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Introduction

The successful solution of computationally large problems depends not only on the

existence of supercomputers with very fast CPUs and large memories, but on the ability

of programmers to write fast code optimized for specific computers. CPU timing

routines are subroutines or functions which aIIow an appIication programmer to

measure the time necessary to execute a program or section of a program. The time
measured can be elapsed time or can be the actual time the CPU has dedicated to a

particular program. The knowledge of the execution time can then be used by the

programmer to pinpoint sections of code which consume large amounts of CPU time.

An examination of these CPU-intensive sections can reveal inefficient coding

techniques or program structure whose correction can result in improved, shortened

execution times. Shortened execution times place lighter loads on computer resources

and allow large problems to be solved in a shorter time. Timing results allow an
algorithm developer to compare the efficiency of different algorithms on the same

computer architecture and of the same algorithm on different computer architectures.

Any comparison of execution times must be based on an understanding of the meaning

of the data reported by the timing routines on a particular computer. This report

collects in one document background information, descriptions, and examples of the

timing routines on the CONVEX C220 computer system in the Structural Mechanics

Division at NASA Langley Research Center.

The purpose of this report is to describe the timing routines available on the CONVEX

C220 computer system t in the Structural Mechanics Division (SMD) at NASA Langley

Research Center. The report describes the function of the timing routines, the use of

the timing routines in sequential, parallel and vector code, and the interpretation of the

results from the timing routines with respect to the CONVEX model of computing.

The timing routines available on the SMD CONVEX fall into two groups. The first

group includes standard timing routines generally available on computers with UNIX

4.3 BSD operating systems, while the second group includes routines unique to the

SMD CONVEX. The standard timing routines described in thisreport are/bin/csh

time,/bin/time, etime, and ctime. The routines unique to the SMD CONVEX are

t-The following remarks apply to Version 7.0 of the operating system and Version 5.0 of the
FORTRAN compiler. The SMD CONVEX C220 is a two-processor model in the CONVEX C200
series.



getinfo, second, cputime, toc, and a parallel profiling package made up of palprof,

palinit, and palsum.

The CONVEX Model of Computing

The CONVEX model of computing affects the interpretation of results from timing

routines [1]. In standard sequential UNIX operating systems, including the CONVEX

C220, the execution of a program in a single logical address space is referred to as a

process. Each process is assigned a unique process identification number (PID). The
CONVEX model of computing defines an additional entity called a thread. In the

CONVEX model of computing, "a thread is an execution stream through the

instruction space of a process" [2]. Like a process, each thread is assigned a unique

thread identification number (TID). The terms thread and process describe software

entities. A thread is created by the hardware scheduling system, while a process is

created by the system software. Because it is created by the hardware, a thread may be

considered the basic unit of identification for any executing program.

Sequential and vector programs have a single process and a single thread when
executed. The execution of parallel programs or parallel sections of code in a program

on the CONVEX C220 consists of the creation and execution of multiple concurrent

threads for a single process. When a process reaches a section of parallel code, the
hardware creates a new thread, increments the thread counter, and posts a notice to the

processors that there is additional work to be done. The process then continues. The

next available processor begins executing the new thread. When the work of any

thread is complete, the CPU is freed and the thread count decremented. When all of a

section of parallel code has completed execution and the thread count equals one, the

current thread continues sequential execution until another parallel section of code is
encountered. CONVEX refers to this dynamic scheduling scheme as Automatic Self-

Allocating Processors (ASAP) [1].

The ASAP scheduling system is designed to ensure that a thread is executed as soon as

there is a processor available to do so. It also minimizes the time that all processors are
idle. The disadvantage of this system to the designer of parallel algorithms is the fact
that the execution of a thread and the selection of a processor for that execution is

beyond user control. A thread may be executed entirely on one processor, or may be

switched between processors during its execution. The ASAP mechanism and the

operating system cooperate to schedule the execution of a thread. Another result of the
ASAP mechanism is that the actual concurrent execution of parallel code on different

processors occurs only under the control of the ASAP scheduling system. CONVEX

provides a utility, mpa [3], which allows the user to modify the attributes of a process.

