
University of Missouri-Columbia

College of Eng"

(NASA-CR-ld58_8) ENGINEERING SPECIFICATION

ANO SYSTEM rESIGN FOR CAO/CAM OF CUSTOM

SHO_S. PHASE 5: UMC INVnLVEM_NT (JANUARY 1,

1o89 - JUNE 30_ lq8O) (MISsOUFi Univ.)

50 p CSCL 09B G3/oi

N90-I1456

Unc]ds

0224562

ENGINEERINGSPECIFICATIONANDSYSTEMDESIGN
FORCAD/CAMOF CUSTOMSHOES

PROJECTNAG-I-875

PHASEV - UMCINVOLVEMENT
(JANUARY I, 1989 - JUNE 30, 1989)

A REPORT SUBMITTED TO

NATIONAL AERONAUTICS & SPACE ADMINISTRATION

LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA

\

BY

HAN P. BAO , PKD., PE

UNIVERSITY OF MISSOURI-COLUMBIA

COLUMBIA, MISSOURI 65211

Technical report UMC-IE-4-0889

August 1989

CONTENTS

I - Summary

2 - Machining of Shoe Last - Point-To-Point Configuration

2.1 - CENCIT Data

2.2 - CYBERWARE Data

3 - Machining of Shoe Last - Patch Configuration

3.1 - Review of NCSU Work

3.2 - Software Development at UMC

4 - Design and Production of Integrated Sole

4_i - Clinical Assessment

4.2 - Sole Production Technique

4.3 - Software related to sole

APPENDICES

i- Listings of computer programs for machining

surface patches

2- Listings of computer programs for machining

mold for casting integrated sole

1 - SUMMARY

The work involved in the previous phase, phase IV May 15, 1988 to

December 30, 1988 , was primarily of a theoretical nature paving the way

to actual machining and casting experiments reported in this document

for Phase V work.

The following topics are discussed in this report :

-I- Machining of shoe last - point-to-point configuration

2- Machining of shoe last - patch configuration

3- Design and production of integrated sole

i- Machining of shoe last - point-to-point configuration

The s_lid object for machining is represented by a wireframe model

with its nodes or vertices specified systematically in a grid pattern

covering its entire length.

Two sets of data , respectively from CENCIT and CYBERWARE, were

used for machining purpose. The machining process itself has been

experimented with, using a variety of approaches as suggested in the

theoretical work carried out in the previous phase.

It has been found that the indexing technique, that is turning the

stock by a small angle then move the tool on a longitudinal path along

the foot, yields the best result in terms of ease of programming, saving

in wear and tear of machine and cutting tools, and resolution of fine

surface details.

2- MachininK of shoe last - patch confiKuration

The work of Dr. McAllister and his group at NCSU through the

LASTMOD last design system results in a shoe last specified by a number

of congruent surface patches of different sizes. This data format must

therefore be adopted to carry out the downstream operation of last

machining.

In this report, a means of converting this data into a form

amenable tothe machine tool is provided. Essentially it involves a

series of sorting algorithms and interpolation algorithms to provide the

grid pattern that the machine tool needs as was the case in a polnt-to-

point configuration discussed in section i.

The-resulting machined foot agrees quite well with the one obtained

by Dr. Sanii of NCSU although both of us were surprised with the actual

length of the object, it being about seven inches long as compared to

nine or ten inches of expected length.

3- Design and production of integrated sole

Although the design and manufacture of a shoe last is the single

most important element in shoe making, many other activities also play

an important role in the entire spectrum of footwear production.

Examples of these activities include the prescription of different types

of wedges, the molding of the inner, middle, and outer soles, the use of

inserts for arch, heel, or metatarsal support, the use of rigid to soft

orthotics and, in general, the use of extra-depth shoes.

This report contains an in-depth treatment of the design and

production technique of an integrated sole to complement the task of

design and manufacture of the shoe last. Clinical data and essential

production parameters are also discussed. Examples of soles made through

this process are given as illustrations.

BecaUse the grant was given to UMC very late, only a month before

the official end of the phase period, work on orthotic devices such as

pads, wedges, and inserts could not be made in time for reporting in
this document. Nevertheless the work done in this phase V of the project

reported here provides valuable practical solutions to the theoretical

propositions laid down in the previous phase IV. They facilitate the

proposed next phase work for the rest of this year.

2 - MACHINING OF SHOE LAST - POINT-TO-POINT CONFIGURATION

Two sets of foot data were used in(_s phase of the project for

pW_ose of machining : the CENCIT _"_" data set and the CYBERWARE
_" " data set. Both of these companies specialize in 3-D

digitization technology.

2.1 CENCIT DATA SET

The scanning technology used by CENCIT is one of photochemical

light beam profilometry using up to six strobed light projectors and up

to six solid-state video cameras. The published resolution is +/- i mm

with an accuracy of +/- 0.5% of field of view. The scanning time is very

short, usually less than one second for a complete 360 degree scan

around the solid object.

Currently the scanning system is used for portrait sculpture,

however the company has agreed to do a scan of one of our plaster foot

casts. Figwre i indicates the set-up used to scan the foot cast. Note

that the final result is in terms of three views containing a maximum of

51,200 point coordinates (200x256 grid) each. However, after

discarding the points that are invalid, that is unmeasurable, the final

count is only about 15,333 good data points per view, or 46,000 data

points for the whole foot cast. This many data points, although a lot

less than the 153,600 points (51,200 points per view times 3 views)

that could have been obtained, were considered sufficient for machining

without damaging loss of detail.

