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Abstract

Many types of hypersonic aircraft configurations are currently being studied for their
feasibility of future development. Since the control of the hypersonic conflguratins through-
out thespeed range has a major impact on acceptable designs, it must be considered in
the conceptual design stage. Part I of this report examines the ability of the aerodynamic
analysis methods contained in an industry standard conceptual design system, APAS II,
to estimate the forces and moments generated through control surface deflections from low
subsonic to high hypersonic speeds. Predicted control forces and moments generated by
various control effectors are compared with previously published wind tunnel and flight
test data for three configurations: the North American X-15, the Space Shuttle Orbiter,
a_d a hypersonic research airplane concept. Qualitative summaries of the results are given
for each longitudinal force and moment and each control derivative in the various speed
ranges. Results show that all predictions of longitudinal stabiltiy and control derivatives
are acceptable for use at the conceptual design stage. Results for most lateral/directional
control derivatives are acceptable for conceptual design purposes; however, predictions at

supersonic Mach numbers for the change in yawing moment due to aileron deflection and
the change in rolling moment due to rudder deflection are found to be unacceptable. In-
cluding shielding effects in the analysis is shown to have little effect on lift and pitching
moment predictions while improving drag predictions. Overall, lateral/directional control
derivatives show better agreement when shielding effects are not included.

In Part II of this report, an investigation of the aerodynamic control effectiveness

jot highly swept delta planforms operating in ground effect is presented. A vortex, lattice
:computer program incorporating a free wake is developed as a tool to calculate aerodynamic
:stability and control derivatives. D_ta generated using this program are compared to '

experimental data and to d_tafrom other vortex-lattice programs. Results show that an
elevon deflection produces-greater increments in CL and CM in ground effect than the
same deflection produces out of ground effect and that the free wake is indeed necessary

forg0od predictions near the ground. .................
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Overview

The purpose of this final progress report is to present the findings of two research

activities which focus on hypersonic vehicle configurations. The first of these activities,

discussed in Part I of this report, is aimed at validating methods, suitable for conceptual de-

sign work, which can be used for predicting flight control forces and moments over the Mach

number range from low subsonic through hypersonic. Specifically, the subsonic/supersonic

panel methods of Woodward, called the Unified Distributed Panel method (UDP) 1, are

examined for subsonic and supersonic flight Mach numbers, while an enhanced version

of the Hypersonic Arbitrary Body Program (HABP) of Gentry 2 is considered for hyper-

sonic speeds. AI1 of these methods have been incorporated into a single analysis program

called the Aerodynamic Preliminary Analysis System H (APAS) 3'4, which is used in this

study. Although HABP has been widely used for conceptual design activities since the

early 1970's and a number of studies have been undertaken to examine its ability to pre-

dict the overall vehicle aerodynamics, no comprehensive, systematic study has been found

which has explored its ability to predict forces and moments generated by aerodynamic

flight controls. Thus, the goal of the present effort is to determine the accuracy and range

of validity of the simple local surface inclination methods for predicting control forces and

moments for a variety of configurations.

The approach used in this validation effort is to compare predicted and experimental

results for several vehicle configurations which cover a broad range of proposed hypersonic

vehicle configurations and for which wind-tunnel data are available.

The second research activity, considered in Part II of this report, is directed at studying

the flight control behaviour of highly swept delta wing planforms in close proximity to the

ground. Because of the possibility that the stability characteristics and/or the control

effectiveness of such configurations is altered significantly by ground effect, this is an

important area of concern in considering the take-off and landing of proposed hypersonic



flight vehicles. Furthermore, any analysis of such configurations in ground effect must

examine the coupling that exists between deflecting a control surface to achieve a proper

moment for trim and the change that such a deflection causes in the total lift generated.

In order to explore these issues, a vortex-lattice program, which includes a free-wake and a

reflective image plane to model ground proximity, has been developed. With this program

it is possible to examine the change in moment of the entire vehicle, as well as the change in

control effectiveness, due to ground effect. In this way, it can be determined whether or not

sufficient control power for trim in ground effect is available and if not, the vortex-lattice

code should be useful in evaluating innovative ways of generating the required moments

to trim.
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Part I: Validation of Methods for Predicting Hypersonic Vehicle

Control Forces and Moments

Introduction

Before a great deal of activity is undertaken in assessing different types of flight

control systems for hypersonic vehicles, it is important to understand the strengths and

limitations of the prediction tools most likely to be used in this effort. Towards this end,

a number of supersonic/hypersonic methods have been evaluated. Specifically, because

their inherent simplicity makes them ideally suited to conceptual design work, among

the tools under examination are the classical local surface inclination methods, includ-

ing Newtonian theory, tangent-wedge/tangent-cone methods, and shock expansion tech-

niques. These methods are all part of an industry-standard computer program called

the "Hypersonic Arbitrary Body Program (HABP)," originally prepared by Gentry 2

and now part of a more encompassing program, the "Aerodynamic Preliminary Anal-

ysis System (APAS)," detailed in Refs. 3,4. Although HABP has been widely used for

conceptual design activities since the early 1970's and a number of studies have been un-

dertaken to examine its ability to predict the overall vehicle aerodynamics, Refs. 5-9 for

example, it is apparent that no comprehensive, systematic study has explored its ability

to predict forces and moments generated by aerodynamic flight controls. Thus, the goal

of the present effort is to determine the accuracy and range of validity of the simple lo-

cal surface inclination methods for predicting control forces and moments for a variety of

configurations.

In addition to exploring the validity of the hypersonic capability of APAS, results

using the subsonic and supersonic panel methods of that program, including a wetted-

area drag prediction, were also compared with experimental data. Although more so-

phisticated methods are available for predicting control forces and moments in subsonic

and supersonic flows, few offer the generality, simplicity and speed of the panel methods.

3



The approach taken in this validation effort is to examine several vehicle configu-

rations which cover a broad range of proposed hypersonic vehicle configurations, and

for which wind-tunnel data are available. For each configuration, the theoretical and

experimental results are compared across the entire speed range of subsonic, transonic,

supersonic, and hypersonic Mach numbers. The configurations analyzed are the X-15,

shown in Fig. I, the Hypersonic Research Airplane, a wing-body vehicle, as shown in

Fig. 2, and the Space Shuttle Orbiter, presented in Fig. 3. Details concerning the geome-

try specification and the program implimentation for this study are contained in Ref. 10.

The experimental data to which the theoretical results are compared are included in the

Appendix of this report, "Bibliography of Experimental Force and Moment Data for Hy-

personic Vehicle Configurations," which is a rather extensive survey of available sources

for such data.

:North American X-15 Research Aircraft

r_

r

The North American X-15 research airplane was developed in the late 1950's and

flown in the early 1960's. It was designed to reach flight velocities of 6,600 ft/sec and

altitudes of 250,000 feet. The wind tunnel data used to compare with theoretical predic-

tions are taken from Refs. 11-14.