Using this utility, the user can gurantee that all processors are available for the
execution of the threads of a process. Even with the use of mpa, however, the

concurrent execution of parallel threads is not guaranteed. Several of the timing

routines discussed in this paper provide a concurrency factor, a number between one

and the total number of processors available, which reflects the degree to which a

program executes concurrently.

2



The CONVEX model of computing defines the execution time of a process as the sum

of the thread times for the execution of that process. This definition leads to apparently

anomalous results when sequential, vector, and parallel versions of the same program

are compared with the standard UNIX timing routine etime. The process time for the

parallel, vectorized version of a program will be longer than the process time for the

sequential version or the vectorized version alone. For sequential or vector programs

in which there is one thread and one process, the thread time is identical to the process

time. For parallel programs, however, there are several threads executing the same

code. The elapsed time to execute each thread of the parallel program will be less than

the time to perform the same work sequentially, but the sum of the thread times will be

longer due to the overhead incurred in parallelization.

The expression of execution time as the sum of the thread times of a process measures

the work which is performed by the entire computer in the execution of a single

program and as such is a good measure of the load which that program places upon the

operating system. It is not, however, a good measure of the benefits yielded by the
parallelization of code, nor is it useful as a tool to dissect the behaviour of parallel

algorithms. Elapsed time, the time from start to finish of the execution of a program,

measures the benefits of the parallelization of code on a computer which is dedicated to

that job, but does not give reproducible results on a computer run in the multi-user
mode such as the SMD CONVEX C220. Local timing routines have been developed on

the SMD CONVEX C220 which will measure and report the execution times of each

thread of a parallel program and report a value for the CPU-time to execute the

program which reflects the benefits due to the parallelization of that program.

Categories of Timing Routines

The UNIX timing routines on the SMD CONVEX C220 produce CPU times for

sequential and vector code which are directly comparable to CPU times measured with
the same routines on other sequential or vector machines. The UNIX timing routines

on the SMD CONVEX C220 produce CPU times for parallel versions of code which are

longer than the CPU times of sequential version of the same code run on the same

CONVEX C220. The apparent slowness of parallel versions of code is due to the
CONVEX model of computing in which CPU time is defined as the sumof the thread

times for a program, whether it is executed sequentially, in vector mode or in parallel.

Local timing routines on the SMD CONVEX C220 measure thread times independent

of the UNIX timing routines. A parallel profiling package has been developed which

allows users to measure the thread times of each parallel loop in a subroutine and

report the user time for the subroutine like the standard UNIX timing routines and in a

way which measures the sum of the longest thread times for each loop in the
subroutine. The former method is useful for measuring throughput, while the latter

method is useful in measuring the efficiency of the parallelization of an algorithm.
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Standard UNIX Timing Routines

1. /bin/time

The timing routine /bin/time is described in the CONVEX UNIX Programmer's

Manual under time(l) t [4]. This routine reports the total time elapsed during the

execution of a program (denoted by real in the results below), the time attributed to the

program itself (denoted by user in the results below), and the time used by the system in
the execution of that command (sys in the results below). With the -e option, times are

reported with microsecond accuracy; otherwise, times are reported with tenth of a

second accuracy.

Example:

/bin/time -e test4

Results:

0.024773 real 0.001160 user 0.016373 sys

2. /bin/csh time

The time command built into the/bin/csh command interpreter is described in the

CONVEX UNIX Programmer's Manual under csh(1) [4]. This routine reports a timing

summary for a specified command. The resource usage contained in the timing

summary is based on data from the system call getrusage(2) [5]. The user may control
the selective extraction of information by the command or use the default format

which requires no specific specification of formatting variables. The format statement

consists of two fields, separated by a space. The first field is a measure of CPU seconds

and is an integer. Any command which takes more than this amount of CPU seconds

causes a line to be printed that gives a time and resource usage summary. The second

field is a printf-like formatting string, similar to the C programming language printf

formatting string, which allows the user to customize the output of the time command.

The following conversion specifications are recognized for the time command and

have specific meanings:

%U Amount of time spent executing in user mode (seconds).

%S Amount of time spent in system mode executing on behalf of the process
(seconds).

