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FORCE EVALUATION IN THE LATTICE BOLTZMANN METHOD INVOLVING
CURVED GEOMETRY

RENWEI MEI*, DAZHI YU, WEI SHYY!, anD LI-SHI LUOY

Abstract. The present work investigates two approaches for force evaluation in the lattice Boltzmann
equation: the momentum-exchange method and the stress-integration method on the surface of a body.
The boundary condition for the particle distribution functions on curved geometries is handled with second
order accuracy based on our recent works. The stress-integration method is computationally laborious for
two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-
exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional
flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-
driven channel flow; (ii} two-dimensional uniform flow past a column of cylinders; (iiil) two-dimensional flow
past a cylinder asymmetrically placed in a channel (with vortex shedding); {iv) three-dimensional pressure-
driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using

the momentum-exchange method agrees well with the exact or other published results.

Key words. lattice Boltzmann method, force evaluation on fluid-solid interface, momentum-exchange

method, stress-integration method, boundary condition for curved geometries, accuracy, 3-D flows
Subject classification. Fluid Mechanics
1. Introduction.

1.1. Background of the lattice Boltzmann equation method. The method of lattice Boltzmann
equation (LBE) solves the microscopic kinetic equation for particle distribution function f(z,&, ¢}, where &
is the particle velocity, in phase space (x, &) and time ¢, from which the macroscopic quantities (low mass
density p and velocity w) are obtained through moment integration of f{z,&,1). Because the solution pro-
cedure is explicit, eagy to implement and parallelize, the LBE method has increasingly become an attractive
alternative computational method for solving fluid dynamics problems in various systems {1, 2, 3, 4]. The
most widely used lattice Boltzmann equation [1, 2, 3, 4] is a discretized version of the model Boltzmann
equation with a single relaxation time approximation due to Bhatnagar, Gross, and Krook (BGK model)

151,
Of+E-Vf= %[f—f“”h (L1)

where £ is the Maxwell-Boltzmann equilibrium distribution function and X is the relaxation time. The

mass density p and mormentum density pu are the first (D + 1) hydrodynamic moments of the distribution
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function f and £ in D dimensions. It can be shown that the particle velocity space £ can be discretized
and reduced to a very small set of discrete velocities {€,]e = 1,2,...,b}, and the hydrodynamic moments
of f and f® as well as their fluxes can be preserved exactly, because the moment integral can be replaced
by guadrature exactly up to a certain order in £ [6, 7, 8, 8]. With velocivy space € properly discretized,

Eq. (1.1) reduces to a discrete velocity model of the Boltzmann equation

, 1
dtfa + ‘Ea' " Vfr:x = )\[fa &O)]a (12)

the equilibrium distribution function of the ath discrete velocity &€, respectively. Equation (1.2) is then
discretized in space @ and time ¢ into

- { 5§ § o ) = ! 2t (e ) 1.3

foz,*’r‘i""f»gz t7t+ it)—foz(*ci:t, """ —:[fa’(J’iw/ —fa '(*Biut,]: ( -‘)
where 7 = \/d; is the dimensionless relaxation time and e, is a discrete velocity vector. The coherent
discretization of space and time is done in such a way that dx = e,d; is always the displacement vector from
a lattice site to one of its neighboring sites. The equilibrium distribution function f&em(wi, t) in the lattice
Boltzmann equation {1.3) is obtained by expanding the Maxwell-Boltzmann distribution funection in Taylor
series of u up to second order [6, 7], and can be expressed in general as

3 9 3 4

f((leq) = WP 1 + ‘C—z(et ’ U) + :E;j(ea - u)2 - 2(,3 %" s (14)

where ¢ = 4, /6s; &, is the lattice constant of the underlying lattice space; and coefficient w,, depends on the

dimensional nine-velocity model (D2Q9) and the three-dimensional nineteen-velocity model (D3Q19) [10].
Figure 1 shows the discrete velocity sets of the two models. It should be pointed out that there exist other
discrete velocity sets {e,} that have the sufficient symmetry for hydrodynamics [6, 7]. A comparative study
of three three-dimensional LBE models including the fifteen-velocity model (D3Q15), the nineteen-velocity
model (D3Q19), and the twenty-seven-velocity model {D3Q27), in terms of accuracy and computational
efficiency has been conducted by Mei ef al. [11]. Tt was found that the nineteen-velocity model (D3(Q19)
offers a better combination of computational stability and accuracy. The D23Q9 and D3Q19 models will be
used in this study for force evaluation in two-dimensional and three-dimensional flows, respectively. Equation

(1.3) is conveniently solved in two steps

. 1 ) (o, . N
collision: [, ) = fal@it) = = |fal@it) - £V @, 0)] | (1.52)
streaming:  fu(@i + ealy,t 4 6) = falwi, 1), (1.5b)

which is known as the LBGK scheme [1, 2]. The collision step is completely local and the streaming step
is uniform and requires little computational effort, which makes Eq. (1.5) ideal for parallel implementation.
The simplicity and compact nature of the LBGK scheme, however, necessitate the use of the square lattices
of constant spacing (6, = 4,), and consequently lead to the unity of the local Courant-Friedrichs-Lewy

number, because §; = d, = 1.

1.2. Boundary condition for a curved geometry in the LBE method. Counsider a part of an

arbitrary curved wall geometry, as shown in Fig. 2, where the filled small circles on the boundary, 2., denote
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Fra. 1. Discrete velocity set {eq}. (left) Two-dimensional nine-velocity (D2Q9) model. {(right) Three-dimensional

nineteen-velocity (D3Q19) model.

the intersections of the boundary with various lattice-to-lattice links. The fraction of an intersected link in

the fluid region, A, is defined by

| Ly — Ly ] '

Obviously the horizontal or vertical distance between @y and @, 15 Ad, on the square lattice, and 0 < A < 1.
In Eq. (1.5b), the value of £, (@, ¢) needs to be constructed according to the location of the boundary and
the boundary conditions, if the grid point ; = =, lies beyond the boundary. In the past, the bounce-
back boundary condition has been use to deal with a solid boundary in order to approximate the no-slip
boundary condition at the solid boundary [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. However, it is
well understood that this bounce-back boundary condition satisfies the no-slip boundary condition with a
second-order accuracy (for the Couette and Poiseuille flows) at the location one half lattice spacing (A = 1/2)
outside of a boundary node where the bounce-back collision takes place; and this is only true with simple
boundaries of straight lines parallel to the lattice grid [19, 20, 21]. For a curved geometry, simply placing the
boundary halfway between two nodes will alter the geometry on the grid level and degrade the accuracy of
the flow field and the force on the body at finite and higher Reynolds number. To circumvent this difficulty,
Mei and Shyy solved Eq. (1.2) in cwrvilinear coordinates using a finite difference method to compute f,
[25]. He and Doolen used body-fitted curvilinear coordinates with interpolation throughout the entire mesh,
except at the boundaries where the bounce-back boundary condition is used [26]. In the recent works of
Filippova and Hanel [27] and Mei et al. [28, 11], a second-order accurate boundary condition for curved
geometry was developed in conjunction with the use of Cartesian grids in order to retain the advantages
of the LBE method. An interpolation scheme is employed only at the boundaries to obtain f,(x;,t). The
detailed assessment on the impact of the boundary condition on the accuracy of the flow field has been given
in Ref. [28] for some two-dimensional flows and in Ref. [11] for some three-dimensional flows.

