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SUMMARY

During the past 8 months our effort ha_ been concentrated on the following
3 general areas:

(I) Continued development of realistic, finite element modeling of plate

interactions and associated deformation in the Eastern Mediterranean_

(2) Neotectonic field investigations of seisn_Jc faulting along the active fault
systems in Turkey with emphasis on identifying seismic gaps along the

North Anatolian fault,

(3) Establishment of a _ regional monitoring network in the zone of ongoing
continental collision in eastern Turkey (supported in part by NSF).

A short summary is given below. More detailed descriptions of each of these
a,qpect, s of our research are given in the attached Appendices.

Finite Element Modelzng (Appendzx 7)

The purpose-ol' this research is to develop a Simple but robust approach to
modeling plate interactions using a contact problem in 2-D elastic finite element

method. An individual plate is considered as a continuum, whereas an aggregate
of plates is treated as a mscontinuum such that plate boundaries are
represented as contact surfaces. "/he behavior of plates at the contacts is
defined by fh_ CnldnrnhJ_aviPr Fail_rP nrifprinn, and fhre_ _y[_m_ nf r, nnfaef_ ar_=
consldered: slidmR conta_ct(sIlp), tension release(separation), and stickm_

contact(single-node-continuum). The first and second modes correspond to
transcurrent and divergent plate boundaries respectively. Convergent motion

at plate boundaries is achieved by the double-node differential displacement
technique with a recursive solution, internal deformation caused by mid-plate
processes, and body forces cause d by elevation changes, are also implemented.
A set of typical examples are discussed to validate this approach. To demon-
strate its application, prehmmary modeling of the Eastern Mediterranean, where
tectonic deformation is procluced by the interactions of the Eurasian, Arabian
and African plates, is carried ouL An attempt is made to constrain the displace-
ment and stress fields by geological observations and earthquake stress fields,
respechvely. We find that the deformation pattern in the Eastern Mediterranean
is substantiaUy controlled by d_iTerential motion between the African and Ara-
bian plates and gravitational forces. Westerly escape of the Anatolian block
accelerates markedly when buoyancy forces caused by elevation changes are
taken into account.

,Veotecton/c [nvestigat_,ons (Appendices 2 and 3)

Analysis of historical and instrumental earthquakes as welt as recent field
investigations of seismic surface fault offsets conducted by our group are useci
to understand better the setsmotectonics of the North Anatoiian fault, recent

rates of plate deformation, the reiationship between seismic slip and fauit
geometry, and the potential lot future gap-filling earthquakes. These analyses
suggest that recurrence intervals for large earthquakes is controlled by the

geometry and length of individual segments. Furthermore, the eastern part of

the westward_ escapin_ Anatolian block aDpears to be divided into 2 wedge
shaped blocks each of which moves independently. Recurrence intervals from
historical earthquakes and geological data indicate a sliprate of 0.8-I cm/yr for
the eastern segment of [he North :_natolian fault, suggesting about 2 m __hp
deficit on the 1784 rupture segment. Thus, this segment is identified as a poten-
tialseisuiic gap.



GPS Meas'ur_rfurn2s in Eastern Turkey (Appendiz 4)

Durir_ the Summer and Fail of 1989, M]T in cooperation with the Turkish
Union of Geodesy and Geophysics (TUJJB), IFAG, and Durham University under-
took a GPS field campaign aimed at estab[ishir_ first epoch relative point posi-
tioning in the region of continental collision in Eastern Turkey. As part of this
campaign, SLR sites were observed with GPS, footprints were established around
each of the Turkish S_LRstations, 16 regionally distribu[ed sites were observed in
Eastern Turkey, and a dense network was monitored in the Aegean Trough
region of Western Turkey. Ten of the stations observed in 1989 were reobserva-
tions of sites established and observed by ,_IIT in 1988. Our group, in cooperation
with our collaborators, plans a reoccupation in Western Turkey in 1990 and in
Eastern Turkey in 1991.



APPENDIX 1

Finite Element Modeling of Plate Motions and its Application to the

Eastern Mediterranean

ORAL, M.B., Earth Resources Laboratory, Department of Earth, Atmospheric and Planetary

Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Plate deformation patterns present a complex picture, and are primarily affected by the inter-

actions of plates at their boundaries and by their internal processes. The purpose of this study

is to present a simple but robust approach to modeling plate interactions using a contact prob-

lem in 2-D elastic finite element method. An individual plate is considered as a continuum,

whereas an aggregate of plates is treated as a discontinuum such that plate boundaries are

represented as contact surfaces. The behavior of the plates at the contacts is defined by the

Coulomb-Navier failurecriterion,and threetypesofcontactsare considered:the slidingcon-

tact(slip),the tensionrelease(separation),and the stickingcontact(single-node-continuum).

The firstand second modes correspondtotranscurrentand divergentplateboundaries,respec-

tively.The convergent motion at the boundaries isachieved by the double-node differential

displacementtechniquewith a recursivesolution.Internaldeformation caused by mid-plate

processes,and body forcescaused by elevationchanges,are alsoimplemented. A setoftypical

examples are discussedto validatethisapproach. To demonstrate itsapplication,a preLimi-

nary modeling of the Eastern Mediterranean,where tectonicdeformationisproduced by the

interactionsof the Eurasian,Arabian and Africanplates,iscarriedout. An attempt ismade

to constrainthe displacementand stressfieldsby the geologicalobservationsand earthquake

focalmechanism solutions,respectively.The deformation patternin the Eastern Mediter-

ranean issubstantiallycontrolledby the differentialmotion between the Africanand Arabian

platesand the gravitationalforces.However, the westerlyescapeof the Turkish block accel-

eratesmarkedly when the buoyancy forcescaused by elevationchanges aretaken intoaccount.



Introduction

Boundary forces/displacements caused by the interaction of plates at their boundaries, as well

as internal deformation at mid-plates, gravitational forces and basal tractions, create extreme

deformation. The finite element methods serve as a very applicable tool in understanding de-

formational behavior of interacting plates. In analysis of plate deformation patterns, the

geometry of the plate boundaries requires a certain attention: the creation and destruction of

material, as well as relative plate motions are observed at the boundaries. Hence, this study is

primarily engaged in for searching and investigating finite element models, and implementing

the 2-D contact problem for moving plates, that incorporates pre-existing plate boundaries

into solutions, in order to analyze deformational patterns caused by the interactions of the

Eurasian, African and Arabian plates, and Turkish Block, where boundary displacements and

gravitational forces are very significant.

Since the classicpaper by Turner, Clough, Martin and Topp which appeared in 1956, the

deformation patternof moving plates(bodies,mechanical parts,etc.)in contact,using finite

element technique,has been studiedby severalauthorsin a varietyof disciplines,e.g.,earth

sciences,civiland mechanicalengineering,aerodynamics and geomechanics. Effortsinmodel-

ing are alsodiversifiedintheirapproaches tothe problem as wellas theirsolutiontechniques:

strongemphasis on the theologicalbehavior of the plates,concern forthe behavior and for-

mulation of the contactsurfacesof the plates,and derivationof the governing mathematicai

relationshipsand theirsolutiontechniques.

England and McKenzie(1982, 1983) suggested a thin viscous sheet model for continental de-

formationwhich led to a number ofstudies(England,Houseman and Sonder, 1985; England

and Houseman, 1986;Houseman and England, 1986;Sonder,England and Houseman, 1986)

examining the deformationalpatternof collision.They regarded the aggregate of platesas

a continuum, which obeys a Newtonian or a power-law rheology. This approach ignored

faulting/failurebetween the plates.Papers followingthisapproach continued to definethe

medium as a continuum, and motions along the boundaries(e.g,faults),alternativelyat the

contactsof plates,are regardedas accommodating the strainratefield.



The crustaldeformation in southern California,modeled as a creepingflowin a non-linear

continuum(Bird and Piper, 1980) formed the basisof a discontinuityapproach(Bird and

Baumgardner, 1984). Both studiesutilizedthe finiteelement method forsolvingtheirgov-

erning equations. The former study assumed that the aggregateof platesisin a stateof

membrane stresssubjected to plate-tectonicsboundary conditions. The flow law of this

membrane contained a rigid-plasticterm to representfrictionalfaultingin the upper crust

and a power-law term to representthe dislocationcreep in the lower crust.The continuum

approximation to the regioninwhich the strain-rateisfixedprecludesthe predictionofslip-

rateson faults(contactsurfaces).In the latterpaper,the zones ofcontact(faults)are modeled

by "special"elements to account forsliprates.

In the engineeringdisciplines,emphasis on the behavior at contact firstoccurred in devel-

opment of the jointelement(1968-Element)of Goodman et al.(1968).For the analysisof

foundationsand jointsystems,Wilson(1976) employed an interfaceelement. The analysisof

jointedrocks(Goodman, 1976) was furtherrefinedto account forseveralmodes of behavior

at the contacts(Goodman, 1975; Goodman and St. John, 1976). Wang and Voight(1969)

alternativelyutilizeda contact algorithmto account for the behavior of the moving plates

in contact. Goodman's jointelement method, using parabolicfailure,definesthe following

modes at a contact:closing,opening, rotation,slidingwith/without dUatancy/contractancy.

In the finiteelementcontactalgorithm,used by Wang and Voight(1969)obeying theCoulomb-

Navier failurecriterion,which accounts forthe behaviorof the moving plates,three modes

of behavior at a contactare defined:sllp,separationand single-node-continuum.The state

of stressand stabilityin underground openings isinvestigatedusing thiscontact algorithm.

This approach isthen appliedto the progressivefailureof rockssubjectedto shear deforma-

tion(Kasapoglu,1973),to the analysisof contactsurfacetractiondue to glacialarcuateabra-

sioncracks(Johnson,1975),and tothe collisionofthe Arabian and Eurasian plates(Kasapoglu

and Toksoz, 1983).Furtherdevelopments ofcontactalgorithmsare applicationsto3-D static

and dynamic analyses(Bathe and Chaudhry, 1985; Chaudhry and Bathe, 1986; Bathe and

Mijailovich,1987). They definethe followingmodes of behavior at a contact: stickingand

slidingcontacts,and tensionrelease.In a broad sense,the resultsofjointelement and contact

algorithmare equivalent(Bathe, 1989; pers. comm.). A hybrid finiteelement formulation
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of the contact problem is achieved by Kumobora(1979) to investigate microscopic, moderate

and extensive sliding.

Following Wang and Voigt(1969), the contact problem is developed to explain all types of

plate motions and to include gravitational forces and internal deformation. Also, a potential

energy derivation of the governing finite element equations for this problem is introduced(see

Appendix: Finite Element Formulation). Major emphasis is given to verifying the localiza-

tion of failure zones, viz., slip-rates on the transcurrent plate boundaries(contacts). To avoid

rheological complexities and disputes, and eliminate complicated mathematical treatise, a

linear stress-strain relation for elastic media is assumed throughout the study. The following

types of plate boundaries and behavioral modes on the contact surfaces are considered:

1. For continent-continent collision, the contact surface is in sticking contact mode(single-

node-continuum)i

2. For divergent boundaries, the contact surface is in tension release mode(separation);

3. For transcurrent boundaries, the contact surface is in sliding contact mode;

4. For subduction, the contact surface is in sliding contact(sUp).

Ideally, modeling of plate motions requires a 3-D analysis which is very voluminous and time

consuming. However, introducing some a priori assumptions about the dip angle of the con-

tact surfaces may pave the way for 2-D analyses. Assume that the boundary has a 90 ° dip

for the first three cases and a 0° dip for thelast one. Also, assume that material properties

throughout the elastic plate are constant. Thus, dependency of the geometry in z-axis is re-

movable. This consequently leads to 2-D analysis (Fig.i). To account for the sliding contact

behavior along the subduction surface, a fourth mode(overlap mode) is defined. The calcula-

tions are carried out for plane-strain case, using 4-node quadrilateral serendipidity elements

with bilinear shape functions(see Appendix). Throughout the study, the term "displacement"

is equivalent to instantaneous plate velocity.

The input data, which consists of nodal point coordinates and element connectivity, is gen-

erated by a pre-processor developed for this study. The results are displayed using a post-



processor(see Appendix). In the solutions of finite element equations, a versatile program,

which includes the contact algorithm, is written.

The next section gives a finite element treatise on continuum vs discontinuum approach.

(Extensive treatise on the derivation of governing finite element equations are presented in

Appendix.) Afterintroducingcontactalgorithmand applying toa setofexamples, the finite

element models of present-daytectonicsofthe Eastern Mediterranean are discussed.

Finite Element Models: Continuum and Discontinuum

The continuum is defined as follows :

Consider an aggregate of plates with various conditions imposed interacting at their bound-

aries. If the pre-ezisting boundaries are not included in computations(no a priori boundaries),

but inferred from the displacement/strain/stress pattern changes, which are spread over a re-

gion rather than being localized, then this aggregate is considered as an individual plate which

deforms under the combined effects of various conditions posed on each member.

To demonstrate this, interactions of two plates are considered. Their total area is 700 km x

500 km. Their boundary which makes an azimuth with the north. In Fig.2, the deformation

pattern for the simulation of a transcurrent boundary is given. Only northward edge dis-

placements (instantaneous plate velocities), 1 cm and 3 cm relative to a reference plate, are

applied to the lower boundary of plates A and B, respectively (Fig.2a). To avoid any struc-

tural instability, rollers are applied to prohibit any east-west motion. This also accounts for

the sideways continuity of the plates. The expected transcurrent plate boundary is denoted

by dashed lines and meshed with smaller elements. Note that a definition of two distinct

plates is made by a sudden change in boundary conditions. The occurrence of slip aJong the

boundary so that one plate slips past the other is anticipated. The deformed structure plot

(Fig.2b) shows the motion of the plate(s). However, a close look at the displacement vector

configuration(Fig.2c), shows that the anticipated failure is distributed over a wide range in

the east-west direction rather than being localized and that there is no localization. It is

obvious that the differential displacement(slip) is linearly distributed between the terminal

ends of the plates. Though the structure is bounded on its lateral sides and compressed on

the lower side, tensional features develop. There is no observable stress difference (dr_sy_p_)



in the vicinity of the boundary. The maximum shear stress fade out is almost identical on

both sides. NE-SW expansion and NW-SE contraction is observed. The strain around the

boundary is markedly large and it decays with distance.

