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GUIDANCE AND CONTROL STRATEGIES FOR AEROSPACE VEHICLES

(NASA Langley Grant NAG1-738)

PART 1

This final report under NASA Langley grant NAG1-736 consists of two
parts. Part I consists of the summary of the earlier work whose reports have
been submitted at various times during the period (1/1/87 to 12/31/1989). Part
11 describes in detall the research work done during the perlod 1/1/19380 to
7/31/1990.



I.

IT.

ITI.

INTRODUCTION. . ..

SUMMARY/ABSTRACT

LIST OF PUBLICAT

TABLE OF CONTENTS

TONS. .« ot e e e e e 21



. INTRODUCTION

The first part of the report concerns broadly the summary of the work
done in the areas of singular perturbations and time scales (SPaTs),

aerobraking technology, guidance and aerocruise.

(i) SPaTS

The dynamics of many control systems Iis described by high-order
differential equations containing parameters such as small time constants,
masses, moments of inertia, inductances, and capacitances. The presence of
these "parasitic" parameters is often the source for the increased order and
the "stiffness" of the system. The "curse" of the dimensionality coupled with
the stiffness poses formidable computational complexities for the analysis and
control of such large systems. Singularly perturbed systems are those whose
order is reduced when the parasitic parameter is neglected. The methodology of
singular perturbations and time scales (SPaTS) is a "boon" to control
engineers in tackling these large scale systems. As such it is very desirable
to formulate many control problems to fit into the framework of the

mathematical theory of SPaTS.

The methodology of SPaTS has an impressive record of applications in a
wide spectrum of fields including flight mechanics and trajectory
optimization. The aerospace problems involve, in general, the solution of
nonlinear differential equations by resorting to numerical integration.
Analytical solutions are important in providing a general understanding of the
structure of solutions and a better foundation for the solution of guidance
problems. With this in view, attempts have been made to obtain approximate
analytical solutions for the atmospheric entry problem using asymptotic
methods such as the method of matched asymptotic expansions, singular

perturbation method, and multiple scale method.

In this report, using the theory of SPaTS, the various types of
aerospace-related problems investigated were digital flight control systems

*
[1-3, 6-8, 10, 14, 18] and atmospheric entry problems [9-11, 18, 21, 22].

* The numbers in brackets indicate the item under List of Publications.
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(ii) Aerobraking Technology

The specification spectrum for the proposed Space Transportation System
(STS) places heavy emphasis on the development of reusable avionics subsystems
having special features such as vehicle evaluation and reduction of ground
support for mission planning, contingency response and verification and
validation. According to the report of the National Commission on Space,
PIONEERING THE SPACE FRONTIER, the concept of aerobraking for orbit transfer
has been recognized as one of the critical technologies and recommended for
demonstration projects in building the necessary technology base for
pioneering the space frontier. In space transportation systems, the
aerobraking, defined as the deceleration resulting from the effects of
atmospheric drag upon a vehicle during orbital operations, opens new mission
opportunities, especially with regard to the initiation of a permanent space

station.

The main function of space transportation system is to deliver payloads
from Earth to various locations in space. Until now, this function has been
performed by various rockets, the space shuttle, and expendable upper stages
using solid or liquid propellants. In particular, considering the economic
benefits and reusability, an orbital transfer vehicle (OTV) is proposed for
transporting payloads between low Earth orbit (LEO) and high Earth orbit
(HEO). The two basic operating modes contemplated for OTV are a ground-based
OTV which returns to Earth after each mission and a space-based OTV which
operates out of an orbiting hanger located at the proposed Space Station

Freedom.

In a typical mission, a space-based OTV, which is initially at the space
station orbit (SS0), is required to transfer a payload to geosynchronous Earth
orbit (GEO), pick up another payload, say a faulty satellite, and return to
mate with the orbiting hanger at SSO for refurbishment and redeployment of the
payload. The OTV on its return journey from GEO to SSO needs to dissipate some
of its orbital energy. This can be accomplished by using an entirely
propulsive (Hohmann) transfer in space only or a combination of propulsive
transfer in space and aerobraking maneuver in the atmosphere. It has been
established that a significant fuel savings and hence increased payload

capabilities can be achieved with propulsive and aerobraking (or aeroassisted)
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maneuvers instead of all-propulsive maneuvers. The word "aeroassisted" is
often used to convey that the atmosphere lis used to achieve the desired
deceleration. This leads to an aeroassisted orbital transfer vehicle (AOTV),
which on its return leg of the mission, dips into the Earth’s atmosphere,
utilizes atmospheric drag to reduce the orbital velocity and employs 1ift and
bank angle modulations to achieve a desired orbital inclination. Baslically,
the AOTV performs a synergetic maneuver, employing a hybrid combination of
propulsive maneuver in space and aerodynamic maneuver in the atmosphere.
Broadly speaking, the two kinds of orbital transfer are coplanar orbital
transfer and noncoplanar orbital transfer (or orbital transfer with plane

change).

In this report, using algorithms based on industry standard program to
optimize simulated trajectories (POST), and multiple shooting method,
investigations have been carried out to generate fuel-optimal trajectories for
coplanar orbital transfer [4, 12, 17, 25], and noncoplanar orbital transfer

(13, 15, 19, 20, 29] arising in aerobraking technology.

(iii) Guidance

An optimal trajectory is computed for a given nonlinear dynamical system
with a fixed set of conditions. However, variation of the initial and final
conditions, plant parameters would alter the optimal trajectory. It is
computationally tedious and expensive to repeat the whole optimization
procedure for every changed condition and obtain a new optimal trajectory. In
such a situation, an alternative is to linearize the original system and
generate an optimal trajectory in the neighborhood of the original optimal

trajectory, involving considerably less computational effort.

Cuidance is the determination of a strategy for following a nominal
flight in the presence of off-nominal conditions, wind disturbances, and
navigation uncertainties. In a typical guidance scheme, the final steering
command is generated as the sum of two components, an open-loop actuating
(control) signal yielding the desired vehicle trajectory in the absence of
external disturbances, and a linear feedback regulating signal which reduces

the system sensitivity to unwanted influences on the vehicle.



In this report, guidance schemes for atmospheric maneuver for both

deterministic and stochastic cases have been investigated [23, 24, 27].

(iv) Aerocruise

There are basically three methods of plane change, (i) impulsive method,
(ii) aeroglide method, and (iii) aerocruise method. In impulsive method, the
plane change is achieved entirely outside the atmosphere, and fuel consumption
is prohibitively large for sizable changes of orbital plane. In both aeroglide
and aerocruise methods, rockets are used to deflect the vehicle into the
atmosphere, and the plane change is accomplished by heading change of the
vehicle. With aeroglide there is no thrusting during the atmosphere, and with
aerocruise, atmospheric drag is balanced by a continuous thrust to keep the
spacecraft at a constant altitude and velocity. Propellent expenditure
comparisons among the three methods of plane change show that the aerocruise
method is superior to other competing methods for plane changes greater than
about 20 degrees, and with heating restraints. The basic effect of propulsion
during aerocruise is to (i) balance drag in order to maintain constant
velocity, (ii) augment 1ift with a component of thrust, thus increasing
cruising altitude over what it would be during aeroglide turn, and finally
(iii) provide a lateral component of thrust giving the required turn necessary

for plane change.