Because the bounce-back type boundary conditions play an important role in lattice Boltzmann simula-
tions, it is important for us to understand how the boundary conditions work. First of all, one must realize
that it is impossible for any kinetic numerical scheme to impose a given velocity (the Dirichlet boundary
condition) on a given grid node, because the Knudsen layer type of phenomena {29, 30, 31] would be mani-
fested in kinetic schemes [32, 19, 20, 21]. For example, in the Poiseuille and the Couette flows, the location
where hydrodynamic boundary conditions are satisfied are one-half grid spacing away from the boundary
grids where the bounce-hack boundary conditions are imposed [19, 20, 21]. For flows around an arbitrary

shaped body analytical solutions do not exist. Nevertheless, substantial evidence shows that the bounce-
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Fia. 2. Layout of the regularly spaced lattices and curved weall boundery. The circles (o), discs (o), shaded discs (s}, and
diamonds (O) denote fluid nodes, boundary locations (&), solid nodes which are also boundary nodes (@) inside solid, and
solid nodes, respectively.

back boundary conditions combined with interpolations, and including the one-half grid spacing correction
at boundaries, are in fact second-order accurate and capable of handling curved boundaries [26, 23, 24, 33].

This point is also demonstrated in the present work.

1.3. Force evaluation and related works. In spite of numerous improvement for the LBE method
during the last several years, one important issue that has not been systematically studied is the accurate
determination of the fluid dynamic force involving curved boundaries. Needless to say, accurate evaluation
of the force is crucial to the study of fluid dynamics, especially in Huid-structure interaction. Several force
evaluation schemes, including momentum exchange [14, 16] and integration of surface stress [26, 34], have
been used to evaluate the fluid dynamic force on a curved body in the context of the LBE method.

He and Doolen [26] evaluated the force by integrating the total stress on the surface of the cylinder and
the components of the stress tensor were obtained by taking respective velocity gradients. Even though a
body-fitted grid was used, an extrapolation was needed to obtain the stress in order to correct the half-
grid-cell spacing effect due to the bounce-back boundary condition. Filippova and Hénel [27] developed
a second-order accurate boundary condition for curved houndaries. However, the fluid dynamics force on
a circular cylinder asymmetrically placed in a two-dimensional channel was obtained by integrating the
pressure and deviatoric stresses on the surface of the cylinder by extrapolating from the nearby Cartesian
grids to the solid boundary {27, 34]. To gain insight into the method of surface stress integration, it is
instructive to examine the variation of the pressure on the surface of a circular cylinder at finite Reynolds
number obtained by using the LBE method for flow over a column of eylinders (see Ref. [28], and Sec. 3.2).

Figure 3 shows the pressure coefficient
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Fi1c. 3. Flow past o column of 2D circular cylinders. Distribution of the pressure coefficient Cp on the surface of a 2D
circular cylinder of radius v = 6.6, and center-to-center distance H/r = 20. The stagnation point is located at 6 = 180°. The
LBE result denoted by symbols X is obtained with v = 0.6 and Re = 40. The solid line is the result obtained by using a 3D

multi-block, body-fitted grid, and pressure-bosed Navier-Stokes solver with a much finer resolution.

on the surface obtained by using second-order extrapolation, where p,, is the far upstream pressure. Only
those boundary points, ®,,, intersected by the horizontal or vertical velocities, i.e., e1, es, e5, and e7, are
considered in the result given by Fig. 3. If the boundary points intersected by the links in the diagonal
velocities, i.e., e,, e4, €¢, and eg, are also considered, the variation of C'p would be more noisy. The
compounents of the deviatoric stress tensor show a similar noisy pattern. It is not clear how the noise in
the pressure and stresses affect the accuracy of the fluid dynamic force in the stress-integration method.
While the programming in the extrapolation and integration is manageable in two-dimensional (313} cases,
it is rather laborious in three-dimensional cases. In Fig. 3, the LBE result of Cp(#) (indicated by symbol
x) is compared with that obtained by using a 3D multiblock, body-fitted coordinates, and pressure-based
Navier-Stokes solver [35, 36, 37] with a much finer resolution: 201 points around the cylinder and the smallest
grid size along the radial direction dr = 0.026 (relative to r = 1). Not surprisingly, the result obtained by
using the Navier-Stokes solver with body-fitted grid and high resolution is smoother than the LBE result
with a Cartesian grid of coarser resolution. Nevertheless, the LBE solution still essentially agrees with the
Navier-Stokes solution.

Instead of the stress-integration method, Ladd used the momentum-exchange method to compute the
fluid force on a sphere in suspension flow [14]. In the flow simulation using the bounce-back boundary

condition, the body is effectively replaced by a series of stairs. Fach segment on the surface has an area of

in which @, resides in the solid region] results from the momentum exchange (per unit time) between two

opposing directions of the neighboring lattices

1 -
(S_t{eafa(wf) - e@f@(wf -+ eozot)]

in which ey = —e,. Whereas the momentum-exchange method is very easy to implement computationally,

its applicability and accuracy for a curved boundary have not been systematically studied. To recapitulate,



there are two major problems associated with the method of surface stress integration. First, the components
of stress tensor are often noisy on a curved surface due to limited resolution near the body and the use of
Cartesian grids. The accuracy of such a method has not been addressed in the literature. Second, the
implementation of the extrapolation for Cartesian components of the stress tensor to the boundary surface
and the integration of the stresses on the surface of a three-dimensional geometry are very laborious in
comparison with the intrinsic simplicity of the lattice Boltzmann simulations for flow field. The problems
associated with the method of momentum exchange are as follows. (a) The scheme was proposed for the case
with A = 1/2 at every boundary intersection @,,. Whether this scheme can be applied to the cases where
A 5 1/2, when, for example, the boundary is not straight, needs to be investigated. (b) As in the case of
stress-integration method, the resolution near a solid body is often limited and the near wall flow variables
can be noisy. If one uses the momentum-exchange method to compute the total force, it is not clear what
the adequate resolution is to obtain reliable fluid dynamic force on a bluff body at a given (moderate) value

of Reynolds number, say, Re =~ O(10%).

