
NASA
Technical
Paper
291 5

1989

National Aeronautics and
Space Administration
Off ice of Management
Scientific and Technical
Information Division

The Fault-Tree Compiler (FTC)

Program and Mathematics

Ricky W. Butler
Langley Research Center
Hampton, Virginia

Anna L. Martensen
PRC Kentron, Inc.
Aerospace Technologies Division
Hampton, Virginia

Contents

Introduction . 1

Fault-Tree Construct ion . 1

The FTC User Interface : . 4

FTC Program Overview . 4 .

Fault-Tree Definition Syntax . 5
Lexical Details . 6
Constant Definitions . 6
Variable Definition . 6
Expressions . 7
Basic Event Definition . 8
Gate Definition . 8

Hierarchical Fault Trees . 9

FTC Commands . 10
EXIT . 11

INPUT 11
PLOT . 11
READ . 11

.

RUN . 11
SHOW . 12
ACCURACY . 12

CARE3 12
ECHO . 12
LIST . 12
POINTS . 12

TIME 12
FTC Graphics . 13

PLOT Command . 13
PLOTINIT and PLOT+ Commands 13

Example FTC Sessions . 13
Outline of a Typical Session . 13
Examples . 14

Example1 . 14
Example2 . 14
Example3 . 15
Example4 . 16
Example5 . 19
Example6 . 20

.

.

Mathematical Foundations of the FTC Program 22

Preliminaries . 22

The Basic Approach . 23

iii

PRECEDtNG PAGE BLANK NOT FiLMED

.
.
.

Notation 24

The FTC Algorithm 24
Basic Algorithm 25

Lemma1 27
Lemma2 27
Lemma3 28
Pruning error bound 29

30
31

Domain of Efficiency 32

32

33

References 35

Justification for the Basic Algorithm 27
.
.
.

.
More Efficient Algorithm .
Derivation of Error Bound for the More Efficient Algorithm

.

Concluding Remarks

Appendix-Error Messages .

.

iv

Introduction
Fault-tree analysis was first developed in 1961-62 by H. A. Watson of Bell Telephone

Laboratories under an Air Force study contract for the Minuteman Launch Control System.
The use of fault trees has since gained widespread support and is often used as a failure
analysis tool by reliability engineers. Though conceptually simple, especially for those with a
knowledge of basic circuit logic, the.fault tree can be a useful tool. Although many computation
techniques have been developed, a single superior algorithm has not been discovered. Some
algorithms are superior for some problems but inferior for others (ref. 1). In this paper a new
algorithm is presented which is tailored for the analysis of fault trees used to model fault-
tolerant architectures-in particular, fault trees where the dominant failure modes contain a
small number of basic events (e.g., 1, 2, or 3). This paper also presents a new program called
the Fault-Tree Compiler (FTC) which is based on this new solution technique. The program
provides the user with an expressive language for defining his fault tree and automatically
calculates the probability of the top event in the tree. The program can perform a sensitivity
analysis with respect to any specified parameter of the fault tree, such as a component failure
rate or a specific event probability.

The motivation for the development of the Fault-Tree Compiler began with the observation
that the Computer- Aided Reliability Estimation (CARE 111) program (ref. 2) was often being
used for the analysis of fault trees. Although CARE I11 can be used to solve fault trees, it
was designed primarily to analyze complex reconfigurable systems where the fault-handling
capabilities must be included in the reliability analysis. Therefore, it was not optimized
for systems that can be described by a simple fault tree alone. The CARE I11 fault-tree
code provided a minimal framework for the FTC mathematical solution technique. A more
efficient solution technique which utilized an automatic pruning technique was developed and
implemented in FTC. (The original CARE I11 algorithm required the user to manually prune
the search space.) An error bound on the pruning technique has been derived which is presented
in detail in this paper. The user interface to the program is a high-level language for describing
fault trees. The improved solver and the Fault-Tree Compiler input language and sensitivity
analysis capabilities provide a powerful fault-tree solver; in short,

1. The FTC program has a simple yet expressive input language
2. Automatic sensitivity analysis is provided
3. The mathematical solution technique can be used to obtain accuracy to within a user-

4. A hierarchical capability is provided which can simplify the preparation of the fault-tree

5. FTC is capable of handling common mode events, where the same event may appear

The FTC solution algorithm was implemented in FORTRAN, and the user interface, in
Pascal. The program executes on Digital Equipment Corporation (DEC) VAX computers
running the VMS operating system and on computers with the Berkeley UNIX operating
system.

This paper is organized as follows. First, the reader is given a brief introduction to fault
trees. Next, the user interface to the FTC program is given along with several example sessions.
Finally, the mathematical basis of the program is given, including the new algorithm and a
theorem which provides an error bound for the algorithm.

A short tutorial on the construction of fault trees is provided. The tutorial will outline the
basic gate types allowed by the FTC program and their use in describing an example system
of interest.

specified number of digits

input file and significantly reduce the program execution time

more than once in the fault tree

Fault-Tree Construction

Fault trees are typically constructed by starting with the top event (usually representing
some undesirable situation) and determining all possible ways to reach that event. This
approach is often referred to as the top down or backward approach. An example of a bottom up

i

P

i

or forward approach is the failure modes and effect analysis (FMEA), where the analyst starts
with the different failure modes of the system components and traces the effects of the failures.

An example fault-tree structure is shown in figure 1. The event of interest, referred to as the
top event, appears as the top level in the tree. Only one top event is allowed. Basic events are
the lowest level of the fault tree, and different combinations of basic events will result in the top
event. In figure 1, the basic events are indicated by circles. The user associates a probability
of occurrence with each basic event in the tree. Note that a basic event may appear more than
once in the fault tree, in which case, it is referred to as a common mode event. A useful feature
of the FTC program is its ability to handle these common mode events.

inoperable EJ

H draulic
Yailure ’a

Figure 1. Example fault tree.

Events are combinations of basic events or other (lower) events. In figure 1 the output of
the OR gate is an event. Typical fault-tree notation allows comment boxes to appear in the
tree to describe an event. Though only two comment boxes appear in the example (to describe
the hydraulic failure and the top event), boxes could have appeared above any event, basic or
nonbasic. Logic gates delineate the causal relations which ultimately result in the top event.
In the FTC program the following gates are allowed:

The following short example illustrates the top down process by which a fault tree is
constructed:

The F-15C fighter has three primary weapon systems: heat-seeking missiles, radar missiles, and the
gun. Occasionally the guns will be inoperable, due possibly to one or more separate events. The
fault tree shown in figure 1 delineates the possible causes of in-flight gun no-&e. The preflight
ground check includes the removal of several safety pins, including three pins which, once removed,
will allow the gun to fire. A “rounds counter” on the plane determines the total number of rounds
(bullets) to be fired. It is possible to completely restrict the firing of the gun with the proper rounds
counter setting. The landing gear locked in the down position will also prevent the gun from firing.
Additionally, loss of electric power to ignite the bullets or hydraulic power to rotate the barrels will
completely inhibit the gun. Loss of hydraulic power may occur if the hydraulic lines are severed or
the hydraulic fluid levels are low.

2

0
n
n

Gate name

AND

OR

EXCLUSIVE OR

mOFn

INVERT

Result of gate

The output occurs when all
input events occur simul-
taneously; an arbitrary
number of input events are
allowed

The output occurs when one
or more of the input events
occur; an arbitrary number
of input events are allowed

The output occurs when one,
but not both, of the input
events occurs; on1 two input
events are allowed'

The output occurs when m
of n inputs occur; the number
of inputs must be greater
than or equal to m

This gate performs a
complement (applying
DeMorgan's Law) on the input;
the number of inputs must
equal one

It is not the goal of this paper to teach the construction of fault trees; however, this simple

1. All basic events must be independent. In probability theory, two events, A and B, are

example illustrates several important elements of fault-tree modeling:

independent if
P(AB) = P(A)P(B)

It is important to note that it is often very difficult to establish independence of events.
In this example, it is assumed that the safety pin removal and setting of the rounds
counter are independent events, even though both are performed during the preflight
ground check.

2. Sequences of events cannot be modeled with the gates allowed by the FTC program.
For many systems of interest, an event 2 occurs if and only if event A occurs before
event B. If event B occurs before event A , a different result is seen. At best, the analyst
must define a basic event which is the result of some sequence of events and assign a
probability to the basic event.

3. Mutually exclusive events must be handled with care. Basic events cannot be mutually
exclusive. For example, basic event A cannot be defined as Power on and basic event B
defined as Power ofl. However, basic event A may be defined as Power on, and an

3

INVERT gate (which performs the probabilistic complement of the input) with basic
event A as input may define the event Power not on.

4. Typically, fault trees are developed to demonstrate the probability of some undesirable
top event. A typical top event might be Catastrophic System Failure. Generally, it is
much faster to enumerate the ways that a system will fail than it is to enumerate the
ways a system will succeed. Occasionally, however, it is more advantageous to create a
success tree. ‘The FTC program makes no distinction between the trees; it simply solves
for the probability of the top event in a tree.

5. Basic events must be assigned a probability of occurrence. The FTC program also allows
for failure rates to be assigned to basic events. The user must also supply a value for the
mission time at which the probability of system failure will be evaluated. Parametric
analysis is facilitated by allowing one basic event probability or rate to vary over a range
of values. The syntax is described in the section “Fault-Tree Definition Syntax.”

For more information on fault trees, reference 3 is recommended. The next sections discuss
(1) the user interface for the FTC program, (2) example FTC sessions, and (3) the mathematical
foundations of the solution technique used in version 2 of the program. In the appendix, the
error messages generated by the program are explained.

