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1.00 SYNPOSIS

The basic objective of this thesis is to provide a practical method of computing the aerodynam-
ic characteristics of slender finned vehicles such as sounding rockets, high speed bombs, and
guided missiles. The aerodynamic characteristics considered are the normal force coefficient
derivative, Cny s center of pressure, X; roll forcing moment coefficient derivative, Cg,; roll damping
moment coefficient derivative, C;&p; pitch damping moment coefficient derivative, C.o’ and the drag
coefficient, C . Equations are determined for both subsonic and supersonic flow. No attempt is
made to analyze the transonic region. The general configuration to which the relations are applic-

able is a slender axisymmetric body having three or four fins.

The fins and body are analyzed separately; and the interference between them is accounted for
when they are combined to form the total vehicle. When necessary, both the fins and the body are
subdivided. Both purely theoretical and semi-empirical methods are used in deriving the equations,
Use is made of established methods when they are applicable.

Since the high speed digital computer is a tool readily available to the contempory engineer, no
effort has been made to linearize higher order theories or simplify complex relations. In many
cases, the equations are derived with the computer in mind.

The method is applied to sounding rocket vehicles and the results are compared to respective
windtunnel and flight data. The comparison indicates that the theory predicts aerodynamic charac-
teristics within ten percent of the experimental data.

2.00 INTRODUCTION
2.10 BACKGROUND

In order to study the performance of a new or existing flight vehicle the engineer must have
the vehicles aerodynamic characteristics. Windtunnel or flight tests can provide the needed infor-
mation; but they are both expensive and time consuming. Lacking either time or money the engineer

. turns to theoretical predictions.

In this day of rockets and high speed armaments, slender finned vehicles are of considerable
interest. A great deal of work has been done on the aerodynamics of such configurations. The list
of contributors is exhaustive. However, a.number of works stand out and are of particular interest.
Munk, reference 20, developed the technique of slender body theory and applied it to low speed
airships. Tsien, reference 29, later modified Munks technique to apply it to pointed projectiles in
supersonic flow. Jones, references 7, 8, 9, extended Munk's work to finite wings and also provided
excellent application of conical flow theory to wing lift and drag estimation. Nielsen, Pitts, Ferrari,
and Morikawa, references 22, 3, 18 and 17, have thoroughly analyzed wing-body interference effects.

Even though they provide valuable understanding, many of the contributions have limited appli-
cability to practical calculations. Their inherent assumptions and approximations reduce the ac-
curacy and reliability of their results, Those that provide accuracy are usually so complex or

1



abstract they cannot directly provide the desired aerodynamic characteristics. This thesis is an
attempt to form concrete, useful expressions by applying the best abstract theoretical treatments
as well as reliable empirical data.

2.20 STATEMENT OF PROBLEM

Determine a set of expressions for the practical calculation of the aerodynamic characteristics
of slender, axisymmetric finned vehicles at both subsonic and supersonic speeds. The characteris-
tics of interest are the normal force coefficient derivative, G ; center of pressure, X; roll forcing
moment coefficient derivative, Cses roll damping moment coefficient derivative, C’;p; pitch damping
moment coefficient derivative, C_; and drag coefficient, C,.

2.30 GENERAL METHOD OF SOLUTION

Divide vehicle into body and tail.
Analyze the body and tail separately. Subdivide either when necessary.
Analyze wing-body interference.

I VI
s e s s

Recombine to form total vehicle solution.

2.40 GENERAL ASSUMPTIONS

1. The angle-of-attack is very near zero.
2. The flow is steady and irrotational.

3. The vehicle is a rigid body.

4. The nose tip is a sharp point.

3.0 NORMAL FORCE AERODYNAMICS

There are a number of aerodynamic coefficient derivatives that are directly dependent on the
aerodynamic forces acting normal to the longitudinal axis of the vehicle. The normal forces acting
on the fins are generated by four main sources; angle-of-attack; fin cant angle, roll rate, and pitch
rate. These excitations produce the normal force coefficient derivative, C;a , at a center of pressure,
X & Y; a roll forcing moment coefficient derivative, C; ; a roll damping moment coefficient derivative,
C”?p ; and a pitch damping moment coefficient derivative, C respectively. The only normal force
acting on the body is due to the angle of attack. This is the normal force at a center of pressure.

3.10 TAIL NORMAL FORCE AERODYNAMICS

3.11 TAIL NORMAL FORCE COEFFICIENT DERIVATIVE

In subsonic flow, the semi-empirical method of Diederich from reference 2 gives the normal |
force coefficient derivative of a finite thin plate as;



Q) = : (3-1)
! 24 FD 14 .4_
Fp
where;
C, = Normal Force Coefficient Derivative of a two dimensional airfoil.
a0
F, = Diederich's Planform Correlation Parameter.
According to Diederich;
N, S— (3-2)
1
el cos [’
27 “ao ¢
By the thin airfoil theory of potential flow (reference 26),
CN =27 (3'3)
a0
Correcting this for compressible flow according to Gothert's rule (reference 26)
27
CNaO - -LT (3-4)
Thus;
_ B _
D" cos TC (3-5)
Substituting equations {3-4) and (3-5) into (3-1) and simplifying,
27 R (A, A) i
(), i

“h ERY
2 4 ‘ -
! ¥ (cos rc>

The value of (CNa )T for one fin in supersonic flow is computed using the method of reference 1,
as given in Appendix A. It is essentially a strip theory which analyses two dimensional strips using
Busemann's Third order expansion of the compressible flow equations.

This is the value for one fin.

CPi =K, n, +K, n?+ K? m +B, 7 (3-7)
where;
K, =2/8
K = (y + Y MY _ 472

ap



C(r+ DIMB 4 (292 — Ty - 5)M® 4 10(y + 1) M* — 12M? + 8
64

o
It

(y+1IM “5'3””‘*4”’3”’2*8}5%

The strip values are then summed in a spanwise direction with a correction applied to those strips
that are intersected by the fin tip mach cone. The most distinct advantage of the method in reference
1 is that it includes a thickness distribution in the analysis.

To apply the G of one fin to a multi-finned vehicle the effect of fin dihedral must be con-
sidered. Only three and four finned vehicles are analyzed, since these are the most commonly
used. Both are analysed assuming that one fin is in a plane parallel to the flow. Reference 13 de-
rives the effect of dihedral on the C, of two fin panels at very small angles of attack.

a

), =2 6

) cos? A (3-8)

e
Figure 3-1 defines the dihedral angle, A.

A three (3) fin configuration has two effective panels at a 30° dihedral angle. Thus the tail
normal force derivative is,

(CNQ)T =2 (CNa)l cos? 30°

2(6) (&)

1

(C"a)T -3 (@) @ fino (3-9)

1

Since the dihedral angle of the two effective panels of a four (4) fin configuration is zero, the tail
normal force derivative is;

(cNa)l (4 fins) (3-10)

From equations 3-9 and 3-10 we can generalize for three and four fin vehicles.

(&), 7 ), -1



Figure 3-1—Fin Dihedral Angle (As Viewed From Rear)



Substituting 3-6 into 3-11, for subsonic flow;

(CNG)T ) N7 R (A /M) (3-12)

/ BR V!
2+ g4 <c051"c>

3.12 TAIL CENTER OF PRESSURE LOCATION

From the thin airfoil theory of subsonic potential flow, reference 26, the center of pressure of

a two dimensional airfoil is located at 1/4 the length of its chord from its leading edge. Thus, on
a three dimensional fin, the center of pressure is located along the quarter chord line. By defini-
tion, the center of pressure is also located along the mean aerodynamic chord of the fin. There-
fore, by the above argument, the subsonic fin center of pressure is located at the intersection of
the quarter chord line and the mean aerodynamic chord. In this treatment, the subsonic center of
pressure is considered to remain constant with mach number. It remains to determine the length
and position of the mean aerodynamic chord.

The mean aerodynamic chord is defined as;
1 (0,
Con = 5 J‘ c? dy (3-13)
A

Figure 3-2 shows the fin coordinate system. The generalized chord is a function of the spanwise
coordinate. To find this function, a proportionality relation is set up. See figure 3-3.

r . C - t (3_14)

r‘l
-
]
«
[
.
1
w

It is assumed that the fin edges are all straight and form a trapizoid. From the first two terms of
equation 3-14;

c=c - ¢ (3-15)

From the first and last terms of equation 3-14;
CtL' = crL' -c S

Simplifying, and defining;

>
"
0'0
-

(3-16)
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we find;

. _ S
L = T (3-17)
Substituting 3-17 into 3-15,
c=c, (1+ky) (3-18)
where,
1 P |
k S e— = -
L s (3-19)
Using 3-18 in 3-13;
C2 s
" T J (vl ay (3-20)
Integrating
k1)
s = —— [(1 +ks)3 -1
MA A 3k
CZS 1 2 2
Cya = y |:1 + ks +5k s} (3-21)
Substituting 3=19 into 3-21 and simplifying;
1,
Chua —3 Af [AZ 4 A+ 1] (3—22)
But; -
A=t v ‘ 3-23
£ g r S ( = )
thus;
2 <
MA_§C+C [>\2+)\+1]



or,

c C
cm% [cr+ct— <t ] (3-24)

or

2 2c ¢
Yy, =2 - rt s 3-25
KA |:3 (e, + c,) 3(c, +¢,) C'} c, -c, ( )
After much algebra;
c_ +2c¢
Y, -S>t~ % 3-
ua 3 [ cr + c( } ( 26)

The spanwise subsonic center of pressure coordinate is then;

2
Y o-r oS [f_*_‘f_} (3-27)

Cl’ +Ct

As can be seen from figure 3-1, the longitudinal coordinate is;
%p = Lp 4Lyt 3 (3-28)
But;

.

