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ABSTRACT

The effect of small amplitude, time-periodic, freestream disturbances on an
otherwise steady axisymmetric boundary layer on a circular cylinder is considered.
Numerical solutions of the problem are presented, and an asymptotic solution,
valid far downstream along the axis of the cylinder is detailed. Particular
emphasis is placed on the unsteady eigensolutions that occur far downstream, which
turn out to be very different from the analogous planar eigensolutions. These
axisymmetric eigensolutions are computed numerically and also are described by

asymptotic analyses valid for low and high frequencies of oscillation.
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1., Introduction

The effect of time-periodic disturbances in the freestrcam of an
otherwise stcady boundary layer has reccived considerablc
attention over the ycars. This work was initiated by Lighthill (1954),
who considercd the [low past a semi-infinite flat plate, with a small
amplitude, time-periodic freestream disturbance, and obtained solutions
close to and far (rom the leading cdge. This work was latcer cextended
by Rott and Roscnweig (1960), Lam and Rott (1960) and Ackcerberg and
Phillips (1972). Of particular intcrest arc the unstcady cigensolutions
that form part of the far-downstrcam flow. Onc sct of thesc was
studicd by Lam and Rott (1960), Ackcrberg and Phillips (1972) and
Goldstein (1983) and has cxponcntially decaying solution downstrcam (sec
(8.1) below), with the featurc of decrcasing decay rate with ingcreasing
ordcr; thesc cigensolutions arc detcrmined primarily by conditions close
to the wall. A sccond sct of cigensolutions was constructed by Brown
and Stewartson (1973a,b) and has the fcaturc of incrcasing deccay rale with
increasing order; thesce cigensolutions arc determincd from conditions far
away from the wall, in the outer rcaches of the boundary layer.

Indeed, these scemingly diverse characteristics of the cigensolutions
have been the subject of some controversy over the years. Howcver,
Goldstcin ct al (1983) include a quite detailcd discussion of this
dichotomy; bricfly, these authors cxpound the argument that thc two scts
of cigensolutions arc in fact, cquivalent, but with the Brown and Stewartson
(1973 a,b) cxpansions being valid at much longer distances
(O(In 4 x)4 >> 1) downstrcam, than the Lam and Rott (1960) cigensolutions
(which arc valid for O(x) >> 1). Further, Goldstein ct al (1983) point
out that as the ordcr of the Lam and Rott (1960) cigensolutions incrcascs,
the asymptotic bchaviour of the (inncr) solution is likcly to be achicved

at progressively larger values of x, since, for x >> 1, the scale of the



rcgion associated with the cigensolutions moves away from the wall with
increasing order. This, in some ways is not inconsistent with the fact
that the Brown and Stcwartson (1973a,b) ecigensolutions are centered at the
outer edge of the steady boundary layer. Goldstcin et al (1983) also
conclude, using these arguments, that the limit as x — = and the limit
as n — = (where n is the order of the cigensolution) cannot be
interchanged. However, and significantly, Goldstein (1983) went on 1o
illustrate thce physical importance of the Lam and Rott (1960)
eigensolutions, by showing how these develop, far downstream, into unstable
Tollmien-Schlichting waves.

The problem of '‘order-onc'' unstcady, frcestrcam disturbances (but
such that the frecestream docs not reverse direction) has been tonsidered
by a number of authors. Pedley (1972) considcred this problem,
asymptotically close to and far from the lecading edge, whilst Phillips
and Ackerberg (1973) presented numcrical solutions to the problem for
locations from the leading edge to far downstream, their method being
based on a timc-marching scheme. More recently, Duck (1989) presented
a new numerical mcthod to tackle this problem, based on a spectral
treatment in time, and a spatial finitc-difference scheme, which properly
takes into account regions of recversed flow that incvitably occur.

The problem of stecady flow along a circular cylinder (in particular
far downstream along the axis of the cylinder) is itscll interesting, partly
because it is so very different in naturc from that of planar (i.c. Blasius
typc) flow. Early investigations of this problem include the work of
Glauert and Lighthill (1955) and Stewartson (1955), whilst Bush (1976) has
presented a morc modern approach to the problem. Notably, in the far
downstream limit, the problem becomcs double structured, with an inner
layer (comparable in thickness with the radius of the body) which is

predominantly viscous in nature, and an outer layer (much larger than the



radius of the body) which is a rcgion of prcdominantly uniform flow (sce
Scction 4 for fuller details).

In this paper we investigate the cffect of small amplitude, time-
periodic, frecstream disturbances on the axisymmetric boundary layer on
a circular cylinder. Particular cmphasis is placed on the cigensolutions
relevant to the far-downstream [low, which turn out to be markedly
diffcrent from the analogous planar cigensolutions of Lam and Rott (1960),
and posscss some interesting propertics. Further, since an additional
lengthscale is present in the problem (i.c. the body radius), a sccond
non-dimensional paramcter (in addition to the Reynolds number) is present,
and we arc able to cxploit this paramcter from an asymptotic point of view.

The layout of the papcr is as (ollows. In Scction 2 the problem is
formutated, and in Scction 3 a fully numerical finite-diffcrence scheme
for the stcady and unstcady problem is described, and results for the wall
shcars are presented, for axial locations from the lecading cdge to far
downstrecam. In Scction 4 the development of the (inhomogencous) component
of the flow is described. In Section 5 the presence of cigensolutions far
downstrcam is clucidated, the cigenproblcem is formulated and cxpanded in the
form of an asymptotic scrics. In Scction 6 numcrical solutions of the
(lcading-ordcr) cigenproblem arce described, whilst in Scction 7 the
cigenproblem is considered in the asymptotic limits of high and low
frecstrcam oscillation. In Scction 8 the conclusions of the paper are

presented.