Fig.3simulatesof a divergentplateboundary. Using the mesh forthe previousmodel, pulls

of-1 cm and 1 cm areappliedto eastand west boundariesofthe platesA and B, respectively.

The deformed structureplotand displacementpattern,shows no opening, but stretchingin

the E-W directionand a smallamount ofshorteningin N-S direction.Stressand strainpat-

ternsgiveno clueforthe possiblelocationoffailure.

Next, these two cases of deformation are treated as a contact problem and solved in discon-

tinuum with the contact algorithm (Figs.3 and 4). Details of the contact problem will be

discussed in the following section. The discontinuum is defined as follows :

When an aggregate of plates with various conditions imposed on them interact at their bound-

aries such that the pre-ezisting boundaries are included in computations using dual nodes

(not split nodes},and their behavior at the contacts is determined by a frictional law, this ag-

gregate establishes the discontinuum, and the individual plates are considered as a continuum

deforming under the conditions prescribed.

The boundary conditions for the example in Fig.2 are used for a similar mesh in which the

boundary between two plates is shown by a solid line and the deformation field is solved as

a contact problem. In Fig.6c (cf. Fig.2) there is a marked slip (__ 2cm), which is the differ-

ence between the motions of the two plates along the pre-defined plate boundary (Fig.6a).

This illustrates sliding-contact behavior. There is a remarkable shear stress drop (Fig.6e)

across the fault. Because no motion is allowed in the E-W direction, compression develops

perpendicular to the fault. The NW-SE compression implies that the differential motion is

translated across the boundary because the slower plate has nowhere to go but north. As a

result, principle major and minor stresses in plate .4, in comparison to plate B increase and

decrease, respectively. The slower plate (.4) stretches almost sub-parallel to the boundary

while it shortens perpendicular to it. Note that the stress and strain patterns change with

the length scale of the plates in the E-W direction which are controlled by the strike of the
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boundary.

For a comparison, the divergent plate boundary case is treated in discontinuum as a contact

problem.In Figs.5b and c (cf. Fig.3) the opening between the plates is 2cm which is equal

to the differential motion between the plates. This demonstrates the tension-release-contact

behavior. Strain for both of the plates is zero as is the stress field, since the displacement

field is constant.

The magnitudes of strain and stress will be discussed before other finite element models are

analyzed.

Contact Problem

The problem of pressure distribution between two bodies was first solved by Hertz(1881). In

the Hertz elastic theory of contact (Timoshenko, 1934), the contact surfaces are frictionless

and do not transmit tangential surface tractions across their boundary. However, Cater(1926)

showed the inevitable occurrence of sliding within the area of contact. This study uses fric-

tional law defined by the Coulomb-Navier criterion.( Its incorporation into contact problem

will be defined later.) A contact happens when two or more bodies meet each other at a con-

tact surface (Fig.6) is created. Impact is generated when a dynamic contact occurs (Johnson,

1976).

The forces which develop at the contact surface determine the behavioral mode. Unless there

is a tensional release, the forces acting at the contact must be equal and opposite in sign,

otherwise they are zero. Moreover, the relation between tangential and normal forces acting

on the contact surface must satisfy certain conditions determined by the Coulomb-Navier

criterion (Jaeger and Cook, 1979). Accordingly, failure occurs when the shear stress exceeds

a threshold defined by normal stress scaled by a, factor and cohesion of the material :

II  11= (1)

where 7, a, So and/_ are the shear and normal stresses, shear strength(cohesion) and friction

coefficient (Fig.7). Therefore, slip will occur when
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II_ 11-# _ = so,

and tensional release will take place when

(2)

a_>To,

where To is tensile strength and as defined positive.

(3)

The contact forces developed on the contact surface can be related to cr and r by averaging

them over the distance L: half-way in either direction from the contacting node which lies on

the contacting segments(Fig.8):

P.
-_- = a, (4)

and

Pt
_- =11_ II, (2)

where P,, and P= are normal and tangential contact forces and their relation to P_ and P_ is:

P_ = P_ cosa + P_ sina
(6)

Pc = -P_ sina + Pv cosa,

where a is the angle between the normal to the contact surface and the x-axis (Fig.8). In

finite element mesh and computations, the boundary(contact surface) of contacting plates is

represented by dual nodes, and the forces which develop on this surface are taken into con-

sideration when judging the behavioral mode at the contact. If the contact forces are totally

ignored, dual nodes become split nodes. This is a violation of compatibility in finite element.

Four modes are defined: sticking contact, sliding contact, tension release and overlap. Mode

IV is introduced to account for subduction and will be discussed later. Analyses of the first

three modes are given below.



Mode I : StickingContact(single-node-continuum)

When contact stresses are insufficient to activate any motion along the contact surface such

that

P,_ <I"o£,

Pt < So £- V P,, ,

then the components of contactforcessatisfy

(7)

P_ + P_ =0,

Pt+Py =0,
where superscripts denote the plate at the contact surface. Hence, the displacements are

(8)

qA = qB,

qt = q_'

SO that the contacting plates in discontinuum behave as if they are in continuum.

(9)

Mode II : Sliding Contact(slip)

The plates in contact exhibit a sliding behavior when tangential stresses exceed the linearly

defined Mohr envelope, provided that the normal contact forces are less then the tensile

strength:

P. <To£,
Pt > So £ - g P,, . ( lo)

The amount of slip is determined by the frictional coefficient, and shear and tensile strength.

From the continuity of the stresses across the element, the components of the contact forces

are:

(11)



with additional constraints by the frictionaJ law:

IIP_ tl-so L ÷ _ P? -o,
IIP_ II-So L- _ P_ =o.

This states that the displacements perpendicular to the contact surface are equal:

(12)

implying that

qA + qB = tana [q_ + qf], (13)

qA =qB, for a=0 °,

qA qB, for er = 90 ° .
(14)

Mode III: Tension Release(separation)

The plates diverge when the normal stress exceeds the tensile strength:

t". <_To£,

in which the components of the contact forces are

(15)

Px A -_0_

pyA =0,
(16)

P_ =0,

P_ =0.

Note that (a) the displacements(at the nodes and contacts-dual nodes) are unknown, (b) the

contact forces determine the behavioral mode at the contact, (c) the contact .forces also are

unknown. To settle the dust, recall Eqn.A14 and rewrite as

Kq-Q= -P, (17)
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whereP contains Px and Py unprescribed contact nodes. The contact forces P can be calcu-

lated and used to determine the behavioral mode, provided that the nodal displacements are

known. This requires another iterative scheme in which an interrogation procedure (Wang

and Voight, 1969) for behavioral modes is constructed. It is clear that P = 0 when no contact

is defined and the displacements can be calculated from Eqn.A42 in conjunction with Eqn.A41.

Calculation of Displacements at Contact Surfaces: A Contact Al_;orithm

To achieve a good convergence, the initial displacement vectors have to be close to those of

the final solution. A first approximation can be drawn from a sticking contact solution, where

discontinuum becomes asymptotic to the continuum. For the first part of iterative solution

of the displacements at dual nodes, the following equations prevail(see Appendix):

q! = q1-1 -w {qo! + _p_+l}/{Ki,, + Ki+l.i+l} ,

ql+l = q_"

Displacements at the other nodes are obtained from Eqn.A42.

(18)

In the rest of the iterative solution, the contact algorithm is applied. To decide on the

behavioral mode, the displacements at one of the dual nodes have to be calculated from the

relation:

Ki+l,i + Ki+3,i+2 Ki+l,i+l + Ki+3,i+3 q_+l -(qa!+l + ¢Pi+3)

where qi and q_+_ are x- and y-parallel displacements at dual node k on plate A. In I - th

iteration, the contact forces equal the residual defined by Eqn.A41:

t sina= cos + ,
(2o)l

PIt = -_ot_ sina + _u cosot ,

For the contact algorithm, the angle between the contact and its normal a, the distance that

the nodal contact forces uniformly distributed £, and the trigonometric relationships are:
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£ = V(-z_ + zk+i)2+ (yk- yk+_)_ ,

tan_ -- --_k+Zk'l'!
Uh-Vk+I ' (21)

_ino! = --_k+_k+J-

C030l -- --Yk +Yh'l" lr_

where z and y are the coordinates of the k - th dual node. Dual nodes, A and B may or may

not share the same location. For the purposes of this study, they have identical coordinates.

For mode I, no further calculations are necessary, and the displacements on either side of the

contact are equal:

q!+2 = q_ (22)

q!+3 = q_+l,

where qi+2 and qi+3 are x- and y-parallel displacements at dual node k on plate B.

Mode II calculations require rotations of diagonal dements of the stiffness matrix in the

direction normal and parallel to the contact surface, to account for the tangential and normal

stresses(see Eqn.12b). Define

za = -sina + (-#) cosa ,
(23)

ya = cosa =l:(-#) sina ,

where za and ya are rotation coefficients. If Pt > 0 "-" is used. To solve for qi, qi+l, qi+2

and qi+3, first set them to zero(which removes the force contribution at these nodes, recall

Eqn.A41) and then solve :

Ki,ixa + Ki+l,iya Ki+l,i+lya + Ki,i+lxa 0 0

Ki,i Ki,i+l Ki+2,i+2 Ki+2,i+3

gi+l,i Ki+i,i+l Ki+3,i+2 Ki+3,i+3

1 tana - 1 tan_

ql+i

q!+2

q_+3

l &z)--(_Xa + (Pi+lYa --

l+
l l

-(_o_+_ + _o_+z)

0

(24)

12



For mode Ill,thereisno bonding between the dual nodes lyingon the contactsurface,and

the displacementsforeach platefollowsa differentlinearsystem solution.To solveforq#and

q;+i;firstset them to zeroand solve:

]lq ]=I]
And to solveforqi+2and qi+3;firstset them to zeroand solve:

(25)

E ]I'][Ki+2,i+2 Ki+2,i+a q_+2 = (26)
K,+3,i+2 Ki+3,i+3 _+3 -_!+3

The calculationof displacementsfor the restof the nodes iscarriedout by Eqns.A42 and

A41. Convergence in the firststage of iterativesolutionis monitored by Eqn.A41. In the

next stage,

I%

I1  11, {vi I iCM}, (27)
i

where .,M is the set of degrees of freedom involved contact. C is the measure of convergence

and must decrease as more iterations are performed.

On the Magnitudes of Strain and Stress, and the Strensth and Coefficient of Friction

The averagestrainper year is at the orderof I0-r (Turcotteand Schubert,1982).Lithostatic

stressfor a 35 km thickplateis1000 Mpa (Turcotteand Schubert,1982). The compressive

stressescaused by elevationchanges(Molnar and Lyon-Caen, 1988),and the stressesinduced

by ridge-pushand slab-pull(Richardson,1972),range from 60 to33-200 MPa, while thermal

and membrane stressesare 400-600 Mpa. Bott(1982)reportsan average of 100 Mpa.

Using the instantaneous plate velocities, the magnitudes of the strain(rate), found in this

study, are at the order of 3 x 10 -r coheres with the reported values. Stress magnitudes are,

however, at the order of 3000 Pa(= 12 GPa x 3zl0-r). Compared to the magnitudes given

13



above,there isa scaiJngfactorof 10 3 -- 10 4 which arisesbecause (a) instantaneousplateve-

locitiesaxe used as boundary displacements,(b) strainscalculatedfrom thesedisplacements

are strainsper year(strainrate),and (c) stressescalculatedfrom these strainratesinherit

thistime scalingand are stressesper year.

This "time-factor"X alsoscalesthe contactforceswhich means that the magnitudes ofshear

and tensilestrengthsare alsoscaledcorresponding__1000 - 10000 years(episodecycle).The

calculationsusing zerostrengthdo not significantlydifferfrom those using thisvalue,when

the forcesare greaterthan the strengthof the plate.Higher strengthvaluescause slowingin

platemotions. Unlessotherwisestated,allmodels have zerostrength.For the slidingmode

thisimpliesslidingwithout cohesion.

The frictioncoefficientis another factorthat reduces the motions along plate boundaxies.

Bird and Baumgardner (1984)pointout the possibilitiesof a low frictioncoefficient(_ 0.3)

for activefaults.It is found that /_< 0.5 produce almost the same deformation pattern.

Throughout the study,a "low" frictioncoefficientisused.

No strength and a "low" frictioncoefficientaxe appreciable(a) when the contact surfaces

have already formed and are weak,viz.,have an extreme tendency to move, (b) when the

instantaneousmotions are modeled, assuming a certainamount motion along the boundaries

per year,viz.,"thingschange".

Examples for Plate Motions

Contact solutions of interacting two plates are demonstrated (Figs.4 and 5) and compared

to those of continuum solutions. This section depicts some aspects of contact solutions for

three-plate cases. At the contact of three plates, triple nodes are required to simulate the

discontinuum. However, this may be avoided when the third plate boundary is translated

one element away from this junction. The following models exploit this numerical treatment.

Note that the goal of the study is to demonstrate the advantages of the contact problem,

so a more general algorithm is not incorporated. When n-plates are in contact, instead of

using contactor nodal point forces (this study; Wang and Voight, 1969), contactor segment
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tractions(Batheand Chaudhry, 1985) calculations become more attractive.

