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ABSTRACT

This report investigates a graphical technique for creating distributed computer

programs and describes a prototype implementation which serves as a testbed for the

concepts herein. The type of programs under examination is restricted to those

comprising relatively heavyweight parts that intercommunicate by passing messages

of typed objects. Such programs axe often presented visually as a directed graph with

computer program parts as the nodes and communication channels as the edges. This

class of programs, called parts-based programs, is not well supported by existing

computer systems; much manual work is required to describe the program to the

system, establish the communication paths, accommodate the heterogeneity of data

types, and to locate the parts of the program on the various systems involved.

The work described in this report solves most of these problems by providing an

interface for describing paxts-based programs in this class in a way that closely

models the way programmers think about them: using sketches of digraphs. Program

parts, the computational nodes of the larger program system, axe categorized in

libraries and are accessed with browsers. The process of programming has the

programmer draw the program graph interactively. Heterogeneity is automatically

accommodated by the insertion of type translators where necessary between the

parts. Many decisions axe necessary in the creation of a comprehensive tool for

interactive creation of programs in this class. This report explores the possibilities
and elaborates on the issues behind such decisions.

This report describes an approach to program composition, not a carefully

implemented programming environment. However, section 5 describes a prototype

implementation that can demonstrate the ideas described ehrein. Readers solely

interested in the description of the composition system per se should read sections l,

4, 5, 6, and 7, and may comfortably omit sections 2 (past work) and 3 (underlying
virtual machine).



iii

TABLE OF CONTENTS

Page

ABSTRACT ....................................................................................................................... ii

1. PROBLEM STATEMENT AND BACKGROUND ................................................ I

1.1. Problem Description ............................................................................................ 1
1.2. Contributions of this Work .................................................................................. 3

1.3. Motivation and Context ....................................................................................... 4

1.3.1. A Scenario of Computation ........................................................................ 4

1.3.2. Requirements on Solutions ......................................................................... 5

1.4. Existing Partial Solutions .................................................................................... 6
1.4.1. Remote Procedure Call ............................................................................... 6

1.4.2. Distributed Languages ................................................................................ 7

1.4.3. Distributed Operating Systems ................................................................... 8
1.5. Problem Statement .............................................................................................. 8

1.6. A New Approach ............................................................................................... l l

1.6.1. Graphical Pipe-based Composition ........................................................... 12

1.6.2. Graphical Composition Considerations .................................................... 13

1.6.3. Terminology .............................................................................................. 14

1.7. System Decomposition ...................................................................................... 15

1.7.1. Graphical Editor ........................................................................................ 15

1.7.2. Network Description Language ................................................................ 18

1.7.3. Program Invoker ....................................................................................... 19

1.7.4. Execution Monitor .................................................................................... 19

1.8. Structure of the Report ...................................................................................... 19

2. MODELS FOR PROGRAM VISUALIZATION .................................................. 21

2.1. Introduction ....................................................................................................... 21

2.2. IPO Model for Visualization ............................................................................. 22

2.2.1. Output and Input Visualization ................................................................. 23



iv

2.2.2.

2.2.3.

2.2.4.

2.3. Past

2.3.1.

2.3.2.

2.3.3.

2.4.

Visual Data Construction .......................................................................... 25

Program Visualization .............................................................................. 26

Program Construction ............................................................................... 26
Work .......................................................................................................... 27

Models and Surveys .................................................................................. 28

Other Specific Works in Visual Languages ...... ........................................ 32

Other Graphical and Visual Programming Languages ............................. 39

Suirunary ........................................................................................................... 42

3. MODEL FOR THE VIRTUAL MACHINE .......................................................... 44

3.1. Introduction ....................................................................................................... 44

3.2. Overview of the Virtual Machine Model .......................................................... 44

3.3. Aspects of The Model ..................... . ................................................................. 45

3.4. Summary of Past Work ..................................................................................... 46

3.4.1. Dijkstra'sTHE System ............................................................................. 46

3.4.2. The Venus Operating System ................................................................... 47

3.4.3. The Provably Secure Operating System ................................................... 49

3.5. Details of the Virtual Machine Model ............................................................... 49

3.5.1. Object Hierarchy ....................................................................................... 51
3.6. The Model ......................................................................................................... 51

3.7. The Multi-machine Levels: 9-15 ....................................................................... 53

3.8. General Comments on Level Structure ............................................................. 55

4. FUNDAMENTALS OF PROGRAM COMPOSITION ........................................ 56

4.1. Introduction ....................................................................................................... 56

4.1.1. Review of Pipe-connected Programs ........................................................ 56

4.2. Semantics of Composed Programs .................................................................... 58

4.3. Message Formats ............................................................................................... 59
4.4. Communication Structures ................................................................................ 60

4.4.1. Procedure Call Emulation ......................................................................... 60

4.4.2. Coroutine Emulation ................................................................................. 61

4.4.3. Pipelining .................................................................................................. 61
4.4.4. Classification ............................................................................................ 62

4.5. Structure of Composed Programs ..................................................................... 63

4.5.1.

4.5.2.

4.5.3.

4.5.4.

4.5.5.

4.6. Parts

4.6.1.

4.6.2.

Parts .......................................................................................................... 63

Sockets ...................................................................................................... 66

Links ......................................................................................................... 67

The Boundary ............................................................................................ 68

Synopsis .................................................................................................... 68
Semantics ................................................................................................. 69

Port Mapping ............................................................................................ 69

Multiparadigm Parts ................................................................................. 72



V

4.7. Network Description Language .............. . ......................................................... 72
4.8. Invocation .......................................................................................................... 74

4.9. Summary ........................................................................................................... 76

5. THE PROGRAM DEVELOPMENT ENVIRONMENT ...................................... 78

5.1. Introduction ....................................................................................................... 78

5.2. Designing a Prototype ....................................................................................... 78

5.3. Visual Representations ...................................................................................... 79

5.3.t. Part Representation ................................................................................... 80

5.3.2. Boundary Representation .......................................................................... 81

5.3.3. Links Representation ................................................................................ 82

5.3.4. Socket Representation ............................................................................... 82

5.4. Development of Composed Programs ............................................................... 82

5.4.l. Development of a Program ....................................................................... 85

5.5. Envirorunent Manager Internals ........................................................................ 93

5.6. Summary ........................................................................................................... 96

6. EXTENSIONS FOR A DISTRIBUTED SYSTEM ............................................... 99

6.1. Introduction ....................................................................................................... 99

6.2. New Problems ................................................................................................... 99

6.2.1. Binding Parts to Machines ...................................................................... 100

6.2.2. Remote Invocation .................................................................................. 102

6.2.3. Accommodating Heterogeneity .............................................................. 102

6.3. Summary of Principles .................................................................................... 105

7. CONCLUSIONS AND FUTURE WORK ............................................................ 106

7.1. Conclusions ..................................................................................................... 106

7.2. Future Work .................................................................................................... 107

7.2.t. DPCS as an Interactive Shell .................................................................. 107

7.2.2. Debugging and Monitoring ..................................................................... 108

7.2.3. Additional Topics ................................................................................... 109

7.3. Summary ......................................................................................................... 110

LIST OF REFERENCES ............................................................................................. 111





1. PROBLEM STATEMENT AND BACKGROUND

1.1. Problem Description

The problem under examination here is the construction of very large computer

programs whose components employ multiple computers of diverse types. While not

new, this problem has become of interest given the large number of types of

computers now connected to common, high speed networks. There axe numerous

types of computers, e.g., yon Neumann, symbolic, vector, massively parallel, and

database, in common use today. No one type of machine is sufficiently rich in

expression, general-purpose, or fast enough to satisfy all aspects of modem

computational needs. The most sophisticated of computations need the resources of
several of these machines simultaneously. Yet, the technology and methodology for

creating such programs has always been clumsy, hard to use, and almost solely

available only to those with high expertise in the way computer systems work.

The purpose of this study is to examine a new approach to creating multimachine

computations. Our approach is to define a composition system that is capable of

generating very large programs, which we call applications, that are the combination

of computations developed and tested on the individual computers constituting the

larger system of computers. Each type of computer is specialized for a particular class

of tasks, and by combining programs on each into a single, cooperating computation, a

leap in the sophistication of the type of problem solvable by computers is possible. In

this report, we describe one approach that offers that leap.

The type of environment to which this work applies

characteristics:

is described by four

• Computers interconnected by communications networks.

• A computing environment with a wealth of existing software.

• A community of knowledgeable computer users using this environment to perform

theft computations.

• A wide diversity in the type of computing machines available.

The problem is to formulate a way in which the users of the systems can construct

computations that take advantage of the wide diversity of resources and, at the same

time, allow them to use much or all of the existing software. The solution must be of a

form that requires little special knowledge of the network, the operating environments

of the individual resources, or of distributed programming languages and techniques.

We do not propose our approach as the ultimate solution, but as an approach that

makes significant progress.

We divide the problem and our approach into three broad categories: inherent

problems, our choices, and artificial problems resulting from those choices. The three

inherent problems are as follows:



t) The model of computation problem. What model of computation best matches

the architecture of diverse networked computers we have outlined? We seek a
model that is a natural fit to the architecture.

2) The language problem. What programming language best suits the model of

computation we have chosen? We seek a language that matches the model and is

highly usable.

3) The mapping problem. How do we best map the language back onto the
architecture?

Corresponding to the three inherent problems are three choices made in the

course of this research. We acknowledge that these are not the only choices possible,

but are the one we chose to study. This work seeks to support the claim that these

choices are good ones. The choices, corresponding to the problems, are as follows:

1) Representation-transformation graphs. Representation-transformation (RT)

graphs are a common way of describing a computation in terms of how the data is

represented and what transformations take place to convert that data from one

representation to another. In RT graphs, there are two types of nodes:

representation nodes and transformation nodes. Representation nodes can be

made an implicit part of the arcs connecting transformation nodes without any loss

of generality. Data flow graphs [Davi82] are RT graphs with implicit

representation nodes.

2) Visual language. We choose a visual programming language for creating RT

graphs because RT graphs are inherently two-dimensional and only a visual

language can display that structure naturally. This motivation is elaborated on
later.

3) Node.to-program association. We choose completely self-contained programs

to correspond to the transformation nodes of the RT graphs and make the

representation nodes implicit. These choices allow the language to map directly

onto the networked computers environment. Nodes (programs) run on virtual

machines and the edges of the graph represent communication channels,

implemented by the network, between the machines. Benefits of this approach are
elaborated upon later.

Whenever choices for the solutions to inherent problems are made, a new set of

problems, called artificial problems, arise. Our choices generate a set of artificial

problems, mostly concerning the implementation of the solution choices to the

inherent problems. These new problems include, but are not limited to, the following:

1) Decomposition of the language into atoms. Though the only basic atoms of the

language are nodes and edges, others may be necessary to make the language
more usable and understandable.

2) Human factors. How can a visual language be constructed in a way that makes it

easy to use and the visual representation match the user's concept of how the

graph looks?



3) Structures for implementing the language. What data structures are needed to

represent the RT graph yet can also be used to represent the visualization of the

program?

4) Accommodating heterogeneity. Because the language must accommodate a

diverse set of computing resources, what mechanisms are necessary to describe

and accommodate that diversity? In particular, diversity appears as different data

representations, resource naming schemes, and methods for invoking

computations.

More artificial problems will arise when additional requirements are placed on the

design and implementation of this system for programming networked resources.

These four problems, however, are addressed in the course of this study.

We believe that the choices made for the solution of the inherent problems are

good ones because they provide a good match to the problems, thus introducing a

sense of coherence into our system. Other examples of architectures, languages, and

mappings exist that exhibit a similarly high degree of coherence. For example, yon

Neumann architectures, where the procedural languages for them, Fortran, Algol,

Pascal, and so on, are a good abstraction of the underlying architecture and hence map

cleanly onto the architectures. Likewise, data flow architectures and applicative

languages [Acke79, Acke82] are a good match for each other. This concept of

matching the computing environment with its inherent problems to the choices for

solution is a fundamental one necessary for the success of a programming system.

Having mapped out the research area and our approach, we now present a

statement of the goal of this work:

To explore a parts-based data flow paradigm as a way of programming

a distributed heterogeneous computer system whose nodes are a part of

a high-speed communication system.

Our approach is experimental:

We designed and built a prototype composition system to validate the

concepts, discover new ideas and principles, and explore the

limitations of our approach.

1.2. Contributions of this Work

The primary contributions and results of this work are as follows:

1) An understanding of the parts-based model of computing. Sections 4 and 6

elaborate this result. Our model of programming can express computations not

possible using other approaches.

2) Characterization of a visual parts-based programming language. Section 5

elaborates this result. The visual interface distinguishes this work from other

work in networked programming.
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3) A working prototype that demonstrates a high-level language for program

composition and validates the parts-based approach. The prototype is an

important piece of this work and is a usable and self-contained programming

environment that will serve as the basis for applying parts-based programming to

specific and real problem domains.

1.3. Moti_'ation and Context

1.3.1. A Scenario of Computation

A collection of computing resources connected by a network offers possibilities to

those who rely upon computing technology, such as practicing computational

scientists in physics (e.g. computational fluid dynamics) and chemistry (e.g. materials

sciences), that far exceed those offered by a single isolated computer. For example,

an advanced application may involve several distinct tasks, each responsible for a

specific part of the overall computation. Using a computational fluid dynamics

example, one portion may be responsible for assisting the user in the design and

modification of the airplane structure to be tested. Another portion may be

responsible for the generation of the simulation grid surrounding that computation,

with assistance from the user but using symbolic mathematics, possibly on a

specialized processor. A third portion may be responsible for the bulk of the fluid flow

simulation, c'alling on a fourth portion to obtain flight configuration information (angle

of attack, Mach number, etc.) from the user or from a flight regime database. A fifth

portion may be responsible for monitoring the progress of the simulation and

displaying results or partial results on a color graphics screen.

The hypothetical application described above demonstrates that a variety of

computing resources may be needed for applications that could be in common use

today if the software technology were available. A combination of symbolic

processors, user interface graphics machines, supercomputers, and general purpose

computers are necessary tbr advanced computational solutions. These resources

differ not only in their architecture and data representation formats, but also in the

style and languages used to program them. Some may use the traditional imperative

programming style, yet others may use functional, data flow, or data structures

oriented styles. The combination of language, style, and interface used to program a

machine is called its paradigm.

In the future, scientific applications will become even more complicated as parallel

architectures become commonplace. Parallel computers are an inevitability (a

compelling argument for this appears in an article by Denning [Derm86]); several

exist and are in common use today. Many of these machines offer a low degree of

parallelism which is most often used to enhance multiprogramming. Others, such as

hypercubes [Seit85], the Connection Machine [Hi1185], and the MPP [Batc85] offer a

high degree of parallelism but are not suited for all portions of a complicated

application. As more advanced and specialized architectures become available, the

need to take advantage of them, not as stand-alone resources, but in cooperation



with computationsrunning on more generalpurposemachines,will becomemore
acute.

Such a computing environment is not novel, and with the proliferation of
supercomputersit is becomingmore commonplace.At the Ames ResearchCenterof
the Nation'a.l Aeronautics and Space Administration (NASA), the computing
environment consists of vector supercomputers,parallel and massively parallel
computers, symbolic computers, and graphics engines, as well as traditional
uniprocessormachines.Applications are written in several dialects of Fortran and
LISP, in C, in assemblylanguages,in specializedvector languages,andin a variety of
object-orientedlanguages.

Hence, we base our decision to investigatecompositionof distributedprograms
from existing programs, as opposed to a more tightly integrated programming
approachbasedon remoteprocedurecalls or a new languagesuch as SR [Andr88],
on the requirementto accommodatethe wealth of existing software developedin
multiple paradigms in the computational sciences domain. Existing numerical
computation applications are often written in a highly optimized style for a particular

machine architecture, such as a vector processor, or are optimized for a particular

machine, such as a vector processors, or perhaps even a particular vendor's vector

processor. Restructuring and rewriting these codes will not only entail a vast amount

of work, but will likely result in a significant loss of efficiency on the machine for which

they were optimized.

The need outlined above indicates a problem. There is no existing technology that

allows a programmer to compose together, in a straightforward way, program parts

developed under two or more paradigms into a single coherent and complete

application.

1.3.2. Requirements on Solutions

Any solution to the need described above must account for the realities of the

environment in which it is used. Some ad hoc requirements on such a technology

include the following:

1) Existing software requirement. In the scientific computing domains, there is an

enormous wealth of software, the rewriting of which would require an enormous

expenditure. Many scientific computing laboratories continue to routinely use

codes that have continually evolved since being generated a decade or more ago.

Any system that seeks to advance the state of scientific computing by allowing

the creation of large multipart applications must allow existing software to be

incorporated.

2) Multiparadigm requirement. A single application must be able to integrate

program modules created in different programming paradigms.

3) Helerogeneity requirement. Although two computers cooperating in a single

application may have different data formats, any solution must allow them to



share results. The data generatedby one computer must be usable without

special consideration by any other computer.

4) Immutable program requirement. Some of the existing software in use in

scientific computing is "immutable." That is, it cannot be changed because it is

licensed or proprietary and the source code for that software is not available.

Hence, composition systems for scientific computing must have a mechanism for

incorporating unchangeable codes.

5) Ease of use requirement. Such a system as the one studied in this work will be

used by practicing computational scientists: physicists, chemists, biologists, and

engineers, as well as, but not solely, computing experts. The system must not add

undue complexity to the programming environment.

6) Ease of transportability requirement. Any system proposing to offer the ability

to compose together programs on several different types of machines must not

require a large a,nount of work to add a new system or type of system into the set
available to its user.

These new requirements add a new set of artificial problems to be solved in order

to assure that they axe satisfied.

1.4. Existing Partial Solutions

Some partial solutions to the distributed program composition problem do exist, in

particular, remote procedure caU and integrated distributed languages. These two are

discussed and compared to the list of requirements stated above.

1.4.1. Remote Procedure Call

One way to create distributed applications is with remote procedure calls (RPC),

as described in Nelson's thesis ['Nels81]. RPC allows the programmer to compose

larger programs from smaller procedures, and to assign procedures to various

machines that support the RPC servers. A proper implementation of an RPC system

includes stub and server generators, semi-automatic programs that facilitate the

creation of "stub" or proxy procedures that are linked into the user's main program

and translate the procedure call and arguments into a message passed to the RPC

server on the designated machine. Moreover, complete R.PC systems support the

automatic generation of the application-specific RPC server on the remote machine,

embodying the actual procedures written by the programmer and interface code that

translates incoming RPC requests from the subroutines into procedure calls. The

server must also handle return values from procedures, or at least synchronization
when the procedure call completes.

RPC satisfies the existing software requirement reasonably well given adequate

stub generators, since existing subroutines and procedures may be executed remotely

more-or-less transparently. Existing software, however, is not always packaged in

the form of procedures in the language supported by the RPC system; often it is

packaged as complete programs. R_PC accommodates the immutable program
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requirement, but at the subroutine level since immutable subroutines may be

"wrapped" into a server for remote execution. Whether RPC systems satisfy the

ease of use requirement depends almost entirely on the implementation of the support

software surrounding the stub and server generators. RPC satisfies the heterogeneity

requirement because it deals with programs at the procedure level in the same

manner as compilers. Hence, it is able to determine the data types of the arguments

to remote procedures (by looking them up in a symbol table) and generate the proper

code to translate from the local data types to the remote data types (in reality, this is

most often done by locally translating into a common network form and then remotely

translating from that into the target representation).

RPC does not meet the multiparadigm requirement in that the procedure call

mechanism itself does not. Procedure calls work best between subprograms written

in the same language and, though some manufacturers support cross-language calls,

many do not and the mechanism is ill-suited for accessing programs written in

paradigms other than imperative languages. This is incompatible with our goal to
accommodate diverse resources not available within a single machine. RPC works

best when the program using it starts as a single-machine program and then portions

are moved to some other machine.

RPC further suffers from a lack of properly implemented support systems, that is,

automatic stub generators and partitioning aids, often resulting in only custom RPC

facilities being used for a specific application, such as to support applications that run

on a supercomputer and use the graphics input and output devices available on high-

performance workstations.

A third difficulty with RPC in the scientific community is the lack of support for

global data. It is very common for numerical codes in use at the national research

centers to be coded in Fortran and make extensive use of global, or common, memory

to store large matrices of coefficients, partial results, and so on. To pass these arrays

from machine to machine as the application's program counter migrates from machine

to machine would place a heavy load on the networks. A modified approach would be

to cluster those routines sharing a section of global memory into a single large module

and run that module on the machine best suited to it. The use of global data in

scientific codes is partly a result of the use of procedure calls as the program

composition technique because both procedure calls and global data are a part of the

language, typically Fortran.

1.4.2. Distributed Languages

Another way to create distributed applications is by use of a special language for

describing them, such as in SR [Andr88], CSP [Hoar78], and other languages of the

type described by Andrews and Schneider [Andr83]. These languages suffer from

most of the same problems as RPC and may not meet the "multiparadigm

requirement" or the "existing software requirement" if they do not allow the

inclusion of existing program modules written in other languages. In fact, this class of

languages represents a new paradigm for programming, and does not provide a direct



means of accommodatingexisting paradigms.Any solution must allow programs
written in theselanguagesto beincorporatedintoanapplication.

It is feasible that a distributed programminglanguagemay, however, be used
solely to describe those aspectsof the computation that axe involved in the
communication and synchronization necessary for managing a distributed
computation,andnot beusedto performmuchor anyof theactualcomputationtaking
place. A similar technique is used for the control of a parallel and distributed
computationin a languagecalled ConcurrentC [Brow88a]; the ConcurrentC portions
managethe rendezvousbetweenserversand clients while moduleswritten in C and
Fortran implementthe computationperformedby the program.A similar approachis
taken in the schedulingof parallelprogramsin a systemnamedSCHED developedby
Jack Dongarra at the Argonne National Laboratory [Dong86]. In general, any
distributed programminglanguagebasedon a non-distributedor existing language
canbeusedin thisway.

1.4.3. Distributed Operating Systems

Distributed operating systems bear mention because they offer the possibility of

supporting distributed programming. However. because they are not programming

systems, they cannot be completely compared to the requirements. Notable examples

of such systems are the V kemel at Stanford [Cher84], the Mach operating system at

Carnegie-Mellon [Acce86], MOS at the Hebrew University of Jerusalem [Baro86],

and LOCUS at UCLA [Walk83]. These systems have contributed much to the

knowledge of how distributed programs can be created, but do not implement a

complete programming environment because they do not specify the language in

which the computations are encoded. The client-server model used by systems such

as these represent another programming paradigm that can be used within a

composition system satisfying the requirements.

1.5. Problem Statement

Given the diversity of modem computing environments, how is it possible to take

advantage of the diversity and yet give it an integrated appearance without rewriting

existing application parts? Some applications can be developed now in this

environment, but doing so requires specialized knowledge, often known only to

systems programmers, and the techniques result in a loss of productivity for the
practicing computational scientist.

The objective is to devise a new paradigm for program construction that

accommodates all existing paradigms. Figure 1.1 shows an abstract representation of

the solution. The top level, labelled "Composition System," takes advantage of

programs written in several paradigms (displayed at the second level). In turn these

paradigms can be implemented in different machines (at the bottom level). Notice that

paradigms may exist (e.g. Paradigm #3) that are only implemented on a single
machine.
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User

Machine
#1

Machine
#2

Machine
#3

Machine
#4

Figure 1.1: Multiparadigm Composition System
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The goal of the researchin this work is to provide a uniform way of connecting
together parts of applications into larger applications.The methodologydescribed
herein provides a step towards network transparency,lesseningthe clumsinessof
using a network of computerswithout removingthe benefitsof having a diversity of
resourcesavailable.The heterogeneitymadeavailableto the practitioner is important
in thatit is at thecoreof thediversityofferedby thenetworkof computers.

Weassertthatimportantpropertiesof thecompositionsystemareasfollows:

1) Parts orientation. The abstractionof programsseen by the user while in the
designenvironment is one of parts of programsstored in a database.This is

analogous to the concept of modules as described by Pamas [Pare72] but is more

generalized. Parts are not restricted to be program subroutines.