2. Formulation

We introduce a cylindrical polar coordinate system (ar, 0, az), where
a is thc radius of the body (assumed constant), and thc z axis lies
along thc axis of the body, with 7z =0 corresponding to the tip of
the body.

Supposc that the fluid is incompressible and of kinematic viscosity
v, the frecestream velocity is taken to be purcly in the z dircction,
and of the form W_(1+48 cos ot*), where W,, 8§ and o arc constants,
with 8 << . Note that although in all the cnsuing analysis we shall
confine our attention exclusively to freestream velocitics of the above
form, it is relatively straightforward to extend our idcas to other
spatial and temporal (periodic) variations,

The velocity ficld is written as W, (u,0,w), and non-dimcnsional time
as t =ot™. Further, it is assumed that wu,w, and indccd the centire
solution is independent of 6, implying axial symmetry.

In this problem there arc two lfundamental non-dimensional parameters,

namely a Reynolds number bascd on cylinder radius

_ W,a

v (2.1)

which will be assumed to be large throughout this papcer, together with

a frequency parameter

\4
p=—. (2.2)
wa“

The usage of the boundary-layer approximation rcquircs thal
Z =Ry (2.3)
is the key axial lengthscale, and
U = Ru (2.4)
is the important order-one radial velocity scale. The boundary-layer

cquations then become (to lecading order)



2
1ﬂ+wa_“’.+ua_w=aw+l£)ﬂ+la—w(r——)w),(2.5)

B dt 74 or  9r? rdr P at
together with

gZ (rw) + g? (rU) = 0. (2.6)

Sincc it will be assumed that & << 1, thc unstcady componcnt ol the flow
may be taken to be a small perturbation about the stcady solution
(a similar trcatment has been used in many of the related planar studics
cited in the previous scction, for cxample Lam and Rott 1960, Lighthill
1954, Ackerberg and Phillips 1972). Speciflically

U(r.Z,t) = Uy(r,Z) + 8 Re {Ti(r,Z)cit) + 0(82),  (2.7)

w(r,Z,1)

It

wo(r,Z) + 8 Re (w(r,Z)cil) + 0(82). (2.8)

The stcady componcnt of the solution is described by

2
a7, ar ar2 r ar
gZ (r wg) + g? (rUp) = 0, (2.10)
with wo(r=1) = Ug(r=1) = 0,
wog — 1 as 1 — o, (2.11)

whilst the unstcady perturbation to this flow is given by

LW+W()SZE+W§£Q+U £+ﬁa_wﬂzﬁ+l§£+l_,
B 0Z BY4 ar ar  ar2  rar B
(2.12)
gz (rw) + g? (rly = 0, (2.13)
subjcct to
w(r=1) = U(r=1) = 0,
W— 1l as 1 — o, (2.14)

To closc the problem we further supposc that as Z — 0, planar
conditions prevail, with the boundary-layer thickness becoming

ncgligible in this limit. A similar procedurc was followed by Scban and



Bond (1951) and was further utiliscd in a rclatced problem by buck and
Bodonyi (1986). Thc (stcady) system (2.9) - (2.11) then recduces Lo the
Blasius (planar) problem as Z — 0, with corrcctions duc to curvature
cffects given by Scban and Bond (1951). As Z — «, thc far downstream,
double-structurced solution of Glauert and Lighthill (1955),
Stewartson (1955) and Bush (1976) cmerges [rom this system.
Rcgarding the unstcady system (2.12) - (2.14), this becomes quasi-stcady
in form as 7 — O, with thc timc derivative tcrm vanishing in this limit.
In the following scction fully numerical solutions to both the stcady
and unstcady systcm and considercd, and in the later scctions of Lhis paper
the far-downstrcam bchaviour of the unsticady component of the flow is

investigated in some detail.



3. N ical luti [ blem.
In this scction we consider fully numerical solutions 1o systems
(2.9)-(2.11) and (2.12)-(2.14).
Two strcamlunctions arc introduced, onc for the stcady component of

the llow, the other for the unstcady component, viz ¥ and y. respectively

given by
-1 9Y 1 JY¥
= -1y~ 1 dy
U=Tg7‘+f,w= ?a—F (’;2)
The problem determining ¥ and y is then
Yerr - Yer + Y
r r2
1 1
=2 ¥ ¥z - wz[wrr -2 wr], (3.3)
T
~ Y v 1 ~ ~
Wrrr'hL*%:—[lPrWrZ“LWrwrZ]
r r r
vy [Yer Y] [ Yo Y
Z 1T r vz r r2
.y ir
+ i - , 3.4
R (3.4)
with ¥Y=¥% =y=y, =0 on r =1, (3.5)
Yeo W — T as 1 — . (3.6)

Anticipating a Blasius-typc solution as Z — 0, the problem for

0 <Z <1 was cast in tcrms of

n=(r-1)/24, (=2}, (3.7)
as the independent variables, with the dependent variables taken as
Fg and F, whecre

Y =C{F) 1.0, v=CF0.0. (3.8)

For Z > 1, ¥(r,Z) and ﬁ(r,Z) were trecated as the unknown variables.
In both Z <1 and Z > 1 the systems wecre written as a system of

first order cquations in r (or m). Having solved the problem for



Z = 0, a Crank-Nicolson proccdurc in Z (or ) was adopted. Ovcrall,
the numerical diffcrencing scheme was bascd on that of Keller and Cebeci
(1971). At cach Z (or §) station, first the stcady systcm was
computcd, with Newton iteration being used to trecat the non-lincarity

in the problem. Once convergence was achicved, the (lincar) unstcady
system was then computed in a straightforward manncer.

