
NASA Contractor Report

ICASE Report No. 90-30

182035

ICASE
ALGEBRAIC TURBULENCE MODELING FOR
UNSTRUCTURED AND ADAPTIVE MESHES

Dimitri J. Mavriplis

Contract No. NAS1-18605

May 1990

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

" _,,L,o _L*RAIC TUr_UL:ZNC r-[NAfiA-CR-] o,-.U39) _ "'-
MOOELING COR UN_TRUCTUP,_O ANO Ar_A_TIVE

M_S.HES final Report (ICASE) 3]. o CSCL 20D

G3/34

N_90-Z3o7o

Unclas

0280_!3

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665-5225





ALGEBRAIC TURBULENCE MODELING
FOR UNSTRUCTURED AND ADAPTIVE MESHES

Dimitri J. Mavriplis

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA

ABSTRACT

An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for

use on unstructured grids. The implementation is based on the use of local background struc-

tured turbulence meshes. At each time-step, flow variables are interpolated from the unstruc-

tured mesh onto the background structured meshes, the turbulence model is executed on these

meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh.

Modifications to the algebraic model were required to enable the treatment of more compli-

cated flows, such as confluent boundary layers and wakes. The model is used in conjunction

with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute

compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple

element airfoils are obtained and compared with experimental data.

This research was supported under the National Aeronautics and Space Administration underNASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Sci-
ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

Theuseof unstructuredmeshtechniquesfor computationalfluid dynamics(CFD)prob-
lemshasbecomemorewidespreadin recentyears,dueto theflexibility theyafford in discre-
tizingarbitrarilycomplexgeometries,anddueto thepossibilitytheyoffer in resolvinghighly
localizedflow phenomenathroughthe use of adaptivemeshing.However, researchon
unstructuredmeshtechniquesfor CFDhasconcentratedalmostexclusivelyon thesolutionof
the Euler equationsin two or threedimensions.For viscousflow calculationsaboutnon-
simplegeometries,hybridmesfieshavegenerallybeenemployed[1,2,3]wherea thin struc-
turedmeshis placedin theboundary-layerandwakeregions,andanunstructuredmeshis con-
structedin theouterinviscidregionof theflow-field. Besidesleadingto anincreasein coding
complexity,this typeof compromiselimits thegeneralityof theunstructuredmeshapproachin
dealingwith arbitrarilycomplexgeometries,suchasmultiplebodygeometrieswith closetoler-
ances,whereconfluentboundarylayersor wakesmayoccur,andcomplicatesthetaskof per-
formingadaptivemeshingin the inviscidaswell asviscousregionsof flow. It appearsthat
the difficultiesassociatedwith generatinghighly stretchedunstructuredmeshes,which are
requiredfor efficientlyresolvingviscousshearlayers,aswell astheefficientimplementationof
a turbulencemodelon suchmeshes,has generallyimpededthe use of fully unstructured
meshesfor viscousflows. Theuseof unstructuredmeshesthroughouttheentireflow-fieldis
advocatedin thepresentwork. Previousworkby theauthorhasshownhowahighlystretched
unstructuredmesh,suitablefor high-Reynolds-numberviscousflow calculationsmaybe con-
structed[4], andhasalsodiscussedthedevelopmentof anefficientunstructuredNavier-Stokes
solverfor laminarflows [5]. Thispaperis thusconcernedwith theefficientimplementationof
a turbulencemodelfor computinghigh-Reynolds-numberturbulent flows using fully unstruc-
tured meshes.

The most widespread turbulence models in use currently are either of the multiple field-

equation type, or of the algebraic type. Field-equation turbulence models (such as the K-e

model) are in principle more general than their algebraic counterparts, and appear well suited

for use on unstructured meshes; the additional field-equations may be discretized and solved on

the unstructured mesh in the same fashion as the governing flow equations. However, the

solution of additional field-equations can be considerably expensive, especially in the thin

boundary-layer regions near the wall, where the equations can become considerably stiff.

Algebraic turbulence models, on the other hand, are relatively inexpensive to compute, and

have demonstrated generally superior accuracy and reliability for limited classes of problems,

such as high-Reynolds-number attached flows over streamlined bodies. However, such models

typically require information concerning the distance of each mesh point from the nearest wall.