Low Speed: Moo = .056

Comparisons of the longitudinal subsonic panel method results of APAS are com-

pared to low-speed experimental data (Moo = .056) in Figs. 4-8. In each figure, the-

oretical zero-flap deflection results are given by the solid line, while the dashed line is

for a 40 degree flap deflection. From the lift-curve data of Fig. 4, it is seen that over

the linear range up to about 25 degrees angle of attack, the predicted results are within

approximately 15% of the experimental ones. As expected, because separated flow is

unaccounted for in the method, the rounding off of the lift curve is not captured. This

likewise probably contributes to the lift-curve slope not being well predicted. Over the

4
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linear range of the data, the theoretical method predicts the change in lift due to a flap

deflection reasonable well, although for the most part the change in lift is slightly under-

estimated.

The general behavior of the drag as it depends on angle of attack is predected fairly

well by the wetted-area build-up method used in APA$, Fig. 5, although the absolute

drag values, particularly at higher angles of attack because separation drag is not taken

into account, are underpredicted. The errors in lift and drag as they depend on angle

of attack compensate one another in the plot of CD against C_, Fig. 6. In this case, up

until the drag increases due to separated flow become appreciable, the method does a

good job when compared to the experimental results.

Pitching moment coefficient versus angle of attack, Fig. 7, and versus lift coefficient,

Fig. 8, demonstrate the well-known difficulty of predicting pitching moments using meth-

ods which do not account for separation. In fact, only the predictions of the zero-lift val-

ues of the moment coefficient with zero flap deflection are even close to the experimental

values. The change in moment with flap deflection is, in particular, not well predicted.

Above about 20 degrees angle of attack where the results are largely affected by separa-

tion, the method, of course, produces a very poor estimation of the experimental results.

Results are presented for a downward elevator deflection of 5 degrees in Figs. 9-

13. In this case, while the absolute values of the coefficients are somewhat in error, the

changes due to the control deflection are all reasonably well predi_:ted. In particular,

the change in pitching moment due to the elevator deflection is predicted quite well, al-

though other features of the pitching moment curves, Figs. 12 and 13, are not even ap-

proximated well.

In the comparisons of the predicted and experimental lateral/directional coefficients,

Figs. 14-19, the different line types correspond to different treatments of the leading and

side-edge suction forces. Included are purely potential flow with no edge treatment, po-

tential flow plus the leading edge suction force, and potential flow plus leading and side-

5
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edge modifications. The change in side force, yawing moment and rolling moment with

differentially deflected elevons are presented as they depend on angle of attack in Figures

14-16, respectively. Although not accounting for flow separation probably contributes

to the discrepency at higher angles of attack between the theoretical and experimental

results for C,_,,, Fig. 15, all of the other results are certainly good enough for conceptual

design work. In addition, for these cases, the inclusion of leading edge and/or side-edge

suction analogies does not make a great deal of difference in the results.

The change in side force, yawing moment, and rolling moment with deflection of

the vertical tail are presented with their dependence on angle of attack in Figures 17-19.

Although not as good as the previous results, these too are probably close enough for

many conceptual design studies. Note that in these figures, only the potential flow plus

leading edge suction force results have been included. Unfortunately, some of the trends

with changes in angle of attack are not captured and, in particular, it should be noted

that the theoretical method misses the loss in control effectiveness at higher angles of at-

tack, as seen in Fig. 18, probably because the method does not account for the separated

flow off the fuselage which blankets the vertical tail.

Transonic: Moo = 0.80, 1.08, 1.18

For transonic Mach numbers of Moo = 0.80, 1.03, and 1.18, the subsonic and super-

sonic panel method results are compared for experimental data only for the longitudinal

aerodynamic derivatives at elevon deflections of 0 degrees, -3 degrees, and -6 degrees.

The plots of these comparisons are presented in Figs. 20-31. In all cases, the angle of at-

tack range is limited to less than 20 degrees such that the influence of separated flow on

the results is limited.

As observed in Figs. 20, 24, and 28, both the trends and absolute levels of the lift

curves are predicted quite well. In addition, the change in lift coefficient with elevon de-

flection is predicted well. Figs. 21, 25, and 29 demonstrate that the drag curves are well

predicted, particularly at the lower angles of attack, for Mach numbers of 0.80 and 1.18.
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Near Moo = 1.00, however, the drag coeffcient is over-predicted and some unexplained

discontinuities exist in the drag curve. In all cases, the drag increment due to a control

deflection is not resolved well, although the trends are correct. Similar comments apply

to the drag polar £urves, Figs. 22, 26, and 30.

The pitching moment coefficient is plotted against the lift coefficient for the three

Mach numbers in Figs. 23, 27, and 31. The zero-lift values of the pitching moment co-

efffcient, as well as the change in moment coefficient with elevon deflection, are pos-

sibly predicted close enough for some purposes. The slope of the curve (static stabil-

ity, aCm/aCL) is not predicted all that well; however, it improves as the Mach number

moves away from Moo = 1.00.

Supersonic: Moo = _.96

Comparisons of experimental and theoretical results for longitudinal coefficients at

a Mach number of 2.96 are presented in Figs. 32-35. Lift and drag comparisons are not

unlike those at lower speeds. The prediction of the slope of moment coefficient against

lift coefficient curve, Fig. 35, is better than at lower speeds. Also, it is seen that the

prediction of the change in moment coefficient with elevon deflection is not too bad for

smaller deflections, where presumably the amount of separated flow on the surface is

small, but deteriorates at larger deflection angles.

The prediction of lateral/directional coefficients with a differential elevon deflection

are presented in Figs. 36-38. In these plots the potential flow result overlays that with

the leading-edge modification included. While the predictions entirely miss some of the

non-linear behavior observed in the experimental results, they are probably good enough

for conceptual design work. Similar comments can be made for the vertical tail deflec-

tion results, Figs. 39-41. In particular, the directional control effectiveness, Fig. 40, is

predicted quite well provided the vehicle angle of attack is not too great. Above an an-

gle of attack of 25 degrees, the control effectiveness falls off rapidly, most likely due to

the blanketing of the vertical tail in separated flow off the body.

7
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Hypersonic: Moo = 4.65, 6.83

For Mach numbers of 4.65 and 6.83, experimental results are compared with theo-

retical results obtained using the Hypersonic Arbitrary Body Program (HABP) which

is contained in APAS. When using HABP, the user has the choice of whether or not to

ignore the aerodynamic contributions of components "shielded" (or shadowed) in the

wake of upstream parts of the vehicle. For the X-15 runs, it was found that the use of

shielding had very little impact on the results. Consequently, except where noted, the

predictions presented are calculated without the shielding option.

The comparison of theoretical and experimental reults of the longitudinal data for

a Mach number of 4.65 are presented in Figs. 42-45. The lift-curve, Fig. 42, clearly

demonstrates the non-linear behavior typical of hypersonic flow. While the general

shape of this curve, as well as those of Figs. 43-45, is captured adequately, the effect of a

symmetrical elevon deflection is not. Because the effect of a control deflection on the CD

vs. a curve, Fig. 43, is small compared to the effect on CL,the underprediction of the ef-

fects of a control deflection observed in Figs. 44 and 45 is likely due to the problems of

predicting the effect on lift.

Theoretical and experimental comparisons of lateral/directional coefficients are

given in Figs. 46-51. Near zero angle of attack, the side force and yaw due to an un-

symmetrical elevon deflection, Figs. 46 and 47, respectively, axe predicted reasonably

well; however, at higher angles of attack, only the sign of the force and moment is pre-

dicted correctly. Although the rolling moment due to the unsymmetrical elevon deflec-

tion is not predicted too badly, the control effectiveness is underpredicted, particularly

at higher angles of attack. The prediction of side force, yawing moment, and rolling mo-

ment due to a vertical tail deflection is relatively good and certainly adequate for con-

ceptual design studies.