2) Hierarchical composition. Programs constructed with the composition system

can themselves be placed into the parts database for use in other composed

programs. Hence, the parts database will contain primitive programs as well as

composed ones, and the difference will be transparent to the user.

3) Graphical interface. It is our goal that the constructed program should resemble

an engineering drawing. Engineering disciplines use diagrams and drawings

routinely for designs in domains other then computing. Figure 1.2 shows an

abstract example of how a drawing may represent a computation. The boxes

represent parts and the lines represent a relation between parts.

There are many options for implementation of a system with these properties that

satisfies the requirements listed. Procedure call-based composition does not satisfy

Figure 1.2; Abstract Composed Program Drawing
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the multiparadigm requirement, though fares well elsewhere. The particular choices

used in herein are oudined in the following sections.

1.6. A New Approach

Because of the deficiencies of existing techniques for writing distributed

applications in scientific domains, a new approach is pursued. It is inspired by the

way the UNIX operating system [Ritc74] uses pipes to interconnect programs. The

power of programming by connecting program parts with pipes has been described by

Hailpem:

As operating systems go, the UNIX operating system provides for

reasonable dynamic linkage editing through its pipes. Programs running

under UNIX are supposed to take their input from standard input and

send their output to standard output. The pipe facility allows the

standard output of one program to be tied to the standard input of

another program, forming one large program out of a chain of small

programs. If a program follows this convention, it can be written in any

available language. Of course, this is a restricted form of multiparadigm

system, because the composition is restricted to a linear chain of

programs and the interface between programs is restricted to a

sequence of ASCH characters [Hail86].

The technique of program composition described above is commonplace. It has the

advantage that programs developed by separate authors in separate languages can

be interconnected, and, Hailpem's statement notwithstanding, even binary data can

be passed if the programs on either end agree on the representation. The procedure

call mechanism is not as flexible; few systems exist that allow linking together

procedures and subroutines from vastly different languages.

The one attribute that 'all programs have in common is that they (usually) require

input and always generate output. It should be possible, therefore, to devise a system

whereby the inputs are produced by programs as well as by users, and the output

may be interpreted by programs. Such a system allows the creation of applications

based on existing programs and thus may result in extremely large new applications.

The technique of interconnecting programs into larger programs is not new;

linkage editors were designed for just that purpose, but using subroutines instead of

complete programs, and advanced linkage editors allowing for simple multiparadigm

environments consisting of more than one language have existed for decades

[McCa63]. Compile, assemble, and load programming systems are among the

earliest examples of the use of multiple independent programs being combined into a

larger application, in this case for program development. Traditionally, however, job

control languages (JCL) have been used to describe applications based on multiple

programs, anti little, if any, allowance was made for multiple programs to execute at

the same time. These applications were multi-step "jobs" that communicated via
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scratch fries. An early example was IBM's OS/360 [IBM67]. The limitations of such

systems were inherent. They did not allow for simultaneous execution of programs

and they did not 'allow for the distribution of parts of the application over multiple

machines. They did, however, in a clumsy way, allow for more than linear

composition. If you construct a graph that describes the relationship of program steps

in a multi-step job, where the nodes axe the programs and where an arc from program

A to program B means that B cannot begin execution until A has completed and

generated its output, then any program may have outward arcs to more than one other

program, meaning that the results generated by that program are used by more than

one other. Likewise any program may have inward arcs from more than one other

program, meaning that it requixes the results generated by more than one program in

order to accomplish its computation. There may not, however be any cycles in the

graph, as that would result in a situation where no program in the cycle may be begun

until, ultimately, it has completed.

1.6.1. Graphical Pipe-based Composition

The problems discussed above regarding job control languages do not usually

exist in pipe-connected languages such as supported by the UNIX shell [Bour78].

Because programs are connected by a communication channel, the pipe, a program

may begin processing once it has received less than the complete set of data

generated by the program generating the data it reads. As stated by Hailpem,

however, the UNIX shell only allows linear composition, a restriction that does not

exist in most job control languages. The solution to the linear composition problem in

pipe-connected languages is evident when one reflects back on the graph constructed

(as described above) that specifies the data dependencies among all the programs in

the application. The arcs become pipes through which one program passes data to the

next. These pipes are unidirectional, just as the arcs are directed. The data flows in

the direction of the arc, from producer to consumer. Hence, the solution to the linear

composition problem is to devise a language whereby arbitrary combinations of

interconnections are allowed among the steps of a job, or "parts" of an application.

The concept of separately compiled and linked whole programs remains as it was in

the multi-step job and in the linear pipe--connected pipeline, but the linear

composition restriction disappears.

A graphical approach is under investigation instead of a new textual language

because it offers the possibility of having all the advantages of the pipe--connected

languages without the linear composition restriction. Using such an approach, the

programmer would, using a graphical editor, sketch a diagram of his network of

programs, using an pictorial representation for the programs (at the nodes of the

graphs) and lines to represent the pipes. We intend to explore the applicability of

such techniques to the task of composing distributed programs. Some of the

disadvantages of purely textual techniques for non-linear composition are as follows:

• Textual descriptions are difficult to construct because each program involved in

the distributed computation may have several inputs and outputs. Text is
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principa/ly one-dimensional, that is, a flow of words extends on one direction: left-

to--right. The interconnection taxonomy of a distributed program can extend to

more dimensions. Examples of multiconnection textual command shells do exist

for the UNIX operating system, but they are all limited to a fixed number of

connections and a particular interconnection scheme, and suffer from using only
linear text to describe a non-linear network.

• Textual descriptions are difficult to understand by reading. Looking at a written

description of how programs with several inputs and outputs are interconnected, it

is difficult to grasp abstractly a picture of the interconnection graph. Linear

composition systems do not suffer from this difficulty since the linear nature of the

text nicely reflects the linear nature of the composed program.

Graphical descriptions have the potential for being easier to construct. In a simple

case, the intercormection graph may directly reflect the topology of the underlying

network of computers and pictures of such topologies have been in use for many

years. Some specific advantages are as follows:

• Graphical representations show, in a two dimensional drawing, the

interconnection of the program. Since text is only one dimensional and the

program network graph is potentially two- or higher-dimensional, a graphical

representation will in all cases more closely match the network picture when more

than linear composition is used. Complicated networks with dimension higher

than two can, in many cases, be mapped into two-space.

• The system will run on a workstation capable of rendering objects graphically,

rather than purely textually. In 1988, examples of such machines are the Sun

workstation [Sun86] or the Apple Macintosh [App185]. The editor and local

program graph storage will be managed by the workstation, potentially providing a

modem sophisticated user interface that extend beyond purely keyboard-oriented

systems.

1.6.2. Graphical Composition Considerations

A graphical interface may allow for non-linear composition of program parts into a

larger application. As a part of this research, a prototype composition system has

been constructed in order to verify some of the otherwise unsupported statements

about the benefits of such a system. Though much of this work centers around the

abstract composition system, many references are made to the working system,

indeed, an entire section is devoted to its description. The working system is named

the "Distributed Program Composition System" (DPCS). As so well stated by Lantz

[Lant80], "Any attempt to discuss both an abstraction and an implementation can

lead to difficulty..." Lantz quoted Cheriton on the same topic:

It is advantageous to remain faithful to the current design and

implementation of [DPCS] in our discussion so that remarks are

supported by implementation, testing, and experience. It is also

advantageous to include how we believe the system should have been
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done, drawing on the benefit of hindsight and experience. It is equally

advantageous to abstract the discussion with a particular system to

provide wider applicability of our conclusions. All three of these

competing goals govern this report; we trust the reader will recognize

the different tacks in the course of the discussion [Chef78].

An underlying operating system is needed to make pipe-connected distributed

programming possible, more so than for procedure call-based composition, which

typically otriy requires a compiler, a supporting machine instruction, and a linkage

editor. Section 3 contains a short model for an operating system that is capable of

supporting this form of composition. The essential parts of the system and its

requirements on an underlying machine architecture are described there.

1.6.3. Terminology

This sections presents intuitive descriptions for the terms used in the graphical

composition system used throughout the remainder of the study. More rigorous

definitions are given later. Since some of these words have different meanings in

related areas of study, the reader should occasionally refer back to this section.

Primitive program. A primitive program, often called just a "primitive," is a

traditional computer program that can be invoked, or executed, outside the context

of the composition system being described here. One constraint added is the

ability to describe the number and type (input or output) of external

communication paths used by the program. Support from the underlying operating

system is required to invoke a primitive.

Composite program. A composite program is one that was constructed by a

program composition system, and differ from primitive programs in that they

require the support of the program composition system loader phase to start.

Program part. Program parts are the unit of composition, corresponding to a unit of

computation on the underlying virtual machine. A program part is either a primitive

program or a composite program. Program parts have unique names by which

they can be identified. Associated with both types of program parts is the body,

comprising a composite program or a primitive program, and a description of its

ports.

Socket. A socket is the point through which a program part receives input or sends

output. Looking at it from inside the part, it is a language dependent item,

typically a handle of some sort, referenced by all I/O statements in the program.

Examples include Fortran logical unit numbers and UNIX file descriptors. Viewed

extemaUy, it is place from where output data appears and to where input data can

be sent. Typically, operating system support is required in order to capture the

output from ports or direct input to ports of other programs. In UNIX, the

mechanisms for accomplishing I/O through ports are pipes, sockets, fries, and
devices.
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Communication link. A communication link is a construct whereby one part

communicates with another through their ports. These paths axe typically

operating system constructs such as UNIX pipes or other interprocess

communication (IPC) channels.

Program network. A program network consists of a graph and a boundary. The

graph consists of nodes and edges, the nodes being program parts and the edges

being conununication paths between program ports or from program ports to the

boundary. The boundary is an object that may hold the ends of edges but is not a

program part and performs no computation per se. A fully-connected program

graph is one that has all ports on all parts connected to either other ports or the

boundary.

Composition system. The composition system is an interactive editor that allows its

user to construct program networks by selecting program parts and then

connecting the ports to other ports or the boundary. Traditional editing functions

such as saving existing work and reading previously saved work are supported as

well. Another name for the composition system is the editor or graphical editor.

1.7. System Decomposition

This section presents an overview of the structure and implementation of the

prototype program composition system. A more complete description is provided later.

The system decomposes into several distinct high-level modules, described here.

These are the graphical editor, the underlying description language, the part selection

browser, the program linker and loader, and the execution monitor. Figure 1.3

presents a block diagram. Different versions of this system may or may not contain all

pieces or may contain only minimally functional pieces of the full system.

The program composition system places demands on the underlying operating

system for functions it does not directly implement, such as program primitive

invocation. A model for a support system is described in Section 3.

1.7.1. Graphical Editor

The graphical editor is a purely interactive program that runs on the user's

workstation. As def'med, the editor cannot be used by other computer programs

because the input for it comes almost exclusively from devices accessible only to the

human user. A separate non-interactive editor allows computer programs to construct

program graphs.

The components of the editor are the sketch pad where the user draws the

program network and the control panel where operations on the network, such as

saving work, starting execution, or other global operations, axe invoked. Depending

on the degree of sophistication of the implementation, some of the features described

below may or may not be included in the editor.
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Figure 1.3: Block Diagram of DPCS

The sketch pad is the area where the current state of the program network is

displayed. Each program part is represented by an icon with some textual information

attached stating its name. Program ports on a part are represented by small icons

attached to the periphery of the part. Communication paths are represented by lines

connecting ports to other ports or the boundary. The boundary is represented by a
bounding box around the entire network.

Figure 1.4 is an example of how the sketch pad might appear; it is an extension of

the abstract figure presented earlier. The figure does not show a concrete

representation but rather a rough sketch of how parts, represented as icons, and

communication links, represented as lines, might appear. The dashed line represents

the boundary, which itself has input and output connections.

Minimal features of the sketch pad include the following:

• Parts placement. The user has the ability to select a new program part from a

library (whose nature is yet unspecified) and place it on the sketch pad.

• Port connection. The user has the ability to connect a program port to another

program port or to the boundary.

More advanced features may be supported by the editor to enhance its usability

and the productivity of the user. Some of these features include the following:
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Figure 1.4: Sample Sketch Pad Layout

• Zooming. Because the program network may conceivably contain very many

program parts, the user needs the ability to focus attention on a particular part of

the graph, magnifying it to a higher degree to emphasize the section under

consideration; this is called "zooming." Zooming is independent of the ability to

define composite parts as it does not allow the user to examine the internal

network of a composite part. Analogous to zooming, and potentially as useful, is

scrolling - 'allowing the user to selectively look at different parts of the network.

• Part placement assistance, lust as program beautifiers exist for traditional

prograrmning languages, a sketch pad may have some built in support for placing

program part icons in visually pleasing places. There are several levels for this

capability ranging from simple icon placement grid enforcement to automatic

network restructuring to minimize some criterion function as ports are connected.

Graph visualization is a research topic of its own and work is ongoing in that area

[Newb88].

• Annotation. Traditional textual languages have a convenient method of adding

comments to programs. Because the program is text and the comments are text,

they can be merged in with notation indicating the separation of program from

comment. In the graphical language being described here, very little, if any, text

need appear on the sketch pad in order to display the interconnection structure.

Therefore, the editor needs to use a different mechanism for supporting program
comments. One method would be to allow a text window to be associated with

each item (part, port, communication path, boundary connection) on the pad. The

editor then allows the user to request that information, presumably with a
minimum amount of effort. Some information in the form of comments could be

provided by the editor itself, rather than supplied by the user. Examples include
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revisionnumbersof parts, data typesgeneratedby ports, and complexity metrics
on the entire network.

• Communication path routing. The task of connecting two ports, or a port to the

boundary, need not include manual routing of the path line through the picture of

the network. The editor can provide an automatic routing mechanism, such as

variations on those described for robotics [Loza79].

• Expansion of composite parts. It may be desirable to expand in place composite

program parts. Advanced support for redesigning the layout of the program graph

will be necessary for in-place expansion to be feasible.

The control panel of the editor contains operators for global operations, that is,

operations that affect the entire program graph, rather than a single piece on the

sketch pad. The minimal functions provided by the control panel are the following:

• Workspace saving. Once a program network has been constructed, or during any

point in its construction, the state of the work needs to be save in long-term
storage for later use.

• Leaving the editor. A capability to leave the editor and return to the system

control program is a necessary function of the control panel.

Extensions to the operations allowed on the control panel include the following:

• Program invocation. Invoking the program network is not a function of the editor.

However, requiring the user to leave the editor in order to run the network is an

unnecessary restriction, since the program network is essentially an interpreted

program (with compiled primitive programs embedded in it). Interactive

debugging may be a part of the editor, and so the editor and debugger may be

combined into a single piece of the system.

• Sketch pad control functions. Additional global operations are managed by

features on the control panel. Examples include clearing the sketch pad, loading a

new workspace, documenting the entire workspace, and printing its contents.

1.7.2. Network Description Language

The output of the editor includes a specification in a language called the "network

description language" (NDL) that describes completely the abstract network. NDL

does not describe the way the editor displays the network on its sketch pad; this

information is stored separately, though in an identical format.

An NDL program is a semi-readable ASCH file. Though NDL programs can be

constructed manually using a conventional text editor, the language is not designed to

support it and so it is not an easy task. Because NDL programs describe the entire

graph, they name program parts. Composite parts mentioned are not necessarily

•expanded in line, but instead are mentioned by reference to the names of their NDL

programs. The expansion into a graph containing only primitive parts is handled
elsewhere.
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1.7.3. Program Invoker

The program invoker component of the system takes as its input a program in

NDL, expands all the nested networks associated with composite parts, and initiates

the computations described by the primitive pa_s, linking them up as appropriate with

communication paths.

The task of the program invoker is particularly complicated when the system is

one that allows the composition of distributed programs on a network of

heterogeneous machines. It must have knowledge of how to start a program part on a

remote machine and how to connect the ports of that program to other parts on either

the same machine or other machines. To support heterogeneity, the invoker must

have the ability to attach data translation modules to parts so that a part running on a

machine with one data format (byte ordering, floating point format, character string

formats, etc.) can receive data generated by a program running on a machine with a

different format.

1.7.4. Execution Monitor

Normally, once a composed program begins execution, it runs to completion

without intervention from the composition system. Program parts perform their

computation, pass data among themselves, and run to completion with no interference

from any monitoring system. This execution scenario, however, does not allow for

network debugging, monitoring, or collection of performance data.

Part of the composition system is an execution monitor which, when linked in by

the program invoker, can be used to collect information about the data passing

through the conu-nunication paths and, where possible, collect information about the

progress of the parts at the nodes. Collected information may be displayed visually

as performance charts and link traces. Such information could be presented visually

and represented as annotations to the original program network as displayed by the

graphical editor.

1.8. Structure of the Report

The remainder of this report elaborates on the design and prototype

implementation of a program composition system with a graphical interface, and its

extension to a heterogeneous distributed system. Below is an annotated summary of

the report.

Section 2 - Related work in visualization. One of the novel aspects of this work

is its use of visualization of the computation. In fact, the composition technique itself

is visual, and the mechanism for connecting programs is interactive with graphical

feedback. This section presents a model for visualization in computation and
discusses others' work and how it fits the model.

Section 3 - The virtual machine model. The composition system is not a

complete computing environment. It relies heavily upon functionality exported by the
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underlying operating system. This section presents an idealized model for that

operating system.

Section 4 . The basic composition system. This section presents a description

of the semantics of composed programs, the basic building blocks, and the invocation

semantics of the programs.

Section 5 - The program development environment. Development of composed

programs is accomplished using a visual interface. This section presents that
interface, the abstractions and representations used, and describes the structure of

the prototype.

Section 6 - Extensions to a distributed system. New abstractions are necessary

to extend the basic system to a distributed system, principally in the areas of remote

execution and accommodating heterogeneity. This section elaborates those
distinctions.

Section 7 . Conclusions and future work. This section draws conclusions about

the work on DPCS and presents pointers for future research in this area.



21

2. MODELS FOR PROGRAM VISUALIZATION

2.1. Introduction

The work described in this report relies heavily on a .visual interface for a

particular style of distributed programming, as described in the previous section. This

section describes different models for program visualization and systems using

visualization that relate to this work. The models aid the understanding of visually

based programming systems by describing a framework into which other existing and

proposed systems may be fit, thus facilitating comparisons of the features and goals

of each.

Many researchers have worked in the area of program visualization. Some seek to

make computer programming more accessible to the naive user. Others seek to

simplify program debugging and understanding. Others attempt to make the output of

computations understandable. All deal with the visual representations of programs

and data.

In understanding program visualization, it is useful to distinguish between

display and construction. Display refers to the graphical display of data and programs.

Visual construction, however, implies a form of "direct manipulation" [Shne83],

whereby the user constructs data directly rather than by specification. Display alone

seeks to answer the question, "What might it look like?" Visual consmaction asks

the question, "How do I form it?" and involves interaction with the user. Hence it is a

form of interactive programming, whether it be programs or data being constructed;
there is no distinction. The form of the interaction, however, is spatial and visual,

typically in at least two spatial dimensions. Interactive programming involving only

text is one dimensional and does not qualify as visual construction.

Related to program visualization itself is the topic of visual languages, a term that

has several different interpretations. To some, "visual languages" refer to languages

that support visualization, that is, graphical animation and rendering languages such

as LOGO and Twixt [Gome85] (an animation system allowing an animator to

produce a movie generated entirely by the computer). To others, as in this report,

"visual language" means a language for producing a computation and having a sketch

pad or direct manipulation interface. Sketch pad interfaces to languages may be of at

least two types, programming by example or programming by declaration. With the

former, the program itself is represented by "graphical" actions performed by the

user, as in Rehearsal [Finz84]. In the latter, though the interaction may be either

graphical or textual, the principal attribute is that the program is being declared by the

programmer; the actions that the programmer takes to construct the computation have

no direct relationship to the computation itself.

A further distinction is made by some among "visual," "graphical," and

"pictorial." In this report, these terms have the following meanings:

• Visual. Visual systems have a spatial quality, relying on two (or more)

dimensions to display data or programs. Though visual systems could use only
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text (by spati_dlyorienting that text) they typically also include non-textual

pictures and graphics. Non-visual systems can always be displayed in one

dimension without any loss of meaning. Visual systems can be either graphical or
pictorial and can use aspects of both.

Graphical. Graphical systems are visual systems that use more than just text,

typically including traditional graphics objects (lines, boxes, circles) to display

some inherent relation over the data. The distinction of graphical systems is that

the graphics is used to display a relation among objects, not just objects
themselves.

Pictorial. Pictorial systems are those that use abstract images, called icons, to

denote a part of the data. The term "icon," def'med in Merriam-Webster's

dictionary [Merr81l means "pictorial representation." Pictorial representations

differ from graphical representations in that the pictures can be unstructured, not

necessarily denoting a relation or a structure, but are suggestive of an object or

action. Korfhage and Korfhage [Korf86] categorize icons as either "object" or

"process." Object icons are usually a concrete, simplified pictorial representation

of the object they identify. Process icons, on the other hand, are more abstract,

often utilizing arrows and object icons to denote action applied to an object.

2.2. IPO Model for Visualization

We present a simple model for categorizing visualization in computation based on
a simple model of computation and then describe how visualization relates to its

parts. The model is based on representations of the following form:

y =f(x)

in this notation, x represents the input to the computation, f represents the

computation itself, and y represents the output of the computation. This model is not
restricted to the traditional definition of "function"; nondeterminism is allowed. All

that is implied is that computations have input, they operate on them, and produce

output. This is also generally known as the "IPO" model for computation, meaning

"input, process, output." We use the term "program" in place of "process;" process

has a different meaning in this report.

The model is useful because it provides a f'trst means of categorizing types and

uses of visualization. There are three parts to the IPO model, and so there are three

parts to "IPO visualization."

One more distinction is necessary, between static and ,dynamic visualization of

data. Static visualization is well understood; it refers to a rendering of a data object,

where "object" means a bundle of related, structured information referenced by a

single name or handle. Dynamic visualization incorporates a time dimension and can

be thought of as a sequence of renderings of a static object, where the change from

one rendering to the next is described by a relation associated with the object. In the

case of composite objects, there may be one or more relations for each component.
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The important point is that dynamic visualization varies with time, and therefore

involves continuing computation whereas static visualization only requires a single

computation of graphical output.

With the IPO model, we can now form a matrix of areas where visualization and

construction techniques apply. This matrix has as its rows the labels "input,"

"output," and "program." The columns of the matrix are labelled "visualization" and
"construction." The ceils in the matrix list examples of systems that apply to the

pair, row and column, denoted by the cell. This matrix is presented in table format in
Table 2.1. What follows examines cells of this matrix and how they relate to the

visual program construction technique in this report.

2.2.1. Output and Input Visualization

Output and input data visualization in the IPO model are sufficiently similar in

treatment that they are combined in this discussion. Data is abstract, not having any

inherent representation. In order to use and manipulate data, we impose a

representation on it, and then manipulate that representation. Any piece of data may

have several representations, some of which are amenable to manipulation by

computer programs and some amenable to being understood by humans. We call the

former "intemal" representations of the data and the latter "extemal"

representations. Internal representations are typically in a binary format specified by

the data architecture of the computer operating on them. External representations

may be purely textual, purely graphical, or a combination of the two. Data

Table 2.1" Visualization/Construction Matrix

Input

Output

Program

Visualization

General data visualization

systems

Graphical rendering packages

Flow charts, Nassi-

Shneiderman charts

Construction

Drawing programs, dialog

boxes

Interactive animation,

scientific visualization

Visual programming

languages
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visualization refers to converting data from any representationinto a graphical
representation.

