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Abstract Nomenclature
In this paper, an extended Kalman filter (EKF) d distance from angle-of-attack vane to aircraft
is used to estimate the paramecters of a low-order center of gravity
model from aircraft transient response data. The low- EKF extended Kalman filter
order model is a state space model derived from the F(z,0) i 7t F £ about z at time ¢
short-period approximation of the longitudinal air- z,t)  linearization of f about z at time
craft dynamics. The model corresponds to the pitch ~ f(z,&)  nonlinear function dependent on
rate to stick force transfer function currently used variable z at time ¢
in flying qualities analysis. Because of thc model g gravitational constant
chosen, handling qualities information is al b- . . . .
. g4 S . § aiso o H linearized output matrix, defined in
tained. The parameters are estimated from flight uation (22)
data as well as from a six-degree-of-freedom, non- eq )
lincar simulation of the aircraft. These two esti- ! nonlinear output matnx
mates are then compared and the discrepancies noted. I identity matrix
The 10\'v-ordcr model 1§ ablc.to satisfactorily mf\tch K Kalman gain matrix
both flight data and simulation data from a high- L o
order computer simulation. The parameters obtained L, derivative of & with respect to g
from the EKF analysis of flight data are compared Ly derivative of & with respect t0 «
to those obtained using frequency response analy- Ls derivative of & with respect to 8
sis of the flight data. Time delays and damping ra- .
tios are compared and are in agreement. This tech- LOES low-order equivalent system
nique demonstrates the potential to determine, in near M, dimensional variation of pitching
real time, the extent of differences between computer moment with pitch rate
models and the actual aircraft. Precise knowledge M, dimensional variation of pitching
of these differences can help to determine the flying moment with angle of attack
qﬁalllncs of a tcs} aircraft and lead to more efficient M; dimensional variation of pitching
envelope expansion. moment with surface deflection
n, nomal acccleration
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velocity
measurement noise

He<

statc vector

Ze(+) estimate of z taking advantage
measured data at k

(=) estimate of z before measured
data at k is available

=

z output vector
o angle of attack
) pseudo control surface deflection
8p pilot pitch stick signal
p correlation coefficient
o standard deviation
T first-order time lag coefficient
T4 pure time delay
w process noise
Wiy short-period natural frequency
Subscripts
c corrected
f flight measured
k at discrete time k
m measured parameter
0 initial
Superscript
T matrix transpose operator
" estimate
Introduction

Many near-real-time techniques have been used in
the envelope expansion of recent research aircraft like
the X-29.! In the area of flight controls, two real-time
techniques were developed. One is a frequency re-
sponse technique? where the aircraft’s open-loop fre-
quency response is determined from measured flight
parameters. This frequency response is then compared
with a predicted frequency response based on the cur-
rent aircraft simulation. The second technique is a time
history overplot comparison,® conducted in real time.
Overplots are obtained of the aircraft response with
time histories generated from a previously determined
linear model of the aircraft, at that flight condition,
driven by the pilot’s input signal as it is telemetered
to the ground.

To provide more detailed information, an additional
real-time technique, the subject of this paper, has been
investigated. This technique uses an extended Kalman
filter (EKF) to estimate a low-order equivalent sys-
tem (LOES) model of the aircraft from flight-measured
time histories. References 4-9 detail other work in
this area. For other work in parameter estimation see
Refs. 10 and 11.

A Kalman filter is an optimal state estimator of
a linear system. The estimate is adjusted based
on cach measurement of the system. An extended
Kalman filter extends linear Kalman filter theory to
nonlinear systems.

The LOES model is based on the longitudinal short-
period approximation in the MIL-STD-1797 for fly-
ing qualities.!? This technique is able to extract fly-
ing qualities parameters in near real time, which may
quantify discrepancies between the aircraft and the air-
craft simulation.

" "Before the flight, the aircraft’s éi;ijcé;éé-Of-

freedom, nonlinear simulation is analyzed at a speci-
fied flight condition, and a LOES is estimated. During
flight test, parameters of the low-order model are es-
timated and these flight-data based estimates are com-
pared with the simulation based estimates in real time.
The results of the flight estimation are intended to help
diagnose discrepancies between the aircraft response
and the predicted response. This comparison could be
done before the aircraft reaches its next test point, giv-
ing the flight controller time to decide whether the dis-
crepancy is serious enough to curtail further testing.

