
k

NASA Technical Memorandum 101072

A Knowledge-Based Approach
to Automated Flow-Field
Zoning for Computational
Fluid Dynamics

Alison Andrews Vogel

April 1989

(NASA-TM-IO[072) A KNOWLEDGE-BASED APPROACH

TO AUTOMATEO FLOW-FIELO ZONING FOR

COMPUTATInNAL FLUID OYNAMICS (NASA) 150 p
" CSCL 09B

G3161

N90-13048

Unclas

0220030

_J/_A
National Aeronautics and

Space Administration



...J
J



NASA Technical Memorandum 101072

A Knowledge-Based Approach
to Automated Flow-Field
Zoning for Computational
Fluid Dynamics
Alison Andrews Vogel, Ames Research Center, Moffett Field, California

April 1989

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035





TABLE OF CONTENTS

Page

Summary .................................... xi

Chapter

1. Introduction ...........

1.1 Computational Fluid Dynamics and

the Grid-Generation Bottleneck 1
• • • • ° • • • • • • • • .... • • • •

11.2 Flow-Field Zoning: A Partial Solution ...................

31.3 Using a Knowledge-Based Approach ....................

1.4 Research Objectives .......................... 5

,
• • .... • • • ° • • • • 7A Flow-Field Zoning Model ............

2.1 Flow-Field Zoning Characteristics ..................... 7

2.2 A Model of the Zoning Process ...................... 9

............ 102.3 A Zoning Language ..............

2.3.1 Objects in the Zoning World .................... 10

2.3.2 Elements of a Zoning Action .................... 15

2.3.3 Describing Shape and Configuration Qualitatively ........... 19

2.3.4 Incorporating User Bias ...................... 23

2.3.5 Encoding Expert Zoning Methodology ................ 24

o EZGrid: A Knowledge-Based System

for Two-Dimensional Flow-Field Zoning

3.1

3.2

3.3

3.4

..................... 29

Implementation Strategy ......................... 29

Representation and Language ....................... 30

3:2.1 The Role of C in EZGrid .................... 30

3.2.2 Lisp: A Basic AI Language .................... 31

3.2.3 Logic Programming Using MRS ................ 32

Program Structure and Control ...................... 36

The EZGrid Knowledge Base ....................... 45

PRECEDING PAGE BLA_'.;K NOT FILMED

iii



, Computed Results for Representative Test Cases .................. 49

4.1 Classification Scheme .......................... 49

4.2 Single-Body Configurations ....................... 51

4.3 Multiple-Body Configurations ...................... 68

o An Approach to the Evaluation of Flow-Field Zonihgs ................ 95

5.1 The Challenge of Zoning Evaluation .................... 95

5.2 A Tunable User Bias Profile ....................... 96

5.3 EZGrid Performance Assessment .................... 100

° Summary and Discussion

6.1

6.2

6.3

6.4

.......................... 115

Summary .............................. 115

EZGrid as a Foundation ........................ 115

Applicability of a Knowledge-Based Approach to

Flow-Field Zoning .......................... 116

Opportunities for Further Research ................... 118

Appendices

A. Zoning Actions and Consequences ...................... 119

B. An Example of an EZGrid Database ...................... 125

C. Example Rules from the EZGrid Knowledge Base ................ 135

D. User Bias Profile Parameter Measurement Functions ....... . ....... 141

E. Comparison Study Test Case Problem Statements ................ 145

References ................................... 149

iv



LIST OF FIGURES

Figure

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Page

Composite Zonal Gri d Approaches:

(a) Patched Grid Approach; (b) Overlapping Grid Approach ............ 2

Two Views of the Same Zoning Situation:

(a) View 1: OB Contains bl and zel;

(b) View 2: OB Contains bl Only ....................... 11

Fundamental Curves and Subcurves ....................... 13

Object Relations .............................. 13

14Variable Object Properties ..........................

Examples of Zoning Actions:

(a) Connection/Cut - Parent-Child;

(b) Connection/Cut - Parent-Child;

(c) Connection/Bridge - Parent-Child;

(d) Connection/Envelop - Parent-Child;

(e) Connection/Envelop - Sibling-Sibling;

(f) Connection/Bridge - Sibling-Sibling; .................

(g) Connection/Wrap - Sibling-Sibling;

(h) Connection/Cut - Self-Interior;

(i) Connection/Cut - Self-Exterior;

(j) Separation/Cut - Sibling-Sibling;

(k) Separation/Partition - All-Objects;

(1) Shape-Alteration/Envelop - Self-Actual;

(m) Shape-Alteration/Envelop - Self-Actual; ................ 18

(n) Shape-Alteration/Envelop - Self-Virtual;

(o) Shape-Alteration/Wrap - Self-Virtual;

(p) Shape-Alteration/Cut - Self-Virtual;

(q) Identification/Identify - Region ...................... 19

Qualitative End Descriptions ......................... 20

Parts and Joins ............................... 21

Object Groupings for a Four-Element Airfoil .................. 22

17

V



Figure

2.9

2.10

3.1

3.2

3.3

3.4

A Tree of Possible Zoning Candidates.

Subplan Assembly Example.

Forward Chaining Diagram.

Backward Chaining Diagram.

EZGrid Conceptual Structure.

Page

..................... 26

......................... 28

........................ 34

........................ 35

........................ 36

The Use of MRS Theories in EZGrid:

(a) EZGrid Knowledge Base; (b) EZGrid Database ................. 37

3.5 Basic Flow of Control in EZGrid ........................ 38

3.6 Flowchart for Interactive-Multiple-Step Mode ................... 39

3.7 Flowchart for Interactive-Single-Step Mode ................... 43

3.8 Flowchart for Automatic Mode ........................ 44

4.1 Classification of Aerodynamic Configurations ................... 50

4.2 Single-Zone Grid for an NACA 0012 Airfoil at a = 0 °, Moo = 0.5 .......... 51

4.3 Single-zone Grid for an NACA 0012 Airfoil at a = 10 °, Moo = 3.0 .......... 52

4.4 Single-zone Grid forCambered Airfoil at c_ = 5 °, Moo = 0.8:

(a) Entire Grid; (b) Grid Detail Near the Body .................. 53

4.5 Zonal Grids for a Biconvex Airfoil at o_ = 5°:

(a) Two-Zone Inviscid Grid; (b) Three-Zone Viscous Grid.

4.6 Zonal Grids for a Wedge at _ = 5°:

(a) Three-Zone Inviscid Grid; (b) Four-zone Viscous Grid ............. 55

4.7 Single-zone Grid for an Elliptical Airfoil at oe = 5 ° ............... 56

4.8 The Effect of Qualitative Shape Description:

(a) Ellipse; (b) Bullet; (c) Wedge; (d) Teardrop .................. 57

4.9 The Effect of User Bias on the Zoning

of a Body Described as an Ellipse:

(a) Wake = Low Importance, Surface Quantities = High Importance;

(b) Wake = High, Surface Quantities = Low;

(c) Wake = High, Surface Quantities = High .................. 58

............ 54

vi



Figure

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

Page

The Effect of User Bias on the Zoning

of a Body Described as a Teardrop.

(a) Wake = High Importance; (b) Wake = Low Importance ............. 59

Zonal Grids for a Rotor Blade:

(a) Smoothness = Low Importance;

(b) Smoothness = High Importance ..................... 60

Zonal Grids for an Airfoil with Discontinuity:

(a) Compound Shape Description (2 Parts);

(b) Simple Shape Description (1 Part) ..................... 62

AOTV Cross-Section:

(a) Two-Part Compound Description; (b) Part 1 Described as a

Half-Bullet; (c) Part 1 Described as a Half-Ellipse; ............... 63

(d) Three-Zone Zoning for the Half-Bullet Version; ............... 65

(e) Two-Zone Zoning for the Half-Ellipse Version; ............... 65

(f) Three-Zone Grid (Half-Bullet);

(g) Two-Zone Grid (Half-Ellipse) ....................... 67

Zonal Grids for a Vertically-Aligned NACA 0012 Pair:

(a) Inviscid Two-Zone Grid; ........................ 69

(b) Viscous Three-Zone Grid - Bodies Close Together; ............. 69

(c) Viscous Four-Zone Grid - Bodies Far Apart; ................ 70

(d) Viscous Two-Zone Grid - Nondefault User Bias Profile ............ 70

Staggered Airfoil Pair Wake Curve Study:

(a) Cambered Airfoil Below and Downstream; ................. 71

(b) Cambered Airfoil Above and Downstream; ................ . 71

(c) Cambered Airfoil Above and Upstream ................... 72

Zonal Grids for a Staggered NACA 0012 Pair:

(a) Viscous Three-Zone Grid - Bodies Close Together; ............. 73

(b) Viscous Four-Zone Grid - Bodies Far Apart; ................ 73

(c) Viscous Two-Zone Grid - Nondefault User Bias Profile ............ 74

Zonal Grids for a Horizontally-Aligned NACA 0012 Pair:

(a) Single-Zone Grid - Default User Bias Profile; ............... 75

(b) Three-Zone Grid - Singularities = Not Allowed; .............. 75

vii



Figure

4.18

4.19

4.20

4.21

4.22

4.23

5.1

5.2

5.3

5.4

5.5

Page

(c) Two-Zone Grid - Singularities & Tuples = Discouraged,

Mapping Disparity = Low ............. ............. 75

Augmentor-Wing Airfoil:

(a) Two-Zone Inviscid Result; (b) Four-Zone Viscous Result; ........... 77

(c) Detail of Viscous Grid .......................... 79

Rotor-Stator:

(a) Six-Zone Zoning; .......................... 81

(b) Zonal Grid .............................. 83

Rotor Pair:

(a) Five-zone Zoning; .......................... 85

(b) Zonal Grid .............................. 87

Two-Zone Grid for Augmentor-Wing Aft Elements Grouped Separately ........ 88

Two-Zone Grid for Three NACA 0012 Airfoils in Two Groupings ........... 88

Four-Element Airfoil:

(a) Seven-zone Zoning; .......................... 91

(b) Zonal Grid; ............................. 93

(c) Upstream Grid Detail; (d) Downstream Grid Detail .............. 94

Candidate Zonings for Test Case 1- Horizontal Configuration ............ 96

Candidate Zonings for Test Case 2: Staggered Configuration ............. 97

Candidate Zonings for Test Case 3" Vertical Configuration .............. 97

Case 1 Results:

(a) Four-Zone Grid - Expert; ...................... 102

(b) Grid Detail - Expert; ........................ 103

(c) Three-Zone Grid - EZGrid; ...................... 104

(d) Grid Detail - EZGrid ......................... 105

Case 2 Results:

(a) Four-Zone Grid - Expert; ...................... 106

(b) Grid Detail - Expert; ........................ 107

(c) Two-zone Grid - EZGrid; ...................... 108

(d) Grid Detail - EZGrid ......................... 109

viii



Figure

5.6

5.7

B.1

E.1

E.2

Page

111Alternative EZGrid Four-Zone Grid for Case 2 .................

Four-Element Airfoil Zoning Comparison:

(a) EZGrid Interactive Result; ...................... 113

(b) EZGrid Automated Result ....................... 113

Single-zone Grid for Cambered Airfoil at oL= 5 o, M,o = 0.8 ........... 125

Sketch of Expert Zoning for Test Case 1.................... 146

Sketch of Expert Zoning for Test Case 2 .................... 148

ix



LIST OF TABLES

Table

2.1

2.2

3.1

5.1

5.2

5.3

Common Part Shapes.

User Bias Profile Parameters.

Point and Angle Input Menus.

A Tunable User Bias Profile.

Page

........................ 21

...................... 25

..................... 42

...................... 99

User Bias Profiles for Five Zoning Experts ................. 100

Profile Calibration Test Results ..................... 101



Summary

Flow-field zoning is becoming popular in computational fluid dynamics (CFD) as a means of
alleviating the three-dimensional (3-D) grid-generation bottleneck caused by complex geometries,
the need for selective grid refinement, and computer memory and speed limitations. As experience

is gained with zonal grid methods, it has become apparent that flow-field zoning must be done
quickly and well in order to reap the potential benefits of zoning and significantly ease the grid-
generation bottleneck. An essential element in the satisfaction of both of these requirements is
zoning expertise. Because zoning expertise is not widespread and is difficult to teach, and because
even zoning experts find it difficult to visualize and specify general 3-D zonal boundary interface
surfaces, the growing consensus is that the process of zoning a flow field must be automated.

The goals of the present research are to (1) lay the foundation for an automated 3-D
zonal grid generation capability for CFD through the development of a demonstration computer
program capable of automatically zoning the flow field of representative two-dimensional (2-D)
aerodynamic configurations, and (2) determine the applicability of a knowledge-based program-
ruing approach to the domain of flow-field zoning. Several aspects of flow-field zoning make the
application of knowledge-based techniques challenging: the need for perceptual information, the
role of individual bias in the design and evaluation of zonings, and the fact that the zoning
process has been modeled as a constructive, design-type task (for which there are relatively few
examples of successful knowledge-based systems in any domain). Engineering solutions to the
problems arising from these aspects have been developed, and a demonstration system has been

implemented which can design, generate, and output flow-field zonings for representative 2-D
aerodynamic configurations.

xi





CHAPTER1

INTRODUCTION

1.1 Computational Fluid Dynamics and the Grid-Generation Bottleneck

Computational fluid dynamics (CFD) is becoming an essential tool in the understanding of
fluid physics, in the design of aerospace vehicles, and in a number of other areas. Kutler, Steger,
and Bailey (1987) state that the long-range goal of CFD is to develop computer programs which
can accurately simulate the viscous flow about realistic configurations quickly enough to drive
vehicle design. Most CFD computer programs presently solve a discrete form of the fluid equations
of motion. The discretized equations must be solved on a discretized computational domain, that
is, at the nodes of a grid. In order to approximate the motion of a fluid accurately, the spacing
of the grid nodes must be fine enough to resolve any gradients in the flow, but not so fine that
the number of grid nodes is too laxge to admit a practical solution (due to computer limitations).
Clearly the quality and tractability of a CFD flow solution is fundamentally influenced by the
computational grid on which it is obtained.

Several elements of CFD were identified early in the decade by Chapman (1980) as pacing
items, or areas which require significant technical advances before the long-range goal of CFD can
be realized. Three-dimensional (3-D) grid generation figured prominently among those elements.
In a later review, Kutler (1985) updated the list of pacing items and made a further distinction
between those which axe of primary importance and those which are secondary. At that time,

3-D grid generation was classified as a primary pacing item, and the most recent report by Kutler
(1986) accords it the same prominence. In a comprehensive survey of grid generation capabilities
for complex 3-D configurations, Thompson and Steger (1988) claim that "the problem of grid
generation can still be as much an art form as it is a scientific discipline." That survey concludes
that the theoretical groundwork of grid generation has been laid, but a great deal of effort is still
needed in the efficient implementation of those ideas because the process of generating a grid

about a complex configuration is still too time-consuming. They contend that gri d generation
continues to impede progress toward the goal of quick, realistic fluid flow simulation.

Despite the power and sophistication of present grid generation capabilities, it remains dif-

ficult to generate a reasonable, single grid about a general 3-D configuration. According to Rat
1986), the factors which are primarily responsible for this difficulty are geometric complexity
involving multiple-body configurations and bodies with components); the need for selective grid

refinement (a fine grid is necessary in regions of laxge fluid variable gradients and higher deriva-
tives, but potentially wasteful in other parts of the flow field); and size limitations of computer
physical memory (trying to generate a gdd with adequate resolution, minimum skewness, and
no discontinuities is even more difficult if the allowed maximum number of grid nodes is insuffi-

cient). It is the combination of these factors which is propelling CFD researchers and practitioners
towards domain decomposition approaches for challenging problems.

1.2 Flow-Field Zoning: A Partial Solution

Decomposition of the computational domain into simpler subdomains is an effective solution
to the difficulties of 2-D and 3-D grid generation. The advantages of domain decomposition are

several: (1) it can reduce the topological complexity of a complicated geometry and permit each
component to be more easily fitted with an appropriate grid; (2) grid refinement can be selective
if there is no constraint that grid lines be continuous across subdomain interfaces; and (3) if each
subdomain contains a grid small enough to fit into the physical memory of the computer, the
flow solution can proceed more quickly, and virtually any size problem can be computed either
sequentially or in para21el.



There are many approachesand philosophieswhich can be included under the domain de-
composition umbrella. Hessenius(1986) cites numerousexamplesof researchand applications
in this area and, within the family of structured grid methods, identifies two genera] classes of
domain decomposition approaches in CFD: the patched grid approach (where the interface be-
tween subdomains is a shared curve or surface); and the overlapping, or overset, grid approach.
The same distinction is made by Thompson and Steger (1988), who use the term "composite
grid approach" to include grids composed of contiguous subgrids (which they call "blocked" grids
instead of "patched" grids), as well as those composed of overlapping grids. The sketches in figure
1.1 (from Rai, 1985) illustrate patched and overlapping grids. Within the category of blocked or
patched grids, grid lines from different subdomains may intersect the common interface at the

same point and with the same slope; or they may intersect the interface at the same point, but
with different slopes; or they may intersect the interface at entirely different points, resulting in
complete grid discontinuity across the interface. Selective grid refinement is possible only when
the grid lines are allowed to be discontinuous at subdomain interfaces.

Patched, blocked, and overlapping grids are all instances of composite grids and are the final
product of domain decomposition. There exists an alternative terminology, based on the word
"zone," which (1) is general enough to encompass both nonoverlapping and overlapping grids;

2) is more specffic to CFD than "domain decomposltmn;" 3 is unhkely to produce confusmn
,," .,,. " . " (.). - . ."

domasn ]s also a mathematical term for the range of an independent variable over which a
function is defined); and (4) has distinct terms for the subdomain, the composition of subdomalns,
the grid within each subdomain, and the overall grid. Flow-field zoning is the term commonly used
to denote the process of domain decomposition in CFD. The individual subdomalns are zones,
and the resulting composition of zones is called a flow-field zoning (or simply a zoning). When
a domain has been decomposed, it is said to have been zoned. The interfaces between zones are
zonal interfaces, and flow solvers designed to handle zonal logic and interface conditions are called

zonal flow solvers. In this report, the subgrids will be referred to as zonal grids, and the resulting
grid system will be called a composite zonal grid. Blocks are zones which are topologically four-
sided in two dimensions, and six-sided in three dimensions. For a comprehensive discussion of
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Figure 1.1. - Composite zonal grid approaches.



basic grid generation methods and terminology, the reader is referred to the well-known review

article by Thompson, Warsi, and Mastin (1982).

Numerous CFD researchers and practitioners have adopted composite zonal grid approaches
to alleviate grid generation difficulties, and this has enabled Solutions to be computed for otherwise

intractable problems. An interesting finding of Thompson and Steger's survey (1988) is that tile

composite block grid approach is the most prevalent version. As experience is gained with this
approach, the following three facts have become apparent: (1) flow-field zoning must be performed
well in order to reap its potential benefits; (2) flow-field zoning must be performed quickly; and

(3) the first and second facts present a problem. Because the composite block grid approach is

the most prevalent one, all subsequent references to composite zonal grids and flow-field zoning
in this report will assume the choice of that approach.

To perform flow-field zoning well, a user must have experience with composite zonal grid
methods, familiarity with the available grid generation capabilities, knowledge of the behavior
of the zonal flow solver, fluid dynamics knowledge and some expectation of the physical features

of the ftow to be computed, and criteria for evaluating zonings. To perform flow-field zoning
quickly, the user must have both the expertise just described, and fast, graphical, easy-to-use
tools. The problem with the composite zonal grid approach lies primarily with the expertise
requirement. The skill needed to do zoning quickly and well is not widespread and is not easily
taught. Furthermore, even users with the requisite expertise find it difficult to visualize and
specify general zonal interface surfaces in three dimensions. Finally, there are no established
criteria for evaluating flow-field zoniugs. The growing consensus (Kutler, 1986; Steinbrenner,

1988; Thompson and Steger, 1988; Weatherill and Shaw, 1988) is that the process of zoning a
flow field must be automated.

1.3 Using a Knowledge-Based Approach

All phases of CFD research and practice can be regarded as being composed of two types
of activities: those for which a computer is preferable or necessary, such as high-speed numerical
processing, and those for which a human is necessary, such as making judgements based on

knowledge, reasoning, perception, and common sense. Efforts to enhance CFD methodology have
been appfied to both types of activities. Improvements to grid generators, solution methods, and
algorithms have streamlined the computational part of obtaining a solution. The introduction
of high-speed color graphics has aided humans in the decision-making associated with problem
set-up and the interpretation of solutions. In all of these efforts, the traditional separation of
labor between humans and computers has remained: humans make the decisions and computers
do the number-crunching. This historically practical and satisfactory arrangement is beginning

to show signs of strain, especially in the area of flow-field zoning and grid generation.
Several years ago, CFD researchers began to look to the field of artificial intelligence (AI)

for approaches to automating some of the tasks still being performed by humans. Among the
expected benefits of automating such tasks were relief from tedium; codification, preservation,
and distribution of expertise; consistency in application; and reduced time in code development
and use. One of the earliest areas to be investigated was computer symbolic mathematics. Sym-
bolic manipulation codes have been used in CFD to perform stability and accuracy analyses and

to generate FORTRAN code. Roache and Steinberg (1984) report on the use of Macsyma (a
well-known symbolic manipulation program) in the generation of 3-D boundary-fitted coordinate
transformations. They also give a brief history of symbolic manipulation in CFD, outline poten-
tial uses, and provide useful references to other work in the area. Steinberg and Roache (1986)
claim that progress is being made in addressing the speed and memory limitations encountered in
early work, but the use of symbolic manipulation tools in CFD has not yet become widespread.