Comparisons are presented for a Mach number of 6.83 in Figs. 52-64. The com-

ments made for the M_ = 4.65 case apply to these results as well. Note the negligible

8
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impact of shielding, Figs. 56-58, on lift, drag, and moment coefficients.

Summary Result8 with Mach Number

Some of the preceding lateral/directional comparisons are replotted versus Mach

number in Figs. 65-70. The change in side force, yawing moment, and rolling moment

due to an unsymmetrical elevon deflection are presented for two angles of attack in

Figs. 65-67. Away from Moo = 1.00, the zero angle-of-attack predictions are quite good.

From Fig. 67 it is seen that at higher Mach numbers the roll control power is consid-

erably less than it is at low speeds. Although not predicted by HABP, it does increase

somewhat as the Mach number increases. As should be expected, the change in angle of

attack has little impact on the change in side force and yawing moment with unsymmet-

rical elevon deflection, Figs. 65 and 66, and the trends are predicted fairly well. Unfortu-

nately, in the case of change in rolling moment with unsymmetrical elevon deflection, the

effect of an angle of attack change is not predicted.

The changes in the lateral/directional control derivatives for a ;vertical tail deflection

are presented in Figs. 68-70. For the Mach numbers shown and zero angle of attack, the

predicted results agree quite well with those obtained experimentally.

i _

Hypersonic :Research Airplane

Comparison of theoretical predictions with experimental data for the Hypersonic

Research Airplane (HRA), Ref. 15, are now considered. This blended wing/body air-

craft has many configuration characteristics typical of proposed hypersonic vehicles. The

wind-tunnel results which will be used for this comparison are taken from Refs. 15-17.

Low Speed: Moo = O.PO

Experimental results are compared with APAS subsonic panel method predictions

of the longitudinal aerodynamic characteristics of the HRA in Figs. 71-75. Overall, the

agreement between the experimental values with those calculated is similar to that ob-

tained for the X-15 aircraft. The lift coefficient versus angle of attack, Fig. 71, is like

_9



the X-15. The lift coefficient is underpredicted at higher angles of attack. Possibly, the

extent of vortex lift is not fuly taken into account. The change in lift coefficient with a

symmetrical elevon deflection, CL,_, is predicted well enough for conceptual design ac-

tivities. Also as was the case for the X-15 and observed in Fig. 72, the drag coefficient

is increasingly underpredicted as the angle of attack increases. The agreement between

experiment and theory in the CD--CL curve, Fig 73, reflects the characteristics of the CL

and CD versus angle of attack results.

The pitching moment coefficient predictions, Figs. 74 and 75, are much better for

the HRA than for the X-15. Also, as is the case for the X-15 and more important from a

flight controls point of view, the prediction of the elevon control power, Crn_, is reason-

able. It is observed, however, that the magnitude of the control power for the X-15, pos-

sibly because of the all-moving tail and the longer moment arm, is considerably greater

than that of the HRA.

In considering the prediction of the lateral/directional coefficients, Figs. 76-81, re-

sults are presented for calculations using potential flow, potential flow with leading edge

suction analogy, and potential flow with leading and side edge suction analogies. In the

case of the change in side force, yawing moment, and rolling moment with differentially

deflected elevons, Cy_, Cr,_, and Cl_ the predictions using potential flow plus the lead-

ing edge modification agree quite well with the experimental results. The changes in the

coefficients with a vertical tail deflection, Cy6,, Cn_., and Cz6° are not well predicted

and are typically in error by 50% or more. In all cases, use of potential flow plus the

leading edge suction treatment gives the best results. The inclusion of the side edge

modification makes little difference or causes the agreement between the experimental

and predicted results to be worse.

Transonic: Moo = 0.80, 0.98, 1._0

For the case of Moo = 0.80, the comparison between the experimental and predicted

results, presented in Figs. 82-89, is very similar to that for Mc¢ = 0.20 and additional

10



commentsare not necessary. As the Mach number increases,the prediction of CL_e de-

teriorates, Fig. 90, as does that of elevator control power, Cm6o Figs. 93 and 94. The

drag coefficient, Fig. 91, is further underpredicted when compared to the lower Mach

number cases. The predicted values of the change in the side force, yawing moment,

and rolling moment coefficients with differential elevon deflection, Cr6=, Cn6o, and Cl_=,

Figs. 95-97, are certainly adequate for conceptual design activities. The deterioration

of Cr_6_ and C,_, predictions noted for Moo = 0.80 continues as the Mach number in-

creases to Moo = 1.20. Comparison of experimental and theoretical results for this Mach

number are presented in Figs. 98-105.

Hypersonic: Moo = 6.00

Comparisons of experimental results with predictions using HABP without shield-

ing for the longitudinal aerodynamics are presented in Figs. 106-110. While the CL vs.

a data shown in Fig. 106 appears better than that for the X-15, it should be noted that

the values of CL, as well as CL_ are considerably less. In any case, with the exception

of missing that CL_ decreases as the angle of attack decreases, the magnitudes of the

forces and most of the trends are predicted reasonably well. In the case of the drag coef-

ficient, Figs. 107 and 108, the trends are captured fairly well although, opposite of what

happens in the case of the X-15, the drag coefficient is consistently overpredicted. The

moment coefficient predictions for this case, Figs. 109 and 110, are also not too bad and

probably good enough for conceptual design activities. Certainly the trends, as well as

the values of the elevator control power, C,m_, are reasonably well predicted.

The longitudinal cases just presented without shielding are repeated with shielding

in Figs. 111-115. In all cases here, the use of shielding improves the predictions consid-

erably. In particular, incorporating shielding produces much better agreement between

the experimental data and the calculated coefficients at lower angles of attack. As a con-

sequence, the values of the control derivatives, CL6_ and C,_ are much improved.

Comparisons of wind-tunnel findings with HABP predictions with and without

11



shielding for the changes in the lateral coefficients with differentially deflected elevons

are given in Figs. 116-119. For these cases, the predictions without shielding agree

somewhat better with experimental data than those with shielding. In either case, while

the predictions are good, it should be noted that the control power, Cz,_, is very low.

Similar comments apply to the change in coefficients due to a vertical tail deflection,

Cy6,, Cr,_,, and Cl6,, as presented in Figs. 119-121.

Summary Results with Mach Number

Summaries of the lateral control derivatives as they depend on Mach number and

at two angles of attack are given in Figs. 122-124. Overall, Cy6_, C,_6_, and Cz_. are

predicted well at low speeds, reasonably well in the transonic range, and very well at

M_ = 6.00. With the exception of the prediction at M_ = 6.00, this is not the case

for Cr,,, C,_,, and Cz_,, presented for zero angle of attack as a function of Mach num-

ber in Figs. 125-127. In fact, the trends as well as the values of these derivatives are not

well predicted. This was not the case for the X-15, which achieved directional control by

means of very large all-moving, wedge cross-sectioned surfaces both above and below the

vehicle centerline.