2. I. i Transformation of Cencit Data

The data sets provided by CENCIT came in three diskettes

respectively for view i, view 2 , and view 3. View i corresponds with

the inner bottom of the foot, view 2 with the outer bottom, and view 3

with the top. Because of the size of the data sets, each file must be

processed separately. Figure 2 shows the types of transformations

required to transform the original data into some useful data for

machining.

A detailed description of each piece of software is available in

the report for phase IV (Technical Report UMC-IE-3-0189, Feb. 1989).

The following is a brief review of the software.

FLINT.PAS

The original data sets are in integer format and, furthermore, the bytes

(LSB and MSB) are in reverse order. Flint.Pas was written using Turbo

Pascal to flip the low byte and high byte in each integer.

SCTFOOT.PAS

The CENCIT scanner was designed for an object much larger than a foot.

Foot Scanning (CENCIT Inc.)

view 1 z

Top

view1 - inner bottom of foot
view3 - outer bottom of foot

Down View

view 2

z

t
y into _ x

paper

y y into

paper z view 3

view2 - top of foot

Grid Setup

x grid spacing = 0.30"
200

Itllll

,,4-_
m

I (_),

1

]

y grid spacing = 0.60"

256

Figure 1 Foot Scanning (CENCIT Inc.)

Therefore it was expected that quite a few data points would be missing

from the scan result. These missing points are indicated by a large Z

value, ie. Z=-32,000 , in the data sets provided by CENCIT. SCTFOOT.PAS

simply removes these invalid or non-exixting points.

PROTY.PAS

This program performs a coordinate transformation to merge all three

views into one. Thus, using view 2 as the reference view, the other two

views are merged into this one.

RECTCYL.PAS

This Fortran progam transforms the cartesian coordinates into

cylindrical cogrd_nates using the _tandard relations
R= SQRT(X_+Z _) and TH= TAN-_(Z/X)

SORTY.SAS

A SAS program is used to sort the data obtained from RECTCYL by Y and

TH.

\

\

Cencit Data File Manipulation

FIlnLpu

(flip H and L bytes or Intel_er)

I $cTFoot.pss
(to remo_e In'r,dld points)

(coordinate t,rausfo

(standard upload procedure
minfsm _ mrp

into sinF, le file)

RecTCyi.ro_rsn

(trnnstormadon to cTIidriad
coor dinar _t)

L
II SortY.sns

(sort daUt by Y and TIIL'Ir'A)I
I

Figure 2 CENCIT Data file manipulation

2.1.2 Machining Activity

To reproduce the foot cast by machining, two general approaches

have been used : the point-to-point configuration and patch

configuration. These approaches differ only in the way the solid is

specified. Thus, in the former case, a wireframe model is used which is

composed of nodes or vertices and links (straight lines joining 2

consecutive points on a same contour). In the latter case, the object

is represented by a number of curvi-linear 4-side patches arranged in a

systematic spatial order.

Irrespective of which method to represent the object, as far as the

machine tool is concerned, its tool must be be programmed to move in an

euclidean motion, that is point to point, so that inherently the

wireframe solid representation is more advantageous than the other type

of representation.

Machinin_ equipment

The machine tool used in these experiments was a 4-axis numerical

controlled milling machine with built-inRS-232 interface to a personal

computer like an IBM PC/XT. Figure 3 shows the machine in the

manufacturing laboratory of the University of Missouri-Columbia.

\

Fig.3 CNC Milling Machine

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

BLACK AND '@I--IITE PHOTOGRAPH

Cylindrical plaster blocks were casted in plastic molds as shown in
figure 4. Not shown in this figure are the aluminum inserts at the two

ends of the block for holding it between the rotary table and the tail"

stock holder of the machine tool.

Fig.4 Plastic cylinders for casting plaster blocks

As recommended by practitioners at CENCIT and CYBERWARE, conical high

speed steel tools were used. One such tool is shown in figure 5 with a

3/16 in diameter at the small end and a 3 degree taper per side.

F_g.5 Tapered tool for machining

The feeds and speeds used in the machining experiments were on a trial

and error basis because not much published literature is available

concerning the machining of plaster.

Theoretical considerations of the various ways of machining a shoe

last were treated in the previous report (Technical Report UMC-IE-3-

0189). Figure 6 taken from this report illustrates these different

ways.

(Q)c0n_0urn0chining

Z

_-- _ooIpabh -

(b) corl;esien

nachining

Endview
of block

TooI pol;h
into poper

°

(c)c_nseonbB perposs

nochining
(d)voriobleB perposs

nochining

Fig.6 The four ways of machining a shoe last

ORIG1NAL PAGE

BLACK AND WHITE PHOTOGRAPH

In this phase of the research, actual cuttings were made and

comparison made between the various products. The experimental results

confirm the theoretical predictions made then, notably

i- "Contour machining" and "Constant 0 per pass" are the easiest to

program but, in the case of contour machining, due to rotational

limitation of the rotary table, the tool must be programmed to go

clockwise in one contour then counter-clockwise in the next contour.

Due to constant changes of direction, the rotary table may be subject

to excessive wear and tear. For this reason, a decision was made not

to pursue further this method of machining.

2- For the same reason for the contour machining approach, the "variable

0 per pass" approach was also discarded not only because of excessive

wear and tear of the rotary table but also because of the complexity

in calculating the proper delta angle in both direction for the

rotary table.

3- The"Cartesian machining" approach is potentially the least cost

technique since it may not even require the use of the rotary table.