%E Real (elapsed) time (minutes, seconds).

t The number in parentheses refers to the section number of the CONVEX UNIX Programmer's
Manual.



%P Percentage of CPU utilization (ratio of user plus system time to real time,

scaled by the number of processors on the system).

%C CPU parallelization factor or concurrency level ( 1 < %C < number of

processors on the system). This value is designed to be used when timing

a particular process and will display N/A when time is issued as a

command with no arguments.

% W Number of process swaps out of main memory.

%X Amount of memory shared among other processes (kilobytes).

%D Combined size of unshared data and stack segments (kilobytes).

%K Total size of shared memory, unshared data, and unshared stack sizes

(kilobytes).

%M Maximum resident set size utilized (kilobytes).

%F Number of page faults serviced which required I/O activity.

%R Number of page faults serviced without I/O activity; here, I/O activity is
avoided by reclaiming a page from the list of pages awaiting reallocation.

%I Number of times the file system had to perform block input.

%0 Number of times the file system had to perform block output.

The default format string for time follows:

Example:

%Uu %Ss %E %P %X+%Dk %I+%Oio %Fpf+%Ww

Results:

1.01u 1.35s 0:03 40% 116+1249k 0+lio 104pf+0w

This cryptic output is a report of user, system and real times, a utilization percentage,

the amount of shared memory, the combined size of unshared data and stack segments,

the number of times the file system had to perform block input and output, the

number of page faults, and the number of process swaps. The user may customize the

output to produce a more readable format. The following example consists of lines a

user may put in a shell script, and the results consist of the output from executing that

shell script.



Example:

#!/bin/csh

set time =(0 "User time = %U System Time = %S Real time = %E \

BIock input = %I Block output = %0 \

Concurrency Factor = %C")
time test4-3

Results:

User time = 0.55 System time = 0.44 Real time ---0:01

Block input = 0 Block output = 1

Concurrency Factor = 1.16

3. etime

The command etime is described in the CONVEX UNIX Programmer's Manual under

etime(3F) [6]. The function may be called in a FORTRAN program and returns the sum

of the user and system times for a process. The user time is returned with microsecond

accuracy, while the system time is returned with sixtieth of a second accuracy. User

time and system time can be reported individually as well. In parallel sections of

programs compiled with the -03 compiler option the user time reported by etime is the
sum of the thread times for the process; therefore, a parallel program will appear to take

as long or longer to execute than a sequential or vector version of the same program.

The following example illustrates the use of etime in a FORTRAN program and is

followed by the results.

Example:

Program test1

real tarray(2)
real utimel, utime2, stimel, stime2

real A(10000), B(10000), C(10000)

t2 = etime (tarray)

utimel = tarray(1)

stimel=tarray(2)
do 100 i = 1,10000

A(i) = B(i) + C(i)
=

100 continue

t5 = etime (tarray)

utime2 = tarray(1)

stime2 = tarray(2)
write (6,61)

write(6,131) t5- t2

write (6,141) utime2 - utimel



61
131

141

151

write (6,151 stime2 - stimel

format ('Main program call to doloop: ')
format ( Time for call to doloop (etime) = ', f10.6)

format ( User time for call to doloop (etime) = ', f10.6)

format ( Stime for call to doloop (etime) = ', f10.6)
end

Results:

Main program call to doloop:

Time for call to doloop (etime) =

User time for call to doloop (etime) =

Stime for call to doloop (etime) =

0.011167

0.001167

0.010000

4. dime

The command ctime is described in the CONVEX UNIX Programmer's Manual under

ctime(3) [7]. Four related commands are also described under the manual entry

ctime(3)" localtime, gmtime, asctime, and timezone. All of the routines described

under crime(3) are called from C programs. The comand ctime converts the current
date and time as maintained by the operating system into ASCII format and returns a

pointer to a 26-character string. The format of the string is that returned by the date(l)
[4] command. The following example illustrates the output from a call to crime in a C

program.