Turbulence length scales, which are related to the local boundary-layer or wake thickness, are

determined by scanning the appropriate flow values along specified streamwise stations. In the

context of unstructured meshes, mesh points do not naturally occur at regular streamwise loca-

tions. Hence, the implementation of algebraic models on such meshes is not entirely straight-

forward. Davis and Dannenhoffer [6] have implemented an algebraic model for use on heavily

adapted quadrilateral meshes. The meshes are semi-structured in nature, and only a subset of

the wall boundary points can be identified with mesh lines spanning the entire shear layer. A

method for constructing turbulence quantities at all points is employed, which makes use of

flow variables interpolated from neighboring mesh lines. Kallinderis [7] employs a similar

approach and describes how the process may be extended to unstructured triangular meshes.

The first successful implementation of an algebraic turbulence model on unsmactured meshes,
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however,appearsto bedueto Rostand[8]. In his work,additionalmeshlinesnormalto the
walll_emanatingfrom eachboundarypoint,areconstructed.TheUnstructuredmeshflowvari-
ablesareinterpolatedontotheselines,andthealgebraicturbulencemodelis executedoneach
normalmeshline. Rostand'swork, however,is confinedto supersonicflows over ramp
geometries,andthuslacksthegeneralityrequiredfor morecomplexgeometries.

To constructaturbulencemodelsuitablefor Use6fiunstructuredmeshes,onemustensure
thatthe inherentcapabilitiesandadvantagesof unstructuredmeshtechniquesarenothindered
by theimplementationof theturbulencemodel. Hence,analgebraicturbulence model capable

of dealing with arbitrarily complex geometries and amenable to adaptive meshing techniques

must be devised. Furthermore, the overhead incurred by the turbulence modeling routine must

represent a small fraction of the overall computational effort, in order to ensure a competitive

solution procedure. The contributions of this work are twofold. In a first part, a method for

efficiently implementing an arbitrary equilibrium algebraic turbulence model on unstructured

meshes is described. In a second part, modifications to the Baldwin-Lomax model [9], which

enable the treatment of multiple shear layers, such as boundary-layer wake interactions, are
described.

2. IMPLEMENTATIONAL PROCEDURE

The general procedure employed for implementing an algebraic turbulence model on an

unstructured mesh consists of constructing local structured meshes about each geometry com-

ponent or each wall boundary. Each time the turbulence routine is called, the current flow

variables are interpolated from the unstructured mesh onto the multiple background structured

turbulence meshes. The algebraic turbulence model is executed on these meshes, and the

resulting eddy viscosity values are interpolated back to the unstructured mesh, for subsequent

use in the flow solution phase. The local structured meshes are constructed using a hyperbolic

mesh generator [10], which uses, as its initial condition, the boundary point distribution of the

unstructured mesh on the geometry component being considered. The use of local hyperboli-

cally generated meshes is akin to the construction of normal mesh lines emanating from each

boundary point, as originally employed by Rostand [8], but with an additional degree of

sophistication which prevents the cross-over of normal mesh lines in the vicinity of concave

boundaries, ensures a smooth variation of mesh points in the normal direction, and enables the

handling of more complex multiple-body geometries.

2.1. Construction of Local Turbulence Meshes

LOcal structured turbulence meshes are cofistructed:using a hyperbolic mesh generator

[10]. H__Yperbolic mesh generators required an initial bound a_ point distribution, and a distri-

bution of normal mesh spacings. For wall boundaries, the boundary points of the unstructured
mesh are employed as the initial condition for the hyperbolic mesh generator. A normal mesh

spacing is specified, which closely approximates the spacing of the unstructured mesh in the

region near the wall. Thus, a close matching between the resolution of the local structured

meshes and the unstructured mesh is achieved, and the local meshes share the same boundary

points as the global unstructured mesh. For modeling turbulent wakes, a fictitious wake line

may be drawn, which approximates the expected position of the computed wake. Points are

then placed along this line, and a hyperbolic mesh is generated on either side of the wakeiine,

closely approximating the_ocai resolution _oi_--the_mderl-y_g unstructured mesh. in-the present

work, which:has been: mainly concerned With mUlii:e-iemeiat :airfoil geometries, a C-type hyper-

bolic mesh is generated about each airfoil element, which is used for the turbulence modeling
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in the airfoil wall region as well as in the wake region. The wake lines are predetermined by

solving the inviscid flow over the entire configuration using a panel method [11]. For multiple

body geometries, structured turbulence mesh lines are terminated if they intersect a neighboring

geometry component. In this manner, the eddy viscosity in any region of the flow-field is only

determined by the turbulence stations emanating from boundary or wake points which are

directly visible from that location (c.f. Figures 12 and 18).

