NASA Contractor Report 187579

ICASE Report No. 91-50

THE UNSTEADY LAMINAR BOUNDARY LAYER ON AN AXISYMMETRIC BODY SUBJECT TO SMALL AMPLITUDE FLUCTUATIONS IN THE FREE-STREAM VELOCITY

Peter W. Duck

Contract No. NAS 1-18605
June 1991

Institute for Computer Applications in Science and Engineering NASA Langley Research Center
Hampton, Virginia 23665-5225
Operated by the Universities Space Research Association

N/SA

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

THE UNSTEADY LAMINAR BOUNDARY LAYER ON AN AXISYMMETRIC BODY SUBJECT TO SMALL AMPLITUDE FLUCTUATIONS IN THE FREE-STREAM VELOCITY

Peter W. Duck*
Department of Mathematics
University of Manchester

ENGLAND

Abstract

The effect of small amplitude, time-periodic, freestream disturbances on an otherwise steady axisymmetric boundary layer on a circular cylinder is considered. Numerical solutions of the problem are presented, and an asymptotic solution, valid far downstream along the axis of the cylinder is detailed. Particular emphasis is placed on the unsteady eigensolutions that occur far downstream, which turn out to be very different from the analogous planar eigensolutions. These axisymmetric eigensolutions are computed numerically and also are described by asymptotic analyses valid for low and high frequencies of oscillation.

[^0]
1. Introduction

The effect of time-periodic disturbances in the freestream of an otherwise steady boundary layer has received considerable attention over lhe years. This work was initiated by lighthill (1954), who considered the flow past a semi-infinite flal plate, with a small amplitude, lime-periodic frecstream disturbance, and obtaincd solutions close 10 and far from the leading edge. This work was later extended by Roit and Rosenweig (1960), Lam and Rotl (1960) and Ackerberg and Phillips (1972). Of particular interest are the unstcady eigensolutions that form part of the far-downstream flow. Onc set of these was studicd by Lam and Rolt (1960), Ackerberg and Phillips (1972) and Goldstein (1983) and has exponentially decaying solution downstream (sec (8.1) below), with the fcalurc of decreasing decay ratc with increasing order; these cigensolutions are determined primarily by conditions close to the wall. A second sel of eigensolutions was constructed by Brown and Stewartson (1973a,b) and has the feature of increasing decay rate with increasing order: these eigensolutions are determined from conditions far away from the wall, in the outer reaches of the boundary layer.

Indece, these semingly diverse characteristics of the eigensolutions have been the subject of some controversy over the years. However, Goldstcin et al (1983) include a quite detailed discussion of this dichotomy; briefly, these athors expound the argument that the two sets of eigensolutions are in fact, equivalent, but with the Brown and Stewartson (1973 a,b) cxpansions being valid at much longer distances
$\left(O\left(\ln \frac{1}{2}\right)^{\frac{1}{2}} \gg 1\right)$ downstream, than the Lam and Rott (1960) eigensolutions (which are valid for $O(x) \gg 1)$. Further, Goldstein ct al (1983) point out that as the order of the Lam and Rott (1960) eigensolutions increases, the asymptotic behaviour of the (inner) solution is likely to be achicved at progressively larger valucs of x, since, for $x \gg 1$, the scalc of the
region associated with the eigensolutions moves away from the wall with increasing order. This, in some ways is not inconsistent with the fact that the Brown and Stewartson (1973a,b) eigensolutions are centered at the outer edge of the steady boundary layer. Goldstein et al (1983) also conclude, using these arguments, that the limit as $x \rightarrow \infty$ and the limit as $n \rightarrow \infty$ (where n is the order of the eigensolution) cannot be interchanged. However, and significantly, Goldstein (1983) went on to illustrate the physical importance of the Lam and Rott (1960) eigensolutions, by showing how these develop, far downstream, into unstable Tollmien-Schlichting waves.

The problem of ''order-onc' $u n s t c a d y, ~ f r e c s t r e a m ~ d i s t u r b a n c e s ~(b u t ~$ such that the frecstream does not reverse direction) has been tonsidered by a number of authors. Pedley (1972) considered this problem, asymptotically close to and far from the leading edge, whilst Phillips and Ackerberg (1973) presented numerical solutions to the problem for locations from the leading edge to far downstream, their method being based on a time-marching scheme. More recently, Duck (1989) presented a new numerical method to tackle this problem, based on a spectral treatment in time, and a spatial finite-difference scheme, which properly takes into account regions of reversed flow that inevitably occur.

The problem of steady flow along a circular cylinder (in particular far downstream along the axis of the cylinder) is itsclf interesting, partly because it is so very different in nature from that of planar (i.e. Blasius type) flow. Early investigations of this problem include the work of Glauert and Lighthill (1955) and Stewartson (1955), whilst Bush (1976) has presented a more modern approach to the problem. Notably, in the far downstream limit, the problem becomes double structured, with an inner layer (comparable in thickness with the radius of the body) which is predominantly viscous in nature, and an outer layer (much larger than the
radius of the body) which is a region of predominantly uniform flow (sec Scetion 4 for fuller details).

In this paper we investigate the effect of small amplitude, timeperiodic, frecstream disturbances on the axisymmetric boundary layer on a circular cylinder. Particular emphasis is placed on the eigensolutions relevant to the far-downstream flow, which turn out to be markedly different from the analogous planar cigensolutions of Lam and Rolt (1960), and possess some interesiing propertics. Further, since an additional Iengthscalc is present in the problem (i.c. the body radius), a scond non-dimensional parameter (in addition lo the Reynolds number) is present, and we are able 10 exploil this parameter from an asymplotic point of view.

The layout of the paper is as follows. In Section 2 the problem is formulated, and in Section 3 a fully numerical finite-difference scheme for the steady and unsteady problem is described, and results for the wall shears are presented, for axial locations from the leading edge to far downstream. In Scetion 4 the development of the (inhomogencous) component of the flow is described. In Section 5 the presence of cigensolutions far downstram is elucidated, the eigenproblem is formulated and expanded in the form of an asymplotic series. In Section 6 numerical solutions of the (leading-order) cigenproblem are described, whilst in Section 7 the cigenproblem is considered in the asymptotic limits of high and low frecstream oscillation. In Section 8 the conclusions of the paper are presented.

2. Formulation

We introduce a cylindrical polar coordinate system (ar, θ, az), where a is the radius of the body (assumed constant), and the 7 axis lies along the axis of the body, with $z=0$ corresponding to the tip of the body.

Suppose that the fluid is incompressible and of kinematic viscosity v, the frecstream velocity is taken 10 be purely in the $\%$ direction, and of the form $W_{\infty}\left(1+\delta \cos \left(01^{*}\right)\right.$, where W_{∞}, δ and 0 are constants, wilh $\delta \ll 1 . N o l c$ that although in all the ensuing analysis we shall confinc our attention exclusively 10 frecstream velocitics of the above form, it is relatively straightforward to extend our ideas to other spatial and temporal (periodic) variations.

The velocily ficld is wrilten as $W_{\infty}(u, 0, w)$, and non-dimensional time as $t=\omega t^{*}$. Further, it is assumed that u, w, and indecd the entire solution is independent of 0 , implying axial symmetry.

In this problem there are two fundamental non-dimensional parameters, namely a Reynolds number based on cylinder radius

$$
\begin{equation*}
\mathrm{R}=\frac{W_{\infty} \mathrm{a}}{\mathrm{~V}}, \tag{2.1}
\end{equation*}
$$

which will be assumed to be large throughout this paper, logether with a 「requency parameter

$$
\begin{equation*}
\beta=\frac{v}{(0) a^{2}} \tag{2.2}
\end{equation*}
$$

The usage of the boundary-layer approximation requires that

$$
\begin{equation*}
Z=R^{-1} \% \tag{2.3}
\end{equation*}
$$

is the key axial lenglhscale, and

$$
\begin{equation*}
U=R u \tag{2.4}
\end{equation*}
$$

is the important order-one radial velocity scalc. The boundary-layer equations then become (to leading order)

$$
\begin{equation*}
\frac{1}{\beta} \frac{\partial w}{\partial t}+w \frac{\partial w}{\partial Z}+U \frac{\partial w}{\partial r}=\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{\beta} \frac{\partial w}{\partial t}(r \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

logether with

$$
\begin{equation*}
\frac{\partial}{\partial Z}(r w)+\frac{\partial}{\partial r}(r U)=0 . \tag{2.6}
\end{equation*}
$$

Since it will be assumed that $\delta \ll 1$. the unsteady component of the flow may be taken to be a small perturbation about the steady solution (a similar treatment has been used in many of the related planar studics cited in the previous section, for example lam and Rott 1960, Lighthill 1954, Ackerberg and Phillips 1972). Specifically

$$
\begin{align*}
& U(r, Z, t)=U_{0}(r, Z)+\delta \operatorname{Rc}\left\{\tilde{U}(r, Z) c^{i t}\right\}+0\left(\delta^{2}\right), \tag{2.7}\\
& w(r, Z, t)=w_{0}(r, Z)+\delta \operatorname{Rc}\left\{\tilde{w}(r, Z) c^{i t}\right\}+0\left(\delta^{2}\right), \tag{2.8}
\end{align*}
$$

The steady component of the solution is described by

$$
\begin{equation*}
w_{0} \frac{\partial w_{0}}{\partial 7}+U_{0} \frac{\partial w_{0}}{\partial r}=\frac{\partial^{2} w_{0}}{\partial r^{2}}+\frac{1}{r} \frac{\partial w_{0}}{\partial r} \tag{2.9}
\end{equation*}
$$

$\frac{\partial}{\partial Z}\left(r w_{0}\right)+\frac{\partial}{\partial r}\left(r U_{0}\right)=0$,
with

$$
w_{0}(r=1)=U_{0}(r=1)=0,
$$

$$
\begin{equation*}
w_{0} \rightarrow 1 \quad \text { as } \quad r \rightarrow \infty \tag{2.11}
\end{equation*}
$$

whilst the unsteady perturbation to this flow is given by

$$
\begin{align*}
& \frac{i \tilde{w}}{\beta}+w_{0} \frac{\partial \tilde{w}}{\partial Z}+\tilde{w} \frac{\partial w_{0}}{\partial Z}+U_{0} \frac{\partial \tilde{w}}{\partial r}+\tilde{U} \frac{\partial w_{0}}{\partial r}=\frac{\partial^{2} \tilde{w}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \tilde{w}}{\partial r}+\frac{i}{\beta} \tag{2.12}\\
& \frac{\partial}{\partial Z}(r \tilde{w})+\frac{\partial}{\partial r}(r \tilde{U})=0, \tag{2.13}
\end{align*}
$$

subject 10

$$
\begin{align*}
& \tilde{w}(r=1)=\tilde{U}(r=1)=0, \\
& \tilde{w} \rightarrow 1 \text { as } r \rightarrow \infty . \tag{2.14}
\end{align*}
$$

To close the problem we further suppose that as $Z \rightarrow 0$, planar conditions prevail, with the boundary-layer thickness becoming negligible in this limit. A similar procedure was followed by Scban and

Bond (1951) and was further utiliscd in a related problem by Duck and Bodonyi (1986). The (steady) system (2.9) - (2.11) then reduces to the Blasius (planar) problem as $Z \rightarrow 0$, with corrections duc to curvature effects given by Seban and Bond (1951). As $Z \rightarrow \infty$, the far downstream, double-structured solution of Glaucri and Lighthill (1955),

Stewartson (1955) and Bush (1976) cmerges from this system.
Regarding the unsteady system (2.12) - (2.14), this becomes quasi-steady in rorm as $Z \rightarrow 0$, with the time derivative term vanishing in this limit.