The FTC User Interface
In this section the user interface to the FTC program is described. The interface consists of

a tree-definition language and user commands. An overview of the interface is given followed
by a detailed description of the tree-definition language and user commands.

FTC Program Overview

The user of the FTC program must define his fault tree with a simple language. There are
two basic statements in the tree-definition language-the basic event definition statement and
the gate definition statement. The basic event definition statement defines a fundamental event
and associates a probability with this event. For example, the statement

x: 0.002;

defines a fundamental event which occurs with probability 0.002. The gate definition statement
defines a gate of the fault tree by specifying the gate type and all its inputs. For example, the
statement

G1: AND(q12, V123, L12, E5);

defines an “AND-gate” with output G1 and inputs q12, V123, L12, and E5. The basic events
and gate-output identifiers may consist of letters, numbers, and underscores (-) but must begin
with a letter. The following gates are allowed: AND, OR, XOR (EXCLUSIVE OR), INV (INVERT
gate), and m OF (m out-of-n gate).

The input language is probably best explained by way of an example. A fault tree and the
corresponding FTC input file are shown in figure 2. The first seven lines assign probabilities to
the basic events E l , E2, E3, E4, E5, and E6. These probabilities have been defined in terms of a
parameter P. This has been done to illustrate the expression syntax of the input language. The
next four lines define four gates by specifying the inputs to a gate as arguments. For example,
the first of these four define an “AND gate” whose inputs are the basic events E l and E2. The
output of this gate is then given the name G1. Other gates can be defined using basic events
or previously defined gates. The top gate of the model is always named TOP. When the RUN
command is issued to the FTC program, the probability of TOP is calculated.

The program also provides a capability for parameter sensitivity studies. For example,
suppose one wishes to determine the impact of varying the value of P in the model above. The

4

P = 0.01 ;
El: 0.1.P;
E2: 0.2.P;
E3: 0.1.P:
E4: 0.05.P;
E5: 0.02.P;
E6: 0.9’(1-P) ;

G1: AND(E1 ,E2) ;
G2: AND E3,El) :
G3: AND[E4,E5,E6) ;
IG3: INV(G3) ;

TOP: OR(G1 ,G2,IG3) ;

Figure 2. Fault tree and corresponding FTC input file.

user first determines a range of values, say 0.1 to 0.6, and then alters the first line of the above
model as follows:

P = 0.1 TO 0.6;
The program will automatically calculate the probability of the TOP event as a function of P.

Finally, the program allows the user to specify his fault tree by using a hierarchical approach.
This is done by defining subtrees whose top event probabilities can be used when defining other
subtrees or the main tree. For example:

SUBTREE TREE-1 ;
xi: 0.1; x2: 0.2; x3: 0.1;
TOP: AND(Xl,X2,X3);
SUBTREE TREE-2 ;
Y1: 0.2; Y2: 0.007; Y3: 0.02;
TOP: OR(Yl,Y2,Y3);
TREE MAIN;
El: 0.1;
E2: TREE-1;
E3: TREE-2;
E4: TREE-l*(l-TREE-2) ;
E5: 2*TREE-1 + 0.3*TREE-
G1: AND(E4,E5);
TOP: OR(El,E2,E3,Gl);

This input defines a hierarchical fault tree which consists of a main tree and two subtrees.
Note that the main tree references the names of the subtrees in its basic-event definitions. The
meaning of this is simple. The program first calculates the “TOP” probability of the subtrees.
The probabilities of each of these TOP events are stored in the names of the subtrees. Thus,
event E2 in the main tree has a probability of occurrence equal to the TOP event of the first
subtree.

Fault-Tree Definition Syntax
The basic-event definition statement and the gate definition statement are the only essential

ingredients of the FTC input language. However, the flexibility of the FTC program has
been increased by adding several features commonly seen in programming languages such
as FORTRAN or Pascal. The details of the FTC language are described in the following
subsections.

5

Lexical Details

The probabilities assigned to events or component failure rates are floating point numbers.
The Pascal/FORTRAN real syntax is used for these numbers. Thus, all the following would
be accepted by the FTC program:

0.001
12.34
1.2E-4
1E-5

The semicolon is used for statement termination. Therefore, more than one statement may be
entered on a line. Comments may be included any place that blanks are allowed. The notation
“(*” indicates the beginning of a comment and “*I” indicates the termination of a comment.
The following is an example of the use of a comment:

GYRO-F : 0.025 ; (* PROBABILITY OF A GYRO FAILURE *)

If statements are entered from a terminal (as opposed to using the READ command described
subsequently), then the carriage return is interpreted as a semicolon. Thus, interactive
statements do not have to be terminated by an explicit semicolon unless more than one
statement is entered on the line.

In interactive mode, the FTC system will prompt the user for input by a line number
followed by a question mark. For example,

l?

The number is a count of the current line plus the number of syntactically correct lines entered
into the system thus far.

Constant Definitions

The user may equate numbers to identifiers. Thereafter, these constant identifiers may be
used instead of the numbers. For example,

LAMBDA = 0.0052;
RECOVER = 0.005;

Constants may also be defined in terms of previously defined constants:

GAMMA = 10*LAMBDA;

In general, the syntax is

<name> = <expression>;

where <name> is a string of up to eight letters, digits, and underscores (-) beginning with a
letter, and <expression> is an arbitrary mathematical expression as described in a subsequent
section entitled “Expressions.”

Variable Definition

In order to facilitate parametric analyses, a single variable may be defined. A range of values
is given for this variable. The FTC system will compute the probability of the top event as a
function of this variable. If the system is run in graphics mode (to be described later), then a
plot of this function can be made. The following statement defines LAMBDA as a variable with
range 0.001 to 0.009:

LAMBDA = 0.001 TO 0.009;

Only one such variable may be defined. A special constant, POINTS, defines the number of
points over this range to be computed. This constant can be defined any time before the RUN
command. For example,

POINTS = 25;

6

specifies that 25 values over the range of the variable should be computed. The method used
to vary the variable over this range can be either geometric or arithmetic and is best explained
by an example. Suppose POINTS = 4, then

Geometric:

XV = 1 TO* 1000;

yields XV values of 1, 10, 100, and 1000.

Arithmetic:

XV = 1 TO+ 1000;

yields XV values of 1, 333, 667, and 1000. The * following the TO implies a geometric range. A
TO+ or simply TO implies an arithmetic range.

One additional option is available-the BY option. Adding the phrase BY <inc> to this
syntax causes the program to start with the specified first value and determine the subsequent
values of the variable by adding <inc> (if arithmetic) or multiplying by <inc> (if geometric).
In this case, the value of POINTS is automatically calculated by the program. For example,

V = 1E-6 TO* 1E-2 BY 10;

sets POINTS equal to 5 and the values of V to 1E-6, 1E-5, 1E-4, 1E-3, and 1E-2. The statement

Q = 3 TO+ 5 BY 1;

sets POINTS equal to 3, and the values of Q to 3, 4, and 5.
In general, the syntax is

<var> = <expression> TO {<c>} <expression> {BY <inc>}

where <var> is a string of up to eight letters and digits beginning with a letter, <expression>
is an arbitrary mathematical expression as described in the next section, and the optional <c>
is a + or *. The BY clause is optional; if it is used, then <inc> is any arbitrary expression.

Expressions

When defining constants or an event probability, arbitrary functions of the constants and
the variable may be used. The following operators may be used:

+ addition
- subtraction
* multiplication
/ division
** exponentiation

The following standard functions may be used:

EXP (X)
LN(X)
SIN(X)
cos (XI
ARCSIN(X)
ARCCOS (X)
ARCTAN(X)
SQRT(X)

exponential function
natural logarithm
sine function
cosine function
arc sine function
arc cosine function
arc tangent function
square root

Both () and [] may be used for grouping in the expressions. The following are permissible
expressions:

2E-4
1 - [EXP (-LAMBDA*TIME) 1

7

Basic Event Definition

The fundamental events of the fault tree (Le., events which are not the outputs of a gate
in the tree) must be assigned probabilities. This is accomplished by using the basic-event
definition statement. This statement has the following syntax:

<event-id> : <expression> ;

where <event-id> is the name of the event and <expression> is an expression defining the
probability of the event which must evaluate to a number between 0 and 1. Alternately, the
user can specify the rate of an event. Rates are specified by using the following syntax:

<event-id> -> <rate-expression> ;

where <event-id> is the name of the event and <rate-expression> is an expression defining the
rate of the event. The probability of the event is calculated by the program with the following
formula:

Prob[event] = 1.0 - exp(-<rate-expression>*TIME)

where TIME is the value of the special constant TIME which defines the mission time. If TIME is
not defined by the user, then the program uses 10 for the mission time. Note that this formula
represents the standard exponential distribution function,

(Note that the solution algorithm only manipulates probabilities. The rates and times are only
used by the input language processor to derive an event probability. The solution algorithm is
combinatorial and does not deal with the rates directly.)