The aircraft used in developing this technique was
the X-29 (Fig. 1). The X-29 airframe has a negative
static margin of approximately 35 percent. This in-
stability requires a high degree of control augmenta-
tion. The control system is entirely fly-by-wire, con-
sisting of a triply redundant primary channel operating
at 80 Hz. The longitudinal control laws use pitch rate
and normal acceleration feedbacks for primary stabil-
ity and control. Of particular importance to the EKF
algorithm is the airplane’s three surface pitch control,

‘using canards, symmetric flaps, and strake flaps. Data

from the airplane is telemetered to the control room at
40 samples/sec (40 Hz).

The estimation was made of the closed-loop system
rather than the open-loop system. Because of the high
degree of control augmentation on the X-29, the re-
searchers thought that estimating the closed-loop sys-
tem offered the best chance of success. The control
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system was designed to make the closed-loop aircraft
behave much like the low-order model. Detailed post-
flight analysis would provide greater insight into any
discrepancy by separating the effects of the control
system from the aecrodynamics.

If a major discrepancy between the simulation and
actual airplane is present, this algorithm may be able to
determine what the discrepancy is more quickly than
currently available technology can.

Not only general information about the aircraft per-
formance, compared to its predicted performance, is
available, but handling qualities data is obtained as
well. First, an equivalent time delay is available. This
value can be monitored to identify potential stability
problems. The time delay computed in near real time
would be used to identify large discrepancies from the
anticipated values.

In addition, plots of normal acceleration divided by
angle of attack (n,/«) could be obtained for both the
simulation and real-time estimations. This would al-
low researchers to determine if the flight values are
moving towards an unacceptable region as defined by
Ref. 12.

With the information provided by this technique in
near real time, more intelligent decisions about the on-
going flight test could be made, possibly saving time
and money. The results obtaincd by this technique
could also increase the efficiency and safety of the
flight test program.

The potential for reducing postflight data process-
ing is also great. This technique could determine the
area responsible for any discrepancics, and postflight
analysis could then identify the cause.

Techniques and Procedures

Modeling

Only the transient longitudinal dynamics of the air-
craft in 1-g level flight are studied. The basic model is
the longitudinal short-period approximation

&= Loa+ Log+ Lsb m
g = Maa+ Mgq+ Msb )

where Lq, Ly, and L; are the derivatives of & with
respect to «, ¢, and 6, and M,, My, and M; are the
derivatives of ¢ with respect to «, ¢, and §. This ap-
proximation is equivalent to the short-period approxi-
mation for the pitch rate to stick force transfer function
given in Ref. 12, allowing handling qualities informa-

tion to be obtained. Aircraft angle of attack, pitch rate,
and normal acceleration make up the systems observa-
tion equations.

Because of the aircraft’s open-loop instability, the
closed-loop dynamics were estimated rather than the
open-loop dynamics. If the open-loop equations were
used, then any small measurement errors in the surface
positions or the numerical differentiation would cause
the model to diverge from the measurements.

The aircraft uses three surfaces for pitch control.
This configuration made defining a stick force to air-
craft response transfer function difficult. Since there
was no single pitch generating surface, the effects of
the three surfaces were collected into a single pseudo
control surface. A third state equation is added to the
model to represent the pseudo control

. -1 —1
o(t) = —T—S(t) + —T—Gp(t — T4) (3)

where § is the pscudo control surface deflection and
8, is the pilot pitch stick signal. It was reasoned that
this equation should have the appearance of an actu-
ator model. The coefficient of the model is estimated
by the filter. Equation (3) contains a first-order lag of
the pilot’s stick signal. The first-order lag accounts for
only part of the system time delay. The rest is modeled
through a pure time delay.3

To determine the pure time delay, several a priori
estimates are made, and several filters are run in par-
allel. To determine which of these filters is operating
with the proper amount of pure time delay, the like-
lihood function is used.!* The proper amount of pure
time dclay is the sum of each filter’s time delay multi-
plied by its likelihood. However, in all cases examined
one delay always resulted in a likelihood much higher
than the others. For this reason, and to save compu-
tational complexity, the time delay associated with the
largest likelihood is used as the correct pure time delay.
Figure 2 shows that the pure time delay is implemented
outside of the EKF.

A detailed investigation of identifiability was not
conducted. However, the fact that one delay resulted in
a likelihood far larger than the others suggested iden-
tifiabilty is not a problem.