Example:

Sun Sep 16 01:03:52 1973

The commands localtime and gmtime allow the user to access the system data structure
which maintains information about the current time and date. The command

localtime corrects for time zone and daylight savings time, while gmtime returns
Greenwich Mean Time. The command asctime converts the times reported in

localtime or gmtime to ASCII format and returns a pointer to a 26-character string.
The timezone command returns the name of the time zone associated with its first

argument. The data structure in which the information reported by the commands
described under ctime(3) is stored by the system is listed in the following C example:

Example:

: :: struct tm {

lnt tm_sec;

mt tm_min;

int tm_hour;

int tm_mday;
mt tm_mon;

int tm_year;

int tm_wday;

/* 0-59 seconds */
/* 0-59 minutes */

/* 0-23 hour */

/* 1-31 day of month */
/'0-11 month */

/*0- year - 1900 */

/* 0-6 day of week (Sunday - 0) */
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int tm_yday; /* 0-365
int tm isdst; /* flag:

day of year */

daylight savings time in effect */

5. cputime

CONVEX VECLIB contains the timing routine cputime which returns the total amount
of user-mode CPU time with microsecond accuracy [8].

The following example illustrates the use of cputime to time a section of FORTRAN
code.

Example:

Program test2

real *4 time, tzero
real *8 A(100)

10

100

tzero = cputime (0.0)
do 10 i = 1,100

A(i) = 5.0 * i

continue

time = cputime (tzero)
write (6,100) time
format ('Time in seconds = ', f10.6)

end

The output from the execution of the previous program test2 follows.

ResulB:

Time in seconds = 0.000163

Local Timing Routines Available on the SMD CONVEX C220

In addition to the standard UNIX timing routines on the SMD CONVEX C220, a set of

local routines which provide additional special purpose timing information is

provided on the SMD CONVEX C220. All of these routines are contained in the library
/usr/local/lib/libtm.a, which should be linked with the user's program. Manuals for

these routines are not available at the present time.

The CONVEX C200 series of computers has two 64-bit hardware timers, TTR and TOC,

which are implemented inmicrocode [1]. The timers TTR and TOC are accessible to the

programmer without the overhead of a system call. The special purpose timing
routines described in this section are based on TTR and TOC.



The timer TTR is a 64-bit register that accumulates microseconds of time elapsed since
the creation of a thread. The TTR timer allows each thread of a program to be timed

separately. The thread timer register is saved on the stack between context switches,

allowing the timing of a thread as it migrates between CPUs during its execution. The

thread times are reported with microsecond accuracy. The assembly instruction mov
ITR, Sk atomically reads the TTR information [1]. The local timing routines getinfo

and palprof use this assembly language instruction to measure individual thread times.

The timer TOC is a 64-bit register that accumulates microseconds of time elapsed since

the epoch, a UNIX construct defining an arbitrary origin point for the beginning of

time. It measures elapsed time rather than user time. The TOC timer is neither saved

nor restored during context switches, although it is not altered by the context switch,
and will keep time indefinitely. The assembly instruction mov TOC, Sk atomically

reads the TOC information [1]. The local timing routines getinfo, palprof, and toc use

this assembly instruction to measure elapsed time.

1. getinfo

The timing routine getinfo is a simple assembly language routine listed in the

CONVEX documentation to the FORTRAN Version 5.0 compiler [3]. This routine
allows the user to access the hardware timers and the thread and CPU identification

registers. The subroutine returns four pieces of information: the thread identification
number (TID), the CPU identification number (CPUiD), the amount of time the current

thread has been executing (the TTR register), and the elapsed time (the TOC register).

Each of these values is returned as a 64-bit integer value. The TID specifies which

thread is running. The number of threads which are created is an operating system

configuration variable and is set equal to the number of CPUs; therefore, threads may

be numbered 0 and 1 on the SMD CONVEX C220. The CPUID specifies the physical CPU

processing the current thread. The routine getinfo is intended to be used within a

section of parallel code. Two calls to getinfo, one at the beginning, and one at the end of

a parallel section of code, allows the measurement of the time each thread uses to

execute the intervening code. The arguments to the call to getinfo are global variables.
The routine getinfo places the returned values in these addresses. Because these global

arguments are not thread specific, the same argument should not be passed to parallel

invocations of getinfo; array indices should be passed instead.

