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Both mortality rate and radial growth of high 
elevation (>900 m) red spruce-Fraser fir forests 
of the southern Appalachians have experienced 
change since approximately 1960. Scientific 
interest In a study of these forests have 
increased because atmospheric pollution is a 
possible cause of the change. Scientists with 
statis tical and biological expertise 
independently analyzed a tree ring data set 
collected by the Tennessee Valley Authority and 
the National Park Service. The objective of the 
analysis was to develop new or improved 
techniques for extracting information from such 
data; tree rings represent a natural data storage 
system that is one of the few sources of long- 
term information for these forests. 
Although no definite statements are made about 

the role of atmospheric deposition in observed 
forest decline, the results should contribute to 
the success of future research. The four 
techniques employed in the study involved: (1) a 
dendrochronological approach employing spline 
detrending and multiple regression to study the 
effects of climate on ring width, (2) an 
application of fractals to study the dependence 
of variance on mean ring width over time, (3) an 
approach that combined Box- Jenkins methods and 
spatial analysis, and (4) a method of studying 
time dependence of ring width on climate using 
the Kalman filter. 
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The Institute for Quzntitative Studies at the 
USOA Forest Serv.i_ce, Southern Forest Experiment 
Station, has been engaged in a study of 
stiatistlhcal methods used in researching 
Atmospheric Deposition Influences on Forests 
A D .  The siludy was funded by t h e  ifd'ationai 
Vegetation Survey, which is under the Nacio _ 1 
Acid Precipitation Assessment Program (NABAP). 
The study began with a distributed seminar; for 
EO weeks articles about ADIF were sent to a 
number of participants who returned eoments each 
week, A final report was produced (Kiester and 
others 1985) consisting sf critiques of past ADIF 
studies, suggestions for additional reading, and 
philosophy about the type and quality of research 
needed in the ADIF area. 

The study indicated that tree ring analyses 
held promise for the study of ADIF, but further 
development of appropriate statistical methods 
would be useful. Therefore the idea of 
"replicated-statisticiansrr was employed. Because 
there are several. ways to approach a tree ring 
analysis, it was probable that allowing a number 
of individuals to work independently would yield 
some Lnteresting new dendrochronobogieal 
techniques. Red spruce (Pieea rubens Sarg.) was 
chosen for this study because claims were 
previously made that spruce forests were 
experiencing unexplained growth declines in both 
the Northeast and the South (Hornbeck and Sxith 
1985; Adams and others 1985). Although the study 
was intended to develop statlstieal methods and 
not explanations of growth declines, using this 
data allowed for that possibility 
This study was a joint endea- or by the USDkr 

Forest Service, the National Park Service ( N B S ) ,  
and the Tennessee Valley Authority (TVA). 
Funding came from the Forest Service and the5 TVA, 
data from the TVA and NPS, and statistical 
analyses were conducted by the Forest Service. 
Agreements were made with the following 
scientists to perlorm analyses and provide 
individual reports: 

(1) Edward R. Cook, Ph.D. 
Tree-Ring Laboratory 
Lamont-Doherty Geological Observatory 
of Colmbia University 
PalLsades, New York 10964 

(2) Keith Ord, Bh.D. and Janice Derr, Ph.D. 
Department of Management Science 
Pennsylvania State University 
University Park, PA 16802 

(3) Robin A. J .  Taylor, Ph.D 
Department of  Entomology 
106 Patterson Building 
Pennsylvania State University 
University Park, PA IS802 

(4) Paul C. Van Deusen, Ph.D, 
Institute for Quantitative Studies 
Southern Forest Experiment Station 
701 Loyola A-~enue 
New Orleans, 'LA 70113 

Dr. Cook is considered to be one of the Leaders 
in the field of dendrochronology, and his 
analysis therefore includes the most currently 
accepted techniques. He concluded that there is 

evidence of anomalous behwior In the red spruce 
forests of the Great Smoky Mountains and suggests 
that this is partly due to warmer s 
temperatures in recent years. He also staces 
that the situation in southern red spruce is not 
sfml"riar Lo tha t  Pri  rzurthern red sprcjce. 
Drs. O l d  and Derr performed a spatial analysis 

on the data. They concluded that there was a 
tendency for ring wldths to diminish In recent 
years and that there is a strong spatial 
dependence in forecast residuals that cannot be 
explained by geographic or biotic factors alone, 
They did not consider climate, which they mention 
could explain some of the remaining spatial 
dependence. The analysis performed here is novel 
for the field of dendrochronology and may lead to 
useful results in the future. 
To study the dependence of variance on the mean 

of the data, Dr. Taylor investigated the use of 
"fractals," a term coined to denote fractional 
dependence. He conc~uded that the change in 
fractional dimension over time may be due to 
successional, climatic, or anthropogenic 
influences. This technique has not been applied 
previously to tree ring data and nay show promise 
after further development. 
Dr. Van Deusen analyzed the data using the 

Kalman filter technique, which is commonly used 
in engineering applications, At the time of this 
study, the method had not been used in 
dendrochronology, although scientists in the 
Netherlands (Visser 1986) have recently published 
a paper on independent applications of the method 

to tree rings. The Kalman Filter allowed the 
climatic data to be modeled dpamically so that 
its effect over time could be studied. He 
concluded that these trees have become 
progressively more sensitive to climate since the 
late 1950's. This increased sensitivity may 
coincide with insect-caused thinning in the 
stands. 

A l l  the studies concluded that the growth 
patterns in these stands have changed in the last 
20 years. The causes of these changes are 
uncertain, but the sensitlivity of the stand to 
climate appears to be increasing. To enhance the 
reader ' s ability to interpret the various 
analyses, the individual reports are prefaced by 
a review by EIizsrbeth Croton and Christopher 
Eagar of the geographical and biological 
background of the Southern Appalachian Spruce Fir 
Forest. 
References cited in this seetron are: A d a m s ,  

H.S.; Stephenson, S.L.; BLasing, T . J . ;  Duvick, 
D.N. 1985. Growth-trend declines of' spruce and 
fir in mid-Appalachian subalpine forest. 
En~riro~ental and Experimental Botany. 2 5 ( 4 ) :  
315- 325. Hornbeck, J. W. ; Smith, R . B .  1985. 
Documentation of red spruce growth decline. 
Canadian Journal of Forest Research, 15: 1199- 
1201. Kiester, A . R . ;  Van Deusen, P.C.; Dell, 
T.R. 1985. Status of the concepts and 
nethodlogies used in the study of the effects of 
atmospheric deposition on forests. Internal 
report for the National Vegetation Survey of 
NAPAP. Visser, ti. 1986. Analysis of tree ring 
data using the Kalman Filter techniques. IAWA 
Bulletin n.s., Vol. 7 ( 4 )  289-297. Published at 
the Rijksherbarium, Netherlands. 



Soutlxern Appalachian Red Spruce--Fraser F i r  Forests 

Elizabeth Groton and Christopher Eagar 

The southern Appalachian red spruce - Fraser fir+ 
forests are found in southwestern Virginia, 
western North Carolina, and eastern Tennessee 
(fig. I), Total area of these southern 
Appalachian spruce-fir forests is estimated at 
26,577 hectares, with 19,755 hectares occurring 
within the Great Smoky MountaFns National Park 
(GSMNP), Extensive logging and other 
disturbances early in the 20th century have 
reduced the extent of the southern Appalachian 
spruce- f ir forests. Today this forest trpe 
occurs on high-elevation peaks (above 1,370 m) in 
islandlike patches. 
Species ' composition in the southern 

Appalachian forests changes with the elevational 
gradient. At lower elevations (1,370-1,580 m) in 
undisturbed forests such as those of the Great 
Smoky Mountains, red spruce (Picea rubens Sarg . ) 
is found in combination with northern hardwood 
t ype  species : maple (Acer spp. ) , American beech 

Ehrh. ) , yellow birch ( 
tton), eastern hemlock 

candensis (L.) Carr., northern red oak (Ouercus 
rubra L,), Carolina silverbell (Nalesia Carolina 
L.), and yellow buckeye (Aesculus octandra 
Marsh. ) . As elevation increases, the fir 
component gains importance, and forest 
composition changes to predominantly red spruce- 
Fraser fir. Red spruce occurs less frequently at 
the highest end of the gradient (above 1,890 m) , 
giving way to essentially pure Fraser fir (Abies 
fraseri (Pursh) Poir.) stands on mountain tops 
(Whittaker 1956). Mountains that were logged 
during,the early part of this century and did not 
experience postlogging slash fires are dominated 
by Fraser fir. This includes most of the Black 
Mountains, Balsam Mountains, Roan Mountain, and 
Mount Rogers. 
Red spruce grows larger and lives longer than 

Fraser fir, but Fraser fir grows more rapidly and 
produces more prolific seed crops than red 
spruce. Red spruce can live for over 350 years, 
grow to 40 meters in height, and have diameters 
at breast height (d.b.h.) in excess of 1 meter, 
Fraser fir seldom lives longer than 150 years and 
attains a maximum height of 25 meters and d . b . h .  
of 50 centimeters. Oosting and Billings (1951) 
found five times more Fraser fir than red spruce 
seedlings in old-growth scands in the Great Smoky 
Mountains. Both species are extremely shade 
tolerant and are capable of resuming normal 
growth after 50 years of suppression. 

)Redspruce-~raser fir forests will generslly 
be referred to as simply spruce-fir forests. 

Host spruce-fir forests of the southern 
Appalachians have been recently disturbed by the 
extensive mortality of Fraser fir caused by an 
introduced insect, the balsam woolly adelgid 

. This pest, a native of Europe, 
i t that feeds on the bark of true 
firs (Abies spp.). Fraser fir is quickly killed 
by the balsam woolly adelgid. Mortality occurs 
between 3 and 9 years front the time of initial 

depending on the size and vigor of 
an and Speers 1965). Tree death is 

caused by the diffusion of compounds secreted by 
the adelgid into the xylem during feeding, which 
causes formation of premature heartwood. 
Translocation of water and minerals to the crown 
are greatly reduced, causing water stress and 
eventual death of the tree (Puritch 1971, 1973, 
1977, Puritch and Johnson 1971, Puritch and Petty 
1971). 
The balsam woolly adelgid was first identified 

in North America in 1908 on balsam fir (Abies 
balsamea) in Maine (Kotinsky 1916). The adelgid 
has caused extensive mortality to balsam fir 
throughout eastern Canada; however, infestations 
have not progressed more than 80 kilometers 
inland from the coast because of extreme inland 
winter conditions (Balch 1952, Schooley and 
Bryant 1978). The balsam woolly adelgid is not 
present in the northern Appalachian spruce-fir 
forest . 
The balsam woolly adelgid was detected in the 

southern Appalachians on Mount Mitchell, North 
Carolina, in 1957 (Speers 1958). Subsequent 
surveys revealed that the adelgid had spread 
throughout the entire 3,035 hectares of Fraser 
fir type in the Black Mountains (Nagel 1959). 
High mortality of Fraser fir and widespread 
adelgid distribution indicated establishment 
prior to 1957, perhaps as early as 1940. Balsam 
woolly adelgids were detected in 1962 on Roan 
Mountain (Ciesla and Buchanan 1962), and in 1963 
infestations were located on Grandfather Mountain 
and on Mount Sterling in the GSME;IP. 
The adelgid arrived in the Clingman's Dome area 

of the GSMNP in the early 1970fs, and tree 
mortality began there in the late 1970's. 
Surveys found the adelgid in the Balsam Mountains 
and the nearby PLott Balsams of North Carollna in 
1969 (Rauschenberger and Lambert 1370). The 
balsam woolly adelgid was not found on Mount 
Rogers, Virginia, untLl 1979; however, subsequent 
stem analysis of several trees within the 
infested areas revealed adelgld-caused red wood 
beginning in 1962 (Lambert and others 1980) in 
the annual rings. 
By 1 9 8 4  and 1985, the balsam woolly adelgid had 

caused extensive damage throughout the Black 
Mountains. Balsam Mountains, Plott Balsams, 

Elizabeth Groton is forest biometrician for the Tennessee Valley Authority, 
Norris, TN, Christopher Eagar is ecologist for the National Park Service, 
Gatlinburg, TET. 



Figure 1.--Area covered by the southern Appalachian red spruce--Fraser fir forests. 
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Grandfather Mountain, and most of the Great Smoky 
Mountains. Limited use of insecticides at Roan 
Mountain reduced fir rnorrality in accessible 
areas, although nontreated areas experienced 
heavy darnage. In the Clingman's Borne area of the 
GSMNP, adelgid infestations had caused 
significant fir mortality at elevations below 
i,ajC necers and minimal aamage above this 
elevation. P40iunt Rogers had suffered the teas t 
Fraser fir mortality of the southern Appalachian 
spruce-fir forests. There were isolated, dead 
Eraser fir in areas known to have been infested 
for 23 years, but even within these areas the 
impact of the adelgid was surprisingly low, 
Possible explanations for this anomalous 
condition on Mount Rogers include: a genetic 
based difference in defense mechanism to adergid 
infestation of this fir population, a reduction 
in the toxicity of che secretions of the Mount 
Rogers adelgid population, or a combination of 
both possibilities, 

Mational Park Service and 
Tennessee Valley Authority 

Increased mortality (Siccama and others 1382, 
Scott and others 1984, Vogeimann and others 1985) 
and apparent reductions in radial increment 
( A d a m s  and others 1985, Bruck 1986, McLaughTin 
and others 1983) in the high-elevation spruce-fir 
forests of the Eastern United States prompted two 
studies in the southern Appaf achians . The 
studies were designed to assess the current 
condition of these forests, relate observe& 
decline symptoms to site characteristics, and 
provide baseline data to monitor future changes 
in the forest condition. 
The first study, conducted by the National Park 

Service (NPS) ,  began in the sumer of 1984 in the 

spruce-fir forests of the GSmP. The second 
studyI conducted by the Tennessee Valley 
Authority (TVA) in the aut-n of 1 9 8 4 ,  
established plots throughout the range of the 
southern Appalachian spruce-fir type, excluding 
the GS-KVP, Intending to conittine data sets for 
future anaiyses, both agencies collaborated on 
sampdlng design in order to ensure that similar 
data were collected. 
Problems sf assessing change in fo res t  

produeti~rity prompted the A and NPS to 
establish permanent vegetation plots Ln the 
southern range of the spruce-fir type. Plot 
establishment was also influenced by the need for 
additional information on stand dynamics in the 
spruce-fir forests, This led to a collaborative 
study between the TJA,  NPS, and the Forest 
Service. Data collected by the TllA and NPS 
included tree increment core data and detailed 
plot information, The tree core data and plot 

arized and made available to a 
number of individual researchers for independent 
analysis. Plot information included elevation, 
latitude and longitude, live and dead basal area, 
and stand density. Regional climatic data 
(monthly averages of precipitatsion and 
temperature since 1933) were also included in the 
data. 
Sampling procedures utilized by the NPS and TVA 

were basically the same (table I). Both agencies 
used stratified random sampling, locating plots 
on aerial photographs and topographic maps. Data 
that were collected from the plots included site 
characteristic data such as slope, aspect, 
topographic loeat ion, and descriptions of 
understory vegetation. Individual trees were 
mapped, measured, and evaluated for decline 
s3mptomology. Quantitative assessments were 
made of mortality and regeneration. Increment 
cores were collected from five dominant or 
ecdominant trees at each site. Two cores per 
tree were taken at d.b.h. 

Table I. -Comparison of Tennessee Valley Authority (TIPA) and National 
Park Service (NPS) spruce-fir sampling procedures 

Vari&le TVA NPS 

Plot Location Stratified random Stratified random 
(Strata: Elevation (Strata: Elevation. 
and dry/wet) topo position, 

macro-aspect) 

Elevation Variable within Held constant at 
strata a set strata 

Plot Size Circular, 0.08 ha Square, 0.04 ha 

Overstory stand - - -  - - -  - - -  - - -  
data' 

Site charater- - - -  - - -  - - -  - - -  
istic data+ 

Increment cores Cores taken froni five Cores taken from five 
dominant or codominant dominant trees from 
trees from outside the within plot, cores 
plot and extended to not extended to tree 
tree center. center, 

+herstory stand data and site characteristic data were basically 
Identical for both TVA and NPS. 



The results of the analyses of tree core data 
may provide insight into the question of whether 
or not the southern Appalachian red spruce and 
Fraser fir are experiencing a decline that cannot 
be attributed to natural stresses. The plots 
established by the NPS and 1111A will continue to 
be remeasured in order to monitor future changes 
in stand productivity. 

O t h e r  StudEes 

Several studies have used annual radial 
increments from tree cores to evaluate changes in. 
the growth rate of red spruce and Fraser fir from 
several sites in the southern Appalachians. 
These studies indicated an abrupt shift to narrow 
growth rings beginning in the late 1960's to 
early 1 9 7 0 9  (Adams and others 1985, Bruck 1986, 
McLaughlin and others 1383) for red spruce and, 
to a lesser extent, for Fraser fir. This 
tendency was more drastic at high elevations 
(Adms and others 1985). The annual growth 
declines are very similar in tiraing to studies 
done in the Northeast, but they are not as 
geographically widespread and are less consistent 
within a given sample, Additionally, the 
analysis of tree ring data is extreaely 
complicated because of the effects of tree age, 
stand competition, climate, and physiological 
responses to stress that may persist for several 
years. merefore the interpretation of these 
data has been the subject of considerable 
controversy. 
Vast differences exist in speciesf composition, 

structure, and stand productivity within the 
limited extent of the southern spruce-fir. These 
differences are a result of climatic disparities 
associated with elevationill gradients, past 
management histories, and other site-specific 
variables. These environmental factors, and the 
lack of historical data in the South, preclude 
any analysis designed to discover elther the 
causes of observed declines or even if the 
observed declines are abnormal in these forests. 
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Edward R, Gook 

A recent analysis of red spruce (Picea rrzbens 
Sarg , )  tree ring widths in southern Pi;ppalachlan 
stands has caused concern that the red spruce 
forests s f  the southern Bippalachitm mountains may 
be in an early stage of decline (Adams and others 
1985)- Although many hypotheses have been 
generated regarding the cause of the red spruce 
decline, no definite answer has yet been found 
(McLaugPllin h 9 8 5 j .  LE the  decline i n  red spruce 
ring wldth can be explained by natural effects, 
then costly and needless pollution controls may 
be avoided. 
The Tennessee Valley Authority (TVA) and the 

National Park Service (NPS) conducted studies on 
permanent plots estiiblished throughout forests of 
the southern Appalachians. Long-term changes in 
the composition and health of the forest were 
monitored. Using the data provided by the NPS 
and TVA, the objective of my analysis w a s  to 
determine if the recent patterns in the ring 
widths indicate an anomalous decline and if this 
decline can be explained by natural environmental 
factors related to climate. The analyses were 
performed on annual tree ring chronologies 
(Fritts 1976, Gook 1985) developed from the ring 
width series of each plot. 