In the following section fully numerical solutions to both the steady and unsteady system and considered, and in the later sections of this paper the far-downstream behaviour of the unsteady component of the flow is investigated in some detail.

3. Numerical solution of the problem.

In this section we consider fully numerical solutions to systems (2.9)-(2.11) and (2.12)-(2.14).

Two streamfunctions are introduced, one for the steady component of the flow, the other for the unsteady component, vi\% ψ and $\tilde{\psi}$, respectively given by

$$
\begin{align*}
& U_{0}=\frac{-1}{r} \frac{\partial \Psi}{\partial Z}, \quad w_{0}=\frac{1}{r} \frac{\partial \Psi}{\partial r}, \tag{3.1}\\
& \tilde{U}=-\frac{1}{r} \frac{\partial \tilde{\psi}}{\partial Z}, \tilde{w}=\frac{1}{r} \frac{\partial \tilde{\psi}}{\partial r} . \tag{3.2}
\end{align*}
$$

The problem determining ψ and $\tilde{\psi}$ is then

$$
\begin{align*}
& \psi_{r r r}-\frac{\psi_{r r}}{r}+\frac{\psi_{r}}{r^{2}} \\
& =\frac{1}{r} \Psi_{r} \psi_{r Z}-\psi_{Z}\left[\psi_{r r}^{r}-\frac{1}{r^{2}} \psi_{r}\right] \tag{3.3}\\
& \tilde{\psi}_{r r r}-\frac{\tilde{\psi}_{r r}}{r}+\frac{\tilde{\psi}_{r}}{r^{2}}=\frac{1}{r}\left[\psi_{r} \tilde{\psi}_{r Z}+\tilde{\psi}_{r} \Psi_{r Z}\right] \\
& \quad-\psi_{Z}\left[\frac{\tilde{\psi}_{r r}}{r}-\frac{\tilde{\psi}_{r}}{r^{2}}\right]-\tilde{\psi}_{Z}\left[\frac{\psi_{r r}}{r}-\frac{\psi_{r}}{r^{2}}\right] \\
& \quad+i \frac{\tilde{\psi}_{r}}{\beta}-\frac{i r}{\beta} \tag{3.4}
\end{align*}
$$

with $\psi=\psi_{r}=\tilde{\psi}=\tilde{\psi}_{r}=0$ on $r=1$,

$$
\begin{equation*}
\psi_{r}, \tilde{\psi}_{r} \rightarrow r \text { as } r \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

Anticipating a Blasius-type solution as $Z \rightarrow 0$, the problem for $0<Z \leq 1$ was cast in terms of

$$
\begin{equation*}
\bar{\eta}=(\mathrm{r}-1) / Z^{\frac{1}{2}}, \quad \zeta=Z^{\frac{1}{2}}, \tag{3.7}
\end{equation*}
$$

as the independent variables, with the dependent variables taken as F_{0} and \widetilde{F}, where

$$
\begin{equation*}
\psi=\zeta F_{0}(\bar{\eta}, \zeta), \tilde{\psi}=\zeta \widetilde{F}(\bar{\eta}, \zeta) \tag{3.8}
\end{equation*}
$$

For $Z>1, \Psi(r, Z)$ and $\tilde{\psi}(r, Z)$ were treated as the unknown variables.
In both $Z \leq 1$ and $Z>1$ the systems were written as a system of first order equations in r (or $\bar{\eta}$). Having solved the problem for
$Z=0$, a Crank-Nicolson procedurc in Z (or ζ) was adopted. Overall, the numerical differencing scheme was based on that of Keller and Cebeci (1971). At cach Z (or ζ) station, first the steady system was computed, with Newton iteration being used to treat the non-lincarity in the problem. Once convergence was achicved, the (linear) unsteady system was then computed in a straightorward manner.

Results for $\left.\Psi_{r r}\right|_{r=1}(e s s e n t i a l l y$ the steady component of wall shear) along the cylinder are shown in Fig. I. This illusirates the (Blasius-type) singularity as $Z \rightarrow 0$, logether with a monotonic decline as Z increases.

Figure 2 shows the results for the real and imaginary components of $\left.\tilde{\Psi}_{r r}\right|_{r=1}(\operatorname{cssentially}$ the unsteady component of wall shear) for $\beta=0.25$. This shows how the real component exhibits an inverse square singularity as $Z \rightarrow 0$ (in line with that of $\left.\Psi_{r r}\right|_{r=1}$, whilst the imaginary component drops to zero at the leading edge. This occurs because as stated previously, as $Z \rightarrow 0$, the system detcrmining $\tilde{F}(\bar{\eta}, \zeta)$ becomes quasi-steady, with the unsteady velocity perturbation moving entirely in phase across the boundary layer. For $Z \geq 1$, both the real and imaginary components rapidly approach constant values. This aspect is dealt with in the following section.

Figures 3,4 and 5 show the corresponding distributions for $\beta=1,2$ and 5 respectively, all of which cxhibit similar qualitative features to the $\beta=0.25$ results, although the asymptotic amplitude of $\left.\tilde{\Psi}_{r r}\right|_{r=1}$ is secn to diminish as β increascs. In the following section the asymptotic form of the flow structure, far downstream of the leading cdge is considered.

4. The far downsuream development of the flow.

In this scction we investigate the $Z \gg 1$ solution for the (unsteady) system (2.12)-(2.14). It was shown by Glaucri and Lighthill (1955), Stewartson (1955) and Bush (1976) that the steady solution oblained from (2.9)-(2.11) divides into two layers far downstream. Specifically, for $r=0(1)$ it was shown lhat

$$
\begin{align*}
\Psi= & \sum_{n=0}^{\infty} \varepsilon^{n+1} \Psi_{0 n}(r) \\
& +\sum_{n=0}^{\infty} \mathscr{7}^{n+2} \Psi_{\ln }(r) \\
& +0\left(\frac{1}{Z^{2}}\right) \tag{4.1}
\end{align*}
$$

where $\quad \varepsilon=\frac{2}{\log Z}$,
and where

$$
\begin{align*}
& \Psi_{0 n}(r)=K_{0 n}\left\{\frac{1}{2} r^{2} \log r-\frac{1}{4} r^{2}+\frac{1}{4}\right\} \\
& K_{00}=1, \quad K_{01}=\left(\frac{\gamma}{2}-\log 2\right) \\
& \gamma=0.5772 \ldots,(\text { Eulcrs constant }) \tag{4.3}\\
& \Psi_{10}=K_{10}\left\{\frac{1}{2} r^{2} \log r-\frac{1}{4} r^{2}+\frac{1}{4}\right\} \\
& K_{10}=\frac{7}{4} \tag{4.4}
\end{align*}
$$

(Note that in Stewartson 1955, the last term in his equation (3.20) should be a logarithmically squared term, and not as shown). It is also found

$$
\begin{align*}
& \Psi_{11}^{\prime}(r)=-K_{00} r \log r \int_{1}^{r}\left\{\frac{r}{2 \Psi_{00}^{2}} \int_{1}^{r} \frac{\Psi_{00}}{r} \frac{d}{d r}\left[\Psi_{00} \frac{d}{d r}\left[\frac{\Psi_{00}}{r}\right]\right] d r\right\} d r \\
& +K_{00} r \log r \int_{1}^{r} \frac{\hat{K}_{1} f^{r}}{\Psi_{00}} d r+K_{11} r \log r, \tag{4.5}
\end{align*}
$$

implying that for $r \gg 1$,

$$
\begin{equation*}
\Psi_{11} \sim \sum_{j=0}^{4} \sum_{n=0}^{\infty} a_{j n} r j(\log r)^{2-n} \tag{4.6}
\end{equation*}
$$

Consider now the outer layer, wherein

$$
\begin{equation*}
\eta=r / 7 l=0(1) \tag{4.7}
\end{equation*}
$$

(consistent with (3.3)), wherein

$$
\begin{align*}
\Psi= & Z\left\{\hat{\Psi}_{00}(\eta)+\varepsilon \hat{\Psi}_{01}(\eta)+0\left(\varepsilon^{2}\right)\right\} \\
& +\varepsilon^{2} \hat{\Psi}_{10}(\eta)+0\left(\varepsilon^{3}\right) \tag{4.8}
\end{align*}
$$

It is found $\mathcal{\Psi}_{00}(\eta)=1 \eta^{2}$,

$$
\begin{align*}
\hat{\Psi}_{01}(\eta) & =\frac{1}{2} \eta^{2} \int_{\infty}^{\eta} \frac{c^{-1 \eta^{2}}}{\eta} d \eta \\
+ & c^{-1 \eta^{2}}-1 \\
\hat{\psi}_{10}(\eta) & =\hat{\Psi}_{01}(\eta)-\frac{1}{2} \tag{4.9}
\end{align*}
$$