The following code section is the assembly source code for the routine:

;SUBROUTINE GETINFO (TID, CPUID, TTR, TOC)

;INTEGER*8 TID, CPUID, TTR, TOC

.fpmode native

.text

.globl _getinfo_



_getinfo_:
psh.l sO
and #0, sO

mov TID, sO

st.1 s0,@0(ap)
mov CPUID, sO

st.1 s0,@4(ap)
mov TTR, sO

st.l s0,@8(a0)

mo v TOC, sO

st.1 s0,@12(ap)

pop.1 sO
rtn

Save sO
Clear sO

Get thread id

Return TID

Get physical CPUID
Return CPUID

Get total thread time

Return TTR

Get elapsed time
Return TOC

Restore sO

The following examples illustrate the use of getinfo. The first example is a short

FORTRAN program which contains calls to getinfo.

Example:

Program test3

C tid

C dd

C toc

C ttr

Thread ID Value

CPU ID Value

Elapsed Time
Thread Time

integer *8 tid(5), cid(5,2), tod(5,2), ttr(5,2)

integer *8 total_ttr, total_toc

C$DIR FORCE_PARALLEL

do 10 i = 1,5

call getinfo (tid(i), cid(i,1), ttr(i,1), toc(i,1))
A = 5.0 + 5.0

call getinfo (tid(i), cid(i,2), ttr(i,2), toc9(i,2)
i0

C

C

C

C

C

2O

100

20O

end

continue

Write output
Note: cid(i,1) is the CPU on which the thread begins execution

cid(i,2) is the CPU on which the thread ends execution.

These values may differ
Thread time and elapsed time are reported in microseconds.

do 20 i = 1,5

total_ttr = ttr(i,2) - ttr(i,1)
total_toc = toc(i,2), - toc(i,l)

write (*, 200) i, tid(i), cid(i,1), cid(i,2),total ttr, total_toc

continue

format ('Loop Thread CPU Thread_time Elapsed_time')
format (i3, i8, i4, i2, i10, i10)
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The next example illustrates the command to compile a program, (e.g., the program
test3.f), containing calls to getlnfo and to link it with the library of timing routines

containing the executable code for getinfo,/usr/local/lib/libtm.a. The-o option directs

the compiler to name the excutable program test3, while the -03 option directs the

compiler to attempt to optimize the code, using both vectorization and parallelization.

Example:

fc -o test3 -03 test3.f/usr/local/lib/libtm.a

The following are results from the program test3 with times reported in microseconds.

The first column under CPU is the processor on which the thread begins execution,

while the second column under C PU is the processor on which the thread ends
execution.

Results:

Loop Thread CPU Thread_time Elapsed_time
1 0 1 1 7 6

2 1 0 0 5 4

3 0 1 1 4 4

4 0 1 1 5 5
5 0 1 1 4 4

The routine getinfo should not be called outside parallel code because of the ASAP

mechanism by which the hardware handles the creation and deletion of multiple
"threads when parallel code is entered and exited. The thread which begins every

program is numbered thread 0. When thread 0 executes a spawn instruction to begin a

parallel section of code, it posts a fork indicating a need for more threads to enter the

execution of the process. The first thread to finish its work executes a join instruction
and posts a notice that no more threads are needed. As each thread finishes, it executes

a join instruction. The last thread which executes a join clears the fork and continues

as a sequential process. The thread number of this continuing thread remains the same

as it was in the parallel portion of the code; thus the thread exiting the section of

parallel code may not have the same thread number as the thread entering the section

of parallel code. Since the thread times are maintained on a thread-specific basis, the

thread time of the exiting thread is not related to the thread time of the entering thread.