2.2. Interpolation Procedure

In order to execute the turbulence model, flow variables must be interpolated from the

unstructured mesh onto the local turbulence meshes, and the resulting eddy viscosity values

must be interpolated back onto the unstructured mesh. Since linear interpolation is most easily

performed using triangular elements, the local turbulence meshes are triangulated. The sim-

plest way of triangulating a structured mesh is to subdivide each quadrilateral into two trian-

gles. However, in anticipation of the subsequent use of adaptive meshing techniques, a

Delaunay triangulation of the set of points constituting each local turbulence mesh is more

desirable. Hence, after the initial triangulation of these meshes is performed, the edges are

swapped using the edge swapping algorithm described in [4], according to the modified

Delaunay criterion, in order to obtain a Delaunay triangulation.

The patterns for transferring variables back and forth between the global unstructured

mesh and the local turbulence meshes are then determined using an efficient tree-search rou-

tine. This operation is similar to that described in [12], for transferring variables between

sequences of unstructured triangular meshes, in the context of a multigrid algorithm. Using

neighbor information, this type of search is capable of determining the enclosing triangle on

one grid for each point of another grid. Once the enclosing triangle of a given point is known,

the interpolation coefficients can be determined from geometrical considerations. The entire

process for all grid points can be performed in 0(N) operations, where N is the total number of

grid points. The process is performed once, as a preprocessing operation, and the transfer

addresses and coefficients are stored for subsequent use in the flow solution phase.

Since each background turbulence mesh only covers a portion of the domain spanned by

the global unstructured mesh, not all unstructured mesh points will be contained in some par-

titular triangle of the local background meshes. To avoid failure of the tree-search algorithm,

points which lie in the region not covered by the background meshes must fu'st be determined,

and omitted from the search in the interpolation routine. Furthermore, since two or more back-

ground turbulence meshes may overlap in various regions of the flow field, unstructured grid

nodes may receive multiple eddy viscosity values, one from each of the overlapping turbulence

meshes in that region. The final eddy viscosity value taken at such points consists of a

weighted average of the multiple interpolated values, where each of the values is weighted by a

factor proportional to the inverse of the distance between that point and the respective boun-

dary point of the corresponding turbulence mesh station. This provides for a smooth distribu-

tion of eddy viscosity in regions such as between two neighboring walls, or between a wall

and a neighboring wake line.

2.3. Adaptive Meshing Capability

One of the major advantages afforded by the use of unstructured meshes is the ability to

easily perform adaptive meshing. The most efficient adaptive techniques are based on local

mesh enrichment and restructuring, rather than global mesh regeneration. Thus, the current tur-

bulence model implementation must be compatible with such adaptive meshing strategies. This
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can be achieved by locally refining each background turbulence mesh at each stage when the

global unstructured mesh is adapted, in such a manner that the resolution of the background

turbulence meshes closely follows the evolving resolution of the adapted global unstructured

mesh. For example, assuming an unstructured mesh and a set of background turbulence

meshes have been constructed, and the turbulent flow solved for on these meshes, a new global

unstructured mesh may be constructed by adding points to the existing mesh in regions of high

flow gradients, and locally retriangulating [4]. A refinement field vector may be constructed,

pfiorto the retriangulation step, by assigiiing the Value 1.0 to eacla vertex of a triangle or edge

which is to be refined, and the value 0.0 to all other nodes. This so-called refinement field

vector can now be interpolated onto the background turbulence meshes and used to determine

the regions of the turbulence meshes which require refinement. These background turbulence

meshes may thus, in turn, be adaptively refined, but only in such a way as to preserve their

original structure, i.e., as a set of normal mesh lines emanating from boundary points. Thus,

the interpolated refinement field values are sca_ed al0ng each normal mesh line and new