In the three-plate-contact models, the following considerations are in effect: (a) a roller sub-

parallel to N-S or E-W implies that there is no motion allowed in their normal directions,

and this boundary corresponds to transforms; (b) a hinge means that there is no motion in

either direction, which in turn serves as a reference frame; (c) there is a hypothetical ref-

erence frame for the instantaneous plate velocities (displacements) located somewhere away

from the plates unless otherwise located; (d) the contact algorithm previously discussed is

exploited; (e) plates are named as lower (right) plate .4, lower (left) plate B, and upper plate

C; (f) at the end points of contacts, there is incompatibility in the deformed structure plots

when either one of the components of dual nodes is constrained, or the requirement for triple

node is necessary; (g) unless otherwise stated, there is no overlap, this being controlled by

additional constraints(double-node differential displacements). This kind of overlap occurs

due to the effects mentioned in (f) and since linear interpolation in joining two points is used,

these effects are enhanced. For those nodal points, refer to displacement vector plots.

In Fig.9, the interactions of two plates with a fixed reference plate is considered. On the

boundaries of right and left plate, 3 cm and 1.4 cm displacements in the N and NW direc-

tions are applied, respectively. Most of the differential motion is taken between the right and

left, and between right and upper plates, as sliding contact. This type of model could be

considered a Fault-Fault-Fault type triple junction. The decrease in sllp along the right plate

contact is mainly compensated by internal deformation as shown by the strain field (Fig.9f).

The motion of the faster plate decreases toward the north for (a) there is no sideways motion

allowed and (b) it meets another stable plate. This stress pattern demonstrates the sub-

groupings of principal directions. Compression is dominant in the upper plate as well as in

the right plate. The upper plate also has a tendency to extend sub-parallel to the contact

surface with the lower right plate, due to the loading of the right plate. A striking change in

maximum shear stress magnitudes marks the contacts.

For the model shown in Fig.10, the boundary conditions are identical to the previous one

except that the upper plate is no more fixed, but is displaced towards N by 1 cm. These

boundaries could be considered as Fault-Fault-Ridge triple junction(Fig.10b). The differen-
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tial motion between left and upper plates is not enough to create the tension release mode.

However, their interaction, especially the motion of upper plates, triggers divergent plate mo-

tion. Compared to Fig.9, the slip along the contact between upper and right plates decreases,

whereas it remains the same along the contact between right and left plates. Due to ten-

sion release, the northerly oriented stresses in the left plate vanish while the E-W extension

increases. Evidently, the change in maximum shear stress patterns occurs at plate boundaries.

The deformation pattern in Fig.ll is an example of modes I and II, sticking and sliding

contacts, respectively. Boundary conditions are the same as in the previous model ex-

cept that the left plate is displaced northernly by 1 cm and set free on its west end, and

that the sense of upper plate motion is reversed. It may be considered as a Fault-Fault-

Trench(collision) triple junction. The contact between upper and left plates is the first type

of plate boundaries(continent-continent). The displacement field seems to be zero at their

contact because of the opposite polarity of the plate motion. One of the dual nodes at the

east end is not constrained and causes an artifact motion, and has to be ignored. The entire

region is in compression. When stress and especially strain fields are considered, the left and

the western of the upper plate behaves as a single plate in continuum (sticking contact). As

a corollary to this observation, the maximum shear stress pattern gives no information about

the existence of a contact.

The boundary conditions for the model in Fig.12 are the same as in Fig.10, except that the

left plate is displaced northwesterly by 1.4 cm. To simulate Fault-Fault-Trench(subduction)

triple junction, mode IV is introduced:

Overlap mode

Consider nodes qA and q_ and let _ be the convergence amount between these plates.

6 is the measure of material subducted and could be correlatedto dissipationof mate-

rial(displacement)overa regionsuch that:

qsB=q:+6, (28)
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where q_ and qrA are displacementson platesA and B at nodes s and r, respectivelyand

relatedto each other by a constantof dissipation(rateofsubduction)_. A firstsolutionmay

be obtainedby ignoringconvergence,and then incorporatingthe above relation,an additional

setofprescribeddegreesoffreedom may be obtained.To simulatethistypeofplateboundary,

a recursivesolutioncouldbe usingtheadditionalconstraintsand former boundary conditions.

This solutioniscalleddouble-node-differentialdisplacementswith recursivesolution(Overlap,

Mode IVa).

A tentative solution is given in Fig.12 with boundary conditions the same as Fig.10 except

that the sense of motion in the upper plate is reversed. 3 mm convergence is included across

the contact of the upper and left plates. The displacement field demonstrates the success of

the approach. Because of this motion, the principal stresses normal to the overlapping contact

drastically decrease. The change in maximum shear stress pattern corresponds to the overlap.

An alternative solution can be obtained by considering the auxiliary contact, perpendicular

to the primary contact, and then applying double-node differential displacements(Overlap,

Mode IVb). This removes locking, and perfectly transmits the motions from one plate to the

other. To avoid the very complicated mesh required for an auxiliary contact, the solutions for

convergent motions, at this stage, are carried out by double-node differential displacements

using primary contact.

Internal deformation caused by folding, kinking, etc., is modeled and shown in Fig.13, where

the boundary conditions are the same as the previous example and exclude convergence. The

elements with crosses are assigned negative initial strain corresponding to (lcm) shortening.

When this region becomes softer, it takes up some of the differential motion between the

plates. The displacement pattern shows that the slip along the boundary between the left

and right plates decreases. This contribution boosts the stress and strain field over this re-

gion. The same result is obtainable by decreasing the Young modulus for these elements.

McKenzie(1978) discusses three possible driving forces: boundary forces which are widely

used until now in the above examples; gravitational (buoyancy)forces, caused by elevation

changes; and forces on the base of the lithosphere. When the area of the plates is rela-

tively small compared to boundary and gravitational forces, basal tractions may be ignored.
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Therefore,they are excluded infiniteelement computations. However, body forcescaused by

elevationchanges are very significant,and included.Molnar and Lyon-Caen(1988) calculated

the upper bounds thesebuoyancy forces.

Fig.14 shows the effect of body forces on the deformation pattern. The boundary conditions

are identical to those in Fig.ll except that the east end of upper plate is free to move in the

E-W direction. The left and upper plates are combined and allowed to behave as a single

plate. Although this contact is locked, the upper plate escapes westwardly through the free

end due to the applied body force. The exact amount of body forces is inconclusive since no

lower bound is defined. In this study the first estimates are obtained from the Molnar and

Lyon-Caen's calculations for horizontal driving forces. After normalizing per unit volume and

per unit year, a scaling factor of 10-100 is observed.

Application to the Eastern Mediterranean

The region of interest includes the Eurasian, Arabian and African Plates, as well as the

Turkish and East Anatolian Blocks. The neotectonics of the region is shaped by the second

opening episode of the Red Sea during the early Pliocene (4.5 Ma). The Arabian Plate, for-

merly having the same velocity as the African Plate, gained acceleration and, following the

closure of the Thetys Ocean, collided with the Eurasian Plate. The African Plate, on the

other hand, continues its subduction under the Hellenic and Cyprean Arcs. This continuing

continent-continent collision between Eurasia and Arabia creates extreme deformation in the

region. Shortening in eastern Turkey was first accommodated by crustal thickening. Later,

instead of excessive crustal thickening, the Turkish Block which is bounded by the North and

East Anatolian Faults, wedged out towards the west under the compressive regime. Presently,

the western tip of this block extends in a N-S direction, by accommodating the area of the

African Plate lost by subduction(Fig.15) as westerly motion is inhibited by the Grecian Shear

Zone. The major structures in this region are the Dead Sea, the East, North and Northeast

Anatolian Faults, the Cyprean Arc and the Bit[is Suture. At the Maras and Karliova triple

junctions the Arabian, African and Turkish, and the Arabian, Turkish and Eurasian plates

meet. Fig.16 summarizes the sense of motion along the faults. Accordingly, the sense of

displacement on the Dead Sea, and the East and Northeast Anato[ian Faults is sinistral,
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whereas on the North Anatolian Fault itisdextral. Severalauthors calculatedthe rota-

tion polesof these plates(Chase, 1978;McKenzie, 1972; Minster et al.,1978; Gordon and

Jurdy, 1986). From these data, localplatevelocities(Fig.17)are computed for the African

and Arabian plateswith respectto the Eurasian plate(Cox and Hart, 1986). Local plate

velocitiesobtained from McKenzie(1972) are higherthan the others. Mean boundary dis-

placements(instantaneousplatevelocities)forthe Africanand Arabian Platesare northerly

5.2mm and 22 ram, respectively.Fig.18shows the area where finitedement calculationsare

appliedto the Eastern Mediterranean.In the west,itisbounded by the Pliny-StraboTrench

system,and excludeswestern Turkey. The Dead Sea,East,North, and Northeast Anatolian

Faults,the Cyprean Arc and the BitlisSuture are consideredand modeled as 2-D contact

surfaces.

Three finiteelement models ofthe EasternMediterranean are investigated.They allconsider:

(a) strike-slip faulting[model 1](Fig.19),

(b) strike-slip faulting and convergence at the Cyprean Arc and Bitlis Suture[model 2](Fig.20),

and

(c) strike-slip faulting and convergence at the Cyprean Arc and Bitlis Suture, internal defor-

mation at the Palmyra Kink and gravitational forces that wedge out the Turkish and East

Anatolian Blocks[model 3](Fig.21),

tobe major tectonic elements in creating the deformational pattern. The first model has only

historical importance and proves the need for the latter two models. At the beginning, the

finite element models of the Eastern Mediterranean only accounted for strike-slip faulting and

ignored convergence, especially the subduction of the African plate at the Hellenic Trench

and the Cyprean Arc(Kasapoglu and Toksoz, 1983; 1988). These models, unfortunately, cre-

ated skepticism about 2-D finite element calculations in a region where some plate motions,

generated by the differential motion between the African and Arabian Plates, is taken up

by convergence(subduction/collision). Strong emphasis on the contribution of gravitational

forces Mso invited speculations. Other than insisting suggestions to incorporate these forces

in finite element calculations, no models have appeared yet. To settle the dust, convergence

and body forces, as well as internal deformation, are included into 2-D finite element compu-

tations. The contact problem previously discussed is utilized. A standard mesh is generated
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usinga preprocessor program developed forcontactproblems. The boundary conditionsare

identicalin each model. Rollersat the sidesof the platesillustratethe directionin which the

relevantnodes may move. Rollerswest ofthe Africanand eastof the Arabian Platesreflect

the uniform continuityof the platemotions beyond the modeled area.The Eurasian plateis

held fixed.5.2 mm and 22 mm northerlyboundary displacements(instantaneousplateveloc-

itiesrelativeto the Eurasian Plate)areappliedon the lowerend ofthe African and Arabian

Plates,respectively.The tensionreleasemode isappliedwhen one or both ofthe duaJ nodes

at the terminal ends of plate boundaries are constrainedcausing incompatibilityat these

nodes. Therefore,the displacement/stress/strainsat thesenodes are ignored. In the second

and thirdmodels, 3 mm convergenceacrossthe Cyprean Arc and 6 mm shorteningat the

BitlisSuture isincluded.The thirdmodel includes4 mm internaldeformation taken up by

Palmyra Kink(Barl_ et al.,1989) and gravitationalforces.The gravitationalforceper unit

volume isestimatedfrom the upper bounds ofthe horizontaldrivingforce(Molnaxand Lyon-

Caen, 1988).Assuming N-S directioncomponents are balanced,westerlyand easterlyforces

are appliedon the elements that representthe Turkish and East Anatolian blocks,respec-

tively(Fig.21a).A comparison ofdisplacementfieldsofmodels I and 2 show thatintroduction

of convergence at the Cyprean Arc and shorteningat the BitlisSuture, resultsin decrease

of slipalong the faultzones. Because these two featurestake up _- 3 - 5rata,the motions

along the North, Northeast and East Anatolianfaultsaxe halved.The westerlyand easterly

escapesalmo6t vanish.The slipalong the Dead Sea Faultdecreasesnortherlyin both models.

These data imply thatthe differentialmotion between the Africanand Arabian Platesare not

sufficientto explainthe amount of slipobserved along the Anatolian transforms.Barka and

Gulen(1989) argue thatthe slipalong the North Anatolian FaultisI cm/yr, ifthe age of the

faultisearly-middlePliocene(3.5-4Ma) and has a totaloffsetof35 kin,which decreaseswest-

erlyto5 ram/yr. The East Anatolianfaulthas a 5 mm/yr slip(Barl_etal,1989).Geological

studieson the Dead Sea Faultshow thatthe 10-15mm/yr slipin the south(Gharb Segment)

reduces to5 mm in the north(Kaxasu segment). Given thisinformation,finiteelement mod-

elingbecomes inconsistentwith the observationaldata. "To do justiceto the whole data

set'(Sengor,writtencomm.), gravitationalforcesand internaldeformationat Palmyra Kink,

as wellas convergence,are includedintothe computations(model 3). Fig.21demonstrates

how the Turkish and East Anatolian Blocks wedge out. The openings at the KarlJovaand

Maras triplejunctionsare reflectedin displacementand stresspatterns.On the average,15

mm and 5 mm slipalong the Gharb and Karasu segments ofthe Dead Sea Faultare observed.

20



As some part of the differentialmotion isaccommodated by the Palmyra Kink, buildup of

strain/stressoccurs. The average sliprateson the North(13 mm in the east,8 mm in the

west) and Northeast Anatolian Faults(4ram) are relativelylargerequiringa smallerbody

forcemagnitude. The primary conclusionisthat the slipratesalong the Anatolian trans-

forms are controlledby the buoyancy forcescaused by the differentialstressesbetween higher

and lower elevations.The gravitationalforceused for thesecalculationsislower than the

upper bound for2000 m elevation,but the largestforthe admissabledeformation patterns.