Ambiguous results can occur if calls to getinfo occur outside parallel code. The
following examples show the effect of measuring thread times before and after a section

of parallel code with getinfo _ The first example is the FORTRAN code for a sample
program, testgetinfo.
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Example:

Program testgetinfo

C tid Thread ID Value

C cid CPU ID Value

C toc Elapsed Time
C ttr Thread Time

integer *8 rid(I,2), cid(1,2), toc(1,2), ttr(1,2)
integer *8 total_ttr, total_toc

call getinfo (tid(1,2), cid(1,1 ), ttr(1,1 ), toc(l,1))

CSDIR

10

FORCE_PARALLEL
do 10 i = 1,5

A = 5.0 + 5.0

continue

call getinfo (tid(l), cid(1,2), ttr(1,2), toc9(1,2)

C
C

C

C

C

C
C

Write output
Note: tid(1,1) is the thread number which enters the parallel section.

rid(l,2) is the thread number which exits the parallel section.

cid(1,1) is the CPU on which the thread begins, execution
cid(1,2) is the CPU on which the thread ends execution.

These values may differ
Thread time and elapsed time are reported in microseconds.

100

20O

end

total ttr = ttr(1,2) - ttr(1,1)
total toc = toc(1,2), - toc(1,1) ......
write (*, i00) : :

write (*, 200) 1, tid(1,1), tid(l,2), cid(1,1), cid(1,2),total_ttr, total_toc

format ('Loop Thread-Enter Thread-Exit CPU Thread_time

1 Elapsed_t!me _) _
format (i3, i8, i14, i2, i10, i10) ....

The following results are the output from several executions Of the--ISi6gra-m

testgetinfo. Note that getinfo performs correctly when the thread ente}ing-and exffifa-g

the parallel code is the same, but that meaningless negative times are reported if_tl_

entering and exiting thread numbers are different. Meaningless times occur when t_
exit time in the TFR regis_ter for Thread i is subtracted from the entrance time in the

TTR register for thread 0, for example. Times are reported in microseconds. The first
colum under CPU is the processor on which the thread begins execution, while the

second column under CPU is the processor on which the thread ends execution.

12



Results:

Loop Thread-Enter Thread-Exit CPU Thread_time Elapsed_time
1 0 0 0 0 36 257

1 0 0 1 1 38 272

1 0 1 0 1 -2861 696

2. toc.

The routine toc is an assembly language routine which is a subset of getinfo t. It returns

elapsed time,the contents of the TOC register, as a 64-bit integer value. Time is reported

in microseconds. The following code section is the assembly language code for the
routine.

;SUBROUTINE TOC (TOC)

;integer *8 TOC

_toc_:

.fpmode native

.text

.globl _toc_

psh.i sO ; Save sO
and #0, sO ; Clear sO

mov TOC, s0 ; Get elapsed time

st.1 s0,@0(ap) ; Return TOC

pop.1 sO ; Restore sO
rtn

The following

Example:

example illustrates the call to toc in a FORTRAN program, test4.

Program test4

integer *8 tocl, toc2
real *8 A(100)

10

100

call toc(tocl)

do 10i= 1,100

A(i) = 5.0 * i
continue

call toc(toc2)

write (6,100) toc2 - tocl

format ('Total elapsed time = ', i20)
end

t toc was written by the technical advisers at CONVEX Computer Corporation.

13



The following result is the output from the executionof the program test4. Time is

reported in microseconds.

Results

1249Total elapsed time = ._

3. second

The function second is a C language function callable from FORTRAN _r. This routine

returns user time, the same value returned by etime, with microsecond accuracy. Like

etime, in programs compiled with the -03 option, the user time reported by second is
the sum of the thread times for the process. Time is reported in seconds.

The following code section is the C code for the routine.

float second_()

{
long getrusage 0;

struct rusage rusage;

float x, y;

getrusage (RUSAGE_SELF, &rusage);
x = ((float) rusage.ru exutime.tv_usec) * 0.000001;

y = ((float) rusage.ru_exutime.tv_sec) + x;

return (y);
}

The following example illustrates the use of second in a FORTRAN program, test5.

Example:

Program test5

real *8 A(100)

real *4 tl, t2

10

100

tl = second 0

do 10 i = 1,100

A(i) = 5.0 * i
continue
t2 = second 0

write (6,100) t2 - tl
format ('Total user time (seconds) = ', f10.6)

end

t The function second was written by the technical advisers at CONVEX Computer Corporation.

