrices for all cases in the reduced mass and stiffness 
matrices. The residual flexibility matrices referred to here can be seen in equations (7) and (35). In all 
three boundary mass configurations, accurate constrained modes were obtained, though the 5-lb case 
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Table 5. Comparison of derived constrained modes for hybrid MacNeal method with different mass 
loadings (20 mass-additive modes, full residual flexibility matrix, 24 boundary DOFs). 

Exact 
Frequency 

9.2768 
18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 
79.8798 
91.6779 
96.6930 

107.9900 
1 16.7489 
126.1755 
138.8683 
141.6920 
142.5079 

Derived 
Frequency 

(0 Ib) 

9.2774 
18.7836 
20.6493 
24.01 17 
32.9330 
40.8183 
41.3649 
56.5504 
60.4672 
80.1 406 
92.7889 
96.7142 

108.3370 
11 7.2540 
148.491 1 
139.4997 
143.7859 
144.9400 

XOrthog. 
Diagonal 

(0 Ib) 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9987 
1 .oooo 
0.9997 
0.9997 
0.9907 
0.9919 
0.9718 
0.9709 

Derived 
Frequency 

(0.5 Ib) 

9.2773 
18.7754 
20.6415 
23.9865 
32.8794 
40.7687 
41.31 34 
56.4205 
60.2583 
80.3566 
95.5041 
96.7356 

XOrthog. 
Diagonal 
(0.5 Ib) 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9999 
1 .oooo 
0.991 4 
0.9926 

Derived 
Frequency 

9.2774 
18.7648 
20.641 0 
24.0000 
32.881 2 
42.7748 
41.4633 
56.4502 
60.1910 

(5 Ib) 

XOrthog. 
Diagonal 

(5 Ib) 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9998 
1 .oooo 
0.9999 

was less accurate and fewer modes could be derived. This occurred because the retained set of 20 mass- 
additive modes had more localized trunnion modes and fewer global structure modes than the cases for 
zero and 0.5-lb mass loading. These results point out the importance of pretest analysis and selecting a 
proper mass size and weight that will allow the desired number of constrained modes to be derived with 
accuracy. Of the mass loading configurations presented here for the Shuttle payload simulator, the 0.5-lb 
case is more desirable. Though more modes could be derived with no mass loading, the rotations at the 
trunnions, particularly torsion, cannot be accurately measured without boundary masses. 

Investigation of the second parameter, number of retained mass-additive modes, is described 
next. Again, the full residual flexibility matrices that appear in equations (7)  and (35) were utilized. In 
tables 6-8, derived constrained frequencies are shown with mode shape cross-orthogonality for the 0.5- 
Ib, 5-lb, and zero mass loading cases, respectively. Each table lists the derived constrained modes for 10, 
15, and 20 retained mass-additive modes. In each mass loading case, the progress of convergence of the 
constrained modes can clearly be seen as a function of the number of retained mass-additive modes. All 
three mass loading cases start out with the same number (7) of derived modes and have comparable 
accuracy, though the 5-lb case lags behind the other cases slightly. The zero added-mass case and 0.5-lb 
case both increased to 12 derived constrained modes for 15 retained mass-additive modes, while the 5-lb 
case shows no increase in the number of derived modes. However, the accuracy of the constrained 
frequencies did increase significantly for the 5-lb case in going from 10 to I5 retained mass-additive 
modes. A similar situation is seen for the 0.5-lb mass loading case when going from 15 to 20 retained 
mass-additive modes. 
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Table 6. Effect of retained mass-added modes on derived constrained modes for hybrid 
MacNeal method (0.5-lb loading, full residual flexibility, 24 boundary DOFs). 

Exact 
:requency 

9.2768 
18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 
79.8798 
91.6779 
96.6930 

10 Mass-Added Modes 
Derived XOrthog. 

Frequency Diagonal 

9.2779 1 .OOOO 
18.8367 1 .OOOO 
20.6532 1 .OOOO 
24.0514 1 .OOOO 
33.0968 1 .OOOO 
42.8722 1 .OOOO 
42.1046 0.9993 

15 Mass-Added Modes 
Derived XOrthog. 

Frequency Diagonal 

9.2774 1 .OOOO 
18.7823 1 .OOOO 
20.6531 1 .OOOO 
24.0369 1 .OOOO 
32.9077 1 .OOOO 
40.7955 1 .OOOO 
41.3294 1 .OOOO 
56.7825 0.9997 
60.91 73 0.9999 
80.7216 1 .OOOO 
96.91 88 0.9946 
97.4750 0.9943 

15 Modes 

Derived XOrthog. 
Frequency Diagonal 

9.2774 1 .OOOO 
18.8314 1 .OOOO 
20.7148 1 .OOOO 
24.0459 0.9999 
32.9186 0.9998 
43.0194 0,9999 
41.6791 0.9982 

20 Mass-Added Modes 
Derived XOrthog. 

Frequency Diagonal 

9.2773 1 .OOOO 
18.7754 1 .OOOO 
20.6415 1 .OOOO 
23.9865 1 .OOOO 
32.8794 1 .OOOO 
40.7687 1 .OOOO 
41.31 34 1 .OOOO 
56.4205 1 .OOOO 
60.2583 0.9999 
80.3566 1 .OOOO 
95.5041 0.9914 
96.7356 0.9926 

20 Modes 

Derived XOrthog. 
Frequency Diagonal 

9.2774 1 .OOOO 
18.7648 1 .OOOO 
20.641 0 1 .OOOO 
24.0000 1 .OOOO 
32.8812 1 .OOOO 
42.7748 1 .OOOO 
41.4633 0.9998 
56.4502 1 .OOOO 
60.1 91 0 0.9999 

Table 7. Effect of retained mass-added modes on derived constrained modes for hybrid 
MacNeal method (5-lb loading, full residual flexibility, 24 boundary DOFs). 

Exact 
Frequency 

9.2768 
18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 1 

10 Modes 

Derived 
Frequency 

9.2776 
18.8727 
20.9275 
24.7170 
34.01 92 
43.2223 
44.6197 

XOrthog. 
Diagonal 
1 .oooo 
1 .oooo 
0.9997 
0.9992 
0.9999 
1 .oooo 
0.9968 
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Table 8. Effect of retained mass-added modes on derived constrained modes for hybrid 
MacNeal method (zero mass loading, full residual flexibility, 24 boundary DOFs). 