Figure 7 shows a cylindrical plaster block held in a conventional

vise and machined accordingly. The major problem for this approach is

the increase in depth of ridges, ie rougher steps, as the tool moves

further _way from its central position atop of the block.

Fig.7 Machined part using conventiQnal vise

4- Of all the proposed machining techniques, the " Constant 0 per pass "

otherwise also called indexing machining, offers the best solution in

terms of ease of data preparation, practicality, and lower wear and
tear of the machine tool. Therefore it is recommended as the

preferred technique for making shoe lasts. Figure 8 shows a foot

using the CENCIT data and this machining technique.

Fig.8 Shoe last machined by the indexing technique
and using tile CENClT data •

2.2 CYBERWARE DATA

The scanning technology used by CYBERWARE is based on low-power

laser light and precision CCD cameras physically configured for portrait

sculpture just like the CENCIT system discussed previously. A 360 deg=ee -

scan around the object, in this case a human head, takes typically 15

seconds and provide up to 250,000 data points (245 latitudes x 512

longitudes). For a solid like a foot cast, the latitudes are separated

by a constant distance of 1.531 mm while the longitude separation

angular distance is 0.0122 rad. Figure 9 shows the format of the data

set as provided to us by CYBERWARE.

ORtGfNAL PAGE

BLACK AND WHITE PHOTOGRAPH

OR[GWALPAGE
BLACK AND _'HITE PHOTOGRAPH

Before machining can be arranged, the data set must be processed to

be amenable to the machine tool. It turns out that the data, which is in

a cylindrical format, lends itself almost immediately to the technique

of indexing machining as discussed previously. Therefore, besides the

usual requirement of speed and feed, the only change to this data set is

to re-arrange it so that the tool cuts material in both directions along

the longitudes. This way there is no wasted time cutting "air" on the

return motion. Figure 10 shows a plaster block almost fully machined. It

is noted that sharp detail of the toes is maintained. " "

Fig.lO Foot machined by the indexing technique and
using the CYBERWARE data

3- MACHIN]NG OF SHOE LAST - PATCH CONFIGURATION

The work of Dr. McAllister and his group at NCSU has resulted in a

shoe last being represented by a collection of Coons patches of various

sizes as shown in figure ii.

\

Heel Region

Ulce_tton

Toe Regton

Patch sizes"

largest 8 * 8

smallest 64 * 64

Fig.l] Surface patch representation

A Coons patch can be represented by position vectors, gradient vectors,

and cross-boundary gradient vectors at its four corners as shown in

figure 12.

r (o, 1)
UV

r (o,I) r (o,I)
U V

r

.--.rn,n_ 0 1 /
I

ro0

UV

\

(o,o)

r u (0,0)

• r (u,v)

r
I0

r (I,0)
UV

Fig. 12 Coons patch

r (I,I)
Iv

r
11

r u (1,1)

The position vector r(u,v) of a point (u,v) on this surface is given by

r(u,v) - [I u u2 u3]

i 1 0 0 0 i

0 0 1 0

-3 3 -2 -I

2 -2 I 1

with u, v varying between 0 and i

1 0 -3 2

0 0 3 -2

Q 0 I -2 I

0 0 -I I

-Ii

and Q =

r(o,o) r(O,i) rv(o,o) rv(O,1)

r(1,O) r(1,1) rv(1,O) rv(l,l)

ru(O,O) ru(O,1) ruv(O,O) fur(O,1)

ru(1,O) ru(1,1) ruv(l,O) fur(l,1)

°

From Dr. McAllister's group, two output files were provided and

called respectively patch file and point file. Their structures are

illustrated in figures 13 and 14 respectively.

_r

M

patch 0 0 1 2 3 2 2 0

patch I 2 3 4 5 2 2 0

etc

CO C1 C2 C3 Sizu Sizv Sector

CO C1 C2 C3 are corners of

patches and Sizu, Sizv are the

patch sizes in u and v
directions

Figure 13 Structure of patch file

O.O0000e+O0

O.O0000e+O0

1.804486e-_2 1.00000e-02 0.00000e+00

2.185643e-03 0.00000e+00 3.556769e-03

O.O0000e+O00.O0000e+O0

0.00000e 00 -1.862645e-09
m

etc..

Px Py Py

Sux Suv Suz

Svx Svy Svz

Twx Twy Twz

where Px Py Pz are the point coordinates, Sux Suv Suz are the tangents

in the U direction, Svx Svy Svz are the tangents in the V direction,

and Twx Twy Twz are the twist vectors

Figure 14 Structure of point file

3.1 Software development

Equipped with the patch file and point file provided by NCSU, a

number of programs were developed to transform the data into useful

machining codes. The sequence of "C" programs written for this purpose

is shown in figure 15. The listings of these programs are given in the

appendix I. In what follows, a brief explanation of the function of each

program is provided.

XYZ.C

This program reads data from the point file then discard all data

related to the gradientvectors and the twist vectors.

MACHINING OF SHOE LAST :

PATCH CONFIGURATION (3)

\.

(from NCSU)

.C

Sorty. C

(r,9, y

lk, sorted .'

add. C

e rp. C

Sort . C

sequence of c programs to make

the patch file useable for machining

Fig.!-5 Programs to transform Point file (from NCSU)
to NC codes for machining tool

CYL. C

This program converts the data into cylindrical coordinates with

parameters r (radial distance), O (angular distance), and y (
elevation).

SORTY.C

The data is sorted by y (elevation) first, then by 0 (angular

distance).