Results for Yoo lr=l (csscntially the steady componcent of wall shear)
along the cylinder arc shown in Fig.l. This illustrates the (Blasius-type)
singularity as 7Z — 0, together with a monotonic decline as Z incrcases.

Figurc 2 shows thc results for the rcal and imaginary componcnts of
Vrr |r=l (essentially the unstcady componcnt of wall shecar) for B = 0.25.
This shows how thc rcal componcnt cxhibits an inversc squarc singularity
as Z — 0 (in linc with that ol Y., |r=l) whilst thc imaginary
component drops to zcro at the lcading edge. This occurs because as
statcd previously, as Z — 0, the system dctermining F(M.{) becomes
quasi-sléady. with the unstcady velocity perturbation moving entircly in
phase across the boundary layer. For Z 2 1, both the rcal and imaginary
components rapidly approach constant valucs. This aspect is dcalt with
in the following scction.

Figures 3.4 and S show the corresponding distributions for
B =1,2 and 5 rcspectively, all of which cxhibit similar qualitative
fecaturcs to the B = 0.25 rcsults, although the asymptotic amplitude
of arr|r=| is scen to diminish as B incrcascs. In the following
scction the asymptotic form of the flow structure, far downstream of

the lecading cdge is considcred.



4. The far downstream development of the flow.

In this scction we investigate the Z >> 1 solution for the
(unstcady) system (2.12)-(2.14). It was shown by Glaucrt and Lighthill
(1955), Stewartson (1955) and Bush (1976) that the stcady solution
obtained from (2.9)-(2.11) divides into two tayers lar downstream.

Specifically, for r = 0(1) it was shown that

¥ =3 En+l (n
n=0 On
w N+2
+1h Yin(r)
n=0"
"0 g2, (4.1)
2
where £ = T5§—Z’ (4.2)
and where
1 1
Yon(r) = Kop {412 log r - gz 12+ 2},
Koo = 1. Koi = (§ - log 2),
vy = 0.5772..., (Eulcrs constant). (4.3)
= 2 , L) 1
¥i0 = Kig {3 r2 log v - 7 12 + 7},
7
Kio =7 - (4.4)

(Notc that in Stewartson 1955, the last term in his cquation (3.20) should

bc a logarithmically squarcd term, and not as shown). It is also found

r r
! r Yoo ' d d Yoo
¥i1(r) = -Kgor tog r I { —3 J 200 Yoo 17 = ] Jar}ar
2 P()()
] 1
r .
r
+ KOOr log r J —45— dr + Ky rlogr , (4.5)
1 wUO

implying that for r > 1,



i = ; 2-n
Yoo ~% 2 ajp r] (log r) .

j=0 n=0
(4.6)
Consider now thc outcr laycr, wherein
n = r/74 = 0(1) 4.7)
(consistent wilh (3.3)), whercin
Y =7 | @oo(ﬂ) + € @Ol(n) + 0(e2) }
+ €2 ¥ipm) + 0(ed). (4.8)
It is found @ug(n) =} n2,
X n c'*“z
Yor(m = ¢ w2 | = dn
+ c'mz -1,
@10(n) = QOI(H) -1 (4.9)

For comparison with our fully numcrical results, asymptotic
approximations to the basic (low dctcrmined from

Yoo |y =€ Yoorr (r=1) + €2 ¥oyp (r=1)

r=1

=g + Koy €2 (4.10)

arc shown on Fig.1 as a broken linc,

Now considcr the Z ) | solution to the system given by
(2.12)-(2.14). This turns outl to be quite straightforward. Consider
first (and most importantly) the radial scalc r = 0(1); then due to the
smallness of ¢, w is cxpected 1o develop as

w(r,Z2) = wp(r) + 0(e), (4.11)

where wg is to be determined from

A%wy , 1 dwg  iwg_

5 (4.12)
ar2 rdr B B

the appropriatc solution of which is simply

10



”0(2)[:/;_7 ] ' (4.13)
W/

i.c. the axisymmetric Stokes shcar-wave solution, whcre HO(Z)(Z) dcnotes

wo(r) =1 -

the sccond Hankel function, of order zcro and argument 7. Notc also that
as P — 0, the planar Stokes shear solution is retricved (in accord with
the work of Ackcrberg and Phillips 1972). In this limit, a thin Stokes
laycr forms on the surfacc of the body and conscquently curvature
cffccls become less important.

It is a routine matter to continue this solution to higher orders
of ¢:; however little additional insight is glcancd from this, and instcad

we go on to consider (bricfly) the outer layer, where 1 = 0(1) (sce

(4.3)).
Writing
¥ = wo(n) + € wi(n) + 0(e2), (4.14)
then
wo(m) = 1. (4.15)
Wi = wa(m) = .. = 0. (4.16)

In fact the corrcction to ;U(H) can only bc algcbraically small in
rARN
Results obtained using this asymptotic structure (in particular
(4.8)) arc shown for comparison with the fully numcrical rcsults as
broken lincs on Figs. 2-5; 1the agreement is scen to be satisfactory.
However, since the Z >> | structure detailed above is obtained
without any rccoursc to upstrcam conditions, there must be a further
clement to the downstrcam flow, not reflccted in the above analysis
(scc also the comments of Ackerberg and Phillips 1972). This
arises from cigenfunctions of the system (2.12)-(2.14). This aspcct

is investigated ncxt, in somc dctail.

11



3. The form of the eigensolutions as Z —3 e.

Here the form of (cxponentially small) cigensolutions
as Z — « is sought. Specifically, we investigate eigensolutions of
(3.4), with the basic flow described by Scction 4.