Exact 
requency 
9.2768 

18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 
79.8798 
91.6779 
96.6930 
07.9900 
16.7489 
26.1 755 

41.6920 
42.5079 

38.8683 

10 Modes 

Derived XOrthog. 
Frequency Diagonal 

9.2780 1 .OOOO 
18.8362 1 .OOOO 
20.6564 1 .OOOO 
24.0546 1 .OOOO 
33.0833 1 .OOOO 
42.8673 1 .OOOO 
42.0271 0.9994 

15 Modes 

Derived XOrthog. 
Frequency Diagonal 

9.2777 
18.7836 
20.6564 
24.0546 
33.0045 
40.81 84 
41.3650 
56.7381 
60.6858 
80.1407 
92.7893 
96.7575 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9998 
0.9999 
1 .oooo 
0.9987 
0.9997 

20 Modes 

Derived XOrthog. 
Frequency Diagonal 

9.2774 1 .OOOO 
18.7836 1 .OOOO 
20.6493 1 .OOOO 
24.01 17 1 .OOOO 
32.9330 1 .OOOO 
40.81 83 1 .OOOO 
41.3649 1 .OOOO 
56.5504 1 .OOOO 
60.4672 1 .OOOO 
80.1406 1.0000 
92.7889 0.9987 
96.7142 1.0000 

108.3370 0.9997 
117.2540 0.9997 
148.491 1 0.9907 
139.4997 0.991 9 
143.7859 0.971 8 
144.9400 0.9709 

The conclusion to be drawn from tables 6-8 is that the 5-lb mass loading case performs worse 
than the other cases because the masses are too heavy for the payload simulator structure. The 0.5-lb 
case performs very well in comparison. However, if there is no need to measure rotations, and the 
boundary FRFs and residual functions are satisfactory in the desired bandwidth, mass loading should not 
be utilized. The basic residual flexibility method should be used in such cases because more constrained 
modes can be derived using a given number of free-free modes in the synthesis process. 

The third parameter investigated was the number of residual flexibility terms retained in the 
reduced stiffness matrix, as shown in equation (35). Note that the reduced mass matrix in equation (38) 
has no residual flexibility terms. It is desirable to reduce the number of residual flexibility terms in the 
formulation if possible, in order to reduce the number of measurements required for experimental imple- 
mentation. Previous investigations have shown that the diagonal terms of Grbb are much easier to 
measure with accuracy than the off-diagonal terms. It is noted that these parameter studies apply only to 
the reduced stiffness matrix. The transformation matrix in equation (44) was used with full Grbb 
[G~J for all cases. 

[ I  
[ I and 

Initially, for the 24 boundary DOF cases, only the diagonal values of [Grbb] were used, but it was 
found that a fairly large number of mass-additive modes (25-30) were required for acceptable accuracy 
of derived constrained modes. It can be difficult to develop a test-correlated model that accurately 
represents that many mode shapes. For comparison to these results, the full [Grbb] matrix was used 
in equation (35). This was found to work very well, even for small numbers of mass-additive modes, 
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and representative results are shown in table 9 for the 0.5-lb mass loading case, where 20 mass-additive 
modes (14 elastic) were retained. Derived constrained modes in table 9 are compared for diagonal [ Grbb] 
and full [Gbb  1 in equation (35). The disadvantage of using the full [Gbb 1 matrix is that it may be im- 
possible to verify the off-diagonal terms experimentally; measurement of the diagonal terms is much 
easier, as stated in the previous paragraph. Engineering judgment is required in determining whether to 
use only the diagonal terms of Grbb with a larger set of mass-additive modes. [ I  

Table 9. Effect of retained residual terms on derived constrained modes in hybrid 
MacNeal method (0.5-lb loading, 20 mass-added modes, 24 boundary DOFs). 

Exact 
Frequency 

9.2768 
18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 
79.8798 
91.6779 
96.6930 

Diagonal [Grbd 

Derived X Orlhog. 
Frequency Diagonal 

7.9465 0.9777 
16.0974 0.9922 
15.7103 0.9679 
16.341 5 0.9300 
26.1 688 0.9503 
37.6595 0.9909 
34.2264 0.9908 
54.01 15 0.9776 
53.1553 0.8987 
82.7598 0.9762 

103.3862 0.8857 
96.41 99 0.9967 

Full [Grbd 

Derived 
Frequency 

9.2773 
18.7754 
20.641 5 
23.9865 
32.8794 
40.7687 
41.31 34 
56.4205 
60.2583 
80.3566 
95.5041 
96.7356 

XOrthog. 
Diagonal 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9999 
1 .oooo 
0.9914 
0.9926 

3.4.2.2 Results for Three Degrees of Freedom Constrained at Each Mass Attach Point. 
Similar studies to those described in the previous section were done for the Shuttle payload simulator 
with only translations to be constrained at each boundary mass attachment location (12 DOFs 
constrained total). Mass loading of 0.5 Ib at each trunnion was utilized, and a zero mass loading case 
was analyzed for comparison. Similar to the case for six DOFs constrained at each mass attach point, 
these parameter studies apply to the reduced mass and stiffness matrices only. For the transformation 
matrix in equation (44), the full [Grbb] and [Grib] partitions were used in all cases. 

For the case of full residual flexibility terms in the reduced mass and stiffness matrices, a pattern 
similar to that shown in table 6 for convergence of derived constrained modes was observed. Con- 
strained frequency errors were very low in comparison to exact results. Further, there was virtually no 
loss in accuracy when neglecting [Gqb] and using only the full [Grbb] residuals in the reduced mass 
and stiffness matrices, equations (35)-(36). Again, the frequency errors were very low. However, when 
the residual flexibility terms were reduced to only the diagonals of [Grbb], a clear loss in accuracy of 
derived constrained modes was observed. This is seen in table 10, where results are shown for derived 
constrained modes when retaining 10, 15, and 25 mass-additive modes. As stated in the previous 
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section, it can be difficult to correlate a model to test data for 25 modes. However, accuracy of con- 
strained modes for 20 retained mass-additive modes (not shown in table 10) was actually worse than for 
15 retained modes, showing that up to 25 modes could be required. 