In this report, research has been conducted into cruise maneuver being
performed using either bank control with constant thrust, or thrust control

with constant bank control [26, 28].
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SINGULAR PERTURBATION AND TIME SCALE
-
APPROACHES IN DISCRETE CONTROL SYSTEMS

Dr. D. S. Naldu
Dept. of Elect. and Computer Engineering
01d Dominion Unlversity
Norfolk, VA, 23508

and

Dr. D. B. Price
Spacecraft Control Branch
NASA Langley Research Center
Hampton, VA, 23665

Abstract: The theory of singular perturbations and time scales (SPaTS) has
been a powerful analytical tool in the analysis and synthesis of continuous
and discrete control systems. In thié paper, we first consider a singularly
perturbed discrete control system. Using singular perturbatlon approach, outer
and correction subsystems are obtained. Next, by the application of time scale
approach via block diagonalization transformations, the original system is
decoupled into slow and fast subsystems. To a zeroth order approximation, the
singular perturbation and time scale approaches yield equivalent results.
Roughly speaking, the ceroth order approximation 1s sometimes called Lthe
first approximation. This result is simllar to a corresponding result in

continuous control systems.

* See items 1 and 14 under List of Publications
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SINGULAR PERTURBATIONS AND TIME SCALES
»
iN DISCRETE CONTROL SYSTEMS-AN OVERVIEW

Dr. D. S. Naidu
Dept. of Elect. and Computer Englneering
Old Dominion University
Norfolk, VA, 23508

Dr. D. B. Price
Spacecraft Control Branch
NASA Langley Research Center
Hampton, VA, 23665

and

Dr. J. L. Hibey
Dept. of Elect. and Computer Englneering
0l1d Dominion Unlversity
Norfolk, VA, 23508

Abstract: This paper presents an overview of recent developments in the theory
of singular perturbations and time scales (SPaTS) in discrete control systems.
The focus is in three directions: modeling, analysls, and control. First,
sources of discrete models and the effect of the discretizing interval on the
modeling are reviewed. Then the analysls of two-time scale systems s
presented to bring out typlcal characteristic features of SPalS. Finally, in
the control of the two-time scale systems, we the important issue of
multirate sampling is addressed. The bibliography containing over 100 titles
is included.

* See items 2 and 8 under List of Publications
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»*
ON THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

Dr. D. S. Naldu
Dept. of Elect. and Computer Engineering
0ld Dominion University
Norfolk, VA, 23508

and

Dr. D. B. Price
Spacecraft Control Branch
NASA Langley Research Center
Hampton, VA, 23665-5225

Abstract: A critical examination of the method of matched asymptotlc
expansions (MAE) reveals that the various terms of the common solution of MAL
can be generated as polynomials in stretched variable without actually solving
for them from the outer solution as is done presently. Thls also shows that
the common solution of the method of MAE and the Intermediate solution of
singular perturbation method are the same and hence that these methods give
identical results for a certaln class of problems. An llustrative example is

given.

* See items 3, 7 and 18 under List of Publications
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IMPACT OF ATMOSPHERIC DENSITY SCALE HEIGHT ON THE PERFORMANCE
»
OF AERGASSISTED COPLANAR ORBITAL TRANSFER VEHICLES

Dr. D. S. Naidu
Dept. of Elect. and Computer Engineering
01d Dominion University
Norfolk, VA, 23508

and

Dr. D. B. Price
Spacecraft Controls Branch
NASA Langley Research Center
Hampton, Virginia, 23665

Abstract: A common way of representing atmospheric density 1s by au
exponential form using scale height, which is assumed to be constant over the
whole interval of atmospheric altitude. In this simulation, the scale height
has been readjusted depending upon the altitude interval, and simulations are

carried out for an aeroassisted, coplanar orbital transfer vehicle.

* See item 4 under List of Publications
11



*
TIME-SCALE SYNTHESIS OF A CLOSED-LOOP DISCRETE OPTIMAL CONTROL SYSTEM

Dr. D. S. Naldu
Dept. of Elect. and Computer Engineering
Old Dominlon University
Norfolk, VA 23529

and

Dr. D. B. Price
Spacecraft Controls Branch
NASA Langley Research Center
Hampton, VA 23665-5225

Abstract: A two-time-scale discrete control system lis considered. The
closed-loop optimal linear guadratlic regulator for the system requires the
solution of a full-order algebraic matrix Riccati equation. Alternatively, the
original system is decomposed into reduced-order slow and fast subsystems. The
closed-loop optimal control of the subsystems requires the solution of two
algebraic Riccati equations of an order lower than that required for the
full-order system. A composite, closed-loop suboptimal control is created from
the sum of the slow and fast feedback optimal controls. Numerical results
obtained for an aircraft model show a very close agreement between the

exact (optimal) solutions and computationally simpler composite(suboptimal)
solutions. The main advantage of the method is the considerable reduction in
the overall computational requirements for the closed-loop optimal control of

digital flight systems.

* See item 6 under List of Publications
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THREE-DIMENSIONAL ATMOSPHERIC ENTRY PROBLEM
*
USING METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

Dr. D. S. Naidu
Dept. of Elect. and Computer Engineering
0l1d Dominion University
Norfolk, VA, 23508

Abstract: The analysls of a three-dimenslonal atmospheric entry problem using
the method of matched asymptotic expanslons is considered. A composite
solution is formed in terms of an outer solutlon, an inner solution and a
common solution. The outer solution is obtalned from gravitationally dominant
region, whereas the aerodynamically dominant region contributes to the inner
solution. The common solution accounts for the overlap between the outer and
inner regions. In comparison to the previous works, the present simplified
methodology yields explicit analytical expressions for various components of
the composite solution without resorting to any type of transcendental
equations to be solved only by numerical methods. The method 1s applicable for
obtaining autonomous guidance and control strategies for a variety of

aerospace vehicles.

* See items 9, 11 and 22 under List of Publications
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FUEL-OPTIMAL TRAJECTORIES FOR AEROASSISTED
»*
COPLANAR ORBITAL TRANSFER PROBLEM

Dr. D. S. Naidu, Dr. J. L. Hibey, and C. Charalambous
Dept. of Electrical and Computer Engineering
01d Dominion University
Norfolk, VA, 23529

Abstract: We first describe briefly the various types of coplanar transfers.
Then we address the fuel-optimal control problem arising in coplanar orbital
transfer employing aeroassist technology. The maneuver involves a transfer
from high Earth orbit to low Earth orbit and at the same time minimization of
the fuel consumption for achieving the desired orbit transfer. It is known
that a change in velocity, also called the characteristic velocity, is a
convenient parameter to measure the fuel consumption. A suitable performance
index is the total characteristic velocity which is the sum of the
characteristic velocities for deorbit and for reorbit (or circularization).
Use of Pontryagin minimum principle leads to a nonlinear, two-point boundary
value problem in state and costate variables. The solution of the TPBVP is the
stumbling block 1n obtaining fuel-optimal solution. This problem is solved by
using a more efficlent multlple shooting method which is a simultaneous
application of a single shooting algorithm to equally divided points of the

total interval of the solution.

* See items 12, 17 and 25 under List of Publications
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FUEL-OPTIMAL TRAJECTORIES OF AEROASSISTED
*
ORBITAL TRANSFER WITH PLANE CHANGE

Dr. D. S. Naldu
Dept. of Elect. and Computer Engineering
0ld Dominion University
Norfolk, VA, 23529

Abstract: The fuel-optimal control problem arising in noncoplanar orbital
transfer employing aercassist technology is addressed. The mission involves
the transfer from high Earth orbit to low Earth orbit with plane change. The
complete maneuver consists of a deorbit impulse to inject a vehicle from a
circular orbit to elliptic orbit for the atmospheric entry, a boost impulse at
the exit from the atmosphere for the vehicle to attain a desired orbital
altitude and finally a reorbit impulse to clircularize the path of the vehicle.
In order to minimize the total fuel consumption, a performance index is chosen
as the sum of the deorbit, boost, and reorbit impulses. Application of
optimization principles leads us to a nonlinear, two-point, boundary value

problem, which is solved by using a multliple shooting method.