Y,
‘lMA = Yua tan I_‘L = %A X, . (3‘29)

Combining equations 3-24, 3-26, 3-28, and 3-29;

X =1 X, cr+2ct 1 € € (3-30
X = LAY c, +¢ i3 C’+C‘-cr+ct -30)

t

The fin center of pressure in supersonic flow is found by the method of reference 1 in appendix A.
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3.13 TAIL ROLL FORCING MOMENT COEFFICIENT DERIVATIVE

A force arises on a fin at zero angle of attack if the fin is canted at an angle with the longitu-

dinal axis. See figure 3-4. The cant angle is an effective angle-of-attack. As can be seen in
figure 3-5, the total force resulting from canting all the fins at the same angle is zero on three and
four fin configurations. However, a roll forcing moment about the longitudinal axis is produced.
Since the cant angle acts as an effective angle of attack the roll forcing moment is subsonic flow
may be written in terms of (CN‘1 )

1-NV, (cNa)1 5gA, (3-31)
The values of (CNQ )l and Y, are found using equations 3-6 and 3-27 respectively. The rolling moment
coefficient is defined as,

1
- 3-32
4 5atL (3-32)
thus; using equation 3-26;
NY, C, b
Cp=—F—— (3-33)

The roll forcing moment coefficient derivative is defined as;

aCy
c, -~ (3-34)
5 2} 520
" thus; the subsonic roll forcing coefficient derivative is,
.
=N T 3-3
Cs, (CN‘:)I T (3-35)

In supersonic flow, C*‘;S is computed using the method of reference 1 as given in appendix A.
This method determines the roll forcing moment of each strip and sums them in a spanwise direction.

3.14 TAIL ROLL DAMPING MOMENT COEFFICIENT DERIVATIVE

When the vehicle has a roll velocity, the superposition of the local tangential velocity of the fin
panel on the free stream velocity produces a local angle-of-attack which is a function of spanwise
position, The local angle-of-attack produces a local force distribution along the fin. For three
and four fin configurations the total resulting force is zero, as shown previously. The moment pro-
duced about the longitudinal axis opposes the roll rate (see figure 3-6) and is a roll damping moment.
The local rolling moment at ; is,

11
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d1 = £F(&) (3-36)

The local angle of attack at ¢ is,

a(&) - tan! (!;_5)) (3-37)
But;
v(§) = -P#
Thus;
a(€) - tan™! (-EV_) (3-38)

For v .,Ps the local angle-of-attack is near zero, thus;

. P )
a(f) - - - (3-39)

In subsonic compressible flow the local normal force on an airfoil strip is found using equation 3-4.

F(5) - G oiqa<—')c(,:)d—' (3-40)

2

Where ¢,  is defined in equation 3-4. Knowing that,
20

y'~“-rt (3'41)

equation 3-18 gives

or

(1 -4%)
c(sy - C_’_.._._< S -5y r‘) (3-42)

15



Combining equations 3-36, 3-39, 3-40, and 3-42;

, o (-2) [0 )
L= £ - —_— == - 1=
d CNaoq< v)[ s Y T

Simplifying;

Na

Gy, A Pe, (1)

VS t

(3-43)

where L* is defined by equation 3-17. Applying equation 3-32 provides the local roll moment

coefficient,

CNao Pcr (1 -X)

dCsr = -
- Ar Lr Vs

Integrating over the exposed fin,

Cs -k J ‘ L+ 1) - £l 82 des

Tt
where;

1-A
pe, 1-MG,
A L VS

k = -

Performing the integration;

ks?
C T
Lt " 12a-»

Reintroducing k and simplifying;

pc, s

Cp=m 0= [(1+30) 82 4 4(1 + 20) st + 6(1 + A) r?]

T 126A LV

The roll damping moment coefficient derivative is defined as;

o
’3_7
T
<
ber) __._UL{
el

L ar -8 S ds

[(1+30)s244(1 +20) st +6(1 4+ A\ r?)

(3-44)

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)



Then, from 3-48,

c S

Coozm % 11430 52 +4(1+ 20 st +6(1 +2) 1) (3-50)
P 6L2 A

However, C, must be corrected for three dimensional effects using the Diederich correlation

a0
parameter. From the results of section 3.11, equations 3-1, 3-5, and 3-6, the subsonic roll damping
moment coefficient derivative for N fins is,

Nc S
C, =-—" [1+3%)s? 401 +2)) 51 +6(1 42 r?] (cN) (3-51)
P 6L2 '

In order to determine the roll damping moment coefficient derivative in supersonic flow, the
angle-of -attack distribution of equation 3-37 is introduced into the equations of reference 1 in
appendix A. The resulting rolling moment is divided by PL, -2V to form the roll damping derivative.
To insure that C. is truely a linear derivative, the value of » = must be near zero. To provide
this condition we passume

o (3-52)
-k -
2V
where k is any defined constant; and,
k<< 1

From equations 3-37 and 3-41:

_ [ p(s - f‘)}
: ctanb o —
max v

Using equation 3-52,

R [ 2k (s - rg] 3.5
Toax v tan -—T (3-53)

r

For the slender, finned vehicles under consideration:

2(s 4 rl)
— "

r

Thus

2 = tan™! (4k) (3-54)

mAX

17



To satisfy the criterion,

2z tan a
equation 3-54 dictates that,

k 1073

Using the equality, the angle-of-attack variation becomes;

(3-55)

This variation is introduced into the equations of reference 1 and a value of the damping C. is de-

termined. The corresponding C. , is found by,

For N {ins;

C; =1000NC; (3-56)

P
3,20 BODY NORMAL FORCE COEFFICIENT DERIVATIVE

3.21 BODY NORMAL FORCE DERIVATIVE

The axisymmetric body of a slender vehicle is generally a combination of a nose shape, circular
cylinders and conical frustrums. The nose shape is usually conical or tangent ogival, See figure
3-7. It is required that there be no discontinuities at the interfaces of these components. This
allows integration over the entire length of the body. The effect of compressibility in subsonic flow
will not be considered in this analysis. From a static stability point of view, this is a conservative
assumption since the normal force coefficient derivative increases near mach one.

For a slender axially symmetric body in subsonic flow, references 15 and 4 derive the steady
state running normal load as, .

n(x) = FV; [A(x) w(x) ] (3-57)
Ax

Where A(x) is the local crossectional area of the body. The rigid body downwash is a function of the
angle-of-attack is constant in x,

w-Vsin o

18
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For angles-of-attack near zero
W= Va

Then equation 3-57 becomes,
a dA(x)

n = ’V2
(x) = ¢ dx

From the definition of normal force coefficient derivative,

nix)

(x)
Cy(x) =22t -
qgA 1
r 5 Il Vg Ar
Applying equation 3-60 to 3-59,
2a dA(x)

C T
N<X) A dx

Integrating over the length of the body,

Thus,
2a (ACL ~
Cy = — [A(L) - A(DY]

T

By definition of normal force derivative,

equation 3-63 provides,

Cy, = - [ACLy) = A(O)]

a
r

(3-59)

(3-60)

(3-61)

(3-62)

(3-63)

(3-64)

(3-65)

Immediately equation 3-65 indicates that Cy is independent of the body shape as long as the independ-
ent of the body shape as long as the integration of equation 3-62 is valid over the body. The
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body components being analysed are slender and have no discontinuities in their crossectional
area or its derivatives. Thus, equation 3-65 may be applied to them. Since the nose tip is assumed
to be a sharp point,

A(0) =0

Thus, the body normal force coefficient derivative in subsonic flow is;

(c )B: 2 = (3-66)

Reference 27 presents a very useful method for determining the normal force coefficient
derivative of pointed bodies of revolution in supersonic flow. The second order shock expansion
theory approximates the body by a set of tangent conical frustrums. See figure 3-8. The frustrums
are each analyzed using an exponential series expansion for the pressure distribution

P=_P 4Ce 7 23 (3-67)

where P,, C, and S are constants for a particular frustrum. By applying the boundary conditions
at the leading edge of the frustrum and at infinity while retaining only the first series term the
pressure distribution becomes;

P=P - (P -P)eT (3-68)

where,;

- <?*P> X%
f 5s), (P__P,) cos »,

s = surface coordinate .
P_ = pressure on a cone having the same slope as the frustrum
» = angle between surface and longitudinal axis

indicates the value is taken at the front edge of the current frustrum.