For comparison with our fully numerical results, asymptotic approximations to the basic flow determined from

$$
\begin{align*}
\left.\Psi_{r r}\right|_{r=1} & \doteq \varepsilon \Psi_{00 r r}(r=1)+\varepsilon^{2} \Psi_{01 r r}(r=1) \\
& \doteq \varepsilon+K_{01} \varepsilon^{2} \tag{4.10}
\end{align*}
$$

are shown on Fig. 1 as a broken line.
Now consider the $Z \geqslant 1$ solution to the system given by (2.12)-(2.14). This turns out to be quite straightforward. Consider first (and most importanty) the radial scalc $r=0(1)$; then duc to the smallness of r, \tilde{w} is expected lo develop as

$$
\begin{equation*}
\tilde{w}(r, Z)=\tilde{w}_{0}(r)+0(\varepsilon) \tag{4.11}
\end{equation*}
$$

where \tilde{w}_{0} is to be determined from

$$
\begin{equation*}
\frac{\partial^{2} \tilde{w}_{Q}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \tilde{w}_{Q}}{\partial r}-\frac{\left.i \tilde{w}_{0}\right)}{\beta}=-\frac{i}{\beta} \tag{4.12}
\end{equation*}
$$

the appropriate solution of which is simply

$$
\begin{equation*}
\tilde{w}_{0}(r)=1-\frac{H_{0}(2)\left[\sqrt[r]{\frac{-i}{\beta}}\right]}{H_{0}(2)\left[\sqrt{\frac{-i}{\beta}}\right]} \tag{4.13}
\end{equation*}
$$

i.c. the axisymmetric Stokes shear-wave solution, where $H_{0}{ }^{(2)}\left(\begin{array}{l}\text { (})\end{array}\right.$ denotes the sccond Hankel function, of order zero and argument 7. Note also that as $\beta \rightarrow 0$, the planar Stokes shear solution is retriced (in accord with the work of Ackerberg and Phillips 1972). In this limit, a thin Stokes layer forms on the surface of the body and consequently curvalure cffects become less important.

It is a routine matler to continuc this solution to higher orders of E; however litile additional insight is gleaned from this, and instead we go on to consider (bricfly) the outer layer, where $\eta=0(1)$ (see (4.3)).

Writing

$$
\begin{equation*}
\tilde{w}=\hat{w}_{0}(\eta)+\varepsilon \hat{w}_{1}(\eta)+0\left(\varepsilon^{2}\right) \tag{4.14}
\end{equation*}
$$

then

$$
\begin{align*}
& \hat{w}_{0}(\eta)=1 \tag{4.15}\\
& \hat{w}_{1}(\eta)=\hat{w}_{2}(\eta)=\ldots=0 . \tag{4.16}
\end{align*}
$$

In fact the correction to $\hat{w}_{0}(\eta)$ can only be algebraically small in Z^{-1}.

Results obtaincd using this asymptotic structure (in particular (4.8)) are shown for comparison with the fully numerical results as broken lines on Figs. 2-5: lhe agrecment is secn 10 be satisfactory.

However, since the $Z \gg 1$ structure detailed above is obtained without any recourse to upstream conditions, there must be a further element to the downstream flow, not reflected in the above analysis (sec also the comments of Ackerberg and Phillips 1972). This arises from cigenfunctions of the system (2.12)-(2.14). This aspect is investigated next, in some detail.

5. The form of the eigensolutions as $Z \rightarrow \infty$.

Here the form of (exponentially small) cigensolutions as $Z \rightarrow \infty$ is sought. Specifically, we investigate eigensolutions of (3.4), with the basic flow described by Section 4.

As a first approximation to the form of these cigensolutions,
consider the scale $r=0(1)$, and suppose ψ in (3.4) is replaced by $\varepsilon \Psi_{00}(r)$, and terms $O\left(\frac{\widetilde{\psi}}{Z}\right)$ and smaller are neglected. This yiclds

$$
\begin{align*}
\tilde{\psi}_{r r r} & -\frac{\tilde{\psi}_{r r}}{r}+\frac{\tilde{\psi}_{r}}{r^{2}}-i \frac{\tilde{\psi}_{r}}{\beta}-\frac{\varepsilon}{r} \psi_{00}{ }_{r} \tilde{\psi}_{r Z} \\
& -\varepsilon \tilde{\psi}_{Z}\left|\frac{\Psi_{00 r r}}{r}-\frac{\Psi_{0 G r}}{r^{2}}\right|=0 . \tag{5.1}
\end{align*}
$$

Assuming a solution for $\tilde{\psi}$ by scparation of variables, namely

$$
\begin{equation*}
\tilde{\psi}=f(Z) \psi(r) . \tag{5.2}
\end{equation*}
$$

then

$$
\begin{align*}
\psi_{r r r} & -\frac{\psi_{r r}}{r}+\frac{\psi_{r}}{r^{2}}-i \frac{\psi_{r}}{\beta} \\
& \left.-\varepsilon r_{T}\left\{\frac{1}{r} \Psi_{00) r} \Psi_{r}+\psi \left\lvert\, \frac{\Psi_{00 r r}}{r}-\frac{\Psi_{00 r}}{r^{2}}\right.\right]\right\} \\
& =0 \tag{5.3}
\end{align*}
$$

A solution of the assumed form is possiblc only if

$$
\begin{equation*}
r_{Z}+\frac{\Lambda}{\varepsilon} r=0 \tag{5.4}
\end{equation*}
$$

where Λ is a constant. Recalling the definition of ε in (4.2), (5.4) integrates 10 give

$$
\begin{align*}
r(Z) & =\exp \left\{-\frac{\Lambda}{2}|Z \log Z-Z|\right\} \\
& =Z^{-\frac{\Lambda}{2} Z} c^{\frac{\Lambda}{2} Z} \tag{5.5}
\end{align*}
$$

Here it is required that $\operatorname{Re}(\Lambda)>0 \quad 10$ ensure decay as $Z \rightarrow \infty$, and the arbitrary multiplicative constant in $\psi(r)$ has becn included.

However (5.2) and (5.5) are correct only 10 leading order in ε and Z. It turms out the form of $\tilde{\psi}$ required for $r=0(1)$
is

$$
\begin{align*}
\widetilde{\psi}= & h(Z) r(Z) Z^{p}(\log Z)^{q}\left\{\psi_{00}(r)\right. \\
& +\varepsilon \psi_{01}(r)+0\left(\varepsilon^{2}\right) \\
& +\frac{1}{7}\left|\varepsilon \tilde{\psi}_{10(}(r)+0\left(\varepsilon^{2}\right)\right| \\
& \left.+0\left(1 / Z^{2}\right)\right\} \tag{5.6}
\end{align*}
$$

where $f(Z)$ is given by (5.5) and $h(7)$ is smaller than any power of $\log Z$. Further it is found necessary to expand A itself in terms of ascending powers of ε, vi\%

$$
\begin{equation*}
\Lambda=\Lambda_{0}+\varepsilon \Lambda_{1}+\varepsilon^{2} \Lambda_{2}+0\left(\varepsilon^{3}\right) \tag{5.7}
\end{equation*}
$$

p and q are constants to be determined at some later stage. In view of our comments regarding $\operatorname{Re}(\Lambda)$, then $\operatorname{Re}\left(\Lambda_{0}\right)>0$. The form of (5.6) and (5.7) is necessitated because of the series development of the basic flow in powers of ε and $1 / 7$, and is found to be cssential for solubility at higher orders of the solution. (Indecd Goldstein 1983 pointed out the omission of algebraic terms in the stramwise development of the planar eigensolutions in the work of Ackerberg and Phillips 1972. which contained only the exponential development of the flow).

Substitution of (5.6) and the results of Section 4 into (3.4), and taking terms $0\left(h(Z) Z^{-\frac{\Lambda_{0} Z}{2}} e^{\frac{\Lambda_{0} Z}{2}} Z^{p}(\text { log } Z)^{q}\right)$ yiclds the following equation for $\psi(0)$

$$
\begin{equation*}
\mathrm{L},\left(\Psi_{(0)}^{\prime}\right)=0 . \tag{5.8}
\end{equation*}
$$

where

$$
\begin{align*}
& L\left[\Psi_{00}\right] \equiv \psi_{00}{ }^{\prime \prime}-\frac{\psi_{00}{ }^{\prime}}{r}+\psi_{00} \cdot\left[\frac{1}{r^{2}} \cdot \frac{i}{\beta}+\frac{\Lambda_{0}}{r} \Psi_{00}^{\prime}\right] \\
&-\Lambda_{0} \psi_{00}\left[\frac{\Psi_{00}}{r}-\frac{\Psi_{00^{\prime}}}{r^{2}}\right] \tag{5.9}
\end{align*}
$$

Recalling the form of $4^{\prime}(0)$ given in (4.3), then

$$
\begin{align*}
\mathrm{L}\left\{\psi_{00}\right\}= & \psi_{00}{ }^{\prime} \cdot-\frac{\psi_{00}}{r}+\psi_{00}{ }^{\prime}\left[\frac{1}{r^{2}}-\frac{i}{\beta}+\Lambda_{0} \text { logr} r\right] \\
& -\Lambda_{0} \frac{\psi_{00}}{r}=0 . \tag{5.10}
\end{align*}
$$

The boundary conditions to be applicd to this system are those of no-slip and impermeability on $r=1$, i.c.

$$
\begin{equation*}
\Psi_{00}(r=1)=\Psi_{00}{ }^{\prime} \quad(r=1)=0 \tag{5.11}
\end{equation*}
$$

whilst as $r \rightarrow \infty \quad \psi(0)$ should nol be exponentially large. To be more precise on this last point, the threc lincarly independent solutions to (5.10) in this limit take the form

$$
\begin{equation*}
\Psi_{00}{ }^{A} \sim A_{00}{ }^{A}\left\{\log r-\frac{i}{\beta \Lambda_{0}}\right\} \tag{5.12}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{00}^{B}-\frac{A_{00}{ }^{B}}{(\log r) 3 / 4} c^{i \int_{1}^{r} \mid \Lambda_{0} \log r l^{1} d r} \tag{5.13}
\end{equation*}
$$

$$
\begin{equation*}
-i \int_{e^{1}}^{r}\left|\Lambda_{0} \log r\right|^{1} d r \tag{5.14}
\end{equation*}
$$