This is due mainly to the difficulty of effective use of these tools; one must learn a new language
(repeatedly, if use is infrequent), and obtaining an answer in its simplest, most usable form can
be challenging.
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Knowledge-based systems (also called expert systems) are of more recent, and even greater,
interest to the CFD community. Kutler and Mehta (1984) and McCroskey, Kutler, and Bridge-
man (1984) recognize and speculate upon the potential applications of AI and knowledge-based
techniques to CFD. Knowledge-based systems have been implemented in the areas of aerodynamic
design (Tong, 1985, 1986; Nicklaus, Tong, and Russo, 1987); consultation in the use of large CFD

computer codes (Conner and Purdon, 1985, 1986); and adaptive grid refinement (Dannenhoffer
and Baron, 1986, 1987). Andrews (1988) analyzes each of these systems with respect to tile nature
of the problem addressed, the problem-solving method required, the development effort involved,
system performance, and the return-on-investment, in order to gauge the progress made in the

application of AI to CFD and to discover what obstacles remain. The flow-field-zoning problem
was found to be a challenging application for knowledge-based techniques. Before elaborating on
this point, some background information on knowledge-based programming is in order.

Knowledge-based programming is an AI problem-solving approach that has met with some

success in the solution of real-world problems in a variety of fields. Pearl (1984) states that
every problem-solving activity, including computer-based problem solving, requires three basic

elements: a symbol structure (a way to represent all possible objects in the problem), tools for
transforming one object to another, and a strategy for applying the tools so that a solution is
obtained. A knowledge-based system, like any computer program, is based on the same three
basic elements. In the case of a knowledge-based system, these elements are often referred to
as the database, the knowledge base, and the control strategy or inference engine. However, a

knowledge-based system has two primary, distinctive characteristics: (1) its architecture is that
of an AI program, in which the basic elements are kept distinct-the knowledge and data are
kept separate from the means by which they are processed; and (2) it contains extensive domain-
specific knowledge. Davis (1982) explains that this last characteristic arises from the fundamental

observation that "in the knowledge lies the power," an observation attributed to Feigenbaum, and
based on the experience of many system developers indicating that the amount and quality of
the knowledge is of paramount importance to problem-solving performance. The structure of a
knowledge-based system is responsible for its transparency and relative ease of construction and

modification. Its high level (sometimes expert level) of performance derives from the knowledge it
contains. Knowledge-based systems have been successfully constructed in a variety of fields, from
chemical analysis and geological survey to computer system configuration and circuit malfunction
diagnosis. The text by Hayes-Roth, Waterman, and Lenat (1983) is an excellent resource about
expert systems in general and about specific applications.

Useful guidelines for identifying appropriate, tractable problem domains for the application
of knowledge-based programming techniques have evolved over the last several years. Based on
the "recipe for success" developed by the Stanford Knowledge Systems Laboratory, as described

by Hayes-Roth (1984), and on the rules presented by Lenat and McDermott (1984) in an expert
systems tutorial, the following list of guidelines has been compiled:

1. The problem should have no closed-form or algorithmic solution and should involve primarily
symbolic reasoning (otherwise, a knowledge-based approach would be nonsensical).

2. The problem should require some amount of expertise for its solution.

3. The time required for an expert to solve the problem should be reasonable for that domain

(the Stanford recipe specifies three minutes to three hours).

4. The problem selected should be important-one which has a high payoff if solved.

5. The skill required to solve the problem should be routinely taught to nonexperts (this implies
that it is well-understood and expressible).

6. The problem should be solvable over the telephone (a well-known heuristic to ensure that
the solution method is primarily cognitive, and does not involve direct perception).

7. Experts should agree about the correctness of a solution to the problem, and there should
be standard solution procedures.

8. It is easier to apply knowledge-based techniques to a problem which is solved by an analytic

method (in which a solution is found by decomposing the problem into its primitive parts,
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and then selecting existing solutions for those parts) than to a problem which is solved by a
synthesis method (in which a solution is designed, or constructed, from primitives).

Flow-field zoning obeys many of these rules. Zoning is an ill-structured problem, an epithet
usually applied to problems which have solution procedures that are difficult to describe in terms
of an algorithm or formula, and are typically described by examples. Expertise is required to
perform the task quickly and well. An expert can design and generate a flow-field zoning in
several days or several weeks, depending on the complexity of the configuration. Finally, flow-
field zoning is an integral part of the effort to make 3-D grid generation faster and easier, and
thus has the potential for a very high payoff.

Unfortunately, flow-field zoning breaks others of these rules. The art of flow-field zoning is
not easily taught, perhaps because there is no good language to describe the process. The task
has an unmistakable perceptual element, involving qualitative shape and position information.

While there are recognized zoning experts, their ideas about what constitutes a good zoning differ
nd are even still evolving), so one expert's preferred solution may be unacceptable to another.

is implicit "bias" affects the design and evaluation of flow-field zonings. Lastly, the process of
flow-field zoning has been modeled as one in which a solution is designed rather than selected. A
more complete characterization of the flow-field-zoning problem and a description of a model of
the zoning process are included in chapter 2.

These latter aspects of flow-field zoning need not deter a knowledge-based system developer
as long as a product is not expected for several months to a year; they simply make the job more
challenging. The guidelines above are not intended to be hard-and-fast rules, but rather indicators

of the potential difficulty of applying knowledge-based techniques to any given problem, and are
based on corporate experience with the limitations of current knowledge-based programming
techniques.

1.4Research Objectives

The goal of the present research is two-fold: (1) to lay the foundation for an automated 3-D
zonal grid generation capability for CFD through the development of a demonstration computer
program capable of automatically zoning the flow field of representative 2-D aerodynamic config-
urations, and (2) to determine the applicability of a knowledge-based programming approach to
the automation of flow-field zoning.

As stated in the previous section, certain aspects of flow-field zoning make the application

of knowledge-based techniques to zoning somewhat challenging. The concepts and terminology
needed to communicate zoning expertise have not been adequately formulated. There are few,
if any, examples of working knowledge-based systems which address all three difficult aspects
of zoning: visual perception, individual expert bias, and solution by design. Computer vision,
spatial reasoning, user modeling, and design automation are all important areas of AI research,
but the fruits of these research efforts are not yet mature enough for engineering application.
Such difficulties preclude any rapid and strv_ghtforward application of existing knowledge-based
techniques. It has been necessary to devLe pragmatic solutions to these problems in order to
develop a successful demonstration program. The development approach which has evolved can
be summarized as follows:

1. Develop a model and language to describe the fundamental concepts and operations of

2-D flow-field zoning.

2. Debug the basic components of the model and language through the implementation
of an interactive knowledge-based system, where the mechanics and bookkeeping of
designing a zoning and generating interface curves are automated, but the user supplies
the essential dements of perception, individual bias, and zoning design knowledge (i.e.,
the aspects of the problem which are more difficult to automate).



3. Increase the level of system automation incrementally by replacing the elements pre-
viously supplied by the user, one at a time, with automated versions based on the

remaining components of the zoning model and language.

4. Use existing interactive grid generation capabilities.

The specific objectives of this research are to

1. Propose a model for the flow-field-zoning process that both represents it accurately and
facilitates its automation.

2. Devise a language to describe zoning objects_ relationships, processes, qualitative shapes
and positions_ expert design methodology, and individual bias.

3. Distill and encode zoning design expertise.

4. Develop a 2-D flow-field-zoning knowledge-based system which can be used both to
interactively zone flow fields about arbitrary configurations and to automatically zone
flow fields about representative aerodynamic configurations.

5. Propose a quantitative approach to the evaluation of flow-field zonings that incorporates
individual bias.

The remainder of this report describes the accomplishment of each of these research objec-
tives. Chapter 2 begins with an examination of flow-field zoning characteristics, followed by a
model of the zoning process. The rest of the chapter is devoted to a description of the flow-
field-zoning language developed to enable automation of the zoning process, and includes sections
which describe how the perception problem is eliminated, individual bias is incorporated, and
the design process is transformed to a simpler selection and assembly procedure. Chapter 3 con-

tains the implementation details of EZGrid (Expert Zonal Grid generator), the knowledge-based
system which was developed to perform 2-D flow-field zoning. It also includes a summary of the
contents of the EZGrid knowledge base. Chapter 4 explains the scheme used to classify test-case
geometries, and shows zonings and composite zonal grids for representative test cases. Chapter
5 presents a quantitative approach to the evaluation of flow-field zonings. Finally, chapter 6 con-

rains a summary of the research, an assessment of how well the goals of this research have been
met, and a discussion of opportunities for further research.



CHAPTER 2

A FLOW-FIELD ZONING MODEL

The key to automating any process lies in the ability to describe the process unambiguously.

An unambiguous description is possible only if the process is understood, and if there exists a

means of expressing the concepts involved, i.e., a language. This chapter begins with a more
complete characterization of flow-field zoning than was gaven previously, focusing on the features
which correspond to the knowledge-based-system development guidelines outlined in section 1.3.
Section 2.2 proposes a model for the zoning process which is based, for the most part, on obser-
vation of how experts perform the zoning task. The remainder of this chapter is devoted to a

language for describing flow-field zoning.

2.1 Flow-Field Zoning Characteristics

The knowledge-based-system development guidelines described in section 1.3 are summarized
here:

1. The problem has no closed-form or algorithmic solution.
2. Expertise is required to solve the problem.
3. An expert can solve the problem in a reasonable amount of time.
4. The problem is an important one.
5. The skill is routinely taught to nonexperts.
6. Solution of the problem does not involve perception.

7. Experts agree on how to solve the problem.
8. Solution by analysis is easier than by synthesis.

A characterization of flow-field zoning which addresses most of these issues follows. Discussion

of guidelines 4 and 8 is omitted here: the fact that the problem is important was established in
chapter 1, and further treatment of the analysis versus synthesis issue is given in section 2.2.

Existence of other solutions - There is no theory which governs the way in which a flow field
should be partitioned into zones. Eriksson and Rai (1988) performed an analysis of the stability
of various zonal interface conditions, and Allmaras and Baron (1986) studied the effect of zonal
interface formulations on solution accuracy and stability. These studies have yielded guidelines for

the generation of zonal grids, but little information to influence the placement of the zonal interface
curves or surfaces. Practical experience with computing flow solutions on zonal grids, as described
by Hessenius and Rai (1986); Rai (1985): Hessenius (1986); Schuster and Birckelbaw (1985);
Waiters, Thomas, and Switzer (1986); Wi rdlaw, Priolo, and Solomon (1987); and Chaderjian

(1988), has contributed heuristics to the pool of zoning knowledge. No comprehensive, systematic
studies have been done to determine the effe_'_ on the computed solution of using different zonings

for the same problem.
No satisfactory algorithmic solution to the general flow-field-zoning problem has been found.

Weatherill and Shaw (1988) have developed an automatic "block decomposition" algorithm in two
and three dimensions which is conceptually straightforward, successfully displaces singularities
from body surfaces, and permits each body its own natural grid topology. Their method, however,
results in a proliferation of blocks: in one example with a wing-canard cross-section, over 90
blocks were generated. Such a large number of blocks poses a problem when the grids are not
continuous across block interfaces, because of the computational requirements of special block

interface conditions. Also, grid continuity across block interfaces precludes grid refinement local
to a block. Zoning literature contains no other mention of a closed-form or algorithmic solution
to this problem.

Requirement for ezpertise - The existence, indispensability, and scarcity of flow-field zoning
expertise is recognized by those members of the CFD community who use zonal grids. Stein-



brenner, Karmen, and Chawner(1988)considerthis to be the principal disadvantage of the zonal
approach, and a "serious roadblock" to the development of fast, general grid generation methods.
The same consideration prompted Thompson and Steger (1988) to name flow-field zoning as a
pacing area of research in 3-D grid generation.

Solution time requirement - At best, fairly complex configurations require several weeks

of an expert's time to zone and grid, which is unacceptable if the goal is to incorporate CFD
within vehicle design. Design of the zoning topology and decisions as to the location of the
interface curves or surfaces are the portions of the process which require expertise. The most

time-consuming portion of the process is the actual generation of the interface curves or surfaces
on a computer in a form usable by a numerical grid generator. One technique for zonal interface

specification is to use simple, analytical geometric shapes, such as straight lines and circular
arcs. Another technique (Cordova and Barth, 1988) is to use a hyperbolic grid generator (with
shooting methods to permit some far boundary control) to generate body-oriented grids, and then
select a grid coordinate line as the zonal interface curve. Yet another approach used by Flores,
Chaderjian, and Sorenson (1987) and Chaderjian (1088) is to generate a single coarse global grid,
and then identify zones which require further grid refinement, designating existing coordinate
lines as zonal interfaces.

Task teachability - Terminology to describe an existing zoning has not been standardized
and is a matter of some dispute. No terminology exists to describe the process of zoning a flow
field. This fact, coupled with the expertise requirement, conspire to make the art of flow-field
zoning difficult to teach. Oskam and Huizing (1986) give a pictorial account of the process used
to zone the flow field of a three-element airfoil, but no verbal description is provided. The terms
used in chapter 1 to introduce the subject of zoning represent an attempt at standardization.
Terms for the zoning process are proposed in this chapter, in the sections on zoning objects and
actions.

Role of perception - Perception of and reasoning about shapes and spatial relationships

play a important role in zoning design decisions, affecting the overall topological structure of the
zoning as well as the physical location of the zonal interfaces. This is evident in the way an expert,
when asked to describe how he or she designed a zoning, often resorts to such phrases as, "well,
I just look at the geometry," or "I can see that this body is going to have an effect on the body
slightly below and downstream of it." Acknowledging the importance of perception, Thompson
and Steger (1988) cite the "critical need" for graphical, interactive tools to perform surface grid
generation and flow-field zoning, and to achieve better grid control.

Ezpert agreement on solution - As is evident from the introductory discussion of flow-field
zoning, there are many approaches to zoning. Even within the category of blocked composite grids,
which is the most common approach for complex problems, there are many examples of different

zonings for similar configurations. If five different zoning experts with different experience, flow
solvers, and computational objectives are given identical problems to zone, it is probable that
five different zonings will result. Thus, zoning design exhibits an individual bias. It is not
surprising, then, that the criteria used to evaluate flow-field zonings also vary from expert to
expert. Short of computing a flow solution to determine grid deficiencies, evaluation of zonal
grids is typically done qualitatively and graphically. Klopfer's analysis (1982) is an example of an
attempt to apply quantitative criteria to the evaluation of grids, with the result that the criteria
were dependent upon the flow solution. G. D. Kerlick (NASA Ames, private communication)
states that the "goodness" of a grid depends not only on the geometry of the grid, but also on
the partial differential equation (PDE) to be solved on the grid, the numerical method used to
solve the PDE, and the PDE solution itself. Addressing the dependency on geometry only, he
has developed several quantitative functions which can assess local grid quality. No criteria have
been proposed for the evaluation of zonings before grids have been generated.



2.2 A Model of the Zoning Process

In the absence of theory, it is necessary to formulate a model of the flow-field zoning process
based on observation of several experts' performance of the task. Consider first the perspective
upon which the solution of a zoning problem is based. Does the expert focus on the bodies about
which the flow is to be computed, or on the computational domain? The two different views can be

described as object-based and region-based, respectively. In an object-based approach, the objects
are operated upon by zoning actions, and a zoning is built up block by block from the objects
out to the computational domain boundaries. In a region-based approach, the region is operated
upon and subdivided to achieve a zoning. Some experts adopt an object-based approach, some a
region-based one, and others a combination of the two. The model proposed here is object-based,
as will be illustrated later.

The next issue to examine is the type of solution methodology involved. Problem-solving
methods can be categorized as being either the analytic type, in which a solution is found by
breaking the problem down into primitive parts for which solutions already exist and can be
selected, or the synthesis type, in which a solution is synthesized, or constructed from primitive
components. Here, flow-field zoning is modeled as a design process, and is therefore in the
synthesis category. A zoning is designed through the application of a sequence of zoning actions
which modify the initial situation (consisting of the input bodies embedded in a computational

domain) by stages until an acceptable zoning is achieved.

In the design of a flow-field zoning, how does an expert know which zoning action to apply
at any given stage? Generate-and-test is a common problem-solving paradigm in AI (Rich,
1983). The "generator" produces all possible solutions to a problem, and the "tester" weeds
out the undesirable solutions. The process can be stopped when one acceptable solution has

been found, or can be continued until all acceptable solutions have been found. In this flow-field
zoning model, all possible solutions could be generated by applying all possible sequences of zoning
actions. Depending on the complexity of the problem, this could result in hundreds or thousands of
possible solutions, many of which would be redundant. Experts claim, believably, that they do not

mentally (or otherwise) generate and discard hundreds of possible zoning solutions before settling
on one they like. A hypothesis at the opposite extreme is that an expert has sufllcient knowledge
of the problem to be able to write down the solution directly, knowing just which sequence of
zoning actions will result in the best zoning for that problem, without backtracking or evaluating
alternative candidates. For the simplest configurations and conditions, this is a reasonable model
of expert behavior, but for more challenging problems, it is common for an expert to try various
combinations of actions, to backtrack, and perhaps even to generate several candidate solutions
for comparison. For difficult problems, a modified generate-and-test paradigm may be the the
most useful and plausible model of actual expert behavior. Clearly, an expert's generator does not

simply apply zoning actions indiscriminately, but rather uses domain knowledge, past experience,
and other factors to select only the most rromising actions or sequences of actions.

The factors which may affect an expelt's choice of a zoning action at any stage of the design
process include

1. Basic zoning criteria and guidelines:

a. Zones must be empty and topologically four-sided (2-D).

b. There should be no unnecessary zones.

c. The entire domain must be zoned (no gaps between zones).

d. Zones must abut rather than overlap (recall that the composite block approach is as-
sumed).

2. Geometry (body shapes, orientations, and positions relative to each other and the domain
boundary).

3. Fluid physics:

a. Inflow conditions (free-stream Mach number, angle of attack, flow steadiness)

b. Type of solution sought (steady or unsteady, viscous or inviscid)
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4. Individual bias:
a. Capabilities of flow solverto be used(how zonal interface conditions are handled, treat-

ment of singular points in the grid, turbulence model type, tolerance of grid skewness)

b. Personal CFD experience (when and where in the flow can grid skewness, discontinuities,
and singularities be tolerated without significant solution degradation, and when and
where is the lowered accuracy at a zonal interface acceptable)

c. Computational objectives (for example, if an accurate drag count is desired, high reso-

lution and accuracy are necessary at the body surface and in the wake)

d. Aesthetics ("what an ugly grid!")

In this model, more than one candidate zoning may emerge from the design process. An
expert must then evaluate each candidate and select the best. Usually, evaluation is done "by
eye," guided by the factors enumerated above. Often, grids are generated within each zone,
and the grids are evaluated qualitatively and quantitatively by examining the Jacobians of the
coordinate transformation and the grid line angles at boundaries. Final validation is possible
only through the evaluation of the flow solution computed on the grids generated. These three
evaluation steps have been listed in ascending order with regard to the time, effort, and cost
involved.

The final consideration in the proposed model of the flow-field zoning process is that of how
the expert views intermediate stages of the zoning design process. Because the primary purpose
of this zoning model is to form the basis for automating the process on a computer, consistency is
desirable. To enhance the consistency of this object-based model, consequences of zoning actions

include the creation of new zoning objects which contain and are contained by the zoning objects
existing at the previous stage of the zoning. Thus, at an intermediate stage of the zoning, a
new object (resulting from a previous action) can itself be acted upon, and the computer can
reason about the attributes and relations of the new object to determine the situation at that
stage. The creation of and operation upon intermediate zoning objects causes this model of the
flow-field-zoning process to deviate from observed expert performance in two ways: (1) an expert,
even one with an object-based approach, does not think in terms of newly created zoning objects
after each application of a zoning action, but rather in terms of newly created curves or surfaces;
and (2) the application of a zoning action often simplifies the remaining problem for the expert,
but for the computer, the creation of new objects as the design progresses leads to a proliferation

of zoning objects to keep track of and reason about, actually complicating the remaining problem
somewhat, rather than simplifying it.

2.3 A Zoning Language

A common language is the foundation of effective communication. Objects and actions, the
first two elements of the zoning language proposed below, form the basis for communication about

zoning, whether among human experts, between expert and student, or between human expert
and computer in an interactive mode. They also form the basis for automated reasoning about
zoning by a computer. The last three elements of the language deal with aspects of zoning which
are difficult to automate according to the knowledge-based system development guidelines referred
to above. These three elements are perceptual information, the incorporation of user bias, and
the application of expert knowledge in the design of zonings and in the choice of interface location
strategies.

2.3.1 Objects in the zoning world

Since this model of the flow-field-zoning process is object-based, it is important to be able to
describe any object which may exist at any stage of the zoning. There are three principal types of
objects in the zoning world: bodies, zoning environments, and zones. They are defined as follows:
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1. Body - a solid region (an "original body," which is input by the user as an object about

which flow is to be computed); or a nonsolid region which contains a body (a "virtual
body").

2. Zoning environment (z.e.) - a nonsolid region which may or may not contain a
body (in the former case, it is also a virtual body).

3. Zone - a zoning environment which is empty and has had a four-sided topology (in two
dimensions) imposed upon it.

The initial situation, as presented to an expert or to an automated zoning program, consists
of one or more original bodies specified by the poser of the problem (the "user") embedded within
a computational domain which may or may not be specified by the user. An example is shown
in figure 2.1, where bl is an original body, zel is a zoning environment, and the computational
domain is referred to as OB (for the outer boundary and the region within). There are two ways
to view this initial zoning situation (and the situation at subsequent stages as weU); much of the
remaining fundamental object and action terminology depends on which of these views is adopted.
Either OB contains body bl plus a zoning environment that consists of all the nonbody region
of OB, and those two objects fill (tile) OB as shown in figure 2.1.a, or OB contains bl only, the
nonbody region being an as-yet-unidentified part of OB, which is therefore not completely filled
by objects, as depicted in figure 2.1.b. The implications of these two views are easy to discern.

Implications of the first view are

1. Zoning actions must produce either objects contained by zel_ or objects contained by
OB whose enclosed area belongs to zel. The latter option would result in the redefinition
of zel.

2. A zoning action intended to produce an object which contains bl is impossible, since
the region from which its area would be taken (zel) does not contain bl.

3. Representation of zel is made difficult by the fact that it has two unconnected boundaries

(an inner and an outer one) which may be changed by later zoning actions.

Implications of the second view are
1. Zoning actions produce objects contained by OB whose enclosed areas are taken from

the unidentified region of OB.

2. A zoning action applied to bl may produce an object which contains bl and is contained

by OB.