When higher valuesare preferred,the tectonicpicturechanges: The transcurrentmotion

character along the East and North Anatolian Faults' changes to divergent and convergent

type boundaries, respectively. Thus, slip rates along the North Anatolian Fault is no greater

than 1 cm/yr. Major stress concentrations take place in the Turkish Block, Palmyra Kink

and north of the Bitlis Suture. Compressive stresses are characteristic to the Cyprean Arc

and the Bitlis Suture. Because western Turkey and the Aegean Sea are not included in the

models, transition to extensional regime is not observable. However, the westerly escape of

the Turkish Block is reflected as a SW-NE compression. Strain patterns suggest that the

strain accumulates north of convergent zones and is at the order of 1-5 x 10 -s.

Conclusions and Discussions

The deformation pattern of interacting plates can be modeled using 2-D finite element method.

The comparisons between continuum and discontinuum approaches demonstrate that the

contact algorithm is a robust method for modeling plate motions. Derived potential energy

expressions show that the contact problem is inherent in finite element equations and that

implementing rheologies, other than linear elastic type, is straightforward. Application to

the Eastern Mediterranean, where extreme deformation is created by the interactions of the

Eurasian, African and Arabian Plates, shows that the regional tectonic picture cannot only

be defined by boundary displacements(the ridge push force due to the opening of the Red

Sea). Including gravitational forces is a must. These two forces control the deformational pro-

cess in the region, and suggest that the differential motion between the Arabian and African

Plates is responsible for the slip rate along the Dead Sea Fault, whereas the gravitational

forces create the slips along the Anatolian Transforms. The models indicate that the slip

rate must not exceed 1 cm/yr along the North Anatolian Fault. Accounting for the Palmyra
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Kink demonstrated that mid-plate internal deformations are another source of strain accu-

mulation. Introduction of the overlap mode shows that unless subduction and shortening are

taken into account, understanding the deformational behavior of plates is incomplete, and the

patterns obtained may lead to false conclusions. The overlap mode IVa illicits considerable

success, however, better results can be obtained by using mode IVb. Further developments

of the contact algorithm, viz., extending to the third dimension, triple-node formalism, us-

ing contactor segment tractions in calculation of contact forces instead of nodal point forces,

and employing the joint element approach; and the incorporation of other theologies into

the computations will improve modeling of the deformational behavior of (micro)plates with

complicated boundaries. Instead of the assumed displacement finite element approach, it is

suggested that assumed strain method, for regions where strain rates are significant and hy-

brid finite element method for regions where prescription of both stresses and displacements

are needed, be utilized. As long as the instantaneous plate velocities are used , which in-

evitably introduces a time scaling, the low coef_cient of friction and no-strength is justifiable.
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APPENDIX : Finite Element Formulation

Under boundary and nodal displacements,body forces,initialstrainand stressand surface

tractions,the deformation patternofthe platesisdefinedby displacement,strainand stressfields.

Since instantaneousplatemotions are consideredin thisstudy,they,hereinafter,willbe referred

to as displacements.A plane strain/stressmedia with linearstress-strainrelationisassumed in

the generalderivationofgoverningfiniteelement equations,includingthe contactproblem. First,

the finiteelement formalism using totalpotentialenergyisintroduced.After findingthe governing

equationsby variationalcalculus,discretizationof the displacementfieldis discussed.Following

stresscalculationsfrom strainfield,numericalsolutionstechniquesare given.

Governing Finite Element Equations

The linear relation between stress and strain for elastic materials in 2-D is given by:

with

a = E_ - Eeo -4-ao , (i)

(2)

where a, • •o and ao are stress, strain, initial strain and initial stress, respectively. For plane stress

and strain, the material property matrices E are:

E _

£

] -- /2 2

1 v 0

/2 1 0

E _

£

(1 - 2/2)(1+/2)

1-/2 1 0

0 1-v 0

0 0 1--2vT

, (3)

respectively, where £ and v are Young's modulus(_ 100GPa) and Poisson's ration (_ 0.25) strain.



Consider a conservative system on which external and internal forces act. The internal work

done(the stored energy) Uo of this system, per unit volume, is:

Uo = f o'de,

= I_TEe_ _TEE + _Ta o ,

and the total strain energy U is given by:

(4)

1"

U =/v UodV + qT P, (5)

Introducing the contact potential, the second term accounts for the contribution of the contact

forces. The total external work done on this system is:

f

W
- /u T F dV + ] u T ¢ dS + qT R, (6)

where P, u(u(z, y), v(x, y)), F, ¢, q and R are internal nodal forces(discrete)[contact forces], dis-

placement (continuous), body forces, surface tractions, displacement(discretized) and concentrated

loads(nodal point forces), respectively. Then, the total potential energy functional is

= u - w. (7)

The above equation indicates that the total potential energy is not simply a function of displace-

ments and their derivatives, but also depends on their integrated effect.

For a linear elastic medium, the strain can be related to displacement by a differential operator

D,

E = Du, (8)

and the displacement field is discretized at the nodal points of an element by shape (interpolation)

function matrix N,

and finally, an expression for strain is:

u = Nq, (9)

e = Bq, (I0)



where B is the strain-displacementmatrix and has s-1 units when displacement q has _ units.

(The explicitexpressionsfor D, N and B willbe given later.)This procedure invokesassumed-

displacement finiteelement method where the displacementsat the nodal pointsrepresentthe

degreesoffreedom (unknowns). In thismethod, the essentialboundary conditionsare prescription

of displacements,and the naturalboundary conditionsare prescriptionof stress.This impliesthat

prescribingdisplacementsat the boundaries aloneissumcient to solvethe equations.

Substituting (4), (5) and (9) into (6), the total potential energy becomes:

IIp __I Tiq (Efv BrEBdV)q - qr(Z fv BrE'o dv)

-qr(E fv Nrao dV) - qr(E fv Nr Fbdr)

-qT(E fs NTdpdS) - qTR + qT P

= ]rqr(E k)q - qr(7, o + 7,,0 + 7b + 7, + R - P)

= _qrKq-qr(Q- p).

(ii)

Summation has to be done over the total number of elements indicating the requirement for the
I

assembly of element stiffness matrices and nodal forces, k is the element stiffness matrix whereas

K is the assembled global stiffness matrix. Q represents the nodal forces caused by initial strain,

initial stress, distributed forces and surface tractions. The stability of the equilibrium state is

realized when the potential energy is minimum, i.e., when it is stationary with respect to "small

variations" of displacement:

IIp= stationary. (12)

This is the principle of minimum potential energy. According to the calculus of variations, the first

variation of total potential energy with respect to q must be zero:

such that:

_IIp = 0, (i3)

Kq =Q-P. (14)



Thisresultisequivalentto thatobtainedby usingthe principleofvirtualdisplacements(Zienkiewicz,

1986) and isthe governingequationforcontactproblems. The structurestiffnessmatrix K relates

nodal pointdisplacementstonodal pointforces.P iszeroforcontinuum where thereisno contact

defined;therefore,forcontinuum the governingfiniteelement equation is:

Kq = Q. (15)

Thus, it is implied that Eqn.14 is the governing equation for discontinuum. Regardless of rhe-

ology, the finite element equations would be reduced to one of these equations, depending on what

kind of medium(continuous/discontinuous) is chosen. It is, therefore, inherent in the finite element

approach to solve for the deformation pattern of discontinuous media.

The j-th column of the stiffness matrix is the vector of nodal forces applied to maintain static

equilibrium when j-th degree of freedom has unit displacement and others have zero displacement.

The diagonal elements of the stiffness matrix are positive. A zero diagonal element would create

zero reaction force Q, creating an unstable structure. It cannot be negative because this would lead

to a physically unrealizable situation where displacement and force vectors lie in opposite direction.

If only linear degrees of freedom are considered, the sum of each column is zero. When there is

a linear relation between force and displacement, the stiffness matrix is symmetric. The stiffness

matrix, however, is singular. Its rank is less than its dimensions by the number of rigid body

motions. Eigenvalue analysis of the stiffness matrix determines the number of rigid body motions

by the number of zero eigenvalues. In the 2-D case, there are 3 independent rigid body motions:

translation in x- and y-axes and rotation.

Discretization of the Displacement Field

All the integral calculations at the element level (Fig.A1) are carried out in the isoparametric

local coordinate system (_, r/), then transformed into the global cartesian coordinate system (x, y).

For a function f, this transformation is:

fdV = t f(x,y)dxdy = t f(_,17) 1 J {d(do •
-' ra a 1 1

(16)



IJ Iisthe determinant of the Jacobian matrix forisoparametrictransformation,tisthe thickness

of the elasticplate.The problem isset up as C ° and naturallyconsidersonly lineardegreesof

freedom (u,v).They are z-paralleland y-paralleldisplacementsand may not be _-paralleland r/-

parallel.Plane linearisoparametric4-node quadrilateralserendipidityelements with bilinearshape

functionsare used to discretizethe displacementfield(Fig.A2):

1

= + +

_=[-i i I-I],

_i=[-1 1 1-i],

i=[1234].

(17)

Any point in the element and its displacement can be related to the nodal point coordinates and

their displacements such that:

and alternatively,

where

NT[C]q  18,
2_

Y

v

Y = Ni Yi ,
U i=1 Ui

V /)i

(19)

N2 0 N3 0 N4 0 ], (20)0 N2 0 N3 0 N4

z_ Y2 z3 Y3 z4 Y4], (21)

0 N1

C-" [Zl Yl

q=[ul vl u_ v2 u3 v3 u4 v4]. (22)
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As noted in Eqn.8, the strain field is related to the displacement field by the differential operator

D,

0

D= 0
8 8

The engineering definition for shear strain is implied; strain being:

(23)

Ey _ 0

E_ 0

0 0 0

0 0 1

1 1 0

U_;r

U,y

(24)

Because the calculations are carried out in the natural(isoparametric) coordinate system, the

strains have to be transformed into this coordinate system. This can be established only by trans-

forming derivatives of the displacement vector. However, the only way to transform derivatives of

displacements is by applying the chain rule. Let 0 be a function of z and y, then invoking chain

rule yields:

0,,7 z,, Y,,7 0
(25)

or

(26)

And its the inverse relation is:

[00,_ O_ '
(27)

where

or

F = J-:, (28)
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y,_ -Y,_ ]
--X,rl Z,_

F=
iS [ , (29)

[ J I is the determinant of the jacobian matrix, J. Depending on the nodal point coordinates

assigned, the size, shape and orientation of the element will change, and so will the elements of the

Jacobian.

It is apparent that 0 is either u or v. The displacements in the natural coordinate system then

are related as:

u,x rn

U,y ._ ['21

v,z 0

U,y 0

F12 0 0

F22 0 0

0 F21 Fn

0 F2 F12

u,_

(30)

After finding the displacement function in the natural coordinate system, the nodal point dis-

placements are found to be:

U,r/ _-

V,_

U,r/

Na,¢ 0 N2,¢ 0 N3¢ 0 N4¢ 0 ]

N1. 0 N2.. 0 N3,. 0 N4,. 0 f0 Nz, ¢ 0 N2,_ 0 N3e 0 N4,¢

0 N1,. 0 N2. 0 Nz,t 0 N4,,r

ql

q_

q3

q4

qs

q6

q7

qs

The formulation above, recalling Eqn.10, explicitly defines the displacement-strain matrix, B,

(31)



1 0 0 0

0 0 0 I

0 I I 0

rn rl_ 0 0

r21 F22 0 0

0 0 F21 rn

0 0 F2 F12

NI., 0 N_, 0 ?¢3., 0 N4, 0

N1, 0 N2,, 0 Ns,. 0 N,. 0

0 N,,( 0 N2., 0 Ns, 0 N,,

0 Nl., 0 N2, 0 Ms., 0 N4,
(32)

Calculationsof7_o,7_o,and 76 are straightforward,however,x- and y-consistentforcesfrom %

have to be calculated at their nodes. The present study, does not include surface tractions. For con-

tinuous media contact forces P are zero. (Note that P is another unknown as well as displacements).

The integrals in the equations are calculated by Gaussian Quadrature (Dahlquist and BjSrck,

1974). With this technique, a polynomial of degree (2n - 1) is integrated exactly by n-point

Gaussian quadrature. The Legendre polynomials are used to solve for the coefficients(referred to

as Gauss-Legendre coefficients). The sampling points and weight in Gauss-Legendre integration

are tabulated(for example, see Bathe, 1982). For the element described above, a 2 by 2 point

integration is sufficient. However, for very distorted elements, a 3 by 3 point integration might

be preferred(Bathe, 1989; pers. comm.). Once the nodal point displacements are calculated, the

strains for each element are obtained from :

• = B q. (33)

To calculate the stresses, one point integration for 4-node quadrilateral element at its center

where _ = 7/= 0 is sufficient and most {_curate(for arguments, see, for example Cook, 1981). The

stress at the center of the element, from Eqn.1 is :

a = E B q- E •o + ao. (34)

From the strain and stress tensors, principal major and minor strains and stresses, and their

orientation can be calculated and will be used to complement the deformation pattern. Let A denote

the tensor whose principal components (when there is no shear) and orientation is desired. Using

Mohr circle representation (Johnson, 1970), the tensor rotation yields the principal components

A1,2_

il(A 1AI,2 = - A2)2 + A23, (35)



the maximum shear component A3,

and theirorientation0,

1

1 . , 2A3 1
O = _ arctantAt_-_ l .