* See items 13, 19, 20 and 29 under List of Publications
15



FUEL-OPTIMAL TRAJECTORIES FOR NONCOPLANAR
.
ORBITAL TRANSFER VEHICLES

Dr. D. S. Naidu
Dept. of Elect. and Computer Engineering
0ld Dominion University
Norfolk, VA 23529

ABSTRACT: The fuel-optimal problem in noncoplanar orbital transfer employing
aeroassist technology is addressed. The misslon involves the transfer from
high Earth orbit to low Earth orbit with plane change. The complete maneuver
consists of a deorbit impulse to inject a vehicle from a circular orbit to
elliptic orbit to enter the atmosphere, a boost impulse at the exit from the
atmosphere for the vehicle to attain a desired orbital altitude and finally a
reorbit impulse to circularize the path of the vehicle. In order to minimize
the total fuel consumptlon, a performance index is chosen as the sum of Lhe
deorbit, boost, and reorbil impulses. For a typlcul aeroassisted orbital
transfer vehicle with high lift-to-drag ratio, the simulations are carried out

using industry standard program to optimize simulated trajectories (POST).

* See item 15 under List of Publications
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SINGULAR PERTURBATIONS AND TIME SCALES
*®
IN THE DESIGN OF DIGITAL FLIGHT CONTROL SYSTEMS

Dr. D. S. Naidu
Dept. of Elect. and Computer Englneering
0ld Dominlon Unlversity
Norfolk, VA 23528

and

Dr. Douglas B. Price
Spacecraft Controls Branch
NASA Langley Research Center
Hampton, VA 23665-5225

Abstract: This paper investigates the application of methodology of singular
perturbations and time scales (SPaTS) to the control of digital flight
systems. A block diagonalization method is developed to decouple a full-order,
two-time (slow and fast) scale, discrete control system into reduced-order
slow and fast subsystems. Basic properties and numerical aspects of the method
are explored. This reveals an Interesting fact that singularly perturbed
discrete systems can be viewed as two-time scale systems. Next, the
closed-loop optimal control of the two-time scale full-order system involves
the solution of a full order algebralc matrix Riccatl equation. Alternatively,
using the block dlagonallzation method, the full-order system is decomposed
into reduced-order slow and fast subsystems. The closed-loop optimal control
of the subsystems requires the solution of only reduced-order algebraic matrix
Riccati equations. A composite closed-loop suboptimal control is constructed
as the sum of the slow and fast optimal feedback controls. Numerical
experimentation with an aircraft model shows close agreement between the exact
solutions and the decoupled (or composite) solutions. The main advantage of
the method is the considerable reduction in the overall onboard computational
requirements for the evaluation of optimal guidance and control laws. It l1s
believed that this paper also serves as a source of brief survey of digital

flight systenms.

* See item 16 under List of Publications
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NEIGHBORING OPTIMAL GUIDANCE FOR AN AEROASSISTED ORBITAL
*®
TRANSFER VEHICLE IN THE PRESENCE OF MODELLING UNCERTAINTIES

Dr. D. S. Naidu, Dr. J. L. Hibey, and C. Charalambous
Dept. of Electrical and Computer Engineering
0ld Dominion University
Norfolk, VA, 23529

ABSTRACT: We intcnd to devise a neighboring optimal guidance scheme v a
nonlinear dynamlc system with stochastlc inputs and perfect measurements as
applicable to fuel optimal control of an aerocassisted orbital transfer
vehicle. For the deterministic nonlinear dynamic system describing the
atmospheric maneuver, a nominal trajectory is determined. Then, a neighboring,
optimal guidance scheme is obtained. Taking modelling uncertalnties lnto
account, a linear, stochastlic, neighboring optimal guldance scheme is devised.
Finally, the optimal trajectory is approximated as the sum of the
deterministic nominal trajectory and the stochastic nelghboring optimal

solution. Numerical results are presented for a typlical vehicle.

* See jtems 23 and 27 under List of Publications
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NEIGHBORING OPTIMAL GUIDANCE
"
FOR AERQOASSISTED NONCOPLANAR ORBITAL TRANSFER

D. S. Naidu
Dept. of Elect. and Computer Engineering
0ld Dominion University
Norfolk, VA, 23508

Abstract: The fuel-optimal control problem in aeroassisted noncoplanar orbital
transfer is addressed. The equations of motion for the atmospheric maneuver
are nonlinear and the optimal (nominal) trajectory and control are obtained.
In order to follow the nominal trajectory under actual conditlons, a
neighboring optimum guidance scheme is designed using linear quadratic
regulator (LQR) theory for onboard real-time Implementation. One of the state
variables is used as the independent variable in preference to the time. The
weighting matrices in the performance index are chosen by a combination of a
heuristic method and an optimal modal approach. The necessary feedback control
law is obtained in order to minimize the deviations from the nominal

conditions.

* See item 24 under List of Publications
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*

ORBITAL PLANE CHANGE MANEUVER WITH AEROCRUISE

Dr. D. S. Naldu
Dept. of Electrical and Computer Engineering
0ld Dominion University
Norfolk, VA

Abstract: The synergistic plane change problem connected with orbltal transfer
employing aerocassist technology, 1is addressed. The mission involves transfer
from high Earth orbit to low Earth orbit with plane change being performed
within the atmosphere. The complete mission consists of a deorbit phase,
atmospheric phase, and finally reorbit phase. The atmospheric maneuver is
composed of an entry mode, a cruise mode, and finally an exit mode. During the
cruise mode, constant altitude and velocity are maintalned by means of bank
angle control with constant thrust or thrust control with constant bank angle.

Comparisons between these two control strategies bring out some interesting

features.

* See items 26 and 28 under List of Publications
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PART 11

This final report under NASA Langley grant NAG1-736 consists of two
parts. Part I consists of the summary of the earlier work whose reports have
been submitted at various times during the period (1/1/87 to 12/31/1988). Part
[1 describes in detall the research work done during the period 1/1/1980 to
7/31/1990.
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Abstract: The synergistic plane change problem connected with orbital transfer
employing aeroassist technology, is addressed. The mission lnvolves transfer
from high Earth orbit to low Earth orbit with plane change being performed
within the atmosphere. The complete mission consists of a deorbit phase,
atmospheric phase, and finally reorbit phase. The atmospheric maneuver is
composed of an entry mode, a cruise mode, and finally an exit mode. During the
cruise mode, constant altitude and velocity are maintained by means of bank
angle control with constant thrust or thrust control with constant bank angle.
Comparisons between these two control strategies bring out some interesting

features.

Nomenclature

Q

drag coefficient

Q
=

drag coefficient at zero lift

Q
=}
O-.

1ift coefficient

=

Q
-
w..