Exact 
:requency 

I 

Table 10. Derived constrained modes for different numbers of mass-added modes in hybrid MacNeal 
method, with only diagonal [Grbb] residual terms (0.5-Ib loading, 12 boundary DOFs). I 

Derived XOrthog. 
Frequency Diagonal 

10 Modes 

6.9501 
9.6823 

12.4921 
13.7879 
22.8302 
28.6450 
34.1967 
50.5303 
53.6326 
77.4622 
87.1822 
96.2350 

107.1969 
1 14.3559 
126.1380 
137.9789 
138.7379 

7.01 81 1 .OOOO 
9.7548 1 .OOOO 

12.2298 1 .OOOO 
13.7778 1.0000 
23.1873 1.0000 
29.0594 1 .OOOO 
52.4894 1 .OOOO 
50.5625 1 .OOOO 

15 Modes 
Derived XOrthog. 

Frequency Diagonal 

6.5489 0.9969 
9.3592 0.9998 

13.9098 0.8735 
14.0869 0.8714 
21.7631 0.9900 
29.1923 0.9952 
32.5939 0.9991 
53.5009 0.9931 
54.1 238 0.9994 
77.7251 0.9996 
93.2500 0.9788 
97.01 81 0.9859 

___ ~~ 

25 Modes 
Derived XOrthog. 

Frequency Diagonal 

6.9476 1 .OOOO 
9.6728 1 .OOOO 

12.5757 1 .OOOO 
13.7871 1 .OOOO 
22.8220 1 .OOOO 
28.6230 1 .OOOO 
33.7316 0.9991 
50.61 10 0.9998 
53.6327 1 .OOOO 
77.51 86 1 .OOOO 
87.1 747 1 .OOOO 
96.2351 1 .OOOO 

107.1979 1.0000 
114.3576 1 .OOOO 
166.0426 0.9287 
238.5921 0.2929 
138.7391 0.9990 

Table IO  also shows that use of 15 retained mass-additive modes gave worse results for derived 
constrained modes than the case for 10 retained modes. These results show that there were modes in the 
larger set that did not contribute to the constrained-boundary configuration, and actually hurt conver- 
gence. This also points out the potential value of selecting mass-additive modes that contribute most to 
the constrained-boundary modes through use of modal participation calculations. However, such an 
analysis is not included in the context of this TM. 

For comparison to the 0.5-lb mass-loaded configuration, analysis was done for the 12-DOF- 
constrained model using the basic MacNeal or residual flexibility approach with zero mass loading of 
the boundaries. Table 11 shows the convergence characteristics of derived constrained modes for use of 
10, 15, and 20 retained mass-additive modes, where only diagonal [Grbb] residuals were utilized. The 
results of table 1 1  compared to table I O  point out clearly that use of mass loading in the residual flexibil- 
ity approach can result in slower convergence of constrained modes, or alternatively, require additional 
residual flexibility terms. As stated previously, if rotations are not to be constrained and the boundary 
FRFs and residual functions are satisfactory for obtaining residual flexibility values, mass loading 
should not be used, and either the basic residual flexibility method or basic Rubin method should be 
used. 

, 
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Table 1 1. Derived constrained modes for different numbers of mass-added modes in hybrid MacNeal 
method, with only diagonal [Grbb] residual terms (zero mass loading, 12 boundary DOFs). 

Exact 
Frequency 

6.9501 
9.6823 

12.4921 
13.7879 
22.8302 
28.6450 
34.1967 
50.5303 
53.6326 
77.4622 
87.1822 
96.2350 

107.1969 
1 14.3559 
126.1380 
137.9789 
138.7379 
140.3294 

10 Modes I 15 Modes 

Derived 
:requency 

6.9780 
9.7726 

12.3795 
13.8117 
23.0062 
28.9372 
53.2095 
50.6756 

XOrthog. 
Diagonal 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

Derived 
Frequency 

6.9673 
9.6470 

12.5119 
13.9772 
22.9567 
28.5938 
33.4080 
50.7973 
53.8477 
77.6671 
87.6263 
96.2649 

X Orthog. 
Diagonal 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9998 
1 .oooo 
1 .oooo 
1 .oooo 
0.9998 
0.9999 

20 Modes 

Derived XOrthog. 
Frequency Diagonal 

6.9614 
9.6709 

12.5165 
13.6573 
22.9258 
28.9203 
33.3839 
50.7661 
53.6969 
77.7103 
87.8136 
96.2576 

107.5268 
114.7188 
169.4028 
138.2839 
140.5087 
141.9454 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9998 
1 .oooo 
1 .oooo 
1 .oooo 
0.9997 
1 .oooo 
0.9998 
0.9999 
0.9944 
0.9973 
0.9973 
0.9977 

3.4.3 Variation of Residual Flexibility Values for Different Numbers of Retained Modes 
and Boundary Mass Sizes 

It is interesting to observe the effect upon the magnitude of residual flexibility values of varying 
(1) boundary mass size (weight) and (2) number of mass-additive modes. Of course, the residual flex- 
ibility decreases as a function of number of retained modes, since it represents an approximation of 
modes not retained in the reduced model. In addition, for a given frequency bandwidth, one would 
expect residual flexibility associated with boundary DOFs to be smaller in the case of mass-loaded 
boundaries, since localized boundary modes are lowered into the bandwidth. These trends are indeed 
observed and are of importance because the smaller the residual flexibility values are, the more difficult 
it becomes to measure them with accuracy. 

Table 12 shows the variation of the residual flexibility values for all six DOFs at the mass-loaded 
end of the - X ,  -Y trunnion of the Shuttle payload simulator. It is noted, however, that it is unimportant 
which trunnion is under discussion due to symmetry of the structure. Results are shown as a function 
of added mass and number of retained mode shapes. As expected, little variation is seen in the residual 
flexibility values with the number of retained modes for zero mass loading because the localized trun- 
nion modes occur at high frequency. However, residual flexibility values generally decrease with 
increased mass and number of retained mass-additive modes. 
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Table 12. Variation of residual flexibility values for different mass loadings 
and number of retained mass-additive modes. 