INTERP.C

In both longitudinal and lattitudinal directions the intra- distances
are not the same (due to different Coons patch sizes),so that a number

of grid points would not have data in r (radial distance). This

program finds out where these grid points are then, using quadratic

interpolation, determine the approximate radial distance for these grid

points. The process is illustrated in figure 16.

\ 1"1

,. 12 -_

14

16

17 _

I
,-4 0"_
I/'I

I

j l

'1
,gA ,

<'_ I •%

'
I

t

!

uO

o Points available from data set (from NCSU)

= Missing points to be added (by
Linear interpolation)

Fig. i6 Interpolation process

SORT.C

Because the tool is moved along the longitudes, the data is sorted

again, this time by 0 first then, for each value of O, by Y. At this

stage the data is ready to be sent to the machine tool after speed and

feed parameters are added.

Figure 17 shows a foot represented by surface patches and machined

according to the process described above. Note that it is strikingly

similar to the one machined at NCSU by Dr. Sanii's research group. The

length of the foot turns out to be about seven inches, which is about

two inches shorter than expected. There seems to be no explanation for

this except for the possibility that, somehow when they manipulated the

data through LASTMOD, the researchers under Dr. McAllister might have

inadvertently changed the size of the foot.

Fig.17 Foot represented by surface patches and machined

accordingly

OPJGINAL PAGE

8LACK AND WHITE PHOTY]G-_API.:I

4- DESIGN AND PRODUCTION OF INTEGRATED SOLE

Minor foot deformities can usually be fixed through the use of foot

aids such as pads, wedges, or orthotic devices, in conjunction with the

extra-depth shoes. On the other hand, arthritic, diabetic, and

neuropathic feet will require full molded insoles to protect them from

repetitive stress which may cause neurotropic ulcers and intractable
infection. Molded insoles have the functional characteristic of "

bringing the ground up to the foot ".

The current practice of molded insole is to use a combination of

PPT and Plastazote topped by a nylon material for reducing friction. PPT

has a high energy absorption charateristic and does not bottom out

significantly, even after many years of use. Plastazote on the other

hand is easily molded to the foot or last by heat and offers good

resistance against shear.

While the use of PPT/Plastazote material represents a major advance

in molded insole, its use does not exclude the usual manual operation of

grinding the lower layer to shape. Usually a mid-sole must be built up

underneath the insole, and it too requires shaping through manual

shaving and grinding. The manual labor just mentioned could be reduced

if a technique for fabricating an integrated sole, that is a combination
of insole and midsole, can be found. The work in this phase provides a

viable means of producing such an item, as explained below.

4.1 Foot position requirement

It is as important for the foot to be in the correct stance before

being digitized by a scanner as during the more conventional casting

operation. Likewise this stance must be maintained before the design of

the integrated sole can take place.

In general, the three design criteria are the heel pitch, the

balance line, and the rigidity condition of the foot. The heel pitch is

specified according to to aesthetic requirement (male or female) and

anatomical features such as leg-length discrepancy. There exist general

heel pitch values, and they should be used as much as possible. The

balance line is a line drawn on the back of the last for purpose of

balancing the cast after the addition of the heel. This balance line is

usually vertical along the length of the tibias but, when conditions of

foot inflexibility and severe pronation or supination exist, it should

be selected appropriately and used to orient the last before one can

proceed with the design of the sole.

Generally speaking, if the foot is flexible then a certain amount

of cast inversion or eversion is tolerated. This means that the angle of

inversion or eversion must be specified by the user. If the foot is

inflexible or deformation conditions such as cavus foot, equino-varus,

or considerable tibia varum exist then the balance line is drawn while

the foot is in its natural orientation.

4.2 Sole Production Technique

The critical data discussed in the previous section will serve as

design parameters in the orientation and location of the foot relative

to ground prior to the determination of the shape of the sole. Figure 18

shows a sketch of a foot in the "ideal" position.

_-U

\

Fig.18 Foot position prior to sole design

L

To make the mold for casting the sole, imagine that the foot can be

placed in an upside down position so that the plantar surface now

becomes the bottom surface of the mold cavity as shown in figure 19.

Knowing the spatial location of the plantar surface, a milling

machine can be programmed to machine a cavity in a wooden block with its

bottom surface being the foot plantar surface in its upside down

position. Liquid latex can then be poured into the cavity to form the

sole. Figure 20 shows a wooden mold ready to accept the liquid latex.

Figure 21 shows the sole after solidification.

Our experience has shown that the liquid latex that we use, a

product called TC 281 from BJB enterprise (#i), is an odorless and fast

setting foam with a tendency to expand to 2 or 3 times its original

volume during reaction time. Because of this expansion, we found it

necessary to contain the liquid in a close mold to force it to have a

higher density, at least on its skin. This product has a high energy

absorption characteristic and is easily casted in the appropriate mold.

Its durability is however not known at this stage although some shoe

orthotists have highly recommended it for combination sole. In the next

phase, further experiments are needed to improve its production process
and discover its other characteristics such as water resistance,

durability, tendency to hold up under constant compression, etc...