1.4. Scope of the present work. In what follows, two methods for the force evaluation, i.e., the
stress-integration and the momentum-exchange methods, will be described in detail. The shear and normal
stresses on the wall in a pressure driven channel flow will be first examined to assess the suitability of the
momentum-exchange method when A # 1/2 and analyze the errors incurred. The results on the drag force
for flow over a column of circular cylinders using these two methods will be subsequently assessed for the
consistency. The drag coeflicient at Re = 100 are compared with the result of Fornberg [38] obtained by
using a second-order accurate finite difference scheme with sufficient grid resolution. For flow over a cylinder
asymmetrically placed in a channel at Re = 100, the unsteady drag and lift coefficients are computed and
compared with the results in the literature. The momentum-exchange method is further evaluated for three-
dimensional fully developed pipe flow and for a uniform flow over a two-dimensional array of spheres at finite
Reynolds number. We found that the simple momentum-exchange method for force evaluation gives fairly

reliable results for the two-dimensional and three-dimensional flows.
2. Methods for Force Fvaluation in LBE Method.

2.1. Second-order accurate no-slip boundary condition for curved geometry. The analysis of
boundary conditions for a curved boundary in the lattice Boltzmann equation is accomplished by applying
the Chapman-Euskog expansion for the distribution function at the boundary. The following approximation
for the post-collision distribution function on the right-hand side of Eq. (1.5b) can lead to a second-order

accurate no-slip boundary condition [11, 27, 28]

fd (wbaf’) = (1 - X)fat(mfat) + Yf(l(Tbt> + 271701[){7_26& Uy (21)
where
Falae, t) = waples, i) |1+ ZZ(e(l “Upy) 27((,@ . uf)2 - @uf
= feD (g, 4) + 'u;ap(:nf,t)éi-ea (aepy - ug), (2.2)
and
(2A = 1) 1 ..
=g = up(Es teadnt), x=-m ., 0<A<Z, (2.3:
upp =usp = up(ey +ead,t), X =2 <A< (2.32)
1 3 eA-1) 1 .
g = (28 = 3)up + Uy, Y=t <A< 2.3b)
Ui T oA JustsRues X= gy 3 SAC (2.3b)
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The above treatment is applicable for both the two-dimensional and three-dimensional lattice Boltzmann
models.
By substitution of Eq. (2.2}, Eq. {2.1) becomes

Fatws ) = falws,t) = x [Fat@st) = [0y, 0)]

3

K .

+we play, t)(:,ea Ay — up — 2Uy) . (2.4)
Thus, the above treatment of curved boundaries can be thought as a modification of the relaxation (the
viscous effect) near the wall (with the relaxation parameter y), in additional to a forcing term accounting

for the momentum-exchange effect due to the wall.

2.2. Force evaluation based on stress integration. He and Doolen [26] evaluated the force by

integrating the total stresses on the boundary of the cylinder 942,
F= [ dAna-{-pl+pv[(V:u)+(V:u)']},
a0

where 71 is the unit out normal vector of the boundary 99, 1 is the identity tensor of second rank, ¥V :u
denotes the second rank tensor whose components are d;u;, and T is the tranpose operator. In Ref. [26], a
body-fitted coordinate system together with grid stretching was used such that a large number of grids can
be placed near the body to yield a reliable velocity gradient d;u;. In general, since w is not the primary
variable in the LBE simulations and the evaluation of w using ), eafo based on fo’s suffers the loss of
accuracy due to the cancellation of two close numbers in f,’s the evaluation of the derivative O;u; will
result in further degradation of the accuracy. Filippova [34] used a similar integration scheme to obtain the
dynamic force on the body for the force on a circular cylinder [27] except that the deviatoric stresses were
evaluated using the non-equilibrinm part of the particle distribution function [see Eq. (2.7) below], However,
siuce a Cartesian grid was used, the stress vectors on the surface of the body (with arbitrary A) have to
be computed through an extrapolation procedure based upon the information in the flow field. This leads
to further loss of accuracy for a finite lattice size §, when the shear-layer near the wall is not sufficiently
resolved.

In Eq. {2.5), the pressure p can be easily evaluated using the equation of state p = c¥p. For D2QY and

75 = pv (Opuj + Ojuq) (2.6)

can be evaluated using the non-equilibrium part of the distribution function fc(,,“em = f, = (:e‘”]

Ce

1 1 r(110q) ’ 1 5 [y
Tij = (717 — Z\) fo(‘ “U (e, 1) (ea,ica,j - e ec,,d,;j> , (2.7)
o

where ¢, ; and ¢, ; are ith and jth Cartesian component of the discrete velocity e, respectively. For the
flow past a circular cylinder, a separate set of surface points on the cylinder can be introduced in order
to carry out the numerical integration given hy Eq. (2.5). The values of the pressure and each of the six
components of the symmetric deviatoric stress tensor on the surface points can be obtained using a second-
order extrapolation scheme based on the values of p and 73; at the neighboring fluid lattices. The force

exerting on the boundary 99 is computed as

F= [ dAf-{-pl+ pr[(V:iu)+ (V:u)']} (2.8)

50 J extrapolated

It is worth commenting here that for the two-dimensional flow past a cylinder, nearly half of the length of

the entire code is taken up by the above force evaluation procedure.

-1



2.3. Method based on the momentum exchange. In order to employ the momentum-exchange
method efficiently, two scalar arrays, w(i,7) and w4, j) are introduced. A value of 0 is assigned to w(i, j)
for the lattice site (i, ) that are occupied by fluid; a value of 1 is assigned to w(¢, 7} for those lattice nodes
inside the solid body. The array ws (4, 7) is set to zero everywhere except for those boundary nodes, @5, where
a value of 1 is assigned. For a given nonzerc velocity e, €5 denotes the velocity in the opposite direction,
ie, eg = —e, (see Fig. 2). For a given boundary node x; inside the solid region with w;(4,7) = 1 and

w(i,j) = 1, the momentura exchange with all possible neighboring fluid nodes over a time step ¢ = 1 is

Z e, VU(% t) + fal@s + eady, t)] [1—w(zy + eadt)].

a#0
Simply summing the contribution over all boundary nodes @y belonging to the body, the total force (acted
by the solid body on the fluid) is obtained as

F=5% %e, [ﬁy(wb,fﬁ) + falmsy + eaé‘z,,t)] (L — w(as + eady)] . (2.9)
all @y a0

In the momentum-exchange method the force F is evaluated after the collision step is carried out and
the value of f, at the boundary given by Fq. (2.1) has been evaluated. The momentum exchange occurs
during the subsequent streaming step when fa (2,14 &) and fa(a:f, t+d:) move to &y and xp, respectively.
As mentioned in the introductory section, the effect of the variable A is not explicitly included, but it is
implicitly taken into account in the determination of fd(mb,'[ + d:). The applicability of Eq. (2.9) will be

examined and validated.
Clearly, the force is proportional to the number of boundary nodes @y in the above formula of ¥ and
the number of the boundary nodes increase linearly with the size of the body in a two-dimensional flow.
However, since the force is normalized by pU?r in the formula for Cp in two-dimensions [see Eq. (3.9)], the

drag coefficient Cp should be independent of r.