The quality of the data provided by the NPS and 
TVA was checked using tFe COFECW program of 
Holrnes (1883). The program cheeked for cross- 
dating errors, measurement errors, and other ring 
width irregularities that mi&t Limit the 
usability of ring width time series for t r e e  ring 
analysis. Because the actual increment cores 
were not available f o r  this quality cheek, the 
program output was used to verify cross-dating, 
make corrections of dating when possible, and 
eliminate ring width series for which no obvious 
corrections could be made. Approximately 15 
percent of the ring width series were either 

corrected or removed from the data set. 
merefore the nmber of ring width series for 
some plots were reduced to as f e w  as three. 
After the quality check, the remaining ring 

width series of each plot w e r e  standardized 
(FrFtts 1976, Gook 1985) to remove long-term 
trends in growth associated with tree age, s i z e ,  
and stand dynamics. The need for-standardization 
prior to creating a stand-average tree ring 
chronology Is discussed in detail in Fritts 
( 1 9 9 6 )  and Cook (1987). Because the ring width 
serLes were rarely more than LOO years long, 
negatlve exponential or linear regression curves 
w e r e  used t o  detrend the series. 
However, it was unlikely that this conservative 

detrending method would remove any anomalous 
decline signal during standardization. After the 
growth curve was estimated for each series, "che 
tree ring indices were computed as: 

where lit equaled the tree ring index, Rt was the 
ring width, and Gt equaled the growth curve 
value, all for year t. Therefore a tree ring 
index can be defined as the ratio of the actual 
ring width to the expected value as estimated by 
Gt. Tree ring indices have a long-term mean of 
1.0 and a variance that is reasonably time 
stable. Thus tree ring indices are stationary 
processes that can be averaged into a stand- 
average series. After each ring width series was 
reduced to index form, the tree ring index series 
of each plot were averaged into a final tree ring 
ehrsnology using the biweight robust mean 
(Masteller and Tukey 1977)  to reduce the 
influence o f  outliers on the computation of the 
mean-value function. 

The TVA and MPS plots w e r e  stratified by 
elevation i n t o  three groups: below 5,400 feet, 
5,486 to 6,000 feet, and above 6,000 feet. These 
strata refleeted a vegetational gradient in the 
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mountains, me lowest red spruce stratum was 
predomfnamtly a mixed conifer-hardwoods fo res t  
zone, while the strata above 5,400 feel were 
w i t h i n  the spruce-fir zone (ml%e 1984), The 
highest elevational stratum contained the highest 
proportion o f  Fraser fir ( 
P o i r . )  relative to red spruce and was the zone 
most heavily impacted by the balsam woolly 
adelgid (Eagar 1984). 

The elevmtLonal strata also reflected a 
climatic gradient o f  increasing precipitation and 
decreasing temperature with increasing elevation. 
Thus the below-5,408-foot stratum was the warmest- 
and driest  area and the above-6,000-foot stratum 
the coolest and wettest, Additionally, the 
highest stratum was enveloped in clouds most 
often and the lowest stratum was enveloped fn 
clouds least of ten ,  

me c l % m ; ~ ~ $ i c  response o f  red spruce in the 
southern Appalachian Mountains has not  been 
studTed as thoroughLy as ft has In the northern 
Appalachians (Conkey 1979, McT;rughEln and others 
1987, Cock and others 1987), However, based on 
ecological  principles, i t  i s  probable that the 
r o l e  of temperature wfl% increase as a llmltlng 
factor  In red spruce growth at the elevatlonal 
extremes of the speciesi range, Precipitation 
will also be more important as a limiting factor 
at the below-5,480-foot plots, Therefore a 
gradient in the response o f  red spruce to climate 
should be found t h a t  will correlate well with 
some aspect s f  the know climatic gradient, 

The stratiflcatlsn by sievation produced 11 TVA 
and 8 NPS p l o t s  in the above-6,000-foot stratum, 
$3 TVA and 6 NPS p l o t s  in the 5,480- to 6,060- 
foot strat-m, and 24 W A  and 7 NPS p l o t s  in the 
below-5,400-foot stratum, At this s tage,  some of 
the p l o t s  w e r e  eliminated because of the 
shortness o f  the tree ring chronologies. Because 
1930 was chosen as an initial criterion for the 
inclusion o f  tree ring series in the analyses, 
any series beginning after 1930 was eliminated. 
The year 1930 allowed for the Bnclusi-m o f  the 
large majority of plots and siarultameously 
provided an adequate time base f o r  the 
dendroelimatic analyses. A longer time base 
would have been better, but it also would have 
eliminated too many sites. firtherrnore, the best 
available c b l m a t i c :  data began in 1931. 

A f t e r  the elimination of short series, the 
sanrple depth of the 1930 decade was examined for 
each remaining chronology. If the sample depth 
was Largely based on only one increment core i n  
t h a t  decade,  then tha t  chronology was 
eliminated, The reason for this s t ep  in the 
preliminary screening was to Lnsure chat the 1930 
decade would not be unduly affected b y  poor 
replication at some sites. 

The final result of the screening was the 
select ion o f  1 3  plots above 6,080 feet, 15 p l sc s  
between 5,460 and 6,000 f ee t ,  and 29 pLsrs bel3w 
5,400 f e e t ,  Eight  above-6,000-foot series were 
from NPS plots, four were from TVA Mt. !+Iitchelk, 
and one was from TVA Roan Mountain. Thus the 
above-6,000-foot series comprised 68 percent s f  
the available p l o t s .  The geographic coverage of 
this stratum was obviously limited by the m a x i m l u n  
elevations of the nountahns, The 5,400- to 
6,000-foot stratum was  earnposed of six NPS p l a t s  
and nine TVA p l o t s ;  these represented 78 percent 
of the available p l o t s .  The geographic coverage 

was much bet te r .  Only Roan Mountain and 
";;andfather Mountain were not represented, The 
rseFow-5,4QO-foot stratum was composed of 7 NPS 
and 22 lX7A p l o t s ,  representing 93 percent o f  the 
available p l o t s ,  The geographic coverage was 
complete, with a11 mountains rq resen ted ,  

Tree ring series invariably possess some degree 
sf ser ia l  persistence or autocorrelation t h a t  i s  
principally due to physiological preconditioning 
wlthin the tree, Therefore the information 
contained in a g i ven  ring width is somewhat 
determined by p a s t  tree growth and v igo r ,  
Typically, the autocorrelation structure o f  tree 
ring indices can be adequately modeled as an 
autoregressive process (Cook 1985), The general 
autsregmessii~e (A l l )  process o f  order g has the 
f o r m  (Box and Jenklns 1990) : 

P 
%& -: e t  + x aizt_i 

1-1 
where Zt i s  the observed process for year t, et 
equals an unobserved input or random shock that 
does not contain any autocorrelation, and ai the 
autoregressive coefficients o f  the BR(p) process. 
In the context of this tree ring analysis, the 

Zt were the tree ring indices for a plot, Each 
tree rlng series  was modeled as an M ( 2 )  f o r  the 
common internal 1930-83, The chobce of an AR(2)  
model was based on previous experience modeling 
longer red spruce chrono%agies as Mt processes, 
The common St persistence structure among 811 
p l o t s  within each stratum w a s  also estimated 
using a pooling procedure described in Cook 
(E985), DTfEerences between the eom-ron Ba_% model 
and those for the individual series were useful  
tools for measuring the level of autocorrelated 
noise in the 1ndivLdual serPes, which may have 
been caused by different stand histories and 
disturbance regimes, 
For the above-6,000-foot stratum, the eomon or 

pooled AE esefflcients and the ercent variance 8 explained by autoregression (R  ) were: ail  = 

0.461 ,  @2 - 0 . 2 8 4 ,  and - 46.1 percent. For 
the 13 individual series, the average statistics 
were: Qi.1 - 0.566, 3 2  - 0.138, and Et2 - 4 7 . 9  
percent. Although the Et2's were sFailar, the 
coefficients were noticeably different, probably 
because of residual trend or trendline lack-of- 
f i t  in the individual series. However, the 
similarity of the ~ ~ ' s  suggested that  the 
differences between the tree ring chronologies 
w e r e  largely random through time, Thus the bong- 
t e r m  disturbance h i s t o r i e s  sf these p l o t s  may 
have been similar since 1430, 

For the 5,400- to 6,000-foot stratum, the 
pooled statistics were :  = 0 . 3 2 4 ,  = 0.177, 
and Ft2 = b8,1 percent. For the 15 rndividuai 
ser ies ,  the averag? statistics are: @I = 0 , 4 8 4 ,  

= 0.168, and EZL - 39-1 percent, The pooled 
AR(1) coefficient and lt2 were considerably 
smaller than the average values for the 
Individual series. The Latter indicated a high 
l eve l  of autoeorrehated noise or out-of-phase 
behavior between se r i e s .  Theref ore the 
disturbance histories of these plots were 
probably more variable than those in the higher 
stratum, 
For the below-5,490-foot stratw~, the pooled 



statistics were: = 0.422, @Z - 0.124, and R~ - 24.4 percent, For the 29 individual series, 
the aqrerage statistics were: 451 - 0.530, @a - 
0.044, and R2 - 39.3 percent. These statistics 
were close to those from the intemediate 
elevation plots and indicated a similar degree of 
nonhonrsgeneity from plot to plot. 
The Lower levels of plot homogeneity in the 

strata below 6,000 feet suggested that these 
plots have more varied disturbance histories, An 
examination of the individual the? series from 
these plots confirmed this inference. Some of 
the p l o t s  showed release patterns early in this 
century that were consistent with logging 
activity. Given the much reduced spatial 
coverage of the dove-6,000-foot plots, the 
higher Level of homogeneity among these plots was 
probably related to the lack of interference by 
man. 

S SIS (PCA) 

Because each chronology was based on a small 
sample of trees, the dendroclimatic modeling of 

:h plot chronology was not considered a viable 
approach. The results would have been somewhat 
chaotic because of the very high level of noise 
in each chronology. Theref ore the eomon 
variance among all series within each stratum was 
pooled using principal components analysis (PGA) 
(Cooley and Lohnes 1371). In PCA, the structure 
in the correlation matrix of variables is 
trmsfsrmed into a new set of uncorrelated or 
orthogonal modes of behavior called 
eigenvectors. Each eigenvector accounts for a 
unique proportion of the cotal variance in the 
original data. The first eigenvector associated 
with the largest eigenvalue accounts for the 
greatest percentage of comon variance among all 
variables in the correlation matrix. 
Each eigenvector is composed of a number of 

loadings or coefficients equal to the number of 
original variables in the correlation matrix. 
These loadings, which may be positive or 
negative, reflect the relationships between 
variables for a specific eigenvector. Frequently 
the loadings of the first eigenvector are all 
positive or negative, which indicates that the 
variables being analyzed all behave similarly. 
Therefore, in this study, the tree ring series at 
each elevational stratum could exhibit a comon 
signal due to climate, disturbance, or pollution. 
The loadings of the first eigenvector can also 

be used to create a time series of scores that 
reveal how this most colaraon component among all 
series behaves through time. This series of 
scores is similar to a weighted mean, because 
each series is weighted by its eigenveetor 
Loading and then s ed with the other weighted 
series for each year. The weighting scheme is 
optimal in the sense that no other eonrponent can 
account for more of the comon variance between 
series than the first eigenvector. Consequently, 
the scores for each elevational stratum should 
have a strong conunon signal for dendroclimatic 
analysis. 
The PCA analyses were done twice for each 

stratum: once on the original tree ring indices 
and again on the indices after removing AR(2) 
persistence from each series. Indices are 
referred to as prewhitened after removal of AR(2) 
persistence. For the above-6,000-foot stratw of 

13 plots, the first eigenvector of the original 
tree ring indices accounted for 50.7 percent of 
the total variance, while that of the prewhhtened 
indices accounted for 53.6 percent of the 
variance. Cornon variance increased after 
prewhdtening because of a reduction of noise 
variance resultant from autoregressive modeling, 
In  figure 1, the loadings for th i s  eigenvector 
are all positive, indicating an existLng comon 
signal iunong all series. Tke loadings for the 
prewhitened Pndiees were more unifomly positive 
than those of the original indices. This 
uniformity indicated that some of the differences 
between the original indices were mplified by 
the autoregression within those series, 
For the 5,400- to 6,000-foot stratuni of 15 

plots, the first eigenvector of the original tree 
ring lndiees accounted far 34,l percent 06 the 
variance, while the prewhitened indices accorrnted 
for 4 5 . 3  percent. The larger increase in cornmon 
variance after prewhitening indicated that these 
chronologies were less homogeneous than those in 
the higher stratum. Greater variability in site 
characteristics and stand histories in this 
intermediate stratua may have caused the 
difference. Comparing the single series and 
pooled autoregression models also indicated the 
lack of homogeneity between the chronologies. 
However, the more restricted geographic coverage 
of the high stratm may be a biasing agent in 
this comparison, As before, the eigenvector 
loadings (fig. 1) were also more uniform after 
prewhitening. 
For the below-5,400-foot stratm of 22 plots, 

the first eigenvector of the original tree ring 
indices accounted for 32.6 percent of the 
variance, while that of the prewhitened indices 
accounted for 40.7 percent. The magnitude of the 
difference was similar to that of the 
intermediate stratum. Therefore the level of 
homogeneity between plots was similar, an 
inference also supported by the earlier 
autoregressive modeling results. The eigenvector 
loadings (fig. I) of the prewhitened indices were 
also more uniform than the loadings of the 
original indices. 
Generally the strength of the comon signel 

within each stratum was directly correlated with 
the elevational gradient. The tree ring patterns 
of high plots were more similar mong themselves 
than those of the lower plots. Although it may 
appear that this result reflected more limiting 
growth conditions towards the upper elevational 

limit, the bias in the geographic coverage of 
that stratunn limits the strength of this 
interpretation, 
The eigenvector mplitudes or scores of each 

stratura are shown in figure 2 ,  The solid line 
plots were derived from the orignal tree ring 
indices, and the dashed line plots were derived 
from the AR(2) prewhitened indices. 
The scores derived from the original indices 

indicate an overall pattern of below-average 
growth at all plots since about 1966. The 
largest departure was for the above-6,000-foot 
plots. The average score since 1966 was -2.65 
with a standard error of 20.495.  For the 5,400- 
to 6,000-foot stratum, the average score was- 
1.54 f0.522. And, for the below-5,400-foot 
stratm, the average score was -1.73 2 0 . 6 3 8 .  
These long-term departures appeared to exceed the 
95-percent significance level using a simple t- 
test. However, the use of a t-test on 
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Figure 1 - - T h e  eigrnvector loadings of the f i r s r  principal component o f  each 
red spruce elevarion s r n t u m .  T h e  solid line p l o t s  correspoid ro 
che loadings of ihe o r i g i n a l  tree ring index chronoiogies. The  
dashed l i n e  plots correspond to ttie Loadings of t h e  same series 
a f t e r  second-order autoregression has been removed f r o m  each one. 
The eigenvectors were exrracted from the correlation m a t r i x  The  
percent variance accounted for by each eigenvecror, o r ig ina l  
jprewhi t ened)  , is indicated. 



Figure 2.--The principal componenC amplitudes or scores corresponding to the 
ekgenvectors in figtire 1. The s d i d  line p lo t s  are fir the 
original series. The dashed line plots are for the prewhitened 
series. 



autocorrelated time series such as these can be 
extremely misleading. The number of Endependent 
observations and the degrees-of-freedom may be 
mch l e s s  than the number lndieated by %Re 
avaf iable obsematlons . 