Clearly either one of (5.13) or (5.14) is inadmissible (if Λ_{0} is complex) duc to the $r \gg 1$ condition, and so

$$
\begin{align*}
\psi_{00}=A_{00}[\log r & -\frac{i}{\beta \Lambda_{0}}+\frac{2}{r^{2} \Lambda_{0} \log r} \\
& \left.+0\left(\frac{1}{r^{2}(\log r)^{2}}\right)\right] \tag{5,15}
\end{align*}
$$

in this limit, where A_{00} is an arbitary constant (amplitude). The system (5.10), (5.11) and (5.15) represents an cigenvalue problem for Ao. However we defer discussion of this problem until the following section (where a detailed investigation is carried out of lhis aspect). Instead, let us turn to consider higher order terms in the expansions (5.6) and (5.7). Taking 1 crms

$$
o\left(h(Z) z^{-\frac{\Lambda_{0} Z}{2}} c^{\frac{\Lambda_{0} Z}{2}} Z^{p} \quad(\log Z)^{q-1}\right)
$$

in (3.4) yiclds

$$
\begin{aligned}
\mathrm{L}\left\{\psi_{01}\right\}= & \Lambda_{1}\left\{-\frac{\psi_{00}{ }^{\prime} \psi_{00}{ }^{\prime}}{\mathrm{r}}+\psi_{00}\left[\frac{\Psi_{00}{ }^{\prime}}{\mathrm{r}}-\frac{\psi_{00}{ }^{\prime}}{\mathrm{r}^{2}}\right]\right\} \\
& +\Lambda_{0}\left\{-\frac{\psi_{00^{\prime} \Psi_{01}}}{\mathrm{r}}+\psi_{00}\left[\frac{\Psi_{01}{ }^{\prime}}{\mathrm{r}}-\frac{\psi_{01}}{\mathrm{r}^{2}}\right]\right\} .
\end{aligned}
$$

However, on account of (4.3) this equation may be written as

$$
\begin{align*}
L\left(\psi_{01}\right)= & \left(\Lambda_{1}+K_{01} \Lambda_{0}\right)\left\{-\frac{\psi_{00^{\prime}} \Psi_{00}}{r}\right. \\
& \left.+\psi_{00}\left(\frac{\Psi_{00}{ }^{\prime}}{r}-\frac{\Psi_{00}{ }^{\prime}}{r^{2}}\right)\right\} \tag{5.17}
\end{align*}
$$

The boundary conditions for this system are csscntially the same as those for $\Psi_{(0)}$; these can only be satisficd if

$$
\begin{equation*}
\Lambda_{1}=-K_{01} \Lambda_{0} \tag{5.18}
\end{equation*}
$$

implying that

$$
\begin{equation*}
\psi_{01}(r)=A_{01} \psi_{00}(r) \tag{5.19}
\end{equation*}
$$

where A01 is a constant (amplitude). It is straightforward 10 determinc higher order terms in the Λ expansion, in a similar rashion. For cxample

$$
\begin{equation*}
\Lambda_{2}=\Lambda_{0} K_{01}^{2}-\Lambda_{0} K_{02}-\frac{1}{2} K_{01} \Lambda_{0} \tag{5.20}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Psi_{02}=A_{02} \Psi_{00}(r) \tag{5.21}
\end{equation*}
$$

Indecd, the following gencral result is applicable

$$
\begin{equation*}
\Psi_{0 n}=A_{0 n} \Psi_{00}(r) \tag{5.22}
\end{equation*}
$$

To progress further, in particular to determinc terms that are
$O\left(Z^{-1}\right)$ smaller than those considered already, let us investigate terms

$$
0\left(h(Z) Z^{-\frac{\Lambda_{0} Z}{2}} c^{\frac{\Lambda_{0} Z}{2}} z^{p-1}(\log Z)^{q-1}\right)
$$

in the governing cquation. This yields the following equation for ψ (o)

$$
\begin{equation*}
\mathrm{L}\left\{\psi_{10}\right\}=p \mathrm{R}_{1}-\Lambda_{0} \mathrm{R}_{2} \tag{5.23}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{1}=\frac{\Psi_{00}{ }^{\prime} \Psi_{00}{ }^{\prime}}{r}+\Psi_{00} \frac{\Psi_{00}^{\prime}}{r^{2}}-\frac{\Psi_{00 \Psi_{00}}{ }^{\prime \prime}}{r}, \\
& R_{2}=\frac{\psi_{00}{ }^{\prime} \Psi_{10}{ }^{\prime}}{r}+\frac{\Psi_{00} \Psi^{\Psi} 10^{\prime}}{r^{2}}-\frac{\Psi_{0} \Psi^{\Psi} 10^{\prime \prime}}{r} . \tag{5.24}
\end{align*}
$$

In vicw of (4.4)

$$
\begin{equation*}
\psi_{10}=K_{10} \Psi_{00} \tag{5.25}
\end{equation*}
$$

and so

$$
\begin{equation*}
R_{2}=K_{10} R_{1} \tag{5.26}
\end{equation*}
$$

Repeating the arguments used to determinc Λ_{1} and Λ_{2} previously, then

$$
\begin{align*}
p & =\Lambda_{0} K_{10} \\
& =\frac{7}{4} \Lambda_{0} . \tag{5.27}
\end{align*}
$$

Finally for this section, Ict us consider bricfly the outer solution, applicable to the $\eta=0(1)$ seale. In view of the $r=0(1)$ solution, in particular its $0(\log r)$ behaviour as $r \rightarrow \infty$, logether with (5.6), then for $\eta=0(1)$ the solution is expected to devetop in the following form

$$
\begin{align*}
& \tilde{\psi}(\eta, Z)=g(Z) h(Z) Z^{p}(\log Z) q\left\{\tilde{\psi}_{0}(\eta, \varepsilon)+\frac{\varepsilon}{Z} \tilde{\psi}_{1}(\eta, \varepsilon)\right. \\
&+O(Z,-2)\} \tag{5.28}
\end{align*}
$$

where

$$
\begin{equation*}
g(Z)=f(Z) / \varepsilon \tag{5.29}
\end{equation*}
$$

It is then possible to obtain an exact solution for $\tilde{\psi}_{0}$ which matches on to the $r=0(1)$ solution. This is given by

$$
\begin{equation*}
\tilde{\psi}_{0}=\tilde{A}_{0}\left|\Lambda_{0} \frac{\tilde{\psi}_{0 \eta}}{\eta}-\frac{i}{\beta}\right| \tag{5.30}
\end{equation*}
$$

where \tilde{A}_{0} is a constant, and

$$
\begin{equation*}
\hat{\Psi}_{0}=\sum_{n=0}^{\infty} \varepsilon^{\eta} \hat{\psi}_{0 n}(\eta) \tag{5.31}
\end{equation*}
$$

If we now expand

$$
\begin{equation*}
\widetilde{\psi}_{0}=\sum_{n=0}^{\infty} \varepsilon^{n} \tilde{\psi}_{O n}(\eta) \tag{5.32}
\end{equation*}
$$

then it is straightforward to show that

$$
\begin{equation*}
\tilde{\Psi}_{00}=A_{00} \tag{5.33}
\end{equation*}
$$

(which matches on to (5.15)), and

$$
\begin{equation*}
\bar{\psi}_{01}=A_{00} \frac{\hat{\Psi}_{01 n}}{\eta}+\tilde{A}_{01} \tag{5.34}
\end{equation*}
$$

where \bar{A}_{01} is an arbitary constant. Other lerms may be oblained similarly.

In the following section we go on to consider numerical solutions
to (5.10). The value of q is determined in the Appendix.

6. Numerical solutions of the eigenvalue problem (5.10)-(5.11)

The problem was tackled using threc separate numerical techniques. The first comprised a fourth order Runge-Kutia lechnique, shooting inwards from $r=r_{\infty}$ (chosen to be suitably large). In particular, Ihe Iechnique involved (i) imposing a solution of the form (5.12) at r_{∞}, gencrating values of $\psi_{0 O^{A}}(r=1)$ and $\psi_{00^{A}} \quad(r=1)$ and then (ii) imposing a solution of the form (5.13) at r_{∞} (or 5.14) depending on the sign of $\left.\operatorname{Rc}\left\{i \Lambda_{0}\right)^{\frac{1}{2}}\right\}$, gencrating values of $\psi(0)^{B}(r=1)$ and $\left.\psi_{00}\right)^{B} \quad(r=1)\left(o r \quad \psi_{00}{ }^{C}(r=1)\right.$ and $\left.\psi_{0 O^{C}}(r=1)\right)$. The value of (0) was then chosen by Newton itcration by imposing (5.11), by forcing the determinant

$$
\begin{array}{lll}
\psi_{00} A^{(r=1)} & \psi_{00}{ }^{B} \quad(r=1) \tag{6.1}\\
\psi_{00^{A}}{ }^{\prime} \quad(r=1) & \psi_{00^{B}} \quad(r=1)
\end{array}
$$

Or

$$
\left|\begin{array}{llll}
\Psi_{00^{A}} & (r=1) & \psi_{00}{ }^{C} & (r=1) \tag{6.2}\\
\Psi_{00^{A}}{ }^{\prime} & (r=1) & \Psi_{00}{ }^{C} & (r=1)
\end{array}\right|
$$

tozero.
The second numerical scheme employed involved using a second-order finite-difference approximation 10 (5.10), constructing a quadra-diagonal system (corresponding to the approximation to (5.10), together with the boundary conditions (5.11), (5.15)) and the determinant of this system was forced to zero by adjusting Λ_{0} by Newlon itcration.

The third numerical scheme used was a direct (global) finite-difference approach; using the same finite-difference scheme as our second scheme, the system was instead written in the form

$$
\begin{equation*}
\underset{\sim}{A}-\Lambda_{0} \underset{\sim}{B}=0 \text {, } \tag{6.3}
\end{equation*}
$$

where $\underset{\sim}{A}$ and $\underset{\sim}{B}$ are both square matrices. The Λ_{0} were determined
by using NAG routinc $F O 2 G J F$, suitable for solving generalised eigenvalue problems of this kind. This scheme has two distinct advantages
(i) of not requiring itcration and (ii) generating multiple values (if present) of Λ_{0} simultancously, however it can require substantial computer storage.

