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ABSTRACT 

The emergence of fuel cell systems and hybrid fuel cell 
systems requires the evolution of analysis strategies for 
evaluating thermodynamic performance. A gas turbine 
thermodynamic cycle integrated with a fuel cell was 
computationally simulated and probabilistically evaluated in 
view of the several uncertainties in the thermodynamic 
performance parameters. Cumulative distribution functions and 
sensitivity factors were computed for the overall thermal 
efficiency and net specific power output due to the uncertainties 
in the thermodynamic random variables. These results can be 
used to quickly identify the most critical design variables in 
order to optimize the design and make it cost effective. The 
analysis leads to the selection of criteria for gas turbine 
performance. 

 
INTRODUCTION 

The majority of global power is generated from the 
consumption of fossil fuels, which represent a finite source. 
The rapid depletion of these fossil fuel resources remains one 
of the most important problems facing future world power 
generation. This means that the way in which power is 
generated will have to change over the next century. The power 
harnessed in the fossil fuels must be used more efficiently until 
renewable sources can be developed to meet a significant 
proportion of the increasing energy requirements. The option of 
developing new technology such as fuel cells, which exceed the 
maximum efficiencies of gas turbines seems very lucrative. 

A fuel cell is a simple means of converting chemical 
energy to electricity without ignition combustion and it is 
promising to revolutionize the power generation industry. The 
chemical energy to the fuel cell is supplied on a continuous 
basis in the form of a fuel such as natural gas or synthesis gas 
while the oxidant is also supplied continuously. The fuel cell is 
not constrained by the Carnot efficiency and therefore higher 
conversion efficiencies are achievable with a fuel cell. The 
intermediate step of conversion into heat as in a heat engine is 
eliminated in a fuel cell. 

As governments around the world strive to meet their 
escalating energy demands under increasing pressure from 
environmental issues, there exists a need for clean and efficient 
energy sources. Even the most advanced gas turbine cycles 
have difficulty in reaching a thermal efficiency of 40 percent 
and have NOx emission problems due to their high operating 
temperatures. Standalone fuel cells have been manufactured 
with efficiencies of around 48 percent, producing negligible 
NOx or SOx and a reduced CO2, owing to the increased thermal 
efficiency. It has also been recognized that they could be 
symbiotically incorporated into gas turbine cycles in order to 
produce efficiencies estimated to be as high as 70 percent as 
mentioned in reference [1]. The most suitable fuel cell for this 
application is the solid oxide fuel cell (SOFC) which, on 
account of its all solid state, has the highest operating 
temperature. The fuel cell model was based on the principle of 
operation of the Westinghouse tubular SOFC design, involving 
internal reforming and preforming of methane. Its performance 
was examined under a wide range of operating conditions 
leading to exhaust temperatures in the range 370 to 935 °C. 
Fuel cell system efficiencies as high as 56 percent were 
predicted at low current densities (150 mA/cm2), while the 
efficiency dropped to 38.7 percent at high current densities 
(600 mA/cm2) owing to irreversibilities developed. Pressurized 
operation of the fuel cell was assessed in the range 1 to 25 atm; 
high pressure operation leads to an increased power output but 
produces a significant decrease in electrical efficiency. At full 
commercial size, the Westinghouse tubular SOFC has a 
diameter of 22 mm with an active total length of 1500 mm and 
a total active area of 834 cm2. A 100 kW unit employs 1152 
commercial size SOFCs in its cell stack. The stack is 
maintained at a sufficiently high temperature level which leads 
to approximately 100 percent reforming of the methane to pure 
hydrogen. 
 The compressor provides the SOFC with a preheated inlet 
flow from which it produces dc power while heating to its 
operating temperature of 1000 °C. This is similar to the 
required turbine entry temperature from which the turbine can
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produce ac power. The solid constructions of SOFCs mean that 
they can withstand the high operating pressures of the system. 

The complexity and performance over the past 50 years in 
gas turbine engines has increased and an array of safety nets 
was created to ensure against component failures in turbine 
engines. In order to reduce what is now considered to be 
excessive conservatism and yet maintain the same adequate 
margins of safety, there is a pressing need to explore methods 
of incorporating probabilistic design procedures into engine 
development. Probabilistic methods combine and prioritize the 
statistical distributions of each design variable, generate an 
interactive distribution and offer the designer a quantified 
relationship between robustness, endurance and performance.  

Pangalis et. al [1] developed a detailed thermodynamic 
model of a fuel cell. This model predicted the performance of a 
gas turbine and a fuel cell system integrated together in hybrid 
generation cycles. Cunnel et al [2] modeled gas turbine cycles 
integrated with a fuel cell model. Rao and Samuelsen [3] 
presented a description and application of an analysis for 
tubular SOFC based systems. Models for simulating fuel cell 
based plants were developed by Ferguson [4], Haynes [5], and 
Bessette [6]. These models were limited to systems consisting 
of ideal gases and pure steam or the models required for 
simulating many of the unit operations and processes that could 
make up a hybrid plant were not included.  