Since the aircraft cannot obtain perfect trim in flight,
estimated bias terms are added to the state equations.
In the presence of trim errors these terms balance the
statc equations and accurately determine the trim state.
Without the biases, the equations would integrate a
small error over the course of the maneuver.



The equation for measured angle of attack needs to
be corrected for the fact that angle of attack is mea-
sured at the noseboom of the aircraft and not the cen-
ter of gravity. This can be modeled to the first order by
correcting for pitch rate

d
Om = & = 774 (4)
where ay, is the measured angle of attack and d is the
distance from the angle-of-attack vane to the aircraft
center of gravity.

The equivalent system model can now be defined
and is given by equations (5-10)

&= Laa+ Lgg+ Lsb+ Lo )
g= Maa+ Mg+ Msb+ Mo (6)
5= L5+ L5, + 6 )
T T
d
-0 8
am = a— 54 8)
Im = 4q (9)

-V
e, = —'g—[LaOH' (Ly—Dg
+Lsb+ Lol + ny (10)

where the subscript O indicates initial state.
Estimation

The estimation problem consists of estimating L,
Lgs Lsy Maw My, Ms, £, Lo, Mo, 80, 1y, of the lon-
gitudinal short-period approximation model as a func-
tion of time for the closed-loop aircraft response, in
near real time. To do this using an EKF, these coeffi-
cients must be made states of the filter. Therefore the
state vector () becomes

o z= [a)q)sx Lar Ma,LB: M&; Lq,

1
Mq,—, Lo, Mo, b0, me]" (1D

The extra state equations required are Lo = 0, My =
0,L5=0,Ms=0,Lo=0,3,=0,(1)=0,Lo =0,
My =0, 6 =0, and i,, = 0. The short-period state
equations (5-7), augmented by those previously listed
and output equations (8-10), form the state and mea-
surement equations for the EKF. N

~ The EKF equations used are for a continuous-
discrete system and are listed in the following
equations. s

The continuous system model is
£(t) = f(z(1),t) + w(t) (12)

where w is a white noise process with spectral density
Q(t) where Q is the model noise variance.

The discrete measurement model is
2k = he(z(te)) + 1 3 k=1,2,3,... (13)

where the v, 's are independent Gaussian noise vectors
with mean zero and covariance Ry. It is also assumed
that w and v are independent.

The initial conditions arc
z(0) (14)

where z(0) is Gaussian, with mean %o and vari-
ance Po .

The state estimate propagation between samples is

B(1) = f(&(1),0) (15)

The error covariance propagation between sam-
ples is
P(t) = F(2(1),t) P(t)
+ POFT(3(),0+ Q) (16)

where P(t) is the Ricatti error covariance, and
F(&(t),t) is defined in equation (20).

The state estimate update is
Ee(4) = Zp(=) + Kglze — he(2e(-))]  (17)

where (+) is the estimate using information at time
k, (=) is the estimate before data from time k is
available, and K is the Kalman gain matrix defined in
equation (19).

The error covariance update is
Pe(+) = [I - K He(2e(-N1P(-)  (18)

where Hi(Z(-)) is defined in equation (21).
The Kalman gain matrix is

Ki= P(=)HI (3(-))
[He(3(=)) Pe(—) H
(2:(=)) + Rel ™! (19)



Definitions
F(z(1),1) 0z(t)  lxy=2ct) o
Ohi(z(tr))
o) 21
Hi(2x(-)) 0z(tk)  |z(ty)=2a(-) @

Equation (12) for the system model is a continu-
ous nonlinear equation describing the state propaga-
tion with time, betwecn samples. An approximation
that F is constant between samples has been made.
In this application, the state is propagated through the
nonlinear equations using a fourth-order Runge-Kutta
technique. The measurement model (equation (13))
is discrete. In equation (20), F is the linearized state
matrix. This matrix must be recomputed for each up-
date of the state vector since the elements of F' are also
states of the EKF and will change with each update of
the filter.

The first step in estimating the flight data is obtain-
ing an estimate from the simulation. There are two
primary objectives in estimating the low-order model
from nonlinear simulation data. First, determine the
coefficients of the low-order model (filter states 4-11)
as accurately as possible. These will be the initial state
estimates for the estimation from the flight data. In
addition, the simulation estimates will be compared to
the estimates obtained from the flight data to check for
major discrepancies.