One w a y  of avoiding the negative effect sf 
aaa-,o~crrsfatioz OF, the Ogc;greeq-oi-freedom 19 to 
use the scores of the -AR(2) p r e h i t e n e d  indices, 
By definition, these scores do no t  have any 
significant autocorrelation related to that  level 
of autoregression, In figure 2, the grewhitened 
scores i nd i ca te  a smaller reduction in growth 
since 1966 in all series, The post-1965 means 
confirmed t h i s ,  For the above-6,000-foot, 5,408- 
to 6,000-foot, and below-5,400-foot strata, the 
1966 to I983 means w e r e  -1-09 k0.779,  -0.42 
k0.807, and -0-71 k0.992, respectively, None sf 
these means passed a t-test at the 95-percent 
sdgnificance level, Therefore there may have not 
"seen any reductfon in growth since 11966, The 
decline in the original tree ring indices may be 
largely e x p l a i n e d  by the endogenous 
autoregresshe persistence o f  the tree ring data 
and the way in which it amplifies the behavior of 
the random shocks, et, which are largely 
exogenous to the plots, 

The above conclusion was conservative because 
the AR coefffcfents used f o r  prewhltenlng were 
based an. information in both the pre-1966 and 
post-I966 time periods.  The method einployed 
minimized the probab i l i t y  s f  a type I error 
because I t  assSmed tha t  the coeff ic ients  had 
not changed through time despite an intervent ion 
in the et that may have occurred in 1 9 6 6 ,  Since 
an Internention in the et could have a strong 
impact on the estimation sf the AX coefficients, 
the prewhitening may have remo*red p a r t  o f  the 
response to an hntementlon bad it occurred, In 
order to reduce the probability sf a type I1 
errsr in these analyses, an alternate method sf 
intervention analysis (Box and T i a o  1975) testlng 
for the occurrence of an intervention in 
autocorrelated time series was used, 

Internention analysis specifically allows for 
autoeorrefati_on when testing for the oceurence of 
an intervention in time series. A simple form of 
intervention analysis was used in this study to 
test for the occurrence sf a decline in the 
scores since 1966. The form of the intervention 
chosen was a step-function, which is expressed as 
[O 0 0 . . . 'j from 1930 to 1965 and [I E Z . . . ] 
from 1966 to 1983. This step-function served as 
one of the predictor variables in the analysis. 
To account for autocorrelation in eaeh time 
series,  the scores for years t-l and t-2 were 
also used as pred i c to r s ,  The model used allowed 
for both the occurrence a& ti s t e p  reduction in 
growth and A R ( 2 )  persistence, The grrtervention 
model was set up as a multiple regression 
analysis problem. In each case, onby the s t e p -  
function and the lag-P variable proved to be 
statisticaIly significant at the 90-percent level 
o r  higher, 

b n  contrast, the Lag-2 variable never exceeded 
the 60-percent significance Level. For this 
reason, lag-? was not used in the final models, 
Although one might infer that the previous M ( 2 )  
models were reasonable only because an 

intempention around 1966 changed the system, the 
timing of the Enternention was hypothesized only 
after an examination o f  the data. Exus any 
inferences concerning a change in persistence 
structure because of an i n t e ~ ~ e n t i s n  must cake 
into account the a posterLori,naturc of these 
analyses T h i s  i ssue  w i l l ,  be addressed later, as 
i t  affects significance tests ,  

The resu l t s  of the intervention analysis were 
as E0l10'lr;s: 

Above 6,000 ft 6.268** -0,566*** 58,138 
5480-6000ft 0,234* -0,369** 27-68 

The strength of the s t e p  intervention was 
directly correlated w i t h  eleva~~Lrsn. The above- 
6,000-foot scores showed the strongest indication 
of an internention in 2966, which resulted I n  a 
steplike reductLon in growth. T h l s  result was 
esnsisrent with the original examination of the 
1966 to I983 means f o r  these scares. However, 
the step-elevation relationship was new. The 
h2gh level of persLstence In the above-6,000-foot 
scores was greatly reduced by the s t ep .  In  
contrast, the persistence in the bower strata was 
reduced less. The reduction in persistence from 
the earlier m(2) modeling appears to be 
proportional to the strength of the s t e p .  

The probability Levels of the intervention 
analysis were based on an a p r i o r %  significance 
test In eaeh ease. Acceptance of these results 
would effectively minimize type I T  error at the 
expense of type I errsr, In contrast to the 
earlier prewhitening results that minimized type 
1 error. Therefore these sets of results served 
as useful limits. As noted earlier, there was a 
problem In applying a prior% significance tests 
to a statistical analysis problem that was 
principally based on an a posteriori examination 
of the data. Furthermore, the a posteriori 
examination of the scores for an intervention 
allowed for 50 possible intervention dates fo r  a 
step-function. 

Based on probability theory, the probability of 
finding a statistically significant step- 
f u c t i o n  under such conditions is related to the 
a p r i o r 2  significance level as: 

where P is the a posteriori probability Level, p 
is the a priori probability level of the  test 
being applied, and rn is the nmber sf times the 
tesr: esukd be applied to the data.  If chis 
correction is applied to the probab i l i t y  levels 
for the  s t e p  interventions shorn above, only the 
above-6000-foot step intervention remains 
statistically significant (P<O.OL). The other 
steps do not even pass the P<0.50 Level. This 
correction Is probably overly severe since the a 
priori information about the probable timing of 
red spruce decline in the northern Appalachians 
(Johnson and Siocma 1983)- 
All available evidence indicated that the 

decLlne in the northern Appalachians started 1x1 
the late 1850" to ea r ly  1960". There is no 



evfdence to suggest that any decline in the 
southern Appalachians began before the northern 
decline. Thus no intervention shouid be found 
prior to 19660. If this information is used to 
Limit the in terx~ent ion  time windax to 1960-81, 
the results of the lower two strata still remain 
well outside the Y<U.IU Level of srgnffscrznce, 
which i s  still unacceptable, For an a posteriori 
probability level of P=O,IO to be achieved, an a 
priori probability of p-0.01 and an intervention 
time w i n d o w  of  10 years are needed, Unless 
additional constraints based on a palori 

information can be found to reduce the tlme 
window of the hypothesized intervention, the nub1 
kprpothesls of no interrrention for the lower 
srrata cannot be rejected on statistical grounds, 
Figure 3 shows each series s f  scores wlth its 

fitted intervention model. As the statistics 
x n d ~ c a t e ,  the above-6,000-foot madel revealed a 
much more pronounced s t ep  change than the other 
models. 
AX1 strata showed signs of decreasing growth 

after 1466. However, growth reduction in the 
Lower strata diminished w i t h  decreasing 

Figure 3.--The actual  (sofid) and est imated ( d a s h )  t ree  ring scores based on 
f i t t i n g  a s t e p  i n t e rven t i on  model t o  each s e r i e s .  The d a t e  of 
t h e  i n t e rven t i on  is 1966. 



elevation, The eause of the growth reduction is 
still undetermined. Climate or other changes in 
natural influences are as probable a eause as are 
anthropogenie pollutants, 
The realfty o f  the elevational gradlent in step 

size may be questloned. However, the ex is tence  
of L-nowr~ erivirsrmental-climatic gradients in the 
muntains suggests that  the step-size gradient is 
a reality, The step-size gradient may be due to 
a temperature-related phenomenon. This 
hg.~"athesis is consistent with what is now known 
about the relationship between temperature stress 
and xed spruce declines in the northern 
Appalachian Mountains (Cook and others 1987). 

As noted earlier, the three strata used in this 
study follow both vegetational and climatic 
gradients, which are directly correlated with 
elevation, To illustrate the refkectlon of this 
gradlent in the tree rfngs, figure 4 shows the 
three series of original tree ring index scores 
sblperiaposed on eaeh other. Various time periods 
in figure 4 (1932-34, 1935-57, 1959-63) indicate 
striking gradients across scores correlated with 
elevation, The presence of these gradients 
across scores suggests that an elevationax 
gradient in the climatic response of red spruce 
operates at times. 
At other times In the scores (1940-42, 1958, 

1969), the gradiect breaks down, and the scores 
of all strata are s i r n L L i a r ,  This similarity 
suggests that the relationship between cllmriltic 
response and elevation is noastationary through 

time. The degree to which the gradient exists 
probably depends on which climatic variables are 
limiting to red spruce growth in a given year and 
how those climatic variables are influenced by 
elevation. For exilmple, based on the physics of 
precipitation fomatlon and its interaction wieh 
orography, the influence of droqght on red spruce 
growth should diminish with increasing elevation. 
Wowexrer, once the available moisture supply is no 
longer limiting to growth, this drought response 
gradlent would probably disappear from the t ree 
r ings .  
In this study , dendroclimatie modeling is 

limited by the lengths of the series being 
modeled and the unavaklability of  long ellmatie 
time series, Ideally, the modeling should 
proceed as described by Cook 1987; the 
dendroelimatic signal shasuld be modeled for a 
long preintervention time period of perhaps 50 to 
60 y e a r s .  A model should then be used to 
forecast or predict tree rings through a period 
to the present that includes both another 
preintervention time block and the post- 
interventlolil perlod. The time stability of the 
dendroclimatie model must be tested; therefore 
another grelntervention time period is needed. 
if the model is verFEied as time stable, then it 
can be used to test for an intervention that 
changes the tree ring response to the model. 
This method has been successively used in 
analyzing the red spruce decline in the 
&palachian Mountains (NcLaughlin and others 
1987, Cook and others 1987) .  

Beearzse of the insufficient tree ring time 
base, a weaker method of modeling was Implemented 
that provided a basis for inference regarding the 
climatic response gradient hypothesized earlier, 

Figure &.--The amplitudes of the or ig ina l  tree ring indices superimposed on 
eaeh other. The purpose of rhis g2oi: i s  to highlight certain 
time periods when elevation-related g r a d i e n t s  in climate response 
are likely to be occurring. 



This method was based on simple correlations 
between the tree ring scores and monthly climatic 
data for the period 1931-83. 
Prior to the correlation analyses, the tree 

ring scores for each ele-rational stratum were 
prewhitened to remove autocorrelation. In each 
case, signif 5tarz t  k&?(1) or AR(2) persistence was 
removed. The monthly ternperature and 
precipitation data, averaged over the northern 
and southern mountain climatic divisions of North 
Carolina and the southwestern mountain division 
of Virginia were similarly modeled for 
autocorrelation. In this case, the climatic data 
showed very weak or nonexistent autocorrefation 
out to lag 3. Therefore, the climatic data were 
not prewhitened. 
The dendroclimatic modeling was then treated as 

z multiple input - single output transfer function 
(Box and Jenkins 1970) in which ring width was a 
function of climate. Given the lack of 
autocorrelation in either the input or output 
series, the principal aim of the transfer 
function model was to identify those climatic 
variables that correlated significantly with tree 
rings and identify any delay or lag-response 
between the inputs and the output. The analysis 
assumed that the climatic variables were 
orthognal, an assumption that was violated for 
almost a11 ~~ariables. This violation may have 
increased the number of significant climatic 
variables in the model. However, since the aim 
of these analyses is strictly correlative and not 
predictive, this should not have any serious 
impact on the results. 
The tree ring scores were lagged up to 3 years 

in the transfer function analyses, meaning that 
each monthly climatic variable was correlated 
with each series of scores for years t, t+l, t+2, 
and t+3. A plot of the correlations by lag 
produced a normalized form of the impulse 
response function for 1932-62 and 1966-80 time 
periods of the system being modeled (Box and 
Jenkins 1970). For each period, 48 precipitation 
and 48 temperature correlation coefficients were 
computed. While the a posteriori nature of these 
analyses makes the use of a priori significance 
tests very questionable, these results should be 
viewed as more exploratory than confirmatory. 
Therefore the a priori confidence limits will be 
used to assess the significance of the 
correlation coefficients. 
The results of this modeling were somewhat 

complex to explain. In each time period, some 
indications of climatic gradients were found, 
For example, in the 1932-62 period, the 
correlation between tree rings and March 
precipitation at lag t+2 were: 

Above 6,000 feet: -0.102 
5400 to 6,000 feet: -0.604 
Below 5,400 feet: -0.636 

The correlations of the lower two strata were 
significant (p<0.001) in a statistical sense. 
However, the t+2 lags were very difficult to 
explain physiologically. More disconcerting, 
these correlations completely lost statistical 
significance (maximum lr1<0.15) in the 1966-80 
period. Therefore these significant correlations 
were either spurious or the climatic signal in 
the red spruce was highly nonstationary. The 

latter problem may also indicate a loss of 
climatic signal comparable to what has apparently 
happened to the declining red spruce in the 
northern Appalachian Mountains (Cook 1987, 
McLaugklin and others 1987, Cook and others, 
1987). 

"Ln the s u l t e  of  96 tota"lcsrreiat ior ts ,  only 
three monthly tentperature variables showed any 
consistency through both time periods; July, 
August, and September temperatures correlated 
with t+l lagged tree rings as follows: 

Stratum 1932-62 1966 - 80 
Above 6,000 feet July -0.343* 

August -0.268 
Sept . -0.223 

5,400-6,000feet July -0.388** 
August - 0.3 34* 
Sept . - 0.403** 

Below 5,400 feet July -0.351* 

There is an indication, especially in the 1966-80 
period, of an elevational gradient in the 
response to the temperature variables, The high- 
elevation stands seem to be less sensitive to 
summer temperatures than the lower stands. There 
is also an indication that the below-5,400-foot 
spruce have been more sensitive to smertime 
temperature since 1966. 
On the basis of these monthly temperature 

correlations, the July, August, and September 
temperatures were averaged into a summer season 
temperature series (fig. 5). Of particular 
interest is the s m e r  of 1980, the warmest 
summer in the southern Appalachians since 1931. 
According to figure 4, the poorest growth year 
for red spruce at all elevations was 1981. Given 
the t+l lag response of red spruce to summer 
temperatures indicated above, the poor 1981 
growth year was probably related to excessively 
warm summer temperatures in 1980, which extended 
to the highest elevations in the mountains. 
Linear regression analyses of the s m e r  

tenrperature series versus prewhitened red spruce 
scores indicated that the below-5,400- and 5,400 
to 6,000-foot strata were equally sensitive to 
previous summer temperatures over the period 
1932 - 83. The regression R~ ' s were, respectively, 
0.199 and 0.182. In contrast, the above-6,000- 
foot regression It2 wpls 0.137. The prewhitened 
scores and their temperature estimates are shown 
in figure 6. Interestingly, all strata follow 
the pattern of s er temperature almost 
perfectly since 1978. This corresponds to the 
warmer than average temperatures since 1977. 
It was previously suggested that the lower 

elevation plots should be more stressed by 
precipitation deficiency than the higher 
elevation plots. In order to determine the 
degree of drought sensitivity in the prewhitened 
red spruce scores, the monthly Palmer Drought 
Severity Indices (PDSI) (Palmer 1965) were 
computed from the divisional average temperature 
and precipitation data. Simple correlations were 



JULY-AUGUST-SEPTEMBER A W U G E  TEMPIFMTUIIIES 

Figure 5.--July, August, and September average temperatures for the southern 
Appalachian Mountains since 1931. The dashed line highlights 
variance at frequencies of 1/20 year or less. 

again computed between monthly PDSI and tree ring 
scores at lags t through t + 3 for the time 
periods 1932-62 and 1966-80. The results of 
these simple correlation analyses were very 
similar to the analyses reported earlier; the 
correlations were generally not time stable. 
However, as before, summertime drought and t + 1 
lagged scores showed some time stability and 
statistical significance. 

These correlations were as follows: 

Stratum Month 1932-62 1966 - 80 

Above 6,000 feet July 
August 
Sept . 

5,400-6,000 feet July 
Augus t 
Sept. 

Below 5,400 feet July 
August 
Se~t. 

In the 1932-62 period, there was a clear 
indication of an elevational gradient. The 
highest stratum showed no s 
signal in contrast to the lower strata. However, 
all strata showed a very pronounced swertime 
drought response in the 1966-80 period. This 
apparent increase in sensitivity to PDSI was 
stronger than that indicated by sunnmertime 
tentperature alone. 
As before, the monthly PDSI' s were averaged 

into a summertime season estimate of drought 
since 1933. (fig. 7). Of particular interest is 

the time period of 1952-55, which contained the 
worst drought in the southern Appalachians since 
1931. The very strong elevation-related gradient 
in the tree ring scores for this period was 
almost definitely caused by severity of this 
drought and the way in which it diminished with 
increasing elevation. It is difficult to explain 
why red spruce at all elevations showed 
approximately the same level of response to PDSI 
since 1966. Given the shortness of this time 
period, it is possible that these results are 
ques tionabl-e , even with the high significance 
levels of the correlation coefficients. However, 
this apparent increase in sensitivity to 
summertGe moisture availability should be 
investigated more fully, as better statistical 
methods and tree ring data become available. 
Linear regression analyses of the prewhitened 

scores versus summer PDSI for the period 1932-83 
indicated a weaker relationship overall than for 
summer temperature alone. The R~'S for the 
below-5,400-, 5,400- to 6,000-, and above-6,000- 
foot strata were 0.151, 0.114, and 0.035, 
respectively. The actual and predicted scores 

from these models are shown in figure 8. There 
generally appears to be less time stability in 
PDSI-spruce relationships. 

er temperatures and PDSI were correlated 
(re-0.38) because the temperature data were 
partially used to estimate the PDSI's. However, 
the level of correlation was not high enough to 
indicate that the PDSI correlations were 
completely confomded by the temperature effects. 
In fact, when the PDSI and temperature variables 
were used in a stepwise multiple regression 
analysis to predict red spruce scores, each 
variable entered the model according to the 
strength and sign of its original correlation 



Figure 6 . - -Ac tua l  ( s o l i d )  and  predicted (dash)  prewhitened t r e e  r i n g  scores .  
The s u m e r  temperature s e r i e s  (fig. 5 )  was used as  t h e  pred ic tor  
of t r e e  r i n g s .  The  o f  each m o d e l  is indieaced by t he  RSQ 
va lue .  



JULY---AUGUBT-SEPTEMBER ER DROUGHT INDEX 

Figure 7. - -Juf p , August , and Seg tember average Palmer Duough t Severi  r y  
Indices (PDSb) series Par the southern Appalachian Plountains. 
The dashed line highli;ghrs variance at frequencies l ess  than 1/20 
year, 

with the scores. The resulting sfor the 
bebow-5,400-, 5,400- to 6,000-, and above-6,000- 
f oo t  strata were 0,252, 0.203, and 0,123, 
respectively, The actual and predic ted  scores 
from these models are shown in figure 9. 