A probabilistic design system was developed by Fox [7] at 
Pratt and Whitney for the purpose of integrating deterministic 
design methods with probabilistic design techniques. Here, two 
different approaches were used for estimating uncertainty. A 
Monte Carlo approach was used on design codes that were 
judged to run relatively quickly. For more computationally 
intensive design codes, a second order response surface model 
in conjunction with Box-Behnken design experiments was used 
and then a Monte Carlo simulation was executed. Several 
researchers at NASA Glenn Research Center have applied the 
probabilistic design approaches to turbine engines and related 
systems. Chamis [8] developed a Probabilistic Structural 
Analysis Method (PSAM) using different distributions such as 
the Weibull, normal, log-normal, etc. to describe the 
uncertainties in the structural and load parameters or primitive 
variables. Nagpal, Rubinstein, and Chamis [9] presented a 
probabilistic study of turbopump blades of the Space Shuttle 
Main Engine (SSME). They found that random variations or 
uncertainties in geometry have statistically significant influence 
on the response variable and random variations in material 
properties have statistically insignificant effects. Chamis [10] 
summarized the usefulness and importance of the probabilistic 
approach, especially for turbopumps. To cost effectively 
accomplish the design task, we need to formally quantify the 
effect of uncertainties (variables) in the design. Probabilistic 
design is one effective method to formally quantify the effect of 
uncertainties.  

In the present paper, a probabilistic analysis is presented 
for the influence of a priori fixed parameter variations on the 

random variables for a gas turbine thermodynamic cycle 
integrated with a fuel cell. We focus on the integration of two 
major power generation devices, fuel cells and gas turbines. 
With the available energy resources becoming increasingly 
scarce and modern power generation as well as process plants 
becoming increasingly complex, the requirement of an efficient 
thermodynamic computation technique for design optimization 
is presently setting demanding challenges. 

PROBABILITY THEORY 
 Let X1, X2, �., Xn be a set of random variables defined on a 
(discrete) probability space Ω . The probability that the events 
X1= x1 X1, X2 = x2, ..., and Xn = xn happen concurrently, is 
denoted by )221121 nnn xX,....,xX,xP(X)x,....,x,f(x ====  
for the set of desired solutions Ω⊆A . If the function 

),....,,( 21 nxxxf  is discrete, it is called the joint probability 
mass function of X1, X2, ..., Xn and has the following properties.  
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If f(x1, x2, .�, xn) is continuous it is called joint probability 
density function of X1, X2, ..., Xn and has the following 
properties: 
 

0 ≤ f(x1, x2, �, xn) 
  1,, 2121 =∫ ∫

Ω
nn ...dxdx)dxx...x,f(x...  (2) 

 
P[(X1, X2,�,Xn) ∈A] 
 ∫ ∫ Ω⊆=

A
nn A...dxdx)dxx...x,f(x ,,,.. 2121   

 
If the lower bound of A, the set of desired solutions, is equal to 
the infimum of Ω for all Xi, i.e., if A = [infi (Ω), ai], for all i = 1, 
2, �, n, a function F(a1, a2, �,an)can be defined, such that: 
 
F(a1, a2,�.,an) = ])[( 21 AX,..,X,XP n ∈  
 

 ∑∑
∈
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A

n
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xxxf ),...,,(... 21
),...,,( 21
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 Ω⊆A (f is discrete) (3) 
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F(a1, a2, ….,an) = ])[( 21 AX,..,X,XP n ∈  
 

 = ∫ ∫ Ω⊆
A

nn Adxdxdxxxxf ,...),...,,(.. 2121  

 

 (f is continuous) (4) 
 
F is called the joint cumulative probability distribution 
function. For Ω = Rn and a continuous function f : 
 
F(a1, a2, �., an) =  X,...,X,(XP n )[ 21 ∈((�∞,�∞,�,�∞), 

 (a1, a2, �., an))] = ∫ ∫
∞− ∞−

na a

nn dxdxdxxxxf
1

...),...,,(.. 2121  (5) 

 
The common notation  
F(a1, a2, ..., an) =   aX,...,aX,aXP nn )( 2211 ≤≤≤ will be 
used subsequently also. 
 The univariate probability function fXi for each criterion Xi, 
obtained from the traditional probabilistic design process, can 
also be generated with the joint probability function f. fxi is 
called marginal probability mass or density function of Xi and is 
defined by: 
 

1fx = ∑ ∑
∈),...,(

2
2

),...,(...
nxx R

nxxf  (f is discrete) (6) 

  