The traditional field of computer graphics concerns itself with the visualization of

the resultant data of computations. Many books and journals exist describing the

research in algorithms and program systems for this purpose. The work in this area

addresses the previously stated question, "What might the data look like?" It is

often the case that the computation is solely concerned with the generation of the

picture, as with graphical rendering programs such as the BRL CAD and ray-tracing

package [Muus87] whose input is only data describing the desired picture. In other

instances, the computation is not concerned per se with generating visual data (such

as a numerical simulation) and produces results which, in the past, were printed as

tables of numbers by a line printer. In the present, however, it is commonplace to not

rely solely on the tables of numbers to represent the results. Instead users often use

sophisticated systems for the purpose of converting those results into graphical form.

Output visualization is not limited to static pictures. Often the computation

performed has too many parameters to represent meaningfully in the inherent two-

dimensions of a graphical output device. Hence, time animation is necessary to

visualize additional parameters. The Twixt animation system has been used to

convert the results of numerical computations in computational chemistry into an

animation of a trimer atomic system potential energy surface. Similarly, animation

systems such as GAS [Banc88] exist for the sole purpose of generating animations

of results from numerical simulations on supercomputers. Many other systems are

described in the graphics literature that perform similar functions. The point is that

output visualization can be static or dynamic. The complexities of output visualization

are not accounted for in the simple IPO model of program visualization. If we add a

time parameter to the functional form, however, to indicate that the input may vary

with time and therefore the output may vary with time, what results is a time-variant

IPO model that better describes dynamic visualization. Hence, the function form
becomes:

y (t) = f( x (t))

Program input can also have visualization techniques applied to it, and can

therefore be subjected to the same forms of visualization as output data, answering

the previously stated question, "What might it look like?"

Program input can be represented visually using graphical input objects first

commonly seen on the Xerox Star system [Purr83] and subsequently made popular

on the Apple Macintosh personal computer [App185]. This style of input has become

popular and commonplace; many commercial implementations exist. Dialog boxes axe

a form of visual input, where the data is represented using real-world analogies such

as knobs, sliders, switches, and push buttons. Frequently such input systems allow

the application programmer to create and display graphical representations of data in

the program and display them in a way that allows the user to modify them, often

resulting in direct modification of the data corresponding data. For example, an
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enumerateddata type in the C language can be represented as a labelled "cycle"

which, when displayed, allows the user to point to a picture reminiscent of a knob and

click (analogous to turning a knob) on it to cycle through the constant values in the

enumerated type. Hence, the input parsing takes the form of translating human

activities (typing, pointing, dragging a pointer, etc.) into data values or functions on

data values such as a successor function on an enumerated data type.

2.2.2. Visual Data Construction

Data can be subject to the second question, "How do I construct it?" The

solutions to this question include data visualization, as described above, but also

include manipulation techniques that can have a spatial as well as textual quality.

Visual data manipulation refers specifically to the technique of modifying data by

modifying a graphical external representation of it.

An example of direct manipulation of data is in a program named ConcertWare for

the Apple Macintosh [Mitc85]. A part of this program 'allows the user to design a

new simulated musical instrument by drawing the waveform generated by the

instrument. The waveform is stored internally as a time-indexed array of amplitudes

and is displayed externally as a waveform. By manipulating the waveform picture, the

user changes the data stored in the intemal representation. A picture of this is given

in Figure 2.1. Another example, from the computational sciences, is a system that

allows the user to graphically design a simulation grid around a given shape, such as

an airfoil, and then use that grid as the space over which a fluid dynamics computation

is performed.

Direct manipulation techniques can be applied to output visualization as well as

input visualization. For example, scientific visualization systems operate on the data

][ , _ Untilled

Figure 2.1: ConcertWare's Waveform Display and Input
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producedby other programs,producinggraphical renderings.Typically the amountof
data is large and the best way to representit is not known to the visualization
system.Hence, with the proper interface,a user could guide the system,using a
directmanipulationtechnique,intoproducingthedesiredimage.

2.2.3. Program Visualization

Visualization of computer programs typically only uses static graphics, which is

useful for presenting a graphical view of a static program for the purposes of

documentation or aiding understanding of the program. Programs, represented as

data, do not change in time except for a class of dynamic list-oriented languages.

Many techniques have been devised to display one aspect or another of a program, its

control flow, data flow, data dependencies, etc. Examples are traditional flow charts

and Nassi-Shneiderman charts [Nass73]. These techniques can be somewhat useful

for program documentation but typically represent programs at too fine a granularity

to be any more useful for construction than textual representation. It is possible to

generate these graphical forms of programs from the source code of the program itself.

Such is an example of converting one external representation, the source code, into

another, the chart or diagram.

In the literature, the term "program visualization" refers to visualizing the state

of the computation implemented by the program [Baec75, Brow85a, Brow85b,

Myer83, Petr87, Reis851. Such displays may be static, taking "snapshots" of data

structures inside the program, or dynamic, using animation techniques to time

animate data structures. The primary goal of program visualization systems is to aid

in the understanding of the operation of a program, either for teaching programming or

for debugging a program. These systems convert directly from internal

representations to graphical output representations.

2.2.4. Program Construction

The next question to ask about visualization and computer programs is, "How do

I construct it'?" This is the realm in which the work of this report exists. Programming

systems do exist that have visual interfaces, these typically display control flow, data

flow, or data dependencies. Figure 2.2 shows one example, again drawn from the

Macintosh environment, a program named V.I.P. [Main86], which allows the user to

create a program by drawing its control flow chart using traditional symbols. We

consider this approach to be at too low a level to be practical because segments of

programs that have long runs of sequential statements tend to be very hard to read,

and complicated control structures are too big to conceptualize. Additionally, no

provision exists for augmenting the program flow chart with annotation or program
comments. The same amount of code written in Pascal takes about one third the

screen space. One redeeming feature of V.I.P., however, is that procedure call boxes

contain a field that, when activated with the mouse, expands to a table giving the

formal parameter names, their types, and the actual parameters, which can be

modified by the user. This provides a convenient abridged on-line manual for the

procedure.
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Figure 2.2: V.I.P. Control Flow Chart Example

An area where visual languages are more useful is in the construction of programs

or structures that have inherent visual qualities, such as those described by data flow

graphs and Petri nets. An example from the Macintosh environment is Stella

[Rich87], a signal flow-based simulation language in which the nodes are operators

that continuously work on their inputs and provide outputs. An example of a Stella

program for simulating the flow of water from a tank is given in Figure 2.3. Such

languages are gaining popularity because they take advantage of the two-

dimensional screen space to display a structure that does not map well into a flow of

text. Another example of a visual construction system is GreatSPN [Chio87], which

allows the user to interactively construct Petri nets and analyze them.

2.3. Past Work

The application visualization techniques to computing and computer usage can be

traced back to the early work of Sutherland [Suth63] and Englebart [Eng168].

Smalltalk [Gold84] makes extensive use of visualization techniques in what is

otherwise principally a textual programming environment.

ORIGINAL PAGE IS

OF POOR QUALITY
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Figure 2.3: Example Visual Program from Stella
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This section surveys past work in visualization techniques and is divided into

three sections: surveys of visualization models, surveys of important specific works,
and description of other work by category.

2.3.1. Models and Surveys

This sections describes past work in developing models for visualization of

programs. Existing systems developed that fit these models are described in the next
section.

2.3.1.1. Chang's Model for Visual Languages

In his survey, Chang [Chan87] attempts to clarify the meaning of the term "visual

language" by presenting two broad categories of programming languages that fall

under that tenn. The f'trst is visual information processing languages, which deal with

data that have some inherent visual representation, such as digitized images, but the

languages themselves have no inherent or imposed visual representation. The second

is visual programming languages which are programming languages that either impose

visual representation on inherently nonvisual objects (such as data structures) or are

themselves presented visually. Because "visual programming language" is a broad

category, Chang further distinguishes four subcategories, based on the matrix formed

by dealing with either inherently visual or inherently nonvisual objects on one axis,

and the languages themselves being visually presented or not on the other axis.

Chang's model describes the objects dealt with by programming languages as

generalized icons having two parts, written as (Xm, X i ) where X m is the meaning
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(semantics) of the object, and X i is the visual representation (syntax) of the object,

and "e" is used for X m or X i to denote a null object. Using this notation, visual

programming languages transform objects with no inherent visual representation into

those that do have visual representation, that is, (X m, e) =:_ (X m, X' i ). Visual

information processing languages, those that deal with visual images, are denoted (e,

Xi) _ (X' m, Xi )"

Chang's model for the data used in visualization is similar to ours, but is broader

to include languages the manipulate inherently visual data. Where our model

differentiates between the semantics of the data and its internal and extemal

representations, Chang's emphasizes the semantics and inherent or fabricated visual

representations.

The definition of visual programming languages in Chang's model applies to the

work in this report. The program composition system, in the abstract sense, is a

construction of program parts interconnected by communication paths but in

implementation appears as pictures, or icons, connected with lines. There is nothing

inherently visual about the program parts; they are abstract functions that compute

outputs based on inputs. The program composition system, specifically the graphical
editor (as described in Section l) imposes a visual representation on parts where

previously none existed.

2.3.1.2. Raeder's Summary

Raeder presents a survey of visual and interactive programming [-Raed85],

offering a general discussion on its vLrtues and a survey of past work. This work

concerns visual program construction, and establishes a framework into which such

systems can be placed.

Raeder identifies four traditional roles of pictures in programming. The first is to

depict control flow, as with flow charts, structured charts, and state transition

diagrams. These diagrams are low level, and do nothing to display the structure of the

data. In the cases of flow charts and state diagrams, however, they are useful for

displaying algorithm animation.

The second type of picture is for data flow depiction. Data flow diagrams are

•almost always associated with programs written in a data flow language. They show

control flow and data flow in one graph in that the control of a data flow program

follows the data. By typically only incorporating low level operators and using only

trivial data structures, they become messy and overly complicated when scaled up to

a practical size.

The third type of picture is for data structure depiction. Raeder asserts that "data

structures account for a major part of the illustrations (and doodles) we make during

program development" but that "there has not been much work on standardized (or

even formal) ways to display data structures." Additionally, because we think of data
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in programs at different levels of abstraction, a good display technique would require

depiction at these different levels. How to accomplish this display is an open question.

The tinal type of picture Raeder calls "topology," used by programmers "to

describe the overall structure of their systems." Such diagrams fail, Raeder says,

because they do not support descriptions of the low level aspects of a program.

The composition system of this report is an example of the fourth type of picture.

Raeder's remark about the inadequacy of this technique to describe the statement-

level part of programming is correct, but our system makes no claims to support

programming at the statement level. Our composition system exists so that a

programmer can take programs written in other languages and combine them together

into a larger system of programs. Construction of the program parts is a separate
concern not addressed here.

One interesting aspect of pictures used in programming he calls "metaphorically

rich," and in discussing such pictures, he states some important points.

We can reason and make judgements in terms of these pictures by

giving meaning to the graphical relationships concerning shape, size,

distance, and so on. For example, it seems reasonable to require that

programs that are similar in function look similar and that different

types of programs be easy to distinguish. This is definitely not the case

with conventional program text. Further, "good" features (such as

time�space efficiency, ease of use, ease of understanding and

maintenattce, and so on) should make a program "pretty," whereas

"bad" features should make it unpleasant to look at. An error should

make the program look imbalanced. These goals are very. hard to

achieve, but ultimately we will have to build mechanisms for meeting

them into our programming systems if we want to make fuller use of

human reasoning power. This can be done only by incorporating

pictures into the systems. [Raed84]

Specifically, we consider the point about well-written programs looking good and

poorly written programs looking bad to be an important one. However, as with textual

languages, "pretty-printers" may be devised that marshal a program into a standard

style.

2.3.1.3. Shu's Dimensional Analysis

Shu presents a classification for visual programming that is a dimensional

analysis technique that can be used to compare one visual programming system to

others. The classification places work into one of two categories: visual environment

or visual language. Though Shu's categorization of visualization systems is not

fundamentally different from others, the evaluation criteria presented is a new
contribution.
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Visual environmentincludes systemsthat incorporategraphics into an otherwise
traditional programmingenvironment.Also in this category are visualization of a
program and its execution (static and dynamic), visualization of data, and

visualization of system design. In this report we call this category program

visualization (PV) because it adds graphics on top of an existing development

environment. TypicaJly, in PV systems the programmer starts with an existing source

program written with a text editor, and then uses the tools in the PV system to view

it (e.g., control structure, data flow, data dependency) graphically and to monitor the

progress of its execution. PV tools are aimed at program understanding,

documentation, and debugging.

Shu decomposed visual languages, the second top level category, into three lower

ones, languages for processing visual information, for supporting visual interaction,

and for programming with visual expression. The first, languages for processing visual

information, is concerned primarily with database languages that report the results of

their queries graphically. This is not to say that the databases must store visual

information, only that they generate images as results. The second category,

languages for visual interaction, contains those that allow the programmer to

manipulate graphical images. Animation languages and graphical rendering

languages, such as Twixt fall into this category. The languages themselves are

textual but they manipulate pictures.

The third subcategory in the visual languages category is visual programming

languages, which contains languages where the constructs for expressing the

computation are visual. In this report, we also refer to this category as "visual

programming languages" (VPL). Shu has developed a scale, Figure 2.4, with three

important aspects of VPLs that can be used for comparative analysis. The f'trst two of

these apply to traditional, one-dimensional languages as well.

The f'trst aspect of visual programming languages is the level of the language,

which is an "inverse measure of the amount of details that a user has to give to the

computer in order to achieve the desired results." A language that tells the computer

"what" to do instead of "how" to do it is considered very high level.

The second aspect of VPLs is the scope of the language, referring to its breadth of

applicability. Domain-specific languages and problem-oriented languages are small in

scope, being only applicable to the problem or domain for which they were designed.

General-purpose languages, such as C and Ada, are higher or broader in scope.

The third aspect of VPLs, visual expression, refers to the degree to which the

language depends on visualization for the construction of its programs. A visual

language that adds visual constructs to an existing textual-based language might be

low in visual expression if the construction graphically maps directly into statements

in the textual language. On the other hand, a language that has no useful

representation in text might be high in visual expression because the only meanhagful

way to represent an algorithm or program in the language is with images.

The composition system in this report can be rated on Shu's three-dimensional

scale. We assert that it is high in all categories. The level of the language is
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Figure 2.4: Shu's Scale for Visual Programming Languages

extremely high, that being one of its primary goals. The operators that are composed

with our composition system can be arbitrarily complex and are defined in languages

outside the composition system. The scope of the language is high, although not

maximal. The scope of composed programs is as broad as the scope of the parts used

within it. The visual expression is also high because, other than for elucidation and

extemal representation, there is no useful textual representation of composed

programs. Indeed, there is information that can be gleaned from looking at the picture

of the program that cannot be easily gleaned from any one-dimensional text

representation.

2.3.2. Other Specific Works in Visual Languages

This section describes in more detail selected past work in visual programming

languages. The selection is not meant to be exhaustive but rather to represent work

that relates to the visual interface of the program composition system described in
this report. Existing systems axe described here, each because it is considered a

fundamental work in visual programming, because it relates in some specific way to

the interface chosen for our composition system, or because it provides an interesting
contrast to our system. More works than these were surveyed for this research

[Bela84, Catt86, Haeb86, MiU84, Mori85, Tani82].

2.3.2.1. Jacob's State Transition Visual Language

Jacob devised and implemented a visual language for describing finite state

automata (FSA) applied to user interface design [Jaco85]. The work is based in part
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on work by Pamas in specifying user interfaces using transition diagrams that are

common in depicting FSA [Pam69]. Jacob differentiates between two types of visual

programming: That which deals with objects that have an inherent visual

representation, such as an engineering drawing, a typeset report, and fonts, and that

which deals with a visual representation of an inherently abstract non-visual object,

such as a computer program or a finite state automaton. Jacob elaborates on the

difficulty of devising suitable visual representations of abstractions:

A more difficldt problem arises in the second category of visual

programming language, representing something abstract time

sequence, hierarchy, conditional statements, frame-based knowledge.

To provide visual programming languages for these objects, we must

first devise suitable graphical representations or visual metaphors for

them. The powerful what-you-see-is-what-you-get principle is not

much help, since these objects are abstract, but the successful

application of the visual programming language paradigm to these

situations still depends critically on choosing a good representation.

Graphical representation of abstract Meas is a powerful form of

communication, but a difficult one. In the absence of an applicable

theory of graphical communication, proper use of such representations

often requires extensive experimentation. [Jaco85]

Jacob uses the traditional diagrammatic notation for finite state automata, with

circles representing state and lines representing state transitions, as his visual

representation. Each automaton describes a part of a user interface system, and so,
associated with each state transition may be semantics, implemented in a standard

procedural language, that describe the actions of the user interface to be taken when

that transition occurs.

The key points made by Jacob are as follows:

1) The availability of graphical workstations provides the opportunity for describing

algorithms and processes visuaUy rather than with linear text.

2) Careful choice of the proper graphical representation is critical. The representation

"must leave no doubt as to the behavior of the system."

3) Hierarchy is important. That is, one FSA must have the ability to call on another.

Jacob likens this hierarchy to nonterminal symbol hierarchy in BNF.

Jacob's system is similar to the one in this report in that it deals with visualizing

a structure that does not have an inherent visual representation. We have described

it here because it incorporates many of the same ideas as our system: visualizing a

known diagram form, direct manipulation of that form, and hierarchy.

2.3.2.2, Programming by Rehearsal

Providing a contrast to the representation manipulation method of Jacob is an

example of "programming by manipulation" in the "programming by rehearsal"



34

system developed at Xerox PARC [Finz84]. This system "allows educational

curriculum designers who are not otherwise programmers to design educational

software by, essentially, manually stepping the computer through the algorithm

implementing the product, and then having the computer step through the algorithm

automatically. The analogy used by this system is that of performers acting out a

play, but rather than reading from a script, they learn their lines and actions by

memorizing what the director (the programmer) tells them to say and do. Hence, the

Rehearsal system is designed for non-programmers who may know what they want

the computer to do for them but don't know how to express it in a traditional

programming language.

Programming by Rehearsal is an example of a direct manipulation demonstration-

based language, where the actions of the programmer are learned and become

encoded in an algorithm. It is based on SmaUtalk 80 [Gold84], and each of the

performers in the play composed by the programmers maps into a message to a

Smalltalk type-manager.

The relationship between the Rehearsal system and the program composition

system of this report is that they both are programming systems with visual

interfaces, but the former allows the programmers to create a program by stepping

through it manually, essentially teaching the computer the program. The composition

system, on the other hand, is not a demonstration-based manipulation language.

Using the visual interface, the programmer describes the computation by designing it,

as opposed to the Rehearsal system where the programmer uses exemplary methods
to describe the computation.

2.3.2.3. Pascal/HSD

The Pascal/HSD system [Diaz80] uses graphical notation to convey a structure of

Pascal programs that is lost when the program is coded in the final form: the

decomposition steps that lead to the program. The goal of this system is to allow the

use of structured programming and stepwise ref'mement together. Structured

programming alone cannot support the concepts of top-down programming; these two

ideas are separate concerns. Whether structured programming is used or not, the

chain of refinement used in creating the final program is lost in the coding. Stepwise

refinement can be thought of as a context-free grammar describing the semantics of

the algorithm; each left-hand side stating an abstraction, and the fight-hand side

stating its refinement. The final program is a sequence of only these right-hand sides.

At best, the abstractions from which they were derived exist only in program
comments.

The HSD system supports the control structures of Pascal, and hence supports

structured programming. It also supports a notation for stepwise refinement. The

diagrams in Pascal/HSD resemble flowcharts. Elements of the diagrams are the usual

control structures of Pascal as well as "action" items, which are abstractions. The

control flow in the diagram is top-to-bottom, but abstracted action items branch to
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the right, and the expansion of the abstraction is a separate control flow proceeding

downwards from there.

Pascal/HSD is an example of an early control-flow graphical programming

language. One of its most important contributions is the abstraction capability, also

an important feature of the composition system of this report. However, it describes

computation at a lower level than the composition system. Programs constructed

using Pascal/HSD could be incorporated as primitive parts into applications

developed under the composition system in this report.

On the other hand, the notion of encoding and retaining the decomposition process

is one that can be applied to our composition system. The hierarchy of parts in DPCS,

formed by the composite parts, retains some of the top-down decomposition process

used by the programmer. In DPCS, the programmer can create a high-level

description of the program, using abstract composite parts. Next, each composite part

can be successively refined until a program graph of aU primitive parts results. If the

programmer leaves the composite parts in the program graph, and expands each

individually, the structure will be retained.

2.3.2.4. PIGS and Pigsty

PIGS [Pong83] is another visual programming system built on Pascal. It uses

Nassi-Shneiderman diagrams (NSD) [Nass73] to represent the program structure.

The system has a graphical interface that allows the user to interactively create the

NSDs and insert Pascal-like program statements into the slots in the diagrams. At

runtime, the language is executed interpretively and the user has the opportunity to

insert breakpoints that will cause the program to halt execution and become available

for examination or change. Additionally, the system can be told to bypass the

execution of external routines (thus supporting stubs) and present a trace of the

program.

PIGS is very much like Pascal/HSD in that it relies on an existing language and

adds a graphical interactive front-end to that language. A novel aspect of PIGS,

however, is that it was used for a more interesting visual language, Pigsty [Pong86].

Pigsty combines the Pascal-like procedural programming of PIGS (actually an

extension of PIGS) with the message-passing style of Hoare's Communicating

Sequential Processes (CSP) [Hoar78] for communicating between modules. Program

modules, written in PIGS, have explicit ports, which are the points at which the

program directs input and output operations. The two types of ports are called InPort

and OutPort, used for input and output respectively. The ports are not type-checked

at compile time, so any data type may be passed through them; type checking is

performed at run time. Because the system is designed as a closed environment,

there is no support for executing the program modules on different machines and,

hence, no data conversion between data types on different machines is supported.

The language, essentially Pascal, is extended to have CSP-like input and output

statements. A distinction between these input and output statement semantics and

those of CSP is that in CSP the statements name a process to which or from which
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data is sent or received while in Pigsty the statements name ports associated with

the current process. Input and output statements are in CSP notation, as follows:

InPort ? variable

OutPort ! expression

Pigsty allows the programmer to create an array of processes, that is, several

instances of the same program module replicated in the program in a regular way.

Additionally, a module may declare and use an array of InPorts or OutPorts to

communicate with an array of processes.

Program modules axe interconnected by linking the output ports of modules to the

input ports of other modules. In this sense, Pigsty and the program composition

system of this report are very similar. Pigsty provides a hierarchy mechanism,

whereby a group of interconnected modules may be formed into a single, higher-level

module, and then used in another program. Pong points out that this hierarchy

provides two features. Fixst, the ability to design a program using abstract modules

and then later decompose those abstract modules into existing modules. Second, the

hierarchy supports a bottom-up approach to programming, and as the programs

become sufficiently large, groups of modules can be clustered into a single module,

simplifying the picture.

Like our composition system, Pigsty has an interactive graphical interface that

allows the programmer to "draw" the interconnection of the modules. Pong likens

this approach to a syntax-directed editor, stating, "the duty of assuring that a

program is syntactically correct is shifted from the parser to the editor." This aspect

of the graphical editor holds in the program composition system of this report, that is,

the progranmaer is unable to create a syntactically incorrect program. A sample of a

Pigsty diagr,'un is in Figure 2.5, showing a solution of the classical "Dining

Philosophers" problem.

2.3.2.5. HI-VISUAL Interactive Iconic Programming

The HI-VISUAL ("Hixoshima Visual") iconic programming language [Mond84,

Hira8fy, Yosh86] developed at Hiroshima University uses small pictures to represent

the operations that can be used in the language. For example, a picture of a television

camera might be used to denote an operator that takes data from such a camera. In

HI-VISUAL, these small images, called "icons," are used to denote operations,

data, _ad other items such as control and data types. A program in this language is a

two-dimensional layout of icons with short arrows between them. Typically, every

other icon is an operator icon and the others are data icons. When an operator icon

appears with an arrow from it to a data icon, it means that that program produces a

set of data whose type is represented by the icon.