Exact 
Frequency 

Added 1 Modes I XResidual 
Mass (Ib) Retained (innb) 

30 Modes 40 Modes 

Derived XOrthog. Derived XOrthog. 
Frequency Diagonal Frequency Diagonal 

0.0 
0.5 
5.0 
0.0 
0.5 
5.0 
0.0 
0.5 
5.0 

10 
10 
10 
15 
15 
15 
20 
20 
20 

1.0322E-05 
1.0296E-05 
1.0533E-05 
4.9568E-06 
5.0768E-06 
1.0201 E-05 

' 4.7650E-06 
4.9033E-06 
9.8922E-06 

Y Residual 
(innb) 

1.3980E-03 
1.3843E-03 
1.2924E-03 
1.3856E-03 
1.3483E-03 
5.8527E-04 
1.3785E-03 
6.2687E-04 
2.1 21 3E-06 

ZResidual 1 RXResidual 1 RYResidual 1 RZResidual 
(innb) (radfin-l b) (radlin-lb) (radlin-l b) 

1.4309E-03 
1.3346E-03 
9.1884E-04 
1.3932E-03 
1.191 1 E-03 
1.2984E-04 
1.3157E-03 
6.6237E-04 
2.5148E-06 

7.4436E-05 
7.4433E-05 
7.441 2E-05 
7.441 1 E-05 

7.4400E-05 
7.4332E-05 
7.4391 E-05 

7.4399E-05 

7.2830E-05 

5.5845 E-05 
5.5347E-05 
5.21 36E-05 

5.2996E-05 
2.6923E-05 
5.4923E-05 
3.9352E-05 

5.5649E-05 

1.71 82E-05 

5.5702E-05 
5.5685E-05 
5.5572E-05 
5.5680E-05 

3.5435E-05 
5.56 1 8E-05 
3.4554E-05 

5.5347E-05 

1.5776E-05 

3.4.3.1 Results for Basic Mass-Additive Method Without Residual Flexibility. Analysis 
was also done to provide a reference for the improved accuracy of the hybrid method in comparison 
to the basic mass-additive a p p r ~ a c h . ~ . ~  Results are first presented for the case of 0.5-Ib mass loading 
at each trunnion of the payload simulator, with three translational DOFs to be constrained at each point 
(12 boundary DOFs total). It was found that 30 or more mass-additive modes are required in the absence 
of residual terms to derive accurate constrained modes, as shown in table 13. The precise number of 
mass-additive modes needed depends upon the number of constrained modes required and upon the 
mass size. Clearly the use of residual flexibility reduces the number of mass-additive modes that must be 
retained, measured, and used for model correlation. 

Table 13. Derived constrained modes for the basic mass-additive method 
with no residual terms (0.5-lb loading, 12 boundary DOFs). 

6.9501 
9.6823 

12.4921 
13.7879 
22.8302 
28.6450 
34.1 967 
50.5303 
53.6326 
77.4622 
87.1 822 
96.2350 

107.1969 
114.3559 
126.1 380 
137.9789 
138.7379 

6.9592 
9.8883 

12.4951 
13.7987 
22.8595 
28.6501 
45.1418 
50.5326 
53.6362 

184.9571 
87.1 841 
96.2370 

107.2051 
11 4.3574 
139.4956 
139.4956 
138.7394 

1 .oooo 
0.9996 
1 .oooo 
1 .oooo 
0.9997 
1 .oooo 
0.9788 
1 .oooo 
1 .oooo 
0.4288 
1 .oooo 
1 .oooo 
0.9999 
1 .oooo 
0.871 1 
0.4613 
0.9994 

6.9508 
9.6990 

12.4947 
13.7906 
22.8327 
28.6477 
35.461 2 
50.5322 
53.6334 
79.6931 
87.1830 
96.2351 

107.1 971 
1 14.3561 
139.5815 
138.0498 
138.7382 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9995 
1 .oooo 
1 .oooo 
0.9985 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.91 73 
0.9325 
1 .oooo 
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For the case of 24 boundary DOFs (6 DOFs at each mass attach point), the findings are more 
dramatic. It was found for the 0.5-lb masses that over 100 mass-additive modes are required. If 5-lb 
boundary masses are used, the number of required modes is reduced, but is still on the order of 50 modes 
(table 14). The basic mass-additive approach without residual flexibility thus becomes impractical as the 
number of boundary DOFs to be constrained increases. Further, large masses may be required depend- 
ing on the structure geometry and weight and, again, on the number of boundary DOFs. 

Table 14. Derived constrained modes for basic mass-additive method (24 boundary DOFs). 

Exact 
Frequency 

9.2768 
18.7627 
20.6366 
23.9799 
32.8235 
40.7146 
40.8733 
56.3890 
60.0858 
79.8798 
91.6779 
96.6930 

107.9900 
11 6.7489 
126.1 755 
138.8683 
141.6920 
142.5079 

0.5-lb Mass 

80 Modes 

Derived XOrthog. 
Freauencv Diaaonal 

9.5214 
50.2338 
21 A980 
26.1960 
35.6061 

103.1966 
43.5301 
5 7.4 7 0 5 
61.3925 
50.2338 
93.2684 
96.8202 

108.2658 
11 7.6004 
140.1 308 
103.1 966 
142.1686 
143.5388 

0.9996 
0.8195 
0.9998 
0.9986 
0.9990 
0.7874 
0.9991 
0.9987 
0.9997 
0.5709 
0.9991 
0.9998 
0.9996 
0.9996 
0.9828 
0.5971 
0.9306 
0.9303 

120 Modes 

Derived 
Frequency 

9.3666 
19.8629 
21.1 155 
24.7410 
33.7720 
42.3876 
41.9371 
56.7345 
61.1922 
80.7078 
92.2803 
96.7348 

108.0823 
117.0174 
135.0474 
139.2480 
141.9843 
142.8434 

XOrthog. 
Diagonal 

1 .oooo 
1 .oooo 
0.9999 
0.9998 
0.9999 
0.9996 
0.9997 
0.9999 
0.9998 
0.9999 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
0.9900 
0.9965 
0.9958 
0.9958 