(36)

(37)

The deformation pattern of any structure, hence, is displayed with the following plots:

1. Undeformed structure with boundary conditions(scale in meters pointing North)

2. Deformed structure,

3. Displacement vectors(scale in meters)

4. Principal(major and minor) stress principal directions and their magnitude (scale in Pa),

5. Magnitude of Maximum shear stress (scMe in Pa), and

6. Principal(major and minor) strain principal directions and their magnitude (scale has no

units).

Solution of Equations

Follows a discussion of the solution of finite element equation(Eqn.15) for P = 0, which corre-

sponds to continuous media. For stable solutions, at least 3 degrees of freedom must be constrained.

Also, for structural stability, prescription of certain other degrees of freedom, depending on the

boundary/internal conditions might be required(directly affecting q). The prescription of initial

stresses (not included in the current study), body forces and initial strain also effect Q. Practically,

the prescription of displacements at some nodes suppresses rigid body motion, as well as reducing

the rank of the global stiffness matrix. At these nodes, the reaction forces must be calculated.

For continuous media, Eqn.15 prevails. First, the solution techniques for continuum are dis-

cussed, the deformation pattern for continuum exampled and, following the arguments favoring

discontinuum approach, the solution technique and algorithms presented.

9



Consider Eqn.15 and partition the displacement vector q into two parts: qa and qb representing

the unknown and prescribed displacements, respectively. The nodal force vector is partitioned in

the same sense: Q_ and Qb, where the latter represents the unknown reaction forces. A similar

partitioning of the stiffness matrix is also performed. This leads to:

Kba Kbb qb Qb

The unknown displacements are

(3S)

qa : K_a 1 [Qa- gab qb],

and the unknown reaction forces are

(39)

Q_ = Kab q_ + Kbb qb • (40)

This is a direct solution for the unkowns and could be solved by any linear system solvers which

utilize the bandwidth of the stiffness matrix. In this study, LU decompoeition technique is used

(Press et al., 1986). However, when the structure gets complex, the the advantage provided by the

bandwidth properties of the stiffness matrix is lost and makes direct solution techniques very costly.

Therefore, an accelerated iterative solution becomes more attractive. Let _ define the residual of

the l - th iteration:

then, the ith degrees of freedom(displacement) at the Ith iteration is

(41)

=ql-' - { vi I i ¢ x}, (42)

where n is the total number of degrees of freedom, A/is the set of prescribed degrees of freedom,

and w is the acceleration factor. This is known as the successive over-relaxation method. Later,

for the contact algorithm, _ will represent the unknown contact forces developing at the contacting

nodes. In calculation of _, the sparsity of the stiffness matrix is utilized to save computational

time. Any mode in a finite element mesh connects a finite number of elements and as a result, the

displacement at this node is affected by the nodes of these elements. So, the multiplication amount

is reduced more than 60 % by skipping the nodes which are not connected. Theoretically, the

10



maximum number of iterationsto converge and the relatedaccelerationfactor,can be calculated

from the spectralradiusof the relaxationoperator.The largenumber of degreesoffreedom yields

- 2.0,and thiscausesdivergencein allsolutions.The number of maximum iterationswillalso

be underestimated. These parameters are problem dependent and _ __1.6(Cook, 19781).For the

problems concerned,_ _ 1.8- 1.9.Cost isreduced at least5-foldand the convergencewhich is

controlledineach iterationby(forEqn.15):

i

C is the measure of convergence and must decrease as more iterations are performed.

(43)

11
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Figure Captions

Fig. h (a) The type of plate interactions at their boundaries in x-y-z space. (b) 2-D finite

element approximation of plate boundaries when the dip of their boundary is 90 ° for divergent

and trancurrent, and continent-continent collison boundaries , and 0 ° for continent-ocean collison

boundary [ x-z plane]. (c) The behavior of plates at their boundaries in the x-y plane. Tension re-

lease(seperation), sliding contact(slip), sticking contact(single-node-continuum) and overlap modes

corresponding to divergence, strike-slip faulting, continent-ocean collision and continent-continent

collision, respectively.

Fig. 2: The deformation pattern of a continuum model simulating transcurrent plate boundary.

Fig. 3: The deformation pattern of a continuum model simulating divergent plate boundary.

Fig. 4: The deformation pattern of a discontinuum model simulating transcurrent plate bound-

ary: contact problem.

Fig. 5: The deformation pattern of a discontinuum model simulating divergent plate boundary:

contact problem.

Fig. 6: Schematic representation of contact problem, after Bathe and Chaudry, (1985).

Fig. 7: Coulomb Navier Criterion, after Wang and Voight(1969).

Fig. 8: Nodal configuration at the contact surface

Fig. 9: Deformation pattern of third type plate boundary: contact problem mode II.

Fig.10 : Deformation pattern of second and third types plate boundaries: contact problem

modes II and III.

Fig.ll : Deformation pattern of first type plate boundary: contact problem mode I.

Fig.12 : Deformation pattern of fourth type plate boundary: contact problem mode IV.

Fig.13 : Deformation pattern of fourth type plate boundary: contact problem mode II with

internal deformation.

Fig.14 : Deformation pattern of third type plate boundary: contact problem mode II with body

forces caused by elevation changes.

Fig.15 : Present-day tectonics of Eastern Mediterranean. After Hempton, 1985.

Fig.16 : Focal Mechanism Solutions. After McKenzie(1978)

Fig.17 : Local relative plate velocities.

Fig.18 : Index map of the region where the finite element contact problem is applied.

Fig.19 : Deformation pattern of the eastern Medlterranean[Model 1]: Contact. Driving force:

boundary displacements.



Fig.20: Deformation patternof the easternMediterranean[Model 2]: Contact. Driving force:

boundary displacements.The convergenceat the Cyprean arc and shorteningat the BitlJsSuture

are included.

Fig.21:Deformation patternof the easternMediterranean[Model 3]:Contact. Driving forces:

boundary displacementsand gravitationalforces.The convergenceat the Cyprean arc and short-

ening at the BitlisSuture,internaldeformationat the Palmyra Kink are included.

Fig.Ah Global and isoparametric(natural)coordinatesystems and theirmapping.

Fig.A2: Bilinearshape functionsfor4-node quadrilateralelement.
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{a) Condition prior (o contact

_ CONTACT REGION.
NO A PRIORI
KNOWLEDGE OF
REGION

(b) Condition at contact

_APPLIED EXTERNAL

(c) Forces actinll on conlactor and target bodies

FiBure 1. Schemalic representalion of problem considered

Fig.6: Schematic representationofcontactproblem, afterBathe and Chaudry, (1985).
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Fig. 8: Nodal configurationat the contactsurface
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APPENDIX 2

Seismotectonics and Seismic Gaps of

the Eastern Part of the North Anatolian Fault

Zone

A. Aykut Barka and M. Nail Toks6z

Earth Resources Laboratory

Department of Earth and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, MA 02142, USA.

Abstract

Historical and instrumental earthquakes in the eastern part of the North Anatolian

fault zone between the Erzincan basin and the Karfiova triple junction have been

examined in relation to fault segmentation and kinematics. The 12/26/1939 Erzincan

earthquake (M=8) created a 360 km surface break and it was terminated at the

eastern end of the Erzincan pull-apart basin in the east. The 8/17/1949 (M=6 7-

7) earthquake was a double bend earthquake which affected the easternmost three

fault segments (FS1, FS2 and FS3) of the North Anatolian fault zone. According

to the historical data, the 1784 earthquake (I=VIII-IX) occurred between the 19:39

and 1949 rupture segments (FS4-FS9, about 75 km long). From this data it appears

that the North Anatofian fault zone could have two seperate sequences of westward

migrating large earthquakes. One of the two sequences originates from the trlpie

junction between the NAFZ and the Ovacik fault in eastern end of the Erzincan basin.

and extends to the west about 900 kin, as happened between 1939-1967. The second

one extends between the Karliova triple junction and the Erzincan basin and con_.-_-

of two rupture segments, 1949 and 1784. The main reasons for these two separa_,.



migrations are firstly different recurrence intervals of large earthquakes of the rupture

segments which is controlled by the geometry and length of the rupture segment and

secondly, the eastern part of the westward escaping Anatolian block divided into two

wedge shaped blocks (A1 and A2) each of which moves independently. From historical

records it may appear that the recurrence interval of the western migration could be

about 900 years while the recurence interval is about 200-300 years for the eastern

migration. Furthermore, the eastern migration has not yet completed during the

current twenteeth century migration. Thus, within the eastern sequence, the 17S4

rupture segment to the east of the Erzincan basin is identified as a potential seismic

gap. Recurrence intervals of historical earthquakes and geological data indicate that

slip rate in this part of the fault zone is about 0.8-1 cm/yr. This results in an

accumulation of about 2 m right-lateral slip along the 1784 rupture segment.

Introduction

It has recently been emphasized that fault geometry plays a critical role in the earth-

quake rupture process (e.g., Segall and Pollard, 1980, Bakun et al. 1980, Lindh and

Boore 1981, Barka and Hancock 1982, King and Nabelek 1985, Sibson 1986, Schwartz

and Coppersmith 1986, Barka and Kadinsky-Cade 1988, Wesnousky 1989). The term

"fault geometry" includes stepovers, bends, and their many combinations. In this

study we focus on strike-slip fault geometry and earthquake activity in the eastern

part of the North Anatolian fault zone. We have studied the geometry of active fa,JI_

segments in detail on the field and aerial pothographs, belonging not only the North

Anatolian fault also other major faults in the region. Then, we combined this infor

mation with distribution of intrumental and historical earthquakes in the region. We

also examined the extents of the surface ruptures of the large earthquakes thoroueh

the litrature and some on the field. As a result our purpose is to understand ho_ _.5,,.

fault moves and examine seismic gaps along the fault zones.

Figure 1 shows major tectonic elements of Turkey in an area where the northwar,!

2



motion of the Arabian plate causes active convergence in eastern Turkey. As a result,

the Anatolian block escapes westward and the Northeast Anatolian block eastward

(Ketin 1948, McKenzie 1972, Sengor 1979, Kasapoglu & Toksoz 1983, Gulen 1984,

Dewey et al. 1986). The wedge shaped Anatolian block is bounded by the right-

lateral North Anatollan fault to the north, and by its conjugate, the East Anatolian

fault, to the south. These two fault zones intersect at the Karhova Triple junction

(Ketin 1969, Alien 1969, 1975, McKenzie 1972, Dewey 1976, Tchalenko 1977, Sengor

1979, Toksoz et al. 1979, Jackson & McKenzie 1984, Sengor et al. 1985, Dewey et al.

1986). The eastern part of the Anatolian block is divided into two smaller blocks (A1

and A2 in Fig. 2) by the left-lateral strike-slip Ovacik fault. This fault intersects the

NAF zone at the southeast end of the Erzincan basin which forms an an other triple

junction (ETJI). The eastward escape of the NE Anatolian block is complicated by

the extensive internal deformation and by the existence of a number of sub-blocks.

The Northeast Anatolian fault zone (NEAFZ), forms the northern boundary of the

NE Anatolian block. The dominant tectonic feature in this region is the NAF, which is

a joint boundary between the two blocks escaping in opposite directions. The NA FZ

intersects the NEAFZ in northwest of Erzincan (ETJ2, Figures 1 and 2). Figure

2 shows the major blocks and boundary faults in the area of concern, between the

Erzincan and Karliova triple junctions. Genuinly, both historically and during the

modern times, the Erzincan region has been one of the most active seismic regions in

Turkey (Sieberg 1932, Ergin et al. 1967, Soysal et al. 1981, and see Table 1) because

the area is situated within a most critical tectonic center from where continental

blocks escape sideways.

Between 1939 and 1967 most of the North Anatolian Fault west of Erzincan rlJp

tured through a westward migrating series of major earthquakes, as shown in Figl_ro

1. In this series of earthquakes, the largest one was the 1939 Erzincan earthquak,

(M=8.0). East of Erzincan, earthquakes along the NAF followed a more comptica_,_,t

pattern, as can be seen in Figure 2.

3



Fault and Rupture Segments

Fault segmentation is defined by the distribution of the geometric discontinuities along

straight fault segments. For the definition of minumum sizes of these discontinuities

which control the fault segmentation, we used Barka and Kadinsky-Cade (1988) crite-

ria (stepover widths and bend angles larger than 1 km and 5 respectively). Rupture

segments are the extents of surface rupture zones produced by characteristic large

earthquakes. The North Anatolian fault zone consists of a number of fault and rup-

ture segments in this area, as shown in Figure 2 (Barka and Kadinsky-Cade, 19S8).

In this section we outline the geologic and seismic details of each fault and rupture

segment belonging to the major fault zones.

The North Anatolian Fault Zone

The NAFZ initiates at the Karliova triple junction (Figs. 1 and 2). Although there is

extensive seismic activity to the east of this junction (between Karliova and Varto).

it is believed that this part is no longer the continuity of the NAFZ, but a rather

complex suture zone which has developed by the westward escape of the Anatolian

block. In other words, one interprate this as the triple junction was initially in the

Varto area and as a result of the westward escape the Anatolian block, the triple

junction has moved to the Karliova area. Barka and Gulen (1988) have called this

zone as a "zipper zone". The complex suture zone has been formed by a thrust

formation extending through the bisector of the angle between the boundary strike-

slip faults (Fig. 3) which is the manifastation of closure of the space at the t_p of

the escaping block. The 1946 and 1966 Varto earthquakes occurred along this zone

(Tasman 1946, Ambraseys and Zatopek 1968, Wallace 1968, Ketin 1969 and see F_g_

2 and 3). According to McKenzie (1972) and Canitez (1973) the fault plane solution of

the 1966 Varto earthquake differed from other solutions of eartquakes which occurr,',l

along the NAFZ by having a trust component with right-lateral strike-slip m-',,._

(Fig. 4). This is in good agreement with suture zone formation. In the same cont¢.xT



an E-W trending thrust morphology was interprate from aerial photos in the Karliova

area extending through the bisector angle between the boundary strike-slip faults,

NAFZ and EAFZ, (Fig. 3). This north dipping thrust seems to splay from the

segment 1 of NAFZ and indicates that the Karliova basin can not be an extensional

basin, instead it is a complex ramp basin formed by the interaction of coeval strike-

slip faulting and thrusting. Although the epicenter of 7/07/1957 earthquake, .M=5.5,

is located 30-50 km west of the Karliov_ area, its thrust mechanism (Canitez and

Ucer 1967), indicates that the internal deformation of the Anatolian block includes

an approximately E-W thrusting which can be used as supporting evidence for the

thrust formation in the Karliova area (Fig.4).