HI-VISUAL supports hierarchy, as does Pigsty and the program composition

system of this report. Unlike those other systems though, it also supports interactive
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programming. As the programmer creates the iconic picture of the program, any

operators that have all of the_ inputs satisfied may start execution. The interactive

feature is only possible at the top level of the hierarchy, however, because as the

programmer develops the lower level functions, the inputs (and outputs) are

abstracted, that is, not yet connected to any real source of data. Hence, there are both

data and data-type icons; data icons are real repositories of data in a top level

program that is being created interactively; data-type icons are place holders in lower

level programs.

Because the data and data-type icons are explicit in HI-VISUAL, the type of data

that is generated by and required by operators is also explicit. Though this may seem

an unnecessary restriction, it has the potential for simplifying the programming

process as described by the authors:

In addition .... the system provides the facility to navigate the program

development process in the following way: Assume that the user knows

the input and output data, and does not know how to get the output

data from the input data. The system will display a list of all candidate

icons to be applied under the condition of input data type or input and

output data types. The scrolling facility is provided for cases in which

there are many candidate icons.

A ROOM k

I

Figure 2.5: Example Pigsty Program
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In summary, HI-VISUAL is an interactive, iconic programming language that is

based on a data flow model, that is, the graph describing the program is a data flow

graph, with the nodes representing operators and the arcs (which also contain icons)

denoting the flow of data from one operator to another. The language supports

hierarchy, interactive program development, and assistance in operator (icon)

selection. Tile scope of the HI-VISUAL language is determined by the scope of the

operators in its icon database.

HI-VISUAL is similar to our composition system in that it is a representation-

transformation graphs, but with explicit representation nodes. No accommodation is

made, however, for creating networked programs or for accommodating data type

heterogeneity, that is, the case where the representation for the same data differs

between two interconnected operators.

2.3.2.6. The VERDI Language for Distributed Programming

Graf describes a graphical language for distributed programming [Graf87a,

Graf87b]. This work is relevant to the composition system of this report because both

claim to allow the construction of programs over multiple processors. Graf's system

is named VERDI, for "Visual Environment for Raddle Design and Investigation" and

is based on a distributed system specification named Raddle [Form86]. Raddle is a

textual language, like CSP, for specifying distributed systems. However, such

languages have shortcomings, as described by Graf:

[These languages] suffer from a mismatch between the use of a linear

technology (text) to describe non-liner phenomenon (distributed or

concurrent computation). Thus, practicing designers must largely

maintain their conceptual understanding of distribution and

concurrency outside the formal expression of the design.

The idea of using graphical representation to describe an important aspect of a

program not otherwise described in the text has been previously described in the

Pascal/HSD system. There, the hierarchical design was described in the graphical

representation of the program. Here, the relationship among the parts of the program

implementing distribution or concurrency is being described graphically.

2.3.2.7. Pict/D

Glinert and Tanimoto's Pict/D programming system [Glin84] is roughly based on

Pascal and uses pictures, graphics, color, and sound. The language is very low level,

allowing only four unique variables and having limited control structures. Icons

represent program operations, and lines represent control structures. Program

modules can be encapsulated and placed in a library for use in other programs.

The programming process consists of selecting operations from a library of icons

and then placing them on a sketch pad. Selecting a prewritten routine implies a call

operation on that procedure.
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Pict/D provides an incremental execution environment. The programmer can have

the system execute the program as it is being developed. When the runtime system

reaches a yet-unprogrammed portion, it stops and allows the programmer to f'tU in

what is missing. As a Pict/D program is running, if selected to do so by the

programmer, the system will animate its execution, showing which part is currently

executing.

The authors of Pict/D conducted an experiment using 55 undergraduate and 10

graduate computer science students. In general, the responses were positive. The

experimenters found that subjects less experienced with programming liked it better

than those with more programming experience, confirming that Pict/D may be useful

as a tool for teaching programming. One question asked was, "If it were possible to

do so (in the future), how would you rate the chances that you would prefer on a

regular basis to use an expanded, Pict-like system to write your computer programs

rather than a language like Pascal?" Answers were on a scale of one to five, five

being most favorable. Of the undergraduates, 90.7 percent responded with an answer

of three or higher, yet only 20 percent of the graduate students answered in that

range. Both sets of students, however, felt the use of color was important; 90 percent

in both categories gave answers of four or higher.

Pict/D suffers low compactness of representation, and hence a lack of scalability.

In a sample program given by the authors, a Pascal code segment with nine

statement (not including declarations and begin/end statement) occupied the entire

sketch pad region of the editor.

2.3.3. Other Graphical and Visual Programming Languages

The previous sections highlighted the work of several other researchers in

graphical and visual languages. This section is organized differently, presenting brief

remarks about a larger set of works, organized not by the specific works themselves,

but by coarse categories into which they fit.

2.3.3.1. Languages for Novices

A large number of visual languages are oriented towards making programming

easier for those unfamiliar with the art. The domain of programming for novices is not

solely occupied by visual languages; textual languages exist in this realm, too, such
as BASIC and LOGO. However, some believe that there is an inherent difficulty in

learning programming when presented with a one-dimensional, textual language that

uses many of the same words as natural language but with different and more

rigorous meanings. A simple example is the use of the word "or" in formal (Boolean

or computer) language and in natural language. In both cases, "or" applies to two

statements but, in the former case, it results in truth if either or both statements are

true, while in the latter case it typically means that either one or the other statement
is true. It is subtle shifts in semantics like this that can cause continual confusion.

Glinert and Tanimoto state it thus:



40

Those who wish to progress beyond the canned software state,

however, discover that programming is painstaking work. Worse yet,

learning to program is, for many, even more forbidding; indeed, the

attempt is often eventually abandoned in frustration .... Why do

programmers u especially novices _ often encounter difficulties when

they attempt to transform the human mind's multidimensional, visual,

and often dynamic conception of a problem's solution into the one-

dimensional, textual, and static representation required by traditional

programming languages? ... we believe it is time to take advantage of

the human brain's ability to process pictures more efficiently than text.

[Glin841

Visual languages for novices are related to visual languages that are aimed at

increasing programmer productivity, whether that programmer is a novice or

experienced. Distinguishing this category suggests another parameter in a

multidimensional models, such as Shu's, for describing visual programming

languages: scalability. Many visual languages are good tools for teaching

programming in the small, for example, for understanding the subtleties in a solution

to the Producer-Consumer problem or the Dining Philosophers problem. However,

they often lack the ability to be usable for creating large, practical, general

applications. Part of the problem causing low scalability in visual languages is their

lack of compactness of representation; little is displayed in much space, though that

which is displayed may be very clear. Pict, as described above, is one such language

low in scalability. Another is BLOX [Glin86], a visual "building block" language

based on Pascal. VIPS [Chen86], a "Visual Programming Synthesizer," is aimed at

giving non-programmers a tool they can use to develop their own applications. PLAY

("Pictorial Language for Animation by Young People") [Tani86] is similar to

Rehearsal in that it presents a stage and players metaphor to the programmer. It's

orientation, creating simple animations, is similar to LOGO.

2.3.3.2. Systems for Displaying Concurrency

Concurrent and parallel programming systems are prime candidates for visual

interfaces because of an inherent two-dimensional display potential. On one axis the

sequential aspects of a computation can be displayed, and on the other the parallel

aspects can be displayed. Diagrams of this sort are commonplace in descriptions of

timing signals inside a clocked digital circuit, such as a computer, where time

advances from left to right and different timing signals stacked vertically display

concurrent activities. Synchronization in such diagrams is usually indicated by vertical

dashed lines relating two or more signals.

Parallel programming languages are not new, though the application of visual

display and construction techniques to them is relatively new. The literature contains

many reports on parallel languages that do not use, but potentially could benefit from,

a visual interface [Prat85, Jord85, Schw86]. Likewise, as described below, there do
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exist parallel programming systems that use visual techniques. Once such system is

Pigsty, previously described in this section. Other parallel languages and approaches

(e.g. Babb's HEP data flow programming [Babb85]) use graphical representations

but do not have a graphical interface.

An important aspect of parallel programming not present in sequential

programming is the need to specify data dependencies among parts of the

computation to state which pieces can be executed concurrently. The dependencies

can be displayed graphically using a directed graph structure, where the nodes of the

graph are the pieces of computation and the edges reflect the data dependencies.

Given a natural representation such as this, visual progranm_ing languages can be

devised that enable the user to state these dependencies visually. Once such system

is CODE from the University of Texas [Sobe88]. CODE is based on a data

dependency model of parallel computation, visually using an arrow from A to B to

denote DEPENDS(A,B). Additionally, CODE uses dashed lines to represent

"exclusion dependencies" which axe predicates that place additional constraints on

the invocation of a module. In CODE, the specification of the dependency relations is

separate from the specification of the units of computation.

A similar system, SCHEDULE, from the Argonne National Laboratory [Dong86],

also allows the user to interactively and graphically specify the data dependencies

among a set of modules, this time, Fortran subroutines. The programming system

generates a Fortran main program that is then compiled and run on a parallel machine.

SCHEDULE adds post-execution display of an event trace of the program, showing

how subroutines axe dynamically scheduled. In SCHEDULE, an additional graphical

notation is used to show that a particular scheduled subroutine may be further

decomposed into parallel units.

2.3.3.3. Database Query Languages

Visually-oriented languages for accessing data stored in a database are similar to

languages for novices in that they axe principally oriented towards making a difficult

computer-based task easier to use and faster to learn. In their study, Rockart and

Flannery [Rock83] call for more support for "end-user programming," that is,

providing the ability to allow non-programming computer users to write their own

programs. They report that over half of the applications used by end users in their

study involved the extraction and subsequent analysis of data from sources, though

an amazing 34 percent was keyed in from other reports. Hence, there exists a special

need for languages that allow end users to write their own retrieval and analysis

programs for data extracted from databases. Visual languages oriented towards this

task may be one answer. Two styles of visualization in database systems axe

common: forms and entity-relationship (E-R) graphs. Forms are common for queries

and E-R graphs axe good for visualizing the structure of data.

At times the term visual query language is applied to languages for creating

queries into databases holding visual information, such as digitized photographs or

maps (e.g. [Rous84]). Because the issues in those languages concem the way that a
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query into visual information is best statedand not with visual queries themselves,
thoselanguagesarenotsurveyedhere.

FORMAL [Shu84,Shu85] is a forms-orientedlanguagethat storesall its data in
two-dimensionalhierarchicalforms.The languageprimarily usestext laid out in two
dimensionson a screen,and allows the user to designnew presentations(forms) of
dataextracted from other forms (databases).FORMAL is similar to QBE [Zloo81]

and FORMMANAGER [Yao84] in its visual aspects; the user creates a two-

dimensional expression of a query into one or more databases.

Larson surveyed visual database languages [Lars86] and identifies four areas

where visualization is used: (1) forms for displaying data, (2) request formulation by

direct manipulation of the E-R graph, (3) query interfaces for novices, and (4) design

interfaces for administrators. Larson describes a previous work of his own in category

3 -- query interfaces for novices [Lars84]. In this system, syntax charts are used to

describe the syntax of queries on the database system. The query interface consists

of stepping the user through the query language by displaying the relevant syntax

chart and allowing the user to point to the desired next-step in formulating the query.

The syntax involves nested charts, so often additional charts may pop up in windows.

Whenever a database object is needed in a query, the system pops up an E-R chart

for the database, allowing the user to point to a particular entity or entity attribute.

2.4. Summary

Visual interfaces to programming languages and systems are becoming more and

more commonplace. Visual languages have found application in describing parallel

computations, in describing database operations, in teaching novices ways to program

computers, in proving an intuitive interface to animation, and in numerous other areas.

This section has skimmed the surface of the field, concentrating on important works

and overviewing general areas of application.

The composition system of this report shares attributes with many of the systems

described herein. In a sense, it provides an interface for novices in that almost all of

us are novices at composing sophisticated networked applications. On the other hand,

the composition system provides a capability not reasonably present in textual

languages: non-linear composition, or the ability to create pipe-connected programs

where each part has more than a single input and output.

Of all the extant systems surveyed, Pigsty is the most like our composition

system, in that it allows the construction of concurrent or distributed programs that

communicate and synchronize by passing messages. However, our composition

system explicitly claims to accommodate heterogeneity, a claim not presented by

Pigsty. The particular ability of our composition system to accommodate a network of

heterogeneous machines is not an attribute of its visual interface per se, but it is an

important attribute nonetheless.

The issue of scalability and compactness of representation is an important one in

visual languages, perhaps the most important. Whether or not visual programming
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languages can encode a sufficiendy complex algorithm or interconnection structure in

a cognitively manageable picture is an open question. We believe that our

composition system provides a step in that direction, by composing strictly at a very

high level, where each node of the program graph is potentially a highly complex

operation.
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3. MODEL FOR THE VIRTUAL MACHINE

3.1. Introduction

This section describes the operating system underlying the composition system.

This operating system implements a virtual machine interface to programs above it.

The virtual machine described here is an abstraction, described in terms of what

operators it presents to those who use it.

High-level languages offer a way of programming a computer that is more

powerful than programming the underlying machine. The job of a compiler is to

translate programs from a high-level language into a language that matches the level

of operations offered by the computer's hardware. This hardware usually implements

a set of very low level operators, designed to move data among a set of registers and

to perform arithmetic and Boolean operations. Often, though, the underlying machine

is insufficiendy powerful to implement all the features of the language, and it must be

augmented by adding new, more powerful, operators. These extensions axe what is

called the run time library. Hence, the virtual machine that is the target of compilers is

the hardware plus the run time library.

Whereas compilers target a low level machine, the composition system described

in this report targets a high level machine. Many operators used by the composition

system, such as network control and file management are not implemented directly by

the underlying machine targeted by compilers. The composition system programs the

operating system, just as the compilers program the hardware and run-time library.

This distinction between compilers and the composition system is extremely
important in this work.

3.2. O,_er_iew of the Virtual Machine Model

This section presents a model for a complete virtual machine and examines in

detail portions of that model. The primary purposes of the model are to demonstrate

that a computing system can be viewed as a coherent and hierarchical set of virtual

machines and to clearly specify the nature of the virtual machine underlying the
composition system.

It is important to realize that the model presented here does not reflect solely the

software parts of a computing system. Rather, it incorporates and logically binds

together all parts of the system, whether they are implemented in hardware or

software. Some parts, such as arithmetic units, will by necessity be of hardware

origin. Other parts, such as maintenance of the global naming directory, will be

implemented in software. The model does not require that a sharp distinction between
hardware and software be maintained.
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3.3. Aspects of The Model

The virtual machine model describes the functions performed by that machine

without giving details of the implementation. The model is useful because it frees the

designer of the composition system from the constraints imposed by any existing

machine, and calls attention to the functions required to support a composition system.

The model presented in this report employs the following principles:

• Hierarchical structure. The system is a series of interfaces. The uppermost

interface (below the composition system) describes how programs and

programmers use the system to perform work. The operation of the functions of
this interface are described in terms of functions defined in lower interfaces.

Continuing this description of interfaces downwards results in a hierarchical

structure where each interface, or level, relies only on the operations of levels

defined below it. We call this "functional hierarchy" because it describes the

functional, or control, structure of the system.

• Object based. This model describes an object based system, meaning that data

manipulated by programs running on the system are either atomic or are

compositions of other data and that these data objects, regardless of type, can be

named in a uniform manner in a high level language. These objects are

aggregations of the data objects implemented by the underlying machine, and have

a weU-defmed structure known only to those modules that allocate and

manipulate them. This is an important aspect, that the structure of the objects ks

definable, that is, there is a representation of the structure, and this

representation is only known to the code in an application that manages it. This is

known as "information hiding."

• Type managers. The levels in the system axe described as abstract data type

managers: the data types are abstractions and managed by a module in the

system. Each level manages just a few related object types. Type managers are

packages of functions that implement all the operators on a particular data type.

Traditionally, the term "abstract data type manager" further implies that the

internal representation of the objects managed is not available to routines outside

the type manager: it enforces information hiding.

• Capabilities. Objects in this system axe described and manipulated by using

capabilities, a concept originally proposed by Dennis and Van Hom [Denn66].

Capabilities axe pointers that refer to objects; they encode the data type of the

object, the operations (of the type manager) that can be performed on it, and an

identifier that can be mapped uniquely to the storage location of the data object. In

a distributed computing system, capabilities must be interpretable on any node of

the network by virtue of encoding the machine identifier responsible for managing

the resource identified by the capability. Our model distinguishes between two

types of capabilities: global and local. Global capabilities uniquely identify an

object in the distributed system, encoding its location. Local, or open capabilities,

axe only interpretable on a single machine. The create operations in the type
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managersretum global capabilities and only global capabilities can be stored in

directories. The open operations in type managers convert global capabilities into

open capabilities.

3.4. Summary of Past Work

Past work relevant to this model includes studies of hierarchically designed

systems, which will be summarized briefly. This is not an attempt to provide a

thorough review of the literature as was attempted in Section 2. Dijkstra's THE

system, Liskov's Venus, and SRI's PSOS inspired this design. The layering in

Comer's XINU operating system [Come84] was partially inspired by this model

3.4.1. Dijkstra's THE S2,stem

One of the f'trst published reports of a hierarchically designed system is on

Dijkstra's "THE" system [Dijk68]. This description is included here because it is an

example of a simple and elegant level-based operating system. An understanding of

this system will help the reader make the leap to the much larger model presented in

this report. Each level in Dijkstra's system is a type manager for a particular object or

resource. His levels, depicted in Figure 3.1, are as follows:

Processor "allocation. This level implements the processor scheduling algorithm,

services interrupts, and handles process synchronization. Above this level,

processes deal only with virtual processors.

• Memory allocation. This level handles primary and secondary memory pages and

assigns them to program pages, which Dijkstra calls "segments." Above this

level, processes deal only with segments and need not be concemed with their

placement in primary or secondary memory.

• Console management. This level handles the passing of messages from processes

to the system console and from the system operator to a process. Because this

level is above the memory manager, it can reside in "virtual memory" and hence

be moved to and from secondary store upon need. Above this level, processes can

behave as though they had their own private operator's console.

• Device tnanagement. This level has the device driving processes that provide

buffered input and output to higher level processes. Dijkstra justifies placing this

function above the console layer because these processes must be able to

communicate with the operator in the event of equipment failures.

• User processes.

• The operator. Dijkstra does not elaborate on the operator's view of the system
nor the language used to interact with it.



47

Operator

User Processes

Device Management

Console Management

Memory Allocation

Processor Allocation

Figure 3.1: Levels in the THE Operating System

Dijkstra claims that one of the primary benefits of using this design methodology

was the ease of testing. Because the system is layered, he was able to implement

level zero, test it thoroughly, add level one, test it thoroughly, and so on. He asserts:

It seems to be the designer's responsibility to construct his

mechanisms in a way _ i.e. so effectively structured-that at each stage

of the testing procedure the number of relevant test cases will be so

small that he can try them all and that what is being tested will be so

perspicuous that he will not have overlooked any situation.

He is so confident that his technique is sound that he states:

At the time this was written, the testing had not yet been completed,

but the resulting system is guaranteed to be flawless.

The THE operating system is important because it was the first system designed

and built as a set of type managers.

3,4.2. Tile Venus Operating System

The Ve_us system [Lisk72] is another example of an early operating system

utilizing hierarchical structuring techniques. The system description, however, does

not show it to be strictly hierarchically structured. One of the purposes of the Venus

project was to study the effect of the underlying machine architecture on the design of

the operating system. To this end, the Venus researchers started by extending the
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basicmachine,an Interdata3, by addingmicro codeto implementat least three type
managers,one for segments,one for virtual devices, and one for virtual machines.
What differentiatesVenusfrom THE is that the typemanagersarenot only described
by theoperationstheyperform,butby theobjectsorresourcestheymanageaswell.

The segmentlevel in the microcodeof the Venus machinemaintaineda central
mapping table to convert memory referencesinto physical addresses.Memory on
Venus was both segmented(64 kilobyte maximum segmentsize) and paged (256
byte pages). When a page fault occurs, the microcode ran a software routine to
resolve the reference.When that software routine completed,it executeda special
instruction,ELI, which retumedcontrol to the microcoderoutine wherethe fault was
originally detected.

The primary object maintainedby the virtual machine level was a primitive
process,sixteen of which could exist on the machine.Each processhad its own
registersand programcounter.The instructionsimplementedin this level include the
semaphoreP and V operations,defined by Dijkstra [Dijk68]. Hence, the system
schedulerwas implementedin this microprogrammedlevel and the semaphoreswere
usedfor synchronizationandprocessswitching.

The higher levels of Venus,abovethe microcode,manageddictionaries,queues,
and system resources. Dictionaries mapped external names (used by the
programmer) to internal names (used by the segment handler). Because the
dictionary handler existed above the segmentmanager in the system,dictionaries
could be stored in datasegments;in fact, they were.Associatedwith each dictionary
was a semaphoreused for managing concurrent updates.Hence, the dictionary
managerhadall theessentialpartsof a monitor.

Queues in Venus provided a mechanism whereby one process could send
information to another.Though the exact nature of Venus queuesis not important
here,what is significant is that the queuemanageruseda dictionary to hold the head
pointer for all existing queues.Hence,the operationson queueswere composedin
part of operationson dictionaries.Likewise,one of the objectsmanagedby the queue
level was the map from queue namesto their head pointers and this object was
composedin part of a dictionary. This is an exampleof both functional and data
compositionandhierarchy.

The major contribution made by the Venus systemis that in a hierarchically
structuredsystem, whether a function is implementedin hardware,microcode,or
software is of little consequence.What is important is that each level managesa
specific object,referredto asa resource in Venus. Unlike many later systems, and the

model presented in this report, Venus was designed by t_st extending the abilities of

the basic machine and then building an operating system on top of that. Another major

contribution of Venus is that the objects managed by a specific level may be

compositions of other objects defined at lower levels. Dictionaries are stored in and

refer to segments. The segments themselves are managed at a lower level then the

dictionary manager and are composed of elementary machine bytes.
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3.4.3. The Provably Secure Operating System

The Provably Secure Operating System (PSOS) [Neum80] developed at SRI

International is a 17 level hierarchically designed operating system based on

capabilities for referencing user objects. PSOS is much more extensive than our

design presented in this section, and seeks to specify all aspects of the operating

system in a way that allows for the proof of a set of multilevel security properties.

The prime contribution of PSOS is that it is a thorough operating system, formally

specified and hierarchically designed. The design methodology, named HDM, uses

four stages for the development of a system: definition of the interface, hierarchical

decomposition, module specification, and implementation. The specification stages

use a formal specification language named SPECIAL.

3.5. Details of the Virtual Machine Model

Our virtual machine model, like most models, can be thought of as specifying or

describing a family of systems, each member resulting from completing the design in a

slightly different way from the others. The primary feature of the model is its

hierarchies of type managers.

The advantage of structuring a system in this way axe as follows:

l) The hierarchical design allows the interfaces to the type managers to be specified

separately. Guidelines on how to decompose a high level interface specification

into modules and lower level specifications is described by Parnas [Pam72] and

Yourdon [Your75].

2) During implementation, the system can be built, one level at a time, from the

lowest level upwards. Each level can be tested individually with less concern over

the previously tested levels and no concern for the unimplemented levels.

3) If formal verification techniques are used, the effort required to prove the correct

operation of a large system only grows linearly with its size [Spit78].

In THE, Venus, and PSOS, the hierarchy is dictated by functional composition of

the system. This means that the description of the modules and interfaces between

them is the primary hierarchy of interest. In our model, a similar hierarchy exists,

along with another resulting from the fact that each level in the system is

implemented as an object manager. This is the object hierarchy and it demonstrates

how the objects managed by the system form a hierarchy of composition. The

functional composition further reveals a higher-order classification of objects: the

metatypes. Each of the three metatypes refers to a group of object-types addressed

in a similar fashion. The metatypes in our model, represented in Table 3.1, each have

different purposes in the system. They also have different ways of being handled and

described by user processes. Elements of the metatype set correspond to the

frequency of access of objects in a computer system. The elementary types, because

of their nature, are accessed frequently. Hence, the method of accessing them must be

fast and easy. The system types are less frequently accessed, but because they are

application independent, are accessed frequently enough to warrant special treatment.
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The user-def'med types, being application dependent, may be accessed least
frequently of all.