3. Results and Discussions. For straight walls, there is no doubt that Fq. (2.5) together with the
equation of state for pressure and Eq. (2.7) for n;; gives accurate results for the force provided that the f,'s
are accurately computed. To demounstrate the correctness of Eq. (2.9) based on the momentum exchange for
an arbitrary A, we first consider the pressure driven channel flow (see Fig. 4) for which exact solutions for
the velocity and stresses are known. The second case considered is the two-dimensional flow past a column of
circular cylinders at Reynolds number Re = 100 and H/r = 20, where H is the distance between the centers
of two adjacent cylinders. The values of the drag computed using the two force evaluation methods are then
compared with the result of Fornberg [38]. The dependence of the drag on the radius r in the momentum-
exchange method is examined to assess the reliability of this method. The third case is the two-dimensional
flow over a circular cylinder that is asymmetrically placed in a channel at Re = 100 (with vortex shedding).
The time dependence of the drag and lift coefficients is compared with results in the literature.

We also consider two cases of three-dimensional flow. The first case is the pressure driven flow in a
circular pipe for which the exact solutions for both the velocity profile and the wall shear stresses are known.
The assessment for the momentum-exchange method for three-dimensional flows will be made first in this
case. Finally, the momentum-exchange method will be evaluated by considering the drag on a sphere due to
a uniform flow over a sphere in a finite domain. The details for the flow field computation can be found in
Refs. [28, 11].

3.1. Two-dimensional pressure-driven channel flow. In the case of the channel flow, the force

on the top wall (y = H) at a given location x (i = N, /2 + 1, for example) can be evaluated using the
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Fic. 4. The channel flow configuration in the LBE simulations with an arbitrary A.

x and y components of the force on the fluid at the top wall near the ith node are

By = [foli,0) + foi = 1,5 = D]esn + [fali, ) + fali + 1,5 = D] s, (3.1a)
Fy = [foli, 1) + fo(e = 1,5 = D] eey + a6, 4) + fali + 1,5 = D] es,,
[ 06,5) + F3(i,5 = Dery, (3.1b)

where e, ; denotes the jth Cartesian component of velocity e.. Since §, = 1, ¥, and Fy, are, effectively, the

total shear and normal stresses, oy, and oy, which include the pressure and the deviatoric stresses, on the

Based on Eq. (2.7), the deviatoric component of the fluid shear stresses at §j = Ny —1 (or y = N, -3+ 4)
and N, —2 {(or y = Ny —4+A) can be exactly evaluated based on the nonequilibriam part of the distribution
functions in the flow field if they are correctly given. A linear extrapolation of the deviatoric shear stresses
toy=H =N, -3+ 24 yields

7_1(1;03]) = Twy(\;’ = Ny — 1)+ A[T;w(j = Ny~ 1) - Try(l = Ny - 2], (3.2)

where the superscript “(neq)” denotes the value computed from fo(f’eq')

, and the subscript w refers to the
value at the wall. The deviatoric normal stress, Tl‘,ij‘fg}, can be similarly computed. In a fully developed
channe] flow, the normal component of the deviatoric stress 7,,(y) is expected to be zero while the total
normal stress oy, (y) is equal to the negative of the pressure (—p). It needs to be pointed out that this
method of evaluating Ti;‘i‘j) given by Eq. {3.2) for two-dimensional chanuel flow is equivalent to the method
of the surface stress integration based on the extrapolated pressure and the deviatoric stresses on the solid
wall except that no numerical integration on the solid surface is needed.

After the velocity profile u, (y) is obtained from fo, the shear stress 7, on the wall can also be calculated

using the near wall velocity profile as

vydux _ y(Z + AV [0 — w,(f = Ny — 1)]
Py |, TR A
A ) . ) ~ .
oY (1+A) a(j = Ny — 1) — ua(j = Ny = 2)]. (3.3)

In the above, a linear extrapolation is employed to evaluate the velocity detivative (duy /dy)|y=rr at the wall.



Tasre 3.1

Comparison of fluid stresses at y = H in a two-dimensional pressure driven channel flow with dp/dr = —1.0 x 1079 in

the lattice units, Ny = 35 and 7 = 0.6 as a function of A, Column 2, Tfff(’w”

_{neq)

by Eq. (3.1a); Column 4, —Tyyw giwen by Fq. (3.2); Column 5, —pv{du,/dy)l,=n FEq. (3.3); Column 6, —F, given by

x)

given by Eq. {3.4); Column 3, —F, gwen

Eq. (3.1b); Column 7, pressure p obtained in the simulation.

A gt 105 x 107 —rBe x 107 —ppdlie] y x 100 —F P
0.01 1.601 1.6333 1.6010 3.5294 0.3333  0.3333
0.02 1.602 1.6333 1.6020 2.5555 0.3333  0.3333
0.03 1.603 1.6333 1.6030 2.2309 0.3333  0.3333
0.04 1.604 1.6333 1.6040 2.0685 0.3333  0.3333
0.05 1.605 1.6333 1.6050 1.9710 0.3333  0.3333
0.1 1.610 1.6333 1.6100 1.7760 0.3333  0.3333
0.2 1.620 1.6333 1.6200 1.6781 0.3333  0.3333
0.25 1.625 1.6333 1.6250 1.6583 0.3333  0.3333
0.3 1.630 1.6333 1.6300 1.6451 0.3333  0.3333
0.3333 1.633 1.6333 1.6330 1.6385 0.3333  0.3333
0.35 1.635 1.6333 1.6350 1.6357 0.3333  0.3333
0.4 1.640 1.6333 1.6400 1.6285 0.3333  0.3333
0.5 1.650 1.6333 1.6500 1.6184 0.3333  0.3333
0.6 1.660 1.6333 1.6600 1.6214 0.3333  0.3333
0.7 1.670 1.6333 1.6700 1.6244 0.3333  0.3333
0.8 1.680 1.6333 1.6800 1.6274 0.3333  0.3333
0.9 1.690 1.6333 1.6900 1.6305 0.3333  0.3333
0.95 1.695 1.6333 1.6950 1.6321 0.3333  0.3333
0.99 1.699 1.6333 1.6990 1.6335 0.3333  0.3333

Finally, the exact solution for the fluid shear stress on the wall (y = H) is

Toael = s H =N, 3+2A (3.4)
based on the parabolic velocity profile or simple control volume analysis. This exact result can bhe used to
assess the accuracy of the aforementioned methods for the force evaluation.