1ift coefficient for maximum lift-to-drag ratio
drag force

maximum value of lift-to-drag ratlo

mom o

aeropropulsive efficiency

-l

gravitational acceleration
altitude

Hamiltonian

—~ o & 0

4]
el

specific fuel consumption

inclination

.

performance index

induced drag factor

1ift force

vehicle mass

Heating rate

distance from Earth center to vehicle center of gravity
radius of Earth

aerodynamic reference area

thrust

&~ = »n W wO 3 X S

time



D‘S'S-Q'OT:VCD:JJ\OO‘-‘QWRQ

vV

velocity

angle of attack

inverse atmospheric scale height
flight path angle

normalized density

normalized 1ift coefficlient
thrust angle

down range 'angle

costate (Langrange) variable
gravitational constant of Earth
density

bank angle

cross range angle

heading angle

characteristic velocity

Subscripts

o

a o

5 . O

atmospheric boundary
circularization at LEO
deorbit at HEO

entry to atmosphere
exit from atmosphere
beginning of aerocruise
end of aerocruise

surface level




I. INTRODUCTION

The main function of space transportation system is to deliver payloads
from Earth to various locations in space. Until now, this funcfion has been
performed by various rockets, the space shuttle, and expendable upper stages
using solid or liquid propellants. In particular, considering the economic
benefits and reusability, an orbital transfer vehicle (OTV) is proposed for
transporting payloads between low Earth orbit (LEO) and high Earth orbit
(HEO].1 The two basic operating modes contemplated for OTV are a ground-based
OTV which returns to Earth after each mission and a space-based OTV which
operates out of an orbiting hanger located at the proposed Space Station

Freedonmn.

In a typical mission, a space-based 0TV, which is initially at the space
station orbit (SS0), is required to transfer a payload to geosynchronous Earth
orbit (GEO), pick up another payload, say a faulty satellite, and return to
rendezvous with the orbiting hanger at SSO for refurbishment and redeployment
of payload. The OTV on its return journey from GEO to SSO needs to dissipate
some of its orbital energy. This can be accomplished by using an entirely
propulsive (Hohmann) transfer in space only or a combination of propulsive
transfer in space and aeroassisted maneuver in the atmosphere. It has been
established that a significant fuel savings and hence increased payload
capabilities can be achieved with propulsive and aeroassisted maneuvers
instead of all-propulsive maneuver's.1 This leads to an aeroassisted orbital
transfer vehicle (AOTV), which on its return leg of the mission, dips into the
Earth’s atmosphere, utilizes atmospheric drag to reduce orbital velocity and
to achieve a desired orbital inclinatlion. Basically, the AOTV performs a
synergistic maneuver, employing a hybrid combination of propulsive maneuver in

space and aerodynamic maneuver in the atmosphere.

The plane change capability is required to (i) orbit a vehicle in a plane
which does not pass through a launch site, (ii) shorten the time needed to
reach multiple reconnaissance targets on a single orbital misslion, (1i1)
reduce the time needed to return to base from orbit, (iv) perform effective
rendezvous with satellites in different orbital planes, {v) avoid flights over

hostile territory, and finally (vi) facilitate arrival and departure flights



from Space Station Freedom, in fulfilling specified mission obJectives.2 It
should be noted that an orbital plane is usually defined in terms of
inclination and longitude of the ascending node. For our present purpose only

an inclination change is controlled.

There are basically three methods of plane change, (1) impulsive method,
(ii) aeroglide method, and (iii) aerocruise method. In impulsive method, the
plane change is achieved entirely outside the atmosphere, and fuel consumption
is prohibitively large for sizable changes of orbital plane. In both aeroglide
and aerocruise methods, rockets are used to deflect the vehicle into the
atmosphere, and the plane change is accomplished by heading change of the
vehicle. With aeroglide there is no thrusting during the atmosphere, and with
aerocruise, atmospheric drag is balanced by a continuous thrust to keep the
spacecraft at a constant altitude and velocity. Propellent expenditure
comparisons among the three methods of plane change show that the aerocruise
method is superior to other competing methods for plane changes greater than
about 20 degrees, and with heating restraints. The basic effect of propulsion
during aerocruise is to (i) balance drag in order to maintain constant
velocity, (ii) augment lift with a component of thrust, thus increasing
cruising altitude over what it would be during aeroglide turn, and finally
(iii) provide a lateral component of thrust giving the required turn necessary
for plane change. The aeroglide and aerocruise methods utilizing atmospheric
maneuver in conjunction with propulsion augmentation are also termed the

"synergistic" or "aeropropulsive” methods.a'4

The following are some of the features of atmospheric plane change.S-7
(1) For plane changes of less than 15 degrees, an all-propulslve maneuver is
generally more efficient. (11) An L/D of at least 2 is required to offer a
significant advantage over the all-propulsive plane change, and it is
desirable to maximize the L/D of a vehicle. (1ii) A plane change made at a
node produces all inclination change whereas a turn at an orbit apex (S0
degrees from node) provides no inclination change, only a shift in the node.
Hence, for maximum inclination change and minimum node shift, the turn should
be centered over the node in the shortest possible duration. Thus, plane
changes performed at maximum CL (1.e., high angle of attack) which are quicker

are more fuel efficient than the slower maximum L/D turns. (iv) The total heat



load can be reduced substantially by carrying out a quicker high
angle-of-attack turns rather than the slower maximum L/D turns. (v) An
aerocruise (thrusting) turn offers significant advantages over an aeroglide
(non-thrusting) turn, when the desired plane change is more than 10 degrees.
(vi) During aerocruise, the high angle-of-attack and bank attitude of the
vehicle produce a lateral component of thrust, which is responsible for a

significant amount of plane change.

Compared to other works,s_8 the highlights of the present work are (1)
The analysis covers the complete mission from HEO to LEO. (11) The descent
mode and ascent mode of atmospheric phase are analyzed with flight path angle
as an independent variable. (iii) The time has been retained as an independent
variable during the cruise mode. (iv) During the cruise mode, both bank angle

control and thrust control are analyzed.

In this report, we address the synergistic plane change problem arising
in noncoplanar orbital transfer employing aeroassist technology. The mission
involves the transfer from HEO to LEO with plane change being performed within
the atmosphere. The complete misslion consists of a deorbit phase, an
atmospheric phase, and finally a reorbit phase. The atmospheric maneuver phase
is composed of descent (entry) mode, cruise mode, and ascent {exit) mode.
During the aerocruise mode, constant altitude and velocity are maintained
either by (i) varying bank angle with constant thrust, or by (ii) varying
thrust with constant bank angle. The comparison of these two control schemes
bring out some interesting features. Numerical results are given for typical

data.



II. MISSION DESCRIPTION

For an orbital transfer problem, the following assumptions are made. (i)
The initial HEO and final LEO orbits are circular. (11) The mission is
comprised of three impulses. (i1i) The vehicle is represented as a constant
point mass during atmospheric pass. (iv) A Newtonian inverse square
gravitational field is used. (v) Earth's rotation is neglected. (vi) The

atmosphere is exponential.

The complete mission from HEO to LEO with atmospheric pass is depicted in
Fig. 1. It consists of a deorbit phase, an atmospheric phase, and a reorbit
phase. There are three impulses: first, a deorbit impulse AVd at HEO to inject
a vehicle into a HEO-entry elliptic orbit, second, a boost impulse AVb at the
exit from the atmosphere for the vehicle to attain sufficlent velocity to
travel along an exit-LEO elliptic orbit, and finally, a circularizing impulse
AVc to circularize the path of the vehicle. The atmospheric phase itself is

composed of descent (entry) mode, cruise mode, and ascent (exit) mode.

Consider the basic equations of motion for different phases of deorbit,

aeroassist (or atmospheric flight), boost and reorbit (or circularization).
Deorbit Phase

Initially, we assume that a spacecraft is in a clrcular orbit of radius
Rd, well outside the Earth’s atmosphere, moving with a circular velocity Vd =
Vﬂ;ﬁ;. Deorbit is performed by means of an impulse AVd, to transfer the
vehicle from the circular orbit to elliptic orbit with perigee low enough to
intersect the dense part of the atmosphere [Fig. 1). At D, since the elliptic
velocity is less than the circular velocity, the impulse AVd is executed so as
to oppose the circular velocity Vd. The deorbit impulse AVd causes the vehicle
to enter the atmosphere of radlius Ra with a veloclity Ve and flight path angle
v, It is known that the optimal-energy loss maneuver from the circular orbit
is simply the Hohmann transfer and the impulse is parallel and opposite to the

instantaneous veloclity vector.