Gate Definition

Once all the fundamental events are defined, the gate definition statement may be used to
define the structure of the fault tree. The syntax of this statement is

I OR 'I
<output-id> : { iii} (<input>, <input>, ...I ;

or

<output-id> : <int> OF (<input>, <input>, ...I ;
The <output-id> is the name of the (nonbasic) event which is the output of the gate and <int>
is a positive integer which is less than or equal to the number of arguments. The type of gate
is indicated by the reserved words OR, AND, INV, XOR, or OF as follows:

AND output probability is probability of all events occurring
OR output probability is probability of one or more events occurring
XOR output probability is probability of one of events, but not both, occurring (i.e.,

EXCLUSIVE OR gate)
INV output probability is probabilistic complement of input (Le., INVERT gate)
m OF output probability is probability of m or more events occurring (Le., m OF n gate)

Any number of input events may be included within the parentheses for the AND, OR, and
m OF gates. The XOR gate takes two arguments and the INV gate takes one. The following gate
definition statements are valid:

G1: AND(X, Y, Z);
G2: OR(A1, A2, A3);
G3: 2 OF (A l , A2, A 3 , A4);

8

CAT-DIES: 9 OF (HIT-BY-CAR, ATTACKED-BY-DOC, STARVED-TO-DEATH,
DROPPED_40O_FEET, FLAMBEED, CAUGHT-IN-FAN-BELT,
DROWNED-IN-TOILET, SUFFOCATED, EXCESSIVE-DIARRHEA,
LOST-IN-DESERT, FED-ANTIFREEZE, MICROWAVED,
STEPPED-ON 1;

Hierarchical Fault Trees

Often a system consists of several identical independent subsystems. In order to preserve
the independence, it is necessary to replicate the subsystem fault tree in the system model. For
example, suppose we have a system which contains four identical independent subsystems. The
system fails when three of the subsystems fail. Each subsystem consists of four components. If
any component fails, the subsystem fails. The following fault tree describes the subsystem:

COMP-1: .01;
COMP-2: .02;
COMP-3: .03;
COMP-4: .05;
SUBSYSTEM-FAILS : OR(C0MP-1, COMP-2, COMP-3, COMP-4) ;

The system fault tree is as follows:

SYSTEM-FAILS: 3 OF (SUBSYS-LFAILS, SUBSYS,2_FAILS, SUBSYS-3-FAILS,
SUBSYS-4-FAILS) ;

To integrate these sections into one fault tree, the subsystem must be replicated four times
using different event names in each replicate:

SUBSYS-1-COMP-1: .01;
SUBSYS-1-COMP-2: .02;
SUBSYS-1-COMP-3: .03;
SUBSYS-1-COMP-4: .05;
SUBSYS-1-FAILS: OR(SUBSYS-1-COMP-1,

SUBSYS-1-COMP-3,

SUBSYS-2-COMP-1: .01;
SUBSYS-2-COMP-2: .02;
SUBSYS-2-COMP-3: .03;
SUBSYS-2-COMP-4: .05;
SUBSYS-2-FAILS: OR(SUBSYS-2-COMP-1,

SUBSYS-2-COMP-3,

SUBSYS-3-COMP-1: .01;
SUBSYS-3-COMP-2: .02;
SUBSYS-3-COMP-3: .03;
SUBSYS-3-COMP-4: .05;
SUBSYS-3-FAILS: OR(SUBSYS-3-COMP-1,

SUBSYS-3-COMP-3,

SUBSYS-4-COMP-1: .01;
SUBSYS-4-COMP-2: .02;
SUBSYS-4,COMP-3: .03;
SUBSYS-4-COMP-4: .05;
SUBSYS-4-FAILS : OR(SUBSYS-4-COMP-1,

SUBSYS-4-COMP-3,

SUBSYS-1-COMP-2,
SUBSYS-1-COMP-4) ;

SUBSYS-2-COMP-2,
SUBSYS-2-COMP-4 ;

SUBSYS-3-COMP-2,
SUBSYS-3-COMP-4 1;

SUBSYS-4-COMP-2,
SUBSYS-4-COMP,4 ;

SYSTEM-FAILS: 3 OF (SUBSYS-1-FAILS, SUBSYS_2_FAILS, SUBSYS,3,FAILS,
SUBSYS-4-FAILS) ;

9

Obviously, this is a tedious process. Therefore, the FTC program provides the user with a
hierarchical fault-tree capability. The following model is semantically equivalent to the previous
fault tree:

SUBTREE SUBSYSTEM-FAILS;

COMP-1: .Ol;
COMP-2: .02;
COMP-3: .03;
COMP-4: .05;

TOP: OR(C0MP-1 ,COMP-2,COMP-3,COMP-4) ;

TREE SYSTEM-FAILS;

SUBSYS-1-FAILS: SUBSYSTEM-FAILS;
SUBSYS-2-FAILS: SUBSYSTEM-FAILS;
SUBSYS-3-FAILS: SUBSYSTEM-FAILS;
SUBSYS-4-FAILS: SUBSYSTEM-FAILS;

TOP: 3 OF (SUBSYS-1-FAILS, SUBSYS_2_FAILS, SUBSYS_3_FAILS,
SUBSYS -4-FAILS) ;

The model is defined in two sections. The first section defines a subtree which is named
SUBSYSTEM-FAILS. This subtree is solved by the program and the probability of its top event
is saved in the identifier SUBSYSTEM-FAILS. In subsequent trees or subtrees this identifier can
be used. In this model, four events in the main tree are given the probability of the subsystem,
that is, SUBSYSTEM-FA ILS.

To simplify the analysis of the effect of a system parameter on the probability of the top
event, global variables and constants may be used. These must be defined before any subtrees
are defined. Global events cannot be defined.

The effect of the change in the failure probability of a component in the previous model
could be investigated by using the following model:

FP = .01 TO .05 BY .01;

SUBTREE SUBSYSTEM-FAILS;

COMP-1: FP;
COMP-2: .02; COMP-3: .03; COMP-4: .05;

TOP: OR(COMP1-,COMP-2,COMP~3,COMP-4);

TREE SYSTEM-FAILS:

SUBSYS-1-FAILS: SUBSYSTEM-FAILS; SUBSYS-2-FAILS: SUBSYSTEM-FAILS;
SUBSYS-3-FAILS: SUBSYSTEM-FAILS; SUBSYS-4-FAILS: SUBSYSTEM-FAILS;

TOP: 3 OF (SUBSYS-l-FAILS, SUBSYS-2-FA1LSy SUBSYS_3_FAILS,
SUBSYS-4-FAILS) ;

FTC Commands

The FTC program is controlled by interactively entered commands. These commands can
be used to read in model-description files, set various options, initiate the computation, plot
results, etc. These commands will be described in detail in this section.

There are two types of commands in FTC. The first type of command is initiated by one of
the following reserved words:

EXIT INPUT PLOT READ RUN SHOW

10

The second type of command is invoked by setting one of the special constants

ACCURACY CARE3 ECHO LIST POINTS TIME

equal to one of its predefined values.

EXIT

The EXIT command causes termination of the FTC program.

INPUT

The INPUT command increases the flexibility of the READ command. Within the model
description file created with a text editor, INPUT commands can be inserted that will prompt
for values of specified constants while the model file is being processed by the READ command.
For example, the command

INPUT LVAL;

will prompt the user for a number as follows:

LVAL?

This creates a new constant LVAL which is equal to the value input by the user.
constants can be interactively defined with one statement, for example,

Several

INPUT X, Y, Z;
PLOT

The PLOT command can be used to plot the output on a graphics display device. This
command is described in detail in the next section, “FTC Graphics.” This command is only
available at installations which have the graphics library TEMPLATE.

READ
A sequence of FTC statements may be read from a disk file using the READ command. The

following command reads FTC statements from a disk file named SIFT.TRE:

READ SIFT.TRE;

If no file name extension is given, the default extent . TRE is assumed. A user can build a model
description file with a text editor and use this command to read the file into the FTC program.

R UN
After a fault tree has been input to the FTC program, the RUN command is used to initiate

the computation:

RUN;

The output is displayed on the terminal according to the LIST option (described later). If the
user wants the output written to a disk file instead, the following syntax is used:

RUN <outname>;

where the output file <outname> may be any permissible VAX VMS file name. Two positional
parameters are available on the RUN command. These parameters enable the user to change
the value of the special constants POINTS and LIST in the RUN command. For example,

RUN (30,2) 0UTFILE.DAT;

is equivalent to the following sequence of commands:

POINTS = 30;
LIST = 2;
RUN 0UTFILE.DAT

Each parameter is optional so the following are acceptable:

11

RUN (10) ;
RUN(,O) ;
RUN(20,l);

change POINTS to 10 then run.
change LIST to 0 and run.
change POINTS to 20 and LIST to 1 then run.

After the RUN command has completed, the fault tree and all symbol definitions are deleted.
However, the results of the run are stored and available for plotting via the PLOT command.

SHOW
The value of the identifier < id> is displayed by the following command:

SHOW <id>;

This function cannot be used to obtain values for gate identifiers or identifiers which depend
upon the variable.

ACCURACY

With the ACCURACY command, the user specifies the number of digits of accuracy he desires
in the final answer. A significant decrease in execution time can be obtained if only a few digits
accuracy is necessary. The default value is 6. This parameter is used by the program to reduce
the number of vectors which must be searched. Also the program calculates an accumulated
rounding error due to the imprecision of floating point arithmetic. If this error is large enough
to influence the specified accuracy, the following warning message is given:

ROUNDOFF ERROR => ONLY x DIGITS ACCURACY
CARE3
If set equal to 1, the program will generate a file containing the fault tree in the CARE I11

syntax. (See ref. 2.) The default value of 0 specifies that no CARE I11 file be written. The
name of the generated file is CARE3. TRE. The first line of a CARE I11 input file must contain
four numbers which give the first and last input event numbers and the first and last output
event numbers. Note that the input range is completely specified, but that the upper value on
the output range is specified by X. The user must edit the file, supplying the appropriate upper
value for the output range and inserting the tree into an otherwise complete CARE I11 input
file.

ECHO
The ECHO constant can be used to turn off the echo when reading a disk file. The default

value of ECHO is 1, which causes the model description to be listed as it is read. (See example 4
in the section “Example FTC Sessions.”)

LIST
The amount of information output by the program is controlled by the LIST command.