—_
~
[N
1]
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The notation of reference 8 is used and defined to simplify correlation between this presentation
and that reference. The value of (AP/"AS)2 is determined by an approximate solution of the general-
ized characteristic equation in axially symmetric flow,

;}i~>\_3_5: 1 i‘ Y .’ab +Sil\/i$illt (3—69)
ds #s cosu AC, cosu oC, r
where
2/,
L= e
sin 2u
C = First Characteristic Coordinate
1« = Mach Angle

local radius

-
1

- = ratio of specific heats

The solution is;

B, /0 B, (i S
(EE.) -2 [ Lsine, -sind, | 21 (—P> (3-70)
dsf T Q ! 2 B 0 VA

where;
. 2
B oM
2M?2 - 1)
y+1
1. (== D2 |26
P | 2 B
S = — —_—
M A |

2

( ), indicates the value is taken at the trailing edge of the preceeding frustrum.

(), indicates the value is taken at the trailing edge of the current frustrum.

The value of (-P/ ‘«S)1 is just (=P ‘&s), of the previous frustrum.

. _P
(ﬁ) N GCRAEY (’*’ (3-71)
sk Pc - P2 EVA

By applying equations 3-68, 3-70, and 3-71 to each element in succession, the pressure distribution
over the tangent body is determined. The local nondimensional normal load is given by;
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7 d(P/P))
A= 1(_)‘_) 2 J cos ¢ d¢ (3-72)
aqgd yM27 Sy da

where
¢ = Circumferential Angle.
d = Local diameter.

The derivative of the pressure distribution is evaluated by differentiating equation 3-68 with respect
to angle of attack; and then applying physical restraints to simplify the result.

d(P/P)) d(P_/P) A, d(P /P)
1 ey DR 2 T ) (3-73)
da da )\1 da
Using 3-73 in 3-72 and simplifying,
>\2
A=(1-e" (tan §) (CN> b2 e A (3-74)
/tex >\1

Where "tex" indicates the value of an equivalent cone. The running load distribution is determined
by successive application of equation 3-74 to the tangent body elements. The value of A, for the
initial cone is just,

Ay = (tan 3) (CN)‘CV (3-75)

Where "v'" and "tcv' are the values at the initial equivalent cone vertex. The normal force coefficient
derivative is determined by the longitudinal integration of the running load distribution.

(), 227 f A rdx (3-76)

where;

A

1]

, = Body Base Area.

1

Body Length.

The initial cone and equivalent cone characteristics are obtained from references 24 and 25; and are

presented in tables 3-1 thru 3-3.
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. Tables3-1-Values of M at Initial Cone Surface

M 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 217.5 30.0
1.5 1.4866884 | 1.4579318| 1.4197316(1.374857911.32489921.2707392|1.2127162{1.1506488 | 1.0837313 |1.0100703

1.75] 1.7340335| 1.7004643| 1.6568043|1.6064462|1.5513276 |1.49254841.4306418 |1.3657361|1.2976505 [1.2259024|1.1495789 |1.0669388
2.0 1.9808615| 1.9415254| 1.8912335(1.8340453|1.7721933{1.706883711.6386764 1.5677572|1,4940884|1.4174680| 1.3375202 |1.2535953
2.5 2.4729472 | 2.4193976 | 2.3528628 |2.2788768 {2.2001554 |2.1179422|2.0327606 | 1.9448503 | 1.8543543 |1.7613748| 1.6659616 | 1.5680718
3.0 | 2.9627600| 2.8913832| 2.8048038|2.7101402 |2.6103929|2.5067511|2.3997895 |2.2899646 | 2.1777409 {2.0635830| 1.9479054 | 1.8310067
3.5 3.4500939 | 3.3571597| 3.2467499|3.1275136 |3.0025569 |2.8731152{2.7400668 | 2.6043443 | 2.4669130|2.3286833 | 2.1904152 | 2.0526629
4.0 3.9347700 | 3.8164543 |  3.6783916 3.5305680|3.3761469 |3.2166972 | 3.0537628 | 2.8889908 | 2.7239783 |2.5600783 | 2.3983186 | 2.2393739
4.5 4.4166246 | 4.2690580( 4.0994611 |3.9189007 |3.7307750|3.5374323 | 3.3414321 | 3.1453333{2.9513677 {2.7612386 | 2.5760876 | 2.3965344
5.0 | 4.8955305 | 4.7148078| 4.5097079 | 4.2921847 |4.0662668 | 3.8355932 | 3.6040616 | 3.3752078 | 3.1517935 |2,9356870| 2.7279347 | 2.5289133
6.0 5.8440686 [ 5.5852474| 5.2968787 | 4.9927832 |4.6801702 |4.3668118 |4.0597311 | 3.7640785 | 3.4829712 {3.2178167 | 2.9687934 |2.7352580
7.0 | 6.7796857 | 6.4269172| 6.0384888(5.6318010|5.2204850 |4.8178049 |{4.4335119 |4.0731395 | 3,7388047 |3.4303400{ 3.1462500|2.8843548
8.0 7.7018785 | 7.2390804 | 6.73371456.2103924 }5.6922672 {5.1981506 | 4.7389543 | 4.3187765 | 3.9373126 |3.5918831 | 3.2787858 |2.9940481
10.0 | 9.5046400 | 8.7725147| 7.9851813|7.1977580 |6.4568340 {5.7867581 |5.1933727 | 4.6723717|4.2153623 |3.8131019 | 3.4569163 | 3.1391940
12.0 {11.250395 |10,182053 9.0582962 | 7.9858490 |7.0291308 | 6.2043028 | 5.5019835 | 4.9042678 | 4.3926921 |3.9510537 | 3.5659952 | 3.2267626
15.0 |13.759139 {12.063489 10.368285 |8.8727901 |7.6324201 |6.6228697 |5.7997803 {5.1216448 | 4.5552592 {4.0753516 | 3.6629457 | 3.3037471
20.0 |17.637850 [14.613515 |11.919518 {9.8177450[8.2281047 |[7.0145241 [6.0679293 (5,3119812 |4,6946790 [4.1802823 | 3.7437969 |3.3673365
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dCN
Table 3-2-Values of

for Equivalent Cones

da a=0

M > 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
1.5 |1.9770483 (1.9336127 |1.8821566 |1.8280992 |1,7735619 |1.7187816 | 1.6630926 [1.6057182 {1.5462941 |1,4852936

1.7511.9731742 | 1.9258447 | 1.8737533 |1.8224578 | 1.7730646 [1.7243971 | 1.6746400 |1.6223425 |1.5666956 |1.5075064 |1.4451701 | 1.3808820
2.0 1.96902871.9180672 |1.8661051 (1.8183423 {1.7742540|1.7310117{1.6859216 |1.6372641 |1.5842135 |1.5265736 |1.4645815 [ 1.3988695
2.5 11.9602967|1.9036740 | 1.8548454 )1.8161039 |1.7820973 |1.7472553 | 1.7083329 | 1.6638860 |1.6134668 |1.5571606 |1.4953496 | 1.4286279
3.0 |1.9514206|1.8917127{1.8493550 |1.8202950 |1.7941549 |1.7645092 | 1.7287097 |1.6859461 |1.6362061 |1.5798551 |1.5174588 |1.4497109
3.5 |1.9426977|1.88260751.8487600 |1.8282076 |1.8074148 |1.7806466 | 1.7461812 |1,7037859 |1.6537994 |1.5968132 |1.5335317 |1.4647351
4.0 11.9343213)1.8763907 |1.8516843 |1.8377630 |1.8203259 |1.7949749 | 1.7608321 [1,7181330 |1.6674853 |1.6096523 {1.5454397 |1.4756774
4.5 [1.9264473|1.8728601 |1,8568202 |1.8477350 |1.8322685 |1.8074272|1.7730368 |1.7296967 |1.6782310 |1.6195188 [1.5544309 |1.4838272
5.0 [1.9191785 |1.8715909 |1.8632046 |1.8574765 |1.8430453 |1.8181556 | 1.7832011 [1.7390731 |1.6867491 |1.6272149 |1.5613461 | 1.4900257
6.0 |1.9066985|1.8741557 |1.8772933 |1.8752450 (1.8611884 ;1.83529401.,7988073 [1.7530357 |1.6991506 {1.6381839 |1.5710540 | 1.4986224
7.0 (1.89720251.8808308 |1.8911403 |1,8902959 |1.8754007 |1.8479983 |1.8098978 |1.7626404 |1.7074620 {1.6453960 |1.5773421 |1.5041237
8.0 11.8906735(1.8893943 |1.9037986 |1.9027991 |1.8865235 |1.8575153 | 1.8179511 |1.7694507 {1.7132534 {1.6503536 |1.5816157 |1.5078364
10.0 |1.88541551.9075860 |1.9248544 |1.9216225 |1.9022129 (1.8703588 | 1,8284727 |1.7781460 [1.7205191 {1.6564935 |1.5868584 |1.5123524
12,0 |1.8876297 |1.9243231 |1.9408134 [1,9345246 (1,9122898 |1.8782443 | 1.8347389 {1.7832191 |1.7246910 {1.6599792 {1.5898124 |1.5148790
15.0 ]1.8980460 |1.9449893 [1.9576949 [1.9470431 [1,9215589 |1.8852675 | 1.8402027 |1.7875704 |1.7282369 |1.6629184 |1.5922831 |1.5169846
20,0 [1.9201707 [1,9690214 11.9743436 (1,9583547 (1.9295376 |1.8911343 | 1.8446777 |1.7910947 |1.7310758 |1.6652577 {1.5942431 |1.5186494
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Table 3-3-Values of Surface Pressure Coefficient for Equivalent Cones