5-lb Mass 

40 Modes 

Derived 
Frequency 

9.7064 
37.8934 
24.3270 
27.0747 
45.1629 
37.8934 
48.481 7 
66.2439 
81.6551 

160.7461 
81.6551 
97.3461 

109.2487 
122.2673 
160.7461 
160.7461 
128.4337 
152.4853 

XOrthog. 
Diagonal 

0.9956 
0.8474 
0.9585 
0.8692 
0.7567 
0.4814 
0.8387 
0.8393 
0.5665 
0.4393 
0.7764 
0.9863 
0.9539 
0.8914 
0.0322 
0.2484 
0.6333 
0.6525 

60 Modes 

Derived 
Frequency 

9.2779 
18.7899 
20.6458 
23.9906 
32.8350 
41.4989 
40.9150 
56.3938 
60.1071 
80.2266 
91.701 3 
96.6935 

107.991 2 
116.7526 
137.0175 
138.9920 
141.6965 
142.51 27 

XOrthog. 
Diagonal 

1 .oooo 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
0.9993 
1 .oooo 
1 .oooo 
1 .oooo 
0.9995 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0.9852 
0.9968 
1 .oooo 
1 .oooo 

Two other observations can be made from tables 13 and 14. First, it appears that the larger 5-lb 
mass, if used in the 12 boundary DOF case for the basic mass-additive method, could reduce the number 
of required modes to a practical level. However, this case was not investigated, and it has merit for 
further study. Second, it is possible that the type of boundary DOFs (rotational or translational) may be 
more important than the number of boundary DOFs. It seems logical that more modes would be needed 
for deriving constrained modes for rotational boundary DOFs than for translational boundary DOFs. 



4. EXPERIMENTAL IMPLEMENTATION OF HYBRID METHOD FOR PAYLOAD 
SIMULATOR WITH MASS-LOADED BOUNDARIES 

- 

Demonstration of the experimental implementation of the hybrid method was accomplished 
by using the Shuttle payload simulator modified at one trunnion. A rectangular 0.5-lb aluminum mass 
having dimensions 3.5 by 3 by 0.5 in was attached to the end of the (-X, -Y) trunnion, as shown in 
figures 9 and 10. Three triaxial accelerometers were placed at the rectangular mass center, upper right 
comer, and lower left corner when viewed along the positive X axis as seen in figure 11. Hammer impact 
excitation was applied at several points to allow measurement of both translational and rotational FRFs 
and residual flexibility values. In all cases, the objective was to obtain the response of the mass center 
point, or response point 3, as labeled in figure 11. 

5 i n  

I I  I 
I I  I 
I I  I 

25 in 

C- 

I I I  
I I I  
I I 1  

+ 
I 
I 

37.75 in 

I 
I 
I 
I 
A- 

I 

I 

- 

3 in 

t 

i 7- 
Rectangular Mass 

Figure 9. Payload simulator with rectangular mass attached to one trunnion. 

38 

I 



---- 
Weld 

Accelerometers 

Trunnion ---- 
Payload Simulator Simulator 

Test Article 

L X 

Figure 10. Detailed view of added mass and trunnion region of payload simulator. 
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Figure 11. Rectangular mass with excitation and response points. 

7 

39 

1 



4.1 Translational Frequency Response Function and Residual Flexibility Measurements 
Compared to Analysis 

For translational response of the mass center (point 3) in the X direction, excitation was applied 
at 6X, and for translational Yand Z response, excitation was applied at 5Y and 5Z, respectively. The 
excitation and response points are numbered in figure 11. The terminology for the three translational 
FRFs is given by the ordered pairs (6X, 3X),  (5 Y, 3 Y), and (5Z, 32)  respectively. In these ordered pairs, 
the first entry represents the excitation point number and direction, while the second entry refers to the 
response point number and direction. 

Figure 12 shows initial comparison of the test and analytical trunnion Y-bending response func- 
tions (5Y, 3Y). A fairly large discrepancy (=8 percent for resonant frequency) existed between the model 
and test FRF, which required further updates to the payload simulator model. As described previously, 
the model without mass loading had already been updated to agree very well with measured free-free 
modes, frequencies, and trunnion FRFs (residuals). However, addition of the boundary mass introduced 
new errors and uncertainties in the model that had to be corrected. It was discovered that the discrepancy 
shown in figure12 was primarily due to inaccurate modeling of the trunnion-to-mass intersection. While 
in reality the surface of the rectangular mass was attached to the end of the trunnion, the model initially 
had the attach point at the center or mid-plane of the mass plate elements. For this reason, the mass 
attach point was in error by 0.25 in, or half the thickness of the mass. Once this was corrected by adding 
a 0.25 in offset in the -X direction, much better agreement was obtained between the measured and 
predicted FRFs (fig. 13). Other refinements reflected in figure 13 include the addition of X-direction 
offsets for the lumped mass representations of the accelerometers, which were mounted to the outer 
(-X) surface of the rectangular mass. 

I 

Model updates for the mass-loaded trunnion FRFs were done at this stage for the two bending 
directions only. Previously, while investigating the basic residual flexibility method, it was found that 
X-direction trunnion responses were dominated by the global mode shapes rather than the stiffness 
of the trunnion. Very little improvement is possible by realistically modifying the trunnion axial stiff- 
ness. The Z-bending FRFs are compared for test and analysis in figure 14, and the axial (X direction) 
responses are shown in figure 15. It is noted that the test data at lower frequencies, below 50 Hz for the 
X direction and below 35 Hz for 2-bending, are not reliable near antiresonances or FRF minima. This 
is due to general difficulty in measuring the low response near FRF minima, which can be near the noise 
floor of the instrumentation. Also, the hammer tip was not soft enough to give the best response near 
anti resonances. 

After completion of model updates for the mass-loaded trunnion to obtain acceptable agreement 
with test FRFs, the boundary (trunnion) residual flexibility values were compared for test and analysis. 
As described earlier in this TM, a residual function is defined as the difference between a full FRF based 
on all the structural modes and a synthesized FRF based on a subset of the modes. For example, consider 
a case where the full frequency response is computed or measured up to 200 Hz, but only the global 
modes to =85 Hz are of interest. The residual function is obtained by subtracting the synthesized FRF 
(based on the modes to 85 Hz) from the full FRF, as can be seen in figure 16 for the analytical (5Y, 3Y) 
response. Note that the FRF in displacementlforce format must be used. Further, as explained previously, 
residual flexibility is defined as the value of the residual function at zero frequency. Analytically, a 

I residual function has zero slope at zero frequency. 
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Figure 12. Initial tesdanalysis comparison of Y-bending responses for attached mass, 
excitation at mass corner point 5, response at mass center point 3 (5 Y, 3 Y). 
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Figure 13. Comparison of tesdanalysis Y-bending responses (5 Y, 3 Y) for attached 
mass after model updates. 
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Figure 14. Comparison of test and updated analytical Z-bending responses (52, 32) 
for attached mass. 
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Figure 15. Measured and updated analytical axial responses ( 6 X ,  3X)  for attached mass. 
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Figure 16. Analytical residual function as difference between full and modal response 
functions (5 Y, 3 Y). 

