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1 Introduction

S

In this paper, we use the theory of bialgebras to prove a state space realiza-

tion theorem for input/output maps of dynamic_hi systems. This approach
_lows us to consider from a commorcviewpotnf_the classical results of Fliess

Fliess-[3], [4] and more recent results on realizations involving families of

trees [7,]o [6]. -_The tNlowing definition is fundamental to this approach. If H
___e,.ll-- _- _- %._ , • . -- ,

: be a _la]gebra, we say txhat p E H IS differentmlly produced by the algebra

R with the augmentations_ if

1. there is right H-modui_ _geb_ structure on R;

2. there e>dsts f E R satisfyiilg p(h) = e(f. h).
- \

, ,: We will characterize those p E H* whifh are differentially produced.
" Differentially produced elements of_gebras arise naturally when study-

ing dynamical systems with inputs and outputs. For example, let R denote
the field of rationalfunctions in the variables_ xl,.. ,xN with coefficients

from the field k, and let EI,...,EM denote ?ff derivations of R. The dy-

namical system

M

_(t) = __, u.(t)E,(x(t)),
#J----1

x(O) = "TO E R N (1)
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together with an observation function f C R

f: R N _ R, (2)

naturally specifies an input/output map, which is defined by sending the

input functions

t t --, uM(t)

to the output function

t---* f(x(t)).

The properties of the input/output map are captured by the formal series

E ca/l,

words tL

where

c, = E,k... E,,f(x(O)), # = tq"'#k, a word.

This series is often called the generating series, while the data consisting of

a dynamical system with inputs, together with an observation, are called

a state space realization of the input/output map. Isadori [11] contains a

detailed description of these topics, as well as extensive references.

Let H denotes the free associative algebra in the symbols El,..., EM

over the field k and let H* denote its topological dual. H* is isomorphic

to a formal power series algebra in infinitely many variables. The point of

view of this paper is to consider the formal series p as an element of the

algebra H*. If p E H* is the formal series associated with an input/output

map, then it is differentially produced. Conversely, we can ask which formal

series p E H* have the property that there is a dynamical system and

an observation function which realizes it as above; that is, which p are

differentially produced? We will see that both these questions are simply

answered if we exploit the bialgebra structure of H.

Important work in this area has been done by Fleiss [3] and [4], Hermann

and Krener [10], and Sussman [16]. Fleiss was the first to focus on the

algebraic and combinatorial aspects of the problem, making important use of

shuffle algebras in his study of realization theory. His work was simplified by

Reutenauer [15]. In this paper, we generalize and simplify the work of Fleiss

and Reutenauer, extending the context to general bialgebras. This allows

us to treat combinatorial examples of differential representations which have

arisen in the symbolic computation of solutions of differential equations [8]

and [7].
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To state the theoremweprovein Section2, weneedsomedefinitions.
Let k denote a field of characteristic 0. If V is a vector space over k, denote

by V* the set of all linear maps V ---. k. The vector space V" with the finite

topology is a complete topological vector space (see [12] for details).

By an algebra over k we mean an associative algebra with identity. The

algebra structure of A can be specified by the maps A ®k A ---, A which

maps a®b E A®k A to ab E A, and k ---, A which maps 1 E k to 1 E A. The

facts that multiplication is associative and that 1 E A is a two-sided unit

for multiplication can be expressed in terms of the commutativity of certain

diagrams. An augmentation for the algebra A is an algebra homomorphism
A---,k.

In a dual manner we define a coalgebra. A coalgebra is a vector space

C over k, equipped with maps A : C ---. C ®k C and e : C ---* k which give

a coassociative comultiplication and a counit (that is, the diagrams which

are dual to those in the definition of an algebra commute). If c E C we

will sometimes write the element A(e) E C ®k C as _(c)e(l) ® c(2), using
notation introduced by Sweedler in [17]. If C is a coalgebra, then C* is an

algebra. Note that e : C _ k is the multiplicative identity for the algebra
C*.