LIST = 0 ; No output is sent to terminal, but results can still be displayed using PLOT

LIST = 1; Output is sent to terminal; this is the default.
LIST = 2; Output sent to terminal contains more detailed information, e.g., number of

vectors processed. See example 6.

Three list modes are available as follows:

command.

POINTS
The POINTS constant specifies the number of points to be calculated over the range of the

TIME
The TIME constant specifies the mission time when rates are used for events. The TIME

constant has meaning only when the model includes failure rates, which depend upon time.
For example, if the user sets TIME = 1.3, the program computes the probability of the top event

variable. The default value is 25. If no variable is defined, then this specification is ignored.

12

I-

at mission time equal to 1.3. The default value of TIME is 10. If the default value of TIME is
not to be used, TIME must be defined before any events are defined. (The program does not
assume any particular units of time. The program assumes that the units used for TIME are
the same as those used for the event rates.)

FTC Graphics
Although the FTC program is easily used without graphics output, many users desire the

increased user friendliness of the tool when assisted by graphics. The graphics output module
is written in FORTRAN but uses the graphics library TEMPLATE (available at the Langley
Research Center). Thus, the FTC graphics capabilities will only be available at installations
which have this library. Alternatively, this module can be rewritten by using another graphics
library.

The FTC program can plot the probability of system failure as a function of any model
parameter. The output from several FTC runs can be displayed together in the form of contour
plots. Thus, the effect on system reliability of two model parameters can be illustrated on one
plot.

PLOT Command

After a RUN command, the PLOT command can be used to plot the output on the graphics
display. The syntax is

PLOT <op>, <op>, ... cop>

where <op> are plot options. Any TEMPLATE “USET” or “UPSET” parameter can be used,
but the following are the most useful:

XLOG
YLOG
XYLOG
NOLO

XLEN=5.0
YLEN=8.0
XMIN=2.O
YMIN=2.0

plot X-axis using logarithmic scale
plot Y-axis using logarithmic scale
plot both X- and Y-axes using logarithmic scales
plot X- and Y-axes with linear scaling

set X-axis length to 5.0 in.
set Y-axis length to 8.0 in.
set X-origin 2 in. from left side of screen
set Y-origin 2 in. above bottom of screen

PLOTINIT and PLOT+ Commands

The PLOTINIT and PLOT+ commands are used together to display multiple runs on one plot.
A single run of FTC generates unreliability as a function of a single variable. To see the effect
of a second variable (i.e., display contours of a three-dimensional surface) the PLOT+ command
is used. The PLOTINIT command should be called before performing the first FTC run. This
command defines the second variable (Le., the contour variable):

PLOTINIT BETA;

This defines BETA as the second independent variable. Next, the user must set BETA to its first
value. After the run is complete, the output is plotted by using the PLOT+ command. The
parameters of this command are identical to the PLOT command. The only difference is that
the data values are saved and can be displayed in conjunction with subsequent run data values.
Next, BETA must be set to a second value, another FTC run made, and PLOT+ must be called
again. This time both outputs will be displayed together. Up to 10 such runs can be displayed
together.

Example FTC Sessions

Outline of a Typical Session

The FTC program was designed for interactive use. The following method of use is
recommended:

13

1. Using a text editor, create a file of FTC commands describing the fault tree to be analyzed.
2. Start the FTC program and use the READ command to retrieve the model information from

this file.
3. Then, various commands may be used to change the values of the special constants, such

as LIST, POINTS, as desired. Altering the value of a constant identifier does not affect any
transitions entered previously even though they were defined with a different value for the
constant. The range of the variable may be changed after transitions are entered.

4. Enter the RUN command to initiate the computation.
5. Issue PLOT command to plot the results.

Examples

The following examples illustrate interactive FTC sessions. For clarity, all user inputs are

Example 1. This session illustrates direct interactive input and the type of error messages
given in lowercase letters.

given by FTC:

$ ftc

FTC V2.4

11
2? time = 10.0;
31 lambda = le-4;
4?
51 X: 1.0 - exp(-lambda*time);
61 Y: 1.0 - exp(-1amda"time);
61 Y: 1.0 - exp(-lambda*time);
71 top: or(X,Y);
8?

NASA Langley Research Center

A IDENTIFIER NOT DEFINED

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN
3 OUT OF THE 4 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EvhpTS CAUSING TOP EvhpT = 1
0.420 SECS. CPU TIME UTILIZED

91 exit

The warning message is simply informative. If a user receives this message, he should check
his input file to make sure that the model description is correct. In this example, since the
syntax error was corrected in the next line, the model was correct. A complete list of program-
generated error messages is given in the appendix. The message "3 OUT OF THE 4 VECTORS
ANALYZED CAUSED TOP EVENT" informs the user of the amount of processing performed by the
program. The message "SMALLEST . . . I t indicates the least number of concurrent basic events
which caused the TOP event.

Example 2. This example illustrates the recommended method of using FTC-creating a
file with a text editor and issuing a READ command. Prior to initiating the FTC program, the
text file SIMP. TRE was created by using an editor. The contents of this file are echoed as it is
read in by the program:

$ ftc
FTC V2.4 NASA Langley Research Center

11 read SIMP.TRE

14

2. EVNTl: 0.001;
3. m 2 : 0.002;
4. EVNT3: 0.003;
5. EVNT4: 0.0004;
6. EVNT5: 0.0005;
7. EVNT6: 0.0006;
8. TOP: 2 OF (EWNTl,f3VNT2,EVNT3,EVN"4,EVNT5,EVNT6);

9? accuracy = 2 ;
lo? run

MODEL FILE = SIMP.TRE FTC V2.4 14-OCT-1988 09:00:20

16 OUT OF THE 24 WCTORS ANUYZED CAUSED TOP EvhpT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 2
0.590 SECS. CPU TIME UTILIZED

111 exit

The statement ACCURACY = 2 instructed the program to compute an answer with 2 digits
accuracy. Consequently, the program only analyzed 24 out of the 64 possible vectors (i.e., six
events implies 26 vectors). The exact answer is 2.068593-05, which illustrates that the program
produced an answer with more accuracy than 2 digits. The pruning algorithm used by FTC
is conservative; consequently, the program often produces results with more accuracy than
requested. For details on the pruning algorithm used by FTC, see the section "Mathematical
Foundations of the FTC Program."

Example 3. This example demonstrates the use of the hierarchical fault-tree capability to
partially describe an aircraft pitch control architecture. The proposed architecture is composed
of four independent actuator subsystems and the supporting hydraulic and electronic systems.
Each actuator subsystem is comprised of a pitch rate sensor, a computer, and the actuator.
Two of the four actuator subsystems failing will result in loss of pitch control. Likewise, loss
of either the hydraulic or electronic system will cause loss of pitch control.
$ ftc

FTC V2.4 NASA Langley Research Center

l?

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

read ex3.mod

SUBTREE ACT SYS FAIL; - -

PITCH RATE-SENSOR -> 1.83-05;
COMPUTER -> 4.43-04;
ACTUATOR -> 3.73-05;

TOP:

TREE LOSS - - OF PITCH-CON'I'ROL;

OR(P1TCH - RATE - SENSOR, COMPUTER, ACTUATOR);

HYDRAULIC FAILURE: 1.3E-06; (* HYDRAULIC SYSTEM FAILURE RATE *)
ELECTRONICS FAILURE: 5.03-04 ; (* AIRCRAFT ELECTRONICS FAILURE *
ACT sysi FATLS: ACT SYS FAILS;
ACTSYS2-FAILS : ACT-SYS-FAILS ; (* THE ACTUATOR SYSTEM IS *)
ACT-SYS 3-FAI LS : (* COMPOSED OF FOUR INDE- *) ACT-SYS-FA1 LS ;
ACT-SYS4-FAILS - - : ACT-SYS-FAILS - - ; (* PENDENT SUBSYSTEMS. *)

15

19. GATEl: 2 OF
20. TOP:
21.

(ACT SYSl FAILS,ACT SYS2 FAILS,ACT SYS3 FAILS,ACT - SYS4 - FAILS);
OR (GATEIT HYDEAULIC - FAIEURE,-ELECTRONICS - FATLURE);

22? run

MODEL FILE = EX3.m FTC V2.4 14-OCT-1988 09:00:25

7 OUT OF THE 8 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 1

43 OUT OF THE 48 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 1
1.340 SECS. CPU TIME UTILIZED

23? exit

Example 4. This example illustrates the use of the FTC program to process the fault tree
used in the Integrated Airframe Propulsion Control System Architecture (IAPSA 11) project
to analyze surface control failures. (See ref. 4.)