In the LBE simulations, the pressure gradient is enforced through the addition of an equivalent body
force after the collision step [26, 11]. While the velocity field given by the LBE solution can be unique,
the pressure field [thus the deusity field p{x,y)] can only be unigue up to an arbitrary constant. In view
of Eq. (3.3}, it is difficult to compare the stresses for different cases if p{4, §) converges to different values
in each case. To circumvent this difficulty, the density field in the channel flow simulation is normalized by
p(i = 2,7 = N,/2) at every time step. This normalization procedure results in p(z,y) = 1 throughout the
entire computational domain. It is also applied to the three-dimensional flow in a circular pipe.

Table 3.1 compares the numerical values of the shear stress for a typical case (N, = 33, dp/dz = —1075

~exact (

in the lattice units, and 7 = 0.6) based on: 7532 given by Eq. (3.4), F} given by Eq. (3.1a), 7ime9) given

by Eq. (3.2), and pr{du,/dy)l,—mn given by Eq. (3.3). Also listed is the comparison between Fy given by

Eq. (3.1b) and —p. All computations are carried out with double precision accuracy.
(

Tt is noted that 7i3°0) is identical to T for all values of A. A closer examination of the shear



stress profile using Eq. (2.7) across the channel reveals that 7y (¥) is also equal to the exact shear stress

profile Tf”;*‘“( ), which is linear, despite the errors in the velocity profile u,(y) for all values of A. A linear
extrapolation, Fq. (3.2), for a linear profile therefore gives the exact wall shear stress. Thus, the exactness

{neq)

of 74y in the LBE simulation of channel flow indicates the reliability of the LBE solution for the stress
field ’i'i(;eq) (2,9) by using Eq. (2.7). However, as Fig. 3 indicates, the accuracy of integrating *rf?‘.“ew (x,y) to
obtain the fluid dynamic force in nontrivial geometries needs to be further investigated, as will be discussed
in the following sections.

For 0 < A < 1, the normal force Fj, given by Eq. (3.1b) based on the momentum-exchange method
agrees exactly with the pressure on the wall. This is a rather special quantity since deviatoric component of
the force is identically zero. Nevertheless, the method of the momentum exchange does give a reliable value
for the normal stress.

For the shear (tangential) force, it is observed from Table 3.1 that for fixed dp/dz, F, does not change
as A increases from 0.01 to 0.99. On the other hand, the exact result 78390 = L(dp/da)(N, — 3 + 24),
increases linearly with A. Further computations were carried out over a range of IV, (= 35, 67, 99, and
131) and 7 (= 0.505, 0.51, 0.52, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, and 1.6). The results indicate that the

momentum-exchange method gives the shear stress on the top wall as

. ldp a2
=g (Ny -3+ 3> : (3.5)

That is, F, is independent of 7 and A. The error in F, is zero when A = 1/3. The absolute error attains
the maximum when A = 1, which gives the relative error of 4/3H for F,. Although the frequently used
momentum-exchange method is & natural choice for the force evaluation in conjunction with the bounce-back
boundary condition for A = 1/2, one must he aware that this method is not exact and the error in the force
evaluation using the momentum-exchange method depends on A and the resolution.

The ervor in F, is due to the fact that the derivatives of the velocity field are not considered in the
boundary conditions. This can be understood by analyzing Eq. (3.1a). At the steady state, and with the

approximation that

foro fLo0) 4 pD) = plea) ;’wap—{:é—(ea - V(e -u), (3.6)

Equation (3.1a) at the top wall becomes

r

oo 2"11)2[);782 (upy +up — 2uy) (3.7)

where the substitution of Eq. (2.4) for fs and fs has been made. The only term in the above equation which
has A dependence is uy. When 0 < A 1/2, I, is independent of A, and when 1/2 < A < 1, F, weakly
depends on A because ©,, = 0 in this case [see Eqs. (2.3)]. In the case where F, is obtained by summing
over a set of symmetric lattice points, cancellations in the summation may further weaken the dependence
of F, on A.

Table 3.1 also shows that for the shear stress based on the derivative of the velocity obtained by using
finite-difference, the loss of accuracy is quite significant for small values of A (< 0.05) when 7 = 0.6. For
other values of A (> 0.3), the accuracy is comparable with that of F,. However, as shown in Fig. 5(a),
the accuracy of pv{dug/dy)|y=mr based on the near-wall velocity derivative deteriorates as the relaxation
time 7 increases (from 0.51 to 1.6). To see the cause of the increasing error in pv{duy/dy)ly=r, Fig. 3(b)

shows dimensionless wall velocity, 4y, /u., obtained by a three-point second-order Lagrangian extrapolation
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Fic. 5. The LBE simulations of the channel flow, with A = 0.2, 1/3, 0.5, and 0.7. The pressure drop is 8,p = —1.0x 1078
wn lattice units. (a) Ratio between the wall force, pvdyuz|y=p, evaluated by using Eq. (3.3), and the exact value ij“w‘f =
—H8,p/2, given by Eq. (3.4) as a function of 7. (b) Normalized wall slip velocity wy /uc as o function of 7.

of the near wall velocity wu,(y) as a function of 7. The increaging slip velocity u,, on the wall with the
increasing relaxation time 7 was also observed in Ref. [15]. Tt is the result of increasing particle mean free
path that causes the deviation of the kinetic solution from the hydrodynawmic solution. It is clear that the
poor performance of pv{du, /dy)|y-mr s associated with the increasing errvor in the near wall velocity profile
as 7 increagses. Since the stress tensor 7;; can be calculated directly from f, [see Eq. (2.7)] without the
need for directly computing velocity derivatives, the force evaluation method based on the evaluation of the

velocity gradient in the form of Fqg. (2.6) is not recommended.