It has been incorporated into the Force programming language [9] as crime by Greg Astfalk of

CONVEX Computer Corporation.

I
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The following results is the output from the execution of the FORTRAN program,
test5. Time is reported in seconds.

Results:

Total user time (seconds) = 0.000161

4. palprof, palinit.o, palprof.o, palsum.o

The four routines palprof, palinit.o, palprof.o, and palsum.o together form a

programming tool whose function is to return a user time for parallel code which

reflects the maximum thread time for a parallel section of code rather than the sum of

the thread times as reported by etime t. This new user time, also referred to as corrected

user time, represents the theoretical best-case time which can be achieved by a

particular parallel algorithm on the CONVEX.

The /bin/csh script called palprof, which is located in /usr/local/bin on the SMD

CONVEX C220, performs much of the code modification needed to report corrected

user time. This script compiles the user's FORTRAN program with the -S and-03

options. The -03 option produces code with parallelization and vectorization; the -S

option produces assembly code from the FORTRAN code. The routine palprof then
uses awk to insert assembly code timing routines around each spawn and join

instruction which resulted from the parallelization of FORTRAN DO loops. The

compilation is then continued on the expanded assembly language code.

The subroutine object modules, palinit.o, palprof.o and palsum.o, are contained in the

library/usr/lib/libtm.a. The subroutine palinit sets up the environment for the timing

of a subroutine and calls etime to establish the starting time for the subroutine. The

subroutine palprof returns individual thread times, total CPU time (sum of the thread

times), and elapsed time for each DO loop in the timed subroutine. The subroutine

palsum reports the user time as reported by etime for the entire timed subroutine, the

total user time for the parallel loops in the timed subroutine, the sum of the longest

thread times for all parallel loops in the timed subroutine, and a corrected user time for
the timed subroutine. This corrected user time is the user time for the entire timed

subroutine reported by etime minus the total user time for all parallel loops in the
timed subroutine plus the sum of the longest thread times for all parallel loops in the
timed subroutine.

The user must take the following steps to use the parallel profiling routines.

A call to palinit must be added before a call to a subroutine which contains parallel DO

loops and a call to palsum must be added after a call to a subroutine which contains

parallel DO loops. In the following example, doloop is a subroutine which contains

several parallel DO loops.

t The routines palprof and palprof.o were written by Brad Funkhouser of CONVEX Computer
Corporation. The routines palinit and palsum were written by Mary Ann Bynum of PRC/Kentron.
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Example:

call palinit
call doloop

call palsum

A call to palprof must be added after each parallel DO loop in the called subroutine
which the user wishes to time. The following example is one of the DO loops in the

subroutine doloop' in this example, name is the nam-e of the shbr0ut|ne_n wh|ch tiie

loop appears or any other identifier which the user wishes to use. It is a FORTRAN

character string. Each loop timed with a call to palprof within a subroutine is

automatically given an integer identification number beginning with 1.

Example:

10

do 10 i = 1, 10000

(computation)
continue

call palprof ('name')

After including the proper calls to palinit, palprof and palsum, the user must compile
the programs containing the parallel timing routines with the script palprof. The

results of executing the following example is a file, test.o, which may be linked with

other files to produce an executable object file.

Example:

palprof test6.f

As a final step, the user must build the final executable program by linking the results
of the compilation step, test.o, with the library/usr/local/lib/libtm.a. The -o option

directs the compiler to name the excutable program test6.

Example: -

fc-o test6 test6.o/usr/locai/lib//ibtm.a

In order to ensure that both processors are available when the parallel cod ei s run_: t_he

user's program should be executed using the mpa utility with the -f option. Since one

processor will wait for the other to be free to execute parallel code, this utility often

results in an increase in elapsed time. An example of executing the program test6 with

the mpa option follows.

Example:

mpa -f test6

t

i
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The results of executing program test6 with the mpa utility follow. In the comments

that follow the output for the individual loops, the CPU Time for Parallel Loops in

Subroutine xxxxx is equal to the user time reported by etime, and the Max Thread Time

for Loops in Subroutine xxxxx is the sum of the longest threads in all parallel loops

within the subroutine. As stated earlier, the Corrected CPU Time for Subroutine xxxxx

using Max Time is the user time for the entire timed subroutine reported by etime
minus the total user time for all parallel loops in the timed subroutine plus the sum of

the longest thread times for all parallel loops in the timed subroutine. Times are

reported in seconds with microsecond accuracy.