The simplest metatype is called elementary. Elementary types are strongly

related to the primitive types available in most modem computers: numerical scalars

(binary or decimal integer, t_xed point, and floating point), address values (pointers),

and capabilities. Processes handle several elementary types by value as they are

small enough to be held in machine registers (if the machine has registers) and be

passed as units between procedures. Other elementary types are referenced by

virtual memory address. Capabilities are elementary types in our model because they

must be handled with some of the same operations as the other elementary types.

This includes the ability to copy them between memory and registers, pass them as

parameters to procedures, and store them in long term files. One design [Derm80]

goes so far as to specify special machine registers to hold capabilities. Additionally,

all the objects in the next category, the system types, are referenced by capabilities.

Therefore, capabilities cannot exist in that category themselves.

The next metatype is called system types because they are special enough to

warrant special treatment in this model. This class of metatypes is the most

important one with regards to the composition system, because it is through objects

with types in this class that program parts communicate. System types are

application independent and pertain to all user processes. For example, the model has

a dictionary or directory for converting extemal, or user names for objects into

internal, or system names used for locating the objects. The use of such a directory is

so pervasive in modem systems that it is included as a basic part of our model.

Another such system type is the input/output device. Because devices exist on all

computing systems, including the modules that manage them as part of the operating
system is compelling.

In our model, system types are managed by type managers, similar to Ada

packages [Luck80], that form the main body of the upper machine levels of the- model.

System types are invariably referenced by capabilities and their intemal

representation is not available to user processes. Additionally, in a distributed

system based on our model, the system types may be transparently distributed
throughout the network.

Table 3.1: The Types Hierarchy

Metatype Referenced by Examples

elementary value or address

system capability

user extended capability

scalars, pointers, capabilities

files, channels, extended types

user defined
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The most sophisticated element of the metatypes is the user-def'med types. Our

model includes support for allowing user processes to define and manage new object

types not handled by the system, but does not elaborate on the mechanism used to

implement this. These user types are typically application dependent and so are not

part of the basic model. An example of a user-deEmed type is a graphical object

display list, in which case the type manager might include operations to extend the

display list, alter transformation matrices within the list, or cause the display list to
be visualized.

User processes reference instances of extended-type objects by a special

extended-type capability. The extended-type managers themselves are referenced by

standard capabilities. This allows for a type manager deemed within the vLrtual

machine for allocating values from the space of extended-type types. The mapping

from extended capability to object, however, is left to the user-deEmed type manager

and is not specified in this report.

3.5.1, Object Hierarchy

The object-type hierarchy typically exists in all systems, though not always as a

strict total-ordered one. The hierarchy-forming predicate R(a, b) for object types is

contains. The relation contains(a, b) is true if and only if the description of object type

a includes an instance of an object of type b and the consistency assertions about the

state of a are only correct if the consistency assertions concerning the state of b hold.

Notice that this definition closely parallels the "USES" predicate def'med by Parnas

[Pare74].

An example of an element in the object type hierarchy is a process object. Though

the details are explained later, in our model, a process consists of many parts, one of

which is a set of input and output streams. These streams are in fact deemed by

capabilities as part of the process object and they may refer to fries, devices, or

communications ports. One of the assertions about a process object is that its input

capability references an object that allows reading. Hence, if the assertions about the

input stream (device, file, or communications port) fail, the assertions about the

process state fail, too. It is not coincidental that this example hierarchy reflects a

similar hierarchy described in Section 1 -- that of a program part consisting of part-

specific data and sockets. This analogy results from program parts being static

instances of what are later dynamically instantiated as processes, and the sockets

become capabilities for I/O objects.

3.6. The Model

The prinmry description of our model centers about the functional hierarchy,

presented top-down in Table 3.2. Each level in Table 3.2 is the manager for a set of

objects of given type; each level provides operations for creating, deleting, and

changing the states of objects. Levels 1-8 implement the managers for the

elementary objects on each machine. Levels 9-14 implement the principal system

objects provided by the model; most are sharable among all machines of a distributed
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Table3.2:TheFull FunctionalHierarchy

Level Name Objects ExampleOperations

15

14

Composition
System(shell)

ExtendedTypes

UserPrograms

Extendedtypeobjects
(from prograrnming
language)

Creationof composed
programs

createtypeMark,
registerserver

13

12

11

10

9

User Processes

Directories (name
service)

Devices

Long-term storage

Communications

Processes

Directories

I/0 devices: printer,

keyboard, display, etc.

Files

Links

create, kill, suspend,
resume

create, destroy, attach,
detach, search, list

create, destroy, open,
close, read, write

create, destroy, open,
close, read, write

create, destroy, open,
close, read, write

8

7

6

5

4

Capabilities

Virtual memory

Local secondary
storage

Primitive processes

Interrupts

Procedures

Instruction set

Electronic circuits

Capabilities

Segments

Blocks of data, device
channels

Primitive process,
semaphores, ready list

Fault handler programs

Procedure segments, call
stack

Evaluation stack,

microprogram interpreter,
scalars, arrays

Registers, gates, busses,
etc.

create, validate,
attenuate

read, write, fetch

read, write, allocate, free

suspend, resume, wait,
signal

invoke, mask, unmask,
retry

markStack, call, return

load, store, unaryOp,
binaryOp, branch,
arrayRef, etc.

clear, transfer,

complement, activate,
etc.
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version. The horizontal lines in the table indicate the division points between sections

that manage different metatypes. This section does not elaborate on levels 1-8; they

are documented elsewhere [Brow84, Denn84].

The levels must conform to two general rules:

• Hierarchy. Each level adds new operations to the machine and hides more

primitive, lower-level operations. The set of operations visible at a given level

form the instruction set of an abstract machine that can be used to program

operations at that level. Hence, programs can invoke visible operations of lower

levels but no operations of higher levels.

° Information Hiding. The details of how an object of given type is represented or

where it is stored axe hidden inside the level responsible for that type. Hence, no

information can be changed in an object except by applying an authorized

operation to it.

The description that follows is an overview of the upper levels of the model, based

on Table 4.2. The model resulted from starting with a knowledge of what the highest

level should look like and then successively decomposing that description into levels
of less and less abstraction.

3.7. The Multi-machine Levels: 9.15

Levels 9-15 are called multi.machine levels because they manage objects that

can be shared among the machines. Operations familiar from single-machine

operating systems must be carefuUy evaluated for extension to multi-machine

systems.

Hiding the maps between names and objects is a central principle in many third

generation operating systems. It is responsible for the machine independence of the

user environment. To extend the principle for multi-machine systems, the design

must hide the locations of all sharable objects (i.e., channels, directories, files,

devices, user processes, and extended types). This requires the solution of three

problems: reliable exchange of information between processes on different machines,

global naming of objects, and efficient access to objects. The first problem is solved by

the communications level, the second by the directories level, and the third by

distributing the interpretation of capabilities.

Level 9 provides a single mechanism, the channel, for reliably exchanging

information between processes, independent of whether they axe on the same or

different machines. A channel appears to its users as a queue of memory segments.

The create operation returns a global capability for the channel, which can be

subsequently opened for reading or writing, but only once for each. Once opened,

processes use an open-channel capability. The level 9 type manager enforces a

rendezvous between opens for reading and writing on a single channel because each

open may come from a different machine and each, the reader and writer, needs to

know where the other end resides. Channels have properties similar to pipes in UNIX
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[Ritc74] and ports in iMAX [Kahn8l]. Level 9 is the lowest level at which the
communications level has access to the functions of the host machine needed to meet

its reliability requirements [Denn83, Come841.

Level 10 is a f'de system extended so that it can open tides that may be stored

remotely. Level 11 provides access to other devices such as printers, plotters,

terminal keyboards, and terminal displays; it is extended to use channels to connect

to devices on other machines. A standard interface for opening, reading, writing, and

closing all files, devices, and channels exists, implementing device independence, or

more correctly, media dependence.

Level 12 provides a global directory tree structure and a mechanism for ensuring

that portions cached at each machine are consistent. Each entry in a directory

contains a name, access list, and a capability. This level can f'md a directory given a

directory capability, but is not responsible for locating any other object.

Level 13 implements user processes, which are virtual machines containing

programs in execution. A user process includes a primitive process, a virtual memory,

a current directory pointer, and parameters passed on invocation. User processes

should not be confused with primitive processes (level 5). Process invocation

semantics include the ability to preallocate capabilities for the input and output

channels used by the program. It is a fundamental attribute that when the shell, level

15, invokes a program in a new process, that it have the ability to tailor the set of I/O

capabilities for that program. The precise mechanism for passing these capabilities

into the programs, however is not specified and may be language dependent. Some

languages may use capability lists, in which case, the programs can reference the I/O

capabilities as small integers serving as indices into the list. In other cases, the I/O

capabilities may be placed in a well-known location when the program is started,

such as in a procedure activation record expected by the main program.

Level 14 is an extended types manager. It creates protected type-marks and

instances of objects of each type. Because it utilizes the same capability validation

mechanism as in level 6, a procedure call is no more expensive for extended type

objects than for other system operations. Unlike Hydra [WulfS1] or PSOS [Neum80],

our model places type extension close to the user level. This supports the efficiency

principle: since we do not have to deal with the most general case deep inside the

operating system, we can use standard implementations for common system objects.

Level 15 is the shell, the interpreter of a high level language making up the user

interface. The composition system in this report is an example of an implementation of

a level 15 shell. Other shells may exists as well. Typical user-written application

programs reside at level 15, also, unless the applications are built above user-defined

type managers. Pictorially, the top of the virtual machine is as in Figure 3.2, showing

that a text-oriented shell, the composition system, and user applications all reside at
level 15.
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3.8. General Comments on Level Structure

The level structure is a hierarchy of functional specifications. The purpose is to

impose a high degree of modularity and enable incremental verification, installation,

and testing of the software.

A program at a given level may directly call any visible operation of a lower level;

no information flows through any intermediate level. The level structure can be

completely enforced by a compiler, which inserts procedure calls or expands functions

in-line [Habe76]. It has been used in, among others, an efficient operating system,

XINU, for a small distributed system based on LSI 11/02 machines [Come84].

The level structure discussed here should not be confused with the layer structure

of network protocols [Tane81]. In network protocols, information is passed down

through all the layers on the sending machine and back up through all the layers on

the receiving machine. Each layer adds overhead to a data transmission, whether or

not that overhead is required. Models for long-haul network protocol structure may

not be efficient in a local network [Pope81]. All these ideas axe embodied in Level 9.

No one level is capable of efficiently hiding the locations of all objects in a

distributed system. For example, the f'de system must know whether a given rde is

local or not to perform the most efficient read and write operations. The device level

must know the machine to which a given device is connected. The user process level

must know whether a given process is to be spawned on the current machine or

another. A single central mechanism cannot do all this efficiently. Accordingly, we axe

led to the principle that each level is responsible for hiding the location of the objects

it manages.

Level
15

Command
Shell

Composition
System

User

Applications

Virtual Machine Created as Levels 1-14

Figure 3.2: Upper Levels of the Machine
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4. FUNDAMENTALS OF PROGRAM COMPOSITION

4.1. Introduction

This section describes the important attributes of composed programs and the

program composition system (PCS). PCS is a subset of the larger system, the

distributed PCS (DPCS) and concentrates on those components that are only

concerned with program composition. Many of the aspects of PCS described in this

section reflect decisions made during the creation of a prototype composition system.

Those decisions, for the most part, were not made with ease of implementation in

mind, but with clarity of abstraction as the prime consideration. However, because a

real PCS prototype does exist, and the best abstractions often lose their purity once

implemented, the material in this section tends to track a middle ground between the

ideal and the practical, wavering closer to the abstract than the concrete. Herein is

described what composed programs axe, what their components are, and what

considerations go into constructing them.

4.1.1. Review of Pipe-connected Programs

The program composition system allows the construction of programs that consist

of computational parts and communication paths among them. We call the abstract

form of such programs representation-transformation (RT) graphs because they

exhibit a graph structure with two types of nodes: data representations and data

transfonners. Edges in RT graphs associate data transformation nodes with the data

representations they produce and consume. A simplification of RT graphs eliminates

the representation nodes and uses directed edges to represent data passing from one

transformation node to another. RT graphs reduced in this way are often called data
flow graphs.

PCS generalizes on the linear program graphs that can be constructed using the

UNIX shell by allowing graphs with nodes having an arbitrary number of in-edges and

out-edges. Figure 4.1 shows examples of linear and nonlinear program graphs.

Nonlinear composition is useful for a variety of applications. For example, the UNIX

programs join and comm take two inputs and produce one output. Using these

programs from the UNIX shell requires the use of temporary files, the very thing that

pipe-constructed programs seek to avoid. Another example is the program comp in

the Utah Raster Toolkit [Pete86]. It combines two images into a third. A typical

image compositing script has several comp steps in it, each requiring a temporary file

to hold one of the inputs, in Figure 4,1, the program C in the nonlinear composition

example may be one of these programs requiring two inputs. Additionally, linear

composition does not allow two programs to communicate with each other, as is the
case in traditional client/server and coroutine models.

Likewise, programs exist that have more than one output. An example from UNIX

is tee, a simple program that splits its input into two identical outputs, but only one of

them can be a pipe. Another example is the popular program awk, a string oriented
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language with syntax very much like the C programming language. Awk allows

multiple outputs but, again, only one can be a pipe. If awk would allow the

programmer to direct outputs to multiple pipes, and if it could be used in a non-linear

composition language, then it could be used as a general-purpose router of textual

data. In Figure 4.1, program A in the nonlinear example could be this multiple-output

awk, directing output matching one pattern one way and that matching a second

pattern another.

This attribute of programs, having more than one input and output, is not an

artificial artifact, but an essentiality that extends the capabilities of the programs and

provides a strong motivation for the data flow graph representation of a network of

programs. Only very simple networks can be constructed from programs or functions

that have at most one input and output, whereas by extending that number from one

to two, arbitrarily complex program networks can be constructed. Extending the

number of inputs and outputs beyond two does not add any significant functionality,

but it can, in many cases, simplify the structure of the network and allow it to more

graphically reflect the nature of the computation.

This section describes the structure of the type of pipe-constructed programs

used herein and elaborates on the primary abstractions used in the program

composition system, namely parts, sockets, links, and the boundary. These

abstractions are not independent, because sockets do not exist without being

associated with either a part or the boundary. Within the PCS, a program is described

fully by the triple formed of the parts (with their associated sockets), the boundary

Linear Program Composition

Nonlinear Program Composition

Figure 4.1: Linearly and Nonlinearly Composed Programs
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(also with sockets)and the links. Hence,a composedprogram can be described as
follows:

Program = (Parts, Links, Boundary)

This definition is recursive because parts may be composed programs. In brief, a part

is a program with sockets and descriptive information, links connect socket, and the

boundary is a set of extemal sockets. These abstractions axe elaborated upon in this
section.

4.2. Semantics of Composed Programs

Program parts composed together in the way just described intercommunicate and

cooperate toward the solution of a computational problem. The means by which they

communicate and the way they cooperate form the semantics of these programs. The

intemal semantics of the parts themselves is a separate concern, not directly
addressed here.

Each part in a composed program is an autonomous unit of computation whose

intemal structure is not strongly influenced by being involved in a larger PCS

application. When the state of a part becomes such that it needs the services of

another part, or its services axe required by another, it performs a communication

operation through the operating system to pass data to or receive data from another

part. The method of communication and scheduling is not specified by the composition

system; that is entirely an attribute of the individual parts.

An early work describing a similar application of communicating processes for

specification of parallel computation is presented by Kahn and MacQueen [Kahn77].

Much of their concern, however, dealt with the scheduling of composed programs of

this sort on a uniprocessor, an important aspect of their system because they support

dynamic creation of new program nodes. In PCS, no assumption is made about the

nature of the processor(s) that run the code in the primitive parts other than k offers

the virtual machine interface presented in Section 3. In one implementation, the virtual

machine may be a time multiplexed real processor, as in contemporary uniprocessor

timesharing systems. In another implementation, each virtual machine may use a real

processor in a multiprocessor system where each processor shares a common

physical memory. And yet in another implementation, each virtual machine may be a

distinct processor only connected to the others by way of a communications network.

Of these three possible implementations, the last both matches the model of

composed programs most closely and presents the most complicated set of problems.

If, in the networked processors case, the machines differ in program and data type

representation, the composition system is obliged, by the ease of use requirement, to

handle the primitive part location and data conversion management issues.

Two important aspects of the semantics of composed programs are the form of the

data passing through the links and a set of interconnection primitives that form the

basis for constructing large applications. Even though PCS does not enforce any
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particular communicationand schedulingabstraction,some common ones do exist
thatareusefuli.ndifferent circumstances.

Whena composedprogramis executing,eachprimitive part runs as a processon
a distinct virtual machinehaving, in our virtual machinemodel, a single thread of
control.The stateof aprocessrunning a partmay besuchthat it is eitherwaiting on a
messagefrom one of its input socketsor it is computing and not yet ready to receive a

message.

4.3. Message Formats

Parts communicate by passing data among themselves across paths called links.

The unit of communication is called a message. All data moving into and out of a

program part passes through a socket object on the part. Associated with every

socket is a data type, a static description of the type of data expected by the socket.

The designer of the program part determines the data type; it is associated with the

part description in the parts database. The representation of the typed data is a tort-

time attribute, and the alternatives are described here.

Data passed through message links can be either structured or unstructured. With

unstructured data, only the sending and receiving processes places any interpretation

on the contents of messages. One advantage of unstructured messages is simplicity;

each part can consider the data it receives as simply a block of data words copied

from the memory space of one process to the memory space of another and the

interpretation depends only on the coding and state of the receiving process. Another

advantage of unstructured streams is efficiency; no extra software is required to

manage the structuring information that must accompany structured messages.

Unstructured data streams have a disadvantage in that the content of a message

is placed in the memory space of the receiver and then the receiving process uses that

data in a way that is entirely dependent on its own internal state rather than on the

content of the message itself. Hence, the validation of messages is left to the

programmer; no support is provided by the underlying system. Problems can occur

when a receiver is in a state where it expect a message of one particular type, and

one of a different type arrives.

Unstructured messages have a further disadvantage when used to pass

messages between processes running on separate computers having different native

data formats. For example, consider a message containing an integer followed by zero

or more floating-point numbers, the integer stating how many floating point numbers

follow. If such a message is passed between processes having different byte-ordering

for integers and different floating-point formats, the receiving process will be unable

to use the message unless is knows how to interpret the data representation formats
of the sender.

Associated with structured messages is information that states the types and

representations of the data. This additional information may be encoded in the

message itself, in which case the message data is said to be self-identifying, or it
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may be explicidy associated with the programs that send and receive the data. When

the data description is not in the message stream, there is usually a data description

language (DDL) or interface description language associated with the socket. The

DDL states, in a formal way, the structure of the message and the data types of its

components. DDL specifications must be supplied by the programmer, thus adding to

the progranunmg effort, and are static at run-time.

Self-identifyia_g message formats encode the structure and data types of the

messages in the messages themselves. This information can be added at run-time,

without special assistance from the programmer, if the compiler generates the

structure and type information and places it in the language's input and output

primitives.

Both predesribed (via a DDL) and self-identifying message streams have the

advantage that, when passed between machines with different data representations,

there is sufficient information available to the communication system to translate from

the sender's representation to the receiver's. This is an important consideration in

DPCS. With predef'med message types, the type is associated with the socket and

that information can be used by the DPCS program development environment to

assure that the progranuner does not try to link together sockets that have different

abstract data types. Self-identifying types are more flexible, though, because the data

types placed on the link are not determined until run-time.

For DPCS, we chose a hybrid approach. Sockets have associated with them a

data type name that allows the development environment to perform type checking

when the programmer creates a link. Also, we use self-identifying data streams so

that automatic representation conversion can be performed at run-time.

4.4. Communication Structures

This section describes communication structures that represent possibilities as

fundamental "building blocks" in composed programs.

4.4.1. Procedure Call Emulation

Procedure calls are a common technique for program composition in high level

languages. The semantics of a procedure call are (1) the calling procedure makes a

request of another procedure, passing it data it needs to satisfy the request and the

caller stops execution. Next, (2) the called procedure incorporates the input data into

its namespace and (3) computes on behalf of the caller. When the callee completes, it

(4) returns a result to the caller, who (5) then resumes execution. The called

procedure's execution is temporally bound between the time it is called and the time

it returns a result, and it restarts its execution each time it is called.

The behavior of procedures can be emulated with messages passed over a

communications channel. Using the graph notation of previous figures, Figure 4.2

depicts the intercormection structure. Part A runs autonomously, and occasionally

requires the services of part B, using a procedure call-style interface. Meanwhile,
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Figure 4.2: Procedure Call Emulation

when B starts execution, it waits on an input from its input port. Now, A requires

service from B, so it sends a message encoding the request parameters to B and

immediately waits for a reply. B, upon receiving the request message, computes

based on the parameters, returns a result and then cycles back to its beginning to

wait for another request. At this point, A consumes the result and proceeds. A

distinction between procedure calls and our emulation is that procedures usually do

not retain state between calls, even though the mechanism to do so exists in several

languages. When emulating pure, non-state-retaining procedures, the called-on part

must explicitly reset itself to an initial state each time it retums a value.

Remote procedure call uses a similar protocol, since the caller does not

(necessarily) share an address space with the called procedure in which to store an

activation record, and so must pass the activation record to the called procedure in a

message.

4.4.2. Coroutine Emulation

Coroutines, originated by Conway [Conw63], are similar to procedure calls except

that the called procedure is not restarted from its beginning each time it is called,

Instead, once it returns a result, it stops and waits, retaining its state, until another

request arrives. This behavior can also be easily emulated with messages using the

same scenario as with procedures, except once the called routine (B) retums a result,

it stops and waits for another request without restarting itself. Here, the state-

retaining property of parts is necessary. The intercormection structure for coroutines

is the same as for procedures (Figure 4.2). The popular server/client model of

computing is an example of coroutine interconnection.

Coroutines offer the possibility of concurrent execution of the routines involved.

For example, once the called routine returns a result, it need not immediately stop

and wait for the next request; it can continue execution. In the cases where the virtual

machine is implemented on multiple processors, this scenario offers true concurrent

execution of pieces of a program. When coroutines do not stop and wait on each other

synchronously, their communication behavior mimics the rendezvous mechanism of

Ada.

4.4.3. Pipelining

Pipelining is a more general case of concurrent coroutines than the example given

in the last subsection. When two routines, A and B, are pipelined together, the sense
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of who is the caller and who is caLled almost disappears. The situation is like a

traditional producer-consumer model, where one routine, A, produces data required

by B. Pipelined routines can run asynchronously and the semantics of communication

are as follows. When A has completed the production of a piece of data required by B,

it sends it to B in a message and proceeds. Meanwhile, once B reaches a state where

it needs another piece of data in order to proceed, it waits on a message from A. Upon

receiving data, B proceeds. Hence, B can be working on its latest input at the same

time that A is working on the next one. Figure 4.3 shows the interconnection

structure of a pipelined computation of two routines.

Pipelining can be extended to an arbitrary number of routines, where each routine

is working on the piece of data most recently completed by the routine before it in the

pipeline. In such a case, each routine except the first and the last is both a producer

and a consumer. This style of computation is analogous to a production line in an

assembly plant, where each worker performs a specialized operation on a piece of

equipment (computation) and then passes the partial product on to the next worker
(routine) in the line.

As in production lines, pipelined computations can suffer from bottlenecks, where

one worker (routine) takes much more time to complete its work than the others

around it. If the slowest routine is continuously slower than the others, work will

build up in the pipeline before it, and routines after it in the pipeline will spend time

waiting on input, producing results only at the rate of that slowest routine. On the

other hand, if the time it takes a routine to complete its work on an input is highly

variable and is only sometimes longer than those around it, then speed matching can

be achieved by placing buffers between the routines so that the communication link
itself can hold data in transition from one routine to the next.