Results from all threc schemes were found to agrec; in practice the procedure was usually to obtain estimates to the values of Λ_{0} using the third scheme. If these were then decmed of to be insufficient accuracy, conanced solutions (obtained on a finer and/or more cxtensive grid) were obtaincd using the second scheme (i.c. the local finite-difference scheme).

Results werc obtained for a range of β. It was found that at all the values of β investigated, there are many (probably an infinite number) valucs of Λ_{0}. Further all threc methods did yield a large number of spurious modes. However these were usually readily identifiable, being strongly dependent upon grid size and range, whilst genuine modes were comparatively grid insensitive.

Results for $\operatorname{Re}\left\{\Lambda_{0}\right\}$ are shown in Fig. 6 and for $\operatorname{lm}\left\{\Lambda_{0}\right\}$ in Fig. 7. Just the first four modes are shown in cach case - higher modes become cxtremely difficult to computc (and, indecd distinguish from each other and also the previously described spurious modes), particularly in the limits of $\beta \rightarrow \infty$ and $\beta \rightarrow 0$. However the trends are clear, namely that $\left|\Lambda_{0}\right| \rightarrow \infty$ as $\beta \rightarrow 0$ and $\left|\Lambda_{0}\right| \rightarrow 0$ as $\beta \rightarrow \infty$, for all modes. In the following section we investigate these two limits asymplotically.

7. Asymptotic solutions of the eigenvalue problem (5,10)

In this section the limits $\beta \rightarrow \infty$ and $\beta \rightarrow 0$ in cquation (5.10) arc considered, for which some analytic progress is possible.

7.1. The limit $\quad B \rightarrow \infty$

Physically, this corresponds to a low frequency limit to the problem. The numerical resulis presented in the previous section indicate that (all lhe) $\Lambda_{0} \rightarrow 0$ as $\beta \rightarrow \infty$. Consequently ir $r=0$ (1), then to Icading order (assuming $\left.\Lambda_{0}=o(1)\right)$

$$
\psi_{00}{ }^{\prime} \cdot-\frac{\psi_{00}{ }^{\prime}}{\mathrm{r}}+\frac{\Psi_{00}{ }^{\prime}}{\mathrm{r}^{2}}=0 \text {, }
$$

with $\psi_{00}(1)=\psi_{00}{ }^{\prime}(1)=0$.
The solution to this system is then

$$
\begin{equation*}
\psi_{00}=B_{0}\left\{r^{2} \log r-\frac{r^{2}}{2}+\frac{1}{2}\right\} \tag{7.2}
\end{equation*}
$$

where B_{0} is some arbitary constant. This solution must ultimately ceasc to be a valid approximation $10(5.10)$ as $r \rightarrow \infty$, specifically when $r=0\left(\Lambda_{0}{ }^{-\frac{1}{2}}\right)$. Considering the particular development of Λ_{0} as $\beta \rightarrow \infty$; this is found to take on the following form, in order to obtain a consistent and meaningful asymptotic solution

$$
\begin{equation*}
\Lambda_{0}=\tilde{\gamma}(\beta)\left|\lambda_{0}+\hat{\varepsilon} \lambda_{1}+0\left(\hat{\varepsilon}^{2}\right)\right| \tag{7.3}
\end{equation*}
$$

where $\quad \hat{\varepsilon}=-\frac{2}{\log \tilde{\gamma}}$,
and $\tilde{\gamma}(\beta)$ must be detcrmincd from

$$
\begin{equation*}
\tilde{\gamma} \log \left(\tilde{\gamma}^{-1}\right)=\beta^{-1} \tag{7.5}
\end{equation*}
$$

This is a transcendental cquation for the small parameter $\tilde{\gamma}$ (sec Duck 1984, Duck and Hall 1989 for similar cxamples). In order 10 oblain a meaningful balance of terms when $\left.r=0\left(\Lambda_{0}\right)^{-\frac{1}{2}}\right)$, it is necessary that

$$
\begin{equation*}
\lambda_{0}=i \tag{7.6}
\end{equation*}
$$

(the leading lerm in the expansion for Λ_{0}).

In view of these comments, and the above comments regarding the scate of r for which (7.2) ceases 10 be a valid approximation to (5.10), we define the outer lengthscale

$$
\begin{equation*}
\rho=\tilde{\gamma}^{\frac{1}{2}} r=O(1) \tag{7.7}
\end{equation*}
$$

where the following problem must be considered

$$
\begin{gather*}
\chi_{\rho \rho \rho}-\frac{1}{\rho} \chi_{\rho \rho}+\chi_{\rho}\left[\frac{1}{\rho} 2+i \log \rho+\lambda_{1}\right] \\
-\frac{i \chi}{\rho}=0 \tag{7.8}
\end{gather*}
$$

with

$$
\begin{align*}
& \chi \sim c_{1}\left|\log \rho-i \lambda_{1}\right| \text { as } \rho \rightarrow \infty, \\
& \chi=0\left(\rho^{2}\right) \text { as } \rho \rightarrow 0, \tag{7.9}
\end{align*}
$$

where c_{1} is an arbitary constant, and χ is related to $\psi(0)$ by

$$
\begin{equation*}
\chi=\frac{\tilde{\gamma}}{\log \tilde{\gamma}^{-\frac{1}{2}}} \psi_{(0)} \tag{7.10}
\end{equation*}
$$

The system (7.7)-(7.8) represents a well-posed eigenvalue problem for the λ_{1} 's which was solved using the three numerical techniques deseribed in the previous section (indecd (7.8) is very similar to (5.10), and is of about the same computational complexity, save for the absence of any physical parameicrs).

Valucs for the first few λ_{1} 's are labulated in Table 1 (accuracy to at least the number of digits shown). It appears that all the $\lambda_{1}{ }^{\prime} s$ possessed the same real value (and hence decay rate) to within the accuracy of the computation. The evidence was that a large (probably infinite mumer of these modes exist: these higher modes were difficult to compute accuralcly, requiring small grid sizes and extensive grid domains. Further, with increasing order, the imaginary part of the λ_{1} 's became progressively more negative, although the difference between modes did diminish. Indecd, these trends can be conlirmed, asymptotically. by carrying out a $\left|\lambda_{1}\right| \gg 1$ analysis on (7.8)-(7.9). In this Iimit, a WKB solution to (7.8) cxists of the form

$$
\begin{align*}
& \chi=\frac{B_{1} \rho^{\frac{1}{2}}}{\left|i \log \rho+\lambda_{1}\right|^{3 / 4}} e^{\int^{\rho} i\left|i \log \rho+\lambda_{1}\right| l d \rho} \\
& +c_{1}\left|\log \rho+i \lambda_{1}\right| \tag{7.11}
\end{align*}
$$

for $\operatorname{Re}\left(\log \rho-i \lambda_{1}\right)>0$ (and the path of integration lics within this region) where

$$
\begin{equation*}
\rho_{0}=c^{i \lambda_{1}} \tag{7.12}
\end{equation*}
$$

(and we cxpect $c_{1}=0\left(B_{1}\right)$), whilsi

$$
\chi=c_{1}\left|\log p-i \lambda_{1}\right|
$$

$$
+\frac{\rho^{\frac{1}{2}}}{\left|i \log \rho+\lambda_{1}\right|^{3 / 4}}\left\{A_{1} c^{\rho_{0}^{\rho} i\left|i \log \rho+\lambda_{1}\right|^{\frac{1}{2}} d \rho}\right.
$$

$$
\begin{align*}
& -\int_{\rho 0}^{\rho} i \mid i \log \rho+\lambda_{1} \|^{\frac{1}{2}} d \rho \\
+ & A_{2} \mathrm{c}^{\rho}
\end{align*}
$$

for $\operatorname{Re}\left\{\log \rho-i \lambda_{1}\right\}<0$ (and the path of integration lics within this region).

A routinc 1 reatment of the transition layer about $\rho=\rho_{0}$ reveals

$$
\begin{equation*}
A_{2}=i A_{1} \tag{7.14}
\end{equation*}
$$

To proced further, consider an inner layer wherein

$$
\begin{equation*}
\rho_{1}=\lambda_{1} \frac{1}{2} \rho=0(1) \tag{7.15}
\end{equation*}
$$

with x satisfying the following ecpation to leading order

$$
\begin{equation*}
\chi_{\rho_{1} \rho, \rho 1}-\frac{1}{\rho} \chi_{\rho_{1 \rho 1}}+\chi_{\rho_{1}}\left(\frac{1}{\rho_{1}^{2}}+1\right)=0 \tag{7.16}
\end{equation*}
$$

the solution of which is

$$
\begin{equation*}
\chi_{\rho_{1}}=\frac{1}{2} B_{0} \rho_{1} J_{0}\left(\rho_{1}\right) \tag{7.17}
\end{equation*}
$$

(the sccond solution of this equation involving $\gamma_{0}\left(\rho_{1}\right)$ is neglected
on account of (7.9)). Taking the limit of (7.17) as $\rho_{1} \longrightarrow \infty$ gives

$$
\begin{equation*}
\chi_{\rho_{1}} \sim B_{0} \sqrt{\frac{\rho_{1}}{2 \pi}} \quad \cos \left(\rho_{1}-\frac{\pi}{4}\right) \tag{7.18}
\end{equation*}
$$

The limit of (7.13) as $\rho \rightarrow 0$ is

$$
\begin{align*}
& \chi \rightarrow c_{1}\left|\log \rho-i \lambda_{1}\right| \\
& +\frac{A_{1} \rho^{\frac{1}{2}} c^{1} I}{\left[i \log \rho+\lambda_{1} \Pi^{3 / 4}\right.}\left\{c^{-i \lambda_{1} \rho^{\frac{1}{2}} \rho_{+}} i c^{-2 I+i \lambda_{1} \frac{1}{2} \rho}\right\} \tag{7.19}
\end{align*}
$$

where

$$
I_{1}=\int_{\rho_{0}}^{0} i\left|i \log \rho+\lambda_{\mid}\right|^{\frac{1}{2}} d \rho
$$

with the integration path lying within Re $\left\{\log \rho-i \lambda_{1}\right\}<0$. If (7.19) is to match with (7.18) then

$$
\begin{equation*}
c^{2 I}=-1 \tag{7.21}
\end{equation*}
$$

which lcads to

$$
\begin{equation*}
\lambda_{1}=\frac{\pi}{4}-i \log |2 \sqrt{\pi} n| \tag{7.22}
\end{equation*}
$$

where n is a (large) positive integer. For consistency, we also require

$$
\begin{equation*}
B_{0}=2 i \frac{\sqrt{2 \pi}}{\lambda_{1} \frac{1}{2}} A_{0} \tag{7.23}
\end{equation*}
$$

The formula represented by (7.22) was used to obtain asymptotic cstimates to the results shown in Table 1. Mode ll corresponds 10 $\mathbf{n}=1$, mode III corresponds $t o n=2$ and so on; it is seen the agrecment between the computed asymptotic results is most satisfactory, $\left(\frac{\pi}{4}=0.785 \ldots\right)$. It is quite clear that this asymptotic form will fail when $\mathbf{n}=O\left(\tilde{\gamma}^{-1}\right)$.