M 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
1.5 | .0123382 [.0396615 |.0773864 |.1237983 |.1781167 | .2400313 [.3095450 |.3869791 |.4731538 |.5699888
1.75| ,0114414 |.0363287 |.0704289 |.1122701 |.1612014 | .2169225 |.2792900 |.3482459 |.4238192 |.50619022|.59585744.69405243
2.0 | .0107862 |.0339457 |.0655812 |.1044583 |.1500854 | .2022339 }.2607607 |.3255312 |.39641336 |.47330179.55616008 !.64511954
2.5 | .00982981 {.03058576 |.05895952 | .09413081 }.1358608 | .1840343 {.23852578 |.29915906 | .36571047 |.43791904 | .51550425 | .59818912
3.0 | .00913541 |.02824024 |.05451919 |.08747518 |.1270239 | .17310135 |.22558051 {.28426241 | .34888446 |.41912862 | .49463659 ! .57503078
3.5 | .00859242 | .02647476 |.05130225 | .08281755 |.12101992| .16585924 {.21719882 |.27481810|,33842506 |.40766937 | .48215440.56145326
4,0 | .00814929 |.02508810 |.04886536 | .07939344 |.11671212| ,16077021 |.21141454 |.26840424|.33142494 |.40010296 | .47401780 | .55271448
4.5 | .00777855 |.02396847 |.04696202 | .07678924 {,11350386| .15704447 |.20724252 |.26383657 | .32649601 |.39482976 | .46839852 | .54673311
5.0 | .00746199 |.02304657 {.04544267 |.07475691 |.11104466| .15423167 |.20413070 |.26046646 | .32289183 |.39100288 | .46435008 | .54245194
6.0 | .00694671 |.02162337 |.04318936 | .07182851 |.10757999) .15033841 |.19988673 |.25592332 | .31807966 |.38593639 | .45902778 | .53685730
7.0 | .00654427 |.02058479 |.04162143 | .06985826 {.10530922| .14783838 |.19720408 |.25308627 | .31510472 {.38282933 | .45578647 | .53347449
8.0 | .00622092 |.01980211 |.04048580 | .06847199 |.10374427| .14614133 |.19540407 {.25120009 | .31314047 [.38078911 | .45366854|.53127090
10.0 | .00573592 {,01871810 |.03898810 | 06670277 |.10179238] .14406008 |.19322118 {.24893118 | .31079304 {.37836321 | .45115963 | .52867228
12.0 | .00539243 |.01802077 |.03807635 | .06566456 |.,10067415| .14288515 |.19200207 |.24767463 | .30949966 {.37703244 | .44978975 | .52725561
15.0 | ,00503756 |.01736467 |.03726273 {.06476571 |.09972302| .14189705 |.19098631 |.24663061 { .30843098 [.37533703 [ .44866381 | .52609497
20.0 | .00468137 |.01677876 |.03657736 | .06403097 |.09895953| .14111270 |.19018534 |.24581285 | .30759370 {.37507865 | .44778536 | .52519347




3.22 BODY CENTER OF PRESSURE LOCATION

As in the subsonic body normal force coefficient derivative analysis, it is required that there
be no discontinuities between the body component shapes in order to allow integration over the en-
tire body.

By definition, the pitching moment of the local aerodynamic force about the front of the body
(x = 0)is;

mx) = xn(x) (3-77)
The pitch moment coefficient is defined as;
-— r—n_ -
C, CTAL (3-18)
thus,
c - xn(x) _
AL (3-179)
Since,
— n -
SR (3-80)
equation (3-79) becomes
X (x)
Cm(x) = ([:,N (3-81)

The value of the subsonic local normal force coefficient is given in equation 3-61. Using it in
equation 3-81,

_ 2ax dA(x)
Cm(X) = A_r—l-a—r dx (3—82)
Integrating over the length of the body,
2 0 rdaco
c - =2 ( X > -
- Ar Lr J; X P dx (3-83)
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This can be integrated by parts;

du = dX e———v

giving;

[N

C:2a
™ AL

r r

C 2a

Lo
&OA(lo) .-J. A(x) dx}
0

But, by definition, the integral term is the body volume, therefore;

r

r

_ (dA(x)

dx

A(x)

) x

[loA(lo) -V,

By definition, the pitch moment coefficient derivative is;

3C
Cm = \—m4
a ox a=0

Then; from equation 3-85,

(me)g“— TQLT [1,A(L) - V]

The center of pressure is determined by,

s

X
B r
(CN '1)
B

Using equations 3-65 and 3-87 in 3-88 and simplifying yields,

Xg

1,

29

vB
Ay

(3-84)

(3-85)

(3-86)

(3-87)

(3-88)

(3-89)



The volume formulae for cones, conical frustrums and circular cylinders are well known and
do not merit repetition in this paper. However, the volume formula for a tangent ogive is not
readily available and is given herein for the readers convenience. The volume of a tangent ogive
nose shape is determined in reference 12 as;

VB) g 121 1 A fy

_Blosive ¢ (f2 _)__3-(2__>(2¢_> in”! -

4, A o) -Sw (m-3) (4] s a1 (3-90)
3

where;

In supersonic flow, the method of reference 27 determines the pitch moment coefficient derivative as,

C = -27 J A rx dx (3-91)
A, d o

Where \(x) is found using equation 3-74. The center of pressure location of the body in supersonic
flow is then determined by the use of equations 3-76 and 3-91 in equation 3-88,

- - Cm
Xg = CN" d (3-92)

3.30 TAIL-BODY INTERFERENCE EFFECTS

The effect of interference flow between the tail and the body on the normal force aerodynamics
of a slender, finned vehicle can be expressed in terms of interference factors (reference 23).

(CN‘L)”B) = &) K (3-93)
C)yr, = 60, oers (3-94)
(C{JT(B): (CéT*)r Kreo) (3-95)

The interference factors are determined by applying slender body theory to the flow over the total

vehicle.
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3.31 TAIL IN THE PRESENCE OF THE BODY

Because the fins under consideration are of low aspect ratio, the value of K e is available
from references 7 and 17.

Reference 23 determines that the longitudinal tail center-of-pressure is independent of the inter-

ference flow.

X X (3-97)

T(B)y ~ 'T

3.32 BODY IN THE PRESENCE OF THE TAIL

The only portion of the body affected by interference flow is the portion between and behind the
fins. Subsonically, slender body theory, reference 3, determines;

(1 1
72 3-98
Koery = ~———= = ¥acn) (3-98)
1 - l)
p
where Ki(a) is given by equation 3-96. In supersonic flow, the interference effect on the body can

be strongly affected by the fin tip mach cone. The fin tip mach cone intersects the body when,
SR+ M (Lu) >4 (3-99)
Bm

Until this condition is reached equation 3-98 is still valid in supersonic flow. Once the fin tip
mach cone impinges on the body, the function becomes quite complex and is more easily presented
in the form of curves. Figure 3-9 shows the variation of the corrected interference factor. Using

the result of this curve, K, . ;
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(CN‘)H(T) i KQ(T) o (r - (3‘100)

By the extension of the fin lifting line into the body, reference 23 derives the subsonic variation
of the center-of-pressure location of the tail interference flow over the body.