Fault segments 1, 2 and 3 (FS1, FS2 and FS3) form a restraining doublebend

between the Yedisu basin and Karliova triple junction. Double bend angles are '20

in east and 25 in the west (Fig. 3). FS1 extends from the triple junction to the

west about 30 km and has very clear physiographic expressions. Along this segment

many small streams and ridges which are normal to the fault trace are of[set and

curved in a right-lateral sense (see also Allen 1969 and 1975). This segment_ the

fault trace is expressed by a long norrow trough along its entire lenght (Fig. 3t

FS2, which is the restraining segment of the double bend, has two small rele_lng

stepovers and runs within the Elmali river. Its physiographic expressions are much

less clearer developed. FS3 forms the western part of the double bend and also ha._ a

very clear strike-slip morphology like FS1 (Fig. 3). The 8/20/1966 Ms=5.3-6.2 ar_._t

some other smaller aftershocks of the 1966 Varto earthquake were located on [-",!

(Ambrasesy and Zatopek 1968, Dewey 1976). During the 8/20/1966 aftershock r_,,-_

of the villages in the vicinity of this segment were destroyed (Fig. 3). The fault plar_,,

solution of this earthquake (Mckenzie 1972, Canitez 1973) indicated a pure strike--ILp

motion along FS1. The 8/17/1949 Ms-6.7-7 earthquake affected all three segrT_Prl'-

According to data collected during our field survey and Ambraseys (1987. per_,,r_,_'

communications) this earthquake might have created ruptures mostly along F$2. ,_r_.i



the eastern part of FS3 and the western part of FS1. Ambraseys (1987, personal

communation) also reported that right-lateral displacementsmight have reachedup

to 1.5-2m in places. Most of the damageoccurred along FS2 which makesup the

restraining area of the doublebend(Fig. 3). The fault plane solution of this event

had a slight thrust component (Canitez 1973).

FS3 and FS4 form the 2.5 km wide Yedisupull-apart basin (Fig. 5). There is a

restraining angleabout 10betweenthesetwo segments.FS4 is about 28km long and
hasclear morphological expresions.FS4 hasalso two small stepoversfirst of which is

a releasingtype located in the Yedisubasinand the secondone is a restraining type

situated in middle of the segment. The 7/26/1967 Pulumur earthquake, M=5.6--6.2,

took place west of this second stepover and created 4 km surface breaks and 20 cm

right-lateral displacement along this part of FS4 (Ambraseys 1975). Figure 5 shows

intensity contours and destroyed villages along the FS4 (Tutuncu and Demirtasli

1967). The fault plane solution of this earthquake (Mckenzie 1972 and Canitez 1973)

indicated that the motion was also pure strike-slip and confirms the right-lateral

motion of the NAFZ (Fig. 4).

FS4, FS5 and FS6 form a releasing double bend (Fig. 5). In the vicinity of

FS6 there are several other faults which trend parallel to FS6. There is a long and

narrow small lake along FS5 which is consistent with its extensional nature. FS7.

FS8 and FS9 create a combination of releasing bend and restraining stepover. The

width of the restraining stepover is about 2 km. FS7, FS8 and FS9 have relatively

less clear morpological expressions. This is probably due to fact that they all run

within the Ephratus valley where fluvial activity is quite high. Fault expressions

are well developed only between Tanyeri and Caykomu villages along FS9 (Fig 5i

Ambraseys (1975) reported that the 1784 large earthquake occurred to the east of the

Erzincan basin and created 90 km long surface rupturel Based on this informatiorl _

is believed that this rupture segment extended along the entire lenght of FS4-F_!_

In other words, 1784 rupture segment took place between the Yedisu and Erzin,-an
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releasing stepovers.

FS9 and FS10 form a releasing bend (15) and stepover (4-5 km) combination

which is responsible for the opening of the Erzincan basin (Fig. 2). FS10 is 60 km

long, and has clear physiographic expressions in its western half. The southeast half

of FS10 is characterized by short en-echelon strike-slip faults and contemporaneous

volcanics (Barka and Gulen 1989). FS10 is separated from FSll by a 20 restraining

bend. FSll is about 110 km long, and extends from this bend, situated about 10

km NW of the Erzincan basin, to Susehri - the location of a releasing double bend

(Kocyigit 1988). The area of interest in this paper terminates in the eastern part of

FSll (for the details of the other fault segments to the west see Barka and Kadinsky-

Cade 1988). FSll has clear strike-slip morphology especialy in the vicinity of .Mihar

village. Along all these fault segments the strike-sl_p motion is associated with a

vertical component. According to field observations, the southern block is usually

uplifted except that this varies where the fault segments form extensional structures

(releasing bend and/or releasing stepover).

The 1939 Erzincan earthquake created surface ruptures along FSIO, FSll and

extended further west along the Kelkit valley and terminated south of Amasya where

there is a 24 restraining bend between the fault segments (e.g. Pamir and Ketin 1941.

Parejas et al. 1941, Ketin 1969 see also Figure 1). The total lenght of surface rup-

tures was about 360 kin. Although, Parejas et al. (1941) reported 3.7 m maximum

displacement, according to recent studies (Kocyigit 1988, Barka in prep.) the max-

imum displacement reached 7.5 m in along FSll. During the same earthquake the

southern block was uplifted about 2 m . Parnir and Ketin (i94i) reported that two

foreshocks were felt within the week preceding the main shock in the Erzincan basin

The epicenter of the earthquake was located near the 20 restraining bend, on FSI0

(Dewey 1976). Many of the 1939 earthquake aftershocks caused damage in the Er:,-

incan and Niksar pull-apart basins (Nature 1940a, b, c, d, Ergin et al., 1967; Tabban.

1980; see also Riad and Meyer, 1983). Fault plane solution of this earthquake wa,



pure strike-slip motion and agreedwith the motion along the fault zone. An another

fault plane solution for a moderate size earthquake (Mb = 4.8, 11/18/1983) near the

city of Erzincan is characterized by ENE-WSW extension (International Seismologi-

cal Centre Bulletin solution 1983), also in agreement with the pull-apart character of

the Erzincan basin (Fig. 4).

The East Anatolian fault zone

The left-lateral East Anatolian fault zone is the southern boundary of the westward

escaping Anatolian A1 block. The most northeastern fault segment (FS1) is about

60 km long and extends from the Karliova triple junction to Bingol (Figs. land 2).

The segment is straight and has clear morphological left-lateral strike-slip expressions

and it is also accompanied by a normal component (western block down) along the

northern half. The southern half of this segment runs within the Goynuk river valley

where the expressions are not so clear. The 1971 Bingol earthquake (M=6.7) created

surface ruptures mostly along the southern half of the segment (Arpat and Saroglu

1972 and Seymen and Aydin 1972). The fault plane solution of this earthquake

indicated pure left-lateral slip along this segment (Fig. 4). At least one other historical

earthquake (1789) of a similar size has been documented from Soysal et a1.(1981 ) in

the vicinity of the same segment. According to Arpat and Saroglu (1972) and Sevmen

and Saroglu (1972) the fault zone has 15-27 km left-lateral post-Miocene displacement

revealing about 0.5 cm/yr slip rate.

The Ovacik fault

This is another left-lateral fault and is about 120 km long trending NE-SW. According

to Barka and Gulen (1989) who studied the tectonic evolution of the Erzincan basin.

the Ovacik fault has also been participating in the opening of the Erzincan b_tn

The Ovacik fault splays into several branches before it enters the Erzincan ba.-_n

The Ovacik basin is situated on a releasing bend along the segments of the Ovacik



fault. In the Ovacik basin the fault cuts Quaternary alluvial fans, and forms very

distinct 5-10 m high fault scarps (see also Arpat and Saroglu, 1975). Although the

fault, in general, has a left-lateral strike-slip character, these scarps indicate that the

motion in the Ovacik basin is also associated with a normal component. However,

outside the Ovacik basin the fault has a thrust component that causes the uplift of

the Munzur Montains. As far as historical earthquakes are concerned there are no

spesific events in the last 1000 years that can be associated with this fault. During the

present field survey occurence of one large earthquake 1200 years ago was interpreted

from the Legend of the Munzur Springs in the Ovacik area. Barka and Gulch (1959)

estimated 5-7 km left-lateral displacement along the Ovacik fault from the geometrv

of the southeastern part of the Erzincan basin. They also considered that the age of

the Ovacik fault is younger than the NAFZ (approximately 3-3.5 Ma). These values

may reveal about 0.15-0.25 cm/yr slip rate along the Ovacik fault.

The Northeast Anatolian Fault Zone

This fault zone consists of several segments with a combined length of approximately

350 km. The southwesternmost segment (FSA) is located to the north of the Erzincan

region (Figure 2). Approximately 70 km long, it strikes NE-SW. Although very little is

known about this fault segment, it is assumed to have an oblique movement, consisti n g

mostly of left-lateral slip with a subordinate thrust component (Tatar, 1978) The

study of earthquake records (Soysal et al., 1981; Sipahioglu, 1983; Rind and Mevers

1985) indicates that it is less active than the segments of the North Anatolian Faul'

zone. Pamir and Ketin (1941) showed ESE-WNW trending isoseismals parallel ',_

the NAFZ, covering the area between Tercan and Baskoy for the 11/21/1939 Tercan

earthquake (M=5.9). And because of this, this earthquake was always consider,',t

to be the foreshock of the 1939 Erzincan earthquake. However, after locating th, _

damaged villages and the main trace of the NEAFZ, we believed that this earthquako

may have occurred on FS-A of the NEAFZ and has no relation with the NAFZ , f,,r
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example, 130 buildings collapsedin Karakulak which is situated next to the fault

zone; Pamir and Ketin, 1941; Ergin et al., 1967; Tabban, 1980, see also Figure 2

where the locations of other destroyed villages are shown). This is also confirmed by

the relocation of the earthquake (Dewey 1976, Fig. 7). Apart from the 1939 Tercan

earthquake and several aftershocks of the 1939 great Erzincan earthquake, the only

known historical event associated with this segment is the 1254 earthquake (I=IX).

This event caused surface breaks to occur over a 50 km length on FS-A (Ambraseys,

1975).

Seismicity

Historical Earthquake Records

The history of damaging earthquakes in the Erzincan region was recognized and

fairly well documented even before the great earthquake of 1939 (Ali Kemal, 1932}.

Sieberg (1932) listed some of the Erzincan earthquakes and stated that between 1045

and 1784, at least 17 damaging earthquakes had occurred in the Erzincan region In

Table 1 we have tabulated the significant earthquakes affecting the Erzincan region

since 1000 A.D., based on sources referenced in the table. Figure 6 is an intensity-time

plot of known earthquakes which have affected the Erzincan region. From this figu re.

earthquakes can be categorized according to two large sizes: (a) great earthquak_

for which I X (Modified Mercalli intensity),and (b) large earthquakes with VIII [ IX

According to Figure 6, at least 3 great earthquakes have occurred during the la._t t1_i._3

years, including the one in 1939. Ambraseys (1970) reported that the 1045 earthq_Jak,.

produced a surface break of length comparable to the one which occurred in 1939: a n,

that the 1458 earthquake caused the death of about 32,000 people, however, altho_h

this figure is comparable to the casualties of the 1939 earthquake, in most ¢at¢,l,,c-

the affected area is described as taking place between Erzincan and Erzurum.

At least 10 large earthquakes (VIII I IX) have occurred in the Erzincan r_-...,:.
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since1000A.D., causingconsiderabledamageand largenumbersof casualties.Among

the earthquakesof this sizeonly 1254and 1784earthquakescan be associatedwith

specific segments;1254 was on FS-A of the NEAFZ and 1784was on FS4-FS9of

the NAFZ (Ambraseys 1975). The other two large earthquakessimilar 1784were
1578and 1422which were separetedby about 156years. Furthermore, there is the

possibility of only one large earthquakealong the Ovacik fault occuring about 1200

yearsago which is interpreted from the Legendof Munzur Springs. In other words,
none of the listed earthquakesin Table 1 is specifically associatedwith the Ovacik

fault.

The recurrenceinterval (900 year) combined with displacementcreated during

the greatearthquakes(7.5 m), give a slip-rate of approximately 0.8 cm/yr. This slip-
rate is similar to that obtained from geologicaldata which revealsabout 0.8-1 cm/yr

for this part of the fault zone (Barka and Gulen 1988). Note also that FS1-FS10

form a joint boundary betweenopposite-movingblocks(the Anatollan and Northeast
Anatolian blocks). Thus the slip rate is expectedto behigher in this areathan along
the main section of the NAF to the west. However,someamount of the slip should be

taken up by the internal deformation of A1 block asexpressedby extensive internal

faulting and related seismicactivity at tip of the wedgeshapeblock. From Figure
6 the recurrenceinterval for large earthquakes(VIII I IX) is approximately 100-150

years.