-points are added along the mesh line in regions where the refinement field values approach

unity, thus increasing the normal resolution of the existing turbulence mesh lines. In regions

where new unstructured mesh boundary points have been added, a new turbulence mesh station

is constructed, which extends from the new boundary point out to the outer boundary of the

local turbulence mesh. The normal distribution 0f_ints along _shew station is determined

by averaging the location of points fromthe t_'o nei_ghboring mesh stations. By allowing for

only these two types of refinement, normal refinement of existing stations, and the generation

of entire new stations, the structure of the turbulence meshes is preserved. However, the

requirement of generating new stations which extend out to the outer boundary of the tur-

bulence meshes may have the effect of adding mesh points to the turbulence meshes in regions

where the underlying unstructured mesh is not refined, and may result in a more rapid growth

of the number of turbulence mesh points than the unstructured mesh points. However, this has

not been found to be a problem generally, probably due to the fact that the normal resolution

of the turbulence meshes is very sparse in the far-field. Since the background turbulence

meshes have previously been triangulated, the new adaptively refined turbulence meshes may

be constructed by inserting each new mesh point into the existing triangulation and restructur-

ing locally using Bowyer's Delaunay triangulation algorithm [4], thus generating the Delaunay

triangulation of the new set of points. The interpolation patterns for transferring variables back

and forth between the newly adapted global mesh and the new local turbulence mgshes are
then _cornputed, and the flow solution process iS_resumed' It should be noted that the initial

and subsequent adaptive triangulation of the turbulence meshes is only required for the deter-

mination of the interpolation transfer patterns, and is not required for the actual execution of
the turbulence model.

2.4. Data Structures

The efficient irriplementation of the_present turbuience_modei on unstructured meshes
depends heavily on the use of adequate preprocessing of the turbulence mesh quantities, and

the use of suitable data structures for storing and accessing the relevant information. Once a

global unstructured mesh has been generated, the local background turbulence meshes are

automatically generated from the boundary point distribution of the unstructured mesh. These

meshes are then arranged into stations, by constructing a list of points for each normal tur-

bulence mesh line, augmented by some additional directives to be employed in the turbulence

model. The transfer coefficients and addresses for interpolating back and forth between the
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globalunstructuredmesh and the local turbulence meshes are then computed and stored. This

point marks the end of the preprocessing stage, as all the information required for the flow

solver and turbulence model is presently at hand. This information is then dumped to a file

which is used as input to the flow solver. Thus a turbulent flow mesh file consists of the fol-

lowing information:

1) Connectivity of the global unstructured mesh.

2) List of global unstructured mesh and coordinates.

3) List of the turbulence mesh normal stations, with each station pointing to the nodes which

constitute that station, as well as several turbulence modeling directives particular to that sta-

tion.

4) List of turbulence mesh nodes and their coordinates.

5) Interpolation coefficients and addresses for transfer of variables back and forth between the

global unstructured mesh and the local turbulent meshes.

At this point, the information no longer resembles a series of structured local turbulence

meshes with an overlaid global unstructured mesh. In fact the connectivity of the turbulence

meshes is not stored, and the turbulence mesh points and stations are not associated with any

particular turbulence mesh, nor are they ordered in any regular fashion. This constitutes the

minimum amount of information required for executing the flow solver and turbulence model,

and as such can be viewed as the definition of a preprocessed unstructured turbulent-flow
mesh.

The data structure employed for the turbulence mesh stations is depicted in Figure 1.

Since algebraic models are in general equilibrium turbulence models, the stations may appear

in random order and no information concerning neighboring stations is required. Each station

contains an integer list, which is dimensioned as JLMAX+3, where JLMAX represents the

maximum number of mesh points in any given station. The first JL entries in this list point to

the addresses of the mesh points which constitute the turbulence mesh station. This list is

ordered, beginning with the wall or wake boundary point, and terminating with the outer boun-

dary point. The JLMAX+I entry contains the number of points JL for that station. Hence,

when JL is less than JLMAX, empty entries occur in the list. The JLMAX+2 entry indicates

to the turbulence model whether transition has occurred. For turbulence flow this entry is set

to 1, but in the laminar flow region, prior to transition, is set to 0. This entry is generally deter-

mined manually, for ca_es where forced transition is desired. The final JLMAX+3 entry indi-

cates the presence of a wall station (= 0) or a wake station. In the later cas e, this entry points

to the address of the station which lies directly on the opposite side of the wake line, such that

the two stations may be paired together to form a complete wake cut in the turbulence model-

ing routine.

When adaptive meshing is to be employed, additional information is required concerning

the triangular connectivity of the turbulence meshes. This information is thus appended to the

turbulence flow mesh file, although it is not used by the flow solver.