— <.
XB(T) = 1T i ~ -, tan | | (3-101)

Where, s> r and 3R 2 4, In addition, slender body theory is applied subsonically to find X at

B(T
iR= 0. Slender body YB(T) values are obtained at intermediate .R values only for » = 1. F(()r) other
values of » and sweep the ¥, , curves are interpolated between the lifting line values and the
slender body value at @®&= 0. The shape of the interpolated curves is assumed similar to the A = 1
curve. Figure 3-10 shows the full subsonic KB(T) variation. In supersonic flow, the center-of-

pressure of the interference flow over the body is found by applying equation 3-92;
)
¥ LIPS (3-102)

B(T) (CNJB(T)

Reference 23 gives the body interference pitch moment derivative as derived from slender body
theory;

X
d c, — - Zmy
) - _8mpr [ f x cos™! <_‘j—>d (3-103)
"afpT) A 783 + 1) 5 mx - y
y

This is for fins with supersonic leading edges, m3 > 1. For subsonic leading edges, m3 <1 and,

43 d . X .@4» y
(C'“)s =__i"____f dy f S S (3-104)
A/B(T) i - 0 8 me -y
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Wherethe coordinate system has been given in figure 3-2, KB(T) is determined by using equation
3-100 along with either 3-103 or 3-104 in equation 3-102. The result is shown in figure 3-11.
3.33 CANTED TAIL IN THE PRESENCE OF THE BODY

The effect of fin cant at zero angle-of-attack is determined in a manner similar to the effect
at an angle-of-attack alone. Reference 23 determines the corresponding interference factor,

‘»'Tz + 2 I 72 + 2 - ‘!'2 - T+
Kpepy = | o1 2T s D ( . 2ze:b
a2 | 4 +2 72(7 - 1)2 2,1 (1t - 1)

2
L (a2 <sin‘1 72 _ 1) A <T2 - 1>
207 - 12 2,1 (7 - 1) 2,1
2
L8 s ( : 1) (3-105)
(T _ 1)2 27

No center of pressure value need be considered for the canted fin in the presence of the body

since only the roll moment derivative is considered.

3.40 TOTAL NORMAL FORCE AERODYNAMICS

The total normal force coefficient derivative is the sum of all the components,

G (G G, G, (3-106)

The overall center of pressure is the solution of the moment sum of the components.

<. YB (CN“)B + XT(B) (CN")T(B) + XB(T) (CNJ)B“_) (3_107)

C

Ny

The value of total Y is zero. The total C{s value is determined from equation 3-95,

3.41 PITCH DAMPING MOMENT COEFFICIENT DERIVATIVE

When the vehicle has an angular pitch velocity, the superposition of the local pitch velocity at
the fins on the free stream velocity produces a local angle of attack which is constant across the
fins. See figure 3-12, The moment produced by the induced force is;
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where;

But,

and,
.

For v >»v,

<<

the local pitch velocity is,

v = q{(&x)
Combining equation 3-108, 3-109, 3-110, and 3-111 and simplifying;

- (CNﬂ)r(m (A2 A_ g (%)

Knowing the definition of pitch moment coefficient, equation 3-178,

¢ (O, S ()

r

The pitch damping moment coefficient derivative is defined as,

Thus, using equation 3-113 in 3-114.

(3-108)

(3-109)

(3-110)

(3-111)

(3-112)

(3-113)

(3-114)



(3-115)

Equation 3-123 is equally applicable to three and four fin configurations since the tail normal force
derivative is corrected for dihedral effects.

3.42 ROLL DAMPING IN THE PRESENCE OF THE BODY

Any tail body interference factor may be expressed as the ratio,

str
j a (&) e(£) dg
K=" (3-116)

str
f ay(£) e(£) df

(See figure 6) where;
1,(£) = the angle-of-attack variation over the fin in the presence of the body

1,(£) = the angle-of-attack variation over the fin alone.

Reference 23 gives the value of 4 () for a tail-body combination at an angle of attack, , as;

s (& zarlay (3-117)
1 é_z
where o is the angle of attack at the body surface. For the case of the tail-body combination at an

angle of attack,

. Ps
lo(g) = —_v_
and
P
=-3 (3-118)
Then, equations 3-39, 3-117, and 3-118 give,
3
a(ey=-F <_~7+‘—> (3-119)
V 52



Therefore, the roll damping interference factor, Keemy 2 becomes

Kk - ’ (3-120)

Simplifying;

f\+r l’f) d§
& (3-121)

kR(B) =14

Integrating equation 3-121 using the chord variation given by equation 3-42 yields,

T =X 1 -~
- i In~
T T -
keegy = 1+ (3-122)
(T+ D (-2 (-2 (r3 - 1)
2 3(r - )

The roll damping moment coefficient derivative can then be expressed as,

(©), 0, = (€2) ¥eem (3-123)

Where LI is given by equation 3-122,

4,00 AXIAL FORCE AERODYNAMICS

The only coefficient dependent on the aerodynamic forces acting parallel to the longitudinal
axis of the vehicle is the drag coefficient. Drag forces arise from two basic mechanisms, skin
friction and pressure distribution. Since both mechanisms, and their interactions, are extremely
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complex, most practical theoretical drag computations must be tempered with statistical and
empirical data. The majority of the equations derived in this section are either theoretical gen-
eralizations of statistical-empirical data or direct curve fits of experimental results.

4.10 SKIN FRICTION DRAG

The skin friction coefficient is defined as the skin friction drag of a plane surface divided by
the dynamic pressure and the wetted area of the surface.

«
Dfric!ion
C. -

fTTgA, (4-1)

4.11 INCOMPRESSIBLE FLOW SKIN FRICTION COEFFICIENT

The skin friction coefficient for incompressible flow can be expressed in terms of the reynolds
number, see figure 4-1, For laminar flow, their relation has been established both experimentally
and by theoretical boundary layer considerations, reference 6.

1.328
C[ = ——1/? (4-2)

For reynolds numbers greater than about 5 X 10° the boundary layer flow becomes transitional and

then turbulent. No good theoretical solutions have been found for turbulent flow. Figure 4-1 shows

the experimental data for turbulent skin friction. Schoenherr applied the theoretical boundary layer
work of von Karman to the experimental data and established the turbulent flow relationship;

log (R_C,) - 0.242 (4-3)

v’/C_f

Hama formed a simpler formula which agrees with equation 4-3 within +2%.

1
c, - (4-4)
(3.46 log R, - 5.6)2

The form of the transitional curve may be approximated by subtracting an increment from equation
4.4. The increment has the form

AC, = Rh (4-5)

Based on experimental data Prandtl indicated thatk = 1700. This fact, as well as other possible
transitional curves are shown on figure 4-1. Combining equations 4-4 and 4-5,
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Table 4-1
Approximate Surface Roughness Heights of
Physical Surfaces

Type of Surface Ap}%g’;g:;te Rgs in mils
Surfaces like that of a "mirror" 0 0
Surface of average glass 0.1 0.004
Finished and polished surfaces 0.5 0.02
Aircraft-type sheet-metal surfaces 2 0.1
Optimum paint-sprayed surfaces 5 0.2
Planed wooden boards 15 0.6 )
Paint in aircraft-mass production 20 1
Steel plating — bare 50 2
Smooth cement surface 50 2
Surface with asphalt-type coating 100 4
Dip-galvanized metal surface 150 6
Incorrectly sprayed aircraft paint 200 8
Natural surface of cast iron 250 10
Raw wooden boards 500 20
Average concrete surface 1000 40
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) 1 1700 (46)
‘(346 logR, -5.67 R i

C

forR > 5 = 105,

The above considerations are for surface roughness sizes that are submerged in the laminar
sublayer. For appreciable rough surfaces the turbulent skin friction coefficient is shown in figure
4-2. The "smooth" curve is followed until the critical reynolds number corresponding to the rough-
ness is reached.

.

R -1.039
(R),, =51 (L—> (4-7)

For reynolds numbers higher than the critical value, the skin friction coefficient can be considered
independent of reynolds number, reference 6.

R .2
C, = 0.032 <L—’> (4-8)
The flow is considered to be turbulent throughout the reynolds number range since the roughness
trips transition even at low reynolds numbers. Table 4-1 is a list from reference 6 of the approxi-
mate average roughness heights for physical surfaces.

4,12 COMPRESSIBLE SUBSONIC VARIATION

In compressible subsonic flow reference 6 indicates that the laminar skin friction coefficient
remains unchanged while the ''smooth' turbulent value varies as,
C, =C, (1-.09M) (4-9)

f

[

and the change for turbulent flow with roughness is,

C, =C,(1-.12 M2) (4-10)

4.13 SUPERSONIC VARIATION

Theoretical solutions in reference 16 indicate that the supersonic variation of the Laminar skin

friction coefficient is;

c ¢ (4-11)

fe "1 4 .045 M1/

This has been confirmed by experimental data, reference 6. Experimental data, reference 6, for
the variation of "smooth" turbulent C, in supersonic flow indicates a strong dependence on the wall

c
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heat transfer as well as mach number, figure 4-3. The wall temperature alternatives shown are
the two possible extremes. The actual condition would probably be closest to the recovery tempera-
ture. The curve fit of figure 4-3 is,

Cf
c, = — * (4-12)
c (1 +kM2),58

where k= .15 for no heat transfer and k = .0512 for cooled wall.