We define a biaIgebra to be a vector space H equipped with an alge-

bra and a coalgebra structure, so that the maps which define the coalgebra

structure are algebra homomorphisms, or equivalently, the maps which de-

fine the algebra structure are coalgebra homomorphisms. In particular, the

coalgebra counit e is an augmentation for the algebra H. If H is a bialgebra,

its primitive elements are defined by

P(H) = {h E H I _(h) = l®h+h® 1}.

It can be shown that P(H) is a Lie algebra with respect to the operation

[z,y] = zy- yx. It has been shown [14] that if the characteristic of k

is 0, and H is generated as an algebra by P(H) (in which case we say that

H is primitively generated), then H _ U(P(H)), where U(L) denotes the

universal enveloping algebra of the Lie algebra L. The Poincar_-Birkhoff-

Witt Theorem (see [13]) states that if el, e2, ... is an ordered basis for L,
then

_1 ""eik ] il <...< ik and 0<ai_}

is a basis for U(L). It follows that U(L)* is a formal power series algebra.

More specifically, if we denote the basis element e_% ..- e_'ik of U(L) by e_,
_1 tk

and let {xa} be the dual basis (in the sense of complete topological vector



spaces),then U(L)* _- k[[xl, x2,...]]. Under this isomorphism

X _

D

where x °' = z?"'*,""x?i_,k and a? =ai, v...'ai,..v (Note that we can think of

a as an infinite sequence of non-negative integers, all but finitely many of

0 land0!= 1.)which are 0. Observe that xj =

Let H denote an algebra with a spanning set

{_ :a a word}

indexed by all words a = al ...ai from an alphabet. We describe when H

is a shuffle algebra on this spanning set. The shuffle of two words

a=_l...a_, 3=fll'"3j

is defined as follows. Let h" = {1,2,...,i +j}, and let

A : {1,...,i}----,K

# : {1,...,j}----*K

denote two order-preserving maps such that the images A(a) and #(fl) are

disjoint and complementary. These data define a word 3' = 71 ""7/, via

S a_-,(0 if IEImA
7t l /3.-,(t) if lEImp.

The shuffle of a and/3 is defined to be the set of all such 3' obtained in this

fashion. We can now define the shuffle algebra structure on H. The shuffle

product of two elements _ and _Z is defined by

=
yEF

where F is the shuffle of the words a and ft. The algebra H is called a shuffle

algebra if the multiplication in H (with respect to the given spanning set)

is given by the shuffle product.

Let H be a primitively generated bialgebra. We define a right and left

H-module structure on H* as follows: if p E H* and h E H, let p _ h E H*

be defined by

(p _- h)(k) = p(hk), k e H,
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andlet h _p E H" be defined by

(h -- p)(k) = k H.

We say that an algebra A is a left H-module algebra if A is a left H-module,
and

h. (ab) = Z(h(D. a)(h(2 ) .b).
(h)

A right H-module algebra is defined similarly. If A is a left or right H-

module algebra, we say that H measures A to itself. In particular, H

measures H* to itself using the actions -- and _ defined above. If the

bialgebra H measures the algebra A to itself, then the elements of P(H) act
as derivations of A.

We say that p E HI* has finite Lie rank if dim P(H) ---,p is finite. Recall

that p E H* is differentially produced by the algebra R with the augmentation
e if

1. there is right H-module algebra structure on R;

2. there exists f E n satisfying p(h) = e(f. h).

Concrete examples of differentially produced functionals on a primitively

generated bialgebra (that is, of differentially produced formal power series)

are given in Section 3.

Our main theorem is the following.

Theorem 1.1 Let H be a primitively generated biaIgebra over a field of

characteristic O. Let p E H*. Then the following are equivalent:

i. p has finite Lie rank;

2. p is differentially produced by some augmented k-algebra R for which

dim (Ker e)/(Ker e)2 is finite;

3. p is differentially produced by a subaIgebra of H* which is isomorphic

to k[[X,,... ,XNI], the algebra of formal power series in N variables.

We prove this theorem in Section 2. We give examples of its application
in Section 3.
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2 Proof of Main Theorem

We first prove that part (1) of Theorem 1.1 implies part (3). Given a fixed

p E H*, we define three basic objects:

L = {hEP(H)]h--p=O}

J = HL

J± = { q E H* Iq(J) = 0 for all j E J}.