Test data for the (5Y, 3Y) response functions and residual function are shown in figure 17. At low 
frequencies, the region most critical for determining residual flexibility values, the full FRF and the 
residual function are very noisy. This is overcome by performing a weighted second-order least-squares 
curve fit as discussed earlier in this TM. The curve-fitting procedure utilizes the fact that a theoretical 
residual function, or a perfectly clean measured residual function, must approach zero slope as it 
approaches zero frequency. In figure 17, both the residual function and a smooth curve-fitted function 
are shown. Statistical weighting of the data allows the noisy regions to be excluded from the smoothed 
curve, which therefore follows the “backbone” of the residual function. Figure 18 presents a comparison 
of experimental and analytical residual functions for the trunnion Y-bending (5Y, 3 Y) response, including 
a smooth curve-fit of the test function. The noisy test residual data that has been weighted out by the 
curve fit can be clearly seen near 10 Hz. In figures 19 and 20, measured and predicted residual functions 
are compared for the trunnion Z-bending (5Z, 32) and axial ( 6 X ,  3X)  directions, respectively. The 
experimental and analytical residual flexibility values for all three trunnion translational directions 
are given in table 15. 

It must be noted at this point that a limitation exists in the current state of the art for this type of 
testing. In figures 20 and 21, for the trunnion X direction residual functions, the test data are very noisy 
for frequencies below =70 Hz. A curve approaching zero slope at zero frequency cannot be discerned, 
which is a requirement for obtaining accurate residual flexibility values. Figure 21 shows that even 
though the experimental residual flexibility value is reasonable and close to the analytical value, the 
least-squares curve-fitting procedure broke down. This occurred because the noisy test data actually have 
an upward trend below 60 Hz, not the gradual downward trend which correctly describes analytical and 
clean experimental residual functions. In such cases, only the FRFs can be compared with confidence in 
the current state of the art. Possibly, higher order curve fitting could be used to alleviate this problem. 
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Test residual function and smooth curve-fitted function, shown as difference 
between full and synthesized response functions (5Y, 3 Y) for attached mass. 
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Figure 18. Comparison of test and updated model residual functions, 
Y-bending (5 Y, 3 Y) for attached mass. 
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Measured and updated analytical residual functions for trunnion 
2-bending at mass attachment location (5Z, 32) .  
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Figure 20. Residual functions from test and updated model for mass-loaded trunnion 
in axial direction ( 6 X ,  3X). 
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Table 15. Residual flexibility values for test and correlated model 
at trunnion mass attachment location. 

Direction 

RX 
RY 
RZ 

Location of 
Drive, Response 

Test 
Residuals 

(infib, Win-lb) 

Analysis 
Residuals 

(in/lb, l/in-lb) 

6X, 3X 
5Y, 3Y 
5z. 3 2  

8.7579E-06 
1.3233E-03 
9.5622E-04 
6.1 642E-05 
3.41 06E-05 
4.1580E-05 

1.0294E-05 
1.4295E-03 

6.0524E-05 
5.0201 E-05 
5.6278E-05 

1.1052E-03 

. .- .. 1.00Et01 _ -  I 
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Figure 21. Residual functions from test and analysis for X direction (6X, 3X),  showing 
an example of breakdown of second-order curve fit for noisy test data. 

Inspection of figures 1 6 1 8  for trunnion Y bending shows that the residual function closely tracks 
the FRF except at the lowest frequencies, where the FRF is dominated by rigid-body behavior. This 
phenomenon points out the physical significance of residual flexibility for the payload simulator trun- 
nions. Residual flexibility in a given coordinate is an approximation of the physical flexibility (inverse 
of stiffness) of the trunnion in that direction. Closed-form solutions for the stiffness and flexibility of a 
simple cantilever beam verified this result. This observation holds true for any structural boundary DOE 
However, it is particularly obvious for a prominent flexible interface whose FRF has a dominant stiffness 
line, or upward-sloping trend, toward the fundamental mode of the interface structure. Such stiffness 
lines are especially apparent for the trunnion Y-bending FRF in figures 13 and 16-18. 
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4.2 Approximate Rotational Frequency Response Functions Derived From Translational Test 
Data and Comparison With Analysis 

In this and the following section, the main advantages of combining mass loading of structure 
boundaries with the residual flexibility technique will be demonstrated. It has been stated previously in 
this TM that rotational measurements typically are not attempted in modal testing, mainly due to diffi- 
culties in performing the measurements in the absence of rotational sensors and due to the expense of 
such sensors if they are utilized. In addition, even if rotational accelerometers were available, rotational 
responses are typically small and difficult to measure accurately. This is particularly true for torsion if 
the structure has beam-like boundary regions, which is the case for the payload simulator structure. 

The problem of rotational FRF and residual flexibility measurements can be at least partly 
alleviated using the hybrid test/analysis approach presented in this TM. The rectangular mass excitation 
and response points shown in figure 11 were utilized to obtain good approximations of the trunnion 
rotational FRF and residual functions for the payload simulator. Redundant excitation and response 
points were used to provide at least two approximations for each rotational FRF. In all cases, the objec- 
tive was to measure response about the mass center, labeled point 3 in figure 11. 