3. All objects are simply connected regions definable by a single, constant boundary, making
representation easier.

The second way of viewing zoning situations is adopted here since it permits a simpler, more
natural description of object-based zoning actions.

OB OB

zel

(a) VIEW 1: OB CONTAINS bl ANDzel (b) VIEW 2."OB CONTAINSbl ONLY

Figure 2.1. - Two views of the same zoning situation.
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An object can have a variety of properties which remain constant, such as its curvelist,
vertex_list,sidelist, extrema, maximum length and width, and centroid. Explanations of the "list"
quantities are given below:

Curvelist - an ordered list of curves which defines the perimeter of an object. The
direction of each curve is clockwise, a convention adopted so that the interior and exterior
of an object can be distinguished.

Vertexlist - an ordered list of vertices, each of which identifies a curve junction on the
perimeter of an object. Each vertex is uniquely defined by the two curves whose junction
it marks - its "in-curve" (the curve directed toward the vertex) and its "out-curve" (the
curve directed away from the vertex), and thus its included angle and outward-direction
angle are unique. Two vertices may occupy the same position in space and each have a
different included angle and outward direction.

Sidelist - an ordered list of lists of curves, each list of one or more curves defining
a topological side of an object. A sidelist composed of four lists of curves defines a
topologically four-sided object. The curves belonging to an object's sidelist are also
members of the object's curvelist, but are grouped to reflect its topology.

Curves play a major role in defining many of an object's properties, and are the basic building
blocks of zonal interfaces. Curves have both constant and variable properties, such as curve type,
parent, constituents, begin-u, end-u, and reverse (these are explained later). There are two types
of curve: a fundamental curve is a 2-D curve which has been specified and generated, while a
subeurve is either a portion of a fundamental curve, the reverse (defined later) of a fundamental
curve, or the reverse of a portion. Each fundamental curve is nondimensionalized by its own
length so that the nondimensional parameter u is set to 0.0 to mark the beginning of the curve
(its "begin-u" property), and u = 1.0 denotes the end of the curve (its "end-u" property). The
pointers which define a subcurve are its "parent" property, where the parent of a subcurve is
the fundamental curve on which it is based, its begin-u, and its end-u. For example, a subcurve
with parent curve = c7 (some fundamental curve), begin-u = 0.2, and end-u = 0.7 is a portion
of curve c7, has half the length of c7 beginning one-fifth of the way along c7, and has the same
directionality as c7. A subcurve which has an end-u with smaller value than its begin-u has a
directionality opposite to that of its parent curve. A subcurve with begin-u = 1.0 and end-u =
0.0 is the "reverse" of its parent fundamental curve.

Subcurve creation can be regarded as fundamental curve division. The division of a funda-
mental curve at, for example, u = 0.37, results in the formation of two subcurves, one with begin-u
= 0.0 and end-u = 0.37, and one with begin-u = 0.37 and end-u = 1.0. Subcurves are always

created in pairs (with the exception of reverses, which can be created singly). If a fundamental
curve has been divided, its "constituents" are the two subcurves into which it has been divided.
Suppose further division of an already divided fundamental curve is required. The subcurve on
which the division occurs is split into two subcurves, each of which has the original fundamental
curve as its parent. The old subcurve has the two new subcurves as its constituents. It is often
useful to have a list of the subcurves which are the smallest subdivisions of a fundamental curve.

These are called the least-common-denominator constituents, or led-constituents, and are found
by following the chain of constituent relations until each constituent of the fundamental curve has
been replaced by a list of its smallest constituent subcurves. Figure 2.2 may help to clarify the
curve concepts introduced here. In figure 2.2, cl is a fundamental curve, and curves c2 through
cfi are subcurves whose parent is cl. The constituents of cl are c2 and c3, and the constituents of
c3 are cg and c5. The lcd-constituents of cl are therefore c2, cg, and c5. Curve cfi is the reverse
of c4.

Besides invariant properties, zoning objects also have relations and properties which vary
depending on the current stage of the zoning design. The primary relations in this category are
containment and direct containment. Parent, child, and sibling are relations derived from the
containment relations. Object descriptors which can have only one of two possible values, either
true or false, are connected, filled, empty, degenerate, and zoned. Other variable properties are
functionals, such as corebody, contained environments, and filling objects. An explanation of
these terms is given below. Figures 2.3 and 2.4 illustrate these ideas.
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Figure 2.2. - Fundamental curves and subcurves.
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OB

zel OB contains bl, zel, b2
OB directly contains zel, b2
zel directly contains bl
OB is the parent of zel, b2

zel, b2 are children of OB
zel and b2 are siblings

Figure 2.3. - Object relations.

1. A zoning environment (z.e.) contains an object if each curve on the curvelist of the object is
either completely inside the perimeter of the z.e., or coincident with one of the z.e. curves. If
all of the object curves are coincident with z.e. curves, then at least one of the object curves
must have the same directionality as its coincident z.e. curve in order to ensure containment.

2. A z.e. directly contains an object _t it contains it, and there is no intermediate object
which both is contained by the z.e. and contains the object.

3. A z.e. is a parent if it directly contains an object.

4. An object which is directly contained by a z.e. is a child.

5. If a z.e. directly contains more than one object, those objects are siblings.

6. The corebody of a z.e. is the group of bodies directly contained by the z.e. Its coretype
is single if there is only one child body, and multiple if there are more than one.

7. The contained environments of a z.e. are the group of zoning environments directly

contained by the z.e. (analogous to corebody for bodies).
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OB

bl is an original body
zel is a virtual body
OB directly contains zel, ze4
zel and ze4 are the contained environments of OB

zel is the corebody of OB
OB is filled by zel and ze4

zel directly contains bl, ze2, ze3
zel is filled by bl, ze2, ze3
OB is connected

ze3, ze4 are empty
ze2 is degenerate
ze3 and ze4 are zones

ze2_ ze3, ze4 are zoned

zel is zoned (recursively)
OB is zoned (recursively)

Figure 2.4. - Variable object properties.

zel

8. A z.e. is connected if at least one curve belonging to each child object of the z.e. is either

shared by the z.e. or intersects a curve on the curvelist of the z.e.

9. A z.e. is filled if each curve belonging to its child objects is shared by another child or by
the z.e. itself.

10. The filling objects of a z.e. are the group of objects which are directly contained by the
z.e. if it is filled.

11. A z.e. is empty if it contains no objects.

12. A z.e. is degenerate if it encloses no area (i.e., for each curve on its curvelist, the reverse is
also on the curvelist).

13. A z.e. is zoned if one of the following conditions is true (note the recursion in the third

condition):
a. It is a zone.

b. It is degenerate.
c. It is filled by 0 or more original bodies and 1 or more zoned zoning environments.

When OB, the zoning environment which consists of the entire computational domain, is zoned,
then that candidate zoning is complete.

The vocabulary proposed here to describe zoning objects and situations is one of the two
fundamental building blocks of the zoning language necessary for performing flow-field zoning
interactively. The other building block is the vocabulary for describing zoning actions, presented
in the next section.
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2.3.2 Elementsof a zoning action

The process of zoning a flow field has been modeled as one in which zoning actions are applied
to zoning objects in order to construct a flow-field zoning. The process can also be viewed as
one in which zoning environments are created and, in some cases (i.e., when they are empty),
transformed into zones. It is difficult to communicate about zoning, other than graphically,

because no language exists to describe zoning actions and their consequences. In this section, a
conceptualization of zoning actions is proposed, leading to a vocabulary to describe them.

A zoning action can be considered to have an underlying objective, a type of application, and a
means of accomplishing the objective. The underlying objective is the purpose of the action-for
example, to connect two objects, to alter the shape of an object, or to separate objects. The
type of application of the action depends on the relationships among the target objects or, if
there is a single target object, on the way in which the action is to be applied to that object.
Application types include parent-child, sibling-sibling, and self-exterior. Various means can be
used for accomplishing an action. For example, forming a connection between two sibling objects
can be accomplished by generating two curves which form the sides of a "bridge" between them,
or creating an "enveloping" object which encloses one of the siblings, and which shares a curve

with the other sibling.
One approach to describing a zoning action, then, would be to classify it according to objec-

tive, application type, and means of accomplishment-a three-part description. Instead, a scheme
more consistent with common mathematical terminology has been adopted, in which a zoning

action is composed of two elements: an operator and an operand. The objective and the means
of accomplishing an action comprise its operator. The type of application and the actual objects
to which it is to be applied make up the operand of the action. Below is a list of the ten possible

zoning operators:

1. Connection/Bridge
2. Connection/Cut
3. Connection/Envelop
4. Connection/Wrap
5. Separation/Cut

6. Separation/Partition
7. Shape-Alteration/Envelop
8. Shape-Alteration/Wrap

9. Shape-Alteration/Cut
10. Identification/Identify

Note that most of the action objectives appear in more than one operator, as do many of the

ways in which they are accomplished. Rather than describing each operator as a whole, each of

the operator components will be described separately.

Action operators: objectives
1. Connection - action which connects tv'9 or more separate objects, or connects two different

locations on or within a single object.

2. Separation - action which separates two or more sibling objects so that they are afterwards

contained by different parent objects.

3. Shape Alteration - action which modifies, actually or virtually, the shape of an object.

4. Identification - action which elevates an empty, connected, unidentified region to the status

of an object so that it can be acted upon (refer back to discussion of ways to view a zoning

situation).

.

Action operators: how they are accomplished
Bridge - action accomplished by creating two new curves (forming the sides of the "bridge")
which, with selected existing curves belonging to the objects on either side of the bridge,
form a closed loop. A degenerate bridge involves the creation of only one new curve; the
other side of the bridge is formed by the reverse of that curve, and no area is enclosed.
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2. Cut - action accomplished by creating a single new curve which, with all of the existing
curves belonging to the object or objects intersected by the new curve, form one or two
closed loops.

3. Envelop - action accomplished by creating one or more new curves which, with zero or more
selected existing curves, form a closed loop containing an object.

4. Wrap - action accomplished by creating one or more new curves which, with one or more

selected existing curves, form a closed loop adjacent to and sharing one or more existing
curves with an object.

5. Partition - action accomplished by creating one or more new curves which, with all of the

existing curves of the parent object, form two or more dosed loops, each containing one child
object.

6. Identify - action accomplished by forming one or more closed loops from selected existing
curves belonging to the parent object and its child objects.

To conclude the description of zoning action elements, zoning operands (the part which
consists of the application type only) are described below:

1. Parent-Child - action applied between parent object and child object.

2. Sibling-Sibling - action applied among sibling objects.

3. Self-Interior - action applied within the interior of a single object.

4. Self-Exterior - action applied to the exterior of a single object.

5. Self-Actual - action applied to an object to affect the perimeter of the object directly.

6. Self-Virtual - action applied to an object to affect how the perimeter of the object is perceived
by the parent of the object.

7. All-Objects - action applied to all objects contained by the same parent.

8. Region - action applied to an unidentified region (the only action that can be performed on
an unidentified region is that of "identifying" it-all other actions can be applied to objects
only).

Figure 2.5 contains example illustrations of each zoning action. A list of all possible zoning
actions (operator-operand combinations), including a description of conditions under which each
action.is possible and the consequences of each action, is found in appendix A.

There is one more zoning event which is necessary to complete the transformation of a zoning
environment into a zone, and that is "topology imposition." It is not called a zoning action because
it affects only the type of the object in question, creates no new objects, and changes no object
relationships. A zoning environment that is empty is a candidate for topology imposition, which
is defined as the selection of the topological corners of the zone (there must be four corners for
the composite block approach). There are five types of zone topologies provided in this zoning
language:

1. C-topology (one family of coordinate lines are C-shaped).

2. O-topology (one family of coordinate lines are O-shaped).

3. H-topology (the two families of coordinate lines form an H).

4. Identifiable Corners (the topological corners are chosen to be the four vertices whose internal
angles are closest to 90°).

5. Arbitrary (any four points can be chosen as zone corners).

The language for objects and actions in the zoning world presented thus far is complete
enough to support the description of most zoning situations and processes arising in aerodynamic
applications. An aerodynamic flow-field zoning which cannot be described as resulting from the
composition of a sequence of these zoning actions has not been encountered.
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2.3.3 Describing shape and configuration qualitatively

The two elements of the proposed zoning language described earlier are fundamental building
blocks needed for communication about zoning, and hence for interactive zoning. The remaining

three elements, beginning with a language to describe shapes and configurations qualitatively,
involve concepts and terminology necessary to automate flow-field zoning on a computer.

To automatically design a flow-field zoning, the computer program requires qualitative shape
and configuration information. This information may be obtained in one of two ways: interactively

(directly from the user) or automatically _hrough extensive processing of the raw geometric data
input by the user. Interactive input is the method chosen for automated flow-field zoning for the

following reasons:

1. Data processing to educe qualitative information can be time-consuming, even in cases which
are simple and obvious to a user.

2. The shape distinctions typically resulting from such processing are finer than necessary for

this application.

3. The qualitative shape of an object, as viewed by a user, is a matter of interpretation, and
can radically affect the resulting zoning design.

4. Having the user describe the configuration of input zoning objects permits the user to impose
his or her own focus on object groupings, serving as a way to decouple portions of the problem

where possible (objects which are far apart or separated by one or more other objects may
have little influence on each other in terms of how the zoning is designed).

Interactive flow-field zoning also requires shape and configuration information, but it is pro-
vided by the user imphcitly and throughout the zoning design process; the user does the visual
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processing and uses the results to directly make the zoning action and execution decisions. In
automated flow-field zoning, that information is provided by the user ezplicitly and only at the
outset of the zoning process, thereby allowing the system to make those decisions. To facilitate

the interactive input of shape and configuration descriptions, a simple shape and configuration
language is proposed which is based on the idea (Brady and Haruo, 1984) that all shapes have
identifiable subshapes. In flow-field zoning, object shapes are composed of one or more primitive

parts.
Each object part is described in terms of various attributes, such as type, orientation, ends,

sides, shape, length, and width. The user must supply the part type, orientation, end, and
side description. The other attributes are derived from these. The type of a part is either
positive or negative, where a negative part is one which contributes negative area, i.e., area that
is subtracted from the overall composition of parts (cavities are often described as negative parts).
The orientation of a part is either horizontal or vertical. Each part has two ends (front and

back), and two sides (top and bottom). While any shape could be represented as being composed
of parts described in terms of ends and sides, such a scheme favors elongated shapes, such as are
found in aerospace vehicles. For a horizontally oriented part, the front is the upstream-most end
of the part. A vertically oriented part is assumed to face upward, so its front is located at or near
the point of maximum y-value of the part (where y is the usual cartesian coordinate).

Both qualitative and quantitative values are associated with ends and sides. Ends (front and
back) are described qualitatively as either blunt, sharp, or base, as shown in figure 2.6. Sides
(top and bottom) can be straight, convex, or concave. The quantitative values determine the
approximate dimensions of the part. They are supplied by the user, and are equal to the coordinate
locations of representative points for each end and side. A blunt end is usually represented by its
extremum. The representative point for a sharp end is usually the location of the sharp vertex.
A base end has two representative points, one to indicate the top corner of the base, and one to
indicate the bottom corner. Convex and concave sides are represented by one point, usually an
extremum. A straight side needs no representative point to contribute dimension information.
Selection of representative points has been made easy for the user in the implementation of this
scheme, as is discussed in chapter 3.

Attributes with derived values, as opposed to input values, complete the list of attributes
required to describe an object part in this language. The shape of each part is derived from
combining the qualitative descriptions of the part ends and sides. Shapes based on common
end/side combinations are given names, such as ellipse (both ends blunt, both sides convex) and
bullet (one end blunt, one end base, both sides convex). Table 2.1 shows a fist of commonly
occurring shapes and the associated end/side combinations. Finally, each part has a length and
a width which are calculated from the information provided by the representative point locations.

It is not sufficient to provide the above attributes for each of the parts which constitute the
shape description of an object. A description of the manner in which the parts fit together must
also be provided. The intersection of one part with another is called a join, a concept proposed

by Brady and Haruo (1984)which provided the inspiration for the simpler version presented here.
A join is described from the perspective of both of the parts involved. For each part, two join
attributes are specified: its location on that part (which end or side is joined to the other part of
the pair), and its position on that end or side. The part location attribute can have the values
front-end, back-end, top-side, and bottom-side. The end/side position attribute can have the

BLUNT SHARP BASE

Figure 2.6. - Qualitative end descriptions.
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Table 2.1 Common Part Sha_es.

shape end 1 end 2 sides

ellipse

teardrop

eye

bullet

wedge

rectangle

blunt

blunt

sharp

blunt

sharp

base

blunt

sharp

sharp

base

base

base

convex

any

any

convex

any

any

values at-corner, near-corner, centered, and entire-boundary. If the end/side position of the join
has one of the first two values, the other end or side adjacent to the corner must also be specified.

Figure 2.7 shows an example of an airfoil which has been represented as the composition of two
primitive parts, one with a bullet shape, one with a wedge shape. The join between partl and
part2 is specified as ((partl back-end at-corner top-side) (part2 front-end entire-boundary)).

Further characterization of the shape of an object is possible when the entire group of parts

and joins needed to describe an object shape have been specified. By examining the joins, object
protrusions can be identified. A protrusion is defined as a part (or group of parts connected
by entire-boundary joins) whose entire boundary is joined to another part along only a portion
of the boundary of that part. Object cavities are identified by examining all part types. Any

part that is negative is considered a cavity. The leading edge and trailing edge of an object
are identified, respectively, by finding the front-end of the upstream-most part and the back-end
of the downstream-most part. Depending on the location of the representative point chosen for

each end, the leading edge and trailing edge may not coincide with the upstream and downstream
extrema of the object. Finally, the type of an object is derived from the number of parts needed
to describe its shape. Possible object types are simple airfoil (describable with only one primitive
part), compound airfoil (more than one primitive part necessary), simple blade (same as simple
airfoil except for internal flows), and comuound blade (same as compound airfoil except for
internal flows).

The description of a configuration of objects makes use of the idea of primitive parts presented
above, but is based primarily on the idea that objects sometimes occur in natural groupings. It is

partl part2

Figure 2.7. - Parts and joins.
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not known just how to define what is meant by "natural" here-perception, geometric reasoning,
and fluid dynamics knowledge are all involved, but the relationships among them have not been
studied. Configuration description, like shape description: is therefore done interactively. The
user must specify object groupings such that each grouping contains at least one object, no object

is contained by more than one grouping, and the objects in the same grouping are those which
are most likely to have the greatest influence on each other. Once groupings are established,
relationships and approximate separation distances among objects within the same grouping and
among groupings must be described. This is accomplished by identifying the proximal portions
of the objects or groupings in question, and then specifying the relation that exists between them.

The proximal portion of an object consists of the name of the object part closest to the other
object of the pair, and the end or side of that part which faces the other object. The proximal
portion of a grouping is simply described as if the grouping were a horizontally oriented primitive
part, that is, with a front-end, a back-end, a top-side, and a bottom-side. Possible relation values
are before, behind, above, and below. Approximate separation distances are provided by the user
through the selection of visually nearest points (again, as with representative point identification,
the implementation of this scheme makes it easy for the user to provide distance information).
Figure 2.8 illustrates one way in which the objects representing a four-element airfoil can be
grouped. Objects B1 and B2 are in groupings of their own, and B3 and B4 are grouped together.
The primitive parts of each object are also shown, where part1 is denoted pl, etc. The points
chosen for computing separation distances are shown as heavy black dots on the perimeters of
the objects. For such a configuration and grouping, the following description might be provided:

Object relations:

(B3 part5 bottom-side) above (B4 part6 front-end)

Object separations:

(B3 point5)(B4 point6)

Grouping relations:

(groupingl front-end) behind (grouping2 back-end)
(grouping3 back-end) before (grouping2 front-end)

Grouping separations:

(grouping3 B1 point1) (grouping2 B2 point2)

(grouping2 B2 point3)(grouping1 B3 point4)

Providing a mechanism for grouping objects based on the user's perception and knowledge
of fluid dynamics permits a decomposition of the problem into simpler subproblems. This is an
important foundation for the discussion of how expert zoning methodology is encoded, which is
found in section 2.3.5.
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Figure 2.8. - Object groupings for a four-element airfoil.
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2.3.4Incorporating user bias

One of the problems associatedwith flow-field zoning is that the experts do not agreeon
what makesa good zoning. Oneway to dealwith this problem in the developmentof a knowledge-
basedsystem might be to establisha standard set of guidelines. The drawbackof this approach
for zoning is the possibility that the standard could be totally unacceptableto someexperts, and
totally acceptable to none. Individual bias has been identified as playing a role in the way an
expert designsand evaluatesa zoning. A solution to this dilemma is to establish a tunable user
bias profile. The user can tune the profile to reflect her or his own bias.

The criteria for designing and evaluating flow-field zonings can be categorized as objective
or subjective. Objective criteria include basic zoning guidelines, such as that zones (the block

variety) are empty and topologically four-sided, zones abut without gaps rather than overlap,
zonal boundaries do not cross each other or the boundaries of the input geometry, and the outer
boundary location depends on the physical conditions of the problem. Subjective criteria define
what is commonly referred to in expert systems parlance as "standard practice." As noted above,

zoning practice is not standard. These subjective criteria, which depend on an individual user's
bias, form the basis for the tunable user bias profile.

The bias a user brings to a zoning design problem involves a variety of factors: (1) the
particular capabilities of the user's flow-solver code-for example, how boundary conditions and
singularities are handled, what sort of turbulence model is used, and what effect grid skewness has
on the robustness of the code; (2) the user's experience (often with a specific flow solver), which
determines the user's threshold of tolerance of inaccuracies caused by grid skewness, discontinu-
ities, singularities at body surfaces, and zonal boundary intersections with body surfaces; (3) the
user's objectives for the problem at hand-for example, is good quantitative accuracy required

nd for which parameters) or do trends suffice? and (4) aesthetics- "I don't like the look of that
scontinuity in the boundary curve."