The surface control system has three separate actuation channels, each consisting of an
actuation stage and a disengage device stage. The actuation channels are brickwalled with
force-sum voting at the control surface. Channel self-monitoring techniques are the primary
method of fault detection and isolation. Each actuation channel contains two special devices
for fault tolerance. The disengage device can deactivate a faulty channel. The surface can
be controlled by one channel if the other two channels have been deactivated. Additionally,
an override device in each channel allows two good channels to overpower a channel with a
failed disengage device. Thus, surface failure (top event) can occur in two ways: (1) loss of all
three actuation channels and (2) loss of two channels when one of the lost channels has a failed
disengage device. The following tree describes these aspects of the system failure process:

TREE SURFACE - FAILURE;

CHI: CH FAULT;
CH~: CH-FAULT;
013: CH-FAULT; -

DD1 -> 6.03-6;
DD2 -> 6.03-6;
DD3 -> 6-03-63

(* Channel 1 failure *)
(* Channel 2 failure *)
(* Channel 3 failure *)

(* Channel 1 disengage device failure *)
(* Channel 2 disengage device failure *)
(* Channel 3 disengage device failure *)

W S S OF ALL CHANNELS: AND(CH1, CH2, CH3);

SFIA: AND(CH1, 001);
SF1B: OR(CH2, CH3);
CHANNEL1 UNISOLATED: AND(SFlA, SFlB);

SF2A: AND(CH2, 002);
SF2B: OR(CH1, CH3);
CHANNEL2 UNISOLATED: AND(SF2A, SF2B);

- - -

-

-
16

SF3A: AND(CH3, 003);
SF3B: OR(CH1, CH2);
CHANNEL3 - UNISOLATED: AND(SF3A, SF3B);

TOP: OR (LOSS OF ALL CHANNELS, CHANNEL1 UNISOLATED,
m L z - UNTSOLATED , CHANNEL3-UNI - SOLATED) ;

Next, the failures leading to an actuation channel breakdown must be enumerated in a subtree.
An actuation channel failure can occur because of the loss of the intersystem (I/S) bus, lack of
two surface commands, or a fault in the actuation channel elements-the I/S bus terminal, the
elevator processor, and the electrical and mechanical actuation hardware. Surface commands
can be lost due to command generation faults or computer bus terminal faults. The following
subtree describes actuation channel failure:

SUBTREE CH - FAULT;

C1 COMMAND: Cos?MAND FAILURE; (* Loss of command 1 *)
C~COMMAND : COMMAND-FAI LURE ; (* Loss of command 2 *)
C~-COMMAND: COMMAND-FAILURE; (* Loss of command 3 *)
c4-COMMAND - : COMMAND-FAI - LURE ; (* Loss of command 4 *)

C11 -> 1E-6;
C21 -> 1E-6;
C31 -> 13-6;
C41 -> 13-6;

ACT1 -> 9OE-6;
B1 -> 2OE-6;

(* computer 1 bus terminal fault *)
(* computer 2 bus terminal fault *)
(* cpmputer 3 bus terminal fault *)
(* computer 4 bus terminal fault *)

(* fault in actuation channel elements *)
(* failure in I/S bus *)

AC1: OR(C1 COMMAND, C11);
AC2 : OR(C2-COMMAND, C21) ;
AC3: OR(C3-Cos?MAND, C31);
AC4 : OR(C4-COMMAND, - C41) ;

LOSE ‘IWD COMMANDS: 3 OF (AC1, AC2, AC3, AC4);
TOP:-OR(&ZTl, B1, LOSE - - ‘IWO COMMANDS);

A command generation fault can occur due to lack of pilot control sensors (PCS) data, lack
of inertial reference air data computer (IRADC) data, or computer failure. The loss of data
can be due to data source failure, I/S bus failure, or computer bus terminal failure:
SUBTREE COMMAND - FAILURE;

PCSl -> 11.03-6;
B1 -> 2OE-6;
C11 -> 1E-6;
IRADCl -> 122.5E-6;

PCS2 -> 11.03-6;
B2 -> 2OE-6;
C12 -> 1E-6;
IRADC2 -> 122.5E-6;

PCS3 -> 11.03-6;
B3 -> 20E-6;
C13 -> 1E-6;
IRADC3 -> 122.53-6;

(* loss of channel 1 PCS data *)
(* failure in channel 1 I/S bus *)
(* bus terminal to channel 1 fault *)
(* loss of channel 1 IRADC data *)

(* loss of channel 2 PCS data *)
(* failure in channel 2 I/S bus *)
(* bus terminal to channel 2 fault *)
(* loss of channel 2 IRADC data *)

(* loss of channel 3 PCS data *)
(* failure in channel 3 I/S bus *)
(* bus terminal to channel 3 fault *)
(* loss of channel 3 IRADC data *)

CLCl -> 1OO.OE-6; (* computer failure rate *)

17

LPD1: OR(PCS1, B1, Cll);
LPD2: OR(PCS2, B2, C12);
LPD3: OR(PCS3, B3, C13);
PCS - DATA - LOSS: AND(LPD1, LPD2, LPD3);

LID1: OR(IRADC1, B1, C11);
LID2: OR(IRADc2, B2, C12);
LID3: OR(IRADC3, B3, C13);
IRADC - DATA - LOSS: AND(LID1, LID2, LID3);

TOP: OR(PCS-DATA - LOSS, IRADC - DATA - LOSS, CLC1);

To simplify the discussion, the TREE section was present d first. In n input file to the FTC
program, all subtrees must be placed before the TREE section. The above model was available
in file IAPSA. TRE prior to the following interactive session:

$ ftc

FTC V2.4

l? echo = 0
21 read iapsa

NASA Langley Research Center

87? run

MODEL FILE = 1APSA.TRE FTC V2.4 14-OCT-1988 09:00:31

51 OUT OF THE 181 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 1

40 OUT OF THE 77 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 1

20 OUT OF THE 58 VECTORS ANALYZED CAUSED M P EVENT
SMALLEST NUMBER OF‘ EVENTS CAUSING TOP EVENT = 3
3.270 SECS. CPU TIME UTILIZED
88?

Example 5. This example illustrates the use of the program to investigate the sensitivity of
a fault tree to a parameter.

FTC V2.4

l? read ex5

NASA Langley Research Center

2. V = 0 TO 1 BY .1;
3. G11: V;
4. G12: V/2;
5. G13: SQRT(V);
6. G14: 1 - V;
7. G15: 1 - V/2;
8. G16: 1 - SQRT(V);
9. G17: V*(l-V);
10. G18: (l-V)*(l-V*V)*(l-V**3);
11.
12. A21: AND(Gll,G12,G13);
13. A22: OR(G12,G13);
14. A23: XOR(G13,G14);
15. A24: 30F(G15,G16,G17,G18);
16. A25: AND(G16,G17);
17.
18. B31: OR(A21,A25);
19. 832: INV(A22);
20. B33: OR(A24,A22);
21.
22. C41: AM)(B31,A23);
23. C42: AND(B33,B32,A22);
24.
25. TOP: 20F(C41,C42,A25,A23);
26.

271 run

MODEL FILE = EX5.TRE FTC V2.4 14-OCT-1988 09:00:34

V -----------
O.OOOOOE+OO
1.OOOOOE-01
2.00000E-01
3.00000E-01
4.00000E-01
5.00000E-01
6.OOOOOE-01
7.00000E-01
8.00000E-01
9.OOOOOE-01
1.00000E+00

Pr[TOP EVENT] ERRORS/WARNINGS ------------- ----------_--___-____________________
o.oooooE+oo .. WARNING: EVENT PROB. = 0 or 1
3.996553-02
4.865483-02
5.236803-02
6.022193-02
7.756983-02
1.0915OE-01
1.603353-01
2.37549E-01
3.481653-01
5.OOOOOE-01 .. WAFWING: EVENT PROB. = 0 or 1

12 OUT OF THE 141 VECTORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 3
7.810 SECS. CPU TIME UTILIZED

287 plot
29? disp copy (* See Figure 3 *)

19

.6

5 . 4 - - - -
0

LL

0

a

r

c - - -
n
n
2
Q . 2 - -

0

2. TIME - 0.1 TO* 1000 BY 10;
3.
4. El -> 1E-4;
5. E2 -> 2E-4;
6. E3 -> 33-43
7. E4 -> 43-4;
8. E5 -> 53-4;
9. E6 -> 6E-4;
10.
11. G1: AND(El,E2);
12. G2: AND(E3,Ed);
13. G3: AND(E5,E6);
14.
15. TOP: OR(Gl,G2,G3);

20

-

,

I

161 lisbl;
171 run

MODEL FILE = M 6 . W FTC V2.4 14-OCT-1988 09:00:45

TIME Pr[TOP EVENTI ERRORS/WARNINGS -------- _I----- .
1.OOOOOE-01 4.399793-09
1.OOOOOE+OO 4.397903-07
l.OOOOOE+Ol 4.379023-05

l.OOOOOE+O3 2.607823-01
l.OOOOOE+O2 4.19197E-03

37 OUT OF THE 64 VEC'IORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 2
2.160 SECS. CPU TIME UTILIZED

181 read EX6

19. TIME = 0.1 To* 1000 BY 10;
20.
21. El -> 1E-4;
22. E2 -> 2E-4;
23. E3 -> 3E-4;
24. E4 -> 4E-4;
25. E5 -> 53-4;
26. E6 -> 63-4;
27.
28. G1: AND(El,E2);
29. G2: AND(E3,Ed);
30. G3: AND(E5,E6);
31.
32. TOP: OR(Gl,G2,G3);
331 list-2;
341 run

MODEL FILE = EX6.W FTC V2.4 14-0CT-1988 09:00:49

TIME Pr[TOP EVENTI E V N V ERRoRs/tJARNINGS ------- ----------- -- --- --------__I_-

1.OOOOOE-01 4.3997900519443E-09 16 43
1.OOOOOE+OO 4.39789876867733-07 16 43
1.00000E+O1 4.37901746807213-05 31 58
l.OOOOOE+O2 4.19197238477003-03 37 64
l.OOOOOE+O3 2.60781884958683-01 37 64

37 OUT OF THE 64 VEC'IORS ANALYZED CAUSED TOP EVENT
SMALLEST NUMBER OF EVENTS CAUSING TOP EVENT = 2
2.160 SECS. CPU TIME UTILIZED

The columns FV and NV report the number of vectors which caused system failure and the
total number of vectors processed, respectively.

21

Mathematical Foundations of the FTC Program
In this section, a new algorithm for solving fault trees is presented along with a proof that

the algorithm produces an answer within a user-specified level of accuracy. Then, a more
efficient form of the algorithm which is implemented in FTC is given and the proof is revised.