As a first approximation to the form of these cigensolutions,

consider the scale r = 0(1), and supposc ¥ in (3.4) is replaced by

N

e¥pp(r), and terms 0(4) and smaller are ncglected. This yiclds

oy Y
Verr - “EHL +

.y €
- ﬁl -7 Yoo, Vv,

ey, | toure - Yogr oy (5.1)

s

Assuming a solution for y by scparation of variables, namcly

v = 1(Z) y(r), (5.2)

then
VYrrr - Y%L + %f - EL
f 1 ¥ ¥
e gl z Yoor yp o+ | SWer . 2000
= 0. (5.3)

A solution of the assumed form is possible only if

A
[z + 3 f =0, (5.4)

where A is a constant. Rccalling the definition of € in (4.2),

(5.4) intcgrates to give

[(2) = expi-5 1Z log Z-7]}
AL A
Az Ay
-z 1727 (5.5)

Here it is required that Re(A) > 0 1o cnsurc dccay as Z — =, and
the arbitrary multiplicative constant in wy(r) has been included.
However (5.2) and (5.5) arce correct only to lcading order in ¢

and Z. It turns out thc form of y required for r = 0(1)

12



is
v = h2) 1(2) Z° (log 2)9 {ygo(r)
+ € yp1(r) + 0(e2)

+ ; e Y1p(r) + 0(e2))

+ 001/72yy, (5.6)
where  [(Z) is given by (5.5) and h(Z) is smaller than any powcr of
log Z. Further it is found nccessary to expand A itself in terms of
ascending powers ol €, viz
= Ay + €A) + €2 Ay + 0(e3). (5.7)
p and q arc constants to be determined at some later stage. In view
of our comments rcgarding Re(A), then Re(Ap) > 0. The form of (5.6)
and (5.7) is nccessitated because of the scrics development of the
basic flow in powers of & and 1/7, and is found to be cssential for
solubility at higher orders of the solution. (Indced Goldstein 1983
pointed out the omission of algebraic terms in the streamwisc development
of the planar cigensolutions in the work of Ackerberg and Phillips 1972,
which contained only the exponential development of the flow).
Substitution of (5.6) and the rcsults of Section 4 into (3.4), and

e

taking tcrms O[h(Z) Z c 7P

(log Z)q] yiclds the Tollowing
cquation for vy
L{¥yp) = 0, (5.8)

where

'y

v Cp i Ag
Yoo - YQQ + Y00 [ 2 gt s WUUI

- Ao voo [ EQQ"- f?? ]-

i

L{voo)

(5.9)
Recalling the form of Y. givcn in (4.3), then

K i
Llvoo} = wvoo - YQQ + Yoo [ 72§+ Mo log r]

- Ag WO = o, (5.10)

13



The boundary conditions to bc applicd to this system arc thosc of
no-slip and impcrmecability on r =1, i.c.
voo (r=1) =wygo' (r=1) = 0. (5.11)
whilst as 1 — = yoo should not be cxponcntially large. To be
morc precise on this last point, the three lincarly indcpendent solutions to

(5.10) in this limit take the form

voo™ ~ Ago? (log 1 - B%B ), (5.12)
r
i] [Ag log r 1} dr
B i

B _ A
Yoo (log T)3/4 c y (5.13)

- iI [Ag log r |} dr
C

C B A 1
Yoo TTG%Q?7374 ¢ . (5.14)

Clcarly cither onc of (5.13) or (5.14) is inadmissible (il Ag is complcx)

duc to the ¢ > 1 condition, and so

i 2
Yoo = Aoo [log e — 4
BAg r2Aglog 1

1
+ 0( ——————— ) (5.15)
r2(log r)2 ]

in this limit, wherc Apgg s an arbitary constant (amplitudc). The
system (5.10) , (S.11) and (5.15) rcprescents an cigenvalue problem for
Ag. However we defer discussion of this problem until the following
scction (where a detailed investigation is carried out of this aspecet).
Instead. let us turn to consider higher order terms in the cxpansions

(5.6) and (5.7). Taking tcrms
DI

ofh@ z ¢ 2" (log 297! ]

in (3.4) yiclds

14



(5.16)

Howcver, on account of (4.3) this cquation may bc wrilten as

+ .

Livor) = (A + KoiAg) { - 200200

+ yoo | foo'" . Yoo' }. (5.17)

r r2

The boundary conditions for this system arc csscntially the same as
thosc for . thesc can only be satisficd if

A = - Kpr Ag. (5.18)
implying that

vo1(r) = Apg1 voo(r). (5.19)
wherc Apy is a constant (amplitude). It is straightforward to
determine higher order terms in the A expansion, in a similar fashion.
For c¢xamplc

A2 = Ao K012 - Ag Koz - 1 Ko Ag (5.20)
and hence

Vo2 = Ap2 Yoolr). (5.21)

Indccd, the following gencral result is applicable
Yon = Aon Yoo(r). (5.22)

To progress further, in particular to dctcrminc tcrms that arc

0(z-1) smallcr than thosc considcred alrcady, let us invecstigate tcrms
AgZ  AgZ
i _8_ _8_ p- q-1
o[h(Z) v4 c Z  (log 2) ]

in the governing cquation. This yiclds the following cquation for g

L{vigl = p Ry - Ag Rp. (5.23)

where

15



r r2 r
R, = Y00 Y10, voot1o® . ¥o¥i0®' (5.24)
r l'2 r
In view of (4.4)
Y10 = K10 Yoo (5.25)
and so
Ry = Kjg Ry (5.26)