Rockwell Space Shuttle Orbiter

The third hypersonic vehicle configuration for which theoretical and experimental

results are compared is the Rockwell Space Shuttle Orbiter. All of the experimental data

used for this comparison is taken from Ref. 18.

Low Speed: M_ = 0._0

Longitudinal aerodynamic coefficients as predicted using the subsonic panel method

of APAS are compared with experimental findings in Figs. 128-132. Included in these

comparisons are results for full-span elevon deflections of-20, -10, 0, and 10 degrees. As

observed in Fig. 128, the predicted lift coefficients as a function of angle of attack are,

for the most part, within about 10%. While both the predicted and experimental results

12



are closeto linear for the range of anglesof attack presented,the lift-curve slopesare

not well predicted. This causesfairly large descrepanciesbetweenthe predicted and ex-

perimental results at low anglesof attack and large negativeelevondeflections. In spite

of theseproblems, the flap effectivenessof the elevon,CL6o, is predicted reasonably well

except at low angles of attack and large negative deflection angles for which not account-

ing for separated flow evidently causes the control effectiveness to be overpredicted.

ComParisons of predicted and experimental drag coefficients ae presented versus

angle of attack in Fig. 129, and versus lift coefficient in Fig. 130. In both cases the pre-

dicted results are probably good enough for conceptual design activities.

Predicted and experimental pitching moment coefficients are presented as a function

of angle of attack in Fig. 131, and as a function of lift coefficient in Fig. 132. In both

cases the predicted values of the coefficients are not too good. In fact, the slopes of the

predicted and experimental curves are sometimes of the opposite sign. Although slightly

overpredicted, however, the predicted elevon control effectiveness, C,me, is reasonably

close to that found experimentally. Predicted values of the lateral control derivatives for

the Shuttle are compared with experimental values in Fig. 133-135. These panel method

predictions for differentially deflected elevons are made using potential flow only, po-

tential flow plus leading-edge effects, and potential flow plus leading- and side-edge ef-

fects. As was the case for the other vehicles examined, the potential flow, modified with

the leading-edge suction analogy only, yields the best agreement with experiment. This

agreement is probably acceptable for conceptual design work.

Predicted and experimental comparisons for directional control derivatives, Cry,,

C,_6,, and Cz6,, are shown in Figs. 136-138. In these cases, only the potential flow plus

leading-edge effects are presented. As before, the predictions are not too bad. At worst,

the control effectiveness, C,_, is predicted to be 30% greater than the value found ex-

perimentally.

13
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Transonic: M_ = 0.80

Predicted lift curves for different elevon deflections are compared with experimen-

tal results at M_ = 0.80 in Fig. 139. Although similar to the Mo_ = 0.25 comparison,

the problem areas are more pronounced. For example, the lift-curve slopes are generally

not well predicted, the bending over of the curves due to flow separation is not captured,

and the control effectiveness, C16o, while not too bad for 6e - :kl0 °, is poorly predicted

for 6e = -20 °. In the case of CD versus a and CD versus CL, Figs. 140 and 141, the

comparisons are similar to those for M_ = 0.25. While significant errors are present as

separated flow strongly influences the results at higher angles of attacks, the drag predic-

tions capture the trends correctly and are acceptable for conceptual design activities. In

the case of CM plotted against a, Fig. 142, and against CL, Fig. 143, the 6e = 0 predic-

tion is reasonably close to the experimental data. Other than that, about all that can be

said is that the predicted trends are more or less correct.

As in the Met -- 0.25 case, the best lateral control derivative predictions are ob-

tained using the potential flow results modified with Ieading-edge effects. The predicted

values of Cyea, Cr,_,, and Cz_a as they depend on angle of attack, Figs. 144-146, are rea-

sonably close to the experimental values. The directional derivatives, Cy6, and C,e,,

however, presented in Figs. 147 and 148, are in error by over 100% in some cases. The

predicted values of Cz_,, as observed in Fig. 149, are somewhat better.

Hypersonic: M_ --5.00, 20.0

Values of CL, CD, and Cm predicted using HABP without employing the shadow-

ing of downstream components are compared with experimental results for M¢¢ = 5.00

in Figs. 150-154. The predicted lift coefficient as it depents on angle of attack, Fig. 150,

is in excellent agreement with the experimental data at angles of attack below 20 °, and

is not too bad even up to 40 °. The flap effectiveness for a symmetrical elevon deflection,

Cl6_, is predicted very well. Likewise, comparison of the predicted CD- (_ and CD- CL

curves with experiment, Figs. 151 and 152, are adequate for conceptual design studies.
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For the comparisons with experiment of the predicted Cm - a, Fig. 153, and Cm - CL,

Fig. 154, certainly the characteristic trends are captured; however, the control effective-

ness is significantly overpredicted for large negative elevon deflections.

Predicted and experimental changes in CL, CD, and C,_ due to deflecting the Shut-

tle body flap are presented in Figs. 155-157. In each case, the overall trends are more

or less predicted by the methods in HABP. Most likely, the descrepancies in predicting

these results are due to the fact that the effects of flow separation are not taken into ac-

count.

The influence on the longitudinal aerodynamic coefficients of shadowing panels

which are shielded from the oncoming flow by upstream elements is demonstrated by

the results presented in Figs. 158-162. It is observed that, while shielding does not make

a critical difference in the cases of lift and drag coefficients, Figs. 158-160, the shielded

results are uniformly better. For the pitching moment coefficient, Figs. 161-162, the

shielded results are better in the low angle of attack and lift coefficient range, while the

unshielded results are better at higher angles of attack and lift coefficients. In view of

the fact that for these cases the use of shadowing produces superior results, at least for

lift and drag, Figs. 163-167 repeat the previous predictions for lift, drag, and moment

coefficients but with downstream components shielded.

Comparisons between HABP predictions for the lateral control derivatives and ex-

periment are presented in Figs. 168-170. None of the calculated results employ shield-

ing; however, the predictions are seen to capture both trends and magnitudes quite

well. Unfortunately, this success is not repeated for the directional control derivatives,

Figs. 171-173. It should be noted, however, that the magnitudes of these derivatives are,

in general, quite small.

The comparisons generated for M_ = 5.00 are repeated in Figs. 174-197 for

Moo =20.0. Basic unshielded results are given in Figs. 174-178 while corresponding

shielded results are presented in Figs. 187-191. For the most part, the comments di-
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rected to the Moo = 5.00 comparisons also apply to the Moo = 20.0 results.Ifanything,

the HABP predictionsgenerally improve as the Mach number increases. As before, the

predicted values of the pitching moment coefficients,Figs. 177-178 and 190-191, are not

good; however, the values of C,_6. are reasonable. Also, itshould be noted that the di-

rectionalcontrol derivativepredictions (without shielding)are considerably better at

Moo = 20.0 than at Moo = 5.00. Again, itshould be noted that the control effective-

nesses,Cz6, and Cn_,, are quite low.