The second objective is to determine the amount of
process noise to use in estimating the data from flight.
For the X-29A, earlier flight tests have shown that the
nonlinear simulation accurately predicts the response
of the airplanc. As a result, the process noise weight-
ing matrix is selected by adjusting the weighting ma-
trix until both the EKF and LOES indicated that good
results had been obtained. Overplots of the LOES sys-
tem with the original data are used to evaluate the esti-
mates qualitatively. Innovations, time histories of the
estimates, correlations, and state variances from the
EKF are used in the evaluation. A tradeoff is then
made between the EKF and LOES results to obtain the
final estimates and weightings. These weightings are
then used to estimate the parameters during flight. In
the cases examined, the process noise weightings were
kept quite low.'

To determine values for the measurement noise
(R), sample time histories are obtained. From these,
bounds are drawn defining a noise envelope for that

signal, These bounds are then selected as +2 0 (two
standard deviations) bounds about the mean. The
value for R;; in this case is a‘-z,‘-. This is possible be-
cause the process noise was kept low.

For « and g, the initial state variance (P(0)) is the
value for measurement noise on « and ¢. For the other
states a value for o is selected which equals one-fourth
the estimated initial values of the states, thus P;; =
&% = (}:,)%. For state variables with initial values
close or equal to zero, bounds are established based on
engineering judgement.

With the identification algorithm initialized, the
next step is to determine the pure time delay. Nine
filters are run with fixed time delays ranging from 0 to
200 msec, in increments of 25 msec. The likelihood
function is used to determine which filter is operating
with the correct amount of time delay.

Several analysis techniques are used to monitor the
filter and to aid in interpreting the results. The most
important of these are the filter innovations. The inno-
vations are the difference between the predicted output
of the equivalent system and the measured response.
The innovations are calculated by

innovations = zx — hg( (=) (22)

Results and Discussion

Simulation

A simulation time history is generated using the
six-degree-of-freedom, nonlinear simulation and flight
data inputs at this condition. Some of the flight data
analyzed is presented in Fig. 3. The actual time inter-
val of the identification was varied to illustrate vari-
ous points.

The filter is initialized as described earlier. The mea-
surement noise is determined from the flight data and
then divided by 100 (1o represent 1’10' the root mean
square error) since the simulation would produce a per-
fect measurement signal. A low-order equivalent sys-
tem is then estimated from this data. The results of this
estimation are presented in Table 1.

Large correlations between the state § and the co-
efficients Mo and 8y are found. Some correlation is
also indicated between the coefficients M, and Mjg.
This is expected because the control system has the ap-
pearance of a pitch rate command system. Although
this correlation is not desirable, it is not felt to be
a problem.



These results are obtained for very low levels of pro-
cess noise. Large values of process noise often result
in misleading estimates. The values for final variance
are much smaller than the initial values, which shows
that the EKF has obtained a good estimate.

Plots of the LOES and the simulation time histories
are shown in Fig. 4. The LOES matches the simulation
data exceptionally well. The only discrepancy occurs
between 9 and 10 sec. This discrepancy is believed
to be the result of a nonlinearity around the zero stick
position, possibly caused by break out forces or hys-
teresis in the stick at that point.

Flight

For the flight data estimation, the final results of the
simulation estimation are used as the initial state es-
timates. The values for process noise are those de-
termined from the simulation. The initial variance of
the state is that used in the simulation estimation. The
flight data is then processed to arrive at the final esti-
mate, which is compared to the simulation final esti-
mate. The output of the flight data estimation is pre-
sented in Table 2.

The same correlations among parameters that are
seen on the simulation, § with Mo and 6¢, and M; with
M, occur here. As before, this result is not desirable,
but it is expected and is not thought to be a problem in
the estimation,

Plots of the LOES and the flight data are presented
inFig. 5 and demonstrate excellent agreement with the
flight data. However, for reasons which are not clear,
the filter underestimates the final peak.

Figure 6 shows the innovations. The bounds of the
innovations are obtained by the equation

bound = +2[ HPHT + R],%.- (23)

The structure, especially in the pitch rate data, indi-
cates correlation over time because a low-order model
was used to describe higher-order dynamics, resulting
in process noise. This correlation also suggests that
information is still available in the signal, or that the
noise is not Gaussian and white. Additional tumng of
the gains may reduce the correlation. ™~

Figure 7 shows the time histories for the state esti-
mates. In almost all cases, the states settle by approx-
imately 9 sec. These results are encouraging. If the
time historics for the states representing the parame-
ter estimates vary wildly at the end of the estimation,

then little confidence could be held in the estimation
for that state. Large variations would also be refiected
in a large final variance for that state.