3.2. Steady uniform How over a column of cylinders. For a uniform flow over a column of circular

cylinders of radius » and center-to-center distance H (see the left part of Fig. 6 for illustration), symmetry

uniform velocity in the inlet. It must be noted that for a consistent determination of the force, the upstream
boundary must be placed far upstream. A shorter distance between the cylinder and the boundary will result
in higher drag. In this study, it is placed at about 20 radii to the left of the center of the cylinder. Reducing
the distance between the boundary and the cylinder to 12.5 radii while keeping the rest of the computational
parameters fixed would increase the drag coefficient by about 1.8% at Re = 100. The downstream boundary
is located about 25 — 30 radii behind the cylinder to allow sufficient wake development. The simulation is

terminated when the following criterion based on the relative Ly-norm error in the fluid region {1 is satisfied,

>

ul@g, t+ 1) — ulz;, O

By = |%E2 - < (3.8)

> lulait+ 0P

®; €42
In this case, € = 1075 was chosen for both Re = 10 and 100.
Following Fornberg [38], the drag coefficient over a circular cylinder of radius r is defined as
F,

Op = 2L 3.9
P pU?r (8:9)

Figure 7(a} compares Cp obtained from: momentum-exchange method, surface stress integration, and finite

difference result of Fornberg [38] using a vorticity-stream function formulation at Re = 100, H/r = 20, and
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Fia. 6. Computational domain for the uniform flow past o sphere of radius r. The dashed lines indicate boundaries of

computational domain. (left) Unbounded domain in zy plane, and (right} bounded domain n yz plane.

radius v ranging from 2.8 to 13.2. For r > &, both the momentum exchange and the stress integration
methods give satisfactory results for Cp in comparison with the value of 1.248 given in Rel. [38]. The
small differences in Cp could be due to the fact that in Refl. [38], the computational domain is much larger
in the downstream direction — the downstream boundary condition is imposed at 300 radii behind the
cylinder in Refl. [38], as opposed to 25 — 30 radii here. This adds credence to the validity of Eq. (2.9) for
evaluating the total force on a body. The values of Cp from the momentum-exchange method have a little
less variation than that from the stress integration. Accepting an errvor of less than 5%, reliable data for
Cp can be obtained, using the momentum-exchange method, for r > 5. That is, ten lattice spacings across
the diameter of the cylinder are necessary to obtain reliable values of the force. This is consistent with the
finding by Ladd {14]. In the range of 5 < v < 7, the stress-integration method produces larger fluctuations
in the results than the momentum exchange method. For smaller radius, i.e., coarser resolutions, while both
methods give poor results (due to insufficient resolution), the stress integration method yields much larger
€rTors.

Figure 7(b) compares Cp obtained from the methods of momentum exchange and the stress integration

the data for v > &, an average value of C'p = 3.356 is obtained. In contrast, the stress-integration method has
a larger fluctuation than the large » result from the momentum-exchange method even for v > 8. Averaging
over the results for » > 8, the stress integration gives CUp v 3.319. The difference between converged results
of two methods i3 about 1%. For r less than or around 5, the fluctuation in Cp from the stress-integration
method is much larger than that in the momentum-exchange method. The conclusions from the comparisons
in Fig. 7 are as follows: (i) both methods for force evaluation can give accurate results; (i) the momentum-
exchange method gives more consistent, drag; and (iii) in the range of 10 < Re < 100, a resolution of ten
lattice spacings across the diameter of the cylinder are needed in order to obtain consistent and reliable
drag values. In other words, the lattice (grid) Reynolds number Re™ (= U/r) should be less than 10 in the
calculations.

In the above results presented in Figs. 7{a) and 7(b), the center of the cylinder is placed on a lattice

grid, thus the computational mesh is symmetric with respect to the geometry of the cylinder. To test the

is repeated with different values of the cylinder center offset A, in the x direction, or A, in the y direction.

The radius of the cylinder is deliberately chosen to be only 6.4 lattice grids. In order to preserve the mirror
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Fia. 7. The drag coefficient for a uniform flow past a column of cylinders over o range of radius r. (a) Re = 100. The

dashed line indicates the value of Cp = 1.24 obtained in Ref. [38]. (b) Re = 10. The dashed lines indicate the values of Cp

averaged over 4 largest radii.

symmetry of the flow in the y direction, we use different boundary conditions for upper and lower boundaries
(at y = £H/2). For A, = 0 while varying A,, we use the symmetric houndary conditions, which maintain

the flow symmetry with respect to the center line in the x direction. For A, = 0 while varying A,, we use

are presented in Table 3.2. The variation of Cp due to the change of the center of cylinder offset from a
grid point is less than 1% when the cylinder diameter is only about 13 lattice spacings. The outcome is
consistent with the expected truncation errors caused by mesh perturbation. We notice that the variation
in Cp due to A, is about one order of magnitude smaller than that due to A,. This is precisely because
when A, = 0 the mesh symmetry coincides with the flow symmetry in the y direction, and when A, # 0
the mesh symmetry is lost. This asymmetry due to A, # 0 results in the change of the lift coefficient from
O(107M) to O(107?), which is the same order of magnitude of the variation in Cp. It is our observation
that the accuracy of the force evaluation schemes used here is dictated by that of the boundary conditions
at the solid walls. The error due to symmetry of the computational mesh with respect to the geometry of

an object is well bounded. This is also observed in other independent studies [23, 33].

TasLe 3.2
The effect of symmetry of the computational mesh on the force evaluation for the steady uniform flow over a column of
cylinders. The Reynolds number Re = 10 (7 = 0.6), the radius of the cylinder r = 6.4 (in the lattice unit of 6. = 1), and

H/jv = 20. The variation of Cp due to the change of the center of cylinder offsel from a grid point is less than 1%.

Ay O 0.2 0.4 0.6 0.8
Cp 3.3661 3.3637 3.3526 3.3526  3.3637

A, 0 0.2 0.4 0.6 0.8
Cp  3.3661 3.3666 3.3646 3.3667  3.3692

It is worth noting that the wall shear stress in the channel flow obtained by using the method of



momentumm exchange has a relative error proportional to the resolution across the channel. For g resolution
of 10 — 20 lattice spacings across the diameter considered here, the relative error in the drag appears, however,
smaller than in the channel flow case. At Re = 100, with r > 10, the average value of the drag obtained by
using the method of momentum exchange has a 1.7% relative error comparing with Fornberg’s data [38]. If
the boundary layer thickness is estimated roughly to be 3 x 2r/+vRe = 6, there are ouly aboui six lattice
spacings across the boundary layer over which the velocity profile changes substantially. Based on the insight
from the channel flow result, it is possible that the deviatoric shear stresses on the surface of the cylinder
that are effectively incorporated in the method of momentum exchange suffer comparable levels of error as
in the channel flow. The effective error cancellation over the entire surface of the body may have contributed

to the good convergence hehavior in the drag shown in Figs. 7(a) and 7(h).

3.3. Flow over an asymmetrically placed circular cylinder in channel with vortex shedding.

Schifer and Turek [39] reported a set of benchmark results for a laminar flow over a circular cylinder of radius

and lower wall is oy = 4.2r and A = 4.0r, respectively. This results in A, = 0.76 for the upper wall and
A = 0.2 for the lower wall, respectively. The channel inlet has a parabolic profile and is placed at four

radii upstream of the cylinder center according to the specification of the henchimark test [39]. This results
in A = 0.2 for the inlet boundary. A zeroth-order extrapolation for f, is used at the exit boundary that is
located 40 radii downstream of the cylinder center. Thus there are a total of 564 x 105 square lattices in the
flow field. For Re = 2rl/ /v = 100 based on the average inlet velocity U, the use of relaxation time 7 = 0.55
requires U = 0.0651.