3. DESCRIPTION OF THE ALGEBRAIC TURBULENCE MODEL

In the previous section, a method for implementing an arbitrary algebraic-type turbulence

model on unstructured grids has been described. The specifics of the algebraic model

employed in this work will now be described. The model adopted is based on the Baldwin-

Lomax model [9], which is a two-layer algebraic model. The inner-layer eddy viscosity is

computed as
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(lxr)i,uM,=p 12 Io_

where p is the fluid density, to the vorticity, and 1 is a length scale which is proportional to the

distance from the wall (scaled by a damping factor). In the outer region, the eddy viscosity is

given by

where K is a constant and
(I.tr)o_ , = K p Fw,_s Fxt_(y)

Fw,_rE=:unctionof(YM_,FM_)

of(YM_ )
F_.ea=funcaon

y isthe distancefrom thewall,or wake centerline,and F isproportionalto themoment of vor-

ticity:

F = y [col* damping factor

FMAX thUS represents the maximum value of F along a given turbulence station, and YMax is the

y-distance at which this maximum occurs. The turbulence length scales are thus determi'ned by

t in the inner layer, and Yuax in the outer iayer. For _i]y attactled or midly separated flows

over simple geometries, a single well defined peak exists in the function F, along given stream-

wise stations. However, for flows over more complex configurations, where boundary layers

and wakes may interact and larger separation regions may occur, the function F may exhibit

multiple local maxima, and various methods for determining the appropriate length scales have

been proposed [13,14]. In general, it is found that a distinction needs to be made between wall

turbulence and wake turbulence.

3.1. Wall Turbulence

The Baldwin-Lomax model performs adequately for simple turbulent wall flows. How-

eve-r, in cases where additional wakes or neighboring wall boundary layers are present, such

that these structures are traversed by a Wall turbulenc_ rriesh_stafion, multiple peaks in the F

function are observed. Figure 2 depicts the case where a neighboring wake is traversed by a

wall turbulence mesh station. Since the vorticity becomes non-zero and y, which is measured

from the wall, is large in the wake region, the moment of vorticity exhibits a large secondary

peak in this region. Selection of this peak leads to an inappropriate length scale. The proper

length scale is that associated with the primary peak of F, which is located in the region of the

wall boundary layer. Thus, the search- for _the maximum value of F must be iimited to this

region. For an isolated wail boundary-layer, the vorticity is largest at the walll and vanishes

monotonically and asymptotically as the far-field is approached. When a neighboring wake or

boundary layer is approached, the vorticity becomes negative, as the velocity begins to

decrease near the edge of this shear layer. Thus, by locating the zeros of the vorticity distribu-

tion along a given station, and limiting the search for the peak of F to the region between the

wall and the first zero in the vorticity, the appropriate length scale is obtained.

3.2. Wake Turbulence

In Order to compute wake turbulence length scales, the location of the wake centerline

must first be determined. This cannot in general be assumed to coincide with the turbulence-

mesh wake-line boundary, since these rnerety- represent initial guesses !o the actual wake ioca'

t[tns, prov_dedlnthis:_case by a panel method solution. Since length scales are computed as

distances away from the wake centerline, these can be significantly misrepresented if the proper

wake centerline location is not employed. To locate the wake centerline and compute turbulent

wake length-scale quantities, a single station traversing the entire wake is required, rather than
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two individualstations,eachonoppositesidesof thewakeline. Thus,thetwo corresponding
stationson eitherside of the wakeline are loadedinto a single temporaryarray,which
representsa completestationtraversingthe entirewake. Thewakecenterlinecorrespondsto
the locationof minimum(local)velocityor zerovorticityas shownin Figure2. Thusthe
zerosof the vorticity distributionalongthe cut are located,andthe zeroclosestto the tur-
bulencemeshwake-lineis identifiedasthelocationof thewakecenterline.Thetwoneighbor-
ing zerosof thevorticity,oneon eachsideof the centerline,arethenemployedto limit the
searchfor themaximumof F, the moment of vorticity, in the wake region, as described in the

previous section.

3.3. Limitations

These modifications to the standard model enable more complex geometries to be han-

dled, and in principle, enable the treatment of confluent or merging boundary layers and wakes.