Simulation and Flight Comparisons

Figure 8 is a comparison of the final state estimates,
with a +2 o error bound (based on the final P), of the
simulation and flight estimations. The frequency and
damping ratio are computed from the state estimates;
their bounds were computed by a simple linearization.
This is only an estimate of the bounds and is thought
to be sufficient because of the low correlation of the
parameters. The results were expected to agree better
than they do.

The damping ratio is estimated to be higher from
flight than from the simulation. This increased damp-
ing ratio has also been observed by the pilots and in
postflight frequency response analysis. This increase
in the damping ratio is also observed in the near-real-
time open-loop frequency response analysis as an in-
crease in the phas¢ margin.

To further verify the results of the algorithm, the
damping ratio and pure time delay estimates are com-
pared to the results from the postflight frequency re-
sponse analysis. The EKF estimated a time delay be-
tween 140 msec and 146 msec; the frequency response
analysis estimated a time delay of 120 msec. For the
damping ratio, the EKF estimated 0.84 to 0.92, the fre-
quency response analysis estimated 1.05. The agree-
ment is good, considering frequency and damping ratio
tend to tradeoff without affecting performance.

Thus, the differences between the flight data esti-
mates and the simulation data estimates are caused
by a discrepancy between the simulation and airplane.
Some discrepancies between the simulation and air-
craft performance are expected. This demonstrates the
EKF’s ability to identify such discrepancies.

Robustness

The data was also analyzed in more detail to deter-
mine the robustness of the algorithm. In one instance,
the window over which the estimation was performed
was shifted 1.5 sec. This shift only has a slight effect
on the final state estimates.

In another check for robustness, the filter was reini-
tialized with the final state estimate from the previ-
ous run and the process was repeated in an iterative
fashion until convergence. Although the results dif-
fered slightly, they showed that the initial estimation
would be sufficient. This is where the Kalman filter



possesses an advantage over other identification tech-
niques, which require multiple processing of the data
to obtain a final estimate. The results of the above two
investigations are presented in Table 3.

The most dramatic evidence of the robustmess of the
algorithm, however, is its reaction to a data spike in the
stick input signal at approximately 15 sec (Fig. 3(a)).
This channel is the most sensitive to data spikes since
the model in the filter algorithm will be driven by this
input, producing outputs inconsistent with the aircraft
outputs. As a result large differences between mea-
sured and predicted values can occur altering the state
estimates unfavorably.

The flight data was estimated in the presence of this
spike with the process noise weighting matrix equal to
zero. The effects of this spike can be seen most clearly
in the plots for the filter state (Fig. 9), at approximately
10.6 sec (the difference in time is due to the window
over which the flight data is identified). The LOES
model and flight data (Fig. 10) still agree well espe-
cially considering that the process noisc was zero. The
ability of the algorithm to survive a data spike of such
magnitude on the most critical channel indicates that
the algorithm will perform well during flight test.

Since the technique is in the developmental stage
all the analysis so far has been postflight analysis. The
goal of this technique is implementation during flight
test. While proving the concept, however, execution
speed was not considered. Once the technique was
proven sound and acceptable, computation time was
considered. By then, there was time for only a cur-
sory investigation. The resulting execution time was
approximately 2.5 min (central processing unit (cpu)
time) to process 10 sec of flight data. Major sections
of the code may be written more efficiently, reducing
the execution time. When the program is moved to
the computer used during flight test, faster computa-
tion times may occur because of the increased capabil-
itics of this system.

Concluding Remarks

A third-order model based on the short-period ap-
proximation is an acceptable model to describe the
pitch axis transicnt response of highly augmented and
very large order aircraft dynamics. This equivalent

system model can be estimated by using an extended
Kalman filter. Results suggest such an estimation
could be conducted in near real time during flight test.

The results of this technique have been verified
against the existing near-real-time open-loop fre-
quency response analysis and postflight frequency do-
main handling qualities analysis.

The ability to determine equivalent time delay, un-
damped natural frequency, and damping ratio in near
real time provides the flight test organization with
quick and accurate information about the aircraft, con-
tributing to safe, quick, and efficient flight testing.
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