Summary Results with Mach Number

Plots of the predicted and experimental values of the lateral/directional control

derivations at fixed angles of attack as they depend on Math number are presented in

Figs. 198-203. Each of these plots indicate that the prediction improves as Math num-

ber increases although, with the exception of the transonic region, they are reasonably

good elsewhere. In every case, it should be noted that the control derivatives, including

those of control effectiveness, decrease as the Math number increases.
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Conclusions and Recommendations

Z==.

w

The suitability of the methods contained in APAS for flight control force and mo-

ment prediction are summarized in Table 1 for longitudinal quantities and Table 2 for

lateral/directional derivatives. Based on the comparisons between experimental and pre-

dicted results made in this study, the assessment of predicting a particular quantity in

a given speed range is ranked as: (1) capable of predicting magnitudes within 40%, as

well as the proper trends, over a significant portion of the operating range; (2) capable

of predicting trends reaonably well but not magnitudes; (3) generally unacceptable for

conceptual design work.

In considering the results presented in Table 1, it is concluded that, provided the

results are interpreted carefully and major decisions are not based on predictions which

are known to be suspect, all of the longitudinal results can be of some use in conceptual

design studies. As expected, the most questionable calculations are those in which ne-

glected separated flow can significantly influence the results. In the case of predicting

lateral/directional control derivatives, some results are found to be unacceptable. For-

tunately, however, for the most part the primary control derivatives, Cl6_ and Cn_,, are

found to provide reasonable results.

Given that for conceptual design work, the trade-off between accuracy and speed of

computation leans very heavily toward speed, all of the prediction methods contained in

APAS are reasonable. It should be noted, however, that in the case of the subsonic and

supersonic methods, a great deal of flexibility exists in controlling the trade-off between

accuracy and speed. The panel methods considered are basically as fast and robust as

possible at the expense of accuracy. If more accuracy is desired, a number of improve-

ments are possible between panel methods and a full-blown Navier-Stokes computation.

For example, in the direction of increasing complexity and accuracy, a more complete

boundary layer model could improve the drag predictions and, combined with empiri-
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cal correlations, could greatly improve the derivatives strongly influenced by separation

effects. If better accounting for the effects of compressibility is required, the flowfield

could be modelled using the Euler equation rather than the linearized potential equa-

tion.

While in the case of subsonic and supersonic Mach numbers there is a great deal of

flexibility for achieving a desired level of accuracy by implementing a sufficiently rigor-

ous theoretical model, this is not the case in the hypersonic flight regime. Essentially,

there is nothing in the way of a more sophisticated theoretical model between the flow

inclination methods contained in HABP and a full Navier-Stokes computation. Unfor-

tunately at present, the time required for setting up computational grids, as well as ex-

ecution requirements, are much too great for the full computational methods to be rou-

tinely used for conceptual design activities. Thus, methods such as those contained in

HABP will likely remain the primary tools for preliminary flight control force and mo-

ment prediction for some time. For such work these methods can be expected to provide

reasonable estimates provided they are applied to situations not dominated by strong

viscous/inviscid interactions, real gas and/or rarefied gas effects, or fiowfields containing

extensive regions of separated flow.

Finally, while little can be done to remove the noted limitations of the hypersonic

flow inclination methods, the following should be considered to improve their usefulness

and accuracy:

(1) guided by the existing data base, make empirical adjustments in the methods to

account for the anomalies seen between predicted and experimental results

(2) add a more sophisticated boundary-layer theory, including a transition model, to

better account for viscous effects

(3) develop an unsteady Newtonian Theory (based on piston theory) to allow the com-

putation of dynamic stability and control derivatives.
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Nomenclature

CD =

CL =

Cy -"

Cl =

Cm =

Subscripts

drag coefficient

lift coefficient

side force coefficient

rolling moment coefficient

pitching moment coefficient

yawing moment coefficient

12 _"

6<: =

6I=

6h =

6v "-

aileron or differential elevon deflection

body flap deflection

elevator or synchronous elevon deflection

flap deflection

horizontal tail deflection

rudder or vertical tail deflection

21
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Fig. 117 Comparison Between Prediction \Vith and \Vithout Shielding and Ex-
perimentally Measured Yawing Moment Due to Aileron Deflection on
the Hypersonic Research Airplane at Hypersonic Speed.
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Fig. 119 Comparison Between Prediction With and Without Shielding and Exper-
imentally Measured Side Force Due to Rudder Deflection on the Hyper-
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perimentally Measured Rolllng Moment Due to Rudder Deflection on the

Hypersonic Research Airplane at Hypersonic Speed•
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Due to Rudder Deflection on the Hypersonic Research Airplane as a Func-
tion of Mach Number.

HRA; Cv_,. vs. M ; a =0 °



o.ooo f °°° " "
-0. 002 . - - "

t "
-0.004 , I _ I

.0

0 2 4 6

Mach number

Fig. 126 Comparison Between Predicted and Experimentally Measured Yawing
Moment Due to Rudder Deflection on the Hypersonic Research Airplane
as a Function of Mach Number.

HRA;C_, vs. M;a=0 °

0.00: _. ....

_:9 "- 0 .... 0

_':'" o. coo E- co

L-
i , t , ! i-0. O0"

0 2 4 5

h'achnu.'nber

Fig. 127 Comparison Between Predicted and Experimentally Measured Rolling
Moment Due to Rudder Deflection on the Hypersonic Research Airplane
as a Function of Mach Number.

HRA; CI_ vs. M;a=0 °



ORIGINAL PAGE IS

OF POOR QUALITY

Oz.

2

-1

E-
L

-5

t :.;,, pre".. E,

F, -IC:
,...,

.... ] q:

_,.-_ .._ .i._ _ ...-"

.-'''t'_._-I" ..9.-'"

. -

° -
o J

° •

0 5 10 15 2O

.kngie of a.t.t,_.ck,-, 8e@'rees

Fig. 128 Comparison Between Predicted and Experimentally Measured Lift on
Shuttle Orbiter at Low Speed Including the Effect of Elevator Deflection.
Shuttle ; CL vs. c_ ; M = 0.25 ; 5_ = +10 °, 0 °, -10 °, and -20 °

C_

0.4

0.3 --

0.2

0.1

C , t_w

¢

exp. pred. _= p

<> +i0 = _ 0

0 O° "
F

L _ -10 = ,

L _ ........ 20" ,' //20

F /,/ /

z / / / - /A

e"-.. ?'/ .--'"..-

,p_. --.. ,z -.. _._-_.._.__ /..-
;_-.-:.___ ---......_ :_ . _ :- •
I

u _ ; i I '. . . 1 . i i r f p I _ i _ : :

-_.,.., r.. ,= 10 15 25

..kngie of z-:.aci: ~ degree._

Fig. 129 Comparison Between Predicted and Experimentally Measured Drag on

Shuttle Orbiter at Low Speed Including the Effectof Elevator Deflection.

Shuttle ;CD vs. a ;M = 0.25 ; 6e = +i0 °,0°, -i0 °, and -20 °



ORIGINAL PACE '_

OF. POOR QUALITY

CD

C_

Fig. 130 Comparison Between Predicted and Experimentally Measured Drag as a
Function of Lift on the Shuttle Orbiter at Low Speed Including the Effect
of Elevator Deflection.