For example, as a boundary layer and a wake gradually merge, as shown in Figure 7, the loca-

tion of the zeros of the vorticity will be shifted, thus enabling the turbulence model to track the

process. However, the success of this method rests on the assumption of a relatively smooth

vorticity distribution and on the ability to generate a reasonable estimate of the location of the

wake centerline. For example, if the turbulence mesh wake-line does not fall in the same

vicinity as the actual wake centerline, then the vorticity zero closest to the mesh wake line may

not correspond to the location of the wake centerline. Furthermore, since vorticity represents a

difference in velocity, it tends to be somewhat noisy and may exhibit rather large spurious

oscillations. Thus, a filtering technique is employed to smooth the vorticity distribution and

remove any spurious oscillations. In the present work, two passes of a simple Laplacian

smoothing operator are applied along each turbulence mesh station to filter the vorticity distri-

bution. More sophisticated smoothing techniques based on Fourier methods may also be

experimented with in the future. However, it is important to realize that filtering is only

applied to the vorticity distribution in order to locate the zeros of the distribution, which in turn

determine the extent of the search regions, and the location of the wake centerline. The

unsmoothed vorticity values are employed in the calculation of all other turbulence modeling

quantities.

4. RESULTS

The present algebraic turbulence model implementation is used in conjunction with the

unstructured multigrid Navier-Stokes solver, previously described in [5], to compute the steady

turbulent compressible flow over single and multiple-element airfoil geometries. In the context

of a multigrid strategy, the turbulence model is only executed on the finest mesh of the

sequence, and thus only background turbulence meshes corresponding to the finest unstructured

mesh need be constructed. Within each multigrid cycle, the turbulence modeling routine is

executed on the finest grid, and the resulting eddy viscosities are interpolated up to the coarser

grids, where they are used in the multigrid correction equations. The whole process is very

efficient, and in general, the entire turbulent modeling routine, including the interpolation pro-

cedures, requires only 10% of the total time within a multigrid cycle. Memory requirements

are, however, increased by about 50% since extra variables and transfer coefficients must be

stored for the turbulence mesh stations. When adaptive meshing is employed, new finer

unstructured meshes are generated by adding new points and locally restructuring the previous

coarser mesh. These new meshes are then added to the multigrid sequence. The background

turbulence meshes corresponding to this new finer level are generated by adaptively refining
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andpreprocessingthebackgroundmeshesfrom thepreviouslevel,whichthemselvesarenow
discarded.

4.1. Single-Element Airfoil Results

As an initial test case, the turbulent flow over an RAE 2822 airfoil has been computed.

The freestream Mach number is 0.729, the Reynolds number is 6.5 million, the corrected

incidence is 2.3i degrees' and transition is fixed atO.03 chords. This Constitutes a well docu-

mented test case (Case 6) for turbulent transonic flow [15], which Can be used to validate the "_

present solver. The unstructured mesh employed for this case is depicted in Figure 3. This

mesh contains 13,751 points of which 210 are on the airfoil surface. The average normal spac-

ings of the triangles on the airfoil surface is 0.00001 chords, resulting in cell aspect ratios of

the order of 1000:1 near the wall. The background turbulence mesh stations employed for

computing the algebraic turbulence model, which contain a total of 13,372 points, are depicted

in Figure 4. The computed surface pressure distribution and skin friction distribution are

displayed in Figures 5 and 6, respectively, where they are compared with experimental data

from [15]. Both quantities are seen to compare favorably with the experimental results, and the

computed lift coefficient of 0.7403 is well within the range reported in previously published

computational solutions, using structured meshes [16]. A total of five meshes were employed

in the multigrid sequence, with the coarsest mesh containing only 98 points. The convergence

rate for this case, as measured by the decrease in the RMS average of the density residuals

throughout the flow-field, versus the number Of multigrid cycles, is depicted in Figure 7. An

average residual reduction of 0.955 per multigrid cycle is achieved on the finest grid, resulting

in a decrease of the residuals by 4 orders of magnitude over 200 cycles. Furthermore, the lift

and drag coefficients were converged to four significant figures within 90 cycles. Since each

multigrid cycle requires roughly 1.4 CPU seconds on a single processor of the CRAY-YMP

computer, engineering solutions could thus be obtained in approximately 2 minutes for this

case.