The rotational data were extracted from translational measurements using the simple arc length 
formula, s = r 8. In this expression, r is the length of a line extending from a reference point to a point on 
a curve, 8 is the angle about the reference point swept out by the line, and s is the arc length. In the case 
of the rectangular mass shown in figures 10 and 11, the reference point is the mass center response point, 
or point 3. For rotational response about an axis through the mass center and parallel to the X axis, the 
excitation at 5Y was used initially, along with the Y translational responses at points 1 and 3 (mass center 
and upper right corner, respectively): 

It is noted that small rotations are assumed in this formulation, which is a valid assumption for the low 
input forces used in most modal tests. Equation (60) gives the rotational (torsional) response about an 
axis parallel to the X axis through the mass center point, but the standard normalized form of the FRF is 
needed, which is expressed as 

In equation (61), the moment about the mass center is FSYdl, the force in the Y direction applied at 
excitation point 5 of figure 11, multiplied by the distance’to the mass center. It was desired to verify 
experimental results obtained by use of equation (61) by developing a second expression for the rota- 
tional FRF. In this case, excitation applied at point 5 in the Z direction was utilized along with transla- 
tional responses in Z at points 2 and 3: 

22 -23 
(62) 

-- MX Rx - ?[&]=a* 
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Rotational FRF about the rectangular mass center for the other two axes were obtained in a 
similar manner. In the case of rotations about an axis parallel to the Y axis, excitation in the X direction 
at point 6 (fig. 11) was used, along with X responses at all three accelerometers, to obtain redundant 
expressions given in equation (63): 

Finally, rotational responses about an axis parallel to the Z axis and through the rectangular mass 
center were expressed in terms of X-direction excitations at points 4 and 7 along with X responses at all 
three accelerometers, as shown in equation (64): 

To validate the accuracy of the approximate expressions in equations (6 1)-(64), analytical rota- 
tional FRF extracted from translational responses were compared to exact 8/M analytical responses. 
Figure 22 presents such a comparison for 
to equation (6 I ) .  

rotations about the mass center (RXIMX), corresponding 
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Frequency (Ht) 

Figure 22. Rotational responses of mass (3RX,  3RX), direct and calculated 
from translational responses. 
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Very little difference can be seen between the derived (dashed line) and exact (solid line) analytical 
response functions in figure 22. Comparisons of exact and derived OY and 8,analytical rotational 
responses, corresponding to equations (63)  and (a), are presented in figures 23 and 24. 
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Figure 23. Comparison of direct and calculated rotational responses (3RY, 
for attached mass. 
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Figure 24. Direct and calculated rotational response functions (3RZ, 3RZ) 
for attached mass. 
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Differences in the derived and exact FRFs are observed in the antiresonance regions 
of figures 23-24 for higher frequencies. This can be explained in terms of the physical significance 
of a drive-point (excitation, response in same location, and DOF) response function. Antiresonances 
of drive-point FRF for a particular DOF correspond to the frequencies and modes that would be obtained 
if the structure were constrained in that DOE Since the approximate rotational FRFs are derived from 
translational functions for which the excitation and response points are not coincident (non-drive-point 
FRFs), it should be expected that differences would exist in the antiresonances when compared to exact 
8/M response functions, which are drive-point FRFs. However, since in all cases the derived rotational 
FRFs are virtually identical to the exact results below 140 Hz, it was concluded that the approximate 
rotations are sufficiently accurate. In particular, the derived functions appear accurate enough to allow 
estimation of residual flexibility values, which is the primary goal. 

Having established acceptable accuracy of approximate rotational FRFs based on the arc length 
formula, experimental functions for the payload simulator were compared to results from the model. In 
figure 25 (a) and (b), test RXIMX functions derived using equations (61) and (62) are compared to the 
direct or “exact” analytical OJM,rotational FRFs. The computational results in figure 25 are for the 
final updated or correlated model that had been corrected using all available test data, including 
rotations. Initial model-to-test comparison of translational responses used to determine torsion (fig. 26, 
for example) had revealed that the finite element model in-plane torsional stiffness of the rectangular 
mass plate elements was drastically too low. Once this was corrected, along with increasing the trunnion 
torsional rigidity by about 26 percent, good agreement was achieved between model and test frequency 
response (fig. 27). The correlation approach was to verify all the analytical translational FRFs used in 
approximating the rotational responses, perform model updates as necessary, and then compare the 
rotational responses as the last step. Figures 28 and 29 show excellent test/analysis agreement for the 
RYIMY and RZIMZ functions. Experimental rotations were obtained using both redundant calculations 

I in equations (63) and (64). 

4.3 Experimental Rotational Residual Flexibility Results and Comparison With Analysis 

The final step in the implementation of the hybrid method was to estimate the rotational residual 
I 

I functions and residual flexibility values for the attachment point of the rectangular mass. It was stated 
earlier in the TM that free-suspension modal testing was done for the payload simulator structure with- 
out mass loading. Since no rotational DOFs were included in the test modal database, the normal ap- 
proach for obtaining residual flexibility, subtracting a synthesized modal FRF from a full measured FRF 
(fig. 17, for example), could not be done for rotations as it was for translations. However, the presence of 
prominent stiffness lines (ramping up toward dominant local trunnion modes) in the experimental rota- 
tional FRF, as seen in figures 25,28, and 29, made it possible to estimate residuals in an alternative 
fashion. A by-product of this property of the FRF is that the response function and residual function 
are virtually identical except at the lowest frequencies. This is also true for the translational functions, 
as shown in figure 17. 
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(a) Test rotational response computed from test translational data using equation (6 1) .  
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(b) Test rotational response computed from test translations using equation (62). 

Figure 25. Comparison of tesdanalysis rotational responses about X axis at mass 
center (3RXIMX). 
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Figure 26. Testlanalysis Z-bending responses (52,22) at attached mass before model updates. 
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Figure 27. Test and analytical trunnion 2-bending responses (52,227 after model correlation. 
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(a) Test rotational response computed from test translational data using 
second part of equation (63) .  
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(b) Test rotational response computed from test translations of attached 
mass, using first part of equation (63 ) .  

Figure 28. Comparison of test and updated analytical rotations about Y axis (3RYIMY) 
at mass center. 
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(a) Test rotational response computed from test translational data 
using second part of equation (64). 
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(b) Test rotational response computed from test translations, 
using first part of equation (64). 