Shuttle ; CD vs. CL ; M = 0.25 ; 6c = +10 °, 0 °, -10 ° , and -20 °

CTn

0.4

0.2

O.O

"" ° " ° " ° " " " " " - = ° . . . . ° ° . . . . . . °

r_. A A A

[] O ''-"',_-- -

1

exp. pred. 6,

<> +10 °

0 O°

-10 _

Z_ ........ 20°

° " " " ° - . . . . . /k

o ©

0 0

-0.2 ' ' ' '

-5 0 5 10 i5 2E

Angle of a_,a¢_: _ degrees

Fig. 131 Comparison Between Predicted and Experimentally Measured Moment
on Shuttle Orbiter at Low Speed Including the Effect of Elevator Deflec-

tion.
Shuttle ; Cm vs. a ; M = 0.25 ; 6, = +10 °, 0 °, -10 °, and -20 °



=

ORIGINAL PAGE IS

OF POOR QUALITY

Cyt_

0.4

0.2

I

0.0 -

-0.2 v

-1.0

0 _T"--4_....0 0

"_r"'_%_...._...o 0

O O"
Im - ]0 _

A ........ 20 _

1 1 I1 I 1 I I ! l I I ? 1 I I I I I I ! I , I

-0.5 0.0 0.5 1 .0 1 .5

C£

Fig. 132 Comparison Between Predicted and Experimentally Measured Moment
as a Function of Lift on the Shuttle Orbiter at Low Speed Including the
Effect of Elevator Deflection.

Shuttle ; Cm vs. CL ; M = 0.25 ; 6e = +10 °, 0 °, -10 °, and -20 °

0.005

.... p oI e.-.:ip-)eni.v

-- .vo-. _}u; :.,.._-=c:}c-

..... po:,. pi"_ Le. r._d side edge erie:::

,r

0.000

-0. 005

_" . " "

r _
- O
C- O 0 0
F ,, ' ; ',_, ' , I

' ' ' ; !, ) ,i ', l , , ' , '

z%,:-5 C' ,._m 10 I =`

.&ng}e of &t_ac]: "-- deg-_e- _

Fig. 133 Comparison Between Predicted and Experimentally Measured Side Force
Due to Aileron Deflection on the Shuttle Orbiter at Low Speed Including

the Effect of Different Modelling Techniques.

Shuttle ; Cy_ vs. a ; M = 0.25



ORIGINAL PAGE IS

OF. POOR QUALITY

0.00_

-o. oo 1

F
0 0

-5 0 5 I0 15 20

Angle of _ttac_ ~ degrees

Fig. 134 Comparison Between Predicted and Experimentally Measured Yawing
Moment Due to Aileron Deflection on the Shuttle Orbiter at Low Speed
Including the Effect of Different Modelling Techniques.

Shuttle ; C,_ vs. a ;M = 0.25

m

i

C'

.OlO

.005

•ooo

F

m
I

F
F !, _ I ;

-5

..-,o:en-i_)oniy

po:,pi'.'sLe, su:tio:.

..... po:.pi'.'sLs, _._ sidse_.l:ee.=.e:'.s

o

°°

° -° °

I I
' I ' I' : I .... l, (,, ; . ,, , , :

iO "='-- 20O 5

Angie of _.'taCi: ~ degree-'-

Fig. 135 Comparison Between Predicted and Experimentally Measured Rolling
Moment Due to Aileron Deflection on the Shuttle Orbiter at Low Speed
Including the Effect of Different Modelling Techniques.

Shuttle ; Cz_ vs. a ; M = 0.25



ORIGINAE PAGE IS

POORQUALITY

w

.010

.025

.000

..... :,c-. ;.u; ..-.. ;:._ .,id-. ee;e ,.Se:'r

E
I

r
m

r

0 0
F

-5 0 5

0 0

I,,I,III'I I

10 15 2O

Angle of atuL_ ~ 6egrees

Fig. 136 Comparison Between Predicted and Experimentally Measured Side Force
Due to Rudder Deflection on the Shuttle Orbiter at Low Speed.

Shuttle ; Cy_. vs. a ; M = 0.25

0.000 F
E
L

r i

-0.001 L
I

-0. 002

.... ?o: e.-.:iz] rn]y

_:-. _._ :.e. --_ si "_-. e@: e_e:_,-_

0 O 0

- 5 0 i0 I =`

.&n[_.i_. of at:at', ~ degree- ¢

_C

Fig. 137 Comparison Between Predicted and Experimentally Measured Yawing
Moment Due to Rudder Deflection on the Shuttle Orbiter at Low Speed.

Shuttle ; C,_, vs. a ; M = 0.25



ORIGINAL PAGE IS

Of POOR QUALITY

•oo2

• oo"

• ooo

..... .:'=-'..="._.....'• ::;dsi6eedI_ee-e:'.•

O 0 0 0
.l ,, ! llij _ !111, jrll i J, t IT J

-5 0 5 _0 _5 20

Angle of _tt_ck ~ degrees

Fig. 138 Comparison Between Predicted and Experimentally Measured Rolling
Moment Due to Rudder Deflection on the Shuttle Orbiter at Low Speed.
Shuttle ; Cl_, vs. c_ ; M = 0.25

Cr

2

0

exp. pred. 6,

O -10"

0 0° ,'"
s

[] -!0 _ . - -

_ v,, ........ 20 ° . - _O

_- -0 _ / ..--

.- _.1t-,.., .I _.."

Y" / " . -¢ P, . ..

._- ./ •
°

_f .

-5 O "_ 1"' _5 _'_

.-kngie of zt_.ac_ _ 6et:ree •.

Fig. 139 Comparison Between Predicted and Experimentally Measured Lift on the
Shuttle Orbiter at High Subsonic Speed Including the Effect of Elevator
Deflection.

Shuttle ; CL vs. c_ ; hJl = 0.8 ; 6e = -r-10 °, 0 °, -10 _. and -20 °



OF POOR QUALITY

_'D

C.6

0.4

0.2

0.0

/

P

C.: C'_ "
" C',

_-- -IC" "

A ........ 20" ,," /0
/ -

/ i e'_
i

. / r.

.'__--7-:__-_-..--:'/-_:'_.-_._..----"

-5 0 5 10 15

.A._leo'a_ack- degree-_

/

2O

Fig. 140 Comparison Between Predicted and Experimentally Measured Drag on
the Shuttle Orbiter at High Subsonic Speed Including the Effect of Ele-
vator Deflection.

Shuttle ; Co vs. a ; M = 0.8 ; 6e = +10 °, 0 °, -10 °, and -20 °

CD

0.6

0.4

I

o._ L
I

I
r"
I

i
I

?-_ y- I

. • v

-1 .0

exp. pred. 6,

<b -10'

C 0_

.... 3o_ 0

k_ ........ 20° 0 /'

, . ;;:¢-
,_. ,L .f,.-""_..e#

_=. :-,,___._z_-

-_,.5 0.0 n 5 ".,0

I

I

I

I

C:.

Fig. 141 Comparison Between Predicted and Experimentally Measured Drag as a
Function of Lift on the Shuttle Orbiter at High Subsonic Speed Including
the Effect of Elevator Deflection.

Shuttle ; CD vs. CL ; M = 0.8 ; 6, = ÷10 °, 0 °, -10 °. and -20 °



ORIGINAL PAGE IS

OF POOR QUALITY

0._

. ° . , _ ° . ° ° , . . , . - . ° . .

exJ,. !srt-_. c,

.,........ lo_

:":_ .... ]U-

° . . ° . °

, . . . . .

• ..,....