To demonstrate the advantages offered by adaptive meshing techniques, the same test

case has been recomputed using a sequence of adaptively generated meshes. The first four

meshes are identical to the four coarse meshes employed previously. The final two meshes are

obtained by successive adaptive refinements of the previous coarser mesh. The criterion for

adaptive refinement is based on a combination of the undivided difference of Mach number,

and the undivided difference in pressure. When the difference of one of these variables along

a particular mesh edge is found to be larger than the average 0f me differences across all mesh

edges, a new point is added midway along that edge. The finest adaptive mesh is shown in

Figure 8. This mesh contains 12,829 points, slightly less than the number of points of the

mesh of Figure 3, but exhibits twice the maximum resolution of the non-adapted mesh. The

newly adapted background turbulence mesh stations corresponding to this refined mesh are

dep!ct_ in Figure 9. A total of 13,011 mesh points are now contained in these stations. The
Mach contours of the solution Computecl on-the--uns_ctured-mesh of Figure 8, using the

_con'esp6nd_ffg (urb_len-ce mesh stations of Figure- ff,-_ Sh0wnqn_FFgu_e - I0, exhi_bitinga _ --

sharper shock and boundary layer resolution using fewer mesh points than the previously non-

adapted solution. A total of six meshes (including two adaptive refinements) have been used in

the multigfid sequence to _compute this case, yielding a fine grid convergence rate roughly

equivalent to that observed for the non-adapted case in Figure 7.
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4.2. Two-Element Airfoil Results

In the next test case, transonic flow over a two-element airfoil has been computed. The

configuration consists of a main airfoil with a leading edge slat. The freestream Mach number

is 0.5, the Reynolds number is 4.5 million, and the incidence is 7.5 degrees. A sequence of

five unstructured meshes was employed for this case, with the finest mesh containing 28,871

points. The main airfoil and the slat contain 208 and 228 surface points respectively. The

normal height of the triangles at the wall is 0.00002 chords, based on the chord of each indivi-

dual airfoil. In figure I I, a global v/ew of the second finest mesh (7,272 points), and a close-

up view of the finest mesh are shown. A global view of the finest mesh is omitted, due to the

difficulties associated with plotting such dense grids. The background turbulence meshes

corresponding to the finest unstructured mesh level contain a total of 28,256 points. In Figure

12, the background turbulence meshes corresponding to the second finest level (7,415 tur-

bulence mesh points), which exhibit the same topology as the finer level meshes, are shown,

prior to the triangulation operation. The computed Mach contours for this case are depicted in

Figure 13. At these conditions, the flow is supercritical and a shock is formed on the upper

surface of the slat, as seen in the figure. The slat boundary layer thickens appreciably as it

passes through the shock, and a small region of separated flow is formed at the foot of the

shock. The wakes from both airfoils appear to be resolved reasonably well in the present cal-

culation. The flow-field distribution of eddy viscosity is illustrated in the contour plot of Fig-

ure 14. The turbulence model is seen to yield a smooth distribution of eddy viscosity in the

gap region, and between the main airfoil upper surface, and the wake of the slat, where the

two background turbulence meshes overlap, and where these two shear layers merge. The

computed surface pressure distribution for this case is compared with experimental wind-tunnel

data [17], in Figure 15. Good overall agreement is observed, including the prediction of the

height of the suction peaks and the shock strength and location. The convergence history for

this case is shown in Figure 16, where the fine grid residuals were reduced by 5 orders of

magnitude in 350 multigrid cycles, resulting in an average residual reduction rate of 0.968 per

multigrid cycle. The lift and drag coefficients could be converged to four significant figures in

approximately 75 cycles, requiring roughly 3.5 CPU minutes on a single processor of the

CRAY-YMP.

4.3. Four-Element Airfoil Case

The final test case consists of a four-element airfoil configuration. This represents a truly

complex geometry which is not easily amenable to structured mesh techniques and is of con-

siderable practical interest, as it relates to the design of high-lift devices for commercial air-

craft. This particular configuration has been the subject of extensive wind-tunnel testing [18],

and thus provides a suitable code validation test case. A multigrid sequence of five meshes

was employed to compute the flow about this configuration. The finest mesh of the sequence

contains 62,076 points of which 294 are on the surface of the slat, 211 on the surface of the

main airfoil, and 254 on both the vane and the trailing edge flap. The average width of the

elements at the wall is 0.00002 chords for each airfoil, resulting in cell aspect ratios of the

order of 1000:1 in these regions. The background turbulence meshes are based on the same

boundary point resolution as the global unstructured mesh, and contain a total of 56,168 points.