The results of this study indicated tha% red 
spruce in the southern Appalachian Momtains have 
exhibited, to varying degrees, some irregular 
behavior in their ring widths since the mid- 
1960's. At elevations above 6,000 feet, 
statistical evidence suggest a steplike decline 
in radial increment since about 1966. This 
decline has not been correlated with any specific 
climatic deviaeion In this study. However, the 
way in which the magnitude of the decline 
increased with elevation suggested that the cause 
of the decline was somewhat rebated to elevation, 
A more t ho rough  search for natural and 
anthropogenie causes of this putative decline is 
warranted. In additfon, new and improved 
collections of ring width data are highly  
desirable to refine the statistical analyses and 
validate or refute  the intervention resu l t s  
presented here. 
The decline of the southern red spruce at high 

elevations could lead to broad scale mortality, 
as found in northern Appalachian stands. 
However, the dendroclin~atic modeling has revealed 
an apparent singular difference between the 
northern red spruce and southern red spruce 
conditions in the Appalachian Mountains since the 
1960". In the northern red spruce, the 
dendroeiimatic signal completely disappeared 
after the trees entered the post-1960 period of 
declining ring widths (Cook 1987, McLaughlin and 

others 1987,  Cook and others 1987). However, 
based on the temperature modeling demonstrated in 
this study (fig. 6), the dendroelimatlc signal 
appeared to continue through the post-I965 
decline period, Thus the reported decline does 
not seem to represent a major loss of tree 
vitality as was indicated for the northern red 
spruce. At this stage of inquiry, the 
Appalachian Mountain northern and southern red 
spruce situations appear to be different. 
The dsndroclimatic analyses revealed that 

prevf ous summer temperatures correlated 
significantly with red spruce ring width the 
following year. The lag-l negative temperature 
correlations were remarkably consistent with more 
rigorously delreloped dendroclimatic models for 
srmerous stands sf red spruce in the northern 
Appalachians (McGlaugklin and others, [in press], 
Cook and others [in press:), It is increasingly 
clear that the s o l e  of previous s 
temperature as a determinant of red spruce growth 
and vigor is g 
i q o r t a n t k y ,  warm s 
be strongly correlated with past and present 
decltnes o f  red spruce in the northern 
Appalachians (Cook and others 1987). Shoul 
apparent increase in sensitivity to prior-s 
temperatures be correct for the below-5,408 
spruce, low-elevation spruce in the southern 

are likely to decline if warmer than 
er temperatures persist. A warmer 
by C 0 2  and other greenhouse gases 

would not positively affect the future of red 
spruce in North America. 
The apparent increase in red spruce 

sensitivity at a11 elevations to drought since 
1966 and with sensitivity to s 
since 1977, suggests that the southern red spruce 



ACTUU, AND PREDICTED W0-em-FOOT SCORES -- BSQ =&llC 

Figure 8.- -Actual  ( s o l i d )  and predicted (dash)  prewhitened t ree  r ing scores.  
The sumer  PDSI s e r i e s  ( f i g .  7 )  was used a s  the predictor o f  t r ee  
r ings .  The R' o f  each model i s  indicated by the  RSQ value.  
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Figure 9.- -Actual  ( s o l i d )  and predicted (dash) prewhitened t r e e  r ing scores.  
The predictors i n  the  mul t ip le  regression analys is  were sumer  
temperature and sumer  drought. The of each model i s  
indicated by the  RSQ value.  
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*are in a prolonged period of climatic stress. A 
similar pattern of increased climatic stress from 
about 1938-60 preceeded the current broad scale 
decline of red spruce in the northern 
Appalachians ([Cook and others 1987). Presently 
it is Impossible to say that this circhurastantiaf 
agreenent in swptomology is part of the 
epidemiology af red spruce decline, However, it 
is cause for concern and warrants further study.  
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UtZlizfng Time Serdea Models an 5s 
o f  Forecrrr;lit E e a f h l s  Eon Tree jX%w Spmee 

3, Keith Ord and Janice A. Derr 

The informaclon from a f i e l d  study on permanent 
plots established by the Tennessee Valley 
Authortty in the Greae Smoky Mountains was used 
to detect and evaluate recent changes in annual 
ring width of red spruce (Picea rubens Sarg,). 
Time series models were fit to mean annuah rLng 
widths o f  a maxLmwn of 5 mature red spruce trees 
f o r  each of 44 plots for the years  1900-84, =e 
mean level a6 resicZuals from forecasts for the 
Past 20 years sf the series were generally 
negative, indicating a reduced ring width 
relative t o  predicted ring width. These forecast 
residuals showed substantial spatial dependence 
that could not be explained by geographical 
factors alone, blhen both geographical and biotic 
factors, primarily measures of stand quality, 
were taken into account, the residual variation 
in ring widths showed a weaker pattern of local 
sphtial dependence. 

The Katioxal Park Service (NPS) and the 
lenriessee Valley Authority CTVA) oandueted 
studies on experimental plots in the Great Smoky 
Mountains, p r o d u c i ~ g  a substantial data base of 
information that can "c used to examine annual 
ring widths sf red spruce ( P i c a  rubens Sarg. ) . 
In this report we discuss one approach to 
analyzing ring widths, The objective of our 
study was to deteet recent changes during a 
designated time series (1900-84) that may be 
attributable to enviramental changes, such as 
the occurrence o f  acid deposition. Variations in 
ring widths relative to historical patterns are 
assessed. Also described is how to determine 
whether such patterns exist because s f  plot 
characteristics or additional spatial effects. 
The main steps of  the study may be s 

as follows: 

1, Construct an average ring width tLme series 
f a r  each of  the study p l o t s  established by 
the ??$A. P l o t s  established by the NPS were 
not included. 
Develop measures of recent increases or 
decreases in ring width for each plot 
relative to forecast values, 
Re-Late the increases or decreases in ring 
width to geographical and b i o t i c  factors, 

Step 1.--Construct an average ring width time 
series for each of the study plots established by 
the W A ,  

The following are decisions made during the 
exploratory stage of the analysis: 
Choice sf Plots.--The analysis reported In this 

p r o j  e e  t concerns  4 8  experimental plots 
established by the mA in the Great Smoky 
Mountains in North Carolina. The decision not to 
include the experlnental plots established by the 
NPS in the same general region was motivated by 
time and resource constraints. 

Choice sf Measurement Scale. - -Graphs of the 
time series for each o f  two cores taken from five 
trees usually produced very similar patterns. 
SFnce the overall plot was the focus for this 
study, the two core serles were averaged for each 
tree, The selection of a designated time period 
as a series for the entlre plot was more 
dlffieult, since individual trees may shew 
considerable variations from year to year. The 
overall mean was chosen as the measure sf average 
ring width for the plot, Further eonsideration 
sf this issue is presented in the Discussion 
section. 

Se lec t ion  o f  Trees and Time Frame for 
Analysis.--Graphs for the time series of ring 
widths for each of the 5 trees per plot were then 
constructed for all 48 plots. Examples of four 
of these graphs are shorn in f igures  I through 4. 
From an examination of the 48 graphs, the 
following decisions were made: 

1. Only red spruce would be used in the data 
analysis to remove some heterogeneity from 
the time series of ring widths averaged 
across trees in a plot. Saqle size was 
not seriously reduced because 214 of 234. 
trees in the study were red spruce, and 
only 4 plots had no red spruce. 

Only red spruce trees with a pith date 
earlier than 1940 would be included in the 
study. Therefore 25 red spruce t r e e s  were 
eliminated, and some heterogeneity caused 
by an apparent initial rapid  increase in 
ring width in the ear ly  years sf growth was 
alleviated, 

4 .  Determine whether there is any spatial 3 .  Wing widths from 1900 onward were analyzed, 
pattern to the values of excess or The heterogeneity caused by the staggered 
deficiency and whether geographical and entrance of trees into the plot averages 
biotic factors are responsible for the and by the apparent initial rapid increase 
pattern. in ring width was minimized, 

J .  Keith Ord  is a professor in the Departments of Management Science and 
Statistics. Janice A. Derr is managing director of the Statistical 
Consulting Center, Pennsylvania State 'ilni-~ers bty , University Park. 
Pennsylvania. 
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Figure 1.--Graph of ring widths of red spruce {Picea rubtzns S a r g . )  on p l o t  
6 of 48 selected experimental plots established by the Tennessee 
V a l l e y  Authority in the Great Smoky Mountains. 
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Figure 2.--Graph o f  ring w i d t h s  o f  red spruce (Picea rtrbens S a r g . )  on plot 
68 of 48 selected experimental p L o t s  established by the 
Tennessee V a l l e y  Authority in dhe Grea t  Smoky Mountains. 



TVA PLOTS 
ARITHMETIC MEANS CF T'&G SICES EAZY "PEE 

P L c " - 2 3  

L E G E N D :  T R E E  1 2 3 - 4 

Figure 3.--Graph of ring w i d r h s  of r e d  spruce (Picea rubens S a r g . )  on p l o t  
23 of 48 selected experimental p l o t s  established by the 
Tennessee Va1Ley Authority in the Great Smoky Hountains. 
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Figure 4.--Graph of r ing  w i d t h  of red spruce (Picea rubens S a r g . )  on pLor 
31 of 48 selected experimental p lo t s  established by the  
Tennessee VaiLey Authority in the Great Smoky' Mountains. 



Choice of Explanatory V a r i a b l e s ,  - -The plot 
characteristics t h a t  were used in the study 
lnclcded both geographical and b i o t i c  factors as 
measured by survey teams, Average annual 
temperature and t o t a l  annual precipitation for 
the three climatic regions in the study (Worth 
Carnlizsa nort%ern morintaS nc: North Carol ina  
southern mountains, and Virginia southern 
mountains) appeared to be f a i r l y  similar in the 
occurrence o f  peaks and dips. Therefore, because 
detai led models of precipitation are being 
developed by others In the pro jec t ,  climate 
variables were not  included at this stage. 

Upon completion of the exploratory data 
analysis, i time series of ring widths was 
constructed for each of the 44 remaining p l o t s  

( 4 8  minus the 4 wzth no red spruce) from the TV7A 
study. The time serles  began with the year 1900 
and ended with 1984. The series included on-by 
chose red spruce trees w i t h  p i t h  dates earliar 
than 1948, Each time series entry was an average 
of the width of t w o  cores from each eree, taken 
cron 3 v a x f m * ~ ~  3f five r e d  sprxce trees. Tab le  1 

ariaes characteristics o f  the data for each 
plot and refers to geographical factors ,  and 
table  2 refers to b i o t i c  factors ,  

Step 2,--Develop measures of recent increases 
or decreases in ring width for each plot relatLve 
to forecast values, 

T i m e  Ser ies  Analysis.--lo determine the recent 
pattern of tree ring growth on each plot, an 

Table 1,--Plot charaereristies and geographical v a r i a b l e s  

ObservatLan P l o t  ELEV ASPECT l$iT LONG 

 lots eliminated from study because no red spruce was present. 



Table 2,--Plot characteristics and b i s e i e  variables 

Observation DEADTREE TREEX 

*plots eliminated from study because no r e d  spruce w a s  presant, 

autoregressive-integrated-moving average ( ~ 1 ~ ~ )  
time series model for each of ehe p l o t s  was f i rs t  
developed, Kenda3-1 and others  (1983) and 
Vanciaere (1983) provide details o f  AF?If"rP, models 
and the underlying assmptiocs  . 

T i m e  Series  iYodeLing.--Various years sf the 
series indicated marked trends of tree ring 
growth. To aecomodate trends, the series were 
differenced where necessary. Other approaches to 
this problem are covered in the Discussion 
section. In th i s  data set, it was never 
necessary to difference more than once. A 

ary o f  the f i t t e d  models is presented in 
table 3 .  From the table, it can be seen that 

Eany a% the series were described satisfactorily 
by an autoregressive scheme o f  order 2, 
occasionally with higher order moving average 
(MA) terms. 
The MA terms improved the fit as measured by 

the diagnostics but did not materially affect the 
forecasts. The autoregression [ A R C 2 ) ]  
p e f f i c i e n t s  were usually both positive w i t h  $1 I- 

42 in the range 0.6 ts 0.9, indicating a carry-  
over from one growing s e p o n  50 the next, as 
would be expected. *&en 41 + (32 exceeded 0.9, 
nonstationarity in the series was evident, and 
dsfferencing was performed. A Low-order K4 
scheme usually gave an adequate description of 



ry of autcregressive-integrated-moving average rncldefs fo r  
each p l o t  

Plot P30. Difference + 
BR i"kA 

kl a 2 0 
No 2 0 
No 2 0 
No 2 0 
No 2 0 
No 2 (7?) 
Yes 0 (LS4,LO) 
No 2 0 
No 2 0 
No 4 0 
No 2 0 
Yes 0 1 
Yes 2 0 
Yes ( 3 )  0 
Yes 0 (4) 
Yes 0 2 
No 2 ( 8 )  
No 2 0 
Yes 0 2 
lies 1 0 
Yes 0 1 
Yes 0 3 
No 2 0 
No 2 0 
No 2 0 
No 2 0 
Yes 0 ( 2 , 3 )  
Ye s 0 (1,2,6) 
No 2 C 6 1 
Yes 0 (1,2,6) 
No 2 0 
No 2 0 
No 2 (lo?) 

No 1 0 
No 2 0 
No 2 0 
Yes 0 2 

Yes 0 0 
Yes 0 2 
Yes 0 1 
Yes 0 (1,4,5,63 
Yes 0 ( 2 , 5 )  
Yes 0 (1,4) 
No 2 (3,7?) 

Short series 

Short series 
Short series 
Short series 
Short series 
Short series 
Short series 

Structural 
change in 
series? 

First seven 
terms deleted 

Short series 

Short series 

+ k indicates lags 1, 2, . . . , k 
(k) indicates lag k only 
(j , k) Indicates lags j , k only 
(k?) indicates lag k a possibility 
AR =. autoregression coefficient 
MA = moving average 



the differenced series, It Ls well known that AR 
schemes w i t h  a roo$ of the auxiliary equation 
pear unity can often be well approximated by a 
low-order MA scheme with a single difference. 
Therefore the modeis are not very different ln 
practLce despite the i r  distinct theeretkeai 
p r ~ p r + - i g s  

The only series that  caused major problems was 
that for p l o t  3.09, where major increases in the  
first 7 years were followed by steady declines, 
A f t e r  the data for  the first 7 years were 
deleted, a satisfactory model was f l t t e d ,  It can 
be assumed thar the use of ring widch rather than 
tncremental basal area was the cause of these 
nsnstatisnarity problems, 
Measures of  Recent Relative Change in Ring 

Width,--To assess recent relative increases or 
decreases in r i n g  w i d t h ,  each series over the 
periods was forecasted: 

1, 1965-1984, using 1964 as the forecast 
origin, 

2, 1975-1984, using 1974 as tke forecast 
origin, 

" f h e  residuals, the ddifference h t w e e n  observed 
and gredlcred va2ues, were then computed f o r  
each year in the per iod ,  The means and standard 
deviations of these residuals were computed for 
each plot ( table  4 ) .  It should be noted tha t  the 
models were f i t t e d  to the entire series, 1900-84, 
and forecasts were then generated from the 
forecast origin, A pure forecastina method would 

have involved fitting to 1464 (or 1974) and then 
fsretzsting, However, the r i s k  of structural 
changes in the series was such that  the pure 
forecasts m i g h t  misrepresent recent t rends .  
Although our approach biases the residuals 
somewhat towards zero, the method seemed to 
provide s clearer p ic tu re  o f  recent deve2spmenss, 
Because changes in ring width might be 

considered in ei ther  ahsolute o r  percentage 
terns1 also considered were the indica tors :  

proportional change - average of residuals 
average ring width 

aver the t w o  forecast  periods, These values are 
also l i s t e d  in table  4 as PCT20 and PCT10. 
Assessment o f  Mean Change, - -One should note 

whether the residuaf ring widths rare below the 
expected value of zero for the perlods 
eonsldered, The results o f  one-tailed t-tests on 
the data kn table 4 were as follows: 

Adjus ted  

Table 4.--Summary s t a t i s t i c s  f r o m  tine series analysis 

Observation OVL.ZEAI?I RES28 R2QSD PCT28 RESkO RIBSD PCTlO 



Table 4,--Sumvary statistics f r o m  time series aaIysis--Continued 

Observation OVMmJ RES20 R20SD PCT20 RESIO RlOSD PCTlO 

+ OVlilEAF7 - overall mean of series. 
RES20 - residuabs from forecasts for last 20 years 
R20SB - standard deviation of RES20 values, 
PCT20 = RES20JOVMEAV. 
RESLO, RlOSB, PCTlO are defined similarly. 

" Plots eliminated from study bemuse no red spruce was present. 

The adjusted t-values were computed following the 
approach described by Cliff and Ord (1981) 
modified to the one-sanrgle case. The adjustment 
takes account of the positive spatial dependence 
among the data and may be written as: 

tadj = t (1 - I), 

where I is defined in equation (1) under Step 4. 
Evidently the 20-year resi&aal ring widths 

hiwe a mean that is significantly less than zero, 
while the null hypothesis of  a zero mean is 
accepted for the 10-year values. Therefore a 
drop is Indicated in average ring width in the 
1960" that has subsequently stabilized at that 
Lower level, 

Step 3,--Relate recent increases and decreases 
in ring width to geographical and biotic factors. 

In this s t e p ,  the changes in ring width were 
related to the various plot characteristics to 
determine if there were any explanation for the 
changes . 
Regression i9rialysis.--Each of the f ou r  residual 

ring width measures was modeled using stepwise 
regression with the following variables: 

geographica l  : latitude T longitude 
(LONG), (latitude)2 - U T S ,  (1ongitudel2 = 

LOMG2, latitude * Longitude = MTLOKG, 
elevation (ELEV),  m d  aspect (coded as sine 
and eosine, SASP and GASP). 

biotic: nmber of live trees (LIVETREE), 
nusnher of dead trees (DEADTREE), stand basal 
area of live trees (SBALTVE), stand basal 
area of dead trees (SBADEAB), and two derived 
indices : 

where TREEX is proportion of Live trees, and SBAX 
is the proportion of live basal area. The values 
of these variables are bfsted in table I. 
The quadratic factors of  Latitude and longitude 

were included to allow a low-order trend surface 
analysis (Cliff and others 1975). However, 
initial runs using only the geographical 
variables showed virtually no correlation between 
any of these variables and the residual ring 
width measures; therefore they have not been 
reported separately. A total of eight analyses 
are reported in tables 5 through 8. For each of 
the residual ring width measures, the analysis 
was performed using both unweighted and wei&ted 
least squares ( L S ) ,  The weights used were the 
standard deviations given in table 4 ,  In all 
eases, the significance level for a variable to 
leave or stay was set at 0 . 2 5 .  The residuals 
from the regression analyses are given in tables 
9 and LO. 