1fx  = ∫∫ nn
R

dxdxxxf ...),...,(... 22  (f is continuous) (7) 

The joint probability function, fXY (x, y), creates the surface of a 
probability �hump� in the x-y-f-space, characterized by rings of 
constant probabilities. The distribution curves over the x- and  
y-axis are the aforementioned marginal probability functions 
fX(x) and fy(y), respectively. The last necessary concept to 
mention here for the development of a joint probabilistic 
formulation is the concept dependence of criteria. Two random 
variables X and Y are said to be independent, if fXY(x, y) = fX(x). 
fY(y) otherwise X and Y are said to be dependent. This 
dependence is a mathematical notion and should not be 
confused with �casual dependence�. For here on, mathematical 
dependence will be referred to as correlation. Correlation is 
measured by the covariance of two criteria, X and Y, defined by 
 
 Cov(X,Y) = E[X,Y] � E[X]E[Y]. (8) 
 
It is more convenient, however, to use a covariance normalized 
by the standard deviations, σX and σY, for both criteria, called 
correlation coefficient. 
 

 ρ = 
YX

YX,
σσ

)(Cov  (9) 

 
The correlation coefficient is defined over the interval  
[�1,1], indicating strongly positively correlated criteria at

values close to 1 and strongly negatively correlated criteria at 
values close to �1. The criteria are independent, if ρ = 0. In 
aerospace systems design ρ can be quite difficult to calculate 
by Eq. (9). It is much more effective to view the correlation 
coefficient differently for calculation purposes. Jointly 
collected data from a probabilistic or any other analysis can be 
thought of as vectors of numbers. The correlation coefficient 
measures the orthogonality, i.e., independence, of both vectors. 
ρ is simply the cosine of the angle between the two criterion 
vectors, indicating their alignment. For ρ = 1, vectors are 
parallel and point in same direction, for ρ = �1, vectors are 
parallel and point in opposite direction. For ρ = 0, vectors are 
orthogonal and the criteria are independent. The correlation 
coefficient plays a significant role in the formulation of joint 
probability distribution models as described in the next section.  
 
Probability Functions 
 Attention is now directed to the implementation of this 
probabilistic formulation in the design process. The necessary 
transition from the mathematical formulation above to a 
probabilistic model that yields the information relevant for 
multivariate decision making is described in this section. There 
are two alternatives for this task. 
 
Joint Probability Model 
 The first joint probability density function introduced here 
is an analytical probability model for criteria whose univariate 
distributions and their corresponding means and standard 
deviations are known. All necessary information for the model 
can be generated by the traditional probabilistic design process, 
using its output of univariate criterion distributions. A 
particular model for two criteria with normal distributions, 
represented by Eq. (10), has been introduced by Garvey and 
Tuab. Garvey further generated models for two criteria with 
combinations of normal and lognormal distributions, which are 
summarized in ref. [11]. 
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=

 
Note that the only information needed for the Joint 

Probability Model consists of the means µX and µY, the standard 
deviations σX and σY, and the correlation coefficient ρ for the 
criteria X and Y. The model variables, x and y, are defined over 
the interval of all possible criterion values. The advantage of 
this model is the limited information needed, which makes it 
very flexible for use and application. For example, if only 
expert knowledge and no simulation/modeling is available in 
the early stages of design, educated guesses for the means, 
standard deviations, and the correlation coefficient can be used 
to execute the joint probability model. It also lends itself to use 
in combination with increasingly important fast probability 
integration (FPI) techniques. 
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Implementation of Probabilistic Procedure Using FPI 
 FPI is a probabilistic analysis tool that implements a variety 
of methods for probabilistic analysis. The procedure follows the 
steps given below: 
 

1. Identify the independent and uncorrelated design 
variables with uncertainties. 

2. Quantify the uncertainties of these design variables 
with probability distributions based on expert opinion 
elicitation, available data or benchmark testing. 

3. It is required that there is a response function that 
defines the relationship between the response and the 
independent variables. 

4. The FPI uses the responses generated to compute the 
cumulative distribution functions (CDF)/probability 
density functions (PDF) and the corresponding 
sensitivities of the response. 

 
 Several methods are available in the FPI to compute a pro-
babilistic distribution. In addition to obtaining the CDF/PDF of 
the response, the FPI provides additional information regarding 
the sensitivity of the response with respect to the primitive 
variables. They provide valuable information in controlling the 
scatter of the response variable. The random primitive variable 
with the highest sensitivity factor will yield the biggest payoff 
in controlling the scatter in that particular response variable. 
Such information is very useful to the test/design engineer in 
designing or interpreting the measured data. 