Repeating the arpuments used to determinc Ay and Ay previously,

then

Ag Ky

el
1l

7 Ao (5.27)

Finally for this section, lct us consider bricfly the outer solution,
applicable to the n = 0(1) scalec. In view of the r = 0(1) solution,
in particular its O0(log r) bchaviour as r — =, together with (5.6),

then for m = 0(1) the solution is cxpected to develop in the following

form
v(n.7) = 2(2) h(2) 7P (log )9 {Fy(n.e) + 7 ¥i(n.e)
+ 0(2-2)}. (5.28)
where
g(Z) = [(Z)/¢. (5.29)

It is then possible to obtain an cxact solution for GO which
matches on to the r = 0(1) solution. This is given by

e
¥o = Ao | Ag -0 - g, (5.30)

where A is a constant, and

Yo = 2 €M Yyn(m. (5.31)
n=0

IT we now cxpand

16



o0

Vo= L €M ygn(m). (5.32)
n=0

then it is straightforward to show that
Yoo = A00- (5.33)
(which matches on to (5.15)), and
Vo1 = Yoin 4 5.34
Yoi = Aoo —— + Aot (5.34)
where Agp is an arbitary constant. Other (crms may bc obtained similarly.

In the following scction we go on to consider numerical solutions

to (5.10). The valuc of q is determined in the Appendix.

17



6. N ical luti (1l . I bl (5.10)-(5.11)
The problem was tackled using three scparate numerical techniques.

The first compriscd a fourth order Rungc-Kutta technique, shooting

inwards from r = r, (choscn to bc suitably large). In particular,

the technique involved (i) imposing a solution of the form (5.12)

at r,. generaling values of ygo? (r = 1) and WOOA' (r=1) and then

(ii) imposing a solution of the form (5.13) at r, (or 5.14) dcpending

on the sign of Rc{iAni}), gencrating valucs of WOOB (r=1) and

WOOB' (r=1) (or WOOC (r=1) and WUOC' (r=1)). The valuc of

Ay was then chosen by Newton itcration by imposing (5.11), by forcing

the determinant

voolt (r=1) vooB (r=1)
(6.1)
voo' (r=1)  wypoB' (r=D)
or
yoo (r=1) vooC (r=1) -
yool' (r=1) voo<' (r=1) (6.2)
to 7z¢ro.

The sccond numcrical scheme employed involved using a sccond-order
finite-diffcrence approximation to (5.10), constructing a quadra-diagonal
system (corrcsponding to the approximation to (5.10), togcther with the
boundary conditions (5.11), (5.15)) and thc dcterminant of this system was
forced 1o zero by adjusting Ay by Newton itcration,

The third numcrical scheme uscd was a dircct (global) finite-difference
approach; using the samec finitc-difference scheme as our sccond scheme,

the systcem was instcad written in the form
A - Ay B =0, (6.3)

where A and

=]

arc both squarc matrices. The Ag were determined
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by using NAG routinc FO2GJF, suitable for solving generalised cigenvalue
problems of this kind.  This scheme has two distinct advantages

(i) of not rcquiring itcration and (ii) gencrating multiple values (if
present) of Ay simuitancously, howcver it can require substantial
computer storage.

Results from all three schemes were found o agrec; in practice the
proccdurc was usually to obtain estimates to the values of Ag wusing the
third scheme. [If these were then deemed of to be insufficient accuracy,
cnhanced solutions (obtaincd on a lincr and/or more cxtensive grid) were
obtained using the sccond scheme (i.c. the local finite-diffecrence
scheme) .

Results were obtaincd for a range of f. It was found that at all
the valucs of P investigated, thcrc arc many (probably an infinite
number) values of Ag. Further all three methods did yicld a large numbcr
of spurious modcs. Howcver thesc were usually rcadily identifiable, being
strongly dependent upon grid sizc and range, whilst genuine modecs were
comparatively grid inscnsitive.

Results for Re{Ag} arc shown in Fig.6 and for Im{Ag} in Fig.7.
Just the first four modes arc shown in cach casc - higher modes become
extremely difficult to compute (and, indced distinguish from cach other
and also the previously described spurious modes), particularly
in the limits of P — = and B — 0. However the trends are clear, namely
that 1Ag1 — = as B — 0 and 1Ag1 — 0 as B — «, for all modes.

In the following scction we investigale these two limits asymptotically.
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7. 4 ic solut C the e l blem (5.10

In this scction the limits B — =~ and B — 0 in
cquation (5.10) arc considcred, for which somc analytic progress is

possiblc.

7.1. The Limi B -
Physically, this corresponds to a low frequency limit to the

problem. The numcrical results presented in the previous scction

indicate that (all the) Ag — 0 as B — =. Conscquently if =0 (1),

then to lcading order (assuming Ag = o(l))

WO()"' - ‘_'V_O_Q” + m' = ()'
r rz
with wyog (1) = ygo' (1) = 0. (7.1)

The solution to this system is then

2 r2 1
Yoo = Bg {r4 log r - 5 + 5 Y, (7.2)

where Bp is some arbitary constant. This solution must ultimatcly

ccasc to be a valid approximation to (5.10) as 1 — o, spccifically when

r = 0(Agp"}). Considering the particular development of Ag as fi — «;
this is found to takc on the following form, in order to obtain a consistent

and mcaningful asymptotic solution

Ag = Y(B) [hg + € A1 + 0(e2)], (7.3)
where é - . 2 -, (7.4)
log vy

and ?(B) must bc determined from
Yy log (y°4) =p-1. (7.5)
This is a transcendental cquation for the small paramcter Y (scc
Duck 1984, Duck and Hall 1989 for similar examples). In order to obtain
a mcaningful balance of terms when r = O(Ag 4), it is nccessary that
Ag = i (7.6)