(#i) BJB Enterprise, 13912 Nautilus Dr., Garden Grove, CA 92643

#<',

SOLE MOLD

Plantar surface extracted

from computer model

of last

a) machining of mold b) casting of sole

" liquid latex

SOFTWARE FOR GENERATING
\

NC" CODES FOR MOLD MACHINING

using

ISoLee,PRGI

I REBFI,PR5 t

[Nc.PRG I

]]ataset

Program

,.I Fig. 19 Mol,d.for casting sole

OR!GINAL PAGE

BLACK AND WHITE

Fig.20 Wooden mold used to cast sole

Fig.2] Sole casted in TC 281 product

4.3 Software development

One final discussion is about the software developed for preparing

the data for the machine tool. A sequence of programs have been written

for this purpose as shown in figure 19. To help explain the function of

each program in this sequence, figure 22 is provided to indicate the

line of maximum foot width.

\

• " width

Fig.22 Line of Maximum width

FOOT2.DBF is the foot data set from either CENCIT or CYBERWARE. Note

that it must be in cylindrical coordinates and it must be converted to a

Dbase file format since the Dbase III Plus data base management system

was used for this purpose. •....

SI.PRG extracts the smallest and largest y values for each x value then

puts the result in file SIDE.DBF .-

SOLE2.PRG uses both data sets FOOT23.DBF and SIDE.DBF to determine the

points between the Y min and Y max values and below the line passing

through these extreme points.

REBO.PRG rearranges the sequence of the points in SOLE.DBF for

continuous two-way motion of the tool.

NC.PRG finally generates the NC codes required by the milling machine.

The listings of all of the above programs are available in appendix 2 at

the end of the report.

Figures 23 and 24 show two examples of integrated soles, respectively in

silicone and in liquid latex (TC 282 product).

\

Fig.23 Sole made of silicone ORrCI,_!_L P_GE

BLACK Af'_L; ,,,d(iE PHO.[OGP._AP_I

Fig.24 Sole made of TC 281 liquid foam

APPENDIX i

LISTING OF COMPUTER P_ FOR MACHINING SURFACE PATCHES

\

_.C

/* reads data from COONPOIH.TXT and write those representing

the x y z points
*/

#include <stdio.h>

float x[5OO0], y[5000], z[5000];

main()

(

FILE *fin1;

FILE *foutl;

int count=O, countr=O;

finl = fopen(-coonpoin.txt", "r");

foutl = fopen("xyz.pnt", "w");

while(fscanf(ftnl, "%E %E 5_E", &x[count], &y[count], &z[count]) I = EOF)

{

printfC "%d 5_f %f %f\n", countrx[count] ,yCcount] ,z[count]);*/

count++;

);

for(countr-O; countr<count; countr+-4)

{

fprintf(fout1,"%e Xe %e\n", x[countr], y[countr], z[countr_);

printf("%F. _f 5&f\n", x[countr] , y[countr] , z[countr]);

/*prtntf(-%lOd.\n", countr); */

)

fctose(finl);

fctose(foutl);

C_.C

/* Convert points |nto CYLINDRICAL COORDINATE

/* with 3 decimal places of the T.

#_nclude <std{o.h>

#fnclude <math.h>

#define pi 3.14159265359

struct po|nt

(

float x;

float y;

float z;

};

struct point xyz[907];

int numpoint;

main()

C

FILE

FILE

fnt

*fin1;

*foutl"

countl_O, count2=O, countr=O;

finl = fopen("xyz.pnt", "r");

foutl = fopen(,'rTHy.pnt", "w");

white(fscanf(finl0 "_E _E _E",

&xyz[countl].x, &xyz[countl].y, &xyz[countl].z) l= EOF)

C

count1++;

)

numpoint=count1--;

cylin();

for (countr = O; countr < numpo_nt; countr++)

fprlntf(foutl,"_f _.3f _f\n",

xyz[countr].x, xyz[countr].z, xyz[countr] .y);

fctose(f|nl);

fclose(foutl);

cytin()

C

_nt count;

f|oat r,th, yy,xx;

for (count = O; count < numpo{nt; count++)

C

xx = xyz[count].x; yy = xyz[count].z;
P = xx * xx + yy * yy;

r = (ftoat)sqrt((doubte)r);

if ((xx==O)&&(yy==O)) pr|ntf("count=_.d\n xx=_.f yy=_f\n" , count,xx,yy);

th = (ftoat)atan2((ftoat)yy, (ftoat)xx);

xyz [count] .x • r;

xyz[count].z = th*180.0/pi;

\

SOR_IY. C

/* This is the final sorting program

/* Sorting Y and T field

#_nctude <stdio.h>

#_nclude <string.h>

#include <search.h>

#include <math.h>

struct point

(

float r;

float t;

float y;

};

struct point rty[906];

int nu'mpoint;

float *pp[907];

float x[lO];

float *mr, *my; \

{nt numpoint;

tnt mycompane();

main()

(

FILE *fin1;

FILE *foutl, *lout2;

int countl=O, count2=O, countr=O;

fin1 = fopen("rthy.pnt", "r");

fOUl1 = fopen("rthy.srt", "t_");

foul2 • fopen("&.pnt","_");

_hile(fscanf(finl, .5_f 5_f 5_f,,, &rty[countl] .r,

&rty[countl] . t,

&rty [count1] .y

pr i nt f ("count l=_d\n., count1);

for (count2=O; count2<countl; count2++)

(

pp[count2]= &try[count2] .y;

fprintf(fout2, "_d _d _d _d\n _d\n _d\n",

) != EOF)

&rty[count2] .r, &rty[count2] .t, &rty[count2] .y,

&pp[count2]);

numpoint=countl;

for (count2=O; count2 < count1; count2++)

fprintf(fout2 "_d _f\n", , , pp[count2], *pp[count2]);

fclose(fout2);

count1++;

count2, pp[count2],

qsort(pp, numpoint, 2, mycompare);

for (countr = O; countr < count1; countr++)