To incorporate a user's bias into the design and evaluation processes, it must first be pa-
rameterized. The profile is defined as the collection of parameters chosen to represent zoning
user bias, and is tuned by the assignment of qualitative weights to each parameter, reflecting the
importance and/or acceptability of that parameter. The parameters identified as representing a
user's bias are

1. Zoning simplicity - It is usually desirable to have few zones and zonal interfaces since zonal
interface conditions are not vectorizable, and their encoding in the flow solver requires some
extra work. In some cases, however, an emphasis on simplicity would compromise the quality
of the zoning in terms of grid and solution features.

2. Zone corner skewness - Skewness in the sides of a zone often translates directly into zonal

grid skewness, which can result in decreased flow-solver accuracy and robustness. Some
amount of skewness is often tolerated in order to gain a simpler zonal topology.

3. Zone side smoothness - Discontinuities in the zonal interfaces often translate directly into
discontinuities in the zonal grid coordinate lines, which can decrease the accuracy of the flow
solution. As with skewness, some amount of discontinuity can sometimes be tolerated in
order to achieve other zoning advantages.

4. Zone side mapping disparity - A large difference between the maximum and minimum
distances separating opposite sides of a zone usually leads to difficulty in grid generation and
the appearance of zonal grid discontinuities. Sometimes other factors (such as simplicity)
can outweigh the perceived disadvantages of mapping disparity.

5. Grid point efficiency - The potential grid point efficiency of a zonal composite grid is related
to the extent to which zonal interfaces share curves with original bodies. While efficiency is
one of the motivations for using a composite zonal approach, emphasis on other aspects of
the zoning might take precedence in some cases.

6. Orthogonality at body surfaces - The importance of grid line orthogonality at body sur-
faces depends on t_le type of numerical scheme and turbulence model used in the flow solver,
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and the level of accuracy desired in the solution. The orthogonality of zone corners and the
smoothness along zone sides sharing curves with original bodies affects the orthogonality of
the grid.

7. Surface vs. field quantities - The influence of a flow-field zoning on the composite zonal
grid in terms of either emphasizing (i.e., concentrating grid nodes near) geometry surfaces or
the regions away from the surfaces is related to the extent to which entire zone sides share
curves with original bodies (similar to the efficiency parameter).

8. Wake resolution - The placement of zonal interfaces can help or hinder the potential for

zonal grid resolution of wakes. The importance of wake resolution is influenced by the
computational objectives of the user.

9. Zone tuple points - Allowing three or more zones to intersect at the same point (a tuple
point) can sometimes facilitate the design of a zoning, but can result in increased coding
effort for the zonal interface conditions.

10. Singularities at body surfaces - Avoiding topological singularities at body surfaces is one
of the motivations for adopting a composite zonal approach. Judiciously permitting some

singularities at bodies can simplify the zoning design, however, and should be left to the
user's discretion.

11. Zone/body intersections - The spatial accuracy of the flow solution is decreased by one
order at zonal interfaces. Allowing zonal interfaces to intersect bodies can simplify zoning
design, but can degrade the flow solution depending on the locations of the intersections.

12. Viscosity in more than one direction - This is a question of flow-solver capability rather
than user discretion. If the form of the equations and the turbulence model are able to handle
viscosity in two coordinate directions, both normal and tangential to body surfaces, then the
zoning need not be limited to zones which share at most one side with a body.

A list of these 12 zoning parameters and their possible weight values is found in table 2.2.
The user bias profile is intended both to guide the design of zonings and to evaluate completed
zonings. The qualitative values are used to guide design decisions, and the quantitative values
which correspond to them are used in the evaluation of zonings. A detailed description of the
profile parameterization, calibration, and validation are presented in chapter 5.

2.3.5 Encoding expert zoning methodology

According to the model of flow-field zoning proposed in section 2.2, a zoning is designed
through the stepwise application of zoning actions to zoning objects until an acceptable solution
is constructed. Thus, any zoning can be defined by a sequence of zoning actions. It is in the
determination of this sequence of actions that zoning expertise lies. To automate flow-field zoning,
it is necessary to automate either the choice of an action at each stage of the design, or the
construction or selection of the entire sequence of actions at the outset. The latter approach was
adopted for two reasons. First, it is difficult to choose the best zoning action at an intermediate

stage without knowledge of the actions which preceded it and which will follow it. Second, action
decisions at intermediate stages require complete qualitative shape and configuration information,

even for newly generated zoning objects. That information is guaranteed to be complete only
for the initial situation since that is the point at which the user provided it, and the means for

extracting the same information from new objects at later stages depends on the way in which
the new objects were formed. The first reason is explained in more detail below.

Consider the generate-and-test problem-solving paradigm described in section 2.2, which can
generate all possible sequences of zoning actions. This procedure produces a tree of all possible
intermediate and final (located at the leave_ of the tree) zoning situations for a given problem. At
an intermediate stage of the zoning, especially early on, there is no way to predict which branch
is most likely to lead to the best solution. Figure 2.9 shows part of such a tree, where some of the
zoning situations possible at the first stage of the design lie directly under the initial situation, and
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Table2.2 UserBiasProfileParameters.

Profile Parameter

Simplicity

Zone corner skewness

Zone side smoothness

Zone side mapping disparity

Grid point efficiency

Orthogonality at body surfaces

Surface vs. field quantities

Wake resolution

Zone tuple points

Singularities at body surfaces

Zone / body intersections

Viscosity in more than one direction

Qualitative Weight Values

NO

LOW

MEDI UM

HIGH

(IMPORTANCE)

ALLOWED BUT NOT IMPORTANT

ALLOWED

SOMEWHAT DISCOURAGED

DISCOURAGED

STRONGLY DISCOURAGED

NOT ALLOWED

four final candidate solutions based on situations (a) and (b) are found at the bottom. Situation
(b) has the potential of leading to one of the simplest or one of the most complicated zonings of
the four shown, so if zoning simplicity is considered important by the user, the path including

situation (b) should be followed only if future action choices result in the candidate solution on
the left. Suppose the user has tuned the zoning profile so that zone side mapping disparity is of

high importance (and should therefore be discouraged). Either situation (a).or (b) could lead to
a solution which has little mapping disparity or to one which has great mapping disparity. Again,
any decision must take into account future action choices.

Constructing or selecting a sequence of actions at the outset of the zoning design instead

of choosing a single action at each intermediate stage avoids the problem of needing information
about unknown future actions, and eases the reqmrements for updated qualitative shape and

configuration information. The next issue is whether to construct or select the action sequences.
Selection of whole action sequences is the most straightforward approach, but requires that the

knowledge base of the system contain predefined sequences for all possible zoning problems. A
method of constructing action sequences is the more practical solution.

To describe zoning action sequences and their construction, the following language is pro-

posed. A sequence of zoning actions which leads to a zoning design for a given configuration is
called a plan. A plan is constructed, or composed, of one or more subplans. The subplans are
primitive plan elements which are predefined, and reside in the system knowledge base. A subplan
consists of the sequence of zoning actions necessary to zone a single grouping of objects. Also,
associated with each action are one or more strategies which provide guidance in the execution
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Figure 2.9. - A tree of possible zoning candidates.

of that action. If a configuration is described by only one grouping, the plan is equivalent to
the subplan selected for that grouping under the conditions of the particular problem. If the
qualitative configuration description is based on more than one grouping, the selected subplans
must be assembled to obtain the final plan. Subplan assembly is made possible by dividing the
actions comprising a subplan into three different categories:

1. Primary Actions - These actions are applied to objects within the same grouping, and
comprise the bulk of most subplans. They are usually connection- or shape-alteration-based
actions which do not result in filling the OB (outer boundary) zoning environment.

2. Secondary Actions - These actions are applied to objects within different groupings, and
usually either connect or separate the two groupings. They do not result in filling the OB
zoning environment.

3. Completion Actions - These are the actions which fill the OB zoning environment and
complete the zoning design. They typically include identification actions and topology im-
position.

The method of combining subplans for the case of multiple groupings depends on the qual-
itative relationships between those groupings. There are three basic types of relationship: (1)
no relationship, i.e., the groupings are contained by different parent objects; (2) vertical align-
ment, where one grouping is above the other; and (3) horizontal alignment, where one grouping
is upstream of the other. In the case of unrelated groupings, subplans are simply joined together
with no modification or rearrangement. Subplans for groupings which are vertically aligned may
require the selection of an additional subplan containing secondary actions. If secondary actions
are not needed, as is the case when the objects in the groupings do not need to be either connected
or separated (this usually occurs when H-topologies surround the objects), the primary actions
of the subplans selected for each grouping are combined, and the completion actions from each
subplan are combined and appended to the primary actions. If secondary actions are needed,
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they are appended to the primary actions, and the completion actions belonging to the subplan
containing the secondary actions are appended to the previous combination. In the final case of
horizontal grouping alignment, the primary actions of the upstream groupings are modified so that
the application type of the operand is changed from parent-child to sibling-sibling wherever appli-
cable. The plan is assembled starting with the primary actions of the downstream-most grouping,
followed by the modified primary actions of each successively upstream grouping, followed by a
combination of the completion actions of all the subplans.

Figure 2.10 shows an example assembly of a plan for a vertically aligned pair of simple airfoils.
The configuration description has the two airfoils in two different groupings. The conditions

required for the selection of these three subplans included airfoil shape descriptions involving
blunt leading edges and sharp trailing edges; a bullet-shaped OB zoning environment; inviscid
flow solution sought; and user bias in which simplicity is important, zone/body intersections are

allowed, singularities at bodies are allowed, and wake resolution is important.
Most of the zoning design expertise which has been captured is encoded directly in the

predefined subplans. The methods by which the subplans are combined when more than one
grouping is present contain the remainder of zoning design knowledge. This approach is efficient
in the sense that it obviates the need to add new subplans for each new configuration. It is general

because a variety of complex zoning problems can be zoned using plans composed of subplans for
simpler problems. The design of a zoning has been transformed into an analytic problem solvable

by breaking down the configuration into simpler groupings when possible, selecting subplans for
each grouping, and assembling the subplans into a coherent zoning plan.
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2

OB

2

__ZONE2

subplan spl: (for first body)
primary actions:

1. connection/bridge - parent-child
(strategies: degenerate-zone, follow-wake)

completion actions:
1. identification/identify - region
2. topology-imposition/impose- C

5-6

subplan sp2: (for second body) - same as spl

subplan sp3: (to connect two bodies)
secondary actions:

1. connection/bridge - sibling-sibling
(strategy: fill-in-bridge)

2. topology-imposition/identify-corners
completion actions:

1. identification/identify - region
2. topology-imposition/impose- C

final plan:
1. connection/bridge - parent-child/(OB bl)
2. connection/bridge - parent-child/(OB b2)
3. connection/bridge - sibling-sibling/($zel $ze2)
4. topology-imposition/identify-corners
5. identification/identify- region/($ze3)
6. topology-imposition/impose- C

Figure 2.10. - Subplan assembly example.
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CHAPTER 3

EZGRID: A KNOWLEDGE-BASED SYSTEM
FOR TWO-DIMENSIONAL FLOW-FIELD ZONING

A knowledge-based system called EZGrid (Expert Zonal Grid generator) has been developed
for both interactive and automatic flow-field zoning of 2-D problems in CFD. This chapter pro-

vides the details of the implementation, beginning with the strategy that was employed. The
programming languages and data representation schemes used in EZGrid are discussed in section
3.2, followed by a section outlining the structure and flow of control of the program. Section 3.4
completes this chapter with a description of the EZGrid knowledge base.

3.1 Implementation Strategy

The difficulties which arise in any attempt to automate flow-field zoning have already been

described. The process of zoning is poorly understood and difficult to describe except via pictures.
It has a distinctly perceptual element, not only in any description of the process, but also in the

design decisions that are made throughout the process. Experts do not agree on what qualities
determine a good zoning, indicating an element of individual bias. Finally, zoning has been
modeled as a design process, which is a problem-solving approach for which there are few examples
of successful knowledge-based systems, and hence less guidance available. The implementation
strategy that was developed to meet these challenges involved two phases: the first phase was
the implementation of the zoning model in terms of the two most basic elements of the zoning
language-zoning objects and actions-resulting in an interactive system for flow-field zoning. The
second phase was the incremental addition of the remaining zoning language elements-shape and

configuration, user bias, and zoning design expertise-to enable automation of the process.
The interactive flow-field zoning system resulting from the first phase of development is

somewhat automated. Use of the zoning language to describe objects and actions made possible
automation of the mechanics and bookkeeping associated with flow-field zoning. The interactive

system is able to

1. Compute the limits of the outer boundary of the computational domain using heuristics
involving speed regime, flow steadiness, angle of attack, far-field boundary condition type,
and desired level of accuracy

2. Deduce facts about the situation at each stage (for example, which objects directly contain

other objects; whether an object is filled, empty, connected, or zoned; the contents of each
object; and which curves are shared by more than one object)

3. Determine which zoning actions are appropriate in any given situation (for example, an action
with a separation-based operator is me__ningless in a situation where there is only one body)

4. Determine what objects are needed to execute an action and which parameters are relevant

for the specification of the object curves

5. Execute the action by generating the curves (using the curve parameter information provided
by the user), constructing the objects, computing new object attributes, and establishing new

object relations

When using the interactive system, the user must supply the parts of the zoning language
which are more difficult to automate:

1. Translation of perception of object shapes and relations into an internal qualitative descrip-
tion, which helps the user to make zoning design decisions and to formulate and execute
curve generation strategies
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2. Incorporation of user bias into the design, construction, and evaluation of zonings

3. Application of expert zoning methodology to the choice of a zoning action at each stage of
the design

To complete the automation of the phase I system, phase II required the implementation of
the remaining elements of the zoning language, replacing those parts previously supplied by the
user:

1. The language to describe qualitative shape and configuration information was implemented
as an interactive, menu-based input sequence occurring only during the setup phase of an
automated system run (as explained in section 2.3.3, this element is not automated because of
the scope of individual interpretation possible), making possible a qualitative representation
internal to the computer.

2. User bias was parameterized and tested in the form of a tunable user bias profile, measure-
ment functions for each parameter were developed and calibrated, and a simple input scheme
was devised for parameter value assignment.

3. Subplans and action execution strategies incorporating good zoning practice, shape and
configuration awareness, and user bias were developed incrementally.

This two-phase implementation strategy was found to be essential to the success of the
system-development effort. By beginning with the two basic elements of the zoning language,
zoning objects and actions, it was possible to separate their validation from that of the rest of
the language, permitting them to be debugged independently and more efficiently. The resulting
interactive system provided several further advantages: it formed a solid, reliable foundation on
which to build the rest of the automated system, and it provided a platform on which to gain
experience with manipulating objects through zoning actions, helping to identify which qualitative
shape and configuration parameters are needed, what user bias factors affect zoning decisions,
and what sequences of actions are best for a given situation.

3.2 Representation and Language

Equipped with a zoning model and language, a human zoning expert is better able to com-
municate his or her methodology to another human. However, to automate zoning on a computer,
it is necessary to communicate this methodology in terms a computer can use. The representa-
tion challenge lies in describing zoning objects, situations, and actions at two different levels of
abstraction. The lower level is numerical, and is where computations are performed to generate
curves, find curve intersections, measure angles, calculate derivatives, and compute tangents and
normals to curves. The higher level is symbolic, and is where decisions are made about what
action to take in a given situation and what action execution strategy to use. A knowledge-based
programming approach readily accommodates both levels of abstraction needed for this problem.

3.2.1 The role of C in EZGrid

The EZGrid knowledge-based system was implemented using three programming languages
- C, Franz Lisp, and MRS. Each has different strengths; C is the foundation language of the entire

system, because Franz Lisp is written in C, and MRS is written in Franz Lisp (other versions
are based on Zetalisp, Common Lisp, and Interlisp), and because it is the language of choice on
the Silicon Graphics Iris 2500 Turbo Workstation (a 68020-based machine with a Unix System V
operating system), which is the hardware used for this development. Also, it is easier to program
numerical operations in C than in either Lisp or MRS. A good source of information about C
programming is the text by Kernighan and Ritchie (1978).

In EZGrid, body perimeter curves and zonal interface curves are generated using parametric
cubic splines, so part of the representation of a curve involves a pointer to a numeric array con-
raining the second derivatives of the cubic spline at each spline knot. The knots (x, y coordinate
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pairs) for each spline are stored in two large arrays, X and Y. The routines which generate the
cubic splines (involving matrix inversion) are written in C, as are the routines which find the
extrema of a cubic spline, the centroid of a cubic spline, and the first derivative at any point on

a cubic spline.

3.2.2 Lisp: a basic AI language

Franz Lisp is a dialect of lisp, which is a list-processing language that provides convenient
mechanisms for manipulating lists of arbitrary symbolic elements. Lisp is a functional language,
and thus promotes program modularity. It is an interactive language which can also be com-
piled. One of the features of lisp which makes it particularly appropriate for the development
of intelligent systems is its uniformity (Winston and Horn, 1981)-functions and data have the
same form. This means that a lisp function can construct and analyze another lisp function.

Lisp has a built-in data structure called a property list, which associates attributes with values,
and can be attached to any atom (a word-like, nonlist object in lisp). Lisp makes it easy to
generate a virtually unlimited number of new variable names during execution, and memory can
be allocated as needed (list lengths are not specified ahead of time, as the length of an array must
be). Recursion is permitted in lisp, which also facilitates list processing. Good references for lisp
programming are the Winston and Horn text (1981) and Wilensky (1984).

Lisp property lists are used to represent EZGrid object properties which are invariant. Each

object has on its property list

1. A curvelist (literally, a lisp list of curve names)

2. A vertexlist

3. A sidelist (a lisp list of lists of curve names)

4. Object extrema - downstream-point, upstream-point, top-point, and bottom-point (where
a point is represented in terms of how it was found, if possible, as well as its actual location;

e.g., ((curve C1 0.37) (1.34 2.8)) is a point which was selected from curve C1 at u = 0.37
(nondimensional position), and has the coordinates x = 1.34 and y = 2.8)

5. Numvertices (an integer representing the number of vertices of the object)

ft. A maxlength and a maxwidth (real numbers denoting the distance between the extrema in
the x-direction and those in the y-direction, respectively)

7. A leading edge and trailing edge (represented as points, these may not be coincident with
upstream and downstream extrema, depending on the qualitative shape description of the

object and the flow specification)

8. A chord length (real number denoting the straight-line distance between the leading edge
and the trailing edge)

9. A centroid (list containing a pair of x, y coordinate values)

10. A partlist (list of primitive part names which comprise the shape description of the object)

11. A joinlist (list of joins, where each join is a list composed of the part location and the end/side
location for each part involved in the join)

12. A type ("simple" or "complex," depending on how many parts are required to describe the
shape of the object)

Curves, vertices, and parts also have lisp property lists on which most of their attributes
are stored. On a curve's property list is a property called "formula," which is a pointer to
the array of cubic spline second derivatives, as weU as other properties: type (fundamental or

subcurve), indices (a list of two integers denoting the first and last indices in the X, Y arrays
belonging to the knots of that cubic spline), begin-u and end-u, reverse, parent (only subcurves
have a parent curve), and constituent curves. Each vertex may have stored on its property list
indices, an in-curve and an out-curve, an included angle, and a direction (an angle in radians).
On the property list of each primitive shape part are the properties: type (positive or negative),
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orientation (horizontal or vertical), front, back, top, and bottom (each a lisp list beginning with
a qualitative description, such as blunt or straight, and ending with one or two points denoting
the location of the end or side).

The C function which generates cubic splines is invoked from a lisp function which stores the
resulting second-derivative array and other curve properties on the property list of the new curve.
Functions which find closed loops formed by curves, subtract curves, reverse curves, divide curves,

determine curve intersections, update curve connection lists, compute curve lengths, compute
vertex angles, construct new objects, and do many more such tasks, are written in lisp. In
addition, user interface routines and functions which provide overall system control in EZGrid
are written in lisp.

3.2.3 Logic programming using MRS

MRS is a logic programming language that was developed at Stanford (Genesereth et al.,
1984). The name MRS stands for Meta-level Representation System; although in a strict sense it is
a programming language, the name emphasizes the underlying philosophy that a user "programs"
in MRS by representing facts rather than by specifying a procedure (Russell, 1985). This is known
as the declarative programming paradigm, in which a computer is told what is true (and must
deduce an answer from that information) rather than how to do a task. MRS uses logical rules
of inference (such as modus ponens), pattern matching, and simple search strategies (primarily
depth-first) to perform logical deduction on facts and rules represented as prefix predicate calculus
(PPC) propositions. Predicate calculus is a centuries-old mathematical language which has as
its basic components object constants and variables, function symbols, relation symbols, logical
connectives (operators), and quantifiers. Its precision and well-established syntax have made it
attractive to the AI community as a method of knowledge representation for automated inference.
PPC is simply a version of predicate calculus in which the quantifiers, operators, functions,
relations, and constants are placed at the beginning of a proposition in a certain order. An
example of a simple PPC proposition is (downstream airfoill airfoil2), which uses a relation and
two constants to express the fact that airfoil1 is downstream of airfoil2. A more complex example

is (if (and (parent $x) (female $x)) (mother $x)). Variables in MRS are all preceded by the $
symbol. This PPC proposition is equivalent to the English statement, "If z is a parent and x is
female, then z is a mother." Most of the zoning knowledge contained by EZGrid is in the form
of PPC propositions-knowledge about determining the outer boundary shape and limits, what
actions to perform in certain situations, how to execute those actions, what objects result and
how they are related to existing objects, and definitions concerning zoning objects and situations.

Nilsson (1980) contains a clear and complete discussion of predicate calculus and various inference
and search procedures. Russell (1985) provides an entertaining and helpful explanation of many
of those concepts in the context of programming in MRS.