(the leading term in the expansion for  Ag).
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In view of these comments, and the above comments rcgarding the scale of

r for which (7.2) ccases to be a valid approximation to (5.10), wc
definc the outer lengthscale
p =yl r=0(n, (7.7)
where the following problem must be considered
2 + ! + i log p + A
Xppp ) Xpp + Xp p2 gp 1 ]

iX
S (7.8)
p

with

X~ ¢y [logp - i Ayl as p — =,

X =0 (p2) as p - 0, (7.9)
where ¢ is an arbitary constant, and x is rclated to ypg by

X = —— woo- (7.10)
log y-#

The system (7.7) - (7.8) rcpresents a well-posed cigenvaluce problem for

the Xy's which was solved using the three numerical techniques described

in the previous scction (indeed (7.8) is very similar to (5.10), and is
of about thc samc computational complcxity, save for the absence of any
physical paramcters).

Valucs for the first few Ap's arc tabulated in Table 1 (accuracy
to at lcast the number of digits shown). It appcars that all the
kl‘s posscsscd the same real value (and hence decay rate) to within the
accuracy of the computation. The cvidence was that a large (probably
infinite) number of these modes cxist: these higher modes were difficull
to compute accuratcly, requiring small grid sizes and cxtensive grid
domains. Further, with increcasing order, the imaginary part of the Ay's
became progressively more negative, although the diffcrence between modes
did diminish. Indced, these trends can be confirmed, asymptotically,
by carrying out a 1Ajp1 >> | analysis on (7.8)-(7.9). In this
limit, a WKB solution to (7.8) cxists of the form
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p
I ililogp+ay 1! dp
B]pi
x:___—_ Cp()
[ilogp+hy|3/4

+ cyllogp+idgl (7.11)
for Rc {logp—idy) > 0 (and the path of intcgration lics within this
rcgion) where

po = ¢ M, (7.12)

(and we cxpecl ¢y = o (Byp)), whil st

x = cyllogp-ily)

p
& I ililogp+hq]d dp
P
A — Ay cPO

[ilogp+lll3/4
p
-[ ililogp+Aylt dp
PO

+ Ay ¢ }

(7.13)
for Rc {logp—iXy;) < 0 (and thc path of intcgration lics within this
region).
A routinc trcatment of the transition layer about p = pq
rcveals
Ay = iA}. (7.14)
To procced further, consider an inncr layer wherein
p1 = M1 op = 0(1), (7.15)

with x satislying the following cquation to lcading order

1 |
- = + 1) =0, 7.16
Xo10101 P Xpip xpl(p? b (7.16)
the solution of which is
1
=1 gor J ' 7.17
Xp, = 7 PoPi 0(p1) ( )

(the sccond solution of this cquation involving Yg(py) is ncglected
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on account of (7.9)). Taking thc limit of (7.17) as py; — = gives

/P
~ By =  cos (p|-z) (7.18)

%) T

The limit of (7.13) as p — 0 is

X — ¢ [logp-iky]

N 1A$z; illl ‘ { c-ixlip+ ic-21+ixlip } (7.19)
where
0
1 = j ililogp+ry 1t dp, (7.20)
PO
with the integration path lying within Re {logp-iky} < 0. 1f (7.19)

is to match with (7.18) thecn

e2lo (7.21)
which ltcads to
A=z - ilog [2 mn], (7.22)
where n  is a (large) positive intecger. For consistcncy, we also rcquire
By = 2i ~/2n Ag. (7.23)
A

The formula rcprescnted by (7.22) was uscd to obtain asymptolic
estimates Lo thc rcsults shown in Tablc 1. Modc Il corrcsponds to
n =1, mode LIl corrcsponds to n =2 and so on; it is scen the
agrcement between the computed asymptotic results is most satisfactory,
(; =0.785...). 1t is quitc clcar that this asymptotic form will fail when
n=0xMh.
The leading order terms, namely Re(Ag) = g Y € and Im(Ap) =
Y arc shown on Figs.6 and 7 respectively, for comparison with the
numcrical solutions obtaincd from the full cquation, (5.10). The
rcsults arc not contradictary, given the "largeness™ of the small

~

paramctcr €. Indced, computations for Ay from (5.10) at larger
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values of P did become exccedingly difficult, duc to the large
lengthscale (0(y-1)), togcther with mode "jumping" causcd by the
closc proximatly of modes, which made thc usc of grid relinement with

the local mcthod impractical.

7.2 The_limi B 0
This corrcsponds to the high frequency limit of the problem.
According to the numerical results presented in Secction 6 1Apt incrcascs
as P — 0. This limit is now investigated.
It is possible to writc a WKB-type approximatce solution to (5.10)
(assuming 1Agr and B‘] arc both large) as

yoolr) = By [Iog r - KéB ]

r .
Ry i[ [Ag log r - é 14 dr
+ [AO log r - B ] ri {By ¢ '0

r .
“iflAg log r - ﬁ]i dr

+Byc O , (7.24)

(for Rec {Aplogr - é } <0, and the path of integration lics within

this region), where

201 ¢ iy 72
By ¢ { i [ ] - A }
By = s , (7.25)
i [ - Il{ ] + /\()
o174 O "
Bi = - Ao |- ﬁ ] [ By ¢'' +Byc’ ]. (7.26)
and rg = cxp [ B%G ] (7.27)

is the turning point, and

ro '
| = - j [AU log r - é ]’ dr. (7.28)
I
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(7.25) and (7.26) arc obtaincd by imposing boundary conditions on r = 1,
and the intcgration path lics within Re {Aplogr - é} < 0.
For Rec {Aplogr- é} > 0 the WKB-typc approximatc solution can be

written

yopl(ry = By [I()g ro- K{ﬂ? ]

ro. 4
1 [ ﬁ - Ap logr ] dr

B4r9 i) ‘7 G
+ 777 © , (7.29)