Figure 17 provides a global view of the coarser level unstructured mesh (15,896 points), and a

close-up view in the region of the leading-edge slat of the finest mesh level. The background

turbulence meshes corresponding to the coarser level (16,886 turbulence mesh points) are dep-

icted in Figure 18, prior to the triangulation and preprocessing operations. For this case, the
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freestream Mach number is 0.2, the Reynolds number is 2.83 million, based on the chord of

the nested flap configuration, and the incidence is 8.18 degrees. At these conditions, the flow

is entirely subcritical, although compressibility effects remain important, since local Mach

numbers greater than 0.6 are achieved in the suction peaks. The computed Mach contours are

shown in Figure 19. The flow is mostly attached and a good resolution of the boundary layers

and wakes is achieved about all four airfoil elements. A comparison of the computed surface

pressure distribution with the experimental wind-tunnel data is given in Figure 20. Computed

and experimental values are seen to agree favorably in all regions, demonstrating a good pred-

iction of the suction peaks and lift on all airfoil elements. This solution required roughly 14

Mwords of memory and 15 minutes of CPU time on a single processor of the CRAY-YMP,

which corresponds to 150 multigrid cycles on the finest grid, during which the residuals were

reduced by approximately two and a half orders of magnitude.

5. CONCLUSIONS ............

An algebraic turbulence model, suitable for non-simple flows and geometries, has been

implemented successfully for use on unstructured and adaptive meshes. By combining a

highly-stretched unstructured-mesh generation method, a multigrid finite-element Navier-Stokes

solver, and the present algebraic turbulence model, turbulent flow fields may be computed

using fully unstructured meshes. The method is efficient in that solutions may be obtained

using on the order of 100 multigrid cycles, and the turbulence model consumes less than 10%

of the total time required to compute a solution. In order to accommodate complex flow situa-

tions, such as confluent boundary layers and wakes, modifications to the basic algebraic model

have been devised. These, however, are not foolproof, and further work in this area may be

required to increase the reliability of the model. For more complex flows, and flows with mas-

sive separation, multiple field-equation turbulence models may appear to be more suitable.

However, much research remains to be done before physically accurate as well as numerically

efficient field models can be routinely employed.
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Figure 3

Fully Unstructured Mesh with High Stretching Employed for Computing

Turbulent Flow Past an RAE 2822 Airfoil (Number of Points = 13751)
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Figure 4
Turbulence Stations Employed for Computing Flow Past an RAE 2822 Airfoil

(Total Number of Points = 13372)
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Adaptively Generated Turbulence Mesh Stations for Computing Flow
Past an RAE 2822 Airfoil (Number of Points = 13011)
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Figure l0
Computed Mach Contours for Flow Past an RAE 2822 Airfoil on the

Adap6vely Generated Unstructured Mesh
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Figure 11

Global View of Coarse Unslrucmred Mesh and Close-Up View of Fine
Unstructured Mesh Employed For Computing Flow Past a Two-Element Airfoil

(Coarse Mesh Points = 7272, Fine Mesh Points = 28871)
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Figure 12
Illustration of Background Turbulence Meshes Employed in the Turbulence

Modeling Routine for Computing Flow Past a Two-Element Airfoil
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Figure 13
Compute d Mach Contours for Flow Past a Two-Element Airfoil

(Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees)

=
E

=

=

Z

=_

z

=



-23-

Figure 14

Contours of F.ddy Viscosity Produced by the Algebraic Turbulence Model
for the Flow Past a Two-Element Airfoil
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Wind-Tunnel Data for Turbulent Transonic Flow Past a Two-Element Airfoil
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Fipre 1'7

Global View of Coarse Unsm_mred Mesh and _Up View of Fine

UnstructuredMesh Employed forComputing Flow Pasta Four-Element ALrfoil

(Coarse Mesh Points = 15896, Fine Mesh Points = 62076)
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Figure 18

Illustration of Background Turbulence Meshes Employed for Computing
Turbulent Flow Past a Four-Element Airfoil Confi_tion
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Figure 19

Computed Math Contours forthe Compressible TurbulentF'Iow

Pasta Four-Element AirfoilConfigundon

(IMa_h = 0.2, Re - 2.83 m/H/on, Inc/dence - 8.18 degrees)
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Figure 20 _......_
Comparison of Computed Surface Pressure with Experimental Wind-Tunnel

Data for Flow Past a Four-Element Airfoil Configuration
(Mach = 0.2, Re = 2.83 million, Incidence = 8.18 degrees)
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