4.4.4. Classification

Nonlinear construction allows demultiplexing, or classification parts to be included

in program networks. Classification parts read from a single input port, classify each

input object, and then route the objects to one of several outputs depending on the

value of some part of the data. Figure 4.4 shows the interconnection structure of a

three-way classifier, program A, that splits its input into streams to programs B, C,

and D. Classifier schemes can become complicated when the demultiplexed stream of

objects must be reassembled in proper order later in the program.

Figure 4.3: Pipelining Interconnection Structure
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Figure 4.4: Classifier Interconnection

4.5. Structure of Composed Programs

The product of the program composition system is called a composed program, and

the concem of the composition system is providing the ability to create composed

programs by combining existing computer programs into a larger system of programs
that communicate with each other in ways defined at the time the composed program

was written. Composed programs have components named parts, links, and the

boundary. Additionally, every program has a name and annotation, identical to that

described later in the description of program parts. Program parts and the boundary

consist of descriptive information and sockets which contain the descriptions of the

interconnections of these elements to other elements. A composed program is a set of

parts and a single boundary plus a set of links that describe the interconnections of

the sockets belonging to parts and the boundary. Each of these components are

elaborated upon individually.

There are three types of attributes associated with components of composed

program: static, display, and dynamic. The concern of this section is principally the
static attributes. The others axe left for subsequent sections and sections. The static

attributes axe those that exist as a part of the def'mition of the progra.m; dynamic

attributes are those that exist only when the component is included in a composed

program or when that program is in execution. Display attributes are those the

concern the visualization of the program in the graphical editor.

4.5.1. Parts

The unit of computation in the composition system is the program part, usually

called just part, corresponding to a node on a program graph. Normally, the part is the

finest level of detail at which the PCS user deals with the description of how a
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computation takes place. There are two tvires of parts, primitive and composite. Parts

have numerous attributes and associated substructures, some of which are concerned

with the semantics of the part, others of which are concerned with its view or syntax,

and some have meaning in both domains.

Another way of describing parts takes into consideration the analogy between

program composition in PCS and a design process. Parts are the units of design,

without which no composed program could exist. They are similar to process

components in SDMS [Hagi84] though in PCS the term process is not used in the

static description of a composed program. Constructing a new program using the

composition system entails selecting program parts and then interconnecting them

with links. Such a composed program must contain at least one part.

Program parts in PCS are either primitive or composite. Primitive programs are

atomic, that is, they cannot be further decomposed into other parts within the

composition system. Such parts correspond to the traditional sense of computer

programs and may be derived from a variety of sources, thus satisfying the existing

software requirement described in Section 1.

Within PCS, parts comprise numerous pieces of static, dynamic, and display

information. The static information, describing what the part is and how it can be fit in

with other parts in a composed program, is as follows:

its name,

its module name,

the set of its sockets,

its initial argument list.

Parts have names that describe their function. There may be several namespaces

for part names; corresponding to different computational domains. For example, if the

domain of application is graphics, part names may be such things as "Animate,"

"Render," "Ray Trace," and "Digitize," In fluid dynamics, on the other hand, names

may be such as "Generate Grid," "Convert Airframe," and "Boundary Conditions."

There are no rigid rules for the selection of part names, only an informal rule that they

be descriptive and unique within a specialized domain namespace.

Because the composition system interconnects parts by attaching communication

links between them, it must know a priori what input and output connections are

possible on a part. We call the information about a single point of connection on a part

a socket. The set of sockets associated with a part uniquely describe its input and

output connections. Sockets are more fully described in the next subsection.

The initial argument list for a part is passed to the createProcess routine in level

13 of the model operating system. The precise semantics of the argument list are

system and part dependent.

The module name is used when the part is invoked, and is described in the
invocation semantics section later in the section.
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The characteristics of primitive parts necessary to allow them to join into a

system of programs composed with PCS are few. Principally, because the relation

that joins programs in a PCS-composed system is communication, primitive programs

must be constructed so that they receive their input data by reading using a capability

that supports reading, and they write output data by writing to a capability that

supports writing. What type of object these capabilities reference is immaterial; they

can refer to files, links, or devices as managed by the upper levels of the model

operating system. Primitive parts are not restricted to perform all of their input and

output by way of sockets; they may use whatever other facilities are available to

them for acquiring input and routing output. For example, they may utilize dialog

boxes on the workstation screen (if appropriate) for input and output. Not being

constrained to accessing input and output resources made available by the

composition system is an important attribute: The specification of the interconnection

of program parts is independent from the construction of the parts themselves. This

doctrine was also observed by Sobek, et al., but for constructing parallel programs

[Sobe881:

A unit of computation at one level of abstraction may itself have an

arbitrarily complex sequential or parallel structure without this

structure impacting the relationships between this module and the

balance of the computation structure at the higher level of abstraction.

The computation modules (units of computation) may thus be arbitrary

programs in any high level language supported in an execution

environment or may themselves be complex parallel computation

structures..

Composite parts, as they appear within the composition system, are

indistinguishable from primitive parts. They, however, are not atomic, but are other

program networks created with PCS. The implication of composite parts is that once a

program has been composed using PCS, it can be reduced into a single program part

and then included in another program network, which in tum can be reduced to a

single part, and so on. This mechanism allows a higher level of program abstraction

than provided ff only primitive parts can be used.

Figure 4.5 shows a simple program network of three parts, one of which is

composite. The figure shows the original network, comprising parts A, B, and C, the

expansion of the composite part C, and the result of expanding the original network to

contain only primitive parts. The expanded network is one that can be invoked using

only virtual machine operations for creating the interprocess communication channels

and invoking the primitive parts.

The notion of having composed parts introduces a hierarchy into the system, not

unlike the hierarchy in procedure-based composition systems. The "uses" relation

introduced by Pamas [Pam79] forms a hierarchy of programs or procedures. The

relation for composed programs in use here is "comprises." A composed part

comprises one or more other parts, some or all or which may be composed. This is a
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Figure 4.5: Linearly and Nonlinearly Composed Programs

static hierarchy; once a network of programs is expanded, whether parts are

composed of others or not is immaterial.

Sockets for composed parts are extensions of those sockets inside part that are

connected to the boundary (explained later). So, in Figure 4.5, the connections for the

composed part C are in actuality the connections to the internal parts D and E. Thus,

external connections ultimately attach to only primitive parts after all composite parts

have been expanded.

4.5.2. Sockets

The next abstraction of concern is "sockets." Sockets do not exist in isolation.

Rather, they are an element of parts or the boundary, as explained later. From the

point of view of a part, a socket is the object to which it writes output data and from

which it reads input data. Within a primitive part, sockets are referenced by way of

capabilities, or some variation of capabilities, that reference files, devices, or

interprocess communication objects.

The static attributes of a socket are as follows:

its name,

its port,
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its direction (input or output), and

its data type.

Sockets in this composition system are named, there being one namespace per

object (part or boundary) that contains sockets. In UNIX, by convention, there are

three default names for every program: stdin, stdout, and stderr; more may be defined

at run-time. Parts in PCS do not inherently have default sockets; each program must

define its own, and these socket names are part of the static description of the socket.

Names cannot be used in PCS for dynamic (run-time) binding to I/O ports of parts.

The direction of a socket, input or output, determines which way data passes

through it. For sockets associated with a part, the part reads from input sockets and

writes to output sockets. For those sockets associated with the boundary, input

sockets pass data from outside the program network to the inside, and output sockets

pass data from within to the outside.

The port number associated with a socket is an artifact of the way some systems

preallocate I/O channels for programs. In terms of the virtual machine model of

Section 3, the port number can be thought of as an index into a capability list storing

the initial I/Q capabilities of the part. Though seemingly an artifact of contemporary

operating system technology, the port mechanism is included in this design to help

satisfy the "'existing software" and "immutable program" requirements stated in

Section 1. A new mechanism allowing primitive parts to access their initial I/O

capabilities is presented later in this section.

The data type associated with a socket describes the type of the data that passes

through it. In general, only sockets that have the same or compatible data types may

be connected with a link. The data typing scheme may be complex, using a hierarchy

of data types with inherited attributes such as in Smalltalk. In PCS, we chose, for the

sake of sunplicity, to draw type names from a flat namespace. Data types on sockets

constitute a static attribute, stored in the parts database.

Programs intercommunicate by way of sockets. Sockets map into the particular

programming language in which the part associated with the socket is programmed.

For example, if the part is programmed in Fortran, then the "logical unit number"

used in WRITE and PRINT statements maps into a particular socket on the part.

Hence, the internal coding of a part is entirely defined within the language in which it

is programmed, with the additional abstraction of socket that is used in the program

statements that generate output and read input.

4.5.3. Links

The link is the abstraction for the operating system object that passes data from

one socket to another. Links are unidirectional in this system, just as sockets are.

There are no unique static attributes associated with links; they inherit their

attributes from the sockets and parts that they interconnect. In particular, links do not

have names in the composition system; during program editing, the user names them

by pointing to them. The two sockets connected by a link may both be on program
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parts, or one on a part and the other on the boundary. In this system it is not allowed

to have a link connect two sockets, each on the boundary. This restriction is arbitrary,

but no loss of generality derives from it, because, at any point in a link, an identity

part (that is, one that passes its input to its output unmodified) may be inserted.

Links are managed by level nine in the virtual machine model, where they are

called communication channels. The term "links" is in the vocabulary of the

composition system, which comprises level 15 of the model.

Links between parts can only connect output sockets to input sockets, since data

can pass only in one direction. Links between a part and the boundary connect

sockets of the same direction, because, in essence, the boundary socket is an

extension of the part socket to which it is connected.

Links are a critical abstraction of the composition system because they form the

implementation of the composition relation. All data passing between two program

parts must go through a Link, hence, making it a place where program debugging and
monitoring facilities can be concentrated.

4.5.4. The Boundary

The boundary of a composed program contains all the sockets that describe all of

its external connections. Hence, the boundary consists of a set of sockets. These

sockets have the same attributes as sockets associated with parts. Input sockets on

the boundary are the points where, abstractly, data passes into the program. Output

sockets on the boundary define the points at which data passes out of composed
programs.

In one sense, boundary sockets are abstractions having little or no concrete

realization because they do not reflect operating system objects; connections from

outside a program to a boundary socket actually are made to the part socket on the

other end of the link attached to the boundary socket. Boundary sockets do, however,

have names, and a single name space exists for the entire boundary. These names

are used when the program containing the boundary is collapsed into a composite

part; they become the names of the external sockets on the composite part.

4.5.5. Synopsis

In summary, composed programs, sometimes called program networks, comprise

program parts, sockets, links, and a boundary. Figure 4.6 shows these components in

a visual representation, using the same program network as in Figure 1:2. Program

parts can be primitive, managed by the operating system, or composite. Parts

comprise some descriptive information and a set of sockets. Sockets comprise names,

data types, and directions. Links have no static information. The boundary comprises

a set of sockets. The hierarchy for these components is displayed in Figure 4.7.

There are several types of names and namespaces used in the composition

system. Sockets have names, but these only have meaning within the context of a

part, when programming it and when it is invoked. Parts have names, too, and these
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socket

/

Figure 4.6: Components of Composed Programs

axe only relevant during the part selection process during program development.

Embedded in parts axe names that axe only interpreted by the operating system.

Except for the part names which axe used for part selection, none of these names axe

used during the composed program development process, and even the part names

could be replaced with icons. Generally, during development, the user names items by

pointing. This distinction is elaborated on in the next section.

4.6. Parts Semantics

This section concerns the internal construction of primitive program parts, and

how the programmer, knowing that the part will be used within PCS, can take

advantage of that feature. Though the composition system strives to satisfy the

existing software requirement stated in Section 1, optimization of primitive parts is

possible in the cases where the parts are constructed from scratch or altered with the

composition system in mind. For purposes of explanation, examples of how the

programmer can use PCS-provided facilities is given here in an abstract programming

language similar to C [Kern78]. In providing these examples, we assume the

existence of a data type named cap, a capability.

4.6.1. Port Mapping

One of the first 0.reas where consideration of the composition system can help in

the coding of prinaitive parts is in the mapping from socket names to the capabilities

for those sockets. Normally, the programmer can rely on the port field of a socket and

access the capability for the socket through a capability list established by the

program loader. This mechanism can work in a number of extant languages and

systems. In Fortran, the port number can become, with support from the loader, the
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Fortran "logical unit number." In UNIX systemsprogrammedin C, the port number
can be usedasthe "file descriptor"numbernormally retumedby the systemwhen a
file, pipe or deviceis opened.This is one of the mechanisms,in fact, implementedin
thePCSprototype.

Kahn andMacQueensolve theproblemof namingsockets,what they call ports, in
theparts implementationlanguageby building it into the language,POP-2.Eachpart,
whattheycall aprocess,hasaprocessheaderof thefollowing form:

Process <name> <parameter list>;

The parameter list portion has two parts, ordinary and ports. The ports parameters

name the process-specific variables that refer to input and output ports in I/O

statements. In the following example, QO refers to an output port and QI an input

port:

Process QUEUE out QO in QI ;

Such a mechanism cannot be used by itself in PCS, since PCS adheres to the

multiparadigm requirement. However, if such a language as is shown above is used to

write primitive parts, they could be incorporated into PCS. The POP-2 style of naming

ports is a part of the specification of the program, though, and does not address the

technique in the virtual machine for making the port capabilities available to the

program at run-time.

Another mechanism takes advantage of the abstraction of the socket name, and

allows the program to directly map this name into a capability. This mapping

operation is strongly analogous to the mapping from names to capabilities provided by

the directory manager, but is implemented instead by the shell.

The programming interface to PCS is provided logically in a run-time library, which

can be thought of as a way of making calls directly to the shell (level 15) of the

operating system. In this regard, it is safe to think of the user's program as running at

level 16 of the virtual machine -- the applications level. In implementation, however,

the shell (PCS) is not involved in the management of the execution of a part, except

when monitoring and debugging facilities are evoked.

The interface, as a procedure call, is as follows:

declare socketCap of type cap;

socketCap = socketCapFromName ( NAME );

In this case, NAME is a text string containing the name of a socket.

This mapping need not be done explicitly by the program part. A prelude to the

part can, given information provided by the programmer as to the names of the

sockets, perform the mapping transparently.
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4.6.2. Multiparadigm Parts

The composition system does not specify the language in which primitive parts

are constructed. All that is required is that the parts communicate through the I,/O

facilities provided by the underlying virtual machine. The language exists at a level of

abstraction lower than the composed program. All usable languages have an

abstraction for input and output. This aspect transcends language and allows any to
be used in PCS.

4.7. Network Description Language

This section describes the representation language called the Network

Description Language (NDL), for composed programs. Because, thus fax, only the

static attributes for programs have been presented, this description only contains the

static attributes. Later, as more components of composed programs are described.

more parts of the description language will be presented. NDL is introduced here to

serve as a foundation for explaining other attributes precisely in the next section,

which concerns the visual attributes.

The syntax of the network description language is a simple name-value S-

expression notation, where the form

(name value)

is used consistently. The names of data items axe all f'Lxed and defined by the

language. Values may be integer scalars, string scalars, integer arrays, string arrays,

or composite. Composite elements add a level of nesting of notation, in a style similar

to LISP. The notation was chosen for clarity and ease of parsing. Each of the

components of composed programs are described below by example.

Sockets have a simple representation, in that they do not have any composite

components. An example of a socket represented in NDL is as follows:

(socket
(name "stdin")

(port O)

(direction O)

(type" ")
)

The elements of this description should be self-explanatory. The specification of the

meaning of the data type values is deferred.

The description of program parts is similar in structure to sockets, except that

they contain sockets as elements. An example part NDL notation is as follows:

(prog
(name "sort lines")

(socket

(name "stalin")
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(port O)

(direction O)

(type .... )

)

(socket
(name "stdout")

(port 1)

(direction 1)

(type .... )

)
(module "/usr/bin/sort")

(args
"sort"

i,_d,,

)
)

Again, this LISP-like notation should be self explanatory. Because parts contain

sockets, their NDL representations contain NDL description of those sockets. As

described earlier, the module name is a string that is passed to the directory manager

of the virtual machine so that it can be mapped into a capability. In the NDL example

above, the directory manager is implemented by a UNIX-style operating system.

Boundary NDL descriptions are almost identical to part NDL descriptions, except

that all that they contain are socket descriptions. Likewise, since there is no static

information associated with links, there is nothing in their static NDL descriptions.

There is, however, information in the visual part of their NDL descriptions, described

in the next section. Prototype boundary and link description look like the following:

(boundary

(socket
.oq

)
)

(link

)

These descriptions contain both net-specific information, such as where links attach,

and visual information, such as how they axe routed on the sketch pad.

Program networks have an NDL notation. Networks, or composed programs,

comprise part descriptions, a boundary description, link descriptions, and annotation.

A prototypical net description is as follows:
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(net

(annotation

)

(part

)

(boundary

..o

)

(link

)

)

There may be, and usually are, several part and link elements in net descriptions.

4.8. Invocation

This section describes the issues and choices surrounding converting a static

description of a program graph into a running set of communicating programs.

The module name attribute of parts is in the namespace maintained by the

directory manager. When the composition system begins the execution of a composed

program, it invokes primitive parts by using the operating system operations in the

process manager level and composite paxts recursively through itself. This process is

analogous to initially expanding the program graph so that only primitive parts exist,

and then invoking them all using the process manager routines.

The createProcess operation in the process manager requires (at least) a

capability that references the long-term storage object that stores the code for the

primitive part. This capability is not stored as a static attribute of the part itself in

order to avoid the problems concerning long-term storage of capabilities in other

storage objects (the only long-term storage of capabilities in the virtual machine is in

directories, managed by level 12). The design of this composition system stores a

module name in the part, and that name must reside in some namespace. For our

system, we chose the name space supported by the underlying virtual machine: the

directory system. This directory can be thought of as a name server, mapping human-

readable names into handles that can be interpreted by any of the upper levels of the

operating system. The composition system does not add its own namespace for

naming primitive parts; because it programs the virtual machine of Section 3, it uses

the facility that machine provides.
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The algorithm used by PCS to convert a static program graph into a running
programon a single virtual machinetraversesthe list of parts creating the links to
other partsand outsideobjects as necessary.Once all links for a part are created,it
startsthepart.Abstractly,the invocationalgorithmisasfollows:

for eachP in Parts[*] do

begin

for each S in P.sockets[*] do

begin

if ---1Slink.exists then

begin

S.link.cap := linkCreate ( );
S.link.exists := TRUE;

end

P.portSet := P.portSet k.) S.link.cap;
end

P.cap = directorySearch ( P.moduleName );

processCreate ( P.cap, P.portSet );

end

The linkCreate operation retums a capability for a link. The abstract algoritban

above does not show how only one user of a link subsequently calls linkOpen for

reading and one calls linkOpen for writing.

The algorithm presented invokes all parts in the program graph whether they

contribute to the overall computation or not, an oblivious algorithm. An alternative is

to only invoke parts if they have a contribution to make to the computation. We define

three predicates describing the behavior of parts in a parts-based computation:

CONTRIBUTES( p ) ¢:¢ removing p from the computation changes the

result of the computation.

WRITES( p ) ¢=_p ever writes to one of its output sockets.

READS( p ) ¢0 p ever reads from one of its input sockets and there is

data to read.

The results produced by a computation comprise the union of all its outputs, hence

the only way for a program part to contribute to the computation is if it generates

output data (parts can, as a side effect, impact the computation by failing to read their

inputs, causing producers up-pipe to block; we do not further consider this case). For

example, if a classifier part never routes data to one of its outputs, then there may be

parts further down the pipeline that never receive any input data. Hence,

CONTRIBUTES and WRITES are equivalent for side-effectless parts-based

programs. However, it is in general undecidable whether a part having one or more
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outputs will generateany output and hence, in general, CONTRIBUTES is also
undecidable.If. however,we constrainparts such that they may only generateoutput
if theyreceiveinput,

WRITES( p ) =_ READS( p ), and hence

CONTRIBUTES( p ) _ READS( p ),

and they do not otherwise cause side effects, then a lazy data-driven invocation policy

can be used: only invoke parts when they receive input. When these constraints

cannot be met, the oblivious algorithm must be used.

Lazy invocation is advantageous to oblivious invocation in those cases where the

program has parts for which CONTRIBUTES is false. The advantage stems from two

sources: conserving resources and, in some instances, enabling invocation.

Conserving resources occurs when invocation of unused parts results in computing

resources being allocated and subsequently released with no benefit to the

computation. Enabling invocation occurs when parts bound to unavailable resources

need never be started. For example, a classifier may route data through one of

multiple outputs based on knowledge of what resources are available and which are

used further down the pipelines.

Oblivious invocation can result in lower run times for program graphs. Invoking a

program incurs overhead, generated by the composition system, the operating

system, and by the part itself; it may not immediately start reading input. If the

composition system does not start parts until they have available input, then the

invocation overhead can directly increase the total running time of the program, and

will propagate this delay down the pipe.

A second type of lazy invocation, demand-driven, only invokes parts when the

parts to which they write try to read data from them. Demand driven evaluation does

not suffer from the undecidability problem. Parts with outputs attached to the border

are immediately invoked. As they try to read from their inputs, the parts that supply

those inputs are then invoked. The disadvantage of this scheme is that more parts

will be started than necessary because of the second clause of the READS predicate,

that of data being present, cannot be determined. Hence, READ implying

CONTRIBUTES no longer holds.

4.9. Summary

This section has presented a description of what composed programs are, what

their components are, and how they are represented within the composition system.

Little or no reference has been made to the visual representation of composed

program, an important aspect. We have concentrated on the composition mechanism,

not the implementation of a particular algorithm using this system.

From the experience of designing and implementing parts-based programs, as

described in this section, come the following principles:
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l) Staticparts-basedprogramgraphsdescribea useful set of applications.

2) Parts-based programs having parts with more than a single input and output

allow a larger class of programs to be created than when parts are constrained to

have a single input and output, as is the case with the UNIX shell.

3) Basic building blocks, such as procedure call emulation, coroutines, rendezvous,

pipelining, and classifiers have been identified as useful in creating parts-based

programs.

4) Allowing a program graph to be reduced to a single program part and placed in the

library of parts enhances the level of abstraction achievable in PCS and enables

the construction of larger programs.

5) The boundary abstraction reinforces the notion that a composed program, from the

outside, structurally similar to a program part.

6) A textual network description language provides a straightforward way of saving

the state of a program graph on extemal storage, and provides a representation

that can be used outside the context of a program development environment. NDL

proved useful in debugging the prototype.

An oblivious invocation algorithm provides a safer means of starting a program

graph when no constraints are placed on the behavior of program parts. Data driven

lazy invocation can conserve resources and enable invocation if constraints are placed

on the input/output relationships of parts. Demand-driven lazy invocation is less

effective in conserving resources.
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5. THE PROGRAM DEVELOPMENT ENVIRONMENT

5.1. Introduction

This section deals with the visual aspect of the program composition system,

describing how composed parts-based programs appear and how they are created.

Our research included the construction of a usable prototype for experimenting with

pipe-based program construction. This section examines that prototype, the design

goals that underlie it, and the conclusions we draw from it.

The design goals of the visual programming environment for PCS programs are as
follows:

• Provide a language well matched to the class of problems for which PCS programs
are best suited.

• Be easy to use.

• Present an environment in which the programmer can develop, modify, execute,

and debug PCS programs.

Most of the topics in this section center on the graphical editor and its prototype

implementation, called protoPCS. This prototype is further described in a User's

Manual [Brow88b].

The graphical interface to our composition system is motivated by the inability of

linear text to describe a nonlinear interconnection structure among parts. The network

description language, NDL, is a textual representation of non-linear programs that

can precisely state what the parts are and how they interconnect. It is inadequate,

however, for practical use; the NDL text gives no sense of the network of parts. The

interface depicts a network as a directed graph whose nodes denote operators and

edges data flow paths. We call these graphs representation-transtbrmation (RT)

diagrams.