(mr • pp[countr]-2; /* pointers to r and t*/

my = pp[countr]-1;

/*

/*

/*

fpr|ntf(fout1,,,_f _.2f _f _d _d _d _d\n",

*mr, *my, *pp[countr], mr, my, pp[countr], ¢ountr);

) /* r t y*/

fprintf(fout1,,,_f _.3f _f\n",

*mr, *my, *pp[countr]);

} /* r t y*/

fclose(ffnl);
}

fcLose(foutl);

in, mycompare(int *argl, |nt *arg2)

(

float *elm1, *elm2;

float result;

/*

*/

elm1 = (float *)*argl; elm2 = (float *)*arg2;

pr_ntf("_d_d\n",argl, arg2);

pr|ntf("_d Xd\n",*arg1,*arg2);

printf("_d _d _f _f\n",elml, elm2, *elml, *elm2);

result - (*elm1 *elm2)*lO.O;

|f (result == 0.0)

(

result = (*(elm1-1) *(elm2-1))*lO.O; /*compare t*/

/*printf ("_d Xd Xf\n",etml+l, elm2+1, result);*/
)

return((int) result);

/* The smaLLest increment in T is 5.625 degrees.

/* Th_s program _nterpotate for each y with

/* 5.625 degree _ncrement.

#incLude <stdio.h>

#incLude <math.h>

#incLude <stdtib.h>

struct po|nt

(

float r;

float t;

float y;

};

struct po{nt rty[906] ;

struct point frty[3400];

int numpo|nt;

lnt cy=O; /* number of contours along the y */

/* 64 segments a contour */

ms|n()

(\
FILE *fin1;

FILE *foutl, *fout2;

void fittin();

void firstcontour();

void allintpol();

_nt count1=O, count2=O;

float y=O;

/* check number of y

/* there are 52 contour along the y (actual f{le)*/

fin1

while(fscanf(finl, "_f _f _f", &rty[countl].r,

&rtyCcountl] .t,

&rty[countl].y

= fopen("rthy.srt', "r');/* try wfth smatter number of points */

(

Jf (y != rty[countl] .y) cy++;

y = rtyCcountl] .y;

count1++;

}

numpoint • 64"cy;

fctose (finl);

prfntf("number of contour on y = %d", cy).

) != EOF)

fiLlin();

fout2 = fopen("filt st2" "w")-

for(countl=O; count1< 64"cy; count1++)

fprintf(fout2, "_lO.6f_lO.3f_10.6f\n,,,

frty[countl] .r, frty[countl].t, frty[countl] .y);

fclose(foutZ);

firs,contour();

atlintpol();

foutl = fopen("filt.srl", "w");

for(countl=O; count1< 64"cy; count1÷+)

fpr|ntf(lout1, ._10.6f_lO.3f_lO.6f\n",

frty[countl] .r, frty[countl] .t, frty[countl] .y);

fclose(foutl);

}

* f _ t t i n()

* fills |n unassigned points with 999.0

vofd fill{n()

(

1nt n pnt=O, npntf=O;
float angle_-180.O, |ncra= 5.625, yy, tt;

yy = rty[O].y;

wh_le (npntf < 64"cy)
(\

|f (angCe < 180)

(tt = rty[npnt] .t;

_f (tt !m angle)

(

frty[npntf].n = 999;

frtyEnpntf] .t = angle;

frty[npntf].y = yy;

)

else

(_f (yy mm rty[npnt].y)

(

frty[npntf].r -- rtyCnpnt] .r;

frty[npntf] ,t -- rty[npnt] .t;

frty[npntf].y -" rty[npnt].y;

npnt++;

)

else

(

frty[npntf].r = 99_;

frty[npntf) .t = angle;

frty[npntf].y = yy;

else

(

npntf++;

angle +: |ncra;

int npnt = O, back, back1, forw;

int search();

float intpol();

FILE *lout1;

fouL1 = fopen("first.con","w");

while (npnt<64)

(

if (frty[npnt] .r _= 999.0)

. (

back = search(O,npnt);

forw = search(1,npnt);

\ frty[npnt].r = intpol(frty[npnt].t,
frty[for_] .t,

frty[back] .t,

frty[for,] .r,

frty[back] .r);

}

fprintf(fout1,"b:_d r=5_f f=5_d r=;f npnt:_d r--_f\n",

back, frty[back] .r, for,, frty[forw] .r, npnt, frty[npnt] .r);

npnt++;

}

fclose(foutl);

}

**

* a L l f n t p o l()

* replace any 999.0 points by either

* interpoLating from its neighbors of same contour

* or

* their counterpart in the previous contour.

**

void allintpoL()
{

int npnt=64, back, forw;

int search();

fLoat intpot();

FILE *fouL];

fout3 = fopen(.slt.con",.w.);

while (npnt<numpoint)

{

if (frty[npnt] .r == 999.0)

{

prtntf("numpoint=_d\n",numpoint);

)
npnt++;

fctose(fout3);

back

forw

if (

)

else

(

= search(O,npnt);

= search(l,npnt);

min(forw-back,(npnt+64-back)) <= 3)

frty[npnt].r =

fprintf(fout3,,,

tntpo[(frty[npnt] . t,

frty[forw] .t,

frty[back] .t,

frty[forw] .r,

frty[back] . r);

tess 3\n") ;

frty[npnt].r = frty[npnt-64].r;

fpr_ntf(fout3,', more 3\n");

* s e a r c h(df, npntO)