According to reference 10, the turbulent skin friction with roughness drops off according to the
relation,

c - S (4-13)
fo 1, 18M2

However, this equation must be used with care. It is apparent the value of C, calculated for the

flow with roughness should never be less than the corresponding smooth valuec .

4.14 DRAG COEFFICIENT
Once the skin friction coefficient is determined, the skin friction drag coefficient, as based on
reference area, is found by,
AW
CDf = Cfc e (4-14)
For the fins, the wetted area of each fin is twice it's planform area. Thus, the tail skin friction
drag coefficient is,

D
ft

A
C, =2NC, <A_T> (4-15)

T

The body skin friction coefficient must be corrected for the fact that the body is not a flat plate,
reference 6.

AW
c - {“ﬁ] c, = (4-16)

4,20 PRESSURE DRAG

4.21 TAIL PRESSURE DRAG

The pressure drag on a fin in subsonic flow arises from three basic contributions: a finite
radius leading edge; thick trailing edge; and the overall fin thickness.
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A finite radius leading edge can be considered a circular cylinder in cross flow that effectively
has no base drag. Figure 4-4 from reference 6 shows the variation of the total drag coefficient of
an infinite circular cylinder perpendicular to the flow and the variation of its base drag. The dif-
ference between these two curves is the drag coefficient of the leading edge. This difference is
plotted in figure 4-5.

Subsonically up to M = .9 this curve is fitted by,
ACy = (1 -MH-4T _ 1 (M<.9) (4-17)
Between .9 <M < 1, the curve is essentially limear.
6C,=1-1.5M-.9) (9M<D (4-18)
Supersonically, the curve may be approximated by a high order polynomial, reference 6.

502 N .1095 . .0231 M> 1) (4-19)

AC, = 1.214 - -
M2 m Me

From cross flow theory, reference 6, the drag coefficient of a cylinder inclined to the flow is,

C
EDé =cos’ ‘ (4-20)

1
The frontal area of a typical leading edge is;

A_=-2L

LE r

LE 'L
the length can be expressed in terms of the span,

S

LLE B cos l"L
thus;
A 2Sr
LE _ L
T - A cosl (4-21)
From equations 4-20 and 4-21, the total leading edge drag of N fins becomes,
C N ) B (4-22)
DLT =2 A cos® [ ( CD)

where AC, is obtained using equations 4-17 thru 4-19.

The trailing edge drag is two dimensional base drag and can be expressed in terms of the cor-
rected skin friction coefficient, reference 5, for incompressible flow.

c - 0.135 (4-23)

BTVC_fB
0
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where;

C
Cfﬂ = 2 Cf (h—> (4'24)

r

For subsonic compressible flow, this may be corrected using the prandtl factor for swept wings,
reference 6,

S — (4-25)
/1 - M? cos? I,

-

However, in order to maintain a finite value at
M2 cos? [ =1
the prandtl factor is corrected to,

P, - ! (4-26)

where K is a constant to be determined from the value of CDB atM = 1, Also, for compressible flow,
equation 4-24 becomes, T

C
CfB =2 Cfc <¥1—> (4-27)
After correcting to the reference area, the subsonic trailing edge drag coefficient for N fins is,
135N\ —
A
c. = d (4-28)

T 3/C, K _M? cos? r

Reference 11 gives a curve for the two dimensional base pressure coefficient at supersonic speeds
figure 4-6. This is essentially the base drag coefficient refered to the base area. An analytic ex-
pression which remains well within the cross hatching is,

1. .52Mb1e
M2

Py

But, this must be corrected for possible boattailing of the fin, reference 6.

-1.19
p . _1-.52M (4-29)

B~ 2
C i M2
1 4+18 —
+ fc hr
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For N fins, the supersonic trailing edge drag coefficient, as corrected to the reference area is then,

AB
N(1 - .52 M71-19) X—'
: (4-30)

By £ \2
1.18C, (—r> M2
e hr

In order to determine the constant K, equations 4-28 and 4-30 are set equal at M = 1.

G

A'3F ABn
35N | — N(1 - .52){—
Ar Ar

3 v 2 T t \?
/C((- K - cos b & .18, (}.L)}
-\ h

where the superscript * indicates sonic values, Solving for K,

t \? !
|:223 . 4.02 C:‘ (Fﬂ ,
$2 0. - (4-31)

This is used in equation 4-28 to evaluate the subsonic compressible trailing edge drag.

This method of maintaining finite values of the prandtl factor at mach one is used throughout

the remaining derivations,

From reference 6, the drag due to thickness of two dimensional airfoil in compressible sub-

sonic flow can be expressed as,

120{L}
G, -C |4 (E) ; (/1_5;_2.)_} (4-.32)

For a three dimensional fin, based on the reference area this becomes,

A t 120 <;>4
G < Ci. <—> 4(—') g : (4-33)

~\3
1_M2c052{‘)

-
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Correcting it for a fin sweep and introducing the correction constant in the prandtl factor,

t 4
120 (——r> cos? [
AL t c, ¢
¢, ¢ <_> 4<_>cos . (4-34)

(K - M2 cos? rc)3'2

The value of the thickness drag of finite fins at mach one has been determined and presented in
reference 6. A curve f{it of the result is, *

£ \5/3
C, - 115 <_> [1.61 N W I .578] (4-35)
TT -

c
r

where

Solving 4-34 for K,

K - cos? FC + < (4-386)

Equation 4-35 is used in 4-36 to determine K. The result is used in the following equation to de-
termine the subsonic tail thickness drag. For N fins, equation 4-34 is;

£ V¢
30 <——r> cos? Fc—‘
c
! (4-37)

AL t
C, =4NC, e (——') cos [’ + 3
W e (X W eosr )]

At supersonic speeds the effect of a finite radius leading edge is found by using equation 4-19 in
equation 4-22, The trailing edge drag is calculated using equation 4-30. The thickness or wave

drag, CDw , is computed by the method of reference 1 in appendix A.
T

The overall drag on the tail is the sum of the different contributions. In subsonic flow

: (4-38)
(CDT)T CDrT ’ CDLT * CDB + G

T TT
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At supersonic speeds,
(CDT>T - chT + cDL + Gy + Gy (4-39)

Equation 4-38 uses the results from equations 4-15, 4-22, 4-28, and 4-37 respectively. Equation
4-39 uses equations 4-15, 4-22, 4-30, and results of appendix A respectively.

4,22 BODY PRESSURE DRAG

The body pressure drag may be broken down into two contributions, for body and base. Accord-
ing to reference 6, the forbody drag in subsonic compressible flow may be written,

c . (4-40)

1.2
a, () :

Again applying the correction constant to the prandtl factor,

6A, C.

“B !C
C, = —— (4-41)
Pf3A (K- M6

From experimental data, reference 19, the forbody drag values of both ogives and cones are known,
figure 4-7. In the range of values that are of interest, 1 < f, = 10, these curves may be fitted by

the following equations.

(c;) 88 (4-42)

cone ) (fN + -7)1'29

ogive (fN + 1)2'22

Solving equation 4-41 for K;

- ° (4-44)
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Then

5/3
6.82A, C; (fy+ .12
=1+ - (4-45)
£2 A

B r

cone

6.82A, C; (fy - D?2)°"
c

= (4-46)

Kogive =1 3
£2 A

T

.

The subsonic compressible forbody pressure drag is found by using equations 4-45 or 4-46 in equa-

tion 4-41. For the nose A, and fNA should be used. For a conical shoulder A‘”s and fSA are

A A
proper.

The supersonic value is determined by the second-order shock-expansion method, reference
27, as explained in section 3.21 of this thesis. The axial component of the pressure distribution

is integrated around each element and then over the length of the body.

L T
c, 7_4 f J Psin o d; dx (4-47)
P )«M2
0 (¢}

where

P comes from equation 3-69
> = the local angle between the surface and the longitudinal axis

4 = Circumferential Angle.

The Base drag of a body of revolution in incompressible flow is presented in reference 5 as,

o . 0.029 (4-48)

where,

Correcting this to the reference area and for subsonic compressibility.

A
.029 <-3>
A
C — T

Dg
A 4-49
Je @) o
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Introducing the correction constant into the prandtl factor term.

AB
0.29 <.A_>
C, - ! (4-50)

B Aw
C, (=] (K-MH
c AB

From reference 11, for no fins near the body base, or for fins of zero thickness, the body base

pressure coefficient at mach one is

P; - 0.185
At mach one with h_/c_= 0.1,
P: - 0.30

See figure 4-8.

The results of reference 11 indicate that P, is roughly a linear function of fin trailing edge
thickness at a constant mach number. Therefore,

c ® [0.185; 1.15 h
DB'A_Y . + 1. ;l- (4-51)

g

Solving equation 4-50 for K,

[.029 @Y
A
K-1,.L Vo) (4-52)

Using equation 4-51 in 4-52 and simplifying

1
=1 -
+ W A, (4-53)
6.38 + 39.7 <—'>] C; —
Cr c AB

The subsonic compressible body base drag is computed by using equation 4-53 in 4-50.