I n t e r p r e t a t i o n  of Regression R e s u l t s . - -  
Comparisons within and across tables 5 through 8 
show the following: 
1, The value of is in all cases somewhat 

higher f o r  weighted  LS than for 
unweighted. A high standard deviation in 
the &$me series residuals shows an erratic 
ring w i d t h  pattern. Therefore the 
we igkt l n g  is useful because greater 
emphasis i s  given to the p l o t s  with more 
stable ring width development, Otherwise 
the same variables were selected by the 
stepwise procedures for both estimation 
procedures, and the two sets of estimates 
were broadly consistent for each of the 
four dependent variables. 

2. The proportional change indicators y i e l d  
models with a higher degree of explanatory 
power than those based on absolute changes. 
Since average ring widths vary considerably 
between sites,  use of the proportional 
change indecator seems preferable. 



Tzbble 5,--Regression anaaysis lor the dependen t  variable 20-pear mean 
residual ring w i d t h  (ItES20) 

S m  o f  Mean 

Mebe k 4 18813.450 2703,362 2,464 0.0608 
Er ro r  3 9 42758.529 1096,373 
G t o t a l  43 53571.979 
Root MSE 33.111517 R-square 0,2018 
Dep mean -27,455909 A d j  R - s q  6 ,  I290 
C , V , -189.578 

I n t e r c e p t  1 76.597735 70,426505 1.002 0 3223 
ELEV f -8.013309 0,010648 -8,287 0.2055 
S B M  I -69.517093 40,250901 - 1 . 7 2 7  0,0921 
TREEX 1 91,734416 36.388501 2.521 6.0159 

SBALPVE 1 -0.916871 0.442469 - 2 .072  0.0449 

Welghted l e a s t  squares  

Surn of  Mean 
Source d f squares square I? value  Prob>F 

Mode k 4 800896 200224 4.859 0.0028 

Er ro r  3 9 1607051 41206.433 
G t o t a l  4 3 2407947 
Root HSE 202.994 R- square 0,3326 
Dep mean -13.665677 AdJ R-SQ 0.2642 
C . V .  -14-85 -4-3 

Parameter Standard T f o r  H0: 

I n t e r c e p t  1 49. : 57126 81.765087 1 .213  0 .2324  

ELEV 1 -0.017920 0.011910 - 1.505 0.1405 
S BAX L -105.865 45.857356 - 2.309 0.0264 
TREEX 1 135.208 39.969084 3.408 0.0015 
SBALIVE 1 -1.201380 0.502896 - 2.389 0.0218 

The r eg r e s s ion  ana lyses  f o r  geographical  
va r i ab l e s  provided only very  L i t t i e  
explana tory  power. When the  b i o t i c  
v a r i a b l e s  were a l s o  included, e l e v a t i o n  
became impor tan t ,  and the residual r ing 
width became m o r e  negative as elevation 
increased. T h i s  suggests t h a t  the higher 
elevation p l o t s  d i d  worse than  ayerage over 
t h e  10-  and 20-year periods cons idered ,  
The only other geographical variables tha t  
appeared i n  any models were LONG2 and SIN 
(aspect). The coef f Lcient  on LON62 
suggests a domward trend i n  t he  10-year 
change v a r i a b l e s  from e a s t  t o  wes t .  Since 
t he  plot Locations extended approxinrately 
n o r t h e a s t  t o  southwest ,  this may r e f l e c t  
the influence of  climatic f a c t o r s .  The 
coefficient f o r  S I N  ( a spec t )  indicates t h a t  
the p ropo r t i ona l  ck~ange variable f o r  ehe 
10-year period is h ighe r  i n  p l o t s  wi th  a 
sou the r l y  aspect. Again. t h i s  may r e f l e c t  
c l i m a t i c  e f f e c t s .  

4. The most important v a r i a b l e  i n  almost  a l l  
cases w a s  the t r e e  index, TREEX, which i s  
probably an i nd i ca to r  o f  seaad h e a l t h ,  and 
s t r o n g ,  positive c o r r e l a t i o n  is to be 
expected. The o the r  major b i o t i c  variable 
w a s  SBALIVE, but t h i s  appears w i t h  a 
nega t ive  s ign i n  the regression, SBADEAD 
and the s t and  basal area index (SBA) also 
appear on occasion, aga in  w i t h  negative 
signs in all eases. The i n t e r p r e t a t i o n  of 
t h e se  effects is unc l ea r ,  but t h e se  
v a r i a b l e s  may relate  t o  other biorie 
f a c t o r s  such as the age of the s t and  and 
t h e  degree of compet i t ion ,  

Ove ra l l ,  t h e  weighted regressgons on the 
p ropo r t i ona l  change i n d i c a t o r s  appear t o  g ive  
a reasonslble explana t ion  of the  v a r i a t i o n s  i n  
r e s i d u a l  r i n g  width.  

Step &.--Determine whether there is any spatial 
p a t t e r n  t o  t he  va lues  of  excess o r  de f i c i ency  and 



Table 6.--Regression analysis for 10-pear mean resLdrtal ring w2dt.k (PXSMOj 

Mode H 2 6777.608 3388,884 3.939 0,0272 
Error 41  35269,460 860,231 
6: t o t a l  43 42047,067 
Root MSE 29.329690 W-square 0,1612 
Dep mean 4,427273 Ad3 W-sq 0.1263 
G.V. 662.4776 

Parameter Standard T for HO: 

Intercept  i 8 1 4 , 9 9 5  404.97t  2.012 0.0508 
SBAEIVE I -0.763085 0.303229 -2.517 0,0159 
LONG 2 I -0.119851 0,059378 -1,951. 0.0579 - 

Weighted l e a s t  squares 

Surn of Me an 
Source Of squares square F value Prob>E' 

Model 2 301627 150813 &.  325 0,0198 
Error 41 1429655 34869.627  
C t o t a l  43 173l281 
Root HSE 186.734 R-square 0.1742 
Bep mean 7 .603876 Abj R-sq 0.1339 
C.V. 2455.775 

Parameter Standard T f o r  W O  : 

In tercept  1 1087,709 474.049 2.316 0.0257 
SBALIVE 1 -0 .852323 0.342500 - 2 . 4 8 9  0.0178 
LONG2 1 -0 .156754 0.069541 - 2 . 2 5 4  8.0296 

whether t h i s  can be accounted f o r  by 
geographical and b i o t i c  f ac to r s .  

In  t h i s  sec t ion,  the s p a t i a l  methods used are 
f i r s t  described. Then the s p a t i a l  analys is  f o r  
the res idual  r i n g  widths and f o r  t h e i r  res iduals  
from the regression equations developed i n  s t ep  3 
i s  presented. The object ive  of the s p a t i a l  

analys is  is t o  discover i f  there  i s  any s p a t i a l  
pattern Ln the recent changes i n  rdng width, both 
among the i n i t i a l  values and the res iduals ,  from 
the regression equations. 
Spatial Nethsds.--The f i rs t  s t ep  i n  any spa t ia l  

analys is  i s  t o  determine whether o r  not there is 
any evidence of s p a t i a l  pa t t e rn  among the data, 
given the p l se  locations, If the n p l o t s  have 
observed values xi ( l  == 1, . . . , n ) ,  we s e t  Zi = 

xi - S and use the spatial autocorre la t ion  
s t a t l s c l e :  

where So - 1 wlJ and the (wIi are a set of non- 
1 J 

negative weights co be specifled, ~ 5 t h  w~, = 0 .  

Under the nu l l  hypothesis (%) of no spat ia l  

autocorrelat ion (or  independence), it may be 
shorn that: 

Cl i f f  and Ord (1981) show tbe distribution o f  I 
under Ha to be approximately normal, provided 
t h a t  n i s  not too small, For the configurations 
sf weights used and the rider s f  plots available 
(n = 4 4 1 ,  the normal approximation is 
satisfactory. It should be noted that  1 is no t  
de f ined  q u i t e  like a regular correlation 
coefficient; i n  p a r t i c u l a r ,  the values tend to be 
closer do the o r i g i n  than one would expect. For 
t h i s  reason, the magnitudes o f  the standard 
deviates 

are of t en  more useful than the values of P 
themselves. Prom C l i f f  and Ord f198P), the 
variance of I under Hg is: 



T a b l e  7,--Regression m a l y s i s  for 20-year mean residual ring w i d t h  
d i v i d e d  by overall mean ring rsidrdi (PCT20) 

Unweighted least squares 

S m  of Mean 
Source d E  squares square f value Prob>F 

Model. 5 0,466992 0,0933518 2 - 592 0,0411 
Error 3 8 1.369366 0 ,036036  
C total 43  1.836359 
Root MSE 0.189831 R -  square 0,2543 
Dep mean -0.107106 A d j  R - s q  0,1562 
C .  V u  - 176 ,249  

Parameter Standard T for HO: 

Intercept 1 0,995842 0.583386 1,707 0,0959 
ELEV 1 -.0000856071 .00006109282 - 2.401 0,1642 
S B m  1 -1.074981 0,566563 -1.897 0,0654 
SBAI)EPII3 1 -0,013608 0.011104 - 1.225 0.22753 
TREEX I 0.579832 0,215236 2,694 0,0105 
SBALIVE 1 -0.00389848 0.002933331 -1.329 0,1928 

Weighted least  squares 

S m  of Hean 
Source df squares square F' value Prob3F 

Model 5 35.672534 7,134587 6,669 0.0003 
Error 3 8 44.671739 1.175572 
C total 43 80.344273 
Root MSE 1.084238 R-square 0.4440 
Dep mean -0.073059 Adj R - s q  0.3708 
C.  V.  - 1484.05 

Parmeter Standard T f o r  WO:  

Intercept 1 1.311741 0.583284 2.249 0.0304 
ELEV 1 -.0000828751 .00006361611 -1,303 0.2005 
S BAX 1 - 1.582828 0.531610 -2.977 0.0050 
s BAD EAD a -0.022~03 0.011483. - 1.969 0.0563 
TREEX 1 0.800385 0.214337 3.734 0.0006 
SBALIVE L -0.00426758 0.003139655 -1.359 0.1821; 

where n - number of plots, 

So = C C w,, 9 

1 J 

s, - C 1 I<j + WiJ wJl)' 
1 . 3  

S, = 1 (w, + w.,)', and 

w, - wLJ and w., - wJi 
3 .I 

Choice of Weights.--Given the irregular array 
of plot locations, the choice of weights for use 
in jl) i s  somewhat arbitrary. However, when the 
variables 1(1 are normally distributed, it is  
knom ( C l i f f  and Qrd 1981) that I is the LaeaPIy 
most powerful test f o r  alternatives of the form: 

where & and u2 are parmeters and W is s 

The null hy othes is  then becomes GO: & = 0 ,  or 
Var(5) - oei I. Since we are interested in 
detecting logal. spa t ia l  sfmilarf ties, t h i s  
suggests that w i j  > O when plots L and 3 are 
c h ~ e ,  bu t  w i j  -- 0 when they are dis tan t .  



Table 8,--Regression analysis for LO-year mean residual r i n g  w i d t h  
divided by overall mean ring w i d t h  (PCTIO) 

Unweighted least squares 

S m  of Mean 
Source d1 sgkares sqicare -Gk~ue ProCrF 

Model 7 0.678485 0,0969226 4,467 0,0012 
Error 36 0,781208 8.021700 
C total 43 2,459693 
Root MSE 0,147318 R- square 0.4648 
De-p mean 0.8216193. A d j  R - s q  0,3607 
6 ,  V. 672.9362 

Parme ter Standard 141 for 110: 
Variable 

Intercept 
ELEV 
SAf P 
LON62 
SBALZVE 
S EIm 
S BADEAD 
T R E m  

Weighted least squares 

Sum o f  Mean 
Source cl f squares square F value P ~ O F  

Hodel 7 27.779442 3.968492 5.605 0.0002 
Error 3 6 25.489160 0.708032 
G total 43 53.268603 
Root MSE 0.841447 R-square 0.5215 
Dep mean 0.035922 A d j  R - s q  0.4285 
C . V .  2342.437 

Variable df 

Intercept I 
ELEV 1 
SAS P 1 
LONG2 1 
SBALIVE b 
SRdV 1 
SEADEAD 1 
TREEX I 

Parameter Standard 
estimate error 

4.831085 2.305744 
-0000758574 .00005072042 
-0.069365 0.033810 

-0.000484338 0.0003417928 
-0.00324435 0.002267685 

- 1.564668 0.436777 
-0.024423 0.009060183 
0.554004 0.181281 

T for NO: 

Furthermore, given the rapid changes in local 
topography that are possible in the study area, 
it is reasonable to set q j  = 8 when there are 
several plots between i and j .  Given that (1) is 
being used primarily as an exploratory device, 
these guidelines may be incorporated into the set 
of weights by use of nearest neighbor linkages 
(Cliff arid others 1875). The exact specification 
of weights is not critical, Thus two sets of 
weights are considered: 
I. w i j  = I, if plots i and j are nearest 

neighbors, otherwise 
= 0 .  

2. W ~ J  = 1, if plots i and j are f i r s t  or 
second nearest neighbors, otherwise 

= 0. 
These weights are not synunetrie, but t h i s  does 
not cause any problems. In each case, a distance 
criterion was used to eliminate linkages across 
very long distances. The sets of neighbors are 

arized i n  (B)  of the Appendix. These weights 
were used in a11 subsequent analyses. A program 
listing for a simple F O R T W  program to compute I 
and the corresponding standard deviate is listed 
in the Appendix (A). For the first nearest 
neighbor, Sg == 42, SI = 68, and S 2  = 192. For 



T a b l e  9.--Residuals f r o m  ordinary Least squares regression for ES20, 
RES10, PGT20, P a l O ,  respectively 

O"~servation mES2Q mES10 PGRES 20 OGRES90 

L 46,334 - 15.807 13,26047 - 8.04145 
2 -21,678 -19 937 -0.13334 -0,1267S 
3 -31.993 -15,635 -0,14916 -5.08203 
4 -20,136 -40.225 -0.25344 -0,21953 
5* 
6 14,431. 10 682 0.lBPOB 0,12306 
7 - 10,443 - 28.935 -0,57859 -0,13183 
8 58.386 83,942 0,2113LI 8.17438 
9 -12,145 - 15.249 -0.11850 -0,11586 

10 -14 .668 - 30.645 -0. $1789 - 8 , 2 4 6 6 3  
1 1 - 17.193 -37.930 0.08341 0.00267 
f 2 -11,397 - 3,404 0.04620 0,01085 
2 3 23.945 42.668 0.14752 0,25374 
14 55 , 349 30,302 0.27781 0.23123 
15 - 10,846 24.604 -0,10033 0,05556 
1.6 59,557 $3,661 0 . 371x9 0.14592 
b 7 I f .  190 2.355 0.07027 -0.03010 
18 12,921 - 18,585 0.09821 0.04559 
19 -17.522 - 10.792 -0.29572 0.02309 
20 - 39.395 -19.506 -0.13238 -0.02375 
2 1 -80.534 -35.373 - 0 . 27386  -0.035351 
22" 
2 3 -12.884 22.290 -0,05130 0.16258 
2 4 -8.476 51.982 -0.03284 0.27436 
2 5 -25.229 -112.730 -0.13405 -0,16915 
2 6 22.956 -0.910 0.18552 0.02366 
2 7 -2.885 - 14,081 - 0.04947 -0.13986 
2 8 11.355 7 ,095  0.05162 0.04954 
2 9 - 14.474 2,247 -0.07823 0.00537 
3 CIS" 
3 1 -44 .763  - 21 , 355 -0.19854 -0.14849 
3 2 -15.831 25,363 -6,08487 0.08936 
3 3 -11,938 1,136 - 0 . 0 7 2 6 5  - 0.00901 
3 4 51,827 15,167 0.31837 (a. 14705 
3 5* 
3 6 - 10,105 -11,982 -0.10263 -0.06974 
3 7 16.486 8.212 0.04258 -0.01 989 
3 8 -6,060 -41,126 - 0 . 0 0 8 8 6  -0.16374 
3 9 9.809 - 32 ,049  6,03889 - 0.00258 
40 117.441 -5.710 0.13757 - 0.01437 
41 50.106 23,982 0.19884 0.01594 
42 -15,341 - 22.285 -0 .02459 -0.07543 
43 44.717 46.526 8.26187 0.26913 
44. 9.138 28,242 0.05684 0,07427 
4 5 -61.570 -18.162 -0.47302 -0.20437 
4 6 2.829 - 10.456 0 ,02660  -0,08615 
47 - 3 1 . 3 9 3  - 1 6 , 8 3 0  -0.l.8230 -0.14232 
48 30.003 1 9 . 3 2 1  0.24256 13.15529 

* P l o t s  eliminated from study because no red spruce was  present, 

first and second neighbors, Sg = 80, SI = 138, 
and S2 -: 670, 

The results f o r  the four  i n i t i a l  residual ring 
width measures are s a r i zed  in table  11. The 
spatial autocorrelation generally appears to be 
higher ,  based on the second nearest neighbor 
w e i g h t s ,  Given tha t  neigr~sring plots nay 
soaetimes have different  aspects of soil 
conditions, it can be assurred the se t  of weights 
based on the first  and second order nearest 
neighbors gives a more re l i ab le  indication o f  
spatial structure. 