Using the principle of conservation of energy and angular momentum at the



deorbit point D, and the atmospheric entry point E, we get,9
V2R - R = (Vv - AV )72 - u/R (1)
e a d d d
RaVecos(—wc) = Rd(Vd - AVd) (2)

from which solving for AVd, we get

2 2
ov, = TR, - Jz““/Ra - 1/R)/[(R/R )2 [ecos®y - 1] (3)

It is easily seen that the minimum value of the deorbit impulse AVdm
obtained at ¥, = 0, corresponds to an ideal transfer whereln the space vehicle
grazes along the atmospheric boundary. To ensure proper atmospheric entry, the

deorbit impulse AVd must be higher than the minimum deorbit impulse AVdm which
is given by

‘ 2
av, = duR - J2u(1/Ra - /R)/[(R /R )™ - 1] (4)

Aeroassist (Atmospheric) Phase

The atmospheric phase of the mission is composed of (1) descent mode,

(1i) cruise mode, and (iii) ascent mode [Fig. 2].



III DESCENT MODE

During the descent mode, the equatlons of motlon for the vehicle (without

any thrusting) are given below [Fig. 3]. The kinematic equations are,lo

dR _

I - Vsiny (5a)
g% = Vcosycosy/Rcos¢ (5b)
g% = Vcosysiny/R (5¢)

The force equations are

m%% = — D - mgsiny (5d)
ng% = Lcoso + m(VIR - glcosy (5e)
ng% = Lsinc/cosy - (mV?R)cosycoswtan¢ (5f)
where,

L= CL(OL)pSVz/Z; D= CD(ot)pSVZ/Z; c =C, + Kci

g = p/Rz; R=H+ RE; p = psexp(—BH)

Neglecting mass terms in comparison to aerodynamic terms in (5), we get

dH

— = i B
7 Vsiny (6a)
dav _

I - D/m (6b)
dy _

IF Lcoso/mV (6c)



= Lsino/mVcosy (6d)

Q.lQ.
Lo A=

Using flight path angle as the independent variable, we get

Oy - Zmexp(BH)siny/poSCLcosa (7a)
av _ '

a - CDV/CLcosy (7b)
ay _

3y - tano/cosy (7c)

During the descent mode, let us assume that there is no banking of the

vehicle, and hence no heading is achieved. Then (7) becomes

dH .

3 - 2mexp({3H)51n7/pOSCL (8a)
dv

ar - - CDV/CL (8b)

Optimal Control Problem

The optimal control problem is posed as follows. Given entry conditions,
and the conditions at the end of the descent mode (or the initiation of
aerocruise mode), find the optimal control law which maximizes the final
velocity, subject to altitude constraint H = Hb.11 This altitude constraint

implies in a way heat-rate constraint. The performance index is given by

J=-V (9)

The Hamiltonian for (8) and (8) is
R = AH[Zmexp(BH)sinw/poSCL] + Av[- CDV/CL] (10)

The adjoint equations are

10



dAH/dx —AHZmBexp(BH)sma'/pOSCL

dA /dy AC/C
v v D L

Solving the state (8) and costate (11) equations, we get

VA =V A = constant

v e ve
A exp{BH) = A exp(BH )
H He e

The boundary conditions for the adjoint variables are

_ _aJ _
Av(w = 71) = 57|7 - 7, = 1

- _ aJ -
AH(7 = 71) = 6H|7 =y = 0]

With (14), the Hamiltonian (10} reduces to

#¥=-AV[C /7C + KC]
v DO L L

The optimal control is then given by

ax

c=0
L

Q

leading to

(11a)

(11b)

{12a)

(12b)

(13a)

(13b)

(14)

(15)

(18)

(17)

where, CLE is the 1ift coefficient for maximum lift-to-drag ratio (L/D)max =

11

E



= 1/24KCDO . With optimal control (17) in (8), we solve for the velocity and
altitude as

V(y) = veexp[-(w-we)/sl (18)

2Bm -1/8

H = ln|exp(-BH ) + (cosy - cosy ) (19a)
e p SC e
: 0" Lo

For small 7, (18) reduces to
-1/8

H = In|exp(-BH ) - —b0 (4 - 5°) (19b)

e pOSCLO e

At the start of the descent mode, 7 = T, and at the end of the descent mode
(or the beginning of the aerocruise mode), ¥ = 71 = 0. Then the above

relations become

-1/8
H = 1n[exp(—BH ) + 2Bm (1 - cosy )] {19¢)
j e p SC e
o Lo
and with the approximation,
-1/8
_ _ Bm 2

HJ = ln[exp( BHe) + pOSC 7e] (19d)

Lo

Then, the inequality constraint on altitude H 2 HJ, with (19a) transforms to

< cos |1 - pOSCLO exp(-BH ) - exp(-BH ) (20a)
7. = 2mB P 3 pi=RA,

and with approximate solution (19b),

P SCLO

2< 0 — — -
¥, S B [exp( BHJ) expl( BHG)] (20b)

12



The velocity at the end of the descent mode is obtained from (18) with ¥ = ¥

=0 as

v, = Vexp (27 _{C K (21)

13



IV. AEROCRUISE MODE: BANK ANGLE CONTROL

We first write down the general equations of motion, inject the
conditions for cruise flight, use the assumptions of small latitude, and
finally optimize the heading change. During aerocruise mode, there is

continuous thrusting. Thus the kinematic equations are [Fig. 31%°

dH . ,

a_f = Vsiny (22a)
g% = Vcosycosy/Rcos¢ (22b)
g% = Vcosysiny/R (22c)

The force equations are

m%% = Tcosn - D — mgsiny (224d)
dy _ . 3

mVa? = (Tsinm + L)coso + m(V/R - glcosy (22e)
dyr . . 3

mVa? = (Tsinn + L)sino/cosy - (mV/R)cosycosytang (22f)

The propulsion (thrusting) equation is

QU

an - - 1/gl (22g)
t sp

From the above equations of motion, we see clearly that during the
atmospheric maneuver, if the lift vector L is rotated about the velocity
vector V through the bank angle o, it creates a lateral force component (Tsinn
+ L)sino orthogonal to the vertical plane that has the effect of changing the
heading angle Y. At the end of the atmospheric phase, the equations (22c) and
(22f) for the cross range angle ¢, and the heading angle ¥, become,10

14



d¢/dt _ _ tany
dy/dt =~ tang (23a)

integration of which yields,

cosgcosy = cosi (23b)

where, i is the orbital inclination. For small values of cross range angle ¢,
the orbital inclination i is given by the heading angle ¢ itself. Thus, the
total change in the heading corresponds to the change in orbital inclination

{(plane change).

Now let us insert the cruise conditions of constant altitude and
velocity.8 The constant altitude condition on (22a) gives zero flight path

angle throughout. The constant velocity condition on (22d) boils down to
Tcosn = D = pSVch(a)/Z ’ (24a)
We note that the conditions at the beginning of the aerocruise mode are
denoted by the subscript j. However, for simplicity in notation we shall
continue to use the variables without any subscript to denote the cruise
conditions. If the angle of attack a is held constant, then the drag force D

is constant at a constant cruising altitude. Also, since the flight path angle

is zero throughout, (22e) reduces to

(Tsinn + L)coso = m(g - ve/R) (24b)
Combining (24a) and (24b), we get

mig - v2/R)cosn

COST = Brsinn + (L/D)cos7] (25)
where,
sinn + (L/D)cosn = (L + Tsinn)/T = Ep (26)

15



is called aeropropulsive efficiency. Alternatively,
(Dtann + L)coso = m(g - VZ/R) (27a)

The above equation is also rewritten as

tann = mKi/cosc - L/D (27b)

where, K = (g - v2/R)/D = (gR - V°)/RD (27¢)

From (24a), we see that for a given angle of attack «, if altitude H, and
velocity V are kept constant, then the drag D and l1ift L forces are constant.
The mass m always changes due to thrusting. Then the above relation (27b) for

variable mass can be satisfied in any one of the following three ways.