References 11 and 6 both present curves of the base drag in supersonic flow. Figure 4-8 is
from reference 11. The free flight test curve is most representative of the variation. It is an ex-
ponential over an initial range and an inverse square over the remainder of the mach numbers. To
find the exponential, the free flight curve in figure 4-8 may be fitted in terms of the value at mach
one.
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C, =C, (088 .12 e”3-SBM ] (1 - MM ) (4-54)
B B

where M_  is the point where the two variations cross. Also, reference 5 gives the inverse square

variation as,

7<ﬁg>
A
C. - oMM ) (4-55)

B M2
If it is assumed the ratio of the value of CD at M= M_ to C* remains constant for all curves, (inspec-

tion of the curves in reference 6 indicates th1s 1s a good assumption) then the value of the critical

mach number can be found,

The value of C; is given by equation 4-51. In either subsonic or supersonic flow,
B

(CDT)B ) CDP : CDBB (4-51)

For subsonic values, equation 4-41 and 4-50 are used. In supersonic flow equations 4-47 and 4-54
or 55 are used.
4,23 TOTAL DRAG

The drag of the total vehicle is the sum of the tail and body contributions.
= (C C 4-5
G ( DT)T t ( DT)B ( 8)

No interference drag effects are considered.

5.00 COMPARISON WITH EXPERIMENTAL DATA

In an attempt to obtain as broad a range as possible without being voluminous, each characteris-
tic is compaired to the data from a different configuration. In some cases, the choice of configuration
was dictated by the availability of the appropriate data,

5.10 NORMAL FORCE COEFFICIENT DERIVATIVE AND CENTER OF PRESSURE

The windtunnel data of the Aerobee 350 sounding rocket, figure 5-1, are given in reference 14.
Figures 5-2 and 5-3 show the results of the present method as well as data points from
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reference 14. The maximum derivation of the theoretical ¢, values is 7.83% and the maximum
deviation of the theoretical center of pressure values is 1.18%. The degree of accuracy of the
windtunnel tests is indicated as about 6%.

5.20 ROLL FORCING MOMENT COEFFICIENT DERIVATIVE

The only roll forcing moment coefficient derivative data over a broad range of mach numbersthatare
available to the author are those of the single stage tomahawk sounding rocket, figure 5-4. The data for this
vehicle are unpublished at this time, but have‘ been provided by the test coordinator, reference 28,
Figure 5-5 shows the comparison between the theoretical result and windtunael data. No data are
available in the subsonic region. The average deviation of the theoretical C; is 7.54%. The
accuracy of the windtunnel data is about 5%. It is apparent, both from the wihdtunnel data and the
subsonic theory that the theoretical value at M = 1.5 is no good.

5.30 ROLL DAMPING DERIVATIVE

Reference 21 presents a full set of data for the basic finner test rocket, figure 5-6. It is the
only configuration for which roll damping moment coefficient derivative data are available to the
authors. Unfortunately, the range of the data is relatively small. Figure 5-7 shows the comparison
between the theoretical c. is 5.68%. Reference 21 does not indicate the degree of accuracy of its

p
data. No subsonic data can be found for C; .
“p

5.40 DRAG COEFFICIENT

Aerobee 150A, figure 5-8, drag coefficient data are available from reference 29. The theoretical
drag coefficient results are compared to the windtunnel data in figure 5-9. In order to duplicate
the test conditions, the test reynolds numbers were used to set up a Re vs. M curve, figure 5-10.
This curve was used in generating the theoretical data. The surface of the windtunnel model is
highly finished. From table 4-1, the appropriate surface roughness is about .01 mils. The equiva-
lent full scale surface roughness is .1 mils. The maximum deviation of the theoretical drag co-
efficient is 8.52%. Again no subsonic data are available.

5.50 PITCH DAMPING DERIVATIVE

There are no C experimental data available. The data taken in windtunnel experiments are a
combination of the pitch damping derivative and a time log derivative due to the rate of change of
angle-of-attack. There is no way to separate the two effects. Therefore, no comparison of the

pitch damping derivative can be attempted.
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6.00 CONCLUSIONS

On the basis of the comparisons in section 5, the method presented in this dissertation pre-
sented in this dissertation predicts the values of ¢, , X, Cy. s C;, and G, to well within ten (10)
percent of experimental results between mach 2 and 8. Although no comparison can be made for
C,, » the results of section 5-1, coupled with the dependence of C _ on (G, ), and X, , tend to

mq ?
indicate that the theoretical Cmq is also accurate to about 10%.

The lack of subsonic experimental data prevents any concrete conclusions to be drawn about the
accuracy of the present method at subsonic spteds. However, the figures in section 5 show that the
subsonic variations of all the compared characteristics are quite reasonably valued with respect to

the supersonic values.

In general, then, the method presented in this dissertation can be used to confidently pred{ct

the aerodynamic characteristics of slender finned vehicles.
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LIST OF SYMBOLS

Reference area
Length of airfoil strip chord
o

Wave drag coefficient - lA_
q

F
Lift coefficient - L .

gA

dCL/da (= =0)

Rolling moment coefficient = Mr
q AL

dc,/ds (& = 0)

Pitching moment coefficient = Me_
q AL

dC_/da (x = 0)

Local pressure coefficient

Length of root chord

Component of 1, parallel to the freestream
Portion of d, behind the fin-tip Mach cone

Drag force (parallel to freestream)

Lift force (normal to freestream)

Irterference factor

Reference length

Length of airfoil-strip leading-edge region chord
Length of root airfoil leading-edge region chord -
Length of center region and of center-region chord
Length of airfoil-strip trailing-edge region chord
Length of root airfoil trailing-edge region chord

Distance between the leading edge and the intersection of the Mach cone with the airfoil
strip

Length of local region surface
Freestream Mach number

Pitching moment about the reference axis
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LIST OF SYMBOLS (Continued)

M Rolling moment about the root chord

n Number of strips

n, Component of 1, normal to the freestream

P, Local static pressure

P_ Ambient static pressure

a, Freestream dynamic pressure )

r, dw/'di ratio

S Semispan length

X, Distance from the reference axis to the airfoil-strip leading edge in a streamwise direction
X Center-of-pressure coordinate measured from the reference axis

X Distance from the reference axis to the forward region boundary of a local region in a

streamwise direction

Y Center-of-pressure coordinate measured from the root chord
y Distance from the root chord in a spanwise direction

Ay Width of airfoil strip

2 Angle of attack (degree)

T Leading-edge sweep angle

It Trailing-edge sweep angle

r, T, Ragion boundaries sweep angles

7 Ratio of specific heats for air = 1.4

8 Fin cant angle

L, Leading-edge wedge half-angle in the streamwise direction
- Trailing-edge wedge half-angle in the streamwise direction
7 Inclination of a local surface to the freestream

b Mach cone semivertex angle

SUBSCRIPTS

B Body alone

B(T) Body in the presence of the tail

i Local region number

j Airfoil strip number
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LIST OF SYMBOLS (Continued)

SUBSCRIPTS

o Value at « = 0

T Tail alone

T(B) Tail in the presence of the body
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FIN

A COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC
CHARACTERISTICS OF FINS AT SUPERSONIC SPEEDS

BACKGROUND

Calculating the aerodynamic characteristics of the fins of a sounding rocket is one of the basic
steps in calculating the overall aerodynamics of a sounding rocket. Because sounding rockets fly
at supersonic speeds for the greater portion of their flight, the regime at these speeds is of particu-

lar interest.

Methods previously used for calculating supersonic fin aerodynamics (references 1, 2, 3, and 4)
are lacking in accuracy and applicability because of the many assumptions and approximations in-
herent in using them to reach a closed form or nearly closed form solution.

By using a high-speed computer to numerically solve basic theoretical equations, one may ob-
tain answers rapidly and as accurately as desired. The only restrictions to accuracy are the
assumptions inherent in deriving the basic equations. The theory found to be most amenable to pro-
gramming in Busemann's Second Order Supersonic Airfoil Theory as described in reference 1.

PROGRAM CAPABILITIES AND LIMITATIONS

Given a supersonic fin with chord plane symmetry, at a given Mach number, FIN computes as
functions of angle of attack ( . ) the following:

e Lift coefficient, C

e Wave drag coefficient, C_

e Pitching moment coefficient, C

e Center-of-pressure coordinate measured from the reference axis, X

e Center-of-pressure coordinate measured from the root chord, ¥

Since . as defined in the program is equivalent to the fin cant angle (3) at « = 0, the rolling

moment coefficient C is considered a function of .
FIN also computes as functions of Mach number the following:

e Lift coefficient slope, C_

e Wave drag at zero angle of attack, C,
e Pitching moment coefficient slope, C

e Rolling moment coefficient slope, C,
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e Center-of-pressure coordinate measured from the reference axis at zero angle of attack, X,

e Center-of-pressure coordinate measured from the root chord at zero angle of attack, Y,

The range of - is from zeroto ~__ , as determined by the user, in increments of 1 degree. The
program allows for a maximum of 100 Mach number points, the user specifying the range and
increment of the Mach number.