Instrumental Earthquake Records

Figure 7 shows the distribution of earthquakes M 4.9 in the region between 1900 and

1985. Epicenters for the interval 1900-1930 are taken from Tabban (1980) and Riad

and Meyers (1985). Epicenters of those earthquakes which occurred between 19:30

and 1971 are taken from Dewey (1976) who relocated the events M 5. Moreover,

epicenters of all earthquakes for the period of 1964-1984 belonging to ISC, are al__o

shown in Figure 8. From both maps two significant points can be made; a) mar_
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moderate-largeearthquakesaremostly concentratedalong the NAFZ, and b) there is
alsoconcentrationsof the small-moderateearthquakesat the tips of the wedgeshaped

blocks. The tip of A1 block hasthe most clear activity out of the escapingblocks.

Seismic Gaps

Both historical data and the 1939 earthquake have shown that great earthquakes in

this region appear to be consistent with the 1939 rupture segment which includes

FS10, FSll and fault segments (FSll-FS14) to the west along the NAFZ (see Barka

and Kadinsky-Cade 1988). If we consider the recurrence interval of 1939 earthquake

(M=8) to be about 900 years (Fig. 6) this rupture segment is safe for long time for

a similar size of earthquake. On the other hand there is no historical data obtained

before the 1949 earthquake which took place at the eastern end of the fault zone

(Fig. 9). This is propably due to that the area is sparsly populated because of its

raged morphology. However, if we take the estimated slip rate as about 1 cm/yr and

similar amount of slip (1.5-2 m) on the fault, one can simply calculate 150-200 vear._

recurence interval for the 1949 size of earthquakes. Along the 1784 rupture segment,

before 1784 earthquake, there are two other comparable earthquakes which affected

the Erzincan region within last 500 years( 1578, I=VIII and 1422, I=VIII, Fig. 9). but

their locations are not known. The recurrence interval of these earthquakes are 156

and 206 years. Since it has been 205 years since 1784 earthquake, this rupture segment

(FS4-FSg), stands out as a clear seismic gap. The geometry of the fault segments also

indicate that the restraining features along the rupture segment are not large eno_h

to restore so much stresses. Thus, one can conclude that the geometry and historical

earthquake records and long term slip rate along the rupture segment indicate that

this gap should have a large earthquake near future. The estimated 1 cm/yr slip rat,"

results in over 2 m slip accumulation along this rupture segment. An other importan_

point with this gap is that during the 20th century this rupture segment is the onl,.

segment along the NAF zone which has not experienced a large earthquake betw,_,',_
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Varto and the westernend of the Mudurnu valley (900km). Moreover, this gapalong

the NAFZ is different from the gap mentioned by Toksozet al., (1979),and was first

briefly mentioned by Ambraseysand Zatopek (1969).

There is no any significantearthquakethat can bespecifically associatedwith the

Ovacik fault since 1900during the instrumental period and/or last 1000years. Thus,

it hasbeen 1200yearssincethe last known largeearthquake along this fault. With

the given rate (0.15--0.25cm/yr), about 1.5-2.5 m left slip might have accumulated

along this fault. Therefore, the Ovacik fault may well be another candidate for future

large earthquakes.

The amount of total displacement along the FS-A of the NEAF zone is similar to

the Ovacik fault (about 5 km). The 11/21/1939 Tercan earthquake and 02/03/1949

affershock of the 1939 Erzincan earthquake might have occurred on this segment.

From the historical earthquake records, we are only aware of the 1254 large earth-

quake, which created 50 km of surface faulting along segment A, trending 60 with

5 m (?) maximum vertical displacement (Ambraseys, 1975). The slip rate with the

historical data indicates that about 1 m left-lateral slip may have been accumulated

along this rupture segment.

Migration of Large Earthquakes

The historical data is not long enough to clearly understand the migration patterns of

the North Anatolian fault zone. However, from available data, two separate westward

migration of large earthquakes along the North Anatolian fault can be interprated

One starts from the triple junction of the North Anatolian and the Ovacik fault

(ETJ1) and to the westward as it happened between 1939 and 1967. The second

sequence takes place between the Karliova and Erzincan triple juction (ETJI) which

consists of two rupture segments 1949 and 1784. The western migration might occ_r

approximately every 900 years while the eastern migration may repeat every 200-300

years. The longer recurrence interval of 1939 rupture segment is related to the _'0
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restraining bend which is the largest restraining feature along the North Anatolian.

Furthermore, two separate Anatolian blocks (A1,A2) move to west thus two separate

sets of migration earthquakes would be expected when each block moves. As far as

most recent sequences concerned as has mentioned the eastern m_gratJon has not yet

completed.

Fault Geometry and Earthquake Rupture Processes

Some of the details of the fault geometry and rupture processes have been atreadv

discussed by Barka and Hancock 1982, Barka and Kadinsky-Cade 1988 and Kadinskv-

Cade and Barka 1989. Some of these can be sammurized as follows,

a) It is apparent that two ends of the 1784 rupture segment is controled by the

Erzincan and Yedisu pull-aparts.

b) Each rupture segment has restraining feature in itself, the size of which propor-

tional to the size of earthquake, length of rupture segment and the amount of slip For

example, as has mentioned the above, the characteristic great Erzincan earthquakes

(1045 and 1939) are closely related to the 20 restraining bend (110 km long) north-

west of the Erzincan basin and the restraining bend of the 1939 is larger than _t_o,_e

observed along the 1949 (20 and 15 km long) and 1784 rupture segments so as the,

size of earthquakes, the rupture lengths and the displacements. More details of these

issues have been discussed by Barka and Kadinsky-Cade (1988 , Kadinsky-Cade and

Barka (1988) and Wesnousky (1988).

c) As it has been alsopoited out that location of epicenters, m other words, rup_ ,ire

initiation take place mostly nearby the locked segments (e.g. Barka and Hancock

1982, King and Nabalek 1985, Barka and Kadinsky-Cade 1988). For example, t!_.,,

epicenter of the 1939 earthquake is located near the restraining bend (Barka an,l

Hancock, 1982; Barka and Kadinsky-Cade, 1988). Similarly, the epicenter of I'_1'1

double bend earthquake is located on FS3, near the the western bend where ang!e I,

higher relative to the eastern bend. Thus_ from these examples one can assum_ _ _t_,,'
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for the case of the 1784 seismic gap the epicenter of the large earthquakes may take

place in western part of FS4 and/or FS5 (Fig. 9).

d) Furthermore, as mentioned earlier, in the easternmost part of the fault zone

FS1, FS3 and FS4 have clear morphological expressions. Many stream beds and

ridges normal to the segments are curved in a right-lateral sense. These three seg-

ments have a linear geometry and also are parallel to the slip direction. It should be

noted that most of the area of interest including the Ovacik fault and segment A of the

NEAF zone, is located within the serpentinite-rich ophiolites and ophiolitic melange

associated with the Anatolide/Tauride - Pontide suture zone. These three aspects.

morphological expressions, linearity in geometry and plasticity of the rocks indicate

high potential of creep phenomena along these segments. In other words the mo_ion

along the straight segments is considered to be easy. The seismicity indicate that

this assumed creep is accompanied with continuous small and moderate earthquake

activity, if we consider that those moderate earthquakes (such as the 1966, M=6.3

along the FS1 and the 1967 Pulumur earthquake, M=5.6-6.2, along the FS4, Figure

9) are characteristic earthquakes of these straight segments . Note that for any case

these activities (creep and small-moderate earthquakes) do not exclude the potentLal

for future large earthquakes along the FS1-FS9 as it was experienced in the 1949 and

1784 events. However, we believe that the amount of slip during those large earth-

quakes should be less along the those segments that have creep and small-moderate

earthquake activity.

In summary, one can postulate that straight segments which are parallel to the

slip direction has interseismic activity of small-moderate earthquakes and creep, an,]

they continuously transfer the stip (or stresses) to the locked areas (Fig. 9). Lock_,t

segments who has restraining geometries move coseismicly by large events (Fig '_,

During the large earthquake those straight segments which have already transfer the

slip to the locked areas would have obviously less slip. For example, if the abo_e

mention gap along the North Anatolian fault creates a large earthquake, we wo,.,:,i

• 15



expect maximum slip to the west of FS4 and much less skip along the FS4.

Finally, we can conclude that releasing stepovers or releasing double bends appear

to be site of preseismic and post seismic activity such as foreshocks and aftershocks

(Fig. 9). If this is so, the 1784 seismic gap could have a high potential of foreshock

activity and most of the aftershock could also take place in the Erzincan and Yedisu

pull-aparts.

Conclusion

From this study it is clear that examination of earthquakes and fault geometry pro-

vide many useful information in understanding not only the tectonics of the sideway

escapes of the continental blocks but also to in defining seismic gaps along the major

fault zones which form the boundaries of blocks and earthquake rupture processes

This study also indicates that there is a clear 75 km long seismic gap along the

North Anatolian fault immidiately to the east of the Erzincan basin. This segment

last ruptured in 1784 and since the estimated slip rate is about 1 cm/yr, about '2 m

slip has accumulated. The recurence interval of large earthquakes along this rupture

segment is an average of 180 years. Although the damage and casualties were less

severe than 1939, the 1784 earthquake was also very destructive for the Erzincan

region killing at least 5 000 people. The other significant seismic gap appears to be

associated with the Ovacik fault along which 1.5-2.5 m slip might have accumula'_]

over last 1200 years.

There could be two separate westward migration of large earthquakes along the

North Anatolian fault zone, first one is from the Erzincan basin to the west and secor_d

one is from Karliova triple junction to the Erzincan basin. This is caused by primav_l_

different recurrence intervals of large earthquakes along the rupture segments and two

separate block motion to the west.

Slips along the straight segments which are also parallel to the general slip ,i'. -

rection seem to be easy and expressed by clear morphological expressions, freq,l,':.'
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small-moderateearthquakesand possiblecreepactivity trnsfering the stressesto the

lockedsegments.Finally, a high potential of foreshockactivity is associatedwith the

pull-apart structures and a releasingdouble bendalong the the gap segment.
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Figure Captions

Figure 1. Tectonic map of Turkey showing the surface ruptures due to major earth-

quakes since 1900. The Anatolian and Northeast Anatolian Blocks are wedged out

to the west and east respectively by the convergense of Arabia and Eurasia as shown

in the inset map (lower left). The rectanle in the Figure delinates the area of study

and is enlarged in Figure 2 (compiled from Arpat and Saroglu 1972, 1975, Arpat et

al. 1977, Barka and Hancock 1984, Sengor et al. 1985).

Figure 2. Simpfified geometry of major blocks and distribution of fault and rupture

segments between Erzincan and Karliova. Thick and dashed lines and dates indicate

rupture segments and dates of related earthquakes, respectively. Doted areas are

Plio-Quaternary basins being formed mostly by strike-slip faulting. A1 and A2 are

sub-blocks within the Anatolian block. Stars near the rs 1939b show the destroyed

villages by the 11/21/1939 earthquake (taken from Ergin et al. 1967).

Figure 3. Simplified tectonic map of the Karliova-Varto area. rs 1949, fs2 are

rupture segments of major earthquakes and fault segments, respectively (see also

Tutkun 1986 and Saroglu et a1.1987). The observed extents of surface ruptures of

the 08/19/1966 Varto earthquake is indicated by dashed lines (from Wallace 196_q)

The triangles are the villages destroyed by the largest aftershock of the 1966 Varto

earthquake. Closed squares within the squares are the villages knocked down by the

08/17/1949 earthquake (information collected during the present survey and -_rn-

braseys 1987 written communication).

Figure 4. Fault plane solution of major earthquakes of the region (compiled from

Mckenzie 1972 and Canitez 1973).

Figure 5. Characteristic features of the North Anatolian fault between Yedisu and

Erzincan basins. Doted contours are isoseismals of the 07/26/1967 Pulumur earth

quake and stars are the destroyed villages both taken from Tutuncu and Derrfirta_lt

(1967). Squares are the destroyed villages by the 08/17/1949 earthquake.

Figure 6. Time (T)/intensity (I) distribution of earthquakes in the Erzincan ar,_,_

18



Numbers above the dotes are the number of casualties resulting from each particular

event, a and b are the categories of earthquakes. For explanation and references see

the text and Table 1.

Figure 7. Distribution of earthquake epicenters (M >_ 4.9) in the easternmost part

of the North Anatolian fault zone for the interval 1900-1987. Solid circles indicate

the epicenters taken from Dewey (1976) and the open circles indicate epicenters taken

from mostly Riad and Meyers (1985) and Tabhan (1980).

Figure 8. Distribution of ISC epicenters of all earthquakes between 1964-1984 in

the region.

Figure 9. Summary of the relationship between geometry of the fault segments and

seismicity along the eastern part of the North Anatolian fault zone. Horizontal axis

represents the extent of the fault and vertical axes are time and slip. The continuous

vertical lines indicates each rupture segments and dashed vertical lines separate the

straight segments and locked segments. Stars with dates ilustrate locations relocated

epicenter of the 1939 and 1949 earthquakes (Dewey 1976). The star with exclamat ion

mark is the location of epicenter of the expected large earthquake within the gap area

The horizontal arrows indicate the direction of the slip by moderate earthquakes. The

dates, size and the amount of slip of the large earthquakes are also indicated.
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Table I.
t

Listofhistoricalearthquakes
m the Erzincan Region.