At this Reynolds number, the flow becomes unsteady and periodic vortex shedding is observed. Fig-
ures 8(a), 8(b}, and 8(c), respectively, show time-dependent behaviors of the lift coeflicient

C/‘ = - —
K e

and the drag coefficient Cp [see Eq. {3.9)], and the pressure difference

where py and py are the pressures at the front and the back of the cylinder, respectively, and pq is the constant
density imposed at the entrance. The data of Cp, Cp, and AP are compared with the benchmark results in
Ref. [39]. We first note that the present numerical value of Strouhal number St = 2r/UT is about 0.3033,
where T is the period of the lift curve. This agrees very well with the range of St values (0.2950 — 0.3050)
given in Rel. [39]. We note that the difference in Cf, (1) between the momentum-exchange method and the
surface stress-integration method is indiscerunible graphically. For the drag coeflicient CU'p{#), it is interesting
to note that although there is about 0.25% difference between the results given by the momentum-exchange
method and the surface stress-integration method, both methods of force evaluation give two peaks in the
Cp(t) curves. Physically, these two peaks in the Cp(#) curve correspond to the existence of a weaker vortex
and a stronger vortex alternately shed behind the cylinder. The difference in the strength of the vortices
results from the difference: by /r = 4.2 and A~ /r = 4.0 in the passages between the cylinder and the chanuel
walls. There is no report on the occurrence of these two peaks in Ref. [39]. Instead, a range of the maximum
Cp (from 3.22 t0 3.24) by different researchers was given. The present value of the higher peak is well within

the range. It is interesting to note that both peaks of U (t) obtained by the momentum-exchange method
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Fic. 8. The 2D flow past o cylinder asymmetrically placed in a channel. The variations of the lift coefficient U, the
drag coefficient Cp, and the pressure difference AP as functions of time ¢ (after an initial run time to) are compared with
the benchmark results in Ref. [39]. At the time to, the lift coefficient Cp(t) atiains its mazimum valve C**. The dashed
horizontal lines indicale the upper and lower bounds in Ref. [39]. The solid and dashed curves are the results obiained by using
momentum exchange and stress integration, respectively. {a) The lift coefficient Cy (t). Note that the results obiained by using
the two methods are indistinguishable on the graph. (b) The drag coefficient Cp(t). {c) The pressure difference AP(t). The
symbol % indicates the value of AP(tg + T/2) given in Table 3.3, where T (2 1296.5) is the period of Cr(%).

are also within the range, as shown in Fig. 8(b). A further refined computation of the present problem using

C L(f,)“

We compile in Table 3.3 the values of Strouhal number St, maximum and minimum drag coeflicient
Tmax and OB, maximum and minimum lift coefficient CP* and O™, and the pressure difference AP
obtained by the LBE methods and other schemes of computational fluid dynamics given in Ref. [39]. The
value of AP is measured at ty + 7'/2, where { is the moment when Cr{{) reaches its maximum value 7%,

and 7T is the periodicity of Cr(¢). For the LBE simulations, 7" is between 1296 and 1297 (in the lattice unit

coarser than those used in Ref. [39], the LBE results are well within the bounds given in Ref. [39]. This

clearly demonstrates the accuracy of the lattice Boltzmann method.

3.4. Pressure-driven flow in a circular pipe. The steady-state flow field was obtained by using
D3Q19 model with 7 = 0.52 [11]. Eq. (2.9) is used to evaluate the force on the boundary points along the

circumference of the pipe over a distance of one lattice in the axial direction. The resulting axial force I,

16



TasLe 3.3
Values of St, CF?~, CB““, e Cg‘j“, and AP for the flow over a 2D cylinder asymmetrically placed in o channel.
“Momentum” and “Stress” denote, respectively, the momentum-exchange method and the stress-integration method in the LBE
calculations. The CFD results ave the bounds in Ref. [39], which does not have data for Cuin gnd C"[f’i“n

0
method St Cpax Cin Cmax Cpin AP
Momentum 0.3033 3.2358 3.1771 1.0045 —1.0347 2.4914
Stress 0.3033 3.2275 3.1708 1.0040 —1.0340 2.4914
CFD 0.2950 — 0.3050  3.2200 — 3.2400 — 0.9900 — 1.0100 — 2.4600 — 2.5000

is, equivalently, the force given by 7 27ré,, where 7, is the wall shear stress and r is the pipe radius. For

a fully developed flow inside a circular pipe, the exact fluid shear stress at the pipe wall is given by

: \ o 4 :
et ) = e (3.10)
We examine the normalized axial force,
£ ,
p = - (3.11)
S dp \ y
e dr

Figure 9 shows the normalized coefficient 5 over a range of r: 3.5 — 23.5. Except for r < 8, 5 is rather
close to 1. It was noticed in Ref. [11] that the accuracy of LBE solution for the pipe flow is not as good
as that for the two-dimensional channel flow due to the distribution of values of A around the pipe. The
accuracy of the drag is dictated by the accuracy of the flow field if the force evaluation method is exact.
For the pipe flow, the error in F, results from the inaccuracy in the flow field and the errors in the force
evaluation scheme based on momentum exchange (as seen in the previous section for the two-dimensional

% and it occurs at r = 15.5. Again,

chanuel flow case). For r > 5, the largest error in F, is about 3.3
there is no systematic error in F,,. Given the complexity of the boundary in this three-dimensional flow, the
results shown in Fig. 9 are satisfactory in the sense that it adds further credence to the momentum-exchange

method for force evaluation.

T

F1G. 9. The ratio 1 between the tangential force Fy on the pipe and its exact value (wr? Vp) over a range of pipe radius r.



3.5. Steady uniform flow over a sphere. To limit the computational effort; a finite domain of
—-H/2 <y < H/2 and —H/2 < z < H/2, with H/r = 10 is used to compute the flow past a sphere of
radius r (see Fig. 6). Two cases are considered: (a) the flow past a single sphere, and (b) the flow over a
two-dimensional array of spheres (all located at # = 0) with the center of the spheres forming square lattices.

In the former case, the boundary conditions at j, = 1 (y = H/2 corresponds to j, = 2) for f,’s are given by

foz(jwa 17.7.;/) - 2faz(jar72aj:) - f(!«,(jl’w %.L) . (3'12)
The velocity at j, = 2 is set as
U(Jma 2ﬂ7v) = U{Jz, *37.7/) : (313’)

upstream boundary is located at 7.5 radii to the left of the sphere center in all simulations.