[ é - Ap log r ]

whcre it has been assumed Rc((—AU)i} < ) (othcrwisc we require the
negative root inside the integral), By is given by (7.26), and the
integation path lics within Rc [Aplogr - ﬁ} > 0. In order that

(7.29) matchecs to (7.24) across the transition layer of thickness

O(AU']/3), (routine) trcatment (scc also the analysis for Ap = O(B-3/2)
bclow) of the latter yiclds
B| = - iBz, ) (7.30)

and the following dispcrsion rclationship for Ag rcsults

o)
(5 = (-8 ) @
[t turns out that there are two distinet Tamilics of solution as
B — 0.
The first family of solutions as [ — 0 corrcsponds to Ay = O(B‘]).
Morce specifically
Moo= Bt [ Ag B A ] (7.32)
where AO' Al arc gencrally O(1) quantitics. This implics that
ro-1 = 0(1). Conscquently to lcading order (7.31) rcduccs 1o
cZi] = -i. (7.33)
Howcver it appcars | = O(B'i), and so thecre is a contradiction,

which can only be avoided if

25



o

[ thgtogr - it ar=o, (7.34)
1
or
i
Ao
[P pt dp = 0, (7.35)
0
or
I
Y [ 3. — ] =0, (7.36)
Y

where  y(zy.z2) represents the incomplcte gamma function. This represents
an cigenvaluc probliem lor AO, which was solved numerically using a
combination of trapczoidal quadraturc and Ncwton itcration; results

for the first fcw RQ arc shown in Tablc 2. Note that there appear

to be many valucs (probably an infinitc numbcr), although thesc

scem to be concentrated within a finite annular rcgion in the complex
AO planc. As the order incrcased, the valucs beccome very close to
ncighbouring valucs, and thc computation became cxccedingly dilficult;
however, with increasing order the values of Xo do sccm Lo be
approaching a flinite valuc (indccd the author was unablc to find

any solution for |A0| < 0.098). Notc too that it is casy to show
using integration by parts that therc arc no solutions to (7.35) as
|A6| —» =, whilst using the asymptotic cxpansion for the incomplctc
gamma function (Abramowitz and Stcgun 1964) it is also possiblc to show
that no solutions ¢xist as |A6| — 0 cither; this then confirms our

statement about the values of Ay being confined to an annular rcgion in

complex Ap  spacc.

Notc also that both Ag and -complex conjugate {Ag} arc roots of
(7.35); however the latter family of solutions may bec disrcgarded since

in all casecs we require Ag to possess a posilive rcal part.
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The sccond family of solutions for Ag occurs when

Ag = 0(B-3/2). In this case, from (7.27), 1rgp-11 << 1,
and indced the wall (r=1) lies inside the transition layer,
Conscquently, we arc unable to usc (7.31), but must consider the

transition laycr in dectail (although this is quite a routinc task).

Supposc
Ay = ﬁ'3’2 Ao (7.37)
where Ag = 0(1). Then defining
{= -1y gt (7.38)
to lcading ordcr (5.10) reduces to
voorrt + voog (Rog-i)
- KO voo = 0. (7.39)
oo v 7 ~-1/3 i
Writing = (-Ap) o+ — , (7.40)
Ao
and diffcrentiating (7.39) with respeet to C, yiclds
Y00goas ~ © Y00gg = 0 (7.41)
The required solution (that is not exponcentially large as G — )
is
(7.42)

ly()oo =D Ai (o),

(where D is indcpendent of o).

~

The implementation of the boundary conditions on § = 0 requirces
WOO&&& (a=0) = {0, and so
A | ;i_igzﬂllii ] =0 (7.43)
Ao
Now since the zcrocs of the Airy function and its derivative arc
confined exclusively to the ncgative rcal axis, then
(7.44)

APt (-Cp) =0, (n=4,2.3,...)

where the &, arc rcal and positive and tabulated by Abramowitz and
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Stegun (1964). Conscqucntly
1+i
24 Cn

32 0BY), (7.45)

whcre the appropriate roots have been chosen to cnsurc boundedness
of the Airy function.

It is interesting (although, in somc ways not too surprising) that
(7.45) is identical to the corrcsponding expression found in the
analogous planar study (Lam and Rott 1960, Ackcrberg and Phillips
1972 and Goldstein 1983), although of coursc the corresponding (7))
is quite diffcrent in the prescent case.

As a check on the numerical results as B — 0, on Fig 8 the
variation of p3/2 Ap with P is shown (first three modes). It is very
clcar that these results approach those given by (7.45) as [ — 0.
The O(B") family of results refer to higher modes, and thus it is
not rcalistically possible to comparc our numerical results with this
family.

In the following section we draw some conclusions [rom this work.
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8. Conclusion

In this papcr the cffect of small amplitude freestrcam oscillations
on an otherwisc stcady boundary laycr on an axisymmetric body has becn
investigated. Particular attention has been focused on the far-
downstrcam cigenvalues and cigensolutions. As noted in Section 1, in
the casc of the planar problem, two distinct familics of cigensolutions have
been presented, namcly thosc originally considered by Lam and Rott (1960)
and thosc considered by Brown and Stewartson (1973a,b), with the former
family having dccay rates that degrease with incrcasing ordcr, whilst the
latter family have decay rates that increase with incrcasing order.