PPC propositions are used in EZGrid to represent object properties which can vary from one
stage of the zoning design to the next. Object relations (containment and direct containment);
status (whether it is a body, zoning environment, or zone, and whether it is filled, empty, de-
generate, connected, or zoned); and functions (the corebody, coretype, contained environments,
filling objects, numbodies, and numenvironments of an object) are all in this category. Examples
include

(contains OB B1 (stage 1))

(body el (stage 1))

(zoning-environment Z E2 (stage 2))
(empty ZE2 (stage 2))

(zone ZE2 (stage 4))

(corebody OB (Sl 82 B3) (stage 1))
(corebody OS (B1 ZE1) (stage 2))
(contained-environments OB (ZE1) (stage 2))
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( filled O B (stage 5) )

(zoned OB (stage 5))

Each of the propositions above ends with a term that denotes the stage of the zoning design
at which the statement is true. This is necessary since, as can be seen from the two propositions
involving the corebody of OB, there would otherwise be conflicting statements in the database,
resulting in nonsense being generated by subsequent inference processes. Curves and vertices
also appear in MRS propositions which are stored in the system database. Curve connectivity
relations and information about curve generation are represented propositional]y, for example:

(new-connection (C1 (0.0 (C17 1.0))) (stage 3))

(connection-list ((C1 (0.0 (C16 0.0) (C17 1.0)) (O.3 (C8 0.0))) (C5 (O.492 (C16 1.0)))
(stage 4))

(curve-needed C6 (type new) (object ZE3) (stage 2))
(curve-parameter C6 (begin-point ((curve C1 0.3)(1.23-0.41))) (stage 2))
(curve-divided C2 (stage 3))
(vertices ZE2 clone (stage 2))

The connection list proposition can be interpreted as follows: at stage 4, curve C1 has two
curves which are connected to it at u = 0.0 (i.e., at the beginning of the curve), C16 at its
beginning, and C17 at its end. Curve C1 also has the beginning of C8 connected to it at u = 0.3.
Curve C5 has the end of C16 connected to it at u = 0.492. The connection list is produced by
a lisp function from a collection of new-connection propositions and the connection list from the
previous stage. Another lisp function uses the connection list in conjunction with zone curvelists
to determine the existence and number of tuple points (points where more than two zones meet),
which is used in zone design evaluation.

In order to understand how the three different languages complement each other, and how
EZGrid works, it is necessary to look in somewhat more detail at the way MRS performs auto-
mated inference. In MRS, separate databases, called theories, can be established. In the "global"
theory are predefined PPC propositions which define the basic MRS utilities (e.g., how to assert
a proposition, how to determine membership in a set, how to determine whether a symbol is a

variable and whether it is bound to a value). An MRS programmer usually sets up additional
distinct theories: one or more for propositions which contain the domain knowledge of the pro-

gram being created (this collection of theories is usually referred to as the rule base or knowledge
base), and one or more for the propositions which represent facts that have been asserted (input)
by the user or deduced by the system for the particular problem being solved (these theories are
called the database).

As mentioned above, MRS uses logical rules of inference, primarily modus ponens, to auto-
matically deduce facts from other facts and rules. Modus ponens can be described as follows: if
there are two propositions (if A B) and A, then B can be deduced. Another way to state this is
that if there is a rule that says "if A is true, then B is also true," i.e., B follows logically from A,
and it is known that A is true, then B must be true. For example, given the rule (if (man Sx)
(mortal Sx)) and the fact (man Socrates), MRS could deduce that Socrates is mortal.

Modus ponens can be used in both the forward and backward directions in MRS. In forward

reasoning (called forward chaining), inference is data-driven, meaning that when a propositional
fact is asserted into the database, the rules in the knowledge base are examined to see whether
the antecedent portion (in the rule (if A B), A is the antecedent and B is the consequent) matches
that fact. If variables are involved, they are bound to values which aid the match. When a match
is found, the consequent proposition is asserted into the database, which triggers another search
through the rules for matches of rule antecedents to that proposition, and the "chain reaction"
continues. Figure 3.1 depicts the forward-chaining process graphically. What has just been
described illustrates forward chaining done in a depth-first fashion, where as soon as one match
is found and its consequent asserted, the chain continues through the consequent. Breadth-first
forward chaining would proceed to find all matches to the initial fact before trying to match any
consequent facts that _re asserted. Depth-first search is the default strategy in MRS.

33



RULEBASE

(IFAB)

(IF (AND B C)

D)

RULE BASE

(IF A B)

(IF (AND B C)

D)

RULE BASE

(IF A B)

(IF (AND B C)

D)

(FO.WA.OC.A,©
J

DATA BASE

C

DATA BASE

C
A
B

DATA BASE

C
A
B
D

A

/

STOP )

Figure 3.1. - Forward chaining diagram.

Backward reasoning (backward chaining) is goal-driven as opposed to data-driven; it is trig-

gered not by the assertion of a fact into the database, but by a query to the system to establish
the truth of a proposition (the goal). First, a procedure called a "lookup" is performed on the

database to determine whether the goal proposition is already there. If it is not found, the rule

base is searched for matches between the goal proposition and the consequent portion of the

rules. When a match is found, the antecedent becomes the new goal proposition, the database is

searched for its presence, then the rule base is resorted to, and the chain goes on until the current

goal proposition is either found in the database, or there are no more matches to generate new

goal propositions. Backward chaining is shown graphically in figure 3.2.

Establishing separate theories in MRS can have many advantages. Within the knowledge

base, different theories can contain different types of knowledge (e.g., in EZGrid, one theory

contains rules about curve generation, one contains rules about situation assessment, and so on).

Theories can be activated and deactivated with a simple MRS command, so that searching for

a match to a proposition can be limited to only those theories which are most pertinent at the

time. Theories can be related to each other through directional links in a sort of "parent-child"

relationship, where the child theory has access to all of the propositions in the parent theory, but
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Figure 3.2. - Backward chaining diagram.

the reverse is not true. Sibling theories do not have access to the contents of each other. Using

separate theories can also facilitate "truth maintenance" for the system by storing any suspect
facts in a theory by themselves. The truth maintenance mechanism in MRS is called residue.
Residue can be thought of as backward chaining in which the truth of the goal proposition need
not be estabhshed as long as there is a rule in the rule base which states that that proposition
can be assumed to be true (such a rule ro.:ght look like (if (and A B) (assumable C)), where
"assumable" is an MRS term). Any proposition deduced using residue is stored in a newly created
theory that is a child of the current theory. All further deductions based on that proposition are
also asserted into the new theory since their truth is dependent on the truth of the originally
assumed proposition. In EZGrid, residue is used as a convenient mechanism for creating a tree
structure of theories, where each theory contains the propositions which describe the situation at

a single stage of a zoning design (see section 3.3).
Communication among the three programming languages is possible and fairly simple, allow-

ing the strengths of each to be tapped. A lisp function may call a C function through a foreign
function interface procedure. An MRS proposition may contain a term which calls a lisp function

(a procedural attachment), resulting in the binding of an MRS variable or the determination of
the truth of the proposition. A lisp function may assert propositions into the EZGrid database,
and may initiate an MRS "lookup" or inference procedure. The result is a versatile system which
can handle both numelical calculations and symbolic inference within a single framework.
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3.3 Program Structure and Control

This section contains a description of the structure of EZGrid. The chart in figure 3.3
represents the conceptual structure of EZGrid as a knowledge-based system. An invocation of
EZGrid places the user in the MRS environment, which is embedded within Lisp and C. Residing
in the MRS environment are Lisp and C functions, a database, a knowledge base, and an inference
engine (the MRS mechanisms for forward and backward chaining and residue, as described above t.
The arrows indicate the direction of interaction among the different components. The user dea_ s
directly with Lisp functions only, through various user interface functions. These Lisp functions
can assert propositional facts into the database (which can trigger forward chaining), and they
can invoke MRS lookup, backward chaining, and residue directly (hence the arrow to the inference
engine). Lisp functions call C functions for cubic spline computations. The Lisp functions do
not _Lff_,.ct the knowledge base-there is no method of either interactive input of new rules or
input via a learning algorithm. The knowledge base affects the database only through calls to
Lisp functions and through the results of inference processes. Inference processes cause facts to
be asserted into the database, and the assertion of facts can trigger further inference; hence the
two-way arrow between those two components.

The knowledge base is a collection of unrelated MRS theories, as shown in figure 3.4a. These
theories contain flow-field zoning domain knowledge in the form of propositions that are if-then
rules. The next section wiU cover the content of these theories. Figure 3.4b shows an example
tree structure for the theories which compose the database. At the outset of an EZGrid run,
only the theory INIT exists, and it is empty. After the initial data have been input by the user

(geometry, inflow conditions, user bias) and the situation has been assessed, a new child theory is
created with the name <old theory>-ACTION, which is where decisions are made regarding what
zoning actions are executable (both possible and desirable) in the present situation. Using MRS

Lisp •
Functions ___

I un !oosl
Database

Knowledge
Base

MRS

Lisp
C

Y

i̧ ¸ ! !ii!i!ilii!i!iiii!!ii ii!iiiii! !i!i!ii!!iii!!!iiiii!!iiili! !!iiiii!iii!!!!il!! i!!iii

Figure 3.3. - EZGrid conceptual structure.
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residue and this assumable rule from the theory CONTROL - (if (and (readytozone (stage $sl))

(executable Saction (stage $sl))) (assumable (choose-action $action (stage $s2)))), new theories
(children of INIT-ACTION) are created for each executable zoning action. Usually there are only
one or two, and often the second action is simply a variant of the first. If there are two distinct
actions possible, the first one is foUowed to the end (and a candidate zoning design is obtained),
and then the trail of the other is picked up. If there is only one distinct executable action,
as is often the case, the "tree" structure degenerates to a linear one. Each pair of theories -
theory-name, <theory-name>-ACTION - contains the propositions that describe the situation
at a single stage of the zoning design.

EZGrid has several modes of operation: interactive-multiple-step, interactive-single-step, and
automatic. Within automatic mode, two submodes are possible: verification mode or batch mode.
Both of the interactive modes have capabilities identical to the system which resulted from phase I
of the EZGrid implementation, to which the user must add the perception, bias, and zoning design
knowledge. There are two distinct phases in any system run, regardless of mode: the problem
setup phase, which requires user input (even in automatic mode), and the zoning construction
loop, which is traversed at each stage of a zoning design. This basic flow of control is illustrated

in figure 3.5.
The multiple-step version uses the entire zoning action framework, so the user must specify

the design in terms of a sequence of zoning actions, one at each stage. Figure 3.6 shows the
events which occur during an interactive-multiple-step run of EZGrid after the mode of operation
has been selected. The first step of the setup phase consists of tuning the user bias profile. The
user must set the profile parameter values in one of three ways: by interactively using a menu of
choices, by reading a file of parameter settings, or by keeping the default settings. The profile is
used to guide zoning design in automatic mode only, but is used in the evaluation of completed
zonings in all three modes.

EVALUATION/
OUTPUT PHASE

T

PROBLEM SET-UP PHASE

Situation
Assessment

Action
Execution

Action
Selection

ZONE CONSTRUCTION PHASE

Figure 3.5. - Basic flow of control in EZGrid.
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Geometry input can be interactive or can be accomplishedby reading a data file of x,y
coordinates. For both interactive input and reading a file, the user is asked whether the x and y
values to be input are points which represent a continuous smooth curve, or are knots of a cubic
spline, which can be sparse and discontinuous, but still represent a smooth curve. In the case
of continuous-point input, any discontinuity is assumed by EZGrid to be a discontinuity in the
surface of the body and a vertex is placed there, resulting in the end of one fundamental curve, or
cubic spline, and the beginning of another. In the case of spline knot input, after each x-y pair is

given, the user is asked whether that point is a vertex. Once EZGrid has this information, cubic
splines are generated between each vertex, a vertex_list and a curvelist are constructed, and the
appropriate properties are placed on the curve and object property lists. Propositions describing
the new objects are also asserted into the database, e.g., (body B1 (stage 1)).

The outer boundary of the computational domain is then specified. The user is given the
option of specifying the outer boundary him- or herself, or letting EZGrid do it automatically using
heuristic rules relating inflow conditions to outer boundary limits. If the user chooses the former

option, EZGrid asks if the input is to be via a data file of x,y coordinates or interactive. If it is to be
interactive, the user is given four choices: (1) continuous point input, (2) cubic spline knot input,

(3) curve parameter specification, and (4) object parameter specification. The first two choices are
identical to the choices given in interactive geometry input. Curve parameter specification uses the
menu-based curve specification capabilities developed for zonal interface curve specification during
the loop phase. These capabilities are described in detail later. Object parameter specification
involves choosing a shape (ellipse, bullet, or rectangle, as in the primitive part shapes described

in section 2.3.3) and maximum dimensions in terms of distance in chordlengths upstream of the
upstream-most point of any body, downstream of the downstream-most point of any body, above
the topmost point of any body, and below the bottom-most point of any body. The reference
chordlength used is that of the body with the largest chordlength. EZGrid has rules which can use
this information to generate the appropriate outer boundary object (OB). If the automatic OB
specification option is exercised, EZGrid asks the user to supply inflow conditions such as free-
stream Mach number, angle of attack, and flow steadiness. These and other physical parameters
may be needed later during the zoning design, so once their values have been provided, they are
stored as propositions in the database. Whenever such avalue is needed later during the same

run, EZGrid first does a lookup on the database to see whether it is already known, and only if
it is not found will the user be bothered for that information. There are rules in the knowledge
base which relate the above inflow conditions to OB maximum dimensions. These rules provide

the dimensions, the user is asked for the shape, and the object generation rules then proceed as
before to construct OB. As with the flow-field geometry, OB has a curvelist and vertexlist placed

on its property list, and relational and type information is stored as propositions in the database,
e.g., (zoning-environment OS (stage 1)) and (contains OB B1 (stage 1)).

At this point the zoning construction loop, which is executed once for each stage of the
zoning design, is entered. First, the situation is assessed. Situation assessment is triggered
by the assertion of the proposition (end-of-initial-data (stage 1)) into the database when all
object generation at that level has been completed and the associated information stored. The
CONTROL rule which is triggered begins by calling a lisp function (assert_data) which invokes

backward chaining to (1) check for direct containment relationships among objects; (2) count
all zoning bodies and zoning environments in order to construct the corebody and contained
environment lists; (3) check to see whether any zoning environments are candidates for topology
imposition (if so, that process is executed, and the results are recorded as a sidelist on an object's
property list and as a proposition (zone ZE3 (stage 3))), and (4) look for objects which have been
filled, and find the filling object lists.

The CONTROL rule that initiated situation assessment then checks to see whether the zoning

is complete; creates a new theory (INIT-ACTION, the first time around); and finally asserts
propositions into that new theory which trigger zoning action rules. So the next two components
of the loop as pictured in figure 3.6 take place within the next theory in the database tree. All

possible zoning actions are found using rules from the ACTIONS theory of the knowledge base.
These are presented to the user, who must choose one for execution. The proposition (executable
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<chosen action> (stage 1)) is asserted into the database, enabling the residue mechanism to
operate (recall the rule in which any executable action is assumed to be the chosen one) and
create a new child theory. In this new theory, all propositions end with (stage n+l), where n is
the number of the previous stage, because the execution of an action changes the zoning situation.

There are rules (called object identification rules) which enable EZGrid to determine the type
and method of specification of each new object which must be constructed to realize a zoning

action, as well as the number of objects required for the action. For the purpose of generation,
the type of an object is either created or resultant, where a created object requires new curves

(and possibly existing ones) for its construction, and a resultant object is composed of existing
curves only, and usually contains a created object. Most zoning actions involve the construction
of both created and resultant objects. There are five methods of specification: curve, object,

traverse, merge, and subtract. The curve method requires the user to supply curve specification
information, as described in the next paragraph. The object method involves the specification by

the user of object parameters (as in the specification of OB described above), and the automatic
determination of the curve specification information by EZGrid. Traverse, merge, and subtract
do not require any input from the user since they involve existing curves that either have just
been generated for a created object, or belong to the curvelists of the operand objects of the

action being executed. Merge and subtract are used for resultant objects only. For example, two
propositions that are asserted into the database by the firing of an object identification rule for
a connection/bridge operation are (object-needed ZE3 (type created) (specification curve) (stage
2)) and (object-needed ZE4 (type resultant)(specification merge) (stage 2)).

If the object is to be specified via curve specification, the user must specify the number and
type of curves needed. For the purpose of generation, there are two types of curves: new and
ezisting. To specify a new curve, the user must supply the first and last points of the cubic
spline, and may supply interior points and the angles at the beginning and end of the cubic spline
(which are converted into first derivatives). Points and angles are input using menus. Table
3.1 shows the menu choices available to the user. Existing curves are specified by selecting two
points on an object and specifying which portion between those two points (the clockwise or the
counterclockwise portion) belongs to the curve being specified. The two points are selected in the
same manner as for new curves.

If new curves have been specified, they are now generated by a call to a lisp function, which
calls a C function and asserts all of the new curve properties. If existing curves have been
specified, a lisp function performs whatever curve division might be necessary to identify the

new segment of existing curve(s) in terms of one or more new subcurves. New zoning objects
are then constructed according to the way in which they were specified. List traversal is the
fundamental building block of object construction. If an object has been specified via curves or
object parameters (which reduces to curve specification), traversal of the resulting list of new and
existing curves to order them in a clockwise manner forms the curvelist of the new object. If
traverse is the method of specification, then a list of existing curves is traversed and ordered to
form a new curvelist. A resultant object specified by the merge method has its curvelist formed
from the merging of the curvelists of the action operand objects and, usually, the curvelist of a
newly created object (such as a bridge). The subtraction method forms a new curvelist by the
subtraction of the curvelists of one or more existing objects (usually siblings) from the curvelist
of another existing object (usually the parent object). After the construction of each new object,
object properties are determined and stored, and the user is asked whether a plot of either the
new object, all objects, a list of curves, or a list of objects is desired.

Finally, new object relations are established. Containment relations are determined by EZ-
Grid rules using information about what zoning action has been executed and what sorts of
objects have been constructed. Direct containment and other situational object properties are
updated in the next step-situation assessment. During situation assessment, it is discovered
whether any of the new objects constructed are empty. As soon as a proposition to that effect
(e.g., (empty ZE5 (stage 4))) has been asserted into the database, a rule is triggered which calls
a lisp function. This function queries the user as to the desirability of imposing a topology on
the empty object. This is done because the criteria for an object becoming a zone are that it be
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Table3.1 PointandAngle Input Menus.

POINT MENU

1. PREVIOUS POINT

2. VERTEX LOCATION

3. POSITION ON AN OBJECT
4. POSITION ON A CURVE

5. x, y VALUES
6. AN OBJECT EXTREMUM

7. CONNECTION BETWEEN TWO OR MORE CURVES

8. ARCLENGTH DISTANCE ALONG A CURVE FROM A POINT
9. VECTOR FROM A POINT

10. POSITION ON AN OBJECT BETWEEN TWO POSITIONS

11. POINT BETWEEN ANY TWO OTHER POINTS

12. INTERSECTION WITH AN OBJECT OR CURVE

13. END OR SIDE OF AN OBJECT PART

14. ONE OF A GROUP OF PREVIOUSLY STORED POINTS

ANGLE MENU

1. SPECIFY FRACTION OF AN EXISTING ANGLE

2. SPECIFY ANGLE MEASURE FROM RIGHT-HORIZONTAL (DEGREES)
3. LEAVE IT UNSPECIFIED

empty and topologically four-sided. If the user does want that object to become a zone at that
point, he or she is given the following choices for imposing a topology on the object: impose-
C, impose-H, impose-O, identify-corners, or choose-points. The first three choices result in the

imposition of the familiar C, H, and O topologies. If none of these seems appropriate, the two
additional options either choose the four vertices of the object with included angles closest to 90 °,
or allow the user to choose any four arbitrary points (using the same point selection menu as is
used in curve specification) to be the topological corners of the object.

If, during situation assessment, it is discovered that OB has been zoned, the design is com-
plete. The user may invoke the EZGrid zoning evaluator at this point (a discussion of zoning
evaluation is provided in chapter 4). For output of zonal interface information to a grid genera-
tion program, a lisp function is called which reorders the zone sides, samples the curves of each

zone's sidelist with a number of points specified by the user, and writes out the resulting x,y
coordinates in accordance with the format of the grid generator of choice (in this case, GRID-
GEN2D (Steinbrenner, 1986)). These points define the zone topology and interface locations, but
are not usually suitable as actual grid-point locations. For simple cases, there are rules in the
knowledge base which determine the number and distribution of grid points for each zone. In
general, however, no attempt is made to automate the grid generation task.

The second mode of EZGrid operation is interactive-single-step, which does not use the
zoning action framework, but rather just uses the convenient point and angle menu input to
facilitate curve specification. The idea behind this mode is that the user does not want to engage
the whole EZGrid machinery to do action selection, action execution, and situation assessment.
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This mode is for the user who simply wants to directly specify the curves that become the zonal
interfaces, and all at one stage so that the process is much quicker. The flowchart which illustrates
this mode is shown in figure 3.7. The same problem setup is done, but the loop which is then
entered is simply a curve-generation loop, where curves are specified and generated as described
above. When no more curves are to be generated, the list of newly created curves plus the curves

belonging to the curvelists of the original geometry and the outer boundary object is traversed to
find all closed loops. These are designated the curvelists of the new zones. The user is asked to
impose a topology on each zone, and the zoning is complete. The final steps again involve zoning
evaluation and output of interface information, as in the interactive-multiple-step mode.

The flow of control in EZGrid's automatic mode is depicted by figure 3.8. The setup phase
in automatic mode is identical to that in the two interactive modes, with the exception of two

additional user input steps: qualitative shape description and qualitative configuration descrip-
tion. It is ironic, perhaps, that the mode which is touted as automatic requires more user input

during the setup phase than do the interactive modes, but it is important to remember that the
user provided that information in the other modes implicitly, throughout the zoning process, and

repeatedly (it was never stored to avoid redundancy in input). By contrast, the input of that
information in automatic mode is explicit, is done only once, and is stored in both propositional

and property list forms so that the system can use it throughout the zoning process without
having to ask the user for further information. The user is asked to provide a qualitative shape
description for each original body after it is constructed during geometry input. This is accom-
plished using menus which prompt the user for each attribute required in the shape description

(as discussed in section 2.3.3). The quantitative portion of primitive part description is provided
by the user by means of the same point selection menu used in many other steps of the zoning

©
M

user interaction required

user interaction optional

automated

I

input _'Jl
_'A user _ [ input

profile _1 ge0metr5

specify
outer _¢_

[ _ boundary_

I Y////////_/////////_

conds.

_ evaluate and [_

°utpu. t....z.?ne.so.. I_

t
construct objects (auto),

impose topologies

T
user queried,

"specify a curve?"

specify
curve
info.