The leading order terms, namely $\operatorname{Re}\left(\Lambda_{0}\right) \doteq \frac{\pi}{4} \widetilde{\gamma} \widetilde{\varepsilon}$ and $\operatorname{Im}\left(\Lambda_{0}\right) \doteq$ $\tilde{\gamma}$ are shown on Figs. 6 and 7 respectively, for comparison with the numerical solutions oblained from the full equation, (5.10). The results are not contradictary, given the "largeness" of the small parameter $\hat{\varepsilon}$. Indecd, computations for Λ_{0} from (5.10) at larger
values of β did become excecdingly difficult, duc to the large lengthscalc $\left(0\left(\tilde{\gamma}^{-1}\right)\right)$, logether with mode "jumping" caused by the close proximaty of modes, which made the use of grid refinement with the local method impractical.

7.2. The Limit $B \rightarrow 0$

This corresponds to the high frequency limit of the problem. According to the numerical results presented in Section 6 I A_{0} increases as $\quad \beta \rightarrow 0 . \quad$ This limit is now investigaled.

It is possible to write a WKB-type approximate solution lo (5.10) (assuming $\quad \Lambda_{()} 1$ and β^{-1} are both large) as

$$
\begin{aligned}
& \Psi_{0 O}(r)=B_{1}\left[\log r-\frac{i}{\Lambda_{0} \beta}\right] \\
& \quad+\left[\begin{array}{llll}
\Lambda_{0} & \log r & -\frac{i}{\beta}
\end{array}\right]^{-5 / 4} r^{\frac{1}{2}}\left\{B_{2} c^{i} \int_{0}^{r} \operatorname{l\Lambda _{0}} \log r \cdots \frac{i}{\beta}\right]^{\frac{1}{2}} d r
\end{aligned}
$$

$$
\begin{equation*}
\left.+B_{3} c^{-i f_{0}^{r}\left|\Lambda_{0} \log r-\frac{i}{\beta}\right| \frac{1}{2} d r}\right\} \tag{7.24}
\end{equation*}
$$

($\operatorname{for} \operatorname{Re}\left\{\Lambda_{0} \log r-\frac{i}{\beta}\right\}<0$, and the palh of integration lics within this region), where

$$
\begin{align*}
& B_{3}=\frac{B_{2} c^{2 i I}\left\{i\binom{-i}{\beta}^{3 / 2}-\Lambda_{0}\right\}}{i\left(-\frac{i}{\beta}\right)^{3 / 2}+\Lambda_{0}} \tag{7.25}\\
& B_{1}=-\Lambda_{0}\left(-\frac{i}{\beta}\right)^{-1 / 4}\left[B_{2} c^{i l}+B_{3} c^{-i l}\right] \tag{7.26}
\end{align*}
$$

and

$$
\begin{equation*}
r_{0}=\operatorname{cxp}\left[\frac{i}{\beta \Lambda_{0}}\right] \tag{7.27}
\end{equation*}
$$

is the turning point, and

$$
\begin{equation*}
I=-\int_{1}^{r_{0}}\left[\Lambda_{0} \log r-\frac{i}{\beta}\right]^{\frac{1}{2}} \mathrm{dr} \tag{7.28}
\end{equation*}
$$

(7.25) and (7.26) are obtained by imposing boundary conditions on $r=1$. and the integration path lics within $\operatorname{Re}\left\{\Lambda_{0} \operatorname{logr}-\frac{i}{\beta}\right\}<0$.

For $\operatorname{Re}\left\{\Lambda_{0} \log r-\underset{\beta}{\beta}\right\}>0$ the WKB-type approximate solution can be written

$$
\begin{aligned}
\Psi_{00}(r) & =\beta_{1}\left[\log r-\frac{i}{\Lambda_{0} \beta}\right] \\
& +\frac{B_{4} r^{\frac{1}{2}}}{\left[\frac{1}{\beta}-\Lambda_{0} \log r\right]^{5 / 4}} e^{\int_{0}^{r}\left[\frac{i}{\beta}-\Lambda_{0} 10 g r\right]^{\frac{1}{2}} d r},(7.29)
\end{aligned}
$$

where it has been assumed $\operatorname{Re}\left\{\left(-\Lambda_{0}\right)^{\frac{1}{2}}\right\}<0$ (otherwise we require the negative root inside the integral), B_{1} is given by (7.26), and the integation path lies within $\operatorname{Rc}\left(\Lambda_{0} \operatorname{logr}-\frac{\mathfrak{i}}{\beta}\right\}>0$. In order that (7.29) matches $10(7.24)$ across the transition layer of thickness $O\left(\Lambda_{0}{ }^{-1 / 3}\right)$, (routine) treatment (sce also the analysis for $\Lambda_{0}=0\left(\beta^{-3 / 2}\right)$ below) of the latter yiclds

$$
\begin{equation*}
B_{1}=-i B_{2} \tag{7.30}
\end{equation*}
$$

and the following dispersion relationship for Λ_{0} results

$$
\begin{equation*}
\left(-\frac{i}{\beta}\right)^{3 / 2}-i \Lambda_{0}=c^{2 i l}\left\{i\left(-\frac{i}{\beta}\right)^{3 / 2}-\Lambda_{0}\right\} \tag{7.31}
\end{equation*}
$$

It turns out that there are two distinct familics of solution as $\beta \rightarrow 0$.

The first family of solutions as $\beta \rightarrow 0$ corresponds to $\Lambda_{0}=0\left(\beta^{-1}\right)$. More specifically

$$
\begin{equation*}
\Lambda_{0}=\beta^{-1}\left[\hat{\Lambda}_{0}+\beta^{1 / 3} \hat{\Lambda}_{1}+\ldots\right] \tag{7.32}
\end{equation*}
$$

where $\hat{\Lambda}_{0}, \hat{\Lambda}_{1}$ are generally $0(1)$ quantitics. This implies that
$r_{0} 0^{-1}=0(1)$. Consequently 10 leading order (7.31) reduces 10

$$
\begin{equation*}
c^{2 i l}=-i \tag{7.33}
\end{equation*}
$$

However it appears $I=O\left(\beta^{-\frac{1}{2}}\right)$, and so there is a contradiction, which can only be avoided if

$$
\begin{equation*}
\int_{1}^{r_{0}}\left[\hat{\Lambda}_{0} \log r \cdot i\right]^{\frac{1}{2}} d r=0 \tag{7.34}
\end{equation*}
$$

or

$$
\int_{0}^{\frac{i}{\Lambda_{0}}} c^{-\rho} \rho^{\frac{1}{2}} d \rho=0
$$

or

$$
\begin{equation*}
\gamma\left(\frac{3}{2}, \frac{i}{\hat{\Lambda}_{0}}\right)=0 \tag{7.36}
\end{equation*}
$$

where $\gamma\left(\%_{1}, \%_{2}\right)$ represents the incomplete gamma function. This represents an cigenvalue problem for $\hat{\Lambda}_{0}$, which was solved numerically using a combination of trapezoidal quadrature and Newton itcration; results for the first few $\hat{\Lambda}_{0}$ are shown in Table 2 . Note that there appear to be many values (probably an infinite number), although these secm to be concentrated within a finite annular region in the complex $\hat{\Lambda}_{0}$ plane. As the order increased, the values become very close to neighbouring values, and the computation became excecdingly difficult; however, with increasing order the values of $\hat{\Lambda}_{0}$ do secm to be approaching a finite value (indecd the author was unable to find any solution for $\left.\hat{\Lambda_{0}} \mid \leq 0.098\right)$. Notc 100 that it is casy to show using integration by parts that there are no solutions (7.35) as $\hat{A_{0}} \mid \rightarrow \infty$ whilst using the asymptotic cxpansion for the incomplete gamma function (Abramowitz and Stcgun 1964) it is also possible to show that no solutions exist as $1 \Lambda_{0} \mid \rightarrow 0$ cither: this then confirms our statement about the values of Λ_{0} being confincd to an annular region in complex $\hat{\Lambda}_{0}$ space.

Note also that both $\hat{\Lambda}_{0}$ and complex conjugate $\left\{\hat{\Lambda}_{0}\right\}$ are roots of (7.35); however the latter family of solutions may be disregarded since in all cases we require $\Lambda_{0} \quad 10$ possess a positive real part.

The second family of solutions for Λ_{0} occurs when $\Lambda_{0}=0\left(\beta^{-3 / 2}\right) . \quad$ In this casc, from (7.27), $\operatorname{Ir}_{0^{-1}} \mid \ll 1$, and indecd the wall ($r=1$) lics inside the transition laycr. Consequently, we are unable to use (7.31), but must consider the transition layer in detail (although lhis is quite a routinc task).