Spatial autocorrelation coefficients were also 
caLculated for the residuals from the regression 

analyses shorn in tables 9 and 10. These values 
are presented i n  table  $2. The standard deviates 
were computed using the same formulae as w e r e  
used to obta in  t ab le  11. Mare exact expressions 
are given by C l i f f  and O r d  (1981), but these are 
very tedious to use, and the differences in 
magnitude are generally s l i g h t .  

InIrerpretat ion of S p a t i a l  Analyses .-The 
results in cable 11 show c lea r ly  tha t  pronounced 
spa t ia l  dependence exists, whichever measure of  
residual ring width is used. The first question 
t h a t  arises is whether such dependence can be 
asc r ibed  to purely g e o g r a p h i c a l  effects .  
Bowever, the geographical variables do not  



Table 10.-Residuals f r c m  weighted %east  squares regressim for .lES20+ 
RESPO, PC1"2O, and PCIQLO, respectively 

-21,521 
- 27 "in., 
- 22.402 
-45,974 

" Plots eliminated from study because no red spruce was presented. 

provide any degree of explanatory power, and the 
s p a t i a l  pa t t e rn  of the residuals is essentially 
the same. The next questton is whether the 
b i o t i c  factors account for some or a11 o f  t h e  
s p a t i a l  structure. 

"When tables 11 and 12 are compared, it may be 
seen that  the level. of s p a t i a l  autoeorre1ation 
has diminished In a l l  eases. For the variable 
PCT20, the autocorrelation has become negative, 
but this may be due to the uncorrected effects  of 
autocorrelations among the explanatory variables. 
One may generally conelude t h a t  the regression 
analyses ilccomt for much, but not all, of the 
spatial pattern Sorand in the residual r i ng  width 
values. H ~ w e s l e r ~  one should recall t h a t  the 

major variables in these regressions re la ted 430 

stand health. "Vhile this analysis indieaees tha t  
the ring width changes are re la ted to current 
stand health, the reasons fo r  that current health 
status remain undetemined. 

The resu l t s  of steps 1 through 4 suggest an 
overall decrease in ring width increment amang 
red spruce ir; the Great Smoky Mountains from 1965 
to 1975 or 1 9 8 4 ,  relative to time series 
forecasts for those time periods. The magnitude 
for these decreases appeared ko be related to 
elevation, factors of stand qua l i ty ,  and the 



T a b l e  11.- -Resul ts  of tests for spatial autocorreLation among original 
ring w i d t h  residuals 

variable' ~oefficient* Standard ~eviate* 

RES I0  0 .388  0 .466  2.15 3.47 

RES20 and RESlO refer to the residuals from the time series models f o r  
ring widths averaged over the forecast periods, 20 and 10 years, 
respectively. PCT20 and PCTI0 denote RES2O and RESlO divided by the 
overall mean ring width for the whole series. 

* NN1 and MN2 refer to the sets of weights for the spatial autocorrelation 
coefficient based upon first and upon first- and seeond-order nearest 
neighbors, respectively. 

Table 12. - -Results of tests for spatial autocorrelation among regression 
residuals+l/ 

Variable Coefficient Standard Deviate 
NNL NN2 NN1 NN2 

Unweighted Regression 

Weighted Regression 

RES lO 0.266 0 . 2 6 8  1.51 2 .05  

' / s e e  table 11 for definitions of variables, eoef f icients , and standard 
deviates. Regression residuals are listed in tables 8 and 9. 



relative decreases of first and second order 
nearest neighboring p loc s ,  These findings should 
be compared to those generated by other 
approaches to galn an understanding of the impact 
o f  certajn key declslons In the stages sf the 
analysis, 

Both Landau and others (1985) and Cook <1983) 
recornended tha t  annuah basal area growth 
increment is preferable to rlng width as a 
measure of annual productl.vity. Use sf this 
measure could have reduced the nonstationarity In 
several of the time series, One approach to time 
series that  display marked trends is to transform 
the data (Cook 1987)- Instead, we Eellowed the 
usual ARIPcZi$ paradigm and differenced tke series 
where there were marked trends; 20 of the 44 
series actually required differencing. It would 
be useful to compare forecasts obtained from the 
untransformec8, but poss lb ly  differenced, series 
to those obtained from transformed sertes. 
Additionally, the average of the ring width  of 
the t r e e s h o r e s  t h a t  m e t  our incEusion c r i t e r i a  
was used. Landau and others (1985) recommended 
the use of trimled means, Speci f ic  circmstances 
o f  other data sets may deternine the advisability 
of one procedure over another as the best way  t o  
minimize heterogeneity, 
The methods used in  each o f  these s teps  are 

capable o f  further refinement, and severah 
suggestions are included En the Recornendations 
section, Nevertheless, the basic paradigm 
represents a substantive approach to the 
evaluation o f  recent trends i n  the width of tree 
rings, 
Results obtained from the steps taken in this 

study should be compared with results generated 
from other approaches, Future studies might 
include the use of basal area increment rather 
than ring width as a measure of annual 
productivity and may incorporate transfer 
function models of climatic factors as well as 
intearvention analysis to filter out the effect sf 
Important forest perturbations. 

mc IONS 

2. Following Landau and others (19&5), it is 
recornended that future studies should use 
incremental basal area rather than rlng 
width.  

2, The possibility of using trimed means rather 
than arithmetic means should be considered. 
However, the i ssue  of how w e l l  measurements 
on five healthy trees reflect overall stand 
health requires fu r the r  examination, 

3 .  It Is iwortant  to look for changes in ring 
width or other indicators reiati-ve to what 
m l & t  be expected. The forecasting approach 
used in this report is one way of excluding 
such trends, but others should be examined. 
The  study 06 proportional changes seems 
preferable to that  of absolute changes. 

4 .  In future t h e  series analyses, automated 
procedures might be used (AGTOBOX, developed 
by David Rei l ly  of  Automatic Forecasting 
Systems, k n c , ) .  

5 .  Where known problems of  fires, aphids, or 
infestations occur on particular p l o t s ,  
intervention analysis should be used to 
filter out such effeets .  

6, The inclusion of b i o t i c  variables in the 
regression models serves to link the change 
indicators to stand health, However, 4t does 
not resolve how the stands came to be i n  tha t  
condiclon, The lack of any worehwhile 
correlations between the indicators and the 
locatfonal varfables suggests tha t  other 
factors may be at work in determining stand 
health; furthermore, the high levels of 
s p a t i a l  autocorrelation in the ring wtdth 
change data indicated that such factors are 
spatially concentrated, 

7. The extremely var iable  topography and 
locations of the s i t e s  suggest tha t  ~urely 
s p a t i a l  models (Cliff and 9rd 1981) are 
unlikely to be of direct value in t h i s  
study. However, the potential e x i s t s  f o r  
worthwhile applfcations with more homogeneous 
clusters s f  s i t e s ,  

8, Futu re  analyses could include transfer 
function modePs involving climatic 
variables, ornee detailed models of these 
variables have been developed. 
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FORTWV program for computing the spat ia l  
autocorrelation coefficient 

BINENSION %(100), X( iOO) ,  NOLOT(100), KNliLOO), 
hT72("r06$, *bTl(loO>, rWT2(100, NGROSS(256) 

READ, N 
READ, S o l ,  Sfl, S 2 1 ,  502, SL2,  2322 
SuLa=O. 0 
DO LO 1-1 ,N 
R W ,  MB, N1, N2, NREF 
NPmT (I)-NP 
ml(I>.-Na 
m2(1)-.292 



NGROSS(NP)=NREF 
10 CONTIrnE 
DO 15 1-I,N 
READ, 
SUkfx= S tm*Au 
x(r>=sxx 

i";Q?3Txw-!!Z 
SllE3ZZ-SIr?i4Z4~0.0 
SRGl-SAC2-;O.O 
XBm-SbmjN 
DO 20 1-1, N 
z(r>-x(r>-xBm 
SiiXZZ-.S"dMZZ+Z ( 1 j **2 
SUMZ4-SUMZ4+Z{I)**4 

2 8 CONTINE 
B2-N*SmZ&/(SUp.IZZ**2) 
PRINT, %URTOSIS=\,82 
DO 30 J-I , N 
U - N N Z  (J ) 
KB=NN2 (9 ) 
KG-MPLOT (J ) 
I F  ( U . E Q . 0 )  60 TO 30 
JA-NCROSSIU) 
JC-.NGROSS(KC) 
SACl=SACl+Z(JC>*Z(sA> 
IF (KB.EQ.0) GO TO 30 
JB-NGROSS(KB) 
SAC2=SAC2+Z(JC>*Z(JB> 

38 CONTINUE 
SAC2=SACL+SAC2 
SACf=SAGl/SGMZZ 
sacz-sacz/suHzz 
SD1~N*((N*N-3*w+3~*SII-lu"*S21+3*SOZ*S01) 
SDI=SDI-B2*((N*N-E)*S1.1-2*N*S21+6*SOI*SOI) 
SDI-SDI/((N-I>*(N-2)*(N-3]*SO1*SO1) 
SDf=SDI-l.Od(N-1)**2 
SDT=SQRT(SDl) 
SD~~=N*((N*N-~*M+~)*SI~-N*S~~+~*SO~*S~~) 
S B ~ = S D ~ - B ~ * ( ( N * H - N ) * S ~ ~ - ~ ~ . ? S . N * S ~ ~  +6*S02*S02) 
SD~=.SD~/((N-~>*(N-~)~;-(N-~)*SO~*SO~) 
%B2-;SD2-I.O/(N-1)**2 
SD2-SQRT(SDa) 

PRINT,TSBI-\,SDI,'SD~-'~,SD~ 
PRINT,' SPATIAL APC FOR FIRST h% I S  \,SAG1 
P R I N % , Y P A T I A L  A/C FOR SEC0FlD NX IS \,SAC2 
SACI-(SAC1+8,o/(H-1>]/SD1 
S A C ~ = = ( S A C ~ + I  O/JN-%)) , /SD2 
PRINT,'S%D, DEVIATE FOR FIRST hi I S  ' , S A G 1  
PRINY "7% DEVXATE FOR SECOND IW TS ',%AC2 
STOP 
END 

(B) Plot Nmber--first nearest neighbor--second 
nearest neighbor-- order of  plot i n  listing of 
values (required inputs to vec to r s  NPWT, m1, 
NN2, -AND NGROSS) 

(continued) 
25 13 37 14 
2-58 0 0 42 
13 37 36 12 
37 36 13 13 
36 37 13  32  
232  0 0 4.0 



information from plots established in the Great 
Smoky Mountains by the National Park Service and 
the Tennessee Valley Authority was used to 
determine anziial tree ring widths from core 
samples of red spruce (Picea Rubens Saxg,) - 
red spruce care samples showed a significant 
dependence of variance on the mean size of tree 
sings at 63 of 6 8  p l o t s ,  At 9 of 48 plots, the 
variance has increased moue rapidly since 1943; 
sf the others, 7 have shown a decrease since 5940 
and 32 showed no change. The dependence of 
variance on mean of a measurement was in terpre ted 
in terms of "fractals," a term coined to denote 
fractional dimension, The change in fractional 
dimens ion over tine indicated an evolution of 
factors that influeneed the dependence of 
variance on mean; these factors may have been 
successional, climatic, or anthropogenic, aLL of 
which seemed to vary on about the same time 
scale. It was cone2uded that variance-mean 
analysis may be an inexpensive and promising area 
of inquiry in dendroehronology. 

Mortality of large forest areas in several 
parts of the world has caused fear that the 
concentration of anthropogenic eompsunds in the 
atmosphere may be increasing. Acids and other 
oxidizing agents of hman origin, notably ozone, 
have been detected In the atmosphere and are 
probably capable of interfering with tree growth 
and survival. However, there are no data 
concerning the level of atmospheric pollution 
(Cook 1987, Kiester and others 1985). Therefore 
other possible influences and causes must be 
considered, such as the effect of climate on tree 
ring growth. Because climate and antbropsgenic 
effects are easily confounded, this report will 
focus on the analysis of change and not on 
distinguishing between pollution and climate. 
Annual tree rings in temperate regions provide 

a convenient record of a tree" growth history. 
Conrparison of tree rings over a geographical area 
has frequently been used to determine cLiinritic 
changes; It is assmed that patterns cornon to 
all trees o f  the same species, similar age, and 
in the same soils should respond alike to weather 
condftlons that are basircaily unvarying (Creber 
1877, Guiot and others 1 9 8 % ) .  

It is cornonly ass--ed that the width, k ; i ' ( t ) ,  of 
a tree ring laid down in year t is the linear sum 
of four systematic components and a random 
component: 

w i t )  = A ( & )  + B(t) + Gdt) + D(t) + e(t) 
wk1ere 

A ( t )  - age factor(s) unique to each tree, 
B(t) - disturbances unique to each tree, 
Get) - climarie effects eomon to all trees at 

a s i t e ,  
D(t) - dismrkances colilixon to all trees at a 

s i t e ,  and 
e(tj = random component. 

It may be helpful  to review some of the 
assunptions frequently made about W(t), The 
successive increments are assumed to be 
identically distributed, For the benefit of 
certaLn analyses, the increments are further 
assumed to be statistically independent, with the 
marginal distribution, e(t), Gaussian w i t h  zero 
mean, and constant variance, Such a time serdes 
is called a stationary Gaussian random walk or 
Bromian motion. While no one working in 
dendrochronslogy seriously expects the Brownian 
assmption to be valid, the nature of statistics 
often demands that it be assumed. 
The concepts of randomness are context 

dependent, and the word may be used in a 
confusing manner, There are two broad, 
a1ternatLve definitions sf randomne s s : 
"predictable behavior, efficiently described by a 
statistical probability distribution'3arzd 
"haphazard behavior, governed by no known rules" 
(Mandelbrot 1967). In addition, events in which 
the mean and variance are equal (Poisson 
distributed) are often said to be random. 
Predictable behavior is synonymous with 
stochastic and differs from deterministic because 
its expected or average outcome is predictable, 
while the specific outcome of a trial lies within 
certain bounds defined by the variance. 
As stated above, statistical independence of 

successive increments is a well-known 
simplifieatlon, The asswption of stationarity, 
however, has a special implication that is rarely 
questioned: the sample moments vary little from 
sample to sample, provided the samples are large 
sough. In our analysis, this assmptisn is 
relaxed, and the assmptisn is made that the 
variance is infinite or at least so large that it 
may be treated as infinite. Thus the assmption 
of Gaussian marginal distribution is abandoned in 
Eaavor of the Cauchy, permitting the Central Limit 
Theorem to be invoked without assming constant 
variance (Mandelbrot 1969). Therefore the need 
to amend the other assmptions o f  independence 
and stationarity is alleviated (Berger and 
Mandelbrot 1963;. 

The assumption of infinite variance is 
equivalent to asswing randomness thst is 
predictable but haphazard; the long-term trend is 
evident, but the short-term signal is 
unpredictable. Theory expounded by Plfandelbrot 

R.A. J. Taylor is research scientist in the Department of  Entomology, Ohio 
State University, Wooster, Ohio. 



(1968, 1963, 1969) related haphazard time series 
with power Laws and distributions with infinite 
varhnce. 

Consider the r e r i p s  x(a;), t - 1,2 , . . . .  n, of 
obsemations taken at equal intervals of tir-e or 
space. Any particular series [ x ( t )  is assuraed 
to be the realization of  a process W(t) that will 
be defined later; t is used as an indicator 
variable at equal. intervals o f  time or space. 
Defining the following variables: 

V(x) is the variance of the series with M(x) 
the mean. Theory based on the usual 
interpretation of the Central Limit Theorem 
permits one to assume that these parmeters 
estimate population values, However, in this 
analysis the assmption is not necessargly valid: 
the parameters simply represent the sample values 
and are therefore not asynaptotic to the 
population values, C(x;k) is the 
spatial/temporal covariance across the data and 
is related to the standard treatments of 
tirnelspace series data, including tree ring 
analyses (Guiot and others 1982). Information is 
given in C(x;k) on the regular variations In the 
data at periods equal to k. The variogram is 
V ( k )  and provides information on the nonregular 
variation at lag k. 
Consider V(k) as k varies: dividing V ( k )  - 

2fV(x)-G(x;k)) through by V(x) gives V ( k )  = 

26"(x)(l-R(k>], where R(k) is the serial 
correlation coefficient that takes values 
-IrR(k)sl; therefore V(k)=arV(x){l-r), Osrs2, and 
OsTJ(k)S(x) . Thus: 

V(k) = O when serial correlation at lag k is 
1, 

V(k) = 2V(x) when no serial correlation at lag 
k ,  and 

V(k) - 4V(x) when serial correlation at lag k 
is -I. 

At any specific value of k, say k*, V(k) will 
give information on all variations not having a 
cycle at k, 
To obtain information on a11 variations, V ( x )  

is cornonly used, but we cannot say what 
variation we have at t - i, only that it is over 
the interval t - i,i+l,i+2,. . . , and so forth. 
Ideally, the variance would he partitioned in the 
manner of V(k) but without Lhmitation. If k goes 
to zero, ail scales sf variation are included and 
simultaneously V(k) disappears. To estimate 
V ( O ) ,  compute V(k) for b O  and extrapolate back 
to zero. To obtain the rate of approach of V(k) 
to the origin, plot logV(k) against Iogjk) and 
determine the gradient, dlogV(k)/dLog(k) - l3 as 
k->a. 
Another approach to estimate the gradient of 

V(O) is to replicate the generating process W(t): 
Wljt), W2(t), . . . . ;  V(O) can then be estimated at 
any or all t. The estimates Vi(0) are all at the 
origin, so the gradient must be extracted from 
them. Plotting the means and variances of 
several series against time shows that the actual 

values vary according to no particulsc pattern; 
however, it must be noted  that the magnitude of 
Vf(0) seems to increase with rime (figs. 1-8). 
Srnce Vt(8)  is partly dependent on Mt(0), 
standardizing Vt(0)  w i t h  Mt(0) may show a trend. 
Figures 1 through 8 also show the coefficient of 
variation I,/V~~B)/M~~QI~ increasfng w i t h  time 

Figure 9 plots IsgV(t) against Lo@f(t) and 
shows how the variance increases with respect to 
mean, The gradient dlogV/dlo@ - b is an 
estimate of 13, This is easily demonstrated by 
the following argument, Define a reference mean 
30 and a comparison mean Ms - sMg%(s>l . Now Vg b - aOb and Vs - absb - a ( s ~ ~ ] ~  - sD(a~o ) = sbvO 
Evidently the variance is scale independent, and 
its gradient b is an intrinsic component, as 
expected from dlogV(k)/dlog(k). 