Figure 3.7. - Flowchart for interactive-single-step mode.

43



F!
El

2cr "_
<_

0

0 0

IDI Q

o

o

o

t

c_

44



process. The user is asked to provide a qualitative configuration description after OB is specified.
Again, menus, prompts, and the point-selection menu (for the specification of approximate mini-
mum separation distances between objects and groupings) aid the user in this input. Once body
shapes and the configuration have been described, the descriptions can be stored in files and read
in lieu of interactive input when the information is requested in future runs.

The loop phase, in which a zoning is constructed stage by stage, differs in automatic mode
from that in the interactive-multiple-step mode in three ways: (1) a new step is added between
situation assessment and the finding of zoning action choices, which is the construction of a
zoning plan, or sequence of zoning actions for each stage; (2) the step in which an action is chosen
is automated-the user is no longer asked to choose an action (unless either no plan has been
constructed or the plan has failed, in which case the system drops into interactive mode locally);

and (3) the curve specification step is automated, and no longer requires user input. As can be
seen from figure 3.8, the entire construction loop is automated in this mode.

A plan is represented as a proposition in the database, and contains two lists: a pending list
and an executed list. An example of a plan is (plan P1 (pending (action4 action5 ...)) (executed

(action3 action2 action1)) (stage 4)). The first time through the loop, rules which govern the
applicability of subplans for single-object groupings are fired after the situation assessment step,
and are combined into a plan, which is asserted into the database. At each subsequent stage in

the zoning, a rule checks to see whether the plan has failed for any reason, and if it has not,
reasserts the plan in its last asserted form (i.e., the same plan is kept). Plan failure is described
below.

The choice of a zoning action is automated by comparing the action at the top of the list
of pending actions of the plan to the list of possible zoning actions at that stage. If a match is
found, that action becomes executable. If no match is found, the plan fails, and the proposition
(failed-plan P1 (stage 2)) is asserted into the database, and interactive action choice is triggered.

In automatic mode, curve generation proceeds without input from the user. Appended
to each action term in the plan proposition are one or more action execution strategies, such
as follow-wake, wrap-body-wake-constant-offset, and bisect-vertical-pair. There are rules in the
knowledge base (in the theory AUTO) which use these strategies to determine the number and
type of curves needed to execute the action, and call lisp functions to compute the locations of
spline interior points for many of the strategies.

Situation assessment involves several new events in automatic mode. At the beginning of

situation assessment, the plan is updated to reflect the fact that an action has just been executed.
That action is moved from the pending list to the top of the executed list, the old plan is removed

from the database, and the updated plan is asserted. When an object has been determined to
be empty, the plan is examined to see whether the next action on the pending list is topology-
imposition. If it is, the strategy associated with the action (one of the topology-imposition options
described earlier-impose-C, etc.) is used to define the object's topology. If it is not, nothing is
done to the empty object at that stage (probably because it is going to be acted upon at a later

stage).
Appendix B contains a listing of the contents of the EZGrid database at the completion of

an automatic run in which the flow field about a single, highly cambered airfoil was zoned. The
database consists of five MRS theories: INIT, INIT-ACTION, T1, T1-ACTION, and T2. Three

stages were required to solve this simple problem.

3.4 The EZGrid Knowledge Base

As is true for most programs, much of the knowledge contained by EZGrid is implicit, and
is therefore difficult to extract. One advantage to a knowledge-based approach is that there is

also much knowledge that is explicit, and is therefore easily extracted and transported, or used in
ways other than direct problem-solving, such as user training. This section represents an attempt
to describe the explicit knowledge contained by EZGrid in the form of MRS propositions stored
in the knowledge base. Appendix C contains example rules representing each type of knowledge
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in the knowledge base. The organization of this discussion follows that of the knowledge base
itself-by separate theories, as shown in figure 3.4a.

META [MILS Knowledge] - This theory simply contains the meta-level propositions which
link lisp files to MRS propositions and instruct MRS to forward chain any fact which is asserted
into the database.

SITUATION [Zoning Model Knowledge] - This theory contains knowledge about how to

determine an object's varying properties, such as whether it is zoned (if it is a zone, is degenerate,
or is filled by zoned objects); empty (contains no objects); filled (all of the curves on the object's
curvelist are shared by its corebody and contained environments); connected (at least one curve or
point of each contained object is shared by the curvelist of the containing object); degenerate (for
each curve on the object's curvelist, the reverse of that curve is also on the curvelist, so no area is
enclosed); a body (original or virtual due to containing a body) or a zone (empty and topologically
four-sided); what it contains and directly contains; and what are its corebody, coretype, contained
environments, and filling objects. There are rules for determining the possibility and desirability
(in interactive mode) of topology imposition. There is also a rule which determines whether the
zoning is complete (by looking for the proposition (zoned OB (stage n)) in the database.

CONTROL [Implementation Control Knowledge] - This theory contains knowledge about
how to control the formation of the database structure (via MRS residue), when to open a new
theory for action selection, and when to begin constructing a plan.

FRAME [Implementation Control Knowledge] - The "frame" problem in artificial intelli-
gence programming involves representing facts that change as well as those that do not (Rich,
1983). It is often handled by adding a state variable to the representation to indicate at what time
the fact is true; this is done in EZGrid by adding (stage $n) to most propositions. When moving
from one stage to the next in EZGrid, it is important to know which facts can be brought up to
the next stage unchanged, and which must be deduced anew because they may be changed by
the execution of an action. Object properties which are invariant and unrelated to the properties
which are represented propositionally are stored on the lisp property list of the object, and do
not need to be updated in any way (they are not tagged with state variables). Other object prop-
erties can be assumed to be invariant under certain conditions. This theory contains rules that

determine when a propositional fact can be brought up to the next stage unchanged. Contain-
ment is invariant, but direct containment is not, unless intermediate containment is impossible
because of an object being filled and/or zoned. The fact that an object is a zone, body, or zoning
environment at one stage does not change at the next stage, although a zoning environment may
become a body or a zone in addition to being a zoning environment. An object which is zoned,
filled, or degenerate will remain so at the next stage. If an object is filled, it will have the same
filling-objects, corebody, coretype, and contained environments at the next stage.

INFLOW [Fluid Dynamics Knowledge] - This theory contains rules about the flow speed
regime and high-lift conditions, and calculates the Mach angle. The information deduced is stored
in the database and used by the OB rules (the OB theory is described later) to determine the
limits of the outer boundary of the computational domain. The knowledge is very basic:

1. If the angle of attack is greater than 5 °, high-lift conditions prevail (which tend to increase
the upper and lower boundary limits).

2. If the Mach number is > 1.0, the flow is supersonic; if the Mach number is between 0.7 and
1.3, the flow is transonic; and if the Mach number is < 1.0, the flow is subsonic.

3. The Mach angle is calculated as the arcsin of 1/(Mach number) for supersonic flow (it is
used to determine the minimum width of the downstream boundary so that any shock exits
at the downstream boundary instead of out the sides).

There are also simple rules that do nothing but call lisp functions which elicit data from

the user (free-stream Mach number, angle of attack, flow steadiness, whether the fluid is viscous,
what type of turbulence model is used, the desired level of accuracy of the computation, and the
boundary condition type at the outer boundary), and assert the results as propositions into the
database.
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OB [CFD Knowledge] - OB stands for the outer boundary object, and this theory contains
knowledge about what shape OB should be, and how far away from the input geometry its
boundaries should lie. The rules which govern the shape of OB involve the geometry qualitative
shape description and some elements of user bias. Among the rules for OB shape are

1. If OB contains only one body at the first stage, and that body has a blunt leading edge and

a sharp or base trailing edge, then OB should be bullet shaped.

2. If OB contains a single body at stage 1, the body has blunt leading and trailing edges, and

the user bias profile setting for wake resolution importance is low, then OB should be ellipse
shaped.

3. If OB contains two bodies at stage 1, and both bodies have blunt leading edges, then OB

should be bullet shaped.

The rules for determining the limits of OB begin by using the speed regime, desired accuracy,
and boundary-condition-type information to set the boundary limits for both steady and unsteady
flow. Subsonic upstream and downstream limits are farther away than those for a supersonic case,
and upper and lower limits are much farther away for a transonic case. For a supersonic case,
the upper and lower limits are found by multiplying the tangent of the Mach angle by the total
distance from the upstream boundary to the downstream boundary. This ensures that any shock

will pass through the downstream boundary instead of the sides, thereby simplifying boundary
conditions. There are then rules which modify the OB limits if high-lift conditions prevail (tending

to push the boundaries out farther).

ACTION [Zoning Model Knowledge] - Knowledge about the circumstances which make
zoning actions possible in any zoning situation is found in the ACTION rules. Using information
from the database involving object relationships and properties, these rules enable EZGrid to
determine when the different operators and operands that make up zoning actions are possible.

This knowledge is basically just the application of common sense to the zoning model for actions.
For example, a separation-based operator does not make sense unless there are two or more sibling
objects in a zoning environment. Connection-based operators are possible inside an object under
two conditions only: if the object is a zoning environment that is neither filled nor empty, or if

it is a zoning environment that is empty, but not zoned. Shape-alteration-based operators are
possible for an object contained by a zoning environment which directly contains the object and is
not filled. The identification/identify operator is possible only for connected zoning environments
that are neither filled nor empty.

GENERATE [Zoning Model Knowledge] - This theory contains knowledge about zoning ac-
tion execution. Once an action has been chosen, object identification rules determine how many

new objects are needed to accomplish the action, and the type and specification of each object
(e.g., type = created and specification = curve). Curve identification rules (used only in interac-
tive mode) find out from the user how many curves are needed and what type (new or existing)
are needed, and if an object is to be specified via object parameters, they obtain that information
and convert it into curve parameter information. Curve specification rules (again, used only in

interactive mode)get begin-point, end-point, begin-angle_ end-angle, and interior-point spline in-
formation from the user. Ezisting curve rules keep track of curve division, subcurve creation, and
new curve connections. Curve parameter rules convert the curve-specification information into the
type of information needed by the spline-generation functions-number of knots; boundary condi-
tion types (free, specified, or periodic) and values; and a list of knot locations. Completion rules
check for curve completion (successful return from lisp curve generation function), object comple-
tion (when all the curves needed to construct the object are completed), and action completion
(when all the objects needed to accomplish the action are completed). New property rules are trig-
gered by object completion propositions, and call lisp functions to compute properties (curvelist
and vertexlist, primarily) for each new object, and assert object type (zoning environment) into
the database. Finally, new relation rules, triggered by an action completion proposition, assert
propositions describing the containment relationships of the new objects depending on the action

just executed.
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PLAN [Zoning Design Knowledge] - This theory must be activated (i.e., its contents made
available to the inference engine) when EZGrid is run in automatic mode because it contains

knowledge about what sequences of zoning actions (including execution strategies), or plans, are
desirable for certain zoning situations. PLAN contains subplan rules which govern the zoning
for single groupings based on the number of objects in the grouping, their qualitative shape and
configuration description, user bias, OB shape, and general flow direction. There are also rules
about how to assemble subplans into plans, which take into account number and relative positions
of groupings, and rules about how to update already assembled plans. Finally, there are rules
which tie in plans with the propositions which trigger action selection. They check for plan failure
or absence, and return to interactive mode for action selection in either event.

AUTO [Zoning Design Knowledge] - Like PLAN, this theory contains zoning design knowl-
edge and must be activated when EZGrid is run in automatic mode. AUTO contains knowledge
about how to execute the chosen zoning action using the strategies suggested by the plan. There
are two main types of rules: curve identification rules and curve specification rules. Recall that

these two types of rules were also found in GENERATE, but there they involved eliciting the nec-
essary information about curve numbers, types, and specification from the user. Here, these rules
use the strategies from the plan, knowledge about zoning actions, qualitative shape information,
and quantitative geometrical information (angles, distances, lengths) to specify the number and

type of curves needed for each new object, and the begin and end points, begin and end angles,
and interior points for each curve. There are an infinite number of ways to generate zone object
curves, and only a finite number of AUTO rules, so whenever a rule cannot be found to cover a
particular situation, interactive mode is entered to supply the missing information.
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CHAPTER 4

COMPUTED RESULTS FOR REPRESENTATIVE TEST CASES

The interactive mode of EZGrid is general in scope. There are no restrictions placed on what
sort of aerodynamic configuration can be zoned interactively; the machinery for curve and object
generation and situation assessment is in place, while the user supplies the elements of perception,
bias, and zoning design expertise, as discussed in the previous chapters. With those elements and
the ability to generate arbitrary curves and objects interactively, the user may generate a zoning
for an arbitrary flow field.

The automatic mode of EZGrid is more restricted in scope. It differs from the interactive
mode by the incorporation of three elements previously supplied by the user-perception, user bias,
and zoning design knowledge-which provide the information needed by the system to perform
zoning automatically. The perception element is still supplied by the user during the setup
phase of an automated run in the form of a qualitative shape and configuration description, in
a manner which is simple and general for typical aerodynamic bodies. The element of user bias
is incorporated through the assignment of qualitative values to parameters which characterize a
user's own criteria for a good zoning (e.g., simplicity, orthogonality, existence of singularities, and
wake resolution). Neither of these two elements restricts the scope of EZGrid in automatic mode.
It is the third element, zoning design knowledge, which is the limiting factor.

Only a fraction of all zoning design knowledge has been captured and encoded in the form
of subplan rules. The ability to assemble subplans for single groupings of objects into plans for
configurations consisting of multiple groupings increases EZGrid's generality by extending the
range of application of the encoded knowledge. In some cases, subplan assembly is straightfor-
ward and simple; in many other cases, additional zoning design knowledge is needed to assemble
subplans intelligently. It becomes a question of under which "carpet" to sweep the problem; if the
subplan rules cannot handle all possible configurations, effort must be put into the rules which
combine them, while if the subplan assembly rules are inadequate, emphasis must be placed on
the completeness of the subplan rules themselves. In either case, a finite number of rules results
in a finite capability. It is for this reason that attention has been confined to encoding zoning
design knowledge for representative aerodynamic configurations, resulting in an automated zoning
system which is a proof-of-concept rather than an fully operational system guaranteed to zone
any 2-D configuration automatically.

The first section of this chapter describes the classification scheme which has been applied
to aerodynamic configurations in order to identify representative cases. The two sections whic!_
follow present flow-field zoning results which have been generated automatically by EZGrid for
selected test cases.

4.1 Classification Scheme

The simplest and most obvious feature of a flow-field geometry is the number of bodies: a
configuration is either single-body or multiple-body. Section 4.9. presents automatically generated
flow-field zonings for single-body configurations, and section 4.3 presents results for multiple-
body configurations. Further distinctions can be made within each major class based on some
of the zoning language concepts presented in earlier chapters, as shown in figure 4.1. A single-
body configuration can have a body which is simple (describable qualitatively in terms of a
single primitive part) or compound (requiring a qualitative description consisting of two or more
primitive parts). A multiple-body configuration can consist of a single grouping of objects, or
multiple groupings. Within the multiple-grouping configurations class are groupings which are
directly contained by different parent objects, and those which are directly contained by the same
parent object. The finest distinction within the subclass of multiple-groupings contained by the
same parent object is *he way in which the subplans selected for the groupings are assembled.
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Figure 4.1. - Classification of aerodynamic configurations.

Section 2.5 characterizes subplan assembly methods in terms of positional relationships between
groupings. Groupings within the same parent object can be either vertically or horizontally
positioned with respect to each other. Subplans for vertically aligned groupings can be assembled
one of two ways: with or without the inclusion of secondary actions. Subplans for groupings which
are horizontally aligned are assembled without secondary actions, but with some modification of
the primary actions required.

Twenty-three configurations have been selected to illustrate the way EZGrid handles each
class described above. Flow-field zonings for seven simple single-body configurations have been
computed for various inflow conditions, shape descriptions, and user bias profiles to demonstrate
the influence of those factors on zoning design. Flow-field zonings for two compound single-body
configurations have been computed using different shape descriptions to show the effect of shape
description on the zoning of such bodies. Nine multiple-body configurations which consist of single
groupings provide the platform for demonstrating the effect of distances and relationships among
bodies (configuration), whether a computation is to be viscous or inviscid (physics), and the way
a user tunes the user bias profile (user bias). The five remaining configurations involve multiple

groupings, and the zoning for each one illustrates a different approach to subplan assembly. In
all cases, default values for the user bias profile are used unless otherwise indicated. The default
values are

1. Simplicity - low importance.

2. Skewness - high importance
3. Smoothness - medium importance

4. Mapping Disparity - high importance
5. Efficiency - low importance
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6. Orthogonality - high importance
7. Surface vs. Field Quantities - low importance
8. Wake Resolution - medium importance

9. Tuple Points - allowed
10. Singularities at Body Surfaces - allowed

11. Zone/Body Intersections - allowed
12. l_esolution of Viscous Terms in More Than One Direction - allowed

4.2 Single-Body Configurations

The first three cases are intended to demonstrate the effect of free-stream Mach number and

angle of attack on the zoning of a flow field. These three cases differ from all of the rest in that
EZGrid was allowed to completely specify the outer boundary shape and location. In all of the
remaining cases, EZGrid determined only the shape of the outer boundary; its suggested outer
boundary dimensions were overridden in favor of closer boundaries simply for ease of presentation.

The first configuration consists of a single NACA 0012 airfoil. Figure 4.2 shows the zoning for
this airfoil at 0 ° angle of attack, Moo -- 0.5. The grid for this case (and for all of the cases shown
here) was generated interactively using GRIDGEN2D (Steinbrenner, 1986p. For this subsonic
free-stream Mach number and low desired solution accuracy: the outer bounaary was set four

chordlengths away from the body in all directions. A solution accuracy setting of high would
have produced upstream and downstream boundaries located six chords away, and the upper and
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Figure 4.2. - _ingle-zone grid for an NACA 0012 airfoil at a -- 0°,Moo = 0.5.

51



lower boundaries ten chords away from the body. Because the angle of attack and the angle of
the traihng edge of the airfoil are both 0 °, the wake curve is a straight line from the trailing edge
to the downstream boundary.

Figure 4.3 shows the zoning for the same airfoil at an angle of attack of 10 ° and Moo = 3.0.
The outer boundary has been brought closer to the body (again, desired accuracy was low) since
with a supersonic free stream, the downstream portion of the flow cannot influence the upstream
portion. There is a rule in EZGrid which calculates the Mach angle of the free-stream Mach
number and multiplies the tangent of that angle by the distance from the upstream boundary

to the downstream boundary to determine the minimum half-width of the outer boundary. This
ensures that any shock emanating from the upstream region of the body passes out through the
downstream boundary instead of the side boundaries, a requirement that simplifies the boundary
conditions. The wake curve in Case 2 is noticeably curved. This is due to an action execution
strategy in EZGrid called follow-wake which specifies the wake curve such that it leaves the trailing
edge of a body at an angle which bisects the trailing edge angle (if it is a blunt end rather than a
sharp vertex, the curve angle is normal to the surface), and then relaxes to the free-stream angle
of attack as 1�In(distance from the traihng edge).

Figure 4.3. - Single-zone grid for an NACA 0012 airfoil at a = 10 °, Moo = 3.0.

The flow-flEd zoning for a highly cambered airfoil is shown in figure 4.4a. Here, the angle
of attack is 5 ° and Moo = 0.8. For this transonic case, the upper and lower boundaries of the
computational domain are farther away than in the subsonic case of figure 4.2. The large curvature
of the wake curve is due to the difference between the angle at the trailing edge of the airfoil and
the free-stream angle of attack. The grid that was generated for this configuration is of special
interest because the grid generation parameters (i.e., the number of grid points in each direction,
and the distribution of those points along the boundaries) were all determined automatically by
EZGrid rules. The EZGrid output files were read into GRIDGEN2D and the grid was generated
without modification of the number or distribution of the points. Figure 4.4b shows a closeup of
the grid near the body. All of the zonings presented were generated automatically by EZGrid; tMs
is the only example of a grid which was also generated automatically (some human intervention
was required to run GRIDGEN2D using the EZGrid output files since there is no link between
those two programs). As stated in an earlier chapter, no attempt was made to solve the problem
of automating grid generation in any general fashion.

The zoning results for the next five cases demonstrate the effects of geometry and viscosity

(specifically, whether the computation is viscous or inviscid). In these cases, as well as in all
of the remaining cases, the outer boundary locations have been specified interactively in order
to bring them in close to the bodies. Figure 4.5a shows the zoning and grid prepared for an
inviscid solution of the flow about a biconvex airfoil at 5 ° angle of attack. Because the body has
both sharp leading and trailing edges, and singularities are allowed under the default user bias
profile, EZGrid has chosen two H-topology zones for this case. A medium importance setting of

52



I
----T--

..._ 7
7

N

I

_ -+ Jr-

y

?/+
J /

I

-_I 2
_-Z_V .- -

/s
I •

i i

c�

-4--

Z

_.."M w

I.-

,_1

0

! °
1 ilIIflIIXX_

II

o

II

112
I-I

I-I

o

6

(,¢2

I

I-I

°i-i

53



wake resolution, one of the default profile values, resulted in a wake curve position depending
on trailing-edge angle and angle of attack, as in all of the previous cases. Figure 4.5b shows the
same body at the same angle of attack, but for a viscous computation of the flow field. The
difference lies mainly in the extra zone placed upstream of the airfoil. By limiting the upstream
extent of the two parallel H-type zones, the viscous clustering of grid lines near the body need
not be carried far upstream where it is not needed. The clustering near the body is permitted
downstream because of the relatively high importance placed on wake resolution.

The zonings in figures 4.6a-b differ from those in figures 4.5a-b only in different airfoil geom-
etry. EZGrid produces a three-zone zoning for the wedge geometry, with one zone devoted to the
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Figure 4.5. - Zonal grids for a biconvex airfoil at _ = 5 °.
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(a) 3-ZONE INVISCID GRID
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Figure 4.6. - Zonal grids for a wedge at a = 5 °.
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base region of the airfoil. For the viscous case, an extra zone is placed upstream for the reasons
given above. Figure 4.7 shows the O-type zoning for an airfoil of elliptical cross section. The
zoning was generated for an inviscid flow, but EZGrid could have produced the same design for
a viscous flow in this case, depending on the user bias profile setting. A viscous grid generated
within an O-type zone would be more clustered near the body surface.