] A " "--- ._...
[3 O [] " ---- .A

.m

I 0

0.0 -- 0--_'-""_-_-.._.__ 0

"----0.___ 0 0 0

-0.2 i, I l..l !', T I I I, ! (,, I ! I. I 5"_,,-I

-5 0 5 10 15 20

Anl;leof a:_ack ~ degrees

Fig. 142 Comparison Between Predicted and Experimentally Measured Moment

on the Shuttle Orbiter at High Subsonic Speed Including the Effect of
Elevator Deflection.

Shuttle ; Cm vs. a ; M = 0.8 ; 6e = +10 °, 0 °, -10 °, and -20 °

=

Fig. 143

Cy1_

0.6

C.4

0.2

0.£,

-_.2

r
F ° . ° . . . .

V-
F

1

V

, . • !

°

.

exp. pred. 6,

K'> +10 °

0 0_

-10 °

L ........ 20 =

r- /" & """ " _-
_.- ,._ -- Z_ " --..... .

0" "-0.. C. (> 0

...... : - T'_-'

-1.C -0 5 C.O 0.5 ;.C' :.5

C:

Comparison Between Predicted and Experimentally Measured Moment
as a Function of Lift on the Shuttle Orbiter at High Subsonic Speed
Including the Effect of Elevator Deflection.

Shuttle ; Cm vs. Cc ; M = 0.8 ; 6e= -10 °, 0 °, -10¢: and -20 °



ORrGfNALPAGE IS
Of POOR QUALITy

Cy_,

0.005

0.000

-0.005

.... ".'_lCLl;r. (''; *

..... •.,o-,"..m,.._..::;C sioe cdI_e e£e::._

. _ _L'_.__.- _ .... _

0 0 0

--©

-5 0 5 I0 15 20

Angle of attack _ degrees

Fig. 144 Comparison Between Predicted and Experimentally Measured Side Force

Due to Aileron Deflection on the Shuttle Orbiter at High Subsonic Speed
Including the Effect of Different Modelling Techniques.

Shuttle ; Cy_, vs. a ; M - 0.8

0.081

0.000

-2.CO_

r-"
¢,

.... ]_ol,enzhL)on]v

--. po:. y,ius i.e. suc:io.-.

..... poz. pius ;.a. and side edge effe:t._

O O

" " - "--''"_- .... P..... 0

I ,,,1 ,,_ I , I .... :

A;._ie c."a::,ack ~ degreez

Fig. 145 Comparison Between Predicted and Experimentally Measured Yawing
Moment Due to Aileron Deflection on the Shuttle Orbiter at High Sub-
sonic Speed Including the Effect of Different Modelling Techniques,

Shuttle ; C,_o vs. a ; M = 0,8



ORIGINAL PAGE IS

OF POOR QUALITY

C_r o

pc:...r.i'.',, he. ;::c side ed;e e_e:;. •
.010 --

F ,
.000 _ , , , , , , = , I I , , , I , , , i I I I ,,.

.

. .

0

-5 0 5 10 15

An_-ie of at.=a.ck ~ degrees

0

i

2O

Fig. 146 Comparison Between Predicted and Experimentally Measured Rolling
Moment Due to Aileron Deflection on the Shuttle Orbiter at High Sub-
sonic Speed Including the Effect of Different Modelling Techniques.

Shuttle ; Cz_= vs. a ; M = 0.8

Cyl,

.006 i"-
1.-
I

.004 _-
I

• 002 O-
f
r-

• OOO

r_ C' 0 C'

i r : | , i , _ I , , I , • 1

-: [_ =" 1 _ "D _'_

.-.-.;Je of at:acJ: ~ degrees

Fig. 147 Comparison Between Predicted and Experimentally Measured Side Force
Due to Rudder Deflection on the Shuttle Orbiter at High Subsonic Speed.

Shuttle ; Cy_,. vs. a ; M = 0.8



ORIGINAL PAGE f$

OFPOOR QUALITY

0.000

C,., -0.00_ ,_

.

-0. 002

-0.003

0 0 0 0

-5 0 5 10 15 20

AngJe of au.ack _ de_rees

Fig. 148 Comparison Between Predicted and Experimentally Measured Yawing
Moment Due to Rudder Deflection on the Shuttle Orbiter at High Sub-
sonic Speed.

Shuttle ; C,_, vs. a ; M = 0.8

C

0.002

F
0.001

-C'. OC_

o 0 o o

I I l

-5 O =, 10 "5

.&n_}e of zt:ack _ 6.e_re-_

Fig. 149 Comparison Between Predicted and Experimentally Measured Rolling
Moment Due to Rudder Deflection on the Shuttle Orbiter at High Sub-

sonic Speed.

Shuttle ; Cl6,, vs. c_ ; M = 0.8



C'L

1.5

1.0

0.5

0.0

-0.5

exp. pred. 6,

O ÷I0 °

0 0 ° ._

A ........ 20 ° ._f"

.jj

-10 O 10 20 ,:30 40

A.ugte of attack ~ degrees

Fig. 150 Comparison Between Predicted and Experimentally Measured Lift on
the Shuttle Orbiter at Hypersonic Speed Including the Effect of Elevator
Deflection.

Shuttle; Ccvs. a;M= 5.0," 6_ = +10 °,0 °,-10 °,and-20 °

CD

1 25

0

0

0

0

O0

75

5O

25

O0

_ pred. £,
ex'_.

<> +10 ° t

,/[] -I0 ° //.'_

A ........ 20°

] l L I I I I

-10 0 10 20 30 40

Ang,_e of a_mc.k _ degrees

Fig. 151 Comparison Between Predicted and Experimentally Measured Drag on

the Shuttle Orbiter at Hypersonic Speed Including the Effect of Elevator
Deflection.

Shuttle ; CD vs. a : M = 5.0 ; 5, = ÷10 °, 0 °, --10 °, and -20 ¢



CD

I.25

I .00

O. 75

O. 50

0.25

exp. pred. _,

<> +I0 °
- 0 O" O/

[] -1o"
- _ ........ 20" • .._

..3

I l I (

0.00 0.25 0.50 0.75 1.00 I .25

CI,

Fig. 152 Comparison Between Predicted and Experimentally Measured Drag as a
Function of Lift on the Shuttle Orbiter at Hypersonic Speed Including
the Effect of Elevator Deflection.

Shuttle ; CD vs. CL ; M = 5.0 ; 5e = +10 °, 00, -100, and -20 °

C_

0.05

O. 00

-0.05

-0.10

-0.15

..... - :'.... -_ "_" " _ - --_, "-._,

o
exp. pred. _, ".. 0

0 +10" _,
O 0° "

%

%

rl -10 ° .,

........ 20° <>

, , , , I , , , , l , ,., , I , , , , I , , _ , I

-10 0 10 20 30 40

Angle of ,,-t.t.ack .-. deip'ees

Fig. 153 Comparison Between Predicted and Experimentally Measured Moment
on the Shuttle Orbiter at Hypersonic Speed Including the Effect of Ele-

vator Deflection.
Shuttle ; Cm vs. a ; M = 5.0 ; be = -+-10 °, 0 °, -10°, and -20 °



Cl_

O. O0

-0.05

-0. I0

O.05 --

- ......" . & Z_--- A

_. o'_'-_.. D_ .

: %-'oo o ..... ..