DISCUSSION OF RESULTS 
This paper deals with modeling a gas turbine cycle 

integrated with a fuel cell model to produce hybrid cycle. The 
choice of hybrid configuration includes a regenerative gas 
turbine cycle with fuel cell ahead of the combustor as shown  
in Figure 1. The cycle achieved a thermal efficiency of  
64.1 percent at a pressure ratio of 14. The specific power output 
was found to be 520 W/kg s. Figures 2 and 3 illustrate the 
variation of thermal efficiency and net specific power with 
compression ratio. The combustion temperature acts to ensure 
that the turbine inlet temperature reaches a maximum of  
1300 K. The cycle is less dominated by the fuel cell, especially 
at higher compression ratios where the turbine contributes 
almost equally. 

The probabilistic analysis of gas turbine field performance 
due to the uncertainties was applied to a solid oxide fuel cell 
based hybrid system. The thermodynamic random variables and 
their respective values used in this analysis are shown in  
Table 1. All the random variables were assumed to be 
independent. A scatter of ±5 percent was specified for all the 
variables. Normal distribution was assumed for all random 
variable scatters.  

The overall thermal efficiency and net specific power 
output of the hybrid gas turbine system was determined from a 
control volume analysis using the first and second laws of 
thermodynamics. The cumulative distribution functions (CDF) 
and the sensitivity factors were evaluated for the overall 
thermal efficiency response. CDF for the overall thermal 
efficiency shown in Figure 4. The sensitivity factors for the

overall thermal efficiency are plotted in Figures 5 to 7. From 
these figures, we observe that the inlet temperature of the 
compressor, cycle pressure ratio, output of the fuel cell, inlet 
temperature to the gas turbine, adiabatic efficiencies of the 
compressor and turbine and effectiveness of the regenerator 
have a lot of influence on the overall thermal efficiency. These 
thermodynamic random variables represent the most important 
indices for the gas turbine health determination. The adiabatic 
efficiencies of the compressor and turbine in the system are 
measures of irreversibilities or increase of entropy. The 
sensitivity factor for the compressor adiabatic efficiency is 
much larger than the corresponding value for the turbine. The 
sensitivity factors due to the adiabatic efficiency and inlet 
temperature of the compressor influence the most in the 
determination of the overall thermal efficiency of the system.  

Figure 8 shows the CDF for the net specific output of the 
hybrid gas turbine cycle. The sensitivity factors for the net 
specific output are plotted in Figures 9 to 11. The sensitivity 
factor due to the turbine inlet temperature influences the most 
in the evaluation of the net specific power output in the cycle. 

These results can be used to further optimize the design for 
cost effectiveness and also to assist in the health determination 
of the system. The prediction of degradation of system 
performance can be achieved from the results obtained. 
 
CONCLUDING REMARKS 

In this paper, a non-deterministic, non-traditional method 
has been developed to support reliability-based design. 
Probabilistic methods were applied to the thermodynamic 
analysis of a hybrid gas turbine system integrated with a fuel 
cell. The interconnection between the thermodynamic analysis 
and NESTEM codes was necessary to compute the probabilistic 
evaluation of a gas turbine field performance. Overall thermal 
efficiency and net specific power output of the gas turbine plant 
was evaluated using the thermodynamic random variables. 
Cumulative distribution functions and sensitivity factors were 
computed for the overall thermal efficiency and net specific 
power output due to the uncertainties in the thermodynamic 
random variables. Evaluating probability of risk and sensitivity 
factors will enable the identification of the most critical design 
variables in order to optimize the design, make it cost effective 
and assist in the health determination of the system. 
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Table 1.Random Variables 

Random Variable Mean 
Value 

Compressor inlet pressure (P1) 101.3 kPa 
Compressor inlet temperature (T1) 288 K 
Pressure ratio 14 
Turbine inlet temperature 1300 K 
Adiabatic efficiency of compressor 0.88 
Adiabatic efficiency of turbine 0.88 
Effectiveness of regenerator 0.90 

 
 
 

Table 2.Random Variable Labels 
Label Description 

P1 Compressor inlet pressure  
T1 Compressor inlet temperature  
PRAT Pressure ratio  
T3 Inlet temperature to the turbine 
QFC Fuel cell output 
ETAC Adiabatic efficiency of compressor 
ETAT Adiabatic efficiency of turbine 
ETREG Effectiveness of regenerator 
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Figure 1.—Layout of the hybrid gas turbine system.
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Figure 5.—Sensitivity factors versus random variables
   (probability = 0.001).
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Figure 6.—Sensitivity factors versus random variables
   (probability = 0.1).
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Figure 7.—Sensitivity factors versus random variables
   (probability = 0.999).
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Figure 8.—Cumulative probability of net specific power
   output. 
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Figure 9.—Sensitivity factors versus random variables
   (probability = 0.001).
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Figure 10.—Sensitivity factors versus random variables
   (probability = 0.1).
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Figure 11.—Sensitivity factors versus random variables
   (probability = 0.999).
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