Suppose

$$
\begin{equation*}
\Lambda_{0}=\beta^{-3 / 2} \tilde{\Lambda}_{0} \tag{7.37}
\end{equation*}
$$

where $\tilde{\Lambda}_{(0)}=0(1)$. Then defining

$$
\begin{equation*}
\hat{\zeta}=(r-1) \beta^{-\frac{1}{2}} \tag{7.38}
\end{equation*}
$$

to Icading order (5.10) reduces 10

$$
\begin{gather*}
\psi_{00 \zeta \hat{\zeta} \hat{\zeta}}+\psi_{00 \hat{\zeta}\left(\tilde{\Lambda}_{0} \hat{\zeta}-i\right)} \begin{array}{r}
-\tilde{\Lambda}_{0} \psi_{00}=0 \\
\text { Writing } \quad \hat{\zeta}=\left(-\tilde{\Lambda}_{0}\right)^{-1 / 3} \sigma+\frac{i}{\tilde{\Lambda}_{0}}
\end{array} .
\end{gather*}
$$

and differentiating (7.39) with respect to $\hat{\zeta}$, yiclds

$$
\begin{equation*}
\Psi_{00} 0_{\sigma \sigma \sigma \sigma}-\sigma \Psi_{00_{\sigma \sigma}}=0 \tag{7.41}
\end{equation*}
$$

The required solution (that is not exponentially large as $\sigma \rightarrow \infty$) is

$$
\begin{equation*}
\psi_{0_{\sigma \sigma}}=D A i \quad(\sigma) \tag{7.42}
\end{equation*}
$$

(where D is independent of σ).
The implementation of the boundary conditions on $\hat{\zeta}=0$ requires $\Psi_{0} 0 \hat{\zeta} \hat{\zeta} \hat{\zeta} \quad(\hat{\zeta}=0)=0$, and s 0

$$
\begin{equation*}
A i^{\cdot}\left(\frac{-i\left(-\tilde{\Lambda}_{0}\right)^{1 / 3}}{\tilde{\Lambda}_{0}}\right)=0 \tag{7.43}
\end{equation*}
$$

Now since the zerocs of the Airy function and its derivative are confined exclusively to the negative real axis, then

$$
\begin{equation*}
A i^{\prime}\left(-\zeta_{n}\right)=0, \quad(n=1,2,3, \ldots) \tag{7.44}
\end{equation*}
$$

where the ζ_{n} are real and positive and tabulated by Abramowitz and

Stegun (1964). Conscquently

$$
\begin{equation*}
\tilde{\Lambda}_{0}=\frac{1+i}{2^{\frac{1}{2}} \zeta_{n}} 3 / 2^{+} 0\left(\beta^{\frac{1}{2}}\right) \tag{7.45}
\end{equation*}
$$

where the appropriate roots have been chosen 10 ensure boundedness of the Airy function.

It is interesting (although, in some ways not too surprising) that (7.45) is identical to the corresponding expression found in the analogous planar study (Lam and Rolt 1960, Ackerberg and Phillips 1972 and Goldstein 1983). although of course the corresponding f(7) is quite different in the present case.

As a check on the numerical results as $\beta \rightarrow 0$, on Fig 8 the variation of $\beta^{3 / 2} \Lambda_{(}$with β is shown (first threc modes). It is very clear that these results approach those given by (7.45) as $\beta \rightarrow 0$. The $O\left(\beta^{-1}\right)$ family of results refer 10 higher modes, and thos it is not realistically possible to compare our numerical results with this family.

In the following section we draw some conclusions from this work.

8. Conclusion

In this paper the cffect of small amplitude frecstream oscillations on an otherwisc steady boundary layer on an axisymmetric body has been investigated. Particular attention has been focused on the fardownstream cigenvalues and cigensolutions. As noted in Scction 1 , in the casc of the planar problem, two distinct familics of cigensolutions have been presented, namely those originally considered by Lam and Rott (1960) and those considered by Brown and Stewartson (1973a,b), with the former family having decay rates that decreasc with increasing order, whilst the latter family have decay rates that increase with increasing order. In the present study, eigenvalucs appear to occur with decreasing decay rate with increasing order. However. some of the asymptotic work in Scetion 7 (in particular that relcvant to $\beta \rightarrow \infty$, with $\Lambda_{0}=0\left(\beta^{-1}\right)$) does strongly suggest that a finife value of Λ_{0} is being approached with increasing order. Indecd, the author was unable lo obtain a consistent asymptotic solution $t 0(5.10)$ for $\beta=0(1), \Lambda_{0} \rightarrow 0$, again suggesting the finitc limit of $\Lambda_{(}$with increasing order. This, in some ways may be regarded as a rather more satisfactory state of affairs than that found with the Lam and Rolt (1960) cigensolutions, which have decay rates that become diminisingly small with increasing order (although sce our comments, attributed to Goldstein et al 1983, in Scetion 1). Further the $\beta \rightarrow 0$ work of Section 7 docs suggest that all modes possess the same decay rate in this limit up to at least second order.

However, it may well be that the planar work of Brown and Stewartson (1973a,b) could perhaps be extended to include the effects of curvature, to yicld a further (perhaps related) family of eigensolutions. A further interesting study would be an investigation of the far-downstream evolution of the eigensolutions. Just as in the planar casc, thesc all become
increasingly oscillatory far downstram, and will, as a consequence, ultimately cease to be valid approximations to the Navict Stokes equations. This will lead, presumably, to the formation of unstable TollmienSchlichting waves, in a manner amalogous lo that described by Goldstein (1983) in the plamar case.

However, there are a number of (other) important differences between the planar and the axisymmetric eigensolutions and cigenvalues. Most importantly the downstream (i.c. axial) behaviour of these cigensolutions (described by $f(Z)$) which is quilc different in the two cases, in the axisymmetric case being given by (5.6) whilst in the planar Blasius case

$$
\begin{equation*}
f(x)=c^{-\Lambda x^{3 / 2}} x^{p} \tag{8.1}
\end{equation*}
$$

as shown by Goldstein (1983), (where x is the streamwise coordinate). Note that if the basic flow were of the form $\psi=x^{m} F(\eta)$, with $\eta=y / x^{m}, y$ being the transerse boundary layer variable, then using arguments similar (o) this paper.

$$
\begin{equation*}
f(Z)=x^{p} \exp \left\{-\Lambda x^{2 n-m+1}\right\}, \text { for } 2 n-m+1>0 \tag{8.2}
\end{equation*}
$$

Appendix

Consider terms

$$
0\left\{h(Z) Z^{-\frac{\Lambda_{0} Z}{2}} e^{\frac{\Lambda_{0} Z}{2}} Z^{p-1}(\log Z)^{q-1}\right\}
$$

in (5.1) to cnable us to determine the value of q.
It is found, afler some algebra

$$
\begin{aligned}
& L\left\{\Psi_{11}\right\}=p\left\{\frac{\Psi_{00}{ }^{\prime} \Psi_{01}{ }^{\prime}}{r}+\frac{\Psi_{01}{ }^{\prime} \Psi_{0 O}{ }^{\prime}}{r}\right. \\
& \left.-\Psi_{00}\left[\frac{\Psi_{01}{ }^{\prime}}{r}-\frac{\Psi_{01}{ }^{\prime}}{r^{2}}\right]-\Psi_{01}\left[\frac{\Psi_{00}{ }^{\prime}}{r}-\frac{\Psi_{00}{ }^{\prime}}{r^{2}}\right]\right\} \\
& +q\left\{\frac{\Psi_{00}{ }^{\prime} \Psi_{00}{ }^{\prime}}{2 r}-\frac{1}{2} \Psi_{00}\left[\frac{\Psi_{00}{ }^{\prime}}{r}-\frac{\Psi_{00}{ }^{\prime}}{r^{2}}\right]\right\} \\
& +\Lambda_{1}\left\{\frac{\Psi_{00}{ }^{\prime} \Psi_{10^{\prime}}}{r}-\frac{\Psi_{10^{\prime}} \Psi_{00^{\prime}}}{r}+\psi_{0}\left[\frac{\Psi_{10^{\prime}}}{r}-\frac{\Psi_{10^{\prime}}}{r^{2}}\right]\right. \\
& +\Psi_{10}\left[\frac{\left.\left.\Psi_{00}{ }^{\prime}-\frac{\Psi_{00}}{r}\right]\right\}, ~ r^{2}}{r}\right] \\
& +\Lambda_{0}\left\{-\frac{\Psi_{10^{\prime}} \Psi_{01}{ }^{\prime}}{r}-\frac{\Psi_{10^{\prime}} \psi_{01}{ }^{\prime}}{r}-\frac{\psi_{11^{\prime}} \psi_{00^{\prime}}}{r}\right. \\
& +\psi_{00}\left[\frac{\Psi_{11}}{r}-\frac{\Psi_{11}}{r^{2}}\right]+\psi_{(0)}\left[\frac{\Psi_{10} 0^{\prime}}{r}-\frac{\Psi_{10}}{r^{2}}\right] \\
& \left.+\psi_{10}\left[\frac{\Psi_{01}{ }^{\prime} '}{r}-\frac{\Psi_{01}{ }^{\prime}}{r^{2}}\right]\right\} \\
& -\frac{1}{2 r} \Psi_{00^{\prime}} \Psi_{00^{\prime}}+\frac{1}{2} \Psi_{00}\left[\frac{\Psi_{00^{\prime}}{ }^{\prime}}{r}-\frac{\Psi_{00^{\prime}}}{\mathrm{r}^{2}}\right] \text {. }
\end{aligned}
$$

(A.1)

Recalling the expressions obtained already for $p, \Lambda_{1}, \psi_{01}, \psi_{10}$, (A.1) leads to the rollowing (slightly simplificd) equation

$$
\begin{aligned}
L\left\{\psi_{11}\right\}= & Q(r)\left\{\Lambda_{0} K_{10} A_{01}+\frac{q}{2}+\Lambda_{0} K_{01} A_{10}-\left(A_{10}+K_{10}\right) \Lambda_{0}\right\} \\
& -\frac{\Psi_{11} \psi_{00}}{r}+\psi_{00}\left[\frac{\Psi_{11}}{r}-\frac{\Psi_{11}}{r^{2}}\right] \\
& +\frac{1}{2 r} \psi_{0}{ }^{\prime} \Psi_{00^{\prime}}+\frac{1}{2} \Psi_{00}\left[\frac{\psi_{00^{\prime}}}{r}-\frac{\psi_{00}{ }^{\prime}}{r^{2}}\right], \quad(A .2)
\end{aligned}
$$

where

$$
\begin{equation*}
Q(r)=\frac{\Psi_{00^{\prime}} \psi_{00^{\prime}}}{r}-\Psi_{00}\left[\frac{\Psi_{00^{\prime}}}{r}-\frac{\Psi_{00}}{r^{2}}\right] . \tag{A.3}
\end{equation*}
$$