* searche_ next non 999.0 points

* either forward or backward direction

**

int search(bf,npntO)

in* bf, npntO;

(

int npntl;

if (bf==O)

(

if (

(

fmod(npntO,64)==O)

npntl = npntO ÷ 63;

while(frty[npntl].r == 999.0)

{

/*printf("npnt1=_d frty.r=_f\n",npntl,frty[npntl].r);*/

npnt1--;

)

/*pr|ntf("return npnt1=_d frty[npntl].r=%f\n,,,npntl, frty[npntl].r

)

else

{

return(npntl);

npntl = npntO I;

white(frtyEnpntl].r == 999.0)

(

/*printf("npnt1=Xd frty.r=Xf\n",npntl,frty[npntl].r);*/
npntl--;

}

. I

}

etse

(

/*pr|ntf("return npntl=_d frty[npntl].r=_f\n",npntl, frty[npntl].r

return(npntl);

npntl = npntO + 1;

ff (fmod(npnt1,64)==O)

(search(I, npntO-65);}

etse

(_hite(frty[npntl].r -= 999.0)

(

/*printf("npntl=_d frty.r=Xf\n",npntl,frty[npntl].r);*/

npntl++;

}

/*pnintf("return npnt1=_d frty[npntl].r=_f\n,',npntl, frty[npntl].r

return(npntl);

}

}

}

* i n t p o l(t, rl, r2)

* _ntpotates a potar point from 2 potar-to-rect points

float fntpol(t, tl, t2, rl, r2)

float t, _I, t2, rl, r2;

(

ftoat tt;

tt=t2-tl;

|f (tt!=O,O)

return((r2-rl)/(tt)*(t-tl) ÷ rl);

else return(9999);

S01_]?.C

#include <stdio.h>

#include <string.h>

#include <search.h>

#include <math.h>

struct point

(

float r;

float t;

float y;

};

struct point rty[2820];

int numpoint;

float *pp[2820];

float *mr, *my;

int numpoint;

|nt mycompare();

\

main()

{

FILE

FILE

Int

*fin1;

*foul1, *fout2;

¢ountl=O, count2=O, countr=O;

fin1 = fopen("fill.srl", "r");

foutl = fopen("filt.ty ", "w");

fout2 = fopen("&.pnt","w");

while(fscanf(finl, "%f %f %f", &rty[countl] .r,

&rty [countl] . t,

&rty[countl] .y

) I= EOF) count1++;

printf(,,countl=%d\n '', countl);

for (count2=O; count2<countl ; count2++)

(

pp[count2] = &rty[count2].t;

fprintf(fout2, "%d %d %d %d\n %d\n %d\n",

&try[count2] .r, &rty[count2] .t, &rty[count2] .y, count2, pp[count2] ,

&pp [count2]) ;

)

printf("read ok\n");

numpol nt=count I ;

for (count2=O; count2 < countl; count2++)

fprlntf(fout2,"Xd, _f\n", pp[count2] , *pp[count2]);

fcLose(fout2);

qsort(pp, numpoint, 2, mycompare);

for (countr = O; countr < count1; countr++)

(mr = ppEcountr]-1; /* pointers to r and t*/

my = ppEcountr]-2;

/*

/*

fprlntf(fout1,"_f %.2f %f %d %d %d %d\n",

*mr, *my, *pp[countr], mr, my, pp[countr], countr);

) /* r t y*/

fpr|ntf(foutl,"%f %.3f %f\n",

*mr, *pp[countr], *my 7;

} /* r t y*/

fctose(finl);

}

fclose(foutl);

|nt mycompare({nt *argl, |nt *arg2)

(

float *elm1, *elm2;

double result;

elm1 = (float *)*argl; elm2 = (float *)*arg2;

*/

prtntf("%d_%d\n",argl, ar92);

printf("%d _d\n,',*argl,*arg2);

printf("_d _d %f %f\n",elml, elm2, *elm1, *elm2);

result = (*elm1 *elm2)*lO.O;

if (result == 0.0)

(

resutt - (*(etml+1) *(etm2+l))*lO.O; /*compare y*/

/*printf ("%d %d %f\n",elml+l, elm2+1, result);*/

)

return((int) result);

APPENDIX 2

LISTING OF CON_UTER P_ FOR MACHINING MOLD FOR CASTING SOLE

\

DBASE III COMMAND PROCEDURES

******************* PROGRAM NAME : NC.PRG

close databases.

RE='&'

STA='(NCEIAI)'+RE

select 2

use nceia

APPEND BLANK

REPLACE STAMENT WITH STA

select 1

use invso3

N=,N v

LI=I00

GI='G00'

G2='G01'

F='F60'

XX='X'

yy=,y,

ZZ='Z'

PE='(E)'
MI='M00'

\

M2='M03'

S I=LTRIM (STR (LI, 4))

S2=LTRIM(STR(INVSO3->IX,8,4))

S3=LTRIM(STR(INVSO3->I¥,8,4))

S4=LTRIM(STR(Ih_VSO3->IZ,8,4))

UP='5'

IF LEN(SI)<4

SI='0'+SI

ENDIF

STA=N+SI+PE+'G90'+RE

SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+'0'+LTRIM(STR(LI,4))+'(9)'+'M06'+'T01'+RE

SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+'0'+LTRIM(STR(LI,4))+'(9) '+'M03'+'S757'+RE

SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+'0'+LTRIM(STR(LI,4))+PE+GI+XX+S2+YY+S3+ZZ+S4+RE
SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

SELECT 1

SKIP

LI=LI+I

S I=LTRIM (STR (LI, 4))

$2 =LTRIM (STR (INVSO3->IX, 8,4))

S3=LTRIM(STR(INVSO3->IY,8,4))

S4=LTRIM(STR(INVSO3->IZ, 8,4))
IF LEN(SI) <4

SI=' 0 w+Sl
ENDIF

S TA=N+S 1+ PE+G2 +XX+S 2 +YY+S 3 + Z Z +S 4 +F+RE

SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

SELECT 1

SKIP

DO WHILE .T.