Preliminaries
The FTC solution technique relies upon three basic model assumptions:

1. System components, or basic events, fail independently,
2. Components are either failed or operational; an “in-between” state does not exist.
3. The system is either failed or operational; no “in-between” state exists.

In the following discussion, the fault tree is generalized to have n basic events and a probability
of occurrence associated with each. Basic events will be referred to as components and a
probability of failure will be attributed to each of the components in the system. We will
assume that the components have been numbered in order of decreasing failure probability.

Let Ei represent the event that the ith component fails

Then Ei occurs with the ith largest probability and P(&) 2 P(Ej) whenever i 5 j. Next,
define an indicator variable ei (for 1 5 i 5 n) as follows:

0
1

if event i does not occur (i.e., component i does not fail)
if event i occurs (i.e., component i fails) ei =

It is possible to enumerate all combinations of components failed and components opera-
tional describing the different possible states of the system. Each system state can be repre-
sented by an n dimensional “binary” vector w composed of 1’s and 03, where 1 indicates that
the component has failed and 0 indicates that the component has not failed:

w = (el e2 e3 ... e,)

Then, we have by independence of the n basic events,

The event that all n components fail, for example, would be represented by the vector

(1 1 1 . . . 1).

A system composed of four basic events would generate the following binary vectors:

1. (0 0 0 0) 5. (0 0 0 1) 9. (0 11 0) 13. (1 1 0 1)
2. (1 0 0 0) 14. (1 0 11)
3. (0 1 0 0) 15. (0 1 1 1)
4. (0 0 1 0) 16. (1 1 1 1)

6. (1 1 0 0)
7. (1 0 1 0)
8. (1 0 0 1)

10. (0 1 0 1)
11. (0 0 1 1)
12. (1 1 1 0)

For an n-component system there are 2, possible binary vectors representing 2n distinct system
states. The j t h system state is denoted by wj, and its associated probability by P(wj). Note
that the j t h binary vector can be written in terms of the variables eij, (e l j e2j ... e,j), and that
the probability of the j t h system state is

i=l

22

The sample space S is the set of all possible system states denoted by the 2, binary vectors.
By definition,

Because the components are either failed or not failed, the 2n binary vectors exhaustively
describe all possible system states. Therefore,

P (S) = 1.

P (q + w2 + ... + u p) = P (S) = 1.

Clearly, the system can be in only one state at any given time, indicating that the system states
are mutually exclusive. By definition,

P(U2. j) = 0 (for every i and j # i)

and for the 2n mutually exclusive system states,

P (v ~ + ~2 + ... + u p) = P (q) + P (v ~) + ... + P (~ 2 n) .

To calculate the probability of system failure, the sample space S composed of 2n system
states is divided into two subsets, where one subset contains all the system failure states and
the other subset contains all states where the system is operational. Because the system must
be either failed or operational, these two subsets are clearly exhaustive and mutually exclusive.
Furthermore the system states composing each of these two subsets are mutually exclusive, and
the probability of either subset can be found by summing the appropriate individual system
state probabilities. Therefore, the calculation of the total probability of system failure by
simply summing the probabilities of the system configurations that represent system failure is
exact.

The Basic Approach
The program reorders the basic events in the binary vector in order of decreasing probability.

The program then generates binary vectors in an orderly fashion, starting with binary vector
(A mapping from the new order to the user-defined names is maintained.)

(0 0 0 * * -0,).

The following is the sequence generated for a four-event tree:

(0 0 0 0)
(1 0 0 0)
(0 10 0)
(0 0 1 0)
(0 0 0 1)
(1 1 0 0)
(1 0 10)
(1 0 0 1)
(0 1 10)
(0 10 1)
(0 0 1 1)
(1 1 1 0)
(1 10 1)
(1 0 11)
(0 11 1)
(1 11 1)

23

Vectors are checked through the user-defined system tree. For each binary vector found to
represent a system-fail configuration, its probability is added to a running total of binary vector
probabilities, where all vector probabilities in the sum represent system-fail configurations. As
shown above, the total number of binary vectors to be checked through the system tree is 2n.
For systems with many components, the number of fault vectors to check through the system
tree can be very large. A simple and effective pruning technique has been developed to reduce
the total number of fault vectors checked through the system tree. The pruning technique will
not affect the FTC program answer; it will reduce run time and improve efficiency.

The FTC program uses two types of pruning. The first type of pruning is based on the
concept that the probability of occurrence of a vector with a large number of 1’s is typically
much less than the probability of occurrence of a vector with just a few number of 1’s. The
first type of pruning is more easily explained by letting \k(w) = Number of 1’s in vector w. The
program determines a level y such that all vectors w with 9 (v) 2 7 contribute a negligible
amount to the final answer. The program continues processing vectors until the first vector
w with @(v) 2 y is encountered. Since vectors are processed in increasing order of O(w),
only the negligible vectors are not processed. The second type of pruning skips all vectors
with probabilities less than a computed threshold. The error bounding theorems presented
subsequently demonstrate that both pruning methods together are conservative with respect
to a user-specified level of accuracy.

Notation

Ei

ei

Pi

(el e2 e3 .-- e n)

event that i th component fails

= 1 if event Ei occurs, otherwise 0

probability event Ei occurs (i.e., P (e i = 1))

system state vector

vk vector with k 1’s followed by n-k 0’s: (1 1 1 1 1 0 0 ... 0) -
k

p(vk

*(v>

probability that vector vk occurs

number of 1’s in vector

number of vectors which caused system failure thus far

total number of vectors which have been analyzed thus far

current estimate of system failure probability

user-specified number of digits accuracy

number of basic events in fault tree

Nf
Na

Sf
d

n

The FTC Algorithm

In this section, two versions of the fault-tree solution algorithm are presented. First, the
basic algorithm is discussed along with a proof of its error bound. Second, a slightly more
efficient algorithm (which is used in FTC V2) is given along with its error bound. In order
to facilitate the presentation of the FTC algorithm, some special notation is defined. Let Vk
represent a vector with k 1’s followed by n-k 0’s:

and let

pi = Probability event Ei occurs (i.e., P(ei = 1))

24

P(vk) = Probability that vector vk occurs
k n

= n P i n (I-&)
i=l j = k + l

q (v) = number of 1’s in a vector

N f = number of vectors which caused system failure thus far

Na = total number of vectors which have been analyzed thus far

S f = current estimate of system failure probability

d = user-specified number digits accuracy

n = number of basic events in fault tree

Basic Algorithm

The program processes vectors until the first vector that causes system failure is encountered.
Using the probability of failure of this vector as an estimate of the probability of system failure
Psys, the program calculates parameters y and R. (The details of this calculation are explained
subsequently.) The program continues processing vectors until a vector w is encountered with y
1’s or more (i.e., @(w) 2 7.) A cumulative sum of the probabilities of occurrence of the vectors
which cause system failure is stored in the variable S f . The program also skips over all vectors
whose probability of occurrence is less than 0. The algorithm is as follows:

w = (0 0 0 ... 0); Sf = 0 ; N f = 0

Nf = Nf + 1

Sf = Sf + P(w)

REPEAT
IF w causes system failure THEN

calculate P (v)

IF N f = 1 THEN
CALL CUTLEVEL(Sf, 7, a)

ENDIF
IF P (v) < 0 THEN CALL PRUNER(w) ENDIF

ENDIF
IF (@(w) 2 y) THEN GO TO 100 ENDIF
LASTw = w
w = NEXTvector

UNTIL LASTv = (1 1 ... 1)
100: Psys = Sf

SUBROUTINE CUTLEVEL(Sf, 7, a)
k = n
SUM = 0.0
BOUND = Sf[0.5 x
REPEAT

(* d = desired # digits accuracy*)

ERRGAM = SUM
SUM = SUM + (i) P (v k)
k = k - 1

UNTIL SUM > BOUND

25

y = k + 2

cy = y51 (i)
k=O i
BOUND - ERRGAM R = (C, - Na)

END

SUBROUTINE PRUNER(v)
IF 21 is of FORM (XI x2 ... xj 0 1 1 1 1 0 0 0) THEN ”‘-

k z

21 = (q x2 ... z j 0 0 0 0 1 1 1 1) *-
Z+1 k

ENDIF
END

Subroutine CUTLEVEL calculates the parameters y and 52. The calculation of y is based
on the fact that the probability P(vk) 2 the probability of occurrence of any other vector with
k 1’s. Since there are (i) vectors with k l’s, the total error in ignoring the contribution of
vectors with y or more 1’s is

CUTLEVEL determines the smallest value for y such that this error is negligible. CUTLEVEL
also determines a probability R that is small enough such that all vectors whose probability of
occurrence is less than it can be ignored.