In theory, several interfaces and editors could exist for creating and modifying

composed programs, just as multiple editors exist for textual data representations.

We describe only one such interface here, that one which has been implemented. The

description, however, is sufficiently abstract as to allow a family of interfaces of which

all members implement similar functionality. This approach, to describe the abstract

interface and functionality, and then create multiple implementations that satisfy that

specification, was used by the author and colleagues in the implementation of a

concurrent language debugger [-Brow88a].

5.2. Designing a Prototype

The paradigm of progrmnming within PCS is as follows: The user first develops a

mental image of the parts and their interconnections. Within the PCS programming

environment he or she lays out this diagram on a sketch pad by selecting parts and

pointing to places on the workstation screen. A built-in browser helps the selection of
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specific partsfrom an inventory. Next, the user connects the sockets of the parts with

links by pointing to the beginning and ending sockets of each link. The user switches

back and forth between adding parts and adding links until the graph is complete,

connecting some sockets to the boundary of the sketch pad, denoting external

connections. When the graph has been completed, the user asks the environment

manager to invoke the program.

Based on this scenario, we designed an implementation to incorporate the

features we desired. Several early decisions directed this design, as follows:

• All the components of PCS programs have visual representations.

• The programmer creates a PCS program by directly and spatially manipulating its

components on a sketch pad.

• The program development environment supports top-down programming.

• Textual information can be attached where appropriate and natural, e.g. in naming

a part or in annotating.

° There is an inventory of parts including both primitive and composed parts. The

user selects parts from this inventory.

• The development environment provides syntax checking and does not allow the

programmer to create a syntactically incorrect program.

• Primitive parts cannot be edited within PCS. New primitive parts built from

existing programs can, however, be added to the inventory without leaving the

programming environment.

• Each major component has annotation associated with it. The annotation is

visually suppressed until requested by the programmer.

• The environment allows the creation of abstract parts that have no

implementation, allowing for top-down program design.

• The environment allows files and devices to be attached to parts.

• Debugging and monitoring are an integral part of the environment and have a

visual, direct manipulation interface.

The remainder of this section examines in detail how these design principles are

met, the visual representations of the components of composed programs, the

elements and concerns of the environment manager, and some discussion of the

implementation of the prototype.

5.3. Visual Representations

This section describes the visual representation of the components of composed

programs, namely: parts, links, sockets, and the boundary. Each component of a

composed program has a visual representation, and the combination of the individual

components creates a visualization of the entire part. Figures in Section I and Section
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4 show an increasingly developed abstract portrayal of the visualization of a

composed program. Each component of composed programs is described in a
subsection.

5.3.1. Part Representation

Parts are the unit of design and the prime focus of attention in composing
programs. The visual representation of a part must contain sufficient information to

enable the reader of the program to immediately identify the function of the part.

Toward this goal, a pictorial component, an icon, is added to the part description.

Work exists studying the efficacy of small diagrams and pictures in presenting

information [Rohr84, Bere86, Mont86] which generally agrees that icons denoting

actions are more difficult to design than icons denoting objects. Conveying the

operation of a part in a picture is even more difficult to achieve for heavyweight,

complicated parts. Icons axe better suited to lightweight operations such as arithmetic

operators (arithmetic symbols can be used) or as representations of objects.

Parts represent actions, or transformations, and so their icons should reflect the

action. One scheme that works for some parts is to use a data plot roughly showing

the function computed by the data. Another scheme avoids the issue of creating

meaningful transformation icons by displaying, in the same icon, both the input and

output representations with an arrow, denoting transformation, between them. Figure

5.1 shows two example icons of this type, one for centering lines of text and the other
for a Fourier transform.

The existing static components of program parts that have visualizations axe the

name, the sockets, the argument list, and the annotation. The module name does not

need to be immediately available for visualization because it is only a piece of

information that aids in the invocation of a composed program. PCS makes distinction

between information that is continually visible and that which is quickly available on

demand. Because of the potentially large amount of text that may be associated with

the annotation and argument components of the part, they axe not continuously visible

but can be made visible with a single "point and select" operation. Hence, the part

visualization contains a virtual button that, when pressed, displays the text of the

annotation or argument list.

m !
.

4,

Figure 5.1: Representation-transformation Icons
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Figure 5.2 shows an example of a part in the prototype PCS. The static

components are labeled in the figure. The example part is for sorting, and the icon is

reminiscent of the sorting graphs seen in Baeker's sorting movie [Baek81]. Notice

that in this icon, text is relied upon to complete the picture of a sorting part, but that

the body of the icon shows a graph of a function. We consider using function graphs in
an icon a useful device.

File and document objects are represented in much the same way as part objects.

Documents are read-only, however, and are constrained to having a single output

socket. Files may be read and/or write, and can have any combination of sockets.

Files do not have an arguments button and documents replace the arguments button

with a contents button.

5.3.2. Boundary Representation

The boundary of a composed program holds the sockets that can later be used in

splicing this program, as a composite part, into other composed program. Visually, the

boundary is a border around the sketch pad in which the programmer creates the

program and is used as an attachment point when the programmer creates a link

between a socket on a part and the outside. Conceptually, the border around the

program delineates what is outside the part from what is inside the part. In the

prototype, the parts representation is rectangular and the border is rectangular,

thereby suggesting each other. In the prototype, the boundary is a thick gray border

around the entire sketch pad.

Icon

Annotation
button

PO_ ITION

Name

"*--------- Arguments
button

Figure 5.2: A PCS Part Visualized
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5.3.3. Links Representation

Links connect sockets which are either both on a part or one on a part and one on

the boundary. Conceptually, links axe lines drawings from the source socket to the

destination socket. Ideally, the routing of the link through the sketch pad, from one

socket to the other, should be natural and easy to follow. There should be no

ambiguities at link crossings, and few or no crossings.

5.3.4. Socket Representation

Parts and the boundary contain sockets, and so their representations contain

socket representations. Sockets are static objects on parts; the programmer must

know which socket picture refers to which socket and be able to point to them when
creating links.

Sockets appear as small boxes on the edges of parts and embedded in the

boundary. Socket representations contain small arrows denoting the direction of data

flow. Figure 5.3 shows a part with two sockets.

5.4. Development of Composed Programs

Development of composed programs involves a graphical editor, a language-

specific editor oriented towards the visual syntax of PCS. The program development

cycle in PCS is similar to that used for textual languages: the programmer develops a

program in an editor and then invokes it. Hierarchical programs can be constructed

top-down or bottom-up; each has its application. A bottom-up approach can be used

by a programmer who is interested in extend'.mg the inventory of parts; the
programmer creates new composite parts and then stores them in the inventory for

others to use. The top-down approach is useful for the user developing applications.

When constructing a program, the user may opt to insert an abstract part rather than

deal with the details of implementing that component immediately. The abstract part

becomes a placeholder for subsequent expansion. This allows the programmer to

concentrate on the overall structure of the application and only be concemed with finer

4
5
6
7

i

unsequence
J L

Figure 5.3: A PCS Part with Sockets
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details of implementation at a later time. In its current state, the prototype

development system does not implement abstract parts.

The graphical editor runs on a computer with a moderately large graphics screen.

A specific requirement of the host for the editor is that it have a large graphics screen

capable of displaying a composed program of several parts and a device that allows

the user to designate specific places on the screen. The editor presents a modal

interface; the user enters a mode, performs an action, and then enters another mode.

The default mode allows the user to select components of the program under

construction and perform editing operations on them, such as deleting or moving them.

The user changes modes by pressing a button on a tools palette. The button denoting

the current mode remains highlighted. The major modes are selecting/editing the

graph, adding parts, and adding links.

Figure 5.4 shows the layout of the protoPCS editor. The editor display comprises

five main parts or panels. The largest panel is a sketch pad in which the user

composes the PCS program. The other sections are a control panel containing

commands and options available to the programmer, the tools palette containing

Messages Panel

Control Panel

Tools
Palette Sketch Pad

Annotation Panel

Figure 5.4: Prototype PCS Layout



84

virtual buttons to invoke composition tools, an annotation window in which the user

can view and edit the annotation for the program being composed, and a small

messages panel used to pass instructions to the programmer.

Within the control panel at the top of the screen are the headers for menus that

contain commands to the editor. The "file" menu contains commands for saving and

restoring the program graph, for erasing the sketch pad, and for invoking the program.

The "edit" menu contains commands for deleting and moving objects on the sketch

pad. The "debug" menu contains commands for viewing the internal data structures

of the editor and for setting flags within the editor to cause debugging information to

be placed in a logging file. The only command in the "misc" menu is for creating new

parts.

The host that runs the editor, the development machine, need not be the same as

the one that runs the composed program, the target machine. The target machine

must, however, offer a virtual machine interface such as the one specified in Section 3.

Parts selection is a key element in the design of the composition system. Ideally,

program parts are clustered into groups such that all the parts within a particular

group are related by what they do or the type of data on which they operate. This type

of organization can lead to problem solving environments that, by proper clustering of

parts, present versions of the composition system that are tailored for a particular

domain. The clusters can be hierarchically structured, say, at the top level by problem

domain and then below by the type of data used by the parts. If the type definition

system is hierarchical, as in Smalltalk, then the part-group organization will be

hierarchical to reflect the data-type organization. The Smalltalk browser is a good

example of a mechanism for traversing a tree of data types, allowing the user to

examine more and more refined types.

The virtual machine model in Section 3 has a createProcess operation that allows

its user to pass arguments to the newly created process, much as one would pass

arguments to a called procedure. The arguments exist so that programs can be

tailored at run-time to a particular application. This mechanism needs to have some

analog in the composition system. Users of PCS have access to the arguments list for

each part. Like annotation, arguments are normally not visible on the sketch pad but

may be displayed and changed on demand by selecting a piece of any of the part

visual representations. When a shell supports a programming mechanism, as PCS

does with composite parts, it also needs to extend the argument mechanism to the

outer interface. PCS does this by defining a macro mechanism for program arguments.

Arguments are numbered, starting at one, and are text strings. When the network is

invoked, the prograrrmaer has the option of specifying a list of arguments. PCS scans

the argument lists to the component parts of the network and replaces the abstract

argument variables with the values specified.

The prototype FCS does not impose a rigid inventory structure on the programmer

or user. PCS uses the UNIX directory structure to store part descriptions. Hence,

hierarchy is built in. The browser allows the user to move down and up a directory

hierarchy.
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As a principle, annotation is an essential part of programs. Textual languages

handle annotation very well -- it is encoded in-line with the program text. Visual

languages, being inherently non-textual, do not as nicely accommodate annotation. In

one sense, the perfect programming language does not need annotation; the program

itself tells the story at all levels best. This ideal of "self documenting code" however,

has never been met. Programs are implementations of algorithms and invariably take

into consideration the target architecture and therefore digress from the pure abstract

algorithm. Hence, supplemental annotation can help the reader of the program

understand the algorithm, the decisions that went into the implementation, or things

to be considered when using the program. Annotation can also describe the inputs

and expected outputs of the program, as is the case with program user manuals.

Catalogs of program parts can be rigorously constructed under a rigid set of

constraints concerning correctness, accuracy, speed, and usage documentation of the

programs in the catalog. In such a case, the programmer needs to have easy access to

information concerning the use of the program. Such information is highly textual,

though it may contain graphs and charts. The TR diagram shows the reader the

overall interconnection structure of the program graph. The documentation should

remain available so that the reader can dig deeper into the operation of the program.

Though the name and icon of a part serve to convey some of the function of the part,

only more detailed information can reveal its true function.

The ability to create new program parts from existing programs is an important

one in PCS. We chose to make the operation of introducing new parts into the

inventory built in to the composition system and take advantage of the visual

interface. To that end, the PCS prototype contains a mechanism, invoked by

command, that allows the user to describe a new part by supplying the static

information, such as name, icon, annotation, and sockets. Once the part has been

described, it can be placed in the parts inventory.

5.4.1. Development of a Program

This section describes the process used by the programmer to develop a simple

PCS program and follows the description with a running example. This example will

result in a complete, though fairly simple, executable program.

The program we will write is a simple one. Its input is a refer-style database

[Lesk78] consisting of bibliographic references. The output is that same database,

but with the names of the authors in all uppercase format. This is a very difficult task

using the UNIX shell; there is a program to convert input to uppercase, but no

application to convert just a portion of an input. This example demonstrates the

capability of PCS to handle simple programs that cannot be directly written with UNIX

shell. The description below alternates between how we accomplish a subtask in the

prototype system and the general principles behind the task.

Having a rough sketch of the desired program graph in mind or on paper, the user

focuses first on the representation of the data as it enters the program. For this

problem, the input is lines of text. The user looks ahead into the problem and realizes
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that he or she will have to split the text into two streams, one that becomes

capitalized and another that is not. In order to reassemble these streams, the user

will tag each line with its sequence number. To start, the user selects the parts tool

from the tools palette, and is presented with a dialog box showing some of the parts
available to us (Figure 5.5). The user know these tools work on text streams

because they are all in the "TextTools" directory, and he or she quickly locates a part

named "sequence" which wiU add sequence numbers to lines of text. The user

selects this part and then presses the "Open" button. Double clicking the part name
would have had the same effect.

Once the user has selected a part, the browser window disappears and the editor

prompts, in the messages panel, the user to place the part on the sketch pad. The

programmer moves the pointing device to the desired place on the sketch pad and

depresses a button. As he or she moves the mouse around; the part moves with it,

and upon releasing the button the part becomes fixed in the location of the pointer, as

in Figure 5.6. The user notices that the icon for the "sequence" part shows an

abstract picture of the input and output representations with an arrow between. The

user chose to place the part in the upper left comer of the sketch pad because the

mental picture of the desired graph has this as the first transformation in the

sequence, and the user prefers to read RT diagrams left-to-right.

The next step in our example, in Figure 5.7, is to continue in the same vein until

all program parts are placed on the sketch pad. It is not necessary to first place all the

Figure 5.5: The Parts Browser
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Figure 5.6: Placement of the First Part

Figure 5.7: All Parts in Place
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parts down; operations in PCS can take place in any order. The second part chosen by

the programmer was "classify 2x," meaning "classify two ways." This is a general-

purpose classifier for text as described in Section 4. It has one data input, two data

outputs, and a fourth socket which is used for a classification script. This particular

classifier is based on the UNIX program "awk" and so the classifier program is an

awk script. The third part is the standard UNIX program "tr" which can translate

characters in a text stream from elements in one set to corresponding elements in a

second set. The user positioned this part so that the links, when drawn, do not take

excessively long routes. The icon for "tr" is the generic icon for protoPCS, that is, the

one used when no specific icon is designed for the part. The fourth part,

"merge," performs the function suggested by the icon -- merging lines of text. The

fifth part, as the icon suggests, removes the sequence numbers from the text.

In general, the layout of successive parts in a RT diagram comes from knowledge

of the structure of the graph. Though careful consideration of layout is not necessary,

it is generally good to place parts that share a link near to each other. An ideal editor

of this type could restructure the diagram after a few parts have been placed, but in

PCS, the interconnections are not available to the editor yet. If the editor were to

require that, before a part is place, the programmer state where it is connected, then

the editor could choose a good place to put it on the sketch pad. This is not the case

with protoPCS.

Retuming to our example, the user next selects the link tool from the tools

palette. This tool allows selected pairs of sockets to be connected with links. Once 'all

links are draw, the sketch pad looks like as shown in Figure 5.8. If, in the process, the

user tries to connect two input or two output sockets together, the editor disallows it.

When the user wants to connect a socket to the boundary, as with the input socket

for "sequence," he or she first selects the socket and then select a place on the
boundary; the editor draws the link.

In general, link routing on the sketch pad is one of the most difficult aspects of any

graph editor and is still an open question how to do it best. ProtoPCS uses a simple

algorithm that extends the links from both sockets simultaneously, each seeking the

other end, backtracking when deadlocked. Aside from routing, links provide a graph

editor with the interconnection information for the network it needs to redesign the

graph on the sketch pad.

With all links connected in our example, the user next tailors the general-purpose

parts of the graph to suit the needs of the program. In particular, the "tr" program

needs to be supplied with program arguments that tell it what translation to perform.

The user clicks the "A" button on the "tr" part and is presented with the dialog box

shown in Figure 5.9. The design of PCS program arguments depend on the host

system that runs the part. In this case, the host is a UNIX machine and so the

arguments dialog box allows us to enter UNIx-style arguments. The figure shows

that this invocation is to translate all lower case letters to upper case. The user clicks

"Okay" and the dialog box disappears.
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'Figure 5.8: Links Drawn

Figure 5.9: The Arguments Dialog Box
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The next step in the construction of our example is to create the script that tailors

the classifier step. The classifier is a complicated program, sufficiently so that the

user has forgotten how to use it. He or she clicks on the annotation button, labelled

with a question mark on the part, and is presented with the window of information

shown in Figure 5.10. The user is reminded by this of the names of the data output

ports and how to construct a program to drive the classifier. The user closes the

annotation window and prepares to create the script as a document object for the
classifier.

Once reminded how to use the classifier, the user sets out to create a new

document object to hold the script, using the "Create Part" option on the "Misc"

menu. The user is presented with the dialog box shown in Figure 5.11. Using the

mouse to manipulate the items, he or she constructs the image of the document object

and then creates the contents of the document by pressing the "Edit Text" button.

The user is presented with a standard text editor window in which we type the

classifier script. Knowing that the classifier is based on awk, the text the user types
is as follows:

$2 = = "%A" { print / "output-2"

next }

{ print / "output-1 "}

Figure 5.10: The Annotation Window
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Figure 5. l 1: The Dialog for Making a New Document

The syntax of the classifier script derives from the syntax of the UNIX program

"awk," but has been augmented to allow output statements to name a port to which

they direct data.

When finished creating the script, the user links it into the program network as

show in Figure 5.12. The program is now a complete network and the user is ready to

try it out. He or she selects the "Run" command from the "File" menu and is

presented with the dialog box show in Figure 5.13. Each boundary socket is listed in

this dialog box, and the user has the option of connecting them to windows, files, or

nothing. In the current case, the user chooses to connect the input socket to a file

containing bibliographic references and attach the output socket to a window.

Program invocation brings up several issues. Because program graphs in PCS

have explicit extemal connections, they must be resolved when the user invokes the

program. In UNIX, where programs inherit the extemal connections of their parents,

this is not as critical. The prototype PCS accommodates UNIX programs in that if port

number two, called "stderr" in UNIX, is not otherwise used, it is opened to the log

file that is used to record the process of the execution of the network. Another issue

that arises is debugging and monitoring. Ideally, the programmer should be able to

monitor the progress of the program, and tap into the pipes of the computation to

make sure that the right transformation is being performed by the parts.

ORIGINAL PAGE IS

OF POOR QUALITY



92

Figure 5.12: The Completed PCS Program

Figure 5.13: The Invocation Dialog Box
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Back to the example, PCS has now invoked the program and popped up an output

window, shown in Figure 5.14, showing the final output. Subsequently, PCS shows a

status log of the execution of the program, containing any error messages, the

completion status of the parts, and confirmation that the entire network has

completed.

5.5. Environment Manager Internals

This section briefly discusses the issues concerning the implementation and data

structures of the graphical editor that forms the front-end for the program

development environment. Though the program graph appears to the user as a

picture, it is stored within the composition system as a linked data structure from

which the picture is derived. The composition system maintains two major data

structures, one to describe the abstract RT graph and the other to describe how it is

displayed on the workstation screen.

Separating the graph and display structures simplifies the construction of the

prototype composition system by separating the modules that operate on the two

structures. In general, modules in protoPCS are oriented towards either managing the

program graph or managing the display. The structures are interlinked; the display

structure references objects in the graph structure.

Figure 5.14: The PCS Program Output Window
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Each set of modules, graph and display, implement a set of operations that

implement the editor. Graph-maintaining modules are further subdivided into those

concemed with the parts, the links, the sockets, and the boundary. Each type
manager (TM) implements at least routines to create, read (from an NDL

description), write, and destroy the object it manages. The RT graph structure is an

interlinked dynamically allocated data structure composed of those objects. Other
operations necessary in the TMs are as follows:

• Parts: add to graph, delete from graph, associate with link, display annotation, edit

arguments, traverse all parts.

• Links: add to graph, delete from graph, associate with socket.

• Boundary: add socket, delete socket.

Adding links to the graph only involves creating them and linking them to the

sockets at their endpoints. Parts must be maintained in a separate table in order to

support the "traverse" operation used by the invocation algorithm. Each of the

operations with the exception of traversal is implemented in time that is constant as a

function of the number of parts, links, and sockets. Additional structures, such as a

table referencing all links and sockets, exist within the composition system to
facilitate debugging.

The RT graph data is mostly doubly linked, thus does not exhibit the same purely

hierarchical structure of the components of the abstract graph. The double linking

reflects the nature of the operations on the graph. For example, when a user deletes a

part, the links attached to it are deleted simultaneously. Hence, parts must reference

(through their sockets) the links. Similarly, when the user deletes a link, the sockets

on either end must be updated to indicate that they are not attached, and in the case

of sockets on the boundary, they must be removed.

A sketch of the RT graph data structure is given in Figure 5.15. The three primary

data structures are the parts table, the link table, and the boundary, corresponding to

the three top-level elements of composed programs. There is only one boundary in a

program, so it is a solitary structure. The structure representing a part contains all the

information pertaining to that part, including a list of sockets. Likewise, the boundary
contains a list of sockets. The link structure associates two sockets.

The next set of modules within the prototype manage the appearance of the RT

graph on the sketch pad. The sketch contains representations of the objects of

composed programs. The visual representation of these objects may have several

visual components; parts have sockets and annotation buttons, the boundary has

embedded sockets. The principle operations for the sketch pad are as follows:

• Place the visual representation of an object at a given position on the pad.

• Delete an object from the sketch pad.

• Convert a sketch pad coordinate to an underlying object and component of the
object.
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Figure 5.15: The RT Graph Data Structure
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• Redisplay the entire graph.

Each object in the graph, parts, links, etc., has a visual representation. The

display list structure principally exists to encode the placement of objects on the

sketch pad and provide a mapping from sketch pad position to underlying object. The

last operation above, redisplaying the graph, establishes the requirement to encode

the entire representation in a structure. A structure that describes all visible objects

suffices for redisplaying the graph. Within the prototype, this structure is called the

display list. The display list is a linked list of all objects displayed on the sketch pad.

Each object comprises components, called pieces, that constitute the image of the

object. Each piece occupies space on the sketch pad; this space is the union of a set of

rectilinear regions named minimum bounding boxes (MBB). As Items are added to

the sketch pad, they are added to the display list.

Items on the display list correspond to the major components of the program:

parts, links, and the border. Pieces within display list items correspond to the

smallest selectable item on the sketch pad: sockets, annotation buttons, argument

buttons, etc. Associated with each piece is an operations vector stating the entry

points of each of the editing operations that can be applied to an item on the sketch

pad: highlight, activate, select, delete, move, etc. The MBBs are the smallest unit of

allocation of sketch pad space.

The operation of mapping a sketch pad location to a visual object and component

(piece) of that object can be performed by traversing the display list until an object is

located that contains a piece that contains a MBB that covers the given location. The

time to perfonn a lookup by traversing the display list is proportional to the number of

objects displayed, the number of pieces in them, and the number of MBBs that

describe their locations. To optimize the lookup operation, the prototype also

maintains a display map which maps directly from an ( x, y ) pair to the object that

covers that location. With the display map, converting a sketch pad location to the

object covering it can be done in constant time. However, adding an object to the

display, and hence the map, now takes time proportional to its size. Mapping position

to object occurs whenever the user points to an object on the sketch pad, requesting

some action; the pointing operation is usually embedded within a longer sequence of

corlunands. Adding an object to the sketch pad happens less frequently and is usually

the last step of a sequence of operations. Hence, we chose to optimize the fonner at a

slight cost of the latter.

Figure 5.16 graphically shows the display list structure and a portion of the

display map. The boxes represent data objects, the names above the boxes denote

type names, and the names inside the boxes denote field names.