Number Date IntensityII)

(1) 1045 X-XI
(2) 1161 Vl
(3) 1165 VII
(4) I186 V]
(5) 1188 VIII
(8) t170 VIII-IX
(7) 1238 VI
(B) 1251 VIII
(9) 1254-55 VIII

(10) 1268 IX
(11) 1287 VIII
(12) 1289 VIII
(13) 1308 VI
(14) t356 v
(15) i388 vI
(16) 1374 v[]
(17) 1422 rill
(is) 1433 vi
(19) 145B x
(20) 1543 VTI
(21) 1579 VIII
(22) t6o5
(23) t 667-8 VIII-X

(24.) ',_94 VIII-IX
(a5) _ss? vl

Number ofcasuatties

12,000

18,000
15,000

32,000

1,500..15,000

Katf of the town
was destroyed
5.000-15.000

B

Docu.'r.en-ed _om _.e:_-,_ : 3"_2 x_ <ema. :932 _o o_r.o_-Ca.wr. 1836-1940. Pa.'elam e: a/,.. 1941

_.':tr a.i'ld La.hn 1952, --'g_'_ a: :Z i-)6 _ _,-rz-aseym 1970 19"7'5 Z,_.":I_ 1_t'2. Can 1974.

.qoy_,i¢t "/.. 1961, t982, _.:s..'.. _ , },".,2 '_,,"3_

ORIGINAL PAGE IS
OF POOR QUALITY



Bull. Seis. Soc. Amer. 58, 11-46.

\Vesnousky, S. G.(1988). Seismological and Structural Evolution of Strike-Slip faults.

USGS Workshop on Fault Segmentation and Controls of Rupture Initiation and

Termination.(in press)
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APPENDIX 3

Slip Distribution of the Great 1939 Erzincan

Earthquake, Eastern Turkey

A. Aykut Barka, Katharine Kadinsky-Cade and M. Nail Toksiiz

Earth Resources Laboratory

Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, MA 02142

The December 26, 1939 Erzincan earthquake (M=8) is the first and largest of a

remarkable westward migrating series of six M=7-8 earthquakes that occurred along

the North Anatolian fault zone between 1939 and 1967 (Ketin, 1948, 1969; Ambraseys

1970). The 1939 earthquake created a 360 km long surface break, which is shown in

Figure 1 (Ketin, 1969; Barka et al., 1987). The epicenter was located approximately

10 km northwest of Erzincan, as indicated by the star in Figure lc (Dewey, 1976). The

distribution of aftershocks is not known completely, although a number of moderate

size aftershocks can be associated with the Erzincan, Su_ehri and Niksar basins,

which are major releasing features along the rupture zone (Dewey, 1976; Tabban,

1980; Riad and Meyers, 1985). Several small earthquakes were felt by local residents

in the Erzincan basin two weeks before the main shock (Pamir and Ketin, 1941). Only

one measurement of fault slip was made soon after the earthquake: a 3.7 m right-

lateral offset of a side wall along the main road in Re_adiye (Parejas et al., 1942).

In this short note we present results from recent field measurements of fault offset

along the 1939 earthquake surface breaks. These data are very important, not only

because they help constrain the rupture characteristics of the 1939 earthquake, but

also because they allow us to compare the 1939 earthquake with other great strike-slip

events such as the 1857 and 1906 San Andreas fault earthquakes in California.



The rupture zone can be divided into five major fault segments(Barka and

Kadinsky-Cade, 1988). This division is illustrated in Figure lc. From east to west

the lengths and strikes (measuredfrom north) of thesesegmentsare: (1) Erzincan -

length 60 km, strike 125°, (2) Mihar - length 65 kin, strike 105°, (3) Ortakoy - length
45 kin, strike 117 °, (4) Kelkit - length 100 km, strike 107 °, and (5) Niksar - length 90

kin. strike 90 °. These five segments are related geometrically in the following fashion:

(a) segments 1 and 2 are separated by a 20 ° restraining bend (Barka and Hancock,

1982), (b) segments 2, 3 and 4 form a releasing double bend along which 3 is the re-

leasing segment, and (c) segments 4 and 5 are separated by a 17 ° smooth restraining

bend.

During the field survey we measured offsets of man-made features such as field

boundaries, fences, roads, canals and lines of trees defining field boundaries. We also

measured offsets of natural features such as streams and the side walls of valleys

or ridges. The survey focused on villages that were situated right on the surface

breaks. Thus local residents who had witnessed the earthquake were able to confirm

our identification of surface breaks as well as some of the offset features.

The 1939 earthquake slip distribution determined from the new measurements is

summarized in Figure lb. Both man-made and geomorphological offset features are

included in the figure. An independent set of measurements of surface slip associated

with the 1939 earthquake is provided by Kocyigit (1988). These data points are

included in Figure lb as well. They are in close agreement with our measurements.

From the combined data set shown in Figure lb, the surface slip distribution can be

described in the following simplified fashion: 4 - 6 m slip along the western hag of

segment 1, increasing to 6.5 - 7.5 m a]ong segments 1 and 2, then decreasing to 4 -

4.5 m along segment 4, followed by a further decrease to 2 - 2.5 m along segment 5

(possibly less at the western end of segment 5).

Figure la shows a reversed seismogram from the 1939 earthquake (time shown

increasing from right to left for purposes of discussion). The seismogram was recorded

2



in Pasadena, California. The epicentral distance for this record is 104 °, so that

the phase shown in the figure is a diffracted P wave. The semi-major axis of the

90c7c confidence ellipse for Dewey's (1976) relocated epicenter coordinates (39.80°N,

39 35°E) was only 10-20 km, so we are quite certain that the epicenter can be tied to

the 20 ° restraining bend just northwest of Erzincan (Figure lc). The Pasadena record

starts with an approximately 20 second long low-amplitude wavetrain (emergent phase

starting at the "1" label in Figure la and lasting until "2"). Most of the moment

release, however, occurs during the next 100 seconds (starting shortly after "2" and

lasting until "3" ), with the largest amplitudes occurring in the first 60 seconds of that

100 second wavetrain. The simplest way to interpret this seismogram is to associate

the 20 second long low-ampltude phase with rupture of the 60 km segment (1) located

near Erzincan, and the 100 second long phase with rupture of the remainder of the

fault zone (west of the epicenter). This interpretation is based on (1) a reasonable

rupture velocity of 3 km/sec (60 km in 20 seconds for the low-amplitude phase and

300 km in 100 seconds for the higher-amplitude phase), and (2) a good correlation

between the distribution of amplitudes in the seismogram and the distribution of

surface slip (Figures la and lb). Clearly, however, a more thorough study of historical

seismograms produced by this earthquake needs to be done.

The slip distribution along the fault segments suggests that maximum slip is

associated with the restraining (west) side of the 20 ° restraining bend. That side

of the bend is uplifted, and folding and thrusting are common features in the late

Cenozoic sediments of that area (Tatar, 1978; Barka and GSlen, 1989). The relocated

epicenter near the bend supports a model of bilateral rupture propagation. The fault

plane solution of the earthquake determined by McKenzie (1972) is characterized

by predominantly right-lateral strike-slip motion with a small component of reverse

faulting. The strike of the main fault plane in his solution is 108 °, similar to the strike

of segment 2 in Figure lc.

The distribution of slip shown in Figure lb can be utilised to estimate a static



moment for the 1939 earthquake, using the formula Mo=#uA, where _ is the rigidity

of the medium, u is the average dislocation and A is the area of faulting. We assume a

rigidity of 3.3 x 1031 dyne/cm 2 and a crustal thickness of 15 km, and add the moments

from each of the 5 fault segments. Here average slips of 5 m, 7 m, 7 m, 4.25 m and

2.25 m are assumed for segments 1 through 5 based on Figure lb because a more

complicated calculation is not warranted by the data.

Mo = (3.3 x lOaadyne/crn2)(15krn)[(6Okm x 5rn) + ((65 + 45)kin x 7m) + (100kin x

4.25m) + (90krn x 2.25rn)] = 8.4 x 102rdyne.ern

The corresponding moment magnitude based on the formula

logMo = 1.SMw + 16.1

of Hanks and Kanamori (1979) is Mw=7.9.

The slip deficit to the west along segment 4 and 5 can be interpreted in one or

both of the following ways. (a) It is possible that another significant earthquake has

occurred along this section of the fault in the past, or could occur in the future, to

make up the deficit. (b) Internal deformation of the Anatolian Block may be taking

place, and the slip deficit may correspond to deformation occurring at the nearbv

Tokat kink. As supporting evidence for the latter posibility Barka and Gfilen (1988)

have pointed out that total displacement along the fault zone decreases from 35-40 km

in the Erzincan region to 25-30 km in the central section of the North Anatolian fault.

However it should be noted that the region of slip deficit along segment 4 coincides

with the eastern portion of the surface break produced during the 1668 earthquake

(Ambraseys and Finkel 1988).

There is a fundamental difference between the slip distribution of the 1939 earth-

quake and those of the 1857 and 1906 earthquakes along the San Andreas fault. In

the case of the California earthquakes it is possible to compare the fault geometry

with slip distributions reported by Thatcher (1975) and Sieh (1978). In the case of

the 1857 earthquake the section of the fault between Hwy. 166 and Tejon Pass can



be describedas the restraining section of a double restraining bend. Here slip was

only about 6 m, compared with 9 m in the Carrizo plain to the north. In the case

of the 1906 earthquake a similar situation occurred in the southern section of the

rupture zone, just north of San Juan Bautista. Reduced slip in the restraining sec-

tions suggests that these areas acted as barriers to rupture propagation. In the 1939

Erzincan earthquake case the restraining section just west of the epicenter was the

area of maximum slip. That section of the fault may have been acting as an asperity

il_ t939 and as a barrier in 1668.
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Figure Caption

Figure 1. Rupture characteristics of the 1939 Erzincan earthquake. (a) Reversed

(time increasing right to left) version of Pasadena (PAS) record of diffracted P from

the 1939 earthquake (Z component, To= 1 sec, Tg=0.23 sec, time correction= -20

sec). The origin time of the earthquake was December 26, 23:57:16.0 (GMT). For

explanation of numbers above seismogram see text. (b) Slip distribution of the 1939

M=8 Erzincan earthquake. Solid circles correspond to slip measured during this

survey. Open squares are measurements of Kocyi_it (1988). The open triangle is

the only measurement obtained soon after the earthquake (Parejas et al., 1942). (c)

Major fault segments of the 1939 rupture. The inset map shows the location of the

1939 rupture zone relative to the trace of the North Anatolian fault.





APPENDIX 4

PRELIMINARY REPORT ON 1989 TURKEY GPS CAMPAIGN

This is a very brief, preliminary report on the results of the MIT 1989 Turkey GPS

field campaign. In short, due to the exceptional effort of UNAVCO personnel, the excel-

lent cooperation and logistical support provided by the Turkish Union of Geodesy and

Geophysics (TUJJB), and the dedicated effort of the individual field parties, the mea-

surement campaign was extremely successful. In spite of the failure of one of the Trimble

receivers, we were able to observe all 18 stations planned for this year's campaign. This

was accomplished by extending the survey by 4 days - a possibility which arose when the

Greek/Aegean experiment was postponed.

The accompanying Table lists sites observed this year by MIT/TUJJB. Continuous ob-

servations were made at ANKARA (ANKA) and DIYARBAKIR (DIYA) using TI-4100

receivers, while the other sites in Eastern Turkey were observed for 3 days each using

Trimble 4000ST receivers. A total of 4 station-days of data were lost, out of 86, due to

instrument and logistical problems. As these losses occurred on 3 separate days and on

4 different stations, they will not significantly reduce the strength of the network.

Our GPS measurements were closely coordinated with those made by IFAG and their

collaborators at and around SLR sites in Turkey, as well as with the measurements in

Western Turkey made by the Durham University group. The accompanying Figure shows

the locations of stations observed by our group in 1988 and 1989, those observed by WAG
and 5 of the approximately 30 sites observed by Durham (these 5 sites were established

and observed with GPS by MIT/ttacettepe Univ. in 1988). As indicated in the Figure,

the 1989 sites established by MIT/TUJJB in Eastern Turkey are well located to monitor

regional deformation associated with on-going continental collision in this area. This
includes:

1. The distribution of crustal shortening between the Arabian plate and the Eurasian

plate along a transect running from the Turkish/Syrian border to the Black Sea,

2. "Extrusion" and rotation of the Anatolian plate with concentrated deformation

along the North and East Anatolian faults,

3. "Extrusion" rotation and internal deformation of the East Anatolian block, and

4. Relative movement between the African and Arabian plates along the Dead Sea
fault.

In addition, strong ties were established to our 1988 GPS observations in Western Turkey

through overlapping observations at 5 sites in central and Eastern Turkey (4 SLR sites

and Ankara) and the 5 1988 GPS stations observed this year by Durham. Furthermore,

continuous observations at the SLR stations in Askites (ASKI) and Rhodes (RIIOD)



madeby IFAG will providetiesto theAegeannetwork.

Besidescompletingaverysuccessfulmeasurementcampaign,weestablishedaclosework-
ing relationshipwith theTurkishgeodeticcommunity.The 1989campaignwasdonein
closecooperationwith the TUJJB. This is an important developmentfor the project
both for assuringthelongterm viability of our measurementprogramin Turkeyandfor
receivingincreasedlogisticalsupportfor futuresurveys.Wefeelstronglythat thesuccess
of this project, aswell asall internationalprojects,requiresmoreof the field effort be
takenonby localscientists.Therelationshipsdevelopedthis yearareanimportant step
in this direction.

Wewill beginprocessingandanalyzingtheTurkeyGPSmeasurementsusingthe GAMIT
softwarethis month. OneTurkishscientist,to beselectedby TUJJB andMIT, will visit
MIT to participate in data reduction. Oneof our first effortswill be to compareGPS
andSLIt baselines,asall 4 SLIt sitesin Turkeywerereobservedby both techniquesthis
year.Wearealsovery interestedin comparing1988and 1989GPSobservationsat SLR
sites,theAnkarasite,andthe5 GPSsitesin WesternTurkeyobservedin 1988and 1989.
We expectthat thesestudieswill be undertakenin cooperationwith the othergroups
involvedwith GPSandSLRmeasurementsin this region.
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