Subroutine PRUNER just moves the rightmost cluster of 1-bits (i.e., a contiguous section
of 1’s) all the way to the right. For example, suppose that FTC is being used to solve a model
with 6 basic events. The following is the order (down the columns) that the vectors would be
generated (starting at (1 1 0 0 0 0)):

(1 1 0 0 0 0)
(1 0 1 0 0 0)
(1 0 0 1 0 0)
(1 0 0 0 1 0)
(1 0 0 0 0 1)
(0 1 1 0 0 0)
(0 1 0 1 0 0)
(0 1 0 0 1 0)
(0 1 0 0 0 1)

(0 0 1 1 0 0)
(0 0 1 0 1 0)
(0 0 1 0 0 1)
(0 0 0 1 1 0)
(0 0 0 1 0 1)
(0 0 0 0 1 1)
(1 1 1 0 0 0)
(1 1 0 1 0 0)
(1 1 0 0 1 0)

(1 1 0 0 0 1)
(1 0 1 1 0 0)
(1 0 1 0 1 0)
(1 0 1 0 0 1)
(1 0 0 1 1 0)
(1 0 0 1 0 1)
(1 0 0 0 1 1)
(0 1 1 1 0 0)
(0 1 1 0 1 0)

(0 1 1 0 0 1)
(0 1 0 1 0 1)
(0 1 0 0 1 1)
(0 0 1 1 1 0)

Subroutine PRUNER

skips from (1 0 0 1 0 0) to (1 0 0 0 0 1)
(1 0 0 1 1 0) t o (1 0 0 0 1 1)
(0 0 1 0 1 0) to (0 0 1 0 0 1)

It is demonstrated subsequently that subroutine PRUNER only skips over vectors with
probability of occurrence less than the argument 21. Since PRUNER is only called when
P(v) < R, PRUNER only skips vectors with probability less than R.

Function NEXTvector generates the next vector Nv given the current vector v by the
following algorithm:

26

FUNCTION NEXTvector(v)

IF right-most bit of w is a 0 THEN

FROM w = (21 22 ... xj 1 0 ... 0) generate

Nw = (21 22 ... " j 0 1 ... 0)

ELSE IF all 1-bits are all the way to the right THEN

Nw = (1 1 ... 1 0 ... 0) with 1 more 1-bit than w

ELSE

C = number of 1-bits in rightmost cluster of 1's in w
z = number of 0-bits preceding the rightmost cluster of 1-bits in w
FROM w = (21 22 ... xj 1 0 ... 0 1 1 --

"'*
k + l z-1

1) generate
z k

Nw = (21 2 2 ... 2j 0 1 1 10 0)

ENDIF

NEXTvector = Nw
END

Thus, NEXTvector generates the next vector by moving the rightmost 1-bit to the right until
it reaches the last position. If all the 1-bits are all the way to the right, then a new vector is
created with one more 1-bit than the previous vector. Otherwise, it then alters the order of
the lower bits and then continues to move the rightmost bit to the right.

Justification for the Basic Algorithm

In this section a bound on the error due to pruning is derived. Several lemmas are first
given which simplify the error bound analysis.

Lemma 1. If pa > 0 and 1 > pp 2 0 then

Proof:

Lemma 2. If 9 (v) = IC then P(Vk) 2 P(w).

Proof: Suppose that w differs from V k in only one place; that is, suppose that the a 1-bit
in vk is located at p in w:

27

k n

5 P(vk) (By lemma 1)

The argument is easily generalized for more than one displaced 1-bit.
Lemma 3. Subroutine PRUNER only skips vectors with probability <52.
Proof: As shown earlier, the program generates vectors in a specific order. If v is of form

(X I 2 2 ... xj 0 1 1 1 1 0 0
k z

0), then PRUNER generates the next vector Nw as follows: ”’-
Nv = (X I x2 ... x j o 0 0 0 1 1 11)

z+l k
From the function NEXTvector it can be seen that all the vectors between v and Nv are of
the following form:

where k of the y-bits are 1’s and z of the y-bits are 0’s. (This can be seen by noting that
NEXTvector has three branches in the IF statement. The first and third branches only generate
vectors of the form above. The second branch is only executed when all the 1’s are already all
the way to the right, so it does not apply.) It is obvious that any vector with the Nv-form
can be derived from u by merely moving bits to the right. Thus, subroutine PRUNER skips
vectors which can be generated from the current one by merely moving 1-bits to the right.

To see that moving a 1-bit to the right results in a vector with lower probability, let v
represent the original vector and v‘ represent the new vector. Let a be the location of the 1-bit
which will be moved to location ,L? which is to the right of a (i.e., ,L? > a):

N u = (X I 2 2 ... xj 0 y1 ... yn-j-l)

Thus,

The last step follows from P(Ea) 1 P(Ep) and lemma 1. Since PRUNER is only called when
the initial vector v has probability of occurrence < 52 , all the vectors skipped have probability
<a.

28

Pruning emor bound. The algorithm utilizes two forms of pruning. The first form throws
away all vectors v such that @(v) > y. A bound on the error which can result from such
pruning, ERR,, is easily obtained. From lemma 2 and the fact that there are (F) vectors with
k l-bits, we have

where S = {vl@(v) > y}.
But y is chosen such that

2 (;)P(Vk) < Sf[0.5 x
k = ,

(In fact y is the smallest positive integer which satisfies this equation.) Thus,

ERR, < Sf[0.5 x

The second form of pruning eliminates small vectors before @(v) reaches 7. First is either
zero in which case no additional pruning is done or

where

n=

7-1

k=O
c, = E

BOUND - ERRGAM

BOUND = Sf[0.5 x lodd]

ERRGAM = 5 (;) P (Vk) = ERR,
k = y

Since C, = Total number of vectors with @(v) < y, and Na is the number of vectors already
analyzed, (C, - Na) is an upper bound on the number of vectors which can be thrown
away. Lemma 3 demonstrated that subroutine PRUNER only skips vectors with probability of
occurrence < R. Thus, a bound on the error due to the second type of pruning, ERRn, is

ERR0 = (Cy - Na) *
= BOUND - ERRGAM

= BOUND - ERR,

The total error due to pruning e is bounded by ERR, + ERRn:

5 ERR, + ERR0 = BOUND = Sf[0.5 x

Since Sf 5 Psys,
€ < PSYS[O.5 x 1041

psys

or
€ < 0.5 x -

Thus, there are d digits accuracy.

29

More Eficient Algorithm

The FTC V2.1 algorithm is more efficient than the basic algorithm presented in the previous
section. The increased efficiency is obtained by recalculating y and R periodically. Since both
y and R are functions of Psys and Na, improved values can be obtained as the computation
proceeds. However, this must be done carefully in order to guarantee d digits accuracy.

v = (0 0 0 ... 0); s, = 0; N , = 0; Na = 0;
NEXTCUT = 1; PRUNED-SOME = FALSE; ERROMG = 0;
TOTAL-THROWN-AWAY = 0;
REPEAT

IF v causes system failure THEN
N , = N , + 1

s, = s, + P(v)
calculate P (v)

IF N , = NEXTCUT THEN
CALL CUTLEVEL(Sf, 7, R)
NEXTCUT = NEXTCUT*10

ENDIF
IF P (v) < 52 THEN CALL PRUNER(w,R) ENDIF

ENDIF
IF (!P(v) 1 y) THEN GO T O 100 ENDIF
LASTw = w
v = NEXT vector

UNTIL LASTv = (1 1 ... 1)
100: Psys = Sf

FUNCTION CUTLEVEL(Sf, 7, R)
IF PRUNED-SOME THEN

ENDIF
k = n
PF = 0.0
SUM = 0.0
BOUND = Sf[0.5 x

IF BOUND 2 TOTAL-THROWN-AWAY THEN

TOTAL-THROWN-AWAY = TOTAL-THROWN-AWAY + ERROMG

{ d = desired # digits accuracy)

ROOMLEFT = BOUND - TOTAL-THROWN-AWAY
ELSE

RETURN
ENDIF

REPEAT
ERRGAM = SUM
SUM = SUM + (g) P(Vk)
k = k - l

UNTIL SUM > ROOMLEFT
y = k + 2

30

ROOMLEFT - ERRGAM R =
ERROMG = (e, - Na) * R

CY - Na

END
SUBROUTINE PRUNER(w, R)

PRUNED-SOME = TRUE
IF w is of FORM (0 0 ... 0 1 1 ... 1 1 0 0 ...) THEN

ELSE

ENDIF

21 = (0 0 ... 0 1 1 1 1 1)

SKIP-A-FEW(w)

END
Derivation of Error Bound for the More Eficient Algorithm
The only difference between the original algorithm and the more efficient algorithm is that

the more efficient algorithm recalculates y and R as the computation proceeds. The variable
BOUND represents the total amount of probability that can be thrown away and still have d
digits accuracy. In the basic algorithm, the difference between BOUND and ERR, represents
the amount of extra probability that is not used by the y-type pruning. This extra probability
enabled the additional R-type pruning. When the program recalculates y and R, it is necessary
that the error due to previous pruning be taken into consideration. (Clearly, since y-type
pruning terminates the program, only the previous R-type pruning must be considered.) To
illustrate, let y’ and R‘ represent the first values and y and R represent the new values to be
calculated. Also let BOUND(i) be the value of BOUND used for the ith calculation:

BOUND(i) = S f * [0.5 x

Clearly,
BOUND = Psys[0.5 x 2 BOUND(i) (for all i)

If no pruning was done prior to the second calculation, then the original method would work
fine. But, if pruning was done prior to the second calculation of y and 52, then there are three
sources of error which must be accommodated. The following must hold:

ERR, + ERR, + ERR,/, 5 Psys[O.5 x

(i) In general, if ERR, represents the error bound on the amount of pruning due to the ith value
of R, say di), and there were 7 calculations of R (i.e., T calls to subroutine CUTLEVEL), then
the following must hold:

T

ERR, + ERR^) I ~ ~ ~ ~ 0 . 5 x
i=l

The program maintains this summation
The parameter Rei) is calculated as follows:

E R 4) in the variable TOTAL-THROWN-AWAY(7).