(i) Variable bank angle with constant angle of attack and thrust angle: With
bank control, (22g) and (27a) mean that the thrust T is constant leading to a

constant mass flow rate.

(ii) Variable thrust with constant bank angle: On the other hand, with thrust
control, (24) implies that we need to change both magnitude and angle of the
thrust, in order to keep a constant drag force. Thus for cruise condition,
both thrust magnitude and angle need to be controlled such that Tcosn is
constant, but Tsinn changes according to (24b) [see Fig. 3]. This leads to

variable mass flow rate.

(iii) Variable bank angle and variable thrust: Here, we change both bank angle
and thrust magnitude and angle, in order to satisfy the crulse conditions

(24a) and (24b). This also leads to variable mass flow rate.

Obviously, the bank angle control leading to constant thrust (and hence
constant mass flow rate) seems to be the simplest of all for implementation.
However, it will be interesting to see which of the control schemes provides
greatest amount of heading change and thereby inclination for the same amount

of fuel expenditure.

16



The bank angle control with constant thrust magnitude and angle has been
thoroughly discussed using arc length as independent variable.8 However, in
our present work, we continue to use time as independent variable. Assuming

the latitude to be small, the cruise motion is described by

do

aF - Vcosy/R (28a)
dm _

IF = Kz/cosn (28b)
ay _

Cﬂ- = Katam‘r (280)
K = D/gl K =g/V - V/R (28d)
2 sp 3 .

The bank angle control is given by

coso = mKl/[tann + L/D] = mK4 (29a)
where,
c = (&~ vi/R) 2(k% - 1) (29b)
a (L + Dtanm) pRSCD(a)Itann + L/D]

and k =VgR/V, the ratio of circular speed to cruise speed at R. From (29), we
see that for a given angle of attack, and at constant altitude, speed, and
thrust angle, the bank angle has to be varied as per the mass. That is, as
mass m decreases along the flight, bank angle o should be increased. Thus, in
increasing the bank angle with the decrease of mass, we are trying to balance
the decrease in the difference between the vehicle's welght and centrifugal
force with the sum of vertical components of 1ift and thrust. In this control
scheme, both mass and bank angle change, whereas altitude, velocity, angle of

attack, thrust, thrust angle, and mass flow rate are held constant.

The cruise condition (29) reveals that

17



(a) With o = 00, there is no banking and the cruise conditions can be

malntained only by variable thrusting.

(b) For 0 < ¢ < 900, the cruising speed is less than circular speed. The lift
ls directed upward. The gravitational force is higher than the centrifugal

force.

(c) o = a0° corresponds to cruise speed being equal to the circular speed, and
all the aerodynamic force (Tsinn + L) is used for heading change or turning.

The gravitational force is equal to the centrifugal force.

(d) For o > 900, the cruising speed is higher than the circular speed. The
centrifugal force is higher than the gravitational force and hence the lift is

directed downward in order to prevent the vehicle to escape from Earth.

Given the initial values of mass mJ, and heading angle wJ, we find the

initial bank angle cJ from (29a). Also, we can solve (28b) directly as
m(t) = - (K2/cosn)t + mJ (30)

Thus, o(t), and y(t) are solved until either of the desired final conditlions
m ., or wn is realized. With a constant thrust angle 7m, and given initial mass
m), and heading angle w}, and final mass m (or final heading angle wn) the
sequence of solution of the aerocruise problem is to solve, first the mass
equation (28b), second the bank angle equation (29a), and finally the heading
angle equation (28c).

In this formulation for aerocruise, we see that the heading angle changes
with respect to bank angle as given by (28c), and bank angle in turn has to
follow the mass as per (29a), and the mass varies independently according to
(30). Hence, there is no optimization of heading angle w.r.t. bank angle
control variable, for a given fuel consumption or of fuel consumption w.r.t.
bank angle control variable, for a given heading change. Alternatively, from
(29) and (30), we can solve for ¢, which is now a function of thrust angie n,

cruising altitude H, and cruising speed V. Then, we can find the optimal value

18



of 7m, which should be maintained constant throughout the aerocruise to achieve

maximum .
Optimization of Heading Change w.r.t. Thrust Angle

The optimization problem here is to find an optimum thrust angle which is
to kept constant throughout the cruise mode, in order to maximize the heading
change. We can solve this problem in a variety of ways. Basically, the heading

angle Y can be solved from (28) to (30) in terms of time t, mass m, or bank

angle o. Thus,

wn = wj + Ks[ln(ﬁn/ﬁj) + BJ - Bn] (31a)
where,
I g
K, = f," [sinn + (L/D)cosn] (31b)
A = (1 + sinvi)/cosci; Bl = sino ; i=j, n (31c)

1

Note that Ai, and B1 can also be expressed in terms of mass m using (29), or

in terms of time t with (30). For example, in terms of mass m, (31c) becomes

[1 +»J1—(mK)2l
=41 - (leg) ;

Ax = m K ' Bl
14

i=j, n (31d)

In terms of bank angle o, (31) is rewritten as,11

I g oscj(l + sino;)
_ sp . -
wn = ¢J + = {s1nn + (L/D)cosn] ln{;oso;(l - sinvj)} + sino-J sinoh (32)

where, bank angle o is related with thrust angle m as per (29). Now optimizing
wn with respect to thrust angle 7, (i.e., making dwn/dn = 0) and assuming the
initial value wj = 0, we get

19



osaj(l + sina;)
cosnlcosn + (L/D)sinn] ln{ioso;(l T sinvj)} + simrj - sino; =0 (33)

Using first order approximations in the change of the bank angle,

coso = cos(o'J + Ao) = cosaJ - (sinaJ)Ac (34a)

sino-n = sin(rrJ + Ao) = sinc) + (cost)AU (34b)

and, linearizing the logarithm, the above transcendental equation (33)

becomes,
[cosn[cosn + (L/D)sinn]sinzcrJ + coszcj](l + sinoJ)Av =0 (35)

Assuming that 1 + sina-J # 0, and Ao # 0, (35) becomes

cosnlcosn + (L/D)sinn]sinzo-J + coszo'J =0 (36a)
From (29a),
coso = ————é————— ; A=mK (36b)
s tann + L/D "’ 31

Using (36b) in (36a),
[tann + L/D][(L/D)tanzn + {((L/D)% - A% - 1}tany - L/D] (37)

Again, assuming tanm + L/D # 0, we finally get a simplified form as,11
(L/D)tan®n + [(L/D)% - A% - 1ltann - L/D = 0 (38)
The implication of tanm + L/D = O is that (a) 90° < n < 180°%, or (b) 270° < 7

< 380°. The first condition implies that the thrust T will aid the drag force

20



instead of opposing it, and the second condition shows that the thrust T will

oppose the lift instead of aiding it.

Summarizing, for bank angle control we have

dy _

at - Katanv
dm

I - Kz/cosn

The cruise condition is given by
coso = mKl/[tann + L/D]

The sequence of solutions is

(39a)

(38b)

{39¢c)

(i) Using initial masses mJ, and L/D, solve (38) for optimal thrust angle 7.

{ii) Using 7, mj, and L/D, solve (39c) for cr

(iii) Using m, and mJ. solve for new m from (39b).