Taking logs :  iogV, = iogV0 + blogfs), remernber 
that Vg is a variance corresponding to an 
arbitrarily chosen mean Mg, Vg is thus also 
arbitrary; Mg can be chosen such that Vg is I. 
Thus logVs - blag(s), which is very nearly 
LogV(k) - &log(k), Although k and s are not quite 
synanpous, if multiples are chosen as values of 
s ,  then TogV = b l o g ( i )  + G describes the locus of 
variance at spatial/temporal inteavals i = 

1,2 , . . . ,  and is, except for C ,  identical to 
logV(k) - alogK. Tkerefore B = b. 
The same result can be obtained from an 

empirical argtkment, Lee there be a series of 
samples taken along a transect AB. Divide AB 
into NK intervals such that there are N groups of 
K intervals, Neither the K groups nor the N 
groups need to be contiguous, but for simplicity 
it 2s assmed that they are. The nmber of 
entities in each of the NK intervals is counted, 
In the present case, the size of the tree ring 
increment is measured: xij where x is the size 
and I - l,2, . . . ,  M and j - 1,2, . . . ,  R .  Now compute 
the mean Mi and variance Vi for each o f  the i - 
l,2,. . . ,N groups from 
Mi Gxij/K Vi = X(xij - M ~ >  2/f~-1). 
Let the central interval of each group become 

the center of mass for that group. The center of 
mass has at least two parameters describing the 
distribution of  observations within the group: 
Mi and Vi. 
If logV is plotted against lo#, empirically 

they are related by the power law, V = &Ib, where 
a and b are empirically estimable parameters 
(Taylor 1961, Perry 1981). Consider the 
arbitrary series xj* (j = l 2, . . . , that has 
mean and variance M* and v*; now compute the 
serial covariance ~ * ( k )  having lag k, from 

c*(Ic) E x * - M*] [xj+k - M*]. 
From V* and Ci(d) the variance of increments is 
com uted: !i V (k) = E(x * - xj+k*)2 - 2 [ ~ *  - ~*(k)]. 
Half ~ * ( k )  i s  referred to as the variogram, and 

its computation is the first step in the 
interpolation process known as kriging (Journel 
and Huijbregts 1978). The covariance term is 
C*(k) and is related to the systematic part of 
the ring increments, particularly growth at small 
k. At larger k ,  Long-period variations such as 
climatic cycles predominate. Filtering 
techniques (Guiot and others 1982) concentrate on 
the structure of ~*(k) over varying periods of 
time. The total variance of the series V* 
contairis both the systematic and nonsystematic 
variance. 



MEAN ANNUAL TREE-RING WIDTH - SITE 1 (1850 - 19814) 
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FIgure 1.--Tiwe series of m e a n ,  variance, and coefficient: of variation of 
tree-ring increments From 1850 to 2984 at Tennessee Valley 
Authority s i t e  1, 
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YEAR 

VARIANCE OF %-RQE--WING WIDTH 

YEAR 

COEFFICIENT OF VARIATION OF TREE-RING WIDTH 

Figure 3,--Time series  s f  meaa, variance, and coefficient of variation of 
tree-ring increments f r o m  I850 to 1984 at Tennessee V a l l e y  
Authority si te 23. 



MEAN ANNUAL TREE-RING WiBTX ---- SITE 36 (1850 ----- 4984) 
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Figure 4.--Time series of mean, variance, and coeffieiis~zt s f  variation of 
tree-ring increments from 1850 to 1984 a t  Tennessee V a l l e y  
Authority s i t e  3 6 .  



MEAN ANNUAL TREE-RING WIDTH - SfTE 307 (1901 - 1984) 

tw 1910 1920 1930 1940 1950 1960 1970 1980 1990 

YEAR 

VARIANCE OF TREE-RING WIDTH 

Y E A R  

COEFFICIENT OF VARIATION OF TREE-RING WIDTH 

2 1 1  
9 
I- 1 0  
5 5 0 9  

> 
0 6 

& 
I- 0 7  
Z 

0 6  

2 0, 
U. 
w 
0 o 4  

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 

Y E A R  

Figure 5.--Time series of mean, variance, and coefficient of variation of 
tree-ring increments from 2850 to 1984 at National Park Service 
site 307. 



MEAN ANNUAL TREE-RING WIDTH - SITE 310 (3901 - 1984) 
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Figure 6.--Time series of mean, variance, and coefficient of variaeion of 
tree-ring increments from 1850 to 1984 at National Park Service 
site 310. 



MEAN ANNUAL TREE-WING WIDTH - SlTE 316 (1901 - 1984) 
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Figure 7.--Time series sf mean, var iance ,  aad coefficient of variation of 
tree-ring increments f r o m  1850 to 1984 at National Park Service 
s i t e  3 2 6 ,  



MEAN ANNUAL TREE-RING WIDTH - SITE 325 (490"i l"1984) 
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Figure 8.--Time series  of mean, variance,  and coefficient of variation of 
tree-ring increments from 18.50 to 2984 at National. Park Service 
si ce 321. 



This study focuses primarily on the systematic 
variance comon to all trees at a site. 
Therefore the variance across all cores at a site 
in each year was calculated to form the series 
V t .  The comon systematic components at a site 
formed a baseline from which all other components 
o f  variance were referenced. To find the eomon 
systematic component, variance was plotted 
against mean to standardize variance. The mean 
was asswaned to be linearly related to the 
baseline. 
Also to be noted is the change in the comon 

component, represented by the change in Vt 
relative to Kt. Changes between the relationship 
of Vt and Mt indicate changes in the normal 
behavior of the process W(t). Changes result 
from evolution in the process variance. If a 
long-term change is anticipated, then evolution 
in the system process can be demonstrated by 
determining differences in the rates of change of 
variance before and after the reference point. 

Of the plots established by the National Park 
Service (NPS) and the Tennessee Valley Authority 
(TVA), only those with five or more red spruce 
trees in the sample were selected for analysis. 
With 2 cores (series) per tree, means and 
variances for each year from the beginning of the 
series were computed from 10 ring width 
estimates. Series ranged in length from 40 to 
135 years. These data yielded 20 bivariate 
series with length of approximately 84 years (NPS 
data), and 48 series with lengths varying from 40 
to 135 years (TVA data). The logarithm of 
variance was then regressed on log mean with each 
point representing 1 year. 

RESULTS 

Figures 1 through 8 show the mean (M), variance 
(V), and coefficient of variation (CV) against 
time at TVA sites 1, 9, 23, and 36 and NPS sites 
307, 310, 316, and 321. Both the mean and 
variance were highly variable, and the plots of 
CV against time gave the strong impression that 
the variance was increasing with time. 
Furthermore, the detailed behavior differed 
greatly from site to site. Figures 9 through 16 
show variance-mean regression plots for the same 
8 sites, and table 1 shows the results of 
regressions of 68 sites. Sixty-seven regressions 
were significant at probabilities of less than 
0.05. Only site 113 showed no dependence of 
variance on mean. 
To investigate the possibility that conditions 

in the post-World War I1 era were different from 
prewar conditions, the data of sites with runs 
longer than 80 years were split at 1943 and the 
variance-mean regressions repeated to test the 
hypothesis that the acceleration of variance with 
mean has changed. Table 2 shows that of the 28 
TVA data sets suitable for analysis, 8 showed 
increases in dependence, 18 showed no change, and 
none showed a decrease in dependence. There were 
two sites with a nonsignificant regression, 
Interestingly, the NPS data showed the reverse 
pattern: only one site showed a significant 
increase in variance-mean dependence since 1943, 

nine sites showed no difference and seven showed 
a significant decrease since 1943, three sites 
had a nonsignificant regression, 
Preliminary analyses with multivariate methods 

(principal components analysis, PCA) failed ta 
identify any differences in regression gradient 
attributable to differences in the two data sets. 
Variables ineluded in the PCA were annual 
rainfall, mean annual maxim- and minimu 
temperatures, xeric/mesic status, altitude, and 
stand basal area. 

Tree rings reflect the net effect of age, 
health, soil, and biotic conditions on tree 
growth. 
Age and health are unique aspects of each 

individual tree, but the environmental 
canditions experienced by all trees in close 
proximity are considered similar or comon 
external factors. However, competition is one 
aspect of a tree's external environment that is 
considered unique. 
Therefore three influences of growth can be 

established: 
1. Age/growth---unique internal factors, 
2. Competition---unique external factors, and 
3 ,  Environment---cowon external factors. 
When samples are composed of mature and/or old 

trees, the age-dependent variance will be 
relatively small and may even be missing in the 
younger trees. When very young and very old 
trees are included in the sample, agelgrowth is 
likely to have an impact only in the early part 
of a series and variances are higher than normal. 
Competition between trees in the sample may 

help one to understand the dependence of variance 
on mean. For a given value of the mean, a high 
variance indicates a wider range of individual 
responses. As the mean increases, the dependence 
of variance on the mean suggests that only some 
elements of a sample are increasing, while others 
may be decreasing or increasing very little. If 
increases in tree ring width were all equal at a 
site, the variance would be increasing 
proportionately and b - 1. The mean value of b 
was 1.77, suggesting that at the majority of 
sites, when conditions were conducive to growth 
increases, only some trees responded. A change 
in b over time was interpreted as a change in the 
relative competitiveness of the trees at a site 
due to a change in the external conditions. 

CONCUJS IONS 

Because the relationship between variance and 
mean is still uncertain, no definite conclusions 
can be made about the influences on tree growth. 
Because the nature of fractional dimension is 
still poorly understood, the theoretical 
treatment is not rigorous. Only since the 
publication of Nandelbrot's book (1982) has there 
been an increased awareness and interest in 
fractals among scientists other than topologists. 
The ideas developed in this analysis were 

preliminary, but the reduction of the masses of 
tree core data to a single parameter, b, was a 
new contribution to statistical methods in 
dendrochronology. However, the results of 
splitting the data into two sections were 
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Figure 9.--Variance-nem plot (fog scale) of Figure 10 .  - -Variance-mean plot (log scale) of 
Tennessee Valley Authoriry site 1. Tennessee Valley Authority site 8. 
All regressions are significant at All regressions are significant at 
p<0. 01. This plot shows some pc0.01. This plot shows very good 
nonlinearity . regression. 
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Figure Il . - -Variance-mean plot flog scale) of Figure 12.--Variance-mean plot (log scale) of 
Tennessee Valley Authority site 23. Tennessee Valley Authority site 36. 
All regressions are significant at All regressions are significant at 
p<0.01. This plot shows very good p<0.01. This plot shows very good 
regression. regression. 51 



SITE m"7 SITE 310 

Figure 13, - -Variance-mean plots (Log scale) of 
National Park Service site 307. ALL 
regressions are significant at p<O.OL. 
This plot shows very good regression. 

Figure 14.--Variance-me= plots {log scale)  of 
National Park Service site 310.  ALI 
regressions are significant at p<O,OL. 
This plot shows very good regression. 

SITE 521 

Figure 15.--Variance-mean plots ('dog-scale) of Figure 16.--Variance-mean plots {Log scale) of 
National Bark Service s i t e  316. All NationaL Park Service site 321. All 
regressions are significant at p<O.Of. regressions are significant at p<0.01. 
This plot shows some nonlinearity, This plot shows very good regression. 



inconclusive. A reduetlon in  variance In recent The fractal approach to the analysis of tree 
years at each TVA sf te may be indicated by the ring widths i s  a promising area for further 
WA data, while the NBS s i tes have become more research. However, this method may not help to 
variable, If this is so, the difference between identify anthropogenlc influences on t ree  growth; 
the two data sets must be determined, The change may be determined, but the cause of tha t  
results of the PCB were also Inconclusive, bur change may still requlre careful ly  controlled, 

;;ct of ~ d t e  characterls+5cs 1 3 ~ ~ 4  i;n g'j?e l o z g - t a r ~ ,  large-spsle forest e x g w i m e n t s .  
analysis w a s  very s m a l l .  

Table  1.--Regression analyses of the log (variance] against Tog (mean) of 
tree  r i n g  increments+ 

S i t e  Stzlndard Adjusted F- 
No. N Log(a) b error of b I?? ratio Significance 

Tennessee Valley Authority Plots 

Tennessee Valley Authority Plots 

wjs 

*** 



Table 1. --Regression analyses of the Log (variance) against log (mean] of 
tree ring increments--Continued, 

S i t e  Standard Adjus ted  F - 
Xo. N Log(a) b error 06 b I$ ratio Significance 

National Parks Service P l o t s  

" A 1 1  regressions are significant at P <0,0001, except where indjcated: 
N/S = not  significant, * = P < 0 , 0 5 ,  ** = P <0.01, *** = P <O,GOE. 

Table 2.--Regression analyses o f  the Log(variance) against Log(mean) of tree 
r ing  increments before and a f t e r  1943+ 

- 
S i t e  Bre/ Standard Adjust F- 
No. post N LogCa) b error of (b) It2 r a t i n  Signif. 

Tennessee Valley Authority Plots 



Table 2. - -Regression maEpses of the Iogjvariance) against iog(mean) of tree 
r i n g  incremm ts before and after d943+- - Contimed 

S i t e  Prej Standard Adjust F- 
No. post N h g ( a )  b error of fS) It2 ratio S i g n i f .  

Tennessee Valley Authority P l o t s  

National Park Service Plots 



Table 2. --Regression analyses sf the logevariance) against Log('mean) of tree 
r ing  increments before and after 1943'--continued 

Site T r e /  Standard Adjust F- 
No. post N Log(a) b error of (b)  It2 ratio Signif. 

National Parks Service Plots 

+~ll. regressions are significant at P <0.0001, except where indicated: 
N/S - not significant, * - P 4.05, ** = F <0.01, *** - P <0.001 
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Red Spruee Tree Ring fysis Uslag a b l m n  Filter 

Paul C .  Van Deusen 

A Kalman filter was applded to red spruce 
(Picea rubens Sarg . ) tree ring data collected 
from the Great Smoky Mountains by the Tennessee 
Valley Authority and the National Park Service. 
A new standardization method was developed that 
can be Justified wlth a model-based assmption. 
The variance of the standardized growth 
chronology appears to have increased in recent 
years, The sensitivity of red spruce to climate 
began to increase in the late 19609s and leveled 
off in the early 19802s, It is possible that 
increasing climatic sensitivity and varlance are 
related to balsam wooly adelgld activity in these 
stands . 

Tree ring data provide one of the few 
historical records for scientists to assess the 
impact of atmospheric deposition influences on 
forests ( A D I F ) .  However, to adequately assess 
this iqact, historical information on weather 
and pollution levels are also needed. Although 
past weather records are mailable from weather 
stations, deposition levels can only be inferred 
from proxy variables such as coal consmption of 
nearby power plants. Ky analysis will be limited 
to examining the trends in the tree ring series 
and attempting to explain these trends wlth 
average monthly temperature and total 
precipitation records. The Kalman filter is 
shown to be a useful tool for this type of 
analysis. 

The National Park Service (NPS) and the 
Tennessee Valley Authority (WA) had collected 
data from plots located in the Great Smoky 
Noun ta ins. Spatial relationships, current 
diameter, and species were recorded for each tree 
on each plot, A few dominant trees were selected 
at each NPS plot from trbieh two increment cores 
were taken, but pith date was not recorded; tree 
rings were dated back to 1900. Dominant trees on 
TVA plots were not cored, but pith date was 
recorded; unfortunately tree ring widths were 
only wallable back to 1850. Information from 
qproximately 200 red spruce trees were available 
in both data sets, h data set from a site on 
Clingman" Dome (North Carolina) consisting of 38 
cores on 3.9 trees was a l s o  utilized in this 
study. Ed Cook of the Launont-Doberty Tree Ring 
Laboratory collected and cross-dated this data 
set. The TVA and NPS tree ring data were 
processed at Oak Ridge National Laboratories. 
Generally, only data that would be commonly 

axaaLLable in a dendrochronological study were 
used; these data included ring width, elevation, 

pith date, and regional weathey data. National 
Ceatter S c r z i c e  C1imati.e Diaision data f r s ~  
stations in the northern mountains of North 
Carolina were s arized to provide total 
rainfall and caverage tenrperature by month 
beginning in 1931. 

A basic goal of many tree ring studies is to 
produce a eonuaon chronology from a group of trees 
to be representative of a site. It is probable 
that this chronology will demonstrate a eomon 
signal to which all trees in the area have 
responded. In order to aplify the coqon 
signal, an attempt is made to eliminate 
individual tree signals that are unrelated to the 
comon signal. The age-related biological growth 
signal can be removed by a n d e r  of procedures 
eategoricaPly referred to as standardizatlon. 
Graybill (1982) presents methods h e r e  a growth 
model is individually fit to each tree ring 
series. 
Graybill (1982) presents a hypothetical 

breakdovan of t.he raw ring width for a single tree 
at time t, R(t), as follows: 

where Ct is the rnacvoclilnatic signal comon to 
all trees ; 

Bt is the biological growth trend - a 
function of tree age; 

Dl, is a disturbance signal that is unique 
to the individual ; 

DZt is a disturbance signal comon to most 
or all individuals - -possibly caused by 
fire, insects, or pollution; and 

et accounts for random disturbance. 