ROOMLEFT - ERR, R(i) =
- Na

- BOUND(() - TOTAL-THROWN-AWAY(i - 1) - ERR, -
- Na

31

Since BOUND(i) 5 BOUND:

BOUND - ERR, - TOTAL-THROWN-AWAY(Z - 1)
cy - Na

QM < -

Thus, a bound on the error due to R(Z)-pruning denoted ERR:) is:

ERR:) = Q(~) (c , - Na) = [BOUND - ERR, - TOTAL-THROWN-AWAY(Z - 111

Rearranging terms:

ERR:) + TOTAL-THROWN-AWAY(Z - 1) = BOUND - ERR,

or
a

ERR, + 1 ERR:) = BOUND
j=1

This equation is true for all i, in particular i = T:

The left side is the sum of the error bounds for all the pruning that could possibly take place.
Thus, the total error in pruning E is bounded:

E 5 BOUND = Psys[0.5 x

or
< 0.5 x

E -
psys

Thus, there are d digits accuracy.
Domain of Eficiency

Since the program processes vectors in order of increasing number of basic-event failures, it
is efficient for systems which have a failure mode involving a small number of basic events. Even
very large fault trees can be solved, if they possess dominant failure vectors containing only a
few failed basic events. This type of fault tree is found in models of fault-tolerant computer
system architectures. For example, if the system is constructed using threefold redundancy,
the dominant failure vectors will contain only two basic-event failures.

Concluding Remarks
A new algorithm for solving fault trees has been developed along with an error bound on

its accuracy. This algorithm is the mathematical basis for a new reliability analysis program
called the Fault-Tree Compiler (FTC). The solution algorithm is especially efficient for the
types of fault trees used to model fault-tolerant system architectures. The FTC program has
four major strengths: (1) the input language is easy to understand, (2) automatic sensitivity
analysis is allowed by varying a parameter over a range of values, (3) the answer provided by
the program is precise to within a user-specified level of accuracy, and (4) the program uses a
pruning technique which significantly reduces the execution time of the program. Additionally,
the use of the hierarchical fault-tree capability can reduce model complexity.

NASA Langley Research Center
Hampton, VA 23665-5225
May 2, 1989

32

Appendix

Error Messages
Error and warning messages are listed in alphabetical order, with messages beginning with

a symbol (i.e., =, 1, ;) listed at the end.

ALREADY DEFINED AS A GLOBAL CONSTANT-The value defined has been defined pre-
viously as a global constant.
ALREADY DEFINED AS A GATE OUTPUT OR EVENT-The value has been defined pre-
viously as a gate output or event.
ALREADY DEFINED AS A LOCAL CONSTANT-The value has been previously defined as
a local constant.
ALREADY DEFINED AS A RESERVED WORD-The value defined is an FTC reserved
word.
ALREADY DEFINED AS A SUBTREE-The value defined has previously been defined as a
subtree title.
ARGUMENT TO EXP FUNCTION MUST BE < 8.80289E+Ol-The argument to the EXP
function is too large.
ARGUMENT TO LN OR SQRT FUNCTION MUST BE > O-The LN and SQRT functions
require positive arguments.
ARGUMENT TO STANDARD FUNCTION MISSING-No argument was supplied for a
standard function.
COMMA EXPECTED-Syntax error; a comma is needed.
CONSTANT EXPECTED-Syntax error; a constant is expected.
DIVISION BY ZERO NOT ALLOWED-A division by 0 was encountered when evaluating
the expression.
EVENT PROBABILITY > l-The event probability was evaluated to a value greater than 1.
EVENT PROBABILITY < O-The event probability was evaluated to a value greater than 1.
EXP FUNCTION OVERFLOW-The argument to the EXP function is too large. The value
of the argument must be less than 8.802893+01.
EXPRESSION CANNOT CONTAIN THE VARIABLE-The variable cannot be defined in
terms of itself.
EXPRESSION OVERFLOW-The value of the expression caused arithmetic overflow.
FILE NAME EXPECTED-Syntax error; the file name is missing.
FILE NAME TOO LONG-File names must be 80 or less characters.
IDENTIFIER EXPECTED-Syntax error; the file name is missing.
IDENTIFIER NOT DEFINED-The identifier entered has not yet been defined.
ILLEGAL CHARACTER-The character used is not recognized by the FTC program.
ILLEGAL LN OR SQRT ARGUMENT-The LN and SQRT functions require positive
arguments.
ILLEGAL STATEMENT-The command word is unknown to the program.
ILLEGAL NUMBER OF INPUTS TO GATE-The AND and OR gates may have an arbi-
trary number of inputs; however, the INVERT gate must have only one input, the EXCLUSIVE
OR gate must have two inputs, and the M OF N gate must have the number of inputs such
that N-M 2 0.
INPUT ALREADY DEFINED AS A VARIABLE-The gate or variable defined in the state-
ment has already been defined globally as a variable.
INPUT LINE TOO LONG-The command line exceeds the 100-character limit.

33

INTEGER EXPECTED-Syntax error; an integer is expected.
INV GATE MUST HAVE ONLY 1 INPUT-Only one input is allowed for the INVERT gate.
MUST BE IN “READ” MODE-The INPUT command can be used only in a file processed
by a READ command.
NOT A VALID EVENT-Events used as gate inputs must be previously defined as a basic
event or the output from a previous gate.
NO GATES IN FAULT TREE-The fault tree contains no gates.
NUMBER TOO LONG-Only 15 digits/characters allowed per number.
ONLY 1 VARIABLE ALLOWED-Only one variable can be defined per complete fault tree.
REAL EXPECTED-A floating point number is expected here.
SEMICOLON EXPECTED-Syntax error; a semicolon is needed.
SUB-EXPRESSION TOO LARGE, i.e. > 1.70000E+38-An overflow condition was encoun-
tered when evaluating the expression.
SUBTREE RESULT NOT FOUND-The fault tree was unable to calculate subtree top event
probabilities. Check for syntax errors in the subtrees.
TOP NOT REACHABLE-No combination of events led to the top event in the system tree.
UNKNOWN GATE TYPE-Verify that the gate type is AND, OR, INV, XOR, or m OF < >.
See the section “Gate Definition” of this paper for more information.
VARIABLE MUST BE DEFINED AT GLOBAL LEVEL-Variables may NOT be defined
within subtrees; variables must be defined globally.
VMS FILE NOT FOUND-The file indicated on the READ command is not present on the
disk. (Note: make sure your default directory is correct.)
WARNING: EVENT PROBABILITY = 1-The event probability was evaluated to a value
equal to 1. Although the answer given by the program is still correct the input may not be
what was intended.
WARNING: EVENT PROBABILITY = 0-The event probability was evaluated to a value
equal to 0. Although the answer given by the program is still correct the input may not be
what was intended.
*** WARNING: VARIABLE CHANGED TO A CONSTANT! PREVIOUS EVENTS MAY
BE WRONG-If previous basic events have been defined using a variable and the variable
name is changed, inconsistencies may appear in the results.
*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN-Syntax errors were present
during the model description process. They may or may not have been corrected prior to the
run.
*** WARNING: RUN-TIME PROCESSING ERRORS-Computation overflow occurred dur-
ing execution.
*** WARNING: REMAINDER ON INPUT LINE IGNORED-The information on the rest of
the input line is disregarded.
= EXPECTED-Syntax error; the = operator is needed.
] EXPECTED-A right bracket is missing in the expression.
< EXPECTED-Syntax error; the < symbol is needed.
) EXPECTED-A right parenthesis is missing in the expression.
(EXPECTED-A left parenthesis is missing in the expression.

34

References 3. Henley, Ernest J.; and Kumamoto, Hiromitsu: Reliability
1. Lee, W. S.; Grosh, D. L.; Tillman, F. A.; and Lie, C. Prentice-Hall, Inc.,

Review. IEEE Tkans. Rehab., vol. R-34, no. 3, Aug. 1985,

Engineering and Risk Assessment.
I H.: Fault Tree Analysis, Methods, and Applications-A c.1981.

I pp. 194-203. 4. Cohen, G. C.; Lee, C. W.; Brock, L. D.; and Allen,

I TM-86404, 1985. (IAPSA II). NASA CR-178084, 1986.

i

i
i

2. Bavuso, S. J.; and Petersen, P. L.: CARE 111 Model J. G.: Design/Validation Concept for an Integrated
Overview and User’s Guide (First Revision). NASA Airframe/Propulsion Control System Architecture

35

Nalional Aeronautics and

1. Report No.
NASA TP-2915

Report Documentation Page

2. Government Accession No.

17. Key Words (Suggested by Authors(s))
Fault tree
Reliability analysis
Reliability modeling
Fault tolerance

7. Author(s)
Ricky W. Butler and Anna L. Martensen

18. Distribution Statement
Unclassified-Unlimited

Subject Category 62

3. Performing Organization Name and Address
NASA Langley Research Center
Hampton, VA 23665-5225

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages
Unclassified Unclassified 38

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

22. Price
A03

3. Recipient’s Catalog No.

5 Report Date

July 1989
6. Performing Organization Code

8. Performing Organization Report No.

L-16529
10. Work Unit No.

505-66-21-01
11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper
~~ ~

14. Sponsoring Agency Code

~~

15. Supplementary Notes
Ricky W. Butler: Langley Research Center, Hampton, Virginia.
Anna L. Martensen: PRC Kentron, Inc., Aerospace Technologies Division, Hampton, Virginia.

The Fault-Tree Compiler program is a new reliability tool used to predict the top-event probability
for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR,
INVERT, and m OF n gates. The high-level input language is easy to understand and use when
describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify
the tree description and decrease program execution time. The current solution technique provides
an answer precisely (within the limits of double precision floating point arithmetic) within a user-
specified number of digits accuracy. The user may vary one failure rate or failure probability over a
range of values and plot the results for sensitivity analyses. The solution technique is implemented
in FORTRAN; the remaining program code is implemented in Pascal. The program is written to
run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.

16. Abstract