The next four cases show the effect of qualitative shape description on the zoning of a single
body which looks something like the planform of a Shuttle-Orbiter-like vehicle. The way in
which the shape of this body is described qualitatively by the user is a matter of individual
interpretation. The body can be regarded as being composed of a single primitive part which
has one of the following four shapes: ellipse, bullet, wedge, or teardrop. Figures g.8a-d show the
zonings and grids for each of these four shape descriptions, respectively, where all other factors
are identical-each case is for inviscid flow at a 2 ° angle of attack. The user bias profile for each
case uses the default settings except for the wake resolution parameter, which has been set to
a high-importance value. This is the reason the zoning in figure 4.8a consists of a C-type zone
instead of the O-type zone often used for an elliptical body. As can be seen, the zonings are quite
different in terms of simplicity, skewness, smoothness, and regions of grid-point concentration.

Figures 4.9-4.11 provide three examples of zonings generated for cases in which only the user
bias profile differs. The results in figures 4.9a-c were generated for inviscid flow at a 2 ° angle of
attack about a body which is described as an ellipse. Figure g.9a is identical to figure g.Sa, and

is the zoning resulting from a wake-resolution setting of high importance and a surface-vs-field
setting of low importance. The zoning in figure 4.9b differs from the previous zoning as a result
of the reversal of the two user bias settings-wake resolution is deemphasized and the surface-vs-

field quantities parameter is given a high importance value. The third zoning in this set is shown
in figure 4.9c. It is a compromise, of sorts, in which both wake-resolution and surface-vs-field
quantities are considered important. The zoning designed by EZGrid for this case uses two zones

Figure 4.7. - Single-zone grid for an elliptical airfoil at a = 5 °.
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(a) WAKE - LOW IMPORTANCE
SURFACE QUANTITIES - HIGH IMPORTANCE

(b) WAKE - HIGH (c) WAKE - HIGH

SURFACE QUANTITIES - LOW SURFACE QUANTITIES - HIGH

Figure 4.9. - The effect of user bias on the zoning

of a body described as an ellipse.
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(a) WAKE = HIGH IMPORTANCE
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(b) WAKE = LOW IMPORTANCE

Figure 4.10. - The effect of user bias on the zoning

of a body described as a teardrop.
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(a) SMOOTHNESS = LOW IMPORTANCE

(b) SMOOTHNESS = HIGH IMPORTANCE

Figure 4.11. - Zonal grids for a rotor blade.
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with the same topology to accomplish both concentration of grid points near the surface of the

body and concentration of grid points in the wake region.
Figures 4.10a-b show zonings for the same geometry and flow conditions when the body shape

is described as a teardrop. The zoning in figure 4.10a is identical to that shown in figure 4.8d_
in which wake resolution is set to high importance. Figure 4.10b shows the zoning for the same

shape description and conditions, but with wake resolution set to low importance. The resulting

grids do reflect that emphasis.
The third example used to demonstrate the effect of user bias involves an internal flow field

with a single rotor blade. The zonings are for a viscous fiow_ hence the body-oriented zone
surrounding the blade. In figure 4.11a, zone smoothness is set to low importance, so EZGrid

simply puts two H-type zones around the viscous O-type zone to complete the zoning. Figure
4.11b shows the zoning which results if the smoothness parameter is set to high importance.
Additional zones are placed as buffers between the two H-type zones in an effort to smooth out

the internal angles along those zonal interfaces. There is an increase in zone side smoothness from
figure 4.11a to figure 4.11b, and the grid for the second case was easier to generate as a result.

The next four cases complete the single-body configuration study. These bodies are best

described as compound bodies. There are more degrees of freedom (in individual interpretation)
in the qualitative shape description of a compound body; one possibility is to describe it as
a simple body, ignoring the fact that none of the primitive part shapes really describe it well.
Another possibility is to vary the description of the various parts and how they are joined together.
The zonings in figures 4.12a-b demonstrate the effect of describing what should be a compound
body as a simple one. The zoning in figure 4.12a consists of two zones, one of which contains
the region behind the step discontinuity in the geometry. In this case, the body shape has been
described as compound_ with two parts: the upstream part is bullet-shaped, with the blunt end

forward, and the downstream part is wedge-shaped, with the base end joined to the base end of
the bullet. The grids which were generated in these zones are smooth and can be clustered as

needed (this case was computed for inviscid flow_ but the same zoning would be appropriate for a
viscous computation, with grid points more concentrated near the body surfaces). Figure 4.12b
shows the zoning that results when the body shape is described as a simple body, with a single

part of teardrop shape. Wake resolution is still possible, but the grid lines must turn the two
sharp corners of the step discontinuity. The concave corner creates difficulties in grid generation
because of the tendency (at least in any sort of elliptic solver) of the grid lines along the body to

pull away from the corner, and of the grid lines normal to the body to coalesce.
The zonings in figure 4.13 demonstrate the effect of describing the parts of a compound body

differently. The geometry is an axisymmetric cross section of an aeroassisted orbital transfer

vehicle (AOTV). In both cases_ the body has been divided into the same parts, as shown in
figure 4.13a. In the first case, the upstream part has been described as a half-bullet (the half-
denotes an axisymmetric part)_ where the blunt end of the bullet is upstream, and the base end is
downstream_ as shown in figure 4.13b. T]_e base of the half-bullet is joined to the upstream end
of a part described as a hail-rectangle. In the second case_ the downstream part is described in
the same way, but the upstream part is seen as a half-ellipse, where the major axis of the ellipse is
oriented vertically, as shown in figure 4.13c. l_he three-zone zoning in figure 4.13d is generated by
EZGrid when given the first description and instructions that the computation is to be inviscid.
Because the upstream part has a base end, EZGrid creates a bridging zone in the base region,
connecting to the body at the point representing the top of the base. The alternative shape

description results in the two-zone zoning shown in figure 4.13e. The elliptical shape description
causes EZGrid to wrap an O-type zone around the upstream part. In both cases, the base end
of the downstream part is treated in the same manner. Figures 4.13f-g show the grids and outer

boundary shapes more clearly.
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(a) COMPOUND SHAPE DESCRIPTION (2 PARTS)

(b) SIMPLE SHAPE DESCRIPTION (1 PART)

Figure 4.12. - Zonal grids for an airfoil with discontinuity.
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Figure 4.13. - AOTV cross-section.
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ORIGINAL. PAGE

COLOR PHOTOGRAPH

(d) Three-zone zoning for the half-bullet version.

(e) Two-zone zoning for the half-ellipse version.

Figure 4.13. - Continued.
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(f) 3-ZONE GRID (HALF-BULLET)
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Figure 4.13. - Concluded.
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4.3 Multiple-Body Configurations

The bodies which appear in multiple-body configurations can be grouped by the user to
reflect the expected influence of each body on the others. All of the bodies can be assigned to the
same grouping (the single-grouping category), or they may be separated into several groupings
(the multiple-grouping category). Nine configurations are used here to illustrate the effect of
relative position, physics, and user bias on the zoning of single groupings. All of the zonings
shown for the single-grouping configurations are generated for either inviscid or viscous flow at
an angle of attack of 5 ° .

The first configuration in this category is a pair of NACA 0012 airfoils that are vertically
aligned and have an offset distance of one-fifth chord. Figure 4.14a shows the zoning generated for
an inviscid computation in which singularities and tuple points (where three or more zones meet)

were allowed (the default user bias profile). This zoning consists of two zones, one which forms
a bridge between the two airfoils, and one which is a C-type zone around the resultant body
composed of the two airfoils and the bridge. The same configuration was zoned for a viscous
computation using the same user bias profile; the result is shown in figure 4.14b. Body-oriented
C-type zones were placed by EZGrid around each airfoil to facilitate the computation of the
viscous terms of the fluid dynamic equations. Because the airfoils are relatively close to each
other, the C-type zones are joined together without any intermediate zone between them. The
remaining flow field is contained by an outer C-type zone.

Figures 4.14c-d show the zonings for a configuration which differs from the previous one only
in a larger offset distance between the airfoils. Both zonings are for a viscous computation. The
user bias profile for the zoning in figure 4.14c is identical to that of figure 4.14b. The difference
in the zonings is due solely to the different offset distance. The user bias profile for the zoning
in figure 4.14d was changed to disallow tuple points, to discourage singularities at bodies, and to
reduce the importance of zone side mapping disparity (the ratio of the maximum and minimum
distances separating opposite sides of a zone). As can be seen, the resulting zoning has no tuple
points or singularities (the zoning in fig. 4.14c has two tuple points), and has a fairly large zone
side mapping disparity. Also of note is the fact that the zoning in figure 4.14d is simpler than
either of the zonings of figures 4.14b-c (it has only two zones, which meet along a single, straight
interface, as opposed to three or four zones with one or more tuple points and several curved zonal

interfaces). The zoning in figure 4.14d is not much simpler than the zoning in figure 4.14a, but
is better suited to viscous flow computations. The major drawback to this zoning design is that
the large mapping disparity (it would be much larger if the outer boundary were to assume its
normal dimensions for an actual computation) causes grid generation difficulties. It was extremely
difficult to distribute the grid points along the boundaries of those two zones to achieve even the
relatively poor-quality grid shown. When setting the user bias profile, the user must evaluate the
tradeoffs involved in the various parameters.

The next set of configurations are all of the staggered pair variety, where one airfoil is offset
from the other in both the vertical and horizontal directions. The first three configurations
demonstrate the effect of trailing-edge angle and position on the wake curves of both airfoils. The
zonings were generated for inviscid computations with the default user bias profile. Figure 4.15a
shows the zoning for a pair of airfoils in which the lower airfoil is slightly downstream of the upper
one, and is cambered so that the trailing edge points away from the neighboring airfoil. In such a
situation, the planned wake curve of the downstream airfoil does not interfere with or influence the
wake curve which would be generated for the upper airfoil, and so both curves can be generated
independently. The zoning which results is similar to that in figure 4.14a. Figure 4.15b shows
the zoning for a configuration in which the upper airfoil is cambered and slightly downstream of

the lower airfoil. In this situation, there is clearly the potential for interference between the wake
curves. EZGrid first uses the "follow-wake" strategy for the downstream airfoil, so that its wake
curve is as it would be if the airfoil were alone. Then a strategy called "follow-neighbor-wake" is
employed for the upstream airfoil wake curve. As can be seen from figure 4.15b, the wake curve
of the lower airfoil does indeed follow the path of the wake curve above. The zoning pictured in

figure 4.15c is for a configuration in which the upper airfoil is cambered and is slightly upstream
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(a) INVlSCID 2-ZONE GRID
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Figure 4.14. - Zonal grids for a vertically aligned NACA 0012 pair.
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(c) VISCOUS 4-ZONE GRID - BODIES FAR APART
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(a) CAMBERED AIRFOIL BELOW AND DOWNSTREAM

(b) CAMBERED AIRFOIL ABOVE AND DOWNSTREAM

Figure 4.15. -- Staggered airfoil pair wake curve study.
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(c) CAMBERED AIRFOIL ABOVE AND UPSTREAM

Figure 4.15. - Concluded.

of the lower airfoil. EZGrid concentrates attention first on the wake curve of the downstream

airfoil, so in this situation, the interference is resolved by adapting the converging upper wake
curve to the path of the lower wake curve, as seen in figure 4.15c.

The last two configurations in the staggered-pair family are used to demonstrate the effect of
offset distance and user bias profile on the zoning of such configurations. All of these zonings are

for viscous computations. The zoning of figure 4.16a shows two C-type zones around the airfoils,
with an outer C-type zone containing the rest of the flow field. As in figure 4.14b, the bodies are
close enough together that the C-type zones are constructed adjacent to each other. Figure 4.16b
shows the result of moving the two bodies farther apart. Instead of placing a simple bridging
zone between the two resultant bodies, as was done in figure 4.14c, EZGrid chose to connect the
bodies by wrapping another C-type zone around the upstream one which incorporates part of the
boundary of the downstream body. The first two zonings were generated using the defanlt user
bias profile. For the third zoning, shown in figure 4.16c, the profile was modified to discourage
both singularities and tuple points, and to set mapping disparity to medium importance. The
resulting zoning is similar to that in figure 4.14d.

Three different zonings were generated by EZGrid for the next configuration, which consists
of two NACA 0012 airfoils horizontally aligned, one directly behind the other. Each of these

zonings would be appropriate for either an inviscid or viscous computation. The difference in
the zonings is due to a difference in the user bias profile for each case. The zoning in figure
4.17a resulted from the use of the defanlt user bias profile, in which singularities at bodies are
allowed. Figure 4.17b shows the result of disallowing singularities. When both singularities and
tuple points were discouraged or disallowed, and mapping disparity and smoothness were rated
as less important, the zoning in figure 4.17c was generated.

The final multiple-body configuration in which the bodies all belong to a single grouping is a

tri-element augmentor wing airfoil. The two different zonings shown in figures 4.18a-b are for an
inviscid and a viscous computation, respectively. The viscous zoning includes C-type zones for
each airfoil dement. All three bodies, the upstream element and the two downstream resultant
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(a) VISCOUS 3-ZONE GRID - BODIES CLOSE TOGETHER

..... t

(b) VISCOUS 4-ZONE GRID - BODIES FAR APART
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Figure 4.16. - Zonal grids for a staggered NACA 0012 pair.
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(c) VISCOUS 2-ZONE GRID - NONDEFAULT USER BIAS PROFILE

Figure 4.16. - Concluded.
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(a) SINGLE-ZONE GRID - DEFAULT USER BIAS PROFILE
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(b) 3-ZONE GRID - SINGULARITIES = NOT ALLOWED
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(c) 2-ZONE GRID - SINGULARITIES AND TUPLES = DISCOURAGED,

MAPPING DISPARITY = LOW

Figure 4.17. - Zonal grids for a horizontally Migned NACA 0012 pair.
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(C) DETAIL OF VISCOUS GRID

Figure 4.18. - Concluded.

bodies, are then connected by a C-type zone surrounding the upstream body and incorporating
part of the boundary of each resultant body. The rest of the flow field is contained by a C-type
zone surrounding the final resultant body. A closeup of the grid for the viscous zoning is shown in
figure 4.18c. Close inspection of the grid lines at the zonal interfaces near the tuple points reveals
some discrepancy in interface location. The representation of these zonal interfaces in EZGrid
ensures that the shared curves of each interface are, in fact, the same curve. It is only when that
curve is sampled (discretized) separately for each zone (for the purpose of zonal grid generation)
that this discrepancy in resolution manifests itself.

The last five configurations represent the class of multiple-grouping configurations. The
first is a rotor-stator, where the rotor is separated from the stator by a moving boundary. The
location and shape of the moving boundary must be specified by the user during the input phase
of an EZGrid run, just after OB has been constructed and before the qualitative configuration
description has been provided. The regions on either side of the moving internal boundary (here,
simply a straight line halfway between the rotor and the stator) belong to separate objects, each
directly contained by OB. In such a situation, the only sensible way to describe the configuration
is as one consisting of two separate groupings, where each grouping is composed of one object
(the rotor or stator) and is contained by a different parent object. A subplan identical to the
one used to generate the single rotor zoning of figure 4.11a (for a viscous computation and a user
bias profile that includes a low importance smoothness setting) was selected twice, once for each
grouping. Because the groupings are contained by different objects, subplan assembly consisted
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simply of appending one subplan to the end of the other, resulting in a plan which produced the

six-zone zoning of figure 4.19a. The composite zonal grid for this case is shown in figure 4.19b.

The next multiple-grouping case is a pair of rotor blades. These two blades could have been
grouped within the same grouping since they are directly contained by the same parent object,
thereby putting this case in the single-grouping category. An additional subplan rule specifically
tailored for two vertically aligned blades would then be required. The need for one additional rule
does not pose a problem. Suppose, however, that there were 15 or 20 rotor blades. Subplan rules
must be specific in the number and positions of the bodies involved, so whenever the number of

blades changes, another subplan rule is required. The alternative is to group each blade in its own
grouping, thus requiring only the subplan rule for a single blade. In this case, since the blades
are reasonably far apart, this approach worked well, resulting in the zoning shown in figure 4.20a.
The composite grid is shown in figure 4.20b. The subplan for a single rotor blade calls for H-type

zones surrounding the resultant body (composed of the original blade and an O-type zone around
it). H-type zones can be easily merged, obviating the need for secondary actions in the subplan
assembly for this double-blade configuration. Assembly of the two identical subplans consisted of

appending the primary actions of one to those of the other, followed by the merged completion
actions of both.

Figure 4.21 shows a negative result, included here because of the valuable lesson it contains.
The two airfoils of this configuration are the aft airfoil elements of the augmentor wing of figure
4.18. Here they were grouped into two separate object groupings, and a plan was assembled from
two identical subplans, each for a single teardrop-shaped airfoil in an inviscid flow computation
and using the default user bias profile. Serendipity alone is responsible for the fact that the wake
curves did not cross. Since the airfoils were not handled by the same subplan rule, no check
was performed on potential wake curve interference. The subplan for a single teardrop-shaped

airfoil calls for a C-type zone around the body (rather than an easy-to-merge H-type zone), so
a connection-type secondary action was required in the assembly of the plan for this case. The
secondary action specified a bridge object to be placed between the two airfoil objects after they

had been connected to OB by wake curves (the primary actions of the subplans). The merged
completion actions then finished the zoning with a C-type zone around the resultant object. The
bridge object becomes far too narrow downstream because of the wake curves' ignorance of each
other. The problems with this zoning could have been avoided in either of two ways: (1) the airfoils
should never have been grouped separately because of their proximity and potential influence on
each other, or (2) the rules for assembling the subplans should have been sophisticated enough
to modify the primary actions of the subplans so that potential object interference is taken into
account. The final result presented in this chapter is an example of successfully making the
subplan assembly rules sophisticated enough to handle groupings that are dose together.

The result for the next case is also not entirely successful, thus strengthening the case for
careful object grouping by the user and/or a less naive subplan assembly. This configuration
consists of a group of three NACA 0012 airfoils in which two are vertically aligned and grouped
together and the third is grouped by itself and is located upstream of the vertical pair, and is
thus an example of the horizontally aligned groupings category. Two subplan rules were selected
by EZGrid for this case: one which governs the zoning for a vertical pair of teardrop-shaped

airfoils and one which governs the zoning for a single teardrop-shaped airfoil. Both subplans were
intended for an inviscid computation and assumed the default user bias profile. Subplan assembly

involved the straightforward modification of the primary actions of the subplan for the upstream
grouping such that all connection-based operations involving a parent-child operand were changed
to connection operations for a sibling-sibling operand. For example, the connection/bridge -
parent-child/(OB B1) action for the upstream airfoil was modified to connection/bridge - sibling-
sibling/(B1 SZE1) so that no attempt would be made to attach the upstream airfoil to OB by
passing through the downstream objects. The resulting zoning is shown in figure 4.22. It is a
reasonable zoning under the circumstances, but suppose the user had specified smoothness to
be of high importance? There is no mechanism to incorporate this bias into the zoning, because
the subplan for the single airfoil in the upstream grouping is not affected by the smoothness
parameter. It would be necessary to incorporate the effect of smoothness in the subplan assembly
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(a) Five-zone zoning.

Figure 4.20. - Rotor pair.
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(b) ZONAL GRID

Figure 4.20. - Concluded.
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Figure 4.21. - Two-zone grid for Augmentor-wing aft elements grouped separately.
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Figure 4.22. - Two-zone grid for three NACA 0012 airfoils in two groupings.
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rule, resulting in the placement of a C-type zone around the upstream airfoil with width equal to

the width of the downstream resultant body.
The final result presented here is that of a four-element, high-lift airfoil whose elements

have been grouped into three separate groupings: one for the upstream-most body, one for the
main body, and one for the two smaller aft bodies. The seven-zone zoning which was generated
automatically by EZGrid for this rather difficult case is shown in figure 4.23a. Grid details are
found in figures 4.23b-d. The groupings are horizontally aligned, so that a modification of the
primary actions of the two upstream groupings similar to that described above was required during
subplan assembly. As may be seen from the figure, the trailing edge of the main body is extremely
close to the two downstream bodies, and should influence the primary actions performed within
that grouping. This was accomplished by the inclusion in the original subplan rules of more
configuration position and distance information than had previously been used. The result is a
successful, complex zoning resulting from the assembly of three simpler zoning subplans, each of
which already existed in the knowledge base from earlier test cases.
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(c) UPSTREAM GRID DETAIL

(d) DOWNSTREAM GRID DETAIL

Figure 4.23. - Concluded.
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CHAPTER 5

AN APPROACH TO THE EVALUATION OF FLOW-FIELD ZONINGS

5.i The Challenge of Zoning Evaluation

That EZGrid is capable of designing and generating flow-field zonings for a variety of aero-
dynamic configurations is evident from the results presented in the previous chapter. What must
be established, however, is whether those zonings are good. It was stated at the outset that

zoning must be done well in order to gain the full benefits of a composite zonal grid approach,
so it is important to be able to determine the quality of a zoning. Also, the method by which

zoning quality is determined must be automated so that its application to any flow-field zoning,
regardless of origin, is consistent. Consistent evaluation is also necessary in order to validate the
results of automated flow-field zoning.

The earlier zoning quality can be assessed, the greater the savings in time, effort, and money.

Recall that in section 2.3.5 (Encoding Expert Zoning Methodology) the process of flow-field
zoning was described in terms of a generate-and-test procedure which produces a tree of all
possible intermediate and final zoning situations for a given problem. Because it is impossible to
predict early in the process which branch of the tree is most likely to lead to the best zoning,
the first practical opportunity for zoning evaluation is at the completion of a candidate zoning.
The next opportunity for evaluation is after zonal grids have been generated within each zone,
to which existing grid quality measures can be applied. At present, most grid evaluation is done

ualitatively and graphically ("by eye"). As stated in section 2.2, Klopfer (1982) and Kerlick
987) investigated quantitative grid evaluation criteria based on local grid geometry, but found

that geometry alone does not provide complete information about a grid; grid quality is also
dependent upon the type of equations to be solved on the grid and upon the solution to those
equations. Of course, the ultimate validation of a flow-field zoning is through the validation of the
solution obtained upon the zonal grids, through comparison with exact solutions, well-established
computed solutions, experimental data, and/or flight test data. Flow-field solutions are expensive
and time-consuming to generate and interpret, however, and to obtain solutions for a variety of
candidate zonings so that they can be evaluated is impractical. Clearly, direct evaluation of a
flow-field zoning prior to grid generation or flow solution is the most desirable since it is the
earliest stage in the process at which evaluation is possible, and evaluation at later stages would
not be sufficiently superior to offset the much greater investment required.