Note that L is a Lie ideal in P(H), so that J is an ideal in the algebra

H. Also, J is easily shown to be a coideal. Therefore J± _ (H/J)* is a

subalgebra of H*. We will show that JX is isomorphic to a formal power

series algebra, and will construct derivations of this ring which will be used

to realize the input/output map defined by p.

Lemma 2.1 If dim P( H)_p = N, then JX is a subalgebra of H* satisfying

j.L _ k[[xl,...,XN]].

PROOF. The Lie ideal L has finite codimension N. Choose a basis {el, e2,...}

of P(H) such that {eg+l,eg+2,...} is a basis of L. Note that if _i is the

image of ei under the quotient map P(H) _ P(H)/L, then the image of

{el,---,eY} is a basis for P(H)/L.

By the Poincard-Birkhoff-Witt Theorem, H has a basis of the form

{ e5% ...e_'k [i I < ... < ik and 0 < ai, }.
|1 _k

Since L is a Lie ideal, J = HL is an ideal in the algebra H, and has a basis
of the form

e?" ... e-%
11 t k

with at least one i, > N. Specifically U(P(H)/L) _- tt/J, and

" [ >_o}

is a basis for U(P(H)/L). It follows that the elements of the form

X _ X_. il ., • X _ik
tl :k

xc, _[ &i_ [ " ""&ik !
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with all 1 _<x_ _< N are in J± C_ H*. Indeed, J± consists precisely of

the completion in the finite topology of the span of such elements. In other

words,

Ji '_ k[[Zl,...,ZN]],

completing the proof. I

We will use the following notation and facts from the proof of Lemma 2.1:

Suppose that {el, ...} is a basis for P(H) such that {eN+l, ...} is a basis

for L. Let {e °} be the corresponding Poincard-Birkhoff-Witt basis. Denote

J± by R. Then R" k[[xl,.. XN]], and x_ _ oN .= ., ...x N /all"'ag! equals the

element of the dual (topological) basis of H* to the Poincar6-Birkhoff-Witt

basis {e °} of H, corresponding to the basis element e_l ...e NoN.

We now collect some properties of the ring of formal power series R

which will be necessary for the proof of the theorem.

Lemma 2.2 Assume p E H" has finite Lie rank, and let R C_ H*, eo E H,

and x _ E R be as above. Define

f = E CoX° E R,

o>O

where co = p e__. Then
OL.

I. H measures R to itself via _;

2. p(h) = e(f -- h) for all h E H.

PROOF. _Ve begin with the proof of part (1). Since// measures H* to itself

and R C H*, we need show only that R_H C_ R. Take r E R, h E H

and j E J. We have (r--h)(j) = r(hj). Since Jis an ideal, hj E J, so

r(hj) = O, so r_ h E JZ = R. Thisproves.p.a.r:7!:)bWe now prove part (2). Let e_ = e .°i_ e a Poincar6-Birkhoff-
Zl

Witt basis element of H. Since e° E J unless {il,...,ik} C {1,...,N},

p(e _) = 0 unless {i,,...,ik} C_ {1,...,N}. Also E(f_ e°) = f _ e°(1) =

f(e°l) = f(e °) = 0 unless {i,,...,ik} C_ {1,...,N}. Now suppose {il,...,

ik} C_ {1,...,N}. We have in this case also that p(e °) = a!co = f(e °) =

f _ e"(1) = e(f "-- e°). Since {e° } is a basis for II, this completes the proof

of part (2) of the lemma. I

Corollary 2.1 Under the assumptions of Lemma 2.2, f = p.
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Lemmas2.1and2.2yield that part (1) impliespart (3) in Theorem1.1.
It is immediatethat part (3) impliespart (2).

We nowcompletethe proofof Theorem1.1by proving that part (2)
impliespart (1).

Let xl,...,XN be chosen so that {_I,...,_N} is abasisfor (Kere)/(Kere) 2.

If rE Rand hEH, then

N

f. h = q0(h)l + _ qi(h)xi + 9(h),
i=1

where qi E H" and g(h) E (Ker e)2. Let l E P(H). Since H measures R to

itself and A(l) = 1 ® l + l ® 1, the map f _ f. l is a derivation of R. Now

let f E R be the element such that

p(h) = e(f . h).