Results:

Doloop: 1
Thread 0: 0.8482180

Thread 1: 0.8397850

Thread 2: 0.0000000

Thread 3: 0.0000000

Total CPU: 1.6880030

Wallclock: 1.0057740

Doloop: 2
Thread 0: 0.6571360

Thread 1: 0.6503410

Thread 2: 0.0000000

Thread 3: 0.0000000

Total CPU: 1.3074770
Wallclock: 0.7705900

Work: 1

Thread 0: 0.0002490

Thread 1: 0.0052300

Thread 2: 0.0000000

Thread 3: 0.0000000
Total CPU: 0.0054790

Wallclock: 0.0265080

CPU Time for Parallel Loops in Subroutine Doloop :

Time for Subroutine Doloop via etime (usr time):

Max Thread Time for Loops in Subroutine Doloop :

Corrected CPU Time for Subroutine Doloop using Max Time:

CPU Time for Parallel Loops in Subroutine Work :
Time for Subroutine Work via etime (usr time):

Max Thread Time for Loops in Subroutine Work :

Corrected CPU Time for Subroutine Work using Max Time:

2.9954801

2.9994712

1.5053540

1.5093452

0.0054790
0.0070379

0.0052300

0.0067889
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The parallel profiling packagecan only time parallel DO loops in subroutines called
from the immediately higher level. It cannot be used to time nested' call's to

subroutines in which the timed DO loops are more than one nesting level away.

System Level Foundations for Timing R_o_utines

Both the standard UNIX timing routines and the local timing routines access software

data structures which are maintained by the operating system for each particular

process and any processes which that particular process has created (child processes).

The programmer who wishes to incorporate information about process resource
utilization may access these data structures through the system routines getrusage and

cvxprusage.

1. getrusage

The system function getrusage is described in the CONVEX UNIX Programmer's

Manual under getrusage(2) [5]. The function may be called in a C program and, if
successful, returns a pointer to a buffer containing process resource utilization

information. The process resource utilization information consists of user time used,

system time used, shared memory size, unshared data size, unshared stack size, page
reclaims, page faults, swaps, block input operations, block output operations, messages

sent, messages received, signals received, voluntary context switches, involuntary
context switches, and user time used reported with microsecond accuracy. Standard
UNIX routines such as /bin/csh time and etime, and local timing routines such as

second are built on the system routine getprusage.

2. cvxprusage

The system function cvxprusage is described in the CONVEX UNIX Programmer's

Manual under cvxprusage(2) [5]. The function may_ be called in a C program and, if

successful, returns a pointer to a buffer containing information about parali-eT-resource

utilization by the current process. This information consists of user time in

microseconds, system time in seconds, cumulative n_mber of threads !n user and

system space, and the frequency of sampling user and system space for the number of
threads. The system samples the number Of threads in a process at a fixed _ate,

currently 100 times a second, and continually updates the parallel process information
buffer. A estimate of user level parallelization can be obtained by dividing the

cumulative number of threads in user space by the number of times the system

sampled user space. This calculation underlies the Concurrency Factor reported by
/bin/csh time t

Summary

The SMD CONVEX C220 has a group Of timing routines which allow users to dissect

the efficiency of their sequential, vector or parallel computer programs. Standard UNIX

+ See Standard UNIX Timing Routines 2. /bin/csh/time in this paper.
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routines allow the user to compare the results of executing his program on the
CONVEX C220 with other UNIX machines without making changes to his code. They

also allow him to measure the total work done by the CPUs in the execution of

programs containing parallel sections. Local timing routines on the CONVEX C220

allow the user to monitor the execution of a parallel program and measure the

execution time of parallel sections, both as the sum of the thread times and as the sum

of the times of the longest threads for each parallel section. In this way, the time to

execute sequential, vector and parallel versions of the same code can be compared and
the benefits of parallelization measured.
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