5.6. Summary

This section has presented details of the program development environment and

the prototype graphical editor used to verify the concepts underlying that

environment. We have described the visual representation of the components of

parts-based programs, how they relate on a sketch pad, how a user uses the
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graphical editor to construct a program, and how data structures can be designed to
support such an editor.

The prototype development system is a large piece of software; we gained

experience from designing it, implementing it, and using it. From the experience of

constructing and using the prototype development system, we derive the foLlowing

principles and conclusions:

1) It is possible to build a visual programming language for parts-based

programming based on high-level static data flow graphs. Every top-level

component in the language can have a visual representation.

2) Visual languages can retain textual annotation information without destroying the

inherent visual quality of the language. By making the annotation invisible and

allowing it to be quickly made visible, it does not clutter the visual program

representation.

3) The visual language PCS is well matched to the parts-based programming

paradigm described in Section 4. The diagrams produced by using the editor match

the abstract diagrams we use to describe parts-based programming.

4) Common tools for constructing visual programming languages do not exist; there

is nothing analogous to a compiler generator. As a result, researchers in visual

prograrrurting languages face the task of implementing their compilers from

primitive pieces, a difficult task.

5) Data structures that manage the program under construction and its display can

be designed in a way that operations on them do not grow as the size of the

program grows. The exception is invocation, where every part and every link must

be created individually.
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6. EXTENSIONS FOR A DISTRIBUTED SYSTEM

6.1. Introduction

The purpose of this section is to explore the possibilities and implementation of an

extension to PCS that allows it to manage programs whose computational parts span

multiple machines interconnected by networks. This extended system, DPCS, is

functionally a superset of PCS. Its graphical interface is identical. Additional

information must be associated with parts to implement the remote execution and

hence, the invocation algorithm differs significantly.

Two motivations exist for extending PCS into DPCS. The first is to take

advantage of the diversity of computing resources that are available on a network.

For example, when PCS runs all of its program parts on the workstation that hosts

the development environment, then PCS programs are limited to those computations

and computational rates achievable by that workstation. By allowing program parts to

run on any machine reachable by networks, programmers can use specialized

resources or more powerful computers in their computations.

The second reason for extending PCS into DPCS is to take advantage of potential

concurrency available when multiple processors axe put to work on a computation.

DPCS does not explicitly provide concurrent execution; that is a function of the

implementation of a particular DPCS program. For example, if the procedure call

emulation style of communication is used throughout a DPCS program, modeling a

single thread of control, no opportunity for concurrency exists; only one part will be

running at a time. However, ff a pipelining or rendezvous model of communication is

used, concurrency becomes inherent.

The goal of the extension is to allow a programmer of user to construct networked

programs without the need to understand the intricacies of the underlying computer

networks, their interfaces, or how to manage different types of resources explicitly.

DPCS seeks to hide these details by vixtualizing the network in the same way the

operating system in Section 3 vixtualizes the underlying computing machine.

6.2. New Problems

Extending PCS into DPCS introduces a new set of problems to be solved. These

problems are as follows:

1) Binding parts to machines. If only one machine is used in the execution

enviromnent of PCS, no decision concerning which machine to use to run the parts

was necessary. In DPCS, because each part can run on a different machine, there

needs to exist a binding between part and machine.

2) Remote invocation. The virtual machine model specifies how to create processes

on the local machine. This mechanism must be extended across the network.
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3) Accommodating heterogeneity. Each machine in a DPCS computation can
potentially have a different intemal data representationand different schemefor
namingresources.

We addressthesenew problemsindividually, examinethe altematives,and make
choices for how to solve them within DPCS. No absolutesolutionsexist for these
problems; the altematives must be weighed and the best choices for a given
environmentmade.

6.2.1. Binding Parts to Machines

The invocationalgorithmwithin DPCSneedsto select,for eachpart, a machineon
the networkto useto executethe codeof that part.This informationtakesthe form of
a mapping from part to machineand that mapping must be available when DPCS
startsexecutinga part. Thereexistsa spectrumof possibilitiesfor the specificationof
this mapping,rangingfrom a very tightly prespecifiedmappingfrom part to machine
identifier to a very loose descriptionresolved at the latest possible moment.The
result generatedby the part-to-machinemapping is a unique identifier, such as a
network address,used by the program invocation phase of DPCS to identify the
machineon which that programpart is started.DPCSusesa methodthat associates
a namedset of machine identifiers with each part. Collectively, the set of sets of
machine identifiers is associatedwith the local program developmentenvironment,
allowing the final binding to a specific machine to be a function of the local
environmentwherethe developmentsystemruns.The namesof the setsof machines
come from a fiat namespace,though that namespacecould be hierarchically
structured.A hierarchical namespaceshould, for convenience,mirror some natural
hierarchy of the machinesavailable to a DPCS computation. A flat namespace

presents a simpler approach, not depending on any inherent organization available

computing resources. Hence, for simplicity, we chose a fiat namespace for the names

of machines sets. Thus, associated with each part is one of these names referencing a
set of machines. The sets must be customized for each local environment that uses

DPCS.

A problem resulting from associating a machine set with each part is that the

invoker in DPCS does not have any information about how to select a member from

the set on which to run the part. A trivial altemative is to always select the first

element of the set, in which case all parts that name a particular set run on the

machine named first in the set, an inefficient method. An extension to the fiat

namespace of set of machines is to allow expressions to be specified over those sets

and then to associate those expressions with the parts. Operators in the expression

language add the ability to select, for example, the most lightly loaded machine in the

set, a machine not previously selected in this invocation, and a machine at random.

The prototype, however, restricts the machine specification to a simple set, and the

invocation algorithm selects the next host in the list, according to some ordering
relation.

The form of the host specification for DPCS parts, in NDL notation, is as follows:
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(machine "set-name")

The "set-name" corresponds to a name of a set of machine identifiers that is loaded

as a part of the site-specific configuration information when the DPCS invocation

algorithm begins.

By using abstract set names in parts, the programmer can constrain the possible

target machines for any part. Because the mapping from abstract set name to specific

machine identifiers is dependent on the local development environment, DPCS

programs can be written in a way that allows them to move from one network

environment to another without change. For each invocation environment, however,

the programmer, or systems administrator, must providing the mappings from

abstract machine set names into specific machines. By properly defining and using a

standard set of abstract names, DPCS programs can become transparendy portable if

machines of all needed abstract sets are available in the new environment.

Alternatives exist for binding parts to machines. It may be the case that, for some

parts, the choice of machine used to run its code is immaterial. Yet for other parts

there may be only a single unique machine that can possibly run its code. In either

case, there must exist static information associated with the part that states, in some

formal way, what constraints exist on where that part runs. Such a constraint may

take the form of naming a specific machine, in which case we say the mapping is

tightly bound, or it may specify a set of machines or an algorithm for locating a

machine, in which case we say the mapping is loosely bound. Similarly, the binding to

machine may be associated with a part when it is created, which we call early

binding, or determined when it is invoked, which we call late binding. Early/late

binding and loose/tight binding are not distinct concepts. Early binding implies tight

binding and late binding implies loose binding. The degree of looseness, that is, how

the binding information is given, is the topic of primary concem.

Another possibility for loose binding is to have the available machines decide

whether they can run a part and if so, with what degree of performance, a voting

scheme. Voting requires that each part statically state their resource requirements.

Wills describes schemes of this nature [Wi1188].

Loose binding provides more flexibility than tight binding. When a part is tightly

bound to a specific machine identifier, that machine must be reachable from the

development environment and must be available at the time of invocation. If a

composed progranl with using early and tight binding is moved from one network

environment to another, the programmer must manually change the binding on all

internal parts before the program can be invoked. If a composed program uses loose

binding, whether early or late, then, depending on the form of the loose binding, the

composed program can be invoked in more network environments than the one in
which it was created.

The binding information in a past takes the form of an expression which, when

evaluated, results in a machine identifier on which the composition system will run

that part. Components of that expression can include a specific machine identifier, a
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set of machine identifiers, or a set of characteristics of machines capable of running

that part. The characteristics may be static or dynamic. Static characteristics concern

permanent attributes of machines such as data representations, instruction set,

speed, memory size, and specialized resources attached. Dynamic attributes include

load on the machines, available network bandwidth to it, or long-term storage

currently available.

6.2.2. Remote Invocation

The second major change in DPCS to accommodate networks computations is the

problem of invoking program parts remotely. The issues involved are naming of

remote programs, issuing the remote analogy of the createProcess procedure, and

establishing the communication paths that implement the links of a DPCS program.

First, we assume that we can communicate with resource managers, implemented

as network servers, on any remote machine usable by DPCS programs. Network

servers are programs that can be used by remote machines by establishing network

connections to them and then sending requests and receiving responses. Our

assumption relies on the availability of standard network protocols and standard

techniques for connecting to network servers. Given this capability, we can create a

server dedicated to invoking DPCS program parts on any remote machine. The server

uses the virtual machine interface provided by the operating system to locate program

parts, using the module name from the part specification, and to turn the pat module

into a running process. Abstractly, the interface between DPCS and any remote

invocation server mimics the interface to the createProcess procedure of the local

operating system, but results in a remote procedure call to the corresponding

procedure in level 13 of the remote machine.

6.2.3. Accommodating Heterogeneity

The most difficult issue in extending PCS to a networked system is

accommodating the data representation heterogeneity inherent when varied

computing resources are available on a network. This section examines the issues

surrounding data representation heterogeneity and offers partial solutions that enable

a large class of DPCS programs to run on a network offering such variety.

Accommodating representation heterogeneity relies on a well-def'med data typing

scheme for sockets. The representations, a run-time attribute, derive from the typing

scheme, a static attribute.

An example of the type of heterogeneity that may be encountered is in the

representation of binary integers. One machine may represent a binary integer by

ordering the bits in the value from high-order to low-order, while another machine

may reverse that, placing the bits from low-order to high order.

Heterogeneity causes more problems than in the representations of common

primitive data types. One machine may inherently store more information with a piece

of data (e.g., storing more precision in a floating-point number) than another machine.

One machine may have a primitive data type not represented on another machine.
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When aggregatedata typesare usedby programpartsand passedfrom one machine
to another,the way in which theelementsof the aggregatetype areorderedor packed
togetherinto aunit maybedifferent from machineto machine.

Accommodatingdata heterogeneityrequiresa translation from the representation
of one machine into the representationof another. When there are N data

representations offered by the union of machine types on the network, each machine

must have access to algorithms to translate its data representations to each of N-I

other machines. Providing all possible translations results in N • (N-l) different data

translation algorithms. Another approach is to adopt a "standard" data

representation format, and, on each machine, provide an algorithm that translates

from the native representation into the standard representation, and another that

translates from the standard in the native representation, resulting in 2,N

translation algorithms. The selection of the standard notation, however, is difficult.

When the range of a particular data type differs between communicating machines,

and data flows from the machine of higher precision to the machine of lower precision,

a data tnmcation must occur. When there are three or more machines communicating,

and all three have different representation precisions, truncations may occur to

differing degrees. A standard data representation must either be designed to handle

the most precise (i.e. largest) data format for each particular type on the network, or

must encode the length or precision of the data. Accommodating the longest

representation results in storage, and hence transmission time, inefficiency and

cannot accommodate all possible future representations. Encoding the length of a data

item in the data stream, however, allows the representation to accommodate future

machines using longer data representations unforeseen by the designer of the

standard representation.

The standard representation must be compact and efficient to translate to and

from. A possibility for standard representation is to use all decimal coded ASCII,

using LISP-like S-expressions to encode structures. Functionally, ASCII encoding of

data suffices, but it is an inefficient encoding because the cost of translating into and

out of it is high. We performed a small experiment to verify the high cost of decimal

encoding. Two programs were written, one a producer, one a consumer. The producer

generated an array of N random floating-point numbers and sent a message

containing N and the array to the consumer. When the consumer had read (and

converted) the data, it sent a control signal back to the producer denoting completion.

The producer timed how long it took to translate and send the message and wait for

the response. The time to generate the random array was not counted. The same

input/output buffering package was used in both cases. Table 6.1 shows the results

when unconverted binary-format data was transmitted and when the data were

converted to ASCII representation. For small values of N, the resolution of the

computer's real-time clock and the overhead associated with just transmitting the

data introduced errors. For large values of N, the ASCII encoding multiplied the time
over one hundredfold.
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Table 6.1:TransmissionTimesfor ASCII andBinary

ASCN Coded(ms) Unencoded(ms)

N Mean s n Mean s n MeanSpeedUp

250 40.0 0.00 12 425.0 25.76 12 10.6
500 41.7 5.77 12 810.0 49.36 12 19.4

1000 48.3 13.37 12 1585.0 86.60 t2 32.8
2500 65.0 9.05 12 3895.0 198.01 12 59.9
5000 105.0 15.08 12 7656.7 51.76 12 72.9

i0000 160.0 8.53 12 15303.3 11.55 12 95.6
25000 340.0 12.06 12 38145.0 191.29 12 112.2
50000 643.3 7.78 12 76271.7 393.63 12 118.6

Existing technology can be used to implement messagepassing between
machines having differing data representations.Message systems comprise a
producerand a consumerand an optional messagequeuebetweenthem, as shownin
Figure 6.1. When the originator of a messageneedsto senda message,it makesa
procedurecall to the producerprocedurewhich in tum placesthe messagein the
messagequeueand returns.When the receiverneedsto read a message,it makesa
procedurecall to the consumerwhich returnsthe next messagein the queue,or waits
for one if the queueis empty. The parametersto the producerprocedurecontain the
messageto send;the parametersto the consumermodule referencewhere to deposit
the messagein the receiver's memory space.Hence, the producer and consumer
proceduresonly manage the messagequeue, hiding even its existence from the
application program using them. The writer and reader in the application uses a
straightforwardprocedurecall interfaceto communication.

The producer-consumerexampleof communicationcan be extendedto manage
communicationover a network by using a remoteprocedurecall (RPC) betweenthe
writer and the producer,or betweenthe readerand the consumer.Using the former
caseas anexample,whenthe writer needsto transmita messageto the reader,it, as
before, makes a procedure call to the producer procedure.However, now the
procedurecaU is a remote procedure call managedby an RPC system that can
translate the procedure parametersfrom one representationto another [Bers87].

Writer

Figure6.1:Producer-ConsumerCommunication
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Becausethe content of the message is encoded in the parameters to the producer

procedure, and RPC systems translate procedure parameters, the message is

automatically translated. Figure 6.2 shows this modified message scheme.

6.3. Summary of Principles

From direct experience and the study of the requirements for extending PCS into

DPCS, thus allowing it to invoke networked computations, come the following

fundamental principles:

1) Early binding of parts to machines is too restrictive. Early binding results in

program graphs that are specific to a particular development and invocation

environment and are not transportable to other environments.

2) Late binding of parts to machines can be achieved by defining abstract sets of

machines. Each part names an abstract machine set, and the definition of the

members of the set is dependent on the local environment. Additional power can

be added to abstract set selection by defining an expression syntax over the

abstract sets.

3) Remote invocation of program parts can be accommodated by providing the

createProcess primitive on all machines in a networked server accessible from all

other machines on the network. This technique, however, relies on a standard

network protocol that must be available on all machines participating in a DPCS

computation.

4) Accommodating data representation heterogeneity efficiently requires the

definition of a standard data representation, and then providing translation

algorittuns from and to each native data representation

5) The standard data representation must accommodate differing data lengths and

precisions efficiently, by allowing data items to be tagged with the length of the

data in standard representation.

6) Existing remote procedure call mechanisms, when augmented with queue

management procedures, can be used to used to pass messages from one part to

another, accommodating the data translations as necessary.

Writer

remotely

calls

Figure 6.2: Message Passing Using RPC
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7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this report we have introduced and elaborated upon a program development

environment that offers a new, higher level, programming language, allowing creation

of very large programs. The fundamental composition mechanism used herein is

message passing, whereas traditional program composition techniques use procedure

calls for composing large programs out of smaller units.

Additionally, programs composed with our system axe a good match to a network

of diverse computing resources. Network communication links are message passing

devices and networked computing resources can execute programs that transform

data. Hence, our representation-transformation (RT) graphs match the architecture

offered by a set of computers interconnected by a network.

Just as the RT diagrams match networked computations well, our visual

programming language matches the RT program graph structure, and the three

components together construct a programming system exhibiting a high degree of

coherence. The visual language allows the programmer to work directly from a RT

diagram without the tedious task of translating it into an unnatural textual

representation.

The strong points of visual parts-based composition, as derived from experience

with our prototype, are as follows:

1) The model of computing using parts and message links is conceptually simple and

closely matches the way we already think about networked computations. It can

be used to create programs that automate procedures we already use as well as

create programs that go far beyond what we might otherwise try.

2) Parts-based programs map cleanly onto the architecture of a network of

computers.

3) The visual nature of the language allows users to write programs in a language

that closely matches a way of thinking about them. There is no manual conversion

from a conceptual structure diagram to a textual description language.

Parts-based programming with our prototype has its limitations, though. Some of

these are the result of limitations in the prototype itself, others may be inherent in the

approach. Some limitations are as follows:

1) At times, a low level operator, like one to split a data stream, is required in a

DPCS program. Because all primitive program parts are defined outside the

paradigm, creating such a low level part requires that the user enter a different

paradigm.

2) Describing and accommodating data representation is difficult. Ideally, the

composition system should know the structure of the data placed on a link by a

part, and arriving at a part from a link. Such knowledge can be provided by the

intemal coding of the part itself or be associated independently of the part coding
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3)

with the library entry for the part. The former approach, though easier to

implement, fails to satisfy the "immutable software" design goal and the latter

approach increases the burden on the user who adds parts to the library.

DPCS does not suffice as an interactive command shell. Approaches to solving

this limitation are discussed in the next section.

7.2. Future Work

There are many incompleted facets of our program composition system prototype,

many of which are an entire research project in themselves. This section discusses

some of them and proposes directions for future investigators to follow. PCS is an

ongoing project; many of the items described here are work in progress or in the plans

for the future. Current work is focussed on completing the extension of PCS into

DPCS, the distributed programming version.

7.2.1. DPCS as an Interactive Shell

DPCS is a program development environment that a programmer uses to create

applications. It's capabilities are limited, however, in that it cannot reasonably be

used as an interactive command interpreter on a regular basis. One reason for this

deficiency is that the programmer is required to create a complete program before any

part of it can be invoked. All external connections must be explicitly tied to the

boundary and decisions must be made explicitly about how to attach those boundary

sockets to objects.

DPCS would be better suited to interactive use with

actions and defaults. For example, if it would allow

constructed program graph, and attach all the external

the addition of more implicit

the execution of a partially

connections to windows, the

programmer could quickly select a part or two and try them out. If links were

automatically added, the process of constructing a program would be faster. In Figure

5.6, for example, it is clear from the parts placement how most of the sockets should
be linked.

DPCS is oriented towards the construction of very large programs built up from

parts. Interactive work is typically of a different nature: making queries on databases,

manipulating file spaces, entering modal programs such as document preparation and

spreadsheet programs, etc. DPCS could be augmented with a special library parts to

support common interactive work, but its use would still be clumsy. DPCS uses

modes extensively whereas most command interpreters are modeless (that is, they

have only one mode). The sequence of events to build and run a single part program

involve eight distinct steps, long process for a simple task, especially when compared

to the simple "type command, hit RETURN" style of most command interpreters. The

steps involve numerous spatial operations, moving the pointer from place to place,

whereas typing requires very little spatial movement.

Questions concerning using DPCS as an interactive shell for regular use include

the following:
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1) Is a visual interface better than typing for a general-purposecommandlanguage
interface?

2) What changesneed to be made to DPCS to make it easier to use for smaller
tasks?

3) Within DPCS, how does one maintain the parts databases in a way that allows

fast access to commonly-used parts?

7.2.2. Debugging and Monitoring

Debugging support is an essential part of any programming environment. DPCS,

by design, supports debugging through monitoring, that is, it allows the programmer

to "watch" what is passing through the links. This feature is not implemented in the

prototype. Ideally, one should be able to designate any link and ask the envh-onment

to show the data passing through it. There is no support for this capability in the links

as defined by the virtual machine interface, though such capability, once designed,

could be added. In lieu of built-in support, the programmer can insert taps manually

into the program graph, such as shown in Figure 7.1. In this figure, the programmer

has removed a link from the graph generated in Section 5 and inserted a module that

replicates the data stream. Then, one replicated stream is spliced back into the main

Select a socket on a part as one end of the llnk.

Figure 7.1: A Manually Inserted Tap

ORIG!FIAL PAGE IS

OF POOR QUALITY
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graph and the other is attached to the boundary where it can subsequently be
associated with a window.

A problem that arises when considering how to tap into a communication link is

buffering. When there is only one reader and one writer on a link, buffering is

simplified because the communication reduces to the producer-consumer problem.

However, with two readers (one added in for viewing the data), each consumer may

read the data at different rates, and the slower one would govern the overall rate of

data flowing through the pipe.

Another problem that arises is how to display the data. The example program in

Section 5 avoided this problem by using only lines of text as the type of data passed

between parts. If more complicated types are used, then they may not be as easily

displayed. The extended types mechanism in the virtual machine (level 14) can

provide help. This level provides a mechanism whereby type managers for extended

types can register themselves with the system. Once that has been done, then any

other program, such as DPCS, can use the facilities of that manager. Specifically, each

type manager should include a routine for translating its own objects into a form that

can be displayed, textually or graphically, on the workstation screen.

Unanswered questions about debugging and monitoring include the following:

1) What impact does monitoring the data in a link have on the global behavior of the

execution of the graph?

2) Does restricting tap insertion to program load time, as opposed to run time, have

a significant impact on the usefulness of this feature?

3) What operations must be added to the virtual machine to allow the programmer to

insert taps on links after the program has started running?

What is the registration and naming mechanism for extended type managers in

level 14 of the operating system?

5) What external representations are used for the data types and how are they best

displayed? Can this be done using a universal mechanism?

4)

7.2.3. Additional Topics

DPCS manages static data flow graphs. If dynamic graphs were supported, more

powerful computations may be possible. The prototype establishes a clean break of

control between graphical editing and program invocation; the editor does not impose

its presence when the graph is executing. If dynamic node creation is allowed, and the

dynamically-created nodes were to be shown on the sketch pad, the editor and

invoker would necessarily be more tightly coupled.

DPCS contains no built-in control structures. We have found that conditionals and

some loop forms can be simulated by classifiers (for conditionals) and stream-

generating parts (for loops). Parts can be coded to compute on multiple input objects.

It is trivial to create a part the generates a sequence of numbers, similar to the APL

operator iota. Such a part exists in our prototype library. Other types of control



llO

structures may exist, though. For example, a part duplication structure could exist.

Part duplication would allow the programmer to specify, for any part on the sketch

pad, that that part be replicated some number of times, and that each input object be

directed to any one instance of the part. Replication in this way offers more

opportunity for concurrency in the program, but adds the task of reassembling the

outputs into a single stream.

7.3. Summary

In this report we have presented a model for parts-based programming, described

the semantics and a visual syntax, and raised the issues surrounding making parts-

based programming a reality. The following states the primary research contributions
of this work.

The model of computing based on composing program parts into larger

applications by joining them together with message-passing links has been

presented. The model describes the semantics of pipe-based construction of

representation-transformation program graphs that map into executable programs in

a way that 'allows the transformation nodes to run on any available machine on the
network.

A visual programming language described parts-based programs in a

straightforward way that does not require programmers to manually convert a RT flow

diagram into a textual representation. Instead, the RT diagram can be "drawn" on a

sketch pad directly.

A working, usable prototype composition system that implements the visual

language and maps programs onto a network of computers demonstrates the

usefulness of our approach. This prototype allows programmers to enter their program

diagrams, assign program parts to computer nodes, and invoke their programs.

Finally, we have identified issues that have not yet been resolved concerning

parts based programming on a distributed system. One of the most difficult is the

accommodation of data representation heterogeneity present on a network offering a

diversity of computing resources. The next stage in the development of the prototype

is to investigate practical solutions to the representation heterogeneity problem that

are coherent with the other components of the prototype.
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