It is quite clear that $\psi_{11}=O\left(r^{2}(\log r)^{2}\right)$ as $r \rightarrow \infty$. To simplify arguments later, we write

$$
\begin{equation*}
\psi_{11}=\psi_{11}(r)+q \psi_{11}{ }^{I I}(r) . \tag{A.4}
\end{equation*}
$$

where $\psi 1^{I I}(r)$ is any regular function which has the following behaviour as $r \rightarrow \infty$

$$
\begin{equation*}
\psi_{11} I_{(r)}^{I I}=-\frac{A_{00}}{\beta \AA_{0}}+o(1) \tag{A.5}
\end{equation*}
$$

The governing equation for $\psi_{11}{ }^{I}$ may then be writien in the form

$$
\begin{equation*}
L\left\{\psi_{11}^{I}\right\}=R_{3}(r)+q R_{4}(r) \tag{A.6}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{3}(r)= & Q(r)\left\{\Lambda_{0} K_{10} A_{01}+\Lambda_{0} k_{01} \Lambda_{10}\right. \\
& \left.-\left(A_{10}+K_{10}\right) \Lambda_{0}\right\}-\frac{\Psi_{11} \Psi_{00}^{\prime}}{r} \\
& +\Psi_{00}\left[\frac{\Psi_{11}^{\prime}}{r}-\frac{\Psi_{11}^{\prime}}{r^{\prime}}\right] \\
& +\frac{1}{2 r} \psi_{0}^{\prime} \Psi_{00}^{\prime}+\frac{1}{2} \Psi_{00}\left[\frac{\Psi_{00}}{r}-\frac{\Psi_{0}^{\prime}}{r^{2}}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
R_{4}(r)=-\frac{1}{2} Q(r)-L\left[\psi_{11}^{I I}\right] \tag{A.7}
\end{equation*}
$$

The boundary conditions that must be applied to this system are

$$
\begin{aligned}
& \psi_{11} 1^{I}(1)=-\psi_{11} I^{I}(1) \\
& \psi_{11} I^{\prime}(1)=-\psi_{11^{I I}}(1)
\end{aligned}
$$

and that

$$
\begin{equation*}
\psi_{11}{ }^{I} \rightarrow 0 \text { as } r \rightarrow \infty . \tag{A.8}
\end{equation*}
$$

The value of q is then determined by the condition that a solution to this system exists.

Consider now the (complex conjugate of the) adjoint to the system (5.10), denoted by $\psi^{+}(r)$, and determined from

$$
\begin{align*}
\psi^{+\cdots} & +\frac{\psi^{+\cdots}}{r}+\psi^{+\cdot}\left[\Lambda_{0} \log r-\frac{i}{\beta}-\frac{1}{r^{2}}\right] \\
& +2 \frac{\Lambda_{0}}{r} \psi^{+}=0 \tag{A.9}
\end{align*}
$$

subject to the boundary conditions

$$
\begin{align*}
& \psi^{+}(r=1)=0, \quad \psi^{+}(r=1)=1(\text { say }) \tag{A.10}\\
& \psi^{+}=0\left((\log r)^{-2}\right) \text { as } r \longrightarrow \infty \tag{A.11}
\end{align*}
$$

If we now further suppose, as we are quite at libery to so do (although this simplifics, but is not crucial for our arguments) that

$$
\begin{equation*}
\psi 111 I(1)=\psi 1111 \cdot(1)=0 \tag{A.12}
\end{equation*}
$$

then

$$
\begin{equation*}
q=-\frac{\int_{1}^{\infty} R_{3}(r) \psi^{+}(r) d r}{\int_{1}^{\infty} R_{4}(r) \psi^{+}(r) d r} \tag{A.13}
\end{equation*}
$$

(Hartman 1964, for example).
This (at least in principle) detcrmincs, or provides a means of determinining the index of the logarithmic term multiplying $f(Z)$. At this stage it would also appear to be legitimate to set the function $h(Z)$ in (5.6) equal to a constant, although categorical detcrmination of this point secms difficult because of the algebraic complexity in extending the analysis to higher order.

Acknorledgement

The computations presented in this paper were carricd out with computer time provided by the Universily of Manchester and SERC Grant No. GR/E/25702. This rescarch was also supported by the National Acronautics and Space Administration under NASA contract No. NAS $1-18605$ while the author was in residence at the Institute for Computc Applications in Science and Engincering (ICASE), NASA Langley Rescarch Center, Hampion, VA23665. The author wishes to thank the referees for some very helpful comments on an carlicr version of this paper, including pointing out cquation (7.22).

References

ABRAMOWITZ, M. and STEGUN, I.A. 1964. Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, Washington D.C.: U.S. Government Printing Office.

ACKERBERG, R.C, and PHILLIPS, J.H. 1972. The Unsteady laminar boundary layer on a semi-infinite flat plate duc to small fluctuations in the magnitude of the frecstream velocity. J. Fluid Mech. 51, 137.

BROWN, S.N. and STEWARTSON, K. 1973a. On the propagation of disturbances in a laminar boundary layer I. Proc. Camb. Phil. Soc. 73, 493.

BROWN, S.N. and STEWARTSON, K. 1973b. On the propagation of disturbances in a laminar boundary layer II. Proc. Camb. Phil. Soc. 73, 503.

BUSH, W.B. 1976. Axial incompressible viscous flow past a slender body of revolution, Rocky Mount. J. of Math. 6, 527.

DUCK, P.W. 1984. The cffect of a surface discontinuity on an axisymmetric boundary layer. Quart. J. Mcch. Appl. Maths. 37, 57.

DUCK, P.W. 1989. A numerical method for treating time-periodic boundary layers. J. Fluid Mech. 204, 544.

DUCK, P.W. and BODONYI, R.J. 1986. The wall jet on an axisymmetric body. Quart. J. Mceh. Appl. Maths. 34, 407.

DUCK, P.W. and HALL, P. 1989. On the interaction of acxisymmetric Tollmien-Schlichting waves in supersonic flow. Quart. J. Mech. Appl. Maths. 42, 115 (also ICASE report no. 88-10)

GLAUERT, M.B. and LIGHTHILL, M.J. 1955. The axisymmetric boundary layer on a long thin cylinder. Proc. R. Soc. Lond. A230, 188.

GOLDSTEIN, M.E. 1983. The evolution of Tollmien-Schlichting waves near a leading edge. J. Fluid Mcch. 127, 59.

GOLDSTEIN, M.E. SOCKOL, P.M. and SANZ, J. 1983. The evolution of Tollmicn-Schlichting waves near a leading cdge. Part 2. Numerical determination of amplitudes. J. Fluid Mcch. 129, 443.

KELLER, H.B. and CEBECI, T. 1971. Accurate numerical methods for boundary-layer flows. Part l. Two-dimensional laminar flows. Proc. Inf. Conf. on Numerical Mcthods in Fluid Dynamics (Published as Lecture Notcs in Physics. Springer).

LAM, S.H. and ROTT, N. 1960. Theory of linearised time-dependent boundary layers. Cornell University GSAE Rep. AFOSR. TN-60-1100
L.IGITHILL, M.J. 1954. The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. A224, 1.

PEDLEY, T.J. 1972. Two-dimensional boundary layers in a frec stream which oscillate without reversing. J. Fluid Mech. 55, 359.

PHILLIPS, J.H. and ACKERBERG, R.C. 1971. A numerical method for integrating the unsteady boundary-layer equations when there are regions of backflow. J. Fluid Mcch. 58, 561.

ROTT, N. and ROSENWEIG, M.L. 1980. On the response of the laminar boundary layer to small fluctuations of the frec-stream velocity. J. Acro. Sci. 27, 741.

SEBAN, R.A. and BOND, R. 1952. Skin rriction and heat iransfer characteristics of a laminar boundary layer on a cylinder in axial incompressible flow. J. Acro. Sci. 10, 171.

STEWARTSON, K. 1955. The asymplotic boundary layer on a circular cylinder in axial incompressible flow. Quart. Appl. Maths. 13, 113.

Mode	λ_{1}	Asymptotic λ_{1}
1	$.785+.160 i$	
II	. $785-1.282 i$	$\frac{\pi}{4}-1.266 i$
111	.785-1.934i	$\frac{\pi}{4}-1.959 \mathrm{i}$
IV	. $785-2.340 \mathrm{i}$	$\frac{\pi}{4}-2.364 i$
V	.785-2.631i	$\frac{\pi}{4}-2.652 i$
VI	.785-2.858i	$\frac{\pi}{4}-2.875 i$
VII	. $785-3.044 i$	$\frac{\pi}{4}-3.057 i$
V1II	. $78.5-3.200 \mathrm{i}$	$\frac{\pi}{4}-3.211 i$

Table 1 Valucs of λ_{1}

$\hat{\Lambda}_{0}$
$.1408+.2262 \times 10^{-1} \mathrm{i}$
$.7455 \times 10^{-1}+.7991 \times 10^{-2} \mathrm{i}$
$.5076 \times 10^{-1}+.4181 \times 10^{-2} \mathrm{i}$
$.3848 \times 10^{-1}+.2603 \times 10^{-1} \mathrm{i}$
$.3099 \times 10^{-1}+.1790 \times 10^{-2} \mathrm{i}$
$.2594 \times 10^{-1}+.1313 \times 10^{-2} \mathrm{i}$
$.2231 \times 10^{-1}+.1007 \times 10^{-2} \mathrm{i}$
$.1952 \times 10^{-1}+.7996 \times 10^{-3} \mathrm{i}$
$.1742 \times 10^{-1}+.6514 \times 10^{-3} \mathrm{i}$
$.1571 \times 10^{-1}+.5418 \times 10^{-3} \mathrm{i}$

Table 2 valucs of $\hat{\Lambda}_{0}$

Fig. 2. Variation of $\left.\tilde{\psi}_{r r}\right|_{r=1}, \beta=\neq$

Fig. 3. Variation of $\left.\tilde{\psi}_{r r}\right|_{r=1}, \beta=1$

Fig. 4. Variation of $\left.\tilde{\psi}_{r r}\right|_{r=1}, \beta=2$

Fig. 5. Variation of $\left.\tilde{\Psi}_{r r}\right|_{r=1}, \beta=5$

Fig. 6. Variation of $\operatorname{Rc}\left\{\Lambda_{0}\right\}$ with β.

Fig. 7. Variation of $\operatorname{Im}\left\{\Lambda_{0}\right\}$ with β.

Fig. 8. Variation of $\beta^{3 / 2} \Lambda_{0}$ with β, first threc modes.

[^0]: *Research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