. ex_. pred. 6_ 0 "

- _ +10 ° -

- 0 O° "-

[] - l0° 0

A ........ 20°

, l , , l , ] , , i i I , i i , I l , I l 11 I , , I
--0.15 _ i i I l

-0.25 0.00 0.25 0.50 0.75 I .00 I .25

CL

Fig. 154 Comparison Between Predicted and Experimentally Measured Moment
as a Function of Lift on the Shuttle Orbiter at Hypersonic Speed Including
the Effect of Elevator Deflection.

Shuttle ,"Crn vs. CL ,"M = 5.0 ; 6e = +10 °, 0 °, -10 °, and -20 °

ACL

0.04

0.02

0.00

-0.02

exp. pred. 6bf
0 0

_ ....... 11.5 °

D ---- ÷10.0 °

<> +22.5° . .D......

." 1:3 - ID

....0. ---'_

0
o

-. A

_LLJ , I , , , , I , , , , I , , , , I , , ' ' ]

-10 0 10 20 30 40

Angle of sttack - degrees

Fig. 155 Comparison Between Predicted and Experimentally Measured Lift on the
Shuttle Orbiter at Hypersonic Speed Including the Effect of Body Flap
Deflection.
Shuttle ; ACL vs. c_ ; M = 5.0 ; 6bf = --ll.B °, +10.0°, and +22.5 °



0.08

O. 06

0.04
ACD

0.02

O. O0

-0.02 I f I

-10

exp. pred. 6b:

Z_ ....... II.$°

D +i0.0 °

0 .+,22.5"

s

_[_'-"-" : ......... Z_...

r'J o

O

m

- o

0 10 20 30 40

Angle of_.ttack .- degrees

Fig. 156 Comparison Between Predicted and Experimentally Measured Drag on
the Shuttle Orbiter at Hypersonic Speed Including the Effect of Body

Flap Deflection.
Shuttle ; ACD vs. a ; M = 5.0 ; (_bf = -11.5°, + 10.0°, and +22.5 °

O. 04 --

0.02 -

0.00
AC,,

--O.02 --

--0.O4 --

-0.06 ' ]

-10

exp. pred. 6b_

A ....... 11.5°

D +I0.0 Q

<> +22.5 °

°
o

....

--. O ._.%.

°

13

i , J 1 I , , J , i i i I i i i I _1 I I i _

0 10 20 30 40

Az_gleofatt_k _ degrees

Fig. 157 Comparison Between Predicted and Experimental})' Measured Moment
on the Shuttle Orbiter at Hypersonic Speed Including the Effect of Body

Flap Deflection.
Shuttle ; ACre vs. a ; M = 5,0 ; 6bf = --11.5 ° , +10.0 °, and +22.5 °



1.5 --

C_

1.0

0.5

0.0

-0.5

i

,,,,I,,,,l,,,,ll,lfl,,,,I

-I0 0 I0 20 50 40

Angleof a_taci ~ degrees

Fig. 158 The Effect of Shielding on the Predicted Lift on the Shuttle Vehicle at
Hypersonic Speed.
Shuttle ; CL vs. a ; M -- 5.0 ; with and without shielding

CD

1.00 --

0.75 -

0.50

0.25

O.O0

- without shiel_in$ _0"

, , , , I , + , , I ,, ,,, , I , , , , I L, , , I

-10 0 10 20 3O 40

Angle of _t_mk *- degrees
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Fig. 183 The Effect of Shielding on the Predicted Drag on the Shuttle Vehicle at
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perimentally Measured Yawing Moment Due to Aileron Deflection on
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Fig. 195 Comparison Between Prediction With and Without Shielding and Exper-
imentally Measured Side Force Due to Rudder Deflection on the Shuttle
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Fig. 197 Comparison Between Prediction With and Without Shielding and Ex-
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AppendLx: Bibliography of Experimental Force and Moment Data
For Hypersonic Vehicle Configurations

1. Beeler, D.E., "The X-15 Research Program," AGARD Report 289, October 1960.

Brief description of the X-15 research program. Comparison of wind tunnel tests
and flight measured values of stability derivatives at Mach numbers from 0.0 to
8.0. Variation of control effectiveness with Mach number including horizontal tail,
vertical tail and ailerons.

2. Bernot, P.T., "Effect of Modifications on Aerodynamic Characteristics of a Single-
Stage-to Orbit Vehicle at Mach 5.9," NASA TM 84565, January 1983.

The model was based on control-configured stability concepts. Results are pre-
sented for elevons, body flap, and wing tip fin controllers. Model similar to that

in NASA TM X-3550 (item 3).

3. Bernot, P.T., "Aerodynamic Characteristics of Two Single-Stage-to-Orbit Vehicles at
Mach 20.3," NASA TM X-3550, August 1977.

Control deflection data are for elevons and a body flap. Most results are for high

angles of attack (between 16 ° and 50°).

4. Boissean,Peter C., "Investigation of the Low-speed Stability and Control Characteris-

tics of a 1/7-Scale Model of the North American X-15 Airplane," NACA RM L57D09,
1957.

Early X-15 data from free flying model tests. Purpose was to evaluate the use of
the horizontal tail for roll control. Control deflection results are presented for the

wing trailing edge flap, all moving vertical tail, and symmetrical and differential
horizontal tail deflections.

5. Boyden, R.P. and Freeman, D.C. Jr., "Subsonic and Transonic Dynamic Stability
Characteristics of a Space Shuttle Orbiter," NASA TN D-8042, November 1975.

Dynamic and static stability are investigated. Dynamic results are presented to
show the effect of rudder flare in combination with body flap deflection. The static

lateral stability data show the effect of the vertical tail, combination body flap
and rudder flare, and body flap alone.

6. Brooks, C.W. Jr. and Cone, C.D. Jr., "Hypersonic Aerodynamic Characteristics of
Aircraft Configurations with Canard Controls," NASA TN D-3374, April 1966.

The investigation was done on a wing-body configuration with a 70 ° swept delta
wing at a Mach number of 10.03. Four different canards were each tested on var-
ious configurations. Results include canard effectiveness on longitudinal, lateral,
and directional characteristics.

7. Brooks, C.W. Jr., "Interference Effects of Canard Controls on the Longitudinal Aero-
dynamic Characteristics of a Winged Body at Mach 10," NASA TN D-4436, April 1968.

Effect of canard interference is studied by comparing body alone data with ca-
nard deflection data which appeared in NASA TN D-3374 (item 6) and TN D-

3728 (item 44).
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8. Clark, L.D., "Hypersonic Aerodynamic Characteristics of an All-Body Research Air-
craft Configuration," NASA TN D-7358, December 1973.

Experiment was done at Mach 6 on a lifting body configuration and compared
with theoretical models. The horizontal wing-tip-type control surfaces were ad-

justable in 5 ° increments from +15 ° to -30 °. HABP was used for theoretical
predictions. The tangent-cone method gave the best agreement at control set-
tings between +5 ° and -5 ° and at positive lift coefficients except for direc-
tional characteristics. None of the methods predicted characteristics well at
negative lift coefficients and large control deflections.

9. Clark, L.E. and Richie, C.B., "Aerodynamic Characteristics at Mach 6 of a Hyper-
sonic Research Airplane Concept Having a 70 ° Swept Delta Wing," NASA TM X-
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