Then

f.hl = (f.h).l
N

= qo(h)l.l+ y_qi(h)x,.l+g(h).l.
i=1

Since the map f _ f. l is a derivation, 1 • l = 0; since g(h) E (Kere) 2,

g(h) - l E Ker e. It follows that

l_p(h) = p(hl)

= e(f. hi)
N

= t).
i=1

Therefore P(H) _ p C_ _N=I kqi, so p has finite Lie rank. This completes

the proof of Theorem 1.1

3 Examples

In this section, we discuss two examples of applications of Theorem 1.1. The

first example is obtained by setting the bialgebra H to be the free associative

algebra over the field k in the symbols El,..., EM. This example motivated

the theorem and is the basic setting in the control theory literature (see [3],
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[4] and [15]). The second example is obtained by setting the bialgebra H to

be families of trees with the appropriate multiplication and comultiplication.

This example arises when studying algorithms for the symbolic computation

of higher order derivations generated by derivations El,..., EM; see [8] and

[9]. There is a natural homomorphism between these two Itopf algebras

which is described in [8].

Example 1. We begin by giving a description of the setting for this exam-

ple. Let R denote the field of rational functions in the variables zl ,.. •, XN

with coefficients from the field k, and let El, ..., EM denote M derivations

of R. The algebras in this example are associated with a pair consisting

of the dynamical system (1) and the observation function (2) introduced in
Section 1. We assume that the controls

t ---* ul(t),..., t -* UM(t)

in (1) are continuous and bounded almost everywhere.

Integrating the initial value problem (1) gives

M t

f(x(t)) = f(x(O)) + Z _o uu(rl)Eu(f(x(r)))dr"
W=I

Integrating again gives

M t

f(x(t)) = f(x(O)) + __, Eu,(f(x(O)))_o uu'(r)drl
P,I=I

hi t j_orl+ Z J_o Uua(rl)Uu2(v2)EulEuz(f(x(v2)))dr2drl"
#l,tt2=l

Continuing this process yields

M t

f(x(t)) = f(x(O)) + _ _o u,, (r) dr, Eu,(f(x(O)))
_I=I

+... + (f(x(0))) •

M f0,...Fk_
Ul ,...#k=l

+ remainder,
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where the remainder is of the form

M tc /o/?
P,I _..._k+ 1 : 1

• E.k+, "'" Ett, (f(x(rk+l))) dTk+l''" drl.

Let # = #l'''#k denote a word of length k built from the alphabet {1,

..., M}. The process above defines a formal series

where

and

Z cd., (3)
words

% = E,k'"E,,f(x(O)) E k, (4)

{ _0 t _/'#1(7")dr if # = #l
_,(t) = , (5)

/0 _,.,(_)_._ -.k(_)dT , = ,,...,k.if

It is a theorem of Chen [1] that functions of the form (5) form a shuffle
algebra, that is, that

v

where the sum is over words tJ that are in the shuffle of A and ft.

Let H = k<EI,...,EM> denotes the free associative algebra in the

symbols EI,...,EM over the field k. Recall that H is a bialgebra. The

coproduct and counit are defined by letting

A(Ei) = l ® Ei + Ei® l,

qE,) = 0,

for i = 1,..., M, and then extending to all of k<E1,... ,EM> by requiring

that A and e be algebra homomorphisms. The bialgebra H is cocommu-

tative, but not commutative. The algebra of formal series in the _,(t) is a

quotient of the algebra H'.

The papers of Fliess [3], [4], Reutenauer [15], and Crouch and Lamnabhi-
Lagarrigue [2] all view the formal series p above as an element of the shuffle

algebra of formal power series in the noncommuting variables El,..., EM. It

is easy to relate that point of view to the point of view taken here. The bial-

gebra H has basis consisting of all words E, in the generators El,..., EM,
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includingthe emptyword 1. Let _,,denotetheelementsin the dual H* of

H which are formally dual to the E,, that is,

where 5u,- is the Kronecker delta. Then the (, can be viewed as a topological

basis for the formal non-commutative power series ring over k generated by

El, ..., EM. As we observed in Section 1, the bialgebra H* is a commutative

algebra with respect to the shuffle product on the _u. Fixing a control

system (1) and an observation function (2) determines an element of H*

words

where the cu are given by Equation (4). The element i6given by Equation (3)

can be viewed as an element of a quotient algebra of H*. Theorem 1.1

applied to this example gives the classical theorem of Fliess [3], [4].