(iv) Using the mass m, and 7m, solve (339a) or (31) for new y.
(v) Go to (ii), and repeat the steps.

(vi) Integration stops when m reaches the final m in (39b) and the

corresponding maximum heading angle wn is obtained from (39a).

Although (39) can be solved for either set of given values of (a) m and

m or (b) W, and wn, the condition (38) requires mJ and m to determine the

optimal n which is kept constant throughout the aerocruise mode. Hence, given

the fuel consumption (mJ - mn). we are trylng to determine the maximum heading

angle change.
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V. AEROCRUISE MODE: THRUST CONTROL

Here, we keep the bank angle constant throughout and change the thrust
magnitude and angle in order to achieve the desired heading change and hence

the inclination.'? For the sake of simplicity, we repeat the equations at

cruise,

I " Vcosy/R (40a)
dm _ _

I = K2/cosn (40b)
ay _

IF = Kstanv (40c)

The cruise conditions are given by

Tcosn = D (41a)

(Tsinn + L)cosec = m(g - V?/R) (41b)
Combining the two conditions,

tann = mKl/cosw - L/D (42)

For a constant altitude H, speed V, and given angle of attack a« and bank angle
o, as the mass m changes, the thrust angle n follows (42). At the same time,
the drag force D is to be kept constant as per (41a). Thus, in order to
satisfy both the conditions (41), we need to adjust thrust magnitude T and
angle m in such a way that Tcosn is kept constant, and Tsinn changes as per
mass m. From (40}, we see that the bank angle is kept constant throughout the
cruise mode and hence the rate of change of heading angle is constant, whereas

the mass flow rate is variable. This is in contrast to the bank angle control

discussed in the last section.
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Given a constant bank angle ¢, the initial and final conditions m , wf
m (or wn), the sequence of solutions for the cruise flight with thrust
control is first, solve the cruise condition equation (42) for 7n, second solve
mass rate equation (40b) for m, and finally solve the heading angle equation
(40c) for y¥. In the next section we try to find the optimal bank angle which

should be kept constant throughout the cruise, to get maximum heading change.
Optimization of Heading Angle w.r.t. Bank Angle

Here, we are interested in finding the optimum bank angle so that the
heading change is maximized. For thls, we first solve (40)-(42) for the

heading angle and then find the stationary value of ¢ w.r.t. o. Thus,

secn + tann}

b= (Ispg/V)51ncln secn tanm_ (43a)
where,

tannl = leI/cosw - L/D; seczn‘ =1 + tanznl; i=j, n (43b)

K = (I g/V)sino (43c)

6 sp

Alternatively, (43a) can be used to find the mass m for a given y. Use of the

stationary condition leads to

cosn (1 + sinn )

2 n 2 . =
cos oln cosnn(l < sinnj) + sin cr[(smnn sinnJ) + (L/D)(cosnn coan)] =0

(44)

Considering only the first order approximations in the thrust angle 7
cosn = cos(nJ + An) = cosnJ - (sinnJ)An (45a)
sinn = sin(nj + An) = sinnJ + (coan)An (45b)
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and linearizing the logarithm, the transcendental equation (44) becomes

s 1 - (L/D)tanm
cos‘o + sin’o 5 J [1 + sinm ]An =0
1 + tan nJ ]

Assuming 1 + sinnJ # 0; and An = 0, (46) reduces to

” 1 - (L/D)tann
cos o + sino I = 0
2
1 + tan nJ

Using

tannJ = A/coso - L/D
in (47), we get a simplified quadratic equation in cosec as

(L/D) AcosZe - [(L/D)% + 4° + 1lcose + (L/D)A =0

(48)

(47)

(48)

(49)

It is interesting to note that the optimal conditions (38) and (48) for bank

control and thrust control respectively, are interchangeable by the cruise

condition (36b) or (48).

Summarizing, for thrust control we have

dy _

d_t— = K3t ano

dm

ar = " Kz/cosn

The cruise conditions are given by

Tcosn = D

tann = mKi/cosa - L/D

24
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The sequence of solutlons is

{i) Using initial mass mJ and L/D, solve (49) for optimal bank angle o.
(ii) Using o, mJ, and L/D, solve (50d) for ny

(iii) Using n, find the thrust TJ from (50c).

(iv) Using wj, ana o, solve (50) for new ¢.

{(v) Using nJ, and mJ, solve for new m from (50b) or (43).

(vi) Go to (ii), and repeat the steps.

(vii) Integration stops when m reaches the final m in (S0b) and the

corresponding maximum heading angle wn is obtained from (50a).

Although (50) can be solved for either set of given values of (a) mJ and
m or (b) w] and wn, the condition (49) requires mj and m to determine the
optimal ¢ which is kept constant throughout the aerocruise mode. Hence, given
the fuel consumption (mJ - mn). we are trying to determine the maximum heading

angle change.

25



VI. ASCENT MODE

This is just a replica of the descent mode except for the change in the
mass of the vehicle, and the boundary conditions. Thus, we go through the
equations of motion, change the independent variable to flight path angle, and

finally assume that there is no appreciable change in heading angle. Thus,

dH '

3 - 2mnexp(BH)sin7/pOSCL (51a)
dav. _

ay - CDV/CL (51b)

The optimal control problem is posed as follows. Given initial conditions (or
the conditions at the end of the cruise mode), and the conditlions at the end
of the ascent mode, find the optimal control law which maximizes the final

velocity.lo The performance index is given by

J=-V (52)
The Hamiltonian for (51) and (52) is
H = AH[Zmnexp(BH)siny/poSCL] + Av[- CDV/CL] (53)

The adjoint equations are

dA /dy = -A 2m Bexp(BH)siny/p SC (54a)
H H n oo L

dA /dy = A C /C (54b)
v vD L
Solving the state (51) and costate (54) equations, we get

VA =V A = constant (55a)

v n vn
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AHexp(Bh) = AHneXp(BHn)

The boundary conditions for the adjoint variables are

_aJ - _
Ay = 7r) = 57‘7 =7, =-1

- aJ =
Al =9 = 8H’7 =y =0

With (57), the Hamiltonian (53) reduces to
H=-AVI[C /C + KC]
v DO L L

The optimal control is then given by

(55b)

(56a)

(56b)

(57)

(58)

(59)

(60)

where, CLE is the lift coefficient for maximum lift-to-drag ratio (L/D)max = E
= 1/24KCbO . With optimal control (60) in (51), and noting that ¥, = 0, we

solve for the velocity and altitude as
Viy) = Vnexp(-w/E)

28m -1/B

pOSC

n

H = 1n exp(—BHn) + {(cosy - 1)

Lo
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For small y, (62a) reduces to

Bm . ~-1/8
n
H = 1ln exp(-BHn) 5SC ¥ (62b)
0o LO
At the end of the ascent mode, ¥y = Wr and H = Hr' Then (62) becomes
an -1/8
Hf = 1n exp(-BHn) - S5 Y, (83)
0o LO

Using (19d) and (63) and noting that He = Hr and Hj Hn, we get

¥, = - ?felmj/mn (64)

The relation (64) shows that at the end of the atmospheric phase, the vehicle
has to leave the atmosphere with a positive flight path angle higher in
magnitude to that of the entry flight path angle. This 1s due to the fact that
the mass m at the beginning of the ascent mode (or end of the cruise mode) is
less than the mass mJ at the end of the descent mode (or beginning of the

cruise mode).
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VII. BOOST AND REORBIT PHASE