For flow over a sphere, the drag coefficient is often expressed as

= . 3.14
Reqﬁ’ ’ GrrUpv’ (3.14)

+H/2) and ¢o denotes the results for the case where the
extrapolation for f,, is used at (y = £H/2 and z = £ H/2) in order to simulate the unbounded flow.

Figure 10(a) shows the non-Stokesian coeflicient ¢, for r = 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.1, 5.2, 5.4, 5.6,
and 5.8, for H/r = 10 at Re = 10. The relaxation time is 7 = 0.7. With this range of r, the number of
the boundary nodes on the surface of the sphere increases roughly by a factor of (5.8/3)% = 3.74; the actual

and r = 3.2 that have the least resolution in the cases investigated. For a uniform flow over an unbounded
sphere, an independent computation using a finite difference method based on the vorticity-stream function
formulation with high resolution gives a drag coefficient ¢ =~ 1.7986 at Re = 10. The largest difference
between this result and the LBE results is 1.36% at r = 3.2. 1f the LBE data for the drag is averaged over
the range of r, one obtains ¢ ~ 1.8086, which differs from 1.7986 by 0.54%. Hence, the LBE solutions with
3.0 <r < 5.8 yield very consistent values for the drag force. Figure 10(b) shows the non-Stokesian correction
factor ¢4 for a uniform flow over a planar array of spheres for 3.0 <r < 5.8 and H/r = 10, at Re = 10. Tt

is important to note that with the improvement of the surface resolution by a factor of 4.35, there is little

is clear that the LBE solution gives reliable fluid dynamic forces on a sphere at v & 3.5 for a moderate value

of Re. The set of data for ¢, is inherently more consistent than that for ¢, since the symmetry boundary

Egs. {3.12) and (3.13) do not guarantee the free stream condition at y = £H/2 and z = £ H/2. Yet, both

¢ and o, exhibit remarkable self-consistency from coarse to not-so-coarse resolutions.

4, Conclusions. Two methods for evaluating the fluid force in conjunction with the method of lattice
Boltzmann equation for solving fluid flows involving curved geometry have been examined. The momentum-
exchange method is very simple to implement. It is shown in the channel flow simulation that momentum-

exchange method is not an exact method. The error in the wall shear stress is inversely proportional to
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the resolution. In two- and three-dimensional flows over a bluff body, it can give accurate drag values
when there are at least ten lattice spacings across the body at Re ~ 100. The method of integrating the
stresses on the surface of the body gives similar results when there is sufficient resolution but it exhibits
much larger fluctuations than that in the method of momentum exchange when the resolution is limited. In
addition, the stress-integration method requires considerably more efforts in implementing the extrapolation
and integration on the body surface in comparison with the method of momentum exchange.

It is interesting to note that the momentum-exchange method is perhaps superior to the stress-integration
method because the former method is directly based on the distribution functions while the latter is derived
from further processing of the distribution functions. In addition, the momentum-exchange method uses
interpolations while the stress-integration method uses extrapolations. Often extrapolations are more noisy
and unstable than interpolations. Even with a coarse resolution that does not yield very accurate local
information, accurate force evaluation can be accomplished with the lattice Boltzmann method. Among the
two force evaluation methods, the method of momentum exchange is recommended for force evaluation on

curved boundaries for its simplicity, accuracy, and robustness.
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Appendix A. LBE Models in Two and Three Dimensions.

The nine-velocity (or 9-bit) LBE model on a two-dimensional square lattice, denoted as the 32Q9 model,
has been widely used for simulations of two-dimensional flows. For three-dimensional flows, there are several
cubic lattice models, such as the fifteen-velocity (D3Q15), nineteen-velocity (D3Q19), and twenty-seven-
velocity (D3Q27) models, which have been used in the literature [10]. All these models have a rest particle
{with zero velocity) in the discretized velocity set {e,|la = 0, 1, ..., (b — 1)}. For athermal fluids, the
equilibrium distributions for the D2Q9, D3Q15, D3Q19, and D3Q27 models are all of the following form



(6. 7]

3
f((ieq) — 'U)'ap 1 —1— (f’a u) + —(eq “’)‘ 9

,24 2c

(A1)

where w, 18 a weighting factor and e, is a discrete velocity, ¢ = 6, /d; is the unit speed, and §, and §; are

the lattice constant and the time step, respectively. The discrete velocities for the D2Q9 models are

(0, 0), a =0,
(£1, U)c (0, £1) ¢, =1,357,
( k ) 7, a = 27 4’ ()7 5?

and the values of the weighting factor w, are

4 —_
5 a =0,

Wo = 4 5, a=1,3,57,
1 =92 4.6
5 a=2 4,68

For the D319 model, the discrete velocities are

(0 0) o o= 0
ea =1 (£1, 0, 0)¢, (0. 1, 0)¢, (0, 0, +1)c, o =1-6,

(£1, £1, O)e, (0, £1, £1)e, (1, 0, £1) ¢, o= T-18,

and the weighting factor w, is given by [7]

e
3 Q= 0,

Wy = %, o= 1-6,
L 1
a8 o= 7-18.

The discrete velocity sets {e,} for the D2Q9 and D3Q19 models are shown in Fig. 1.

The density and velocity can be computed from f,,

Pp— Z 2 {eq)
pu - ea & pOc o .
[e4

The speed of sound of the above LBE models is

and the equation of state is that of an ideal gas such that
p=cip.

The viscosity of the fluid is

v=c A

(A.3)

(A.4)

(A.5)

{A.Ga)

{A.6b)

for the discrete velocity model of Eq. (1.2). It should be noted that the equilibrium distribution function

‘ ° is in fact a Taylor series expansion of the Maxwellian (% [6, 7]. This approximation of f-ém)

form makes the LBE method valid only in the incompressible flow limit »/¢ — 0.
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Fiquation (1.2) is often discretized in space @ and time ¢ into the lattice Boltzmann equation

fcr(wi + eaét7t+ (gt) - fo,(a:ivt) - _F[fa(a’i:t) - féeq)(a;iat)] s (AS)

where 7 = A/d;. For this LBGK model [1, 2|, the viscosity in the Navier-Siokes equation derived from the

above lattice Boltzmanun equation is
v={T-g5]6 0t - (A9)

The —1/2 correction in the abave formula for ¥ comes from the second-order derivatives of f, when f.(x;+
e, 0, t+d;) in Eq. {A.8) is expanded in a Taylor series in . This correction in ¥ makes the lattice Boltzmann
method formally a second-order method for solving incompressible flows {7]. Obviously, the physical and

computational stabilities require that 7 > 1/2.
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