Example 2. We follow [8] and [9] for this example. By a tree we mean a

rooted finite tree [18]. If {El, ..., EM} is a set of symbols, we will say a

tree is labeled with {El, ..., EM} if every node of the tree other than the

root has an element of {El, ..., EM} assigned to it. We denote the set of

all trees labeled with {El, ..., EM} by £T(EI, ..., EM). Let k{£T(E_,

• .., EM)} denote the vector space over k with basis £T(E1, ..., EM). We

show that this vector space is a graded connected Hopf algebra.

We define the multiplication in k{£T(E_, ..., EM)} as follows. Since

the set of labeled trees form a basis for k{£T(E_,..., EM)}, it is sufficient

to describe the product of two labeled trees. Suppose tl and t2 are two

labeled trees. Let sl, ..., sT be the children of the root of tl. If t2 has n + 1

nodes (counting the root), there are (n + 1)_ ways to attach the r subtrees

of tl which have sl, ..., sT as roots to the labeled tree t2 by making each si

the child of some node of t2, keeping the original labels. The product tit2 is

defined to be the sum of these (n + 1) _ labeled trees. It can be shown that

this product is associative, and that the tree consisting only of the root is a

multiplicative identity (see [5] or [6] for details).

We define the comultiplication A on k{£T(E1, ..., EM)} as follows. Let
t be alabeled tree, and let Sl, ..., sT be the children of the root of t. If P is a

subset of Ct = {Sl, ..., sT}, let lp be the labeled tree formed by making the

elements of P the children of a new root, keeping the original labels. Define

.__(t) = _-_PC_Ct tp @ tet\p , where X\Y denotes the set-theoretic relative
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complement of Y in X. Define the augmentation e(t) of the bialgebra to be

1 if t has only one node (its root), and 0 otherwise. We define a grading on

k{l:7-(E1,..., EM)} by letting k{I.:T(E1,..., EM)},_ be the subspace of

k{£T(E_, ..., EM)} spanned by the trees with n + 1 nodes. The following

theorems are proved in [6].

Theorem 3.1 H = k{£T(E1, ..., EM)} is a cocommutative graded con-

nected biaIgebra.

Theorem 3.2 The set of labeled trees t whose root has exactly one child is

a basis for the primitives P(It) of H = k{£T(E_, ..., EM)}.

Let R denote the field of rational functions in the variables xl,. • •, XN

with coefficients from the field k, and let El,..., EM denote M derivations
of R of the form

N 0

E Ox.'

where _ E R. We now define an H-module algebra on R. The action of H
on R is given by the map _p : H _ Endk R, which is defined as follows.

1. Given a labeled tree t with m + 1 nodes, assign the root the number

0 and assign the remaining nodes the numbers 1, ..., m. We identify

the node with the number assigned to it. To the node k asociate the

summation index #k. Denote (#1, ..., pro) by #.

2. For the labeled tree t, let k be a node of t, labeled with E.yk if k _ 0,
and let l, ..., l/ be the children of k. Define

{ ___°__°...e(k;,) :
Oz,, Ox_,,,

Note that if k _ 0, then e(k;#) E R.

3. Define
N

=

if k _ 0 is not the root;

if k = 0 is the root.

c(m;,)...
/-tl ,...,/.tin :l

4. Extend _b to all of H by linearity.

12



It is straight-forwardto checkthat this actionof H on R makes R into a

H-module algebra.

An element p E H" can be thought of as an infinite series whose terms

are indexed by labeled trees rather than by words, as well as an element of a

power series algebra. Theorem 1.1 gives necessary and sufficient conditions

for p to be differentially produced in this case.
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