In order to maximize the macrosignals (C and 
D2), it is necessary to recognize and remove the 
microsignals (B and D l )  as much as possible (Cook 
1987). An index is formed as Eollswes: 

where Y(t) is the model-based prediction of R(t). 
This produces a new index series with an 
expeetation of I, a more homogeneous variance, 
and a smaller first order autocorrelation than 
the original series (Frltts 1 9 7 6 ) .  GrafliLI 
(1982) presents negative exponentials and 
orthogonal pol~omials as potential prediction 
models. 
Cook (1987) discusses the use of splines to 

repl ace Graybill's nodels. There is a 
possibility that the disturbance signal (Dl) as 
well as the B-signal may be removed with the 
spline approach, and more user interaction and 
expert opinion are required. Warren (1980) 

Paul Van lleusen is a mathematical statistician with the Southern Forest 
Experiment Station, Forest $emice-USDA, New Orleans, Louisiana 70113. 



presents an alternate model-based approach that 
cou% a l so  be used to remove the D1 signal, but 
it also requires much user i n t e rac t ion ,  

a method was ssughe for t h l s  study chac 
required little s u b j e c t i v i t y  and could be used to 
automatically process many hundreds s f  cores,  
The gethod begins w i t h  a standard sigmokdal model 
for dia~eter at same age, D(A):  

where b is t h e  asymptote parameter, and 
k is the shape parameter, 
Differentiating model (3) with respect to age 
gives a diameter growth nebel: 

Model ( 4 )  i s  appropriate for radial increment 
data and is s i m i l a r  to standard 
dendrochrsnakogicaE methods, 
Assuming model (41 ,  two s teps  are required to 

remove tFle age-relate6 trend from the data,  
F i r s t  take the natural Log o f  model ( 4 1 ,  giving: 

logjR(A)] = constant -M Q 5 > 
Then take the first differences of model (3, 
giving : 

Thus a simple kransfcrmation remoa9es the age- 
related trend from the tree ring series, Result 
( 4 )  can be j u s t i f l e d  intuitively by viewing i t  as 
a relative growth rate. Taking the I sg  o f  R(%) 
puts i t  on a relative scale, and t h e  first 
difference is j u s t  a nmerical  first derivative 
tha t  can be viewed as a growth rate, This 
transformation can be quickly performed without 
sophisticated software o r  user interaction, an 
important advantage for Large data sets. 
Plotting t h e  data b e f o r e  and after 

transformation indicated thak the new series was 
stationary and that  the age-related trend had 
been removed as expected (fig. 1)- Figures I and 
2 show hew the transformation creates similar 
series  from a young tree and an old tree tha t  
looked quite di f fe ren t  before transformation, 
Notice that  1937, 1969 ,  and 1981 are a l l  Isw on 
the transformed series, 

The analysis can then proceed on the 
transformed data by assuming tka t  the new series 
i s  composed o f  the EeLZowing signals: 

where Ct, Dlt, B 2 t ,  and et are defined as Zr 
model (1). 
The age-related signal is WOW removed, Two 
macrosignal terms that are of interest remain ( G  
and D2), as well as t w o  uninteresting microsignal 
terms (Dl and e) tha t  will be treated as noise. 

A system for updating and predicting i s  
presented by Kabman (1960) based on a linear 
dynamic model, These models are  genera%lzations 
t h a t  can generate any o f  the class o f  models 
(Box and Jenkrns 1976), standard muLtfp&e 
regression models, and regression models w i t h  
time varying parameters (Harvey 1981)- Applied 
to dendrockronoiogy, the KaTman fa l te r  provides a 
means sf simultaneously reducing a number o f  
series to a single chronology and generating 
climate-based predictions. Furthermore, the 
elfmate parameters can be allowed to vary ovsr 
time to provi.de a test o f  the uniformitarian 
principle tha t  conditions In the past are similar 
to the present, The uniformitarian principle Is 
the Eundwenea% justification for the use o f  
dendrochronoLsgy to infer pas t  csmd%tions, 

The Kakman fdlter can be derived from Bayesian 
cheory {Harrison and Stevens 1976; Meinhold and 
Slngpumal%a 9983) or w i t h  least squares methods 
presented by Duncan and Horn (197%), Tke 
equations needed to implement the Kalman f i l t e r  
are presented below, and the reader i s  referred 
to the citations for the theoretical development, 
The basic difference between the Kainan f i l t e r  

and usual regression models is that the 
parameters are allowed to -vary over time, The 
relationship between the vector of observed 
standardized ring widths at time t ( Y t )  and the 
parameters (at) hs called the observation or 
measurement equation: 

where the matrix Ft is fixed and o f  order ntxp, 
at i s  a pxl vector o f  underlying s ta te  
parameters, and sat is an ntxb vector o f  residuals 
with zero expectation and variance matrix Vt,  

The state variable, at, evolves over time 
according to a first order Marksv process as 
defined by the transition or system equation: 

where Gt is a fixed pxp matrix, and wt is a pxl 
vector of residuals with zero expectatson and 
variance matrix W t ,  

The error terms '"st and wt are assmed to be 
independent white noise series, The quantities 
tkat must be known include the matrices (Ft and 
Ct) that  premultiply the s ta te  variables (at and 
at-1). Zhe matrices Ft and Gt correspond to 
independent varhables 7Ln regression theory. or, 
when dealing w i t h  rocket  t ra j  eetsr ies  , they come 
fri m well-def lned physical laws. The more 
esmylex problem comes from the need to know the 
variance matrices (Idt and Vt), because in  many 
statistical applications t h i s  will require some 
user subj e ~ t i v i t y  . 

The equations needed to estimate the s ta te  
variables can be divided into three parts: 
prediction equations,  updating equations, and 
smoothing equations, L e t  at-1 denote the optimal 
estimator of at-1 based on all information up to 
and including Y t - l .  The covariance matrix of 
at-% - at-1 will be P t - l .  The prediction 
equations for at and the associated covariance 
matrix given at-1 and Pt-l are: 
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Figure 1. --Ring widths of a relatively young red spruce in raw ( u p p e r  graph) 
and standardized (Lower graph) farm f o r  a young tree, First 
differences of t-he natura l  log  were used Co produce the Lower 
standardized series .  

atit-l = Gtat-l , and 
P,/,-l = GtP,..lG," VW, 

Wlen Yt becomes available, the updating 
equations for the estimate of a t  and the 
associated covariance matrix are: 

at = + Ptlt. lFt' z~-;E,, and (&a> 

P t  - P,/t-1 - ~,/t-lF,"t- FtP,/,-l * ( 4 b )  
where 

Et = Yt - Ftatjt-1, 
Zt = FtPt/t-lFt -I- Vt , and, for computational 

savings,  
2t-l - vt-l - vt-'I7 [F~'v~-'F~ 

-+ Pt/t- I-'] -fFt'Vt-'. 

The estimate of at in ( 4 a )  i s  the sum of its 

e s t i m a t e  at time t - P  and a weighted average of 
the prediction errors (Et), 
At any time, at i s  an optimal estimate, given 

all previous information; but only the estimate 
at time T ( the  f i n a l  period) contains all of the 
information available. Given all. information, 
the optimal solution for any time t is referred 
to as signal extraction or smoothing. Smoothing 
begins with the solutions ae time T and 
recursively goes backwards to time 1. This 
yields the optimal smoothed estimates of the 
state variables with associated covariance 
matrices as follows: 
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Figure 2.--Ring w i d t h s  o f  an o l d e r  r e d  s p r u c e  i n  r a w  ( u p p e r  graph) and 
s t a n d a r d i z e d  ( l o w e r  g r a p h )  Eorm f o r  an o l d  t r e e .  F i r s t  
d i f f e r e n c e s  o f  the n a t u r a l  log  w e r e  u s e d  t o  p r o d u c e  the l o w e r  
s t a n d a r d i z e d  series. 

where 
aT/T - a~ for the starting value on the 

state variables, 
PT/T = PT for the covariance starting 

values and 
pt* = PtGt+lP ~t+l/t-l 

chronology can be fomed simultaneously w i t h  its 
climate predictor, and the second is an 
application to dendroclimatology. For art 
additional application, readers should see Jones 
(1980) where various models are fit to drought 
data reconstructed from tree rings, 

The Kalman filter provides a complete system 
for prediction, updating, and smoothing that 
should appeal to the dendrochronologist, In  
particular, t h e  usual procedure of climate 
prediction from a single chronology formed from 
many standardized tree ring series could be 
refined. Two applications of the Kalraan filter 
will be presented. The first shows how a 

The Kafman filter was applied to the red spruce 
data collected by the NPS and W A .  The objective 
was to simultaneously form a single chronology 
and its climate-based prediction. The data were 
first standardized by taking the first difference 
of the logarithms. The following Kalman filter 
was then applied: 



Transition equation alt - Cta2,t-l + wit ( g b )  
@2t = a2.t-l + w2t (Ac) 

' rzFt t?~sa 

Yt Is the ntxl vector of observed Cree ring 
data at time t, 
Ft is a matrix with two calunns of length 
nt with the first column being 1's and 
the second O's, 
vt, wit, and wzt are random errors, 
Ce is the climate variable, 

alt is the value of the chronology at time 
t, and 
a2t is the climate effect at rime t. 

The covariance matrix Vt was defined to he 
02t~t where 02t was estimated from vector Yt as 
C(Ylt -yt)/[nt-l j , and It was an identity matrix 
of order nt. i n  other words, the trees were 
treated a prlori as independent. The covariance 
matrix Wt was defined as 

Thus the state variables were assumed to be a 
priori independent. The elements on the diagonal 
were chosen to allow the state variables to vary 
enough to respond to a trend, but not enough to 
absorb random fluctuations, Since alt might 
approximate the average of the vector Yt, nt-l 
was chosen for the upper diagonal, and the factor 
0.01 was used in the lower diagonal to prevent 
qt from fluctuating in response to random 
disturbances. The results were robust to changes 
in the W and V matrices, which lends credence to 
these values. 
Data from NPS plots dates back to 1900. The 

above algorithm was applied to the data from 1901 
through 1983, because taking first differences 
eliminates the first observation. The climate 
data were available from 1931 through 1983,  so 
the filter was modified during the "preclimate" 
period (1901-30) by setting wzt and Ct to zero. 

Results of Application I 

Climate lagged by 1 year was found to best 
predict the chronology or time trend in the data. 
The cli_ntate variable used was a Linear 
coniGination of all the monthly rainfall and 
temperature data for a year, as described in 
table I. 
Figure 3 presents the chronologies for the 

three data sets. The NPS and Clingman's Done 
chronologies were very similar, particularly over 
the past 18 years. Variation in the standardized 
series had a tendency to increase in the more 
recent years. This increase was most evident in 
the Tk7A chronology, but there was no suggestion 
for the cause of increases. 
The time t rend predictions based on lagged 

climate and the climate effect variable a 2 ~  with 
95 percent confidence intervals are plotted in 
figures 4, 5, and 6. Lagged climate predicted 
the chrono~ogies accurately beginning in the 

able 2. The c l i m a t e  variable used was a Linear 
combinetion of monthly rainfaL2 and temperature 
averages. The weight  below is the va;ue 
nu2 t i p 2  i ed by the corresponding man chly average 
L-o creace t h i s  combined c1imat.e variable. Zlhe 
principle eomponects m e t h o d  was used to create  
t h i s  2 i ; t e a ~  ~ 0 ~ 5 i r i d t i c i l r .  Sepcernber ere~"ipesatiire 
and Cctsber  rainfall have the largest weights. 

Variable Month Weight 

Temperature 3 
F 
M 
A 
M 

Rainfall 

L960's, but did poorly before this. The 
corresponding plot of the parameter (the climate 
effect) that multiplies climate also showed an 
increase over time. This indicated that the 
trees were becoming mare responsive to climate in 
the 1960's than they were previously. The reason 
for the increased sensitivity to climate cannot 
be determined from this study. One might 
speculate that this was caused by thinning in the 
stands as a result of insect damage to the fir 
component. L?nether this is related to pollution 
has not been determined. 

Application 2 

The K a Z ~ a n  filter can be applied to 
simultaneous prediction of past climate and the 
single common chronology. This traditionally 
involves averaging the individual series together 
as a first step to form the single chronology. 
The climate prediction is then a separate step 
that takes place without the complete information 
contained in the original series. 

h Kalman filter can be formulated to handle 
these steps simultaneously. This incorporates 
the full information contained in the data while 
automatically providing a prediction system for 
past climate with associated prediction 
intervals. Although the simple solution given 
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Figure 3.--Standardized chronologies from the Clingman's Dome, National Park 
Service, and Tennessee Valley Authority data sets. First 
differences of the log transform were used to standardize each 
tree ring series. A K a l m  filter was used to produce 'the 
chronology as described in equations (6a), (db),  and (6c). 



CLINGMAN*S DOME RED SPRUCE DATA LAGGED- 
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Figure 4. - -Time trend predictions: A, Clingman's dome chronology (soiid 
line) and its climate based prediction ('dashed Line) using the 
Kalolan filter described by equations (&a), ( 6 b ) ,  and j6c)  ; B, the 
trend in the climate parameter given in equation (6a). The 
climate variable is a principLe component (linear combinacion) of 
monthly average rainfall and temperature variables. 
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Figure 5,--Time trend predictions: A, National Park Service chronology 
(solid line) and its climate based prediction (dashed line) using 
the Kalman filter described by equations (6a), (6b), and ( S c ) ;  B ,  
the trend in the climate parameter with 95 percent confidence 
intervals, given in equation (6a). The climate variable is a. 
principle component (linear combination) of monthly average 
rainfall and temperature variables. 
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below does not achieve the potential of the predicted poorly ( f i g .  7 ) -  The values before 1931 
method, it was chosen to emphasize some important were predictions generated by the modal, Figure 
points, Consider the following EarwuLatLon: 7 shows the climate parameter a2 trendlng over 

time with a 95 percent confidence interval. The 
parameter was tending toward zero as the 

i7af confidence interval expanded, which is not O b s e ~ ~ a t l o n  
surprisinq given the paor predirtinns Althc*~gh e t q u ~ i u f i i i  the model. presented in equations (723) through 
j7d) may not be ideal. this demonstrates how one 
could use the Kalman filter for predicting past 
climate. 

(7e: @mGmSION 

(7d) The focus of this paper was to apply the Kalman 
filter to the study of tree rings. The Kalman 
filter provides a natural way of handling many of 
the problems that dendrochronslogists encounter. 

tihere 
Yc is the ntxl vector of standardized r i r&g 

widths at time t, 
Ct is a qxl vector o f  observed climate 

variables, 
jt is a vector of l k  sf length nt, 
Ot is a vector of 0" of Length nt, 

Ut is the mean of the vector Yt, 
a-jt is the value of the chronology at time 

t , 
a2t is the climate parameter at time t, and 
vlt3 ~ 2 ~ ,  wlr, ~2~ are random errors. 

Equations (7a) through (7d) define a system that 
handles the dendrocLimatoZogical problems of 
forming a single chronology for a site providing 
a means of predicting past climate, and testing 
the uniformitarian principle. 

Some details on implementing the above system 
must be noted. The iterative process is started 
at time T rather than time 1, since past climate 
predictions are needed. Suppose that the climate 
variables are available from time T to time t*, 
where 1 < t* < T. During this interval of known 
climate (INT,) the parameter a2 is estimated. 
Beyond IMT,, equation (7b) is eliminated and the 
Kalman filter is allowed to generate new values 
of a2 back to time 1 (the earliest time for which 
tree data are available) and simultaneously 
produce the chronology and climate predictions as 
aztYt+p Furthermore, the trend can he examined 
In the a2 parameter over INT, to see if the 
uniformitarian principle is valid, although the 
Kalman filter will tend to move a2 along the 
established trend making the uniformitarian 
assmption less important. 

Results of Application 2 

Starting values must be supplied to the system in 
(7a) through (7d) for the parameter vector and 
the variance matrices Vt and Wt; Vt was assumed 
diagonal with -7ariances estimated from the 
vectors Yt as in exampie I. The last diagonal 
element in Vt is the vartance of v2t and was 
estimated from the variance in the knewn climate 
data. T"ne matrix Wt was also assumed diagonal 
and chosen similarly to example 1. 
A principle component of climate variables was 

used for Ct. A starting value of zero was used 
for the chronology parameter al, and a2 was 
started at 10. Unfortunately, climate was 

GL~NGMAN" SOME DATA-PREDICTED V S  ACTUAL. CLIMATE 
$8- 

CLINGMAN'S DOME CLIMATE PARAMETER TREND 
l2 r 

Figure 7.--Climate prediction: A, preciietion 
(dashed line) of pest climate obtained 
from tree ring data using the Kalman 
f iL ter described by equations (723) 
through (7d). The solid line is known 
climate, which is available back to 
1431 ; B , the climate parameter trend 
and 95 percent eonf idence interval. 
This plot indicates t h a t  the 
uniformitarian principle does not hold 
here, since the parameter is tending 
toward zero. 



The flkrst application ip.;.*olsred prediction of an 
average chronology with climate incorporated in 
the process. Tke parameter associated with the 
climate w a s  allowed to vary over time. The  
r l i w a t e  gararnerer P'nllowed s s i p o l d  clzr-ae r -k .3~ 

implied an increasing sensitivity to climate with 
time. One might speculate that Insect-caused 
thinning sf the fir component accounts for this 
phenomenon, 
The second application gave same insight as to 

how the method can be applied to more t y p i c a l  
dendrochronologieaL needs, i . e - ,  gredlcting the 
past value of climate from tree rings, It was 
previously indicated in application L that the 
data set employed was insensitive to climate in 
the p a s t  and thus predictions were poor. 
Although the filter was not extremely 
sophisti,cated, it showed how one might proceed 
with such a problem. Future mean tree ring 
values were used to predict current climate while 
simultaneously developing the mean chronology. 
The trend in the climate parameter could also be 
inspected as an indication of the validity of the 
uniformitarian principle. 
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