Since FIN has been designed for use with a four-finned vehicle, the output values of C, Cp»
C.. C s o, » and Cc, are for a pair of identical fins; the output values of C, and C  are for two
pairs of perpendicular fins. The values of ?,“\?, X,, and Y, apply only to a single typical fin,

Busemann's Second Order Airfoil Theory is applied subject to the restrictions outlined in
reference 1, pages 192 to 241, with special attention to Figures 10.3 and 10.28, However, the use
of the third-order terms in this program slightly enlarges the applicability shown in this reference.
Busemann's theory is applied to small streamwise airfoil strips, and the strips are summed in a
spanwise direction. In addition, the fin-tip Mach cone is accounted for by applying a correction
factor to the necessary portion of each strip. This correction-factor technique was obtained from
references 1 and 3. The fin-tip Mach cone correction may or may not be included at the user's

discretion.

Figure 1 shows the types of fins to which FIN is applicable. These configurations cover all
of the shapes normally used on sounding rockets and missiles. The program input pattern for each
type is given in the section on usage. A listing of FIN in FORTRAN IV is given in Appendix A.

AERODYNAMIC THEORY

Busemann's Second Order Airfoil Theory has been applied to two-dimensional airfoil strips

with the following assumptions:

e All parts of the airfoil surface are in supersonic flow and make small angles with the flow.

This implies low angles of attack.

e The leading edge is sharp. The trailing edge must be sharp for a double wedge fin or a
modified double wedge. For a single wedge and a modified single wedge, the effect of the
blunt base is neglected.

e The shock waves are all attached.
e Each region of flow over the surface acts independently of the others.
The basic local pressure coefficient equation of the Busemann theory is a third-order series

expansion:

P, - P, .os (1)
S 7 Kyn t Kyl v Ky - KL

(@]
il

L
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Figure 1-Fin Configurations
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where

lm

Kl (28.)
PR DS A 22
K, ( ) : 4
4 (2b)
‘ (, - M+ (2,2 -7y -5)M5 ~ 10(. - L)m* - 12M% 8
1 . 7
6 (2c)
If the flow- over the surface region inclined at », to the flow has been preceded by a single
compressive shock wave anywhere upstream in the flow, the value of X* is:
. G DM (5 - 3)M f A - M - 8] (3)

48

If the flow upstream of the region in question has contained only expansive shock-free flow,
K* = 0. 5 isthe inclination of the leading edge surface. Essentially, the first three terms of
equation 1 represent the first-, second-, and third-order pressures on the surface region respec-
tively. The K* term is the third-order irreversible pressure rise through the bow shock. The
index, i, indicates the surface for which the pressure coefficient is being calculated.

The pressure coefficient of equation 1 is applied to a typical airfoil region, including the fin-tip
Mach cone, by dividing the region into two portions at the intersection of the airfoil strip and the
Mach cone (Figure 2). A correction factor of 1/2 is applied to the local pressure coefficient for the
region within the Mach cone. The center of pressure of each portion is taken as the midpoint of
the length of that portion. By this means, equations are obtained for the local lift (Fll ), drag (Fdi ),

local center of pressure (X ), and, hence, the local pitching moment (M ):

i i




) 123
f
lﬁL
AIRFOIL
STRIP -
IW
MACH
CONE
Y \MACH
\CONE
e T e—
N\
XP, \ N
red,, >
N\ AIRFOIL
\\\ STRIP
REFERENCE
AXIS

REGION
BOUNDARIES

Figure 2-Mach Cone Correction Geometry

85



The airfoil-strip lift (Fl, ), drag (F, ), and pitching moment (M, ) totals are then computed by summing
] ]

the local characteristics.

F, - Z F, (8)
1L

b = ) R, (9)
6

(10)

=
o

i

=
_‘U

The strip rolling moment about the root chord is calculated from the airfoil lift and strip span-
wise position, y:

M = yF, (11)

The total characteristics over the entire fin are then computed by summing the airfoil strip

characteristics in a spanwise direction.

[ S, a2)

(13)

L)
o

1

"y
a.

Moo ) M, (14)
Moo= i”'i (15)

The forces and moments computed in equations 4 through 15 are actually divided by the ambient
dynamic pressure (q_ ) and strip width (ay). Thus, the associated coefficients are:
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c. - ——A—— (2 fins) (186)
) 2F, - Ay -
Cow = A (2 fins) (17)
2M - Ay
c, - _—‘:\—L_ (2 fins) (18)
4M, Ay
¢, = AL (4 fins) (19)

The center-of-pressure coordinates are calculated from the respective moments and the
appropriate lift forces.

=i
i
k-]
—
[\
=
~

To obtain the linear slope coefficients near « = 0 at a given Mach number, the values of C,
C, ,and c, are calculated at o = 1° and are taken as the slope values C_, C_, and C (all per de-
gree) The slope values per radian are obtained by the proper conversion of radians to degrees.
Thus:

CL(; . 180 (CL ) (22)
rad. v e = 1

e CH I (23)
c,,

rad. 130 ( 1!5 - 1) (24)

The zero angle-of-attack values of C, , ¥, and Y are simply their respective values at o = 0.

CONFIGURATION AND GEOMETRY CONSIDERATIONS

The user indicates the shape of the fin configuration by specifying the root chord length (Cr )
root airfoil leading and trailing edge region chord lengths (1, and 1., ), leading and trailing edge
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sweep angles (I, and[ ), region boundary sweep angles (I, and I",), and the fin semispan length

(s) (Figure 3). The program then computes the distance from the reference axis to the airfoil-strip
leading edge in the streamwise direction (X ), airfoil chord length (C), and the airfoil region chord
lengths (1, and 1) as functions of the spanwise coordinate of the airfoil strip.

r

X, y tanl cos : (25)
C - yftani; - tan )+ C (26)
1, = ;(tanl“l - tanl") + I (27)
I, = y(t'a-nfh.r - tanl, )+ 1g (28)

The width of the airfoil strip is determined from the number of strips (n) desired by the user.

S (29)

The airfoil strip crossection is assumed to be symmetrical about the chord line. The most
general crossection configuration is the modified double wedge (Figure 1a). The other three types
(Figures 1b, 1c, and 1d) are special cases of this basic shape. Figure 4 shows in detail the general
crossection, which has six separate flow regions. As can be seen in this figure, the surface region
lengths are determined by specifying the leading- and trailing-edge wedge half angles in the stream-

wise direction, 7 and 7.

Ly L " os L (30)
1. 3

L Ly cos ;1 (31)

b, = 1 = C-1, -1, (32)

7 Lo (33a)
/2 = _ 1 (33b)
Nyt = - oa (33c)
T E L ta (33d)
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Figure 4—Airfoil Angles
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o - (38e)

T DR (38f)
From these, the streamwise and normal components of the region lengths are calculated.

d = 1. cos 7 (1 =1 - 6)

1 1 1

(34)

n, - l“sin T, (1 =1 - 6)

The distance of the forward local-region boundaries from the reference axis are then determined

as:
Xpy T Xp, X, (35a)
xpy, ¢ Xt d, ) (35b)
Xpy © X, td, +d, (35c¢)
Xps X, * d, (35d)
Xpe X, ¢+ dy + dg (35e)

FIN-TIP MACH CONE CORRECTION

The Mach-cone angle (.) is a direct function of the Mach number.
1 . !
w - Arctan <—7) © Arcsin (V) (36)

For an airfoil strip at a spanwise direction y, the intersection of the strip and the Mach cone is a

distance 1, from the leading edge.

(S - y)ytani| + tan(90 - .) (37)

But, by trigonometric identities and the use of equation 37, this may be reduced to:

ly ° (S -vy) (tan!L + ) (38)

If 1, is greater than or equal to the chord length, there is, of course, no actual intersection and no

correction is necessary. If 1, is such that

C 1y, >2C-1;
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then the ratio of the portion of L falling behind the Mach cone to 1, is:

r Toorg T 1 (39)

Also,

r, o s oor Toor 0 (40)

If L, is such that

then the corresponding ratio for the middle regions is

(o, %‘_ - (41)
Also,
£, g < 1 | (422)
and,
r, r, 0 (42b)
If 1, is such that
C-1l;-1, 1,0
then the ratio for the leading edge region is
LU P LLT;_I_W_ (43)
Also,
r r r r 1.0 (44)

These ratios are the values used in equations 4, 5, and 6 for calculating the local lift, drag, and
center of pressure. In these equations, the pressure coefficient in the portion behind the Mach cone
is taken as half the value of the C, calculated by equation 1.
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