Figure 29. Test and updated analytical trunnion rotations about Z axis (3RZIMZ) 
at mass center. 
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Because of the prominent stiffness lines in the rotational FRF, and the fact that the FRF are 
essentially the same as the residual functions when this occurs, the second-order least squares curve- 
fitting procedure that was used for translational test residual functions was applied directly to rotational 
FRF. Results comparing the estimated test residual functions to model predictions for RX/MX (8,/M,) 
at mass point 3 are given in figure 30 (a) and (b). Figure 30 (a) corresponds to the 5Y excitation on the 
rectangular mass and equation (61), while figure 30 (b) corresponds to the 5Z excitation as shown in 
equation (62). In both parts of figure 30, the test FRFs are shown, along with a smooth curve fit of the 
FRF based on the prominent stiffness line region around the center of the frequency bandwidth. The 
analytical residual function is overlaid on the test data for comparison. For both the 5Y and 5Z excitation 
cases, the estimated experimental residual functions, and thus residual flexibility values, compare 
extremely well. Recall that residual flexibility is the value of the residual function at zero frequency. 

Figure 3 1 compares the estimated test residual functions with analysis for RY/MY(8,,/M,)) at the 
mass center (point 3 in figure 11). Figure 3 1 (a) corresponds to the first part of equation (63), where 
responses at mass points 1 and 3 are used, and figure 3 1 (b) corresponds to the second part of the equa- 
tion. The agreement between test and analysis residuals is fairly good for RYIMY and is considered 
acceptable, especially in view of the good test/analysis agreement for the FRFs shown in figure 28 for a 
large bandwidth. Finally, the results for RZIMZ at the mass center (point 3) are shown in figure 32 (a) 
and (b). Analysis compares extremely well with test for the 4X excitation case (first part of eq. (64) and 
fig. 32 (a)), and the comparison is acceptable for the 7 X  excitation case. 

Finally, the analytical and estimated experimental residual flexibility values for rotational DOFs 
are shown in the lower portion of table 15. The test values are averages based on the redundant excita- 
tion and response data shown in figures 30-32 and described by equations (61)-(64). Also, the transla- 
tional residual flexibilities are given in the top portion of table 15. It is noted again that in the table for 
the X direction, low confidence existed for the experimental residual value due to the lack of a prominent 
stiffness line and the resulting breakdown of the second-order curve fitting. 

4.4 Using Models Correlated to Free-Suspension Modes and Residual Flexibility 

Once the model has been updated to agree with measured free-free modes and residual terms in 
the mass-loaded configuration, it is a simple matter to obtain the constrained configuration. The bound- 
ary masses are removed from the finite element model, and the boundary DOFs to be constrained in 
service are analytically constrained. 

This approach applies to the use of full models which have not been subjected to dynamic reduc- 
tion. Alternatively, reduced residual flexibility models corresponding to equations (33)-(44) can be used 
that contain all or predominantly test-verified quantities or actual test data. Finally, as discussed previ- 
ously, test-verified free-free models can be coupled to other components rather than constrained com- 
pletely. This situation arises when coupled system loads analyses are to be performed. 
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(a) Test rotational response and residual functions based on equation (61). 
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(b) Test rotational response and residual functions based on equation (62). 

Figure 30. Test and updated analytical residual functions about X axis (3RXIMX) 
for attached mass. 

56 



l.OOE+OO 

1.00E-01 

1.00E-02 
n 

P 
c 
S 1.00E-03 
w s 
2 

1.00E-04 

1.00E-05 

1.00E-06 

1.00Et00 

1.00E-01 

1.00E-02 

n = 1.00E-03 
E 
\ r 
.- 
w 

$ 1.00E-04 
k 
P 

1 .OOE-05 

1.00E-06 

1.00E-07 

4 I 
0 20 40 60 80 100 

Frequency (Hz) 

Test rotational response and residual functions obtained 
from translations in first part of equation (63 ) .  

I 
0 20 40 60 80 100 

Frequency (Hz) 

(b) Test rotational response and residual functions from test 
translations using second part of equation (63 ) .  

Figure 31. Test and updated analytical rotational residuals about Y axis (3RYIMY) 
at mass center. 
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Figure 32. Test and updated analytical rotational residuals about Z axis (3RZIMZ) 
at mass center. 
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5. SUMMARY 

This TM has presented a thorough description and investigation of a new hybrid approach for 
free-suspension modal testing that allows verification of constrained-boundary structural models. The 
approach combines some of the best characteristics of both the residual flexibility and mass-additive 
techniques. The residual flexibility method alone involves the measurement of global free-free modes 
of the structure, along with boundary residual flexibility values, while the basic mass-additive approach 
involves mass loading of the structure boundaries and measurement of the free-free modes in that con- 
figuration. The hybrid approach presented in this TM combines the excellent convergence characteristics 
of the basic residual flexibility method with the enhancement provided by mass loading that allows 
measurement of rotational properties of the boundaries. 

Results have been presented for a payload simulator structure showing that the hybrid method 
converges in a manner comparable to the basic residual flexibility method and also showing the effect 
of mass loading on response functions and residuals. Good agreement was demonstrated between test 
and analysis translational response functions and residual flexibility for the payload simulator with 
mass-loaded boundaries. A technique for obtaining rotational FRFs and residual functions based on 
the arc length formula was developed and presented in detail. Excellent agreement was obtained overall 
between analytical and experimental rotational FRFs and residuals. 

In practical implementation of the method, the following approach should be taken: (1) Perform 
a free-suspension modal test in the mass-loaded configuration to obtain global modes and natural fre- 
quencies; (2) measure translational and rotational drive-point FRF and residual functions; (3) update the 
finite element model to agree with test modal, FRF, and residual data, typically striving for frequency 
errors under 5 percent for modes and FRF and diagonal cross-orthogonality values 0.90 or greater; and 
(4) constrain the test-correlated model or couple it to other structural components at the boundary DOE 
Alternatively, and perhaps ideally, a reduced model (residual flexibility model) consisting mostly or 
entirely of test-verified modes and residual terms could be developed after step (3) and before step (4). 
This approach could be needed in cases where large finite element models are being coupled to other 
components and then used for transient loads analysis. 

The work presented in this TM should advance free-suspension residual flexibility testing by 
making it more applicable to general boundary conditions and situations where rotational DOFs must 
be included. Though the development was based on the use of translational measurements to estimate 
rotational data, the technique could be used somewhat more easily in cases where rotational accelerom- 
eters are available. However, even as rotational sensors become more reliable and affordable, it is likely 
that the use of mass loading will always be needed to amplify the rotational responses and allow applica- 
tion of moments at the structure boundaries. 
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