In the present study, cigenvalucs appear to occur with de¢reasing deccay
rate with incrcasing ordcr. Howcver, some of the asymplolic‘work in
Scction 7 (in particular that relevant to P —s =, with Ag = 0p-1))
does strongly suggest that a finif¢ valuc of Ap is becing approached
with incrcasing order. Indced, the author was unable (o obtain a
consistent asymptotic solution to (5.10) for B =0(1), Ap — 0, again
suggesting the finite limit of Ag with incrcasing order. This, in
somc ways may be regarded as a rather more satisfactory statc of
alfairs than that found with the Lam and Rott (1960) cigensolutions,
which have decay rates that become diminisingly small with incrcasing order
(although scc our comments, atiributed to Goldstein et al 1983, in
Section 1). Further the B — 0 work of Scction 7 docs suggest

that all modes posscss the samc dccay rate in this limit up to at lecast
sccond ordcr.

However, it may wcll be that the planar work of Brown and Stcwartson
(1973a,b) could pcrhaps be cxtended to include the effects of curvaturc, 1o
yicld a further (perhaps related) family of cigensolutions. A further
interesting study would be an investigation of the far-downstrcam cvolution

of the cigensolutions. Just as in the planar casc, these all become
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increasingly oscillatory far downstrcam, and will, as a consequence,
ultimately ccasc to be valid approximations to the Navicr Stokcs cquations,
This will lcad, prcsumably, to the formation of unstable Tollmicn-
Schlichting waves, in a manner analogous lo that dcscribed by Goldstcin
(1983) in the planar casc.

However, there arc a number of (other) important differences between the
planar and the axisymmetric cigensolutions and cigenvalucs. Mosit
importantly the downstrcam (i.c. axial) bchaviour of thcse cigensolutions
(described by 1(Z)) which is quilce different in the two cascs, in the
axisymmetric casec being given by (5.6) whilst in the planar Blasius case

3/2
f(x) = ¢ ™ xP, (8.1)

as shown by Goldstein (1983), (whcre x s the strcamwisc coordinate).
Notc that if the basic flow were of the form ¥ = xM™ F(n), withn = y/xm, vy
being the transverse boundary layer variable, then using arguments similar
to this paper,

((z) = x” exp{-A x20-m+1y o for 2n-m+l > 0. (8.2)
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Appendix
Consider terms
A

ofn(z) z c 7 Pl

(logz) 971}

in (5.1) to cnablc us to dctermine the value of q.
It is found, after some algchra

Livyy) = pf 200 ¥o1" o *o1 Voo

~ woo | ffl

*+ Vio [ YQQ': Iﬂg']}
r r

+ A {- vio'Yor . Yio0'vort . Yipgvoo!
0 r r r
Yi Yy ¥io' Yo'
+ygo [ L - L] g [0 0]
r r r r
Yor' ' Yo'
vy [ - -1}
r r

1 , . 1 [ '
- — oo Yoo' + g oo [ YO - Y00 T
2r r r2

(A1)
Recalling the cxpressions obtained alrcady for P. A1y Wot. V10,
(A.1) lecads to the following (slightly simplificd) ecquation
Livin) = 0y { Ag Kjg Agy + 3+ Mo Kot Al - (Ao + Kjg) Ag }

TR TR T

r r r2

1 . . ] v '
vV Yoo' + 5 Yoo [ WO - Ygﬂ ]. @2
r r r

where
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'

Q(r) = Yoo Voo . Yoo [ Yoo' . !Qg' ] (A.3)
r r r

It is quitc clcar that yj; = O(rz(log r)2) as r — . To
simplifly arguments later, we wrilc

vit = v e + gy thon, (A.4)

where wll'l(r) is any rcgular function which has the following bchaviour

as r— oo

I(ry = - M0, 4 o1y, (A.S)
v trs i)
The governing cquation for WII] may then be written in the form
Llyi11) = R3(r) + q Rg (1), (A.6)
where
R3(r) = Q(r) { Ap Kin Aor + Ao kot Ato
\l’ L] t
- (Mg + Kip)Ag) - L0
q, L \{‘ L}
+ Y00 [ AL —l%
r r
1 , , 1 v '
+—vo' Yoo' + 3 Yoo [ 0o . %
2r T r2
and
1
Rg(r) = - = Q(r) - Liwy'Ty. (A7)

The boundary conditions that must be applicd to this system are
vl = -y than
yrb e = -yt
and that Wlll — 0 as r — >, (A.8)
The value of ¢ is then determined by the condition that a solution
to this systcem cxists.
Consider now the (complex conjugate of the) adjoint to the

system (5.10), denoted by wy*r(r), and determined from
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vyt o+ ¥+"+ A [ Ag log 1 - é - 12]

r

+ 2 éﬂ vt =0, (A.9)

subjecct to thc boundary conditions

yvr(r=1) = 0, v ' (r=1) = 1 (say), (A.10)

vt =0 ((logr)-2) as r — =, (A.11)
If we now further supposc, as we arc quite at libery to so do (although
this simplifics, but is not crucial for our arguments) that

yil Ty = yit gy =0, (A.12)

then

R3(r) y*(r) dr
(A.13)

Rq(r) vt(r) dr

0
1l
_..!_.“g e S,

(Hartman 1964, for cxamplc).

This (at lcast in principle) delermines, or provides a mcans of
dcterminining the index of the logarithmic term multiplying f((Z).
At this stage it would also appcar to be legitimate to sct the function
h(Z) in (5.6) cqual to a constant, although catcgorical dctermination
of this point scems difficult because of the algebraic complexily

in extending the analysis to higher order.
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