IF .NOT.EOF ()

LI=LI+I

S I=LTRIM (STR (LI, 4))

S 2 =LTRIM (STR (INVSO3->IX, 8,4))

S 3 =LTRIM (STR (INVSO3->IY, 8,4))

S4=LTRIM(STR(INVSO3->IZ, 8,4))

IF LEN(SI) <4
SI='0'+Sl

ENDIF

STA=N+S I+PE+G2+XX+S 2 +YY+S 3 +Z Z+S 4 +F+RE

SELECT 2

APPEND BLANK

REPLACE _TAMENT WITH STA
SELECT 1

SKIP

LOOP

ELSE

LI=LI+I

STA=N+LTRIM (STR (LI, 4))+PE+ 'GO 1 '+ Z Z +UP+RE

SELECT 2

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+LTRIM(STR(LI, 4)) +PE+'G00 '+XX+' 0.0'+YY+' 0.0'+ZZ+' 0.0 '+RE

APPEND BLANK _

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+LTRIM (STR (LI, 4)) +PE+ 'GI7 '+RE
APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+LTRIM(STR(LI, 4))+' (9) '+'M05'+RE

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+LTRIM(STR(LI, 4))+' (9) '+'M02 '+RE

APPEND BLANK

REPLACE STAMENT WITH STA

LI=LI+I

STA=N+LTRIM(STR(LI, 4))+' (9) '+'M30'+RE

APPEND BLANK

REPLACE STAMENT WITH STA

STA= 'END '+RE

APPEND BLANK
REPLACE STAMENT WITH STA

EXIT

ENDIF

ENDDO

CLOSE DATABASES

\

*******-_********** PROGRAMNAME : SI.PRG
close databases
select 2
use side
select 1
use foot2
rx=x
maax=x
maay=y
maaz=z
miix=x
miiy=y
miiz=z
skip
do while .t.
select 1
if .not.(eof())

if x<>rx+0.5
if y>maay

maay=y
maax=x
maaz=z
skip
loop \

else
if y<miiy

miix=x
miiy=y
miiz=z
skip
loop

else
skip
loop

endif
endif

else
select 2
append blank
replace lax with maax,lay with maay,laz with maaz
replace smx with miix,smy with miiy,smz with miiz
select 1
rx=x
maax=x
maay=y
maaz=z
miix=x
miiy=y
miiz=z
loop

endif
else

select 2
append blank

r

replace lax with maax,lay with maay,laz with_maaz

replace smx with miix, smy with miiy,smz with miiz
exit

endif

enddo

\

******************* PROGRAMNAME : SOLE2.PRG *************************

close databases

select 1

use foot2

rx=x

select 2

use side

select 3

use sole

flagl=0

flag2=0

flag3=0
do while .t.

select 1

if x<>rx+0.5.and.(.not.eof())

if y=side->lay

flagl=l

endif

if y=side->smy

flag2=l

flag3=l
endif

do case

case flagl=0.and.flag2=0.and.flag3=0
_elect 1

skip

loop

case flagl=l.and.flag2=0.and.flag3=0
select 3

append blank

replace sox with foot2->x, soy with foot2->y,soz with foot
select 1

skip

loop

case flagl=l.and.flag2=l.and.flag3=l
select 3

append blank

replace sox with foot2->x,soy with foot2->y,soz with foot

flag3=0
select 1

skip

loop

case flagl=l.and.flag2=l.and.flag3=0
select 1

skip

loop

endcase

else

if .not. (eof ())

flagl=0

flag2=0

rx=x

select 2

skip

loop
else

exit

endif

endif

enddo

******************* PROGRAM NAME : REBO.PRG *************************

close databases

select 2

use invso2

select 1

use sole2

rx=sox

sh=0

cc=O

do while .t.

if sox=rx.and.(.not.eof())
select 2

append blank

replace ix with sole2->sox,iy with sole2->soy, iz with sole2->soz
select 1

skip

loop
else

if sox=rx+O.l.and.(.not.eof())

_c=cc+ 1

skip

loop
else

if sox=rx+O.2.and.(.not.eof())
rx-_sox

bb=cc

skip -i
do while .t.

if cc<>0

select 2

append blank

replace ix with sole2->sox, iy with sole2->soy,iz with sole2

select 1

cc=cc-i

skip -i

loop

else

select 1

dd=recno()+bb+l

goto dd
exit

endif

enddo

loop
else

if eof()

exit

endif

endif

endif

endif

enddo

******************* PROGRAMNAME : K0.PRG *************************
select 1
use invso3
select 2
use invso2
pp=0
do while .t.
if iz>0.and.(.not.eof())

select 1
append blank
replace ix with invso2->ix, iy with invso2->iy, iz with pp
select 2
skip
loop

else
if (.not.eof())

select 1
append blank
replace ix with invso2->ix,iy with invso2->iy, iz with invso2->iz
select 2
skip
loop

else
exit k

endif
enddo
return