During the atmospheric flight, the vehicle performs the desired plane
change and dissipates some energy due to atmospheric drag. Therefore, a second
impulse is required to boost the vehicle back to orbital altitude. The vehilcle
exits the atmosphere at point F, with a velocity Vr and flight path angle 7,
The additional impulse AVb, required at the exit point F for boosting into an
elliptic orbit with apogee radius RC and the reorbit impulse AVc required to
insert the vehicle into a circular orbit at point C, are obtained by using the
principle of conservation of energy and angular momentum at the exit point F,

and the circularization point C. Thus, we have,11

2 _ _ 2 _
(v + v )2 - wR = (V, AV )°/2 = /R (65)

(Vv + AV )Rcosy = R (V - AV ) (66)
[ b a f ¢ ¢ c

Solving for AVb and AVc from the above equations (65) and (66),

2 2
av, = Jzu(l/Ra - 1/Rc)/[1 - (R /R )"cos 7{] -V (67)
2 2
&V = TR - |2u(/R - 1/R)/[(R /R )P feos®s = 1] (68)

Finally, the vehicle is in a circular orbit (of radius Rc) moving with

the velocity Vc = Vp/Rc.
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VIII. NUMERICAL DATA AND RESULTS

The following set of data is used for a typical orbital maneuvering

. 5-8
research vehicle.

Orbital Data

Altitude of HEO,‘Hd 115,000 m

Altitude of LEO, Hc 115,000 m

Altitude of atmospheric boundary, Ha = 110,000 m

Radius of Earth, RE = 6,356,766 m

Acceleration due to gravity at sea level, go = g.80665 m/sec2
Atmospheric density at sea level, Py = 1.225 kg/m3
Gravitational constant of Earth, u = 3.986x104 m3/sec2

Inverse atmospheric scale height, B = 1/7280 m

Vehicle Data

Initial mass, mJ = 4760 kg

Propellent available for cruise, (mJ - mn) = 1810 kg
Final mass, m = 2950 kg

Aerodynamic reference area, S = 11.613 m2

Specific fuel impulse, Isp = 290 sec

The aerodynamic characteristics are described in terms of the angle of attack

a as
CL = -2.0686869960° + 2.943200144¢° + 0.080347684a + 0.031320026 (69a)
CD = 0.267339707a" + 1.814473159a° - 0.389985867a + 0.068372034 (69b)
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Fig. 4 shows the variations of the lift and drag coefficlients CL, and CD and
Fig. 5 shows the variations of the l1ift-to-drag ratio E, and the
aeropropulsive efficiency Ep as a function of the angle of attack «. The
maximum lift-to-drag ratio of 2.3149 occurs at the angle of attack of 13

degrees.
Deorbit Phase

Initially, the vehicle is at a HEO altitude Hd of 115 km orbiting with a
circular velocity Vd of 7847.97 m/sec. A deorbit impulse AVd of 518.99 m/sec
puts the vehicle in an elliptic orbit to intersect the atmospheric boundary at
an altitude Ha of 110 km. At the atmospheric entry point, the velocity Ve is
7334.17 m/sec and the flight path angle ¥, is -0.77 deg.

Atmospheric Phase: Deorbit Mode

During the descent mode of atmospheric phase, the vehicle descends from
an altitude Ha of 110,000 m at a veloclity Ve of 7334.17 m/sec to a cruise
altitude HJ of 72,521 m and the cruise velocity Vj of 7291.17 m/sec according
to relations (18) and (19). During this time, the vehicle is maintained at an
angle of attack of 13 degrees corresponding to the 1ift given by (17) for
maximum lift-to-drag ratio. The time solutions of altitude, velocity, and
flight path angle for the descent mode are shown in Fig. 6. The time taken for

descent mode is found to be 494 seconds.
Cruise Mode: Bank Angle Control

The cruise mode is analyzed using bank angle control or thrust control.
With bank angle control, for the same fuel consumption and a given L/D (or
angle of attack a), the optimum thrust angle as obtained from (38) is
represented in Fig. 7. With this optimum thrust angle, the corresponding
heading angle is obtained from (32) and is shown in Fig. 8. It is seen that at
these constant cruising conditions (of altitude of 72521 m, velocity of 7281.7
m/sec, and thrust of 6108.9 Nw), the maximum heading and hence maximum
inclination of 18.56 degrees is achieved with a thrust angle of 44.72 degrees
and at a higher angle of attack of 24 degrees rather than at the angle of
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attack of 13 degrees corresponding to maximum L/D.s"8 Corresponding to the
maximum inclination of 18.56 degrees, the time solutions for mass, bank angle,
and heading angle are shown in Fig. 9, where the total time taken for the

cruise mode is 830 seconds.
Cruise Mode: Thrust Control

With thrust control, for the same fuel consumption and a given L/D (or
angle of attack «), the optimum bank angle as obtained from (49) is shown in
Fig. 10. With this optimum bank angle, the corresponding heading angle 1is
obtained from (43) and is shown in Fig. 11. It is seen that at these cruising
conditions, the maximum heading angle of 17.7 degrees is achieved with a bank
angle of 51.9 degrees and at a higher angle of attack of 20 degrees rather
than at the angle of attack of 13 degrees corresponding to maximum L/D.
Corresponding to the maximum heading angle of 17.7 degrees, the time solutions
for mass, thrust, thrust angle, and heading angle are shown in Fig. 12, where

the total time taken for cruise mode is 1345 seconds.

The comparison of maximum heading angle as a functlon of angle of attack
for both the control strategles shown in Fig. 13, indicates the superiority
of bank control over thrust control. It is to be noted that the heading
achieved depends on the type of control used, cruise conditions, and the angle
of attack.

Atmospheric Phase: Ascent Mode

At the end of cruise mode, the vehicle ascends to the atmospheric
boundary with a constant angle of attack of 13 degrees corresponding to
maximum lift-to-drag ratio as given by (60). At the end of the ascent mode,
the exit velocity Vr is 7238.1 m/sec, the flight path angle ¥, as given by
(64) is 0.9781 deg. The time solutions are shown in Fig. 14.

For the atmospheric phase with bank angle control, the total solutions
for altitude, velocity, flight path angle, heading angle, and heating rate are
shown in Fig. 15. Similarly, total solutions for thrust control are shown in

Fig. 16. The heating rate 1s computed f‘romS
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Q = 3.08x10-4p;/2V2'08 Watts/cm® (70)

where, P, is expressed in kg/kma, and Vk is expressed in km/sec.

Reorbit Phase

At the end of the atmospheric phase, a boost impulse AVb of 380 m/sec is
executed to bring the vehicle to its original altitude Hc of 110 km. At this
time, once again a circularizing Impulse AVc of 247.97 m/sec is imparted to

finally put the vehicle in circular orbit.
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IX. CONCLUDING REMARKS

We have addressed the synergistic plane change problem in connection with
orbital transfer employing aeroassist technology. The mission involved
transfer from high Earth orbit to low Earth orbit with plane change being
performed within the atmosphere. The complete mission consisted of a deorbit
phase, an atmospheric phase, and finally a reorbit phase. The atmospheric
maneuver was comﬁosed of an entry mode, a cruise mode, and finally an exit
mode. The descent and ascent modes have been analyzed using flight path angle
as an independent variable for maximizing the cruise and exit velocities with
a constraint on the minimum cruise altitude. During the cruise mode, constant
altitude and velocity were maintained by means of bank angle control with
constant thrust or thrust control with constant bank angle. Conditions have
been obtained for maximizing the heading angle. Under given cruising
conditions, the maximum heading angle has been achieved with an angle of
attack higher than that corresponding to the maximum lift-to-drag ratio.
Comparison between the two control strategies has shown the superlority of
bank control over thrust control in terms of the maximum achievable heading

angle.
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