To date, no evaluation criteria have been identified which can be applied directly to a flow-
field zoning, so it has been necessary to develop an approach to evaluation as part of the present
work. Three factors contribute to the difficulty of zoning evaluation: (1) ideas about the best
zoning approaches and the traits of a good zoning are still evolving as experience is gained
with composite zonal grid methods; (2) those ideas vary from expert to expert, so no consensus
exists; and (3) the requirements for a good zoning are dependent on the particular problem to
be solved and on the resources available. One method for dealing with the difficulties arising
from these factors might be to establish a standard set of criteria to be applied to all zonings
independent of the factors listed above. The drawback to this method is that the standard

used could be unacceptable to some experts for some problems, and might never be completely
acceptable. Instead, the approach adopted here is to establish a tunable standard called the user
bias profile, which can reflect the ideas and requirements of any user for any problem.

In chapter 2, the user bias profile was defined as a collection of parameters which characterize
a user's bias in designing and evaluating flow-field zonings. The 12 parameters chosen to represent
user bias were described, and it was explained that tuning the profile consists simply of assigning
a qualitative weight to each parameter. In chapter 4 the effect on zoning design of assigning
different qualitative weights to the user bias profile was demonstrated. This chapter contains a
discussion of how the qualitative weight values are translated into quantitative ones, and how the
profile parameters are measured so that a numerical score which takes user bias into account can
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be computed for any zoning, thus providing the means for consistent comparison and evaluation
of flow-field zonings.

5.2 A Tunable Profile of User Bias

The development of the user bias profile-the determination of its defining parameters and
their measurement functions, the discretization of possible qualitative weight values, and the
translation of those qualitative values into quantitative ones-was accomplished by means of a
calibration test involving the participation of five flow-field zoning experts. The basic steps of the
test were to

1. Select test case configurations

2. Generate candidate zonings for each test case
3. Ask each expert to tune the user bias profile

4. Ask each expert to rate the candidate zonings for each case
5. Calculate EZGrid ratings for the candidate zonings

6. Compare expert ratings to EZGrid ratings

7. Modify the user bias profile and return to step 3 if necessary

Three simple multiple-body configurations were selected as zoning test cases: a pair of ver-
tically oriented NACA 0012 airfoils, a pair of horizontally oriented NACA 0012 airfoils, and an
NACA 0012 airfoil and a cambered airfoil in staggered formation. For each test case, several
candidate zoning designs were generated using EZGrid in interactive mode; these are shown in
figures 5.1, 5.2, and 5.3. The number of test cases chosen represents a compromise between a
smaller number, requiring less time of the zoning experts, but probably resulting in poorer cal-
ibration results, and a larger number, requiring more time of the experts (at which some may
have balked), but giving better results.

Figure 5.1. - Candidate zonings for test case 1: horizontal configuration.
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Figure 5.2. - Candidate zonings for test case 2: staggered configuration.
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Figure 5.3. - candidate zonings for test case 3: vertical configuration.

The user bias profile described in section 2.3.4 is the product of two iterations of the sequence

of steps listed above. For the first iteration, the profile consisted of only three parameters:

1. Zonal simplicity

2. Promotion of good, easy-to-generate grids
3. Accommodation of fluid physics
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Each parameter had associated with it three measurement functions to assess different aspects of
the zoning. The functions which measure zonal simplicity count the number of zones, the number
of zonal interfaces, and the number of zone tuple points (where three or more zones meet). The
way in which a zoning promotes good grids was estimated by measuring the skewness of the
zone corners, the angles of zone vertices that do not lie on topological corners (a measure of side
smoothness), and the disparity between the maximum and minimum distances separating the
opposite sides of a zone. Accommodation of fluid physics was roughly predicted by measuring the
orthogonality of zone corners belonging to sides shared by body surfaces, looking for singularities
at body surfaces (defined as any intersection of a zonal interface curve and a body curve occurring
on a single zone side), and determining the number of sides per zone shared by a body surface (to
see how many directions of viscous resolution might be required). The experts were asked to assign
any real number between 0 and 10 as the parameter weights, where 0 denotes no importance and
10 denotes high importance. The measurement functions were applied to each candidate zoning,
and the resulting values were multiplied by the expert-supplied weights and summed to produce
a numerical score for each zoning. The measurement functions are cast in terms of penalties for
the aspect being measured, so the higher the score, the less desirable the zoning. Comparison of
the scores yielded a rating of the candidates based on EZGrid's "preference." The experts' ratings
were then compared to EZGrid's ratings.

The results of this first calibration attempt were poor. Very few of the expert ratings were
matched by EZGrid. Although the experts were given a theoretically infinite range of possible
parameter weights, they all tended to think first in qualitative terms and then translate to some

representative number (e.g., "this is fairly important, so I'll give it an 8.5"). By coincidence, the
tuned profiles of several of the experts were identical. None of the expert ratings of the candidate
zonings were identical, however, and there should have been a stronger correlation between profile
and rating. A follow-up interview with the experts whose profiles were identical revealed that
they each did have somewhat different zoning criteria, but that the three parameters were not able
to capture those differences. Based on the results of this first iteration, the following hypotheses
were formed:

1. The user bias profile was parameterized too coarsely.

2. The possible parameter weights should be qualitative.
3. New measurement functions should be added.

4. Some existing measurement functions should be modified.

5. There may be some human inconsistency in the selection of parameter weights to reflect the
user's bias.

The second iteration of the calibration test represents an attempt to test the first four of the

five hypotheses listed above. The number of profile parameters was expanded from 3 to 12 by
breaking up the previous groups of measurement functions so that only one measurement function
is associated with each parameter (with one-exception), and by adding several new measurement
functions. The range of possible weight values was restricted and only qualitative values were
allowed. A list of the 12 parameters and their possible qualitative weights is found in table 5.1.
Two existing measurement functions were modified to better measure the associated parameter.

Zone simplicity is the only parameter which has two measurement functions associated with
it; those functions measure the number of zones and zonal interfaces, just as before. The existence

and number of tuple points was identified as a separate parameter, with possible weights of
_llowed, discouraged, etc. Skewness, smoothness, mapping disparity, and orthogonality are new
parameters that are based on existing measurement functions. The measurement function for
0rthogonality was modified to include the influence of noncorner vertices as well as corner ones.
Efficiency and surface-vs-field quantities are new parameters which are both based on a variant
of the same new measurement function. This new function computes the ratio of the combined
length of all body curves to the total combined length of both body and nonbody curves for
those zone sides that are shared by body surfaces, and subtracts it from 1.0. Wake resolution,
a new parameter, is measured by identifying the number of trailing-edge points of each body in
the configuration (usually one, as in a teardrop-shaped airfoil, or two, as in an airfoil with a base
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trailing edge), and subtracting from that the number of wake curves in the zoning. This function
penalizes trailing-edge points that do not have wake curves emanating from them. The parameter
for singularities is new, and is based on a modified version of the old measurement function which
does not classify the intersection of a wake curve with a body as a singularity, as was erroneously
done in the first iteration. The final additional profile parameter involves intersections between
nonbody zone sides and body surfaces. It is measured simply by searching for such intersections

and summing their occurrences. The equations on which each parameter measurement function
is based are listed in appendix D.

In the second iteration, the five experts were asked to tune the user bias profile using the new
parameters and qualitative weights. Further refinement of the possible qualitative weights was
necessary to capture each expert's criteria satisfactorily (at the beginning of the second iteration,
the weight choices for the last four parameters consisted only of allowed and not allowed, which
was insufficient for the rather fine distinctions made by some of the experts). They did not change
their original ratings of the candidate zonings. This time, no two profiles were the same, as can be
seen in table 5.2. To calibrate the profile, two types of values were adjusted in order to maximize
the number of matches between human expert and EZGrid ratings: relative function weights
(factors which multiply several of the raw measurement function values so that each function has
the potential to contribute the same order-of-magnitude value to the overall score for a zoning),
and the numerical translations of the user-supplied qualitative weights. The final quantitative
values associated with the qualitative weights are shown in the rightmost column of table 5.1.

The results of this iteration are displayed in table 5.3. The three test cases appear on the far

left, with their associated candidate zonings represented by the letters in the adjacent column.
The five columns in the box at the right are the ratings of the candidate zonings, where the
number on the left of each "/" represents the human expert's preference, and the number on the
right represents EZGrid's preference for that case. For example, both Expert 1 and EZGrid rated
candidate zoning C as the best zoning among the choices for the first case. These results are

Table 5.1 A Tunable User Bias Profile

Profile Parameter Possible Weight Values

Simplicity

Zone corner skewness

Zone side smoothness

Zone side mapping disparity

Grid point efficiency

Orthogonality at body surfaces

Surface vs. field quantities

Wake resolution

Zone tuple points

Singularities at body surfaces

Zone / body intersections

Viscosity in more than one direction

NO

LOW

MEDIUM

HIGH

(IMPORTANCE)

ALLOWED BUT NOT IMPORTANT

ALLOWED

SOMEWHAT DISCOURAGED

DISCOURAGED

STRONGLY DISCOURAGED

NOT ALLOWED

0

1

5

10

1

5

20

40

60

100
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encouraging since EZGrid wasable to match most of the ratings given by the human experts.
With two exceptions, it chosethe same"best" candidatezoning for each case as the experts, and
in several instances, EZGrid matched an expert's rating of all the candidates of a case. It would

be misleading to state that these results are significant in any statistical sense; it is reasonable to
claim, however, that user bias does have a measurable effect on flow-field zoning design, and that

the proposed user bias profile, with its associated measurement functions, is a promising method
of evaluating zoning results in the absence of universally accepted criteria.

5.3 EZGrid Performance Assessment

Validation of a knowledge-based system is often based on a comparison of system performance
and human expert performance. Calibration of the user bias profile has provided the means of
comparing EZGrid performance to that of flow-field zoning experts. In order to apply the user
bias profile evaluation functions, it is necessary that the expert's zoning design be represented in
the same manner as an EZGrid design. This requirement is easily satisfied by using EZGrid in
interactive mode to input the expert's design. As an initial check on the adequacy of EZGrid's
zoning design knowledge base, the five different expert user bias profiles used in the profile cal-
ibration described above were read into EZGrid, and zonings were generated automatically for
all three calibration test cases. EZGrid successfully reproduced the same zoning design as was
chosen by each expert to be the best candidate.

Table 5.2 User Bias Profiles lbr Five Zoning t'_xperts.

Parameter Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Simplicity

Skewness

Smoothness

Mapping disparity

Efficiency

Orthogonality

Surface vs. Field

Wake

Tuple Points

Singularities

Intersections

Viscosity 2

N = no importanceZ
L = low importance
M = medium import.

H = high importance

M

M

M

H

H

H

M

H

5

2

2

2

M M

L L

M M

M H

L H

M H

M H

M M

3 4

4 2

2 5

2 2

M

M

M

H

H

H

H

M

2

2

1

2

M

M

M

M

L

H

M

M

3

4

3

2

1 = allowed but not important
2 = allowed

3 = somewhat discouraged

4 = discouraged

5 = strongly discouraged
6 = not allowed
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The next study focusedon comparing the performanceof EZGrid to just one zoning expert,
Expert 2 of the calibration test. Instead of presenting the expert with a selectionof already-
generated zoning candidates to rate in order of preference, the expert was given two problem
statementsand askedto tune the profile and designa zoning for eachproblem. One configuration
consisted of an airfoil with a flap above and downstream, in which the flap tilted downward.
The secondconfiguration was identical except that the flap was angled upward, away from the
airfoil. :The problemstatementsand the expert's responsesarereproducedin Appendix E. Zonings
and grids basedon the designsketchesreturned by the expert were generatedusing EZGrid in
interactive mode, and are shown in figures 5.4a-b and 5.5a-b. The outer boundaries for both
caseswere specifiedas bullet-shaped and 10 chordlengths away in all directions. The zonings
generated using EZGrid kept the suggestedouter boundary shape, but brought the boundaries
in to only one chordlength away in all directions, simply for easeof presentation. EZGrid was
given the sametwo problems and wasfurnished with the userbias profile astuned by the expert
for each problem. The zonings which were generated automatically (as before, the grids were
generatedinteractively) are shownin figures 5.4c-dand 5.5c-d. EZGrid suggestedbullet shapes
for the two outer boundaries,and suggestedan upstream and downstream boundary distance of
6 chords and an upper and lower boundary distance of 18 chords. The distance suggestions were
ignored and an outer boundary one chord away from the body in all directions was generated for
both cases, as in the interactive zonings. Each of the zonings was evaluated by EZGrid using the
profiles given and the profile parameter measurement functions. In both cases, EZGrid rated its
own zonings as superior to those of the expert.

The zonings in figures 5.4a-b and 5.4c-d appear comparable. The primary differences are
that the EZGrid zoning is simpler (i.e., has fewer zones and zonal interfaces), has one fewer tuple
points, and has C-type zones around each body. These aspects of the zoning are intrinsically

neither advantageous nor disadvantageous-what matters is how they are viewed by the user (here
an expert) as reflected in the user bias profile. For this case, the expert had set the simplicity
parameter to high importance and the tuples parameter to discouraged. The larger penalties on

Table 5.3 Profile Calibration Test Results.

GEOMETRY

HORIZONTAL
NACA0012PAIR

C>C>

STAGGERED
NACA0012PAIR

C>

VERTICAL
NACA0012PAIR

C:> ¸

CANDIDATE

ZONING

A

B

C

A

B

C

D

A

B

C

CANDIDATE ORDERING BY PREFERENCE

(HUMAN EXPERT/EZGRID)

EXPERT 1 EXPERT 2 EXPERT 3 EXPERT 4 EXPERT 5

2/2 1/1 2/2 1/1 1/1

3/3 2/3 3/3 2/3 3/3

1/1 3/2 1/1 3/2 2/2

3/3 4/4 4/4 2/2 4/4

1/1 3/3 1/1 1/1 1/3

4/4 2/2 3/3 4/4 3/2

2/2 1/1 2/2 3/3 2/1

2/2 1/1 1/1 3/2 1/1

1/1 2/2 2/2 2/1 2/2

3/3 3/3 3/3 1/3 3/3
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Figure 5.4. - Case 1 results.

102



103



(c) 3-ZONE GRID- EZGRID
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the expert's zoning for simplicity and tuple points were multiplied by the large numerical weights

corresponding to those two qualitative values, which was responsible for its poorer score. When
asked why he did not put a C-type zone around the downstream body, the expert replied that he
did not wish to divide the narrow region between the two bodies with a zonal interface because
it might interfere with the determination of the length scale used in the turbulence model. The
potential difficulty caused by the resulting zone/body intersection at the nose of the downstream
body was disregarded by the expert (which is consistent with his profile parameter setting for

that parameter) because he planned to generate the grids in the two downstream body zones so
that grid fines would be continuous across their common interface.

The EZGrid zoning of figures 5.5c-d looks inferior to that of the expert in figures 5.Sa-b,
despite the fact that EZGrid's evaluation rated its own zoning higher. The explanation for this
apparently incorrect evaluation lies again in the user bias profile. The profile used in this case
also included a high importance setting for simplicity and a discouraged setting for tuple points.
This emphasis on simplicity and discouragement of tuples again tipped the scales in favor of the
EZGrid zoning since it has only two zones (to the expert's four) and no tuple points (to the

expert's two). The grids generated in the EZGrid zoning are poor, particularly in the upper
C-type zone around the flap. There is a great deal of skewness, and the number of grid cells
in the lower grid along the upstream portion of the interface corresponding to a single grid cell
in the upper grid is too large for flow-solution stability. Why did the profile parameters that
are intended to predict grid goodness (e.g., smoothness, skewness, and mapping disparity) not
penalize the EZGrid zoning? The grid line skewness evident in the interior of the upper grid is
due not to skewness or discontinuities at zone vertices (either corner or noncorner vertices), as

(a) 4-ZONE GRID- EXPERT

Figure 5.5. - Case 2 results.
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(c) 2-ZONE - EZGRID

Figure 5.5. - Continued.
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would be detected by the measurement functions for those parameters, but to zone side mapping
disparity. In the user bias profile for both cases, mapping disparity is set to medium importance.
In the calibration of the user bias profile, the expert who chose figure 5.2d (a two-zone zoning
similar to the present zoning) as the best candidate for the staggered airfoil pair had assigned a
weight of medium importance to the mapping disparity parameter, so that setting is consistent
with EZGrid's zoning design for this case.

The expert exhibited some inconsistency in the tuning of the user bias profile when, for
example, he discouraged tuple points but included two in his design. Based on a follow-up
discussion of the results of this study, another EZGrid run was performed for the second problem
in which the default user bias profile was used, which includes the following settings: tuples -
allowed, simplicity - low importance, and mapping disparity - high importance. The zoning
generated automatically by EZGrid for that input is shown in figure 5.6. This result is more
similar to the design specified by the expert for the second problem.

The expert stated that it required about 20 rain to design the zoning for case 1, and about

15 rain for the design of the case 2 zoning. He estimated that approximately 5 dav, (3 days
for case 2) would be needed to put the zoning design on the computer and to generate grids for
the zoning. He had allocated 25% of that total time to grid generation, so for a more accurate

comparison of the time required for zoning, his estimates would be over 3.5 days and just over 2
days for the two cases. Interactive EZGrid input of the two expert zoning designs required 2.5
hr and 1.5 hr, respectively. EZGrid generated the automated results in 1 hr (case 1) and 50 rain
(case 2). It is clear that the use of EZGrid, even in interactive mode, represents a large savings
in time.

The final comparison between EZGrid and human performance was a simple study in which
the author, who is not a zoning ezpert, but who is familiar with composite zonal grid methods,
designed and generated (using EZGrid in interactive mode) a zoning for the four-element airfoil
shown in figure 4.23a. The interactive zoning result predated the automated EZGrid result and

represents the author's best attempt to design a zoning for that configuration. Both zonings are
shown in figures 5.Ta-b. The automated zoning was generated using the default user bias profile,
so that profile was used to evaluate both the interactive and the automated results. EZGrid
rated its own zoning higher, which is difficult to dispute in this case. The zonings appear to
be comparable, but according to EZGrid, the automated result is better in terms of skewness
(by an order of magnitude), orthogonality (by a factor of four), singularities (by an order of
magnitude), and zone/body intersections (less than half as many). The result of this simple test

is encouraging because it shows that EZGrid can produce a reasonable zoning for a complicated
configuration (reasonable by virtue of its similarity to the zoning generated interactively) better
than a nonexpert user.
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CHAPTER6

SUMMARY AND DISCUSSION

6.1 Summary

Three-dimensional grid generation continues to pace the progress of CFD research and prac-
tice. The difficulties of grid generation, caused primarily by geometric complexity, the need for
selective grid refinement, and current computer limitations, can be alleviated through the decom-

position, or zoning, of a flow field into simpler regions., or zones. The resulting composite grid,
made up of a collection of zonal grids, is usually superior in quality to any single grid that could
be generated for the entire flow field of a complex geometry, is easier to obtain, and provides a
convenient mechanism for zone-by-zone sequential processing (alleviating memory restrictions) or

even parallel processing of the flow solution. Users of such zonal grid approaches have discovered
the importance of zoning a flow field well and quickly. They have also discovered that those two
requirements are difficult to satisfy because the element essential to both-zoning expertise-is
scarce, is not easily taught, is not well understood or formulated, and criteria for judging zoning
quality varies from expert to expert. The consensus is that flow-field zoning should be automated.

Automation of flow-field zoning is a difficult problem; there is no theory underlying it, and it
is an ill-structured problem, with solution procedures more easily described in terms of examples
rather than an algorithm or formula. The existence of these traits combined with the obvious
role of zoning expertise led to the exploration of a knowledge-based approach for this problem.
The goals of the present research were to (1) lay the foundation for an automated 3-D zonal grid
generation capability through the development of a demonstration system that can automatically
zone the flow field of representative 2-D aerodynamic configurations, and (2) determine the appli-
cability of a knowledge-based programming approach to the automation of flow-field zoning. Both

oals have been satisfied through the development of a knowledge-based system called EZGrid
xpert Zonal Grid generator), which can be used to interactivel!# zone any 2-D problem, and

is capable of automatically zomng a variety of representative 2-D problems. Chapter 4 presents
results which demonstrate the range of EZGrid's automated capability.

A knowledge-based approach to the automation of flow-field zoning was successful despite
the fact that some aspects of zoning disobey the guidelines for identifying tractable knowledge-

based system application domains listed in section 1.3. Zoning is difficult to teach; it involves
visual perception; experts do not agree on zoning methodologies or evaluation criteria; and it
requires zoning design knowledge. These obstacles were overcome through the development of
a zoning model, a qualitative shape and configuration description language, a tunable user bias
profile, and a method of problem decomposition and plan construction. These four solutions made
system development possible. They also provided valuable feedback to the CFD community in
the form of better understanding of the zoning process and the role of user bias, and to the AI

community in the form of experience in the application of knowledge-based techniques to a "real-
world" problem of less-than-ideal suitability according to the accepted guidelines. Clearly, these
guidelines do not necessarily determine the success of an application. They are good indicators of
whether an application is likely to be quick and straightforward, however, and outside a research
environment those are factors upon which success often depends.

6.2 EZGrid as a Foundation

The first part of the two-fold goal of this research was to lay the foundation for an automated
3-D zonal grid generation capability for CFD by developing a demonstration system for automated
flow-field zoning in two dimensions. EZGrid is the system which was implemented for this purpose,
and has been shown to be capable of automatically zoning the flow field about a variety of 2-D
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aerodynamic configurations. The question is, what sort of a foundation has been laid for future
work in 3-D zonal grid generation?

The concepts used in the formulation of a model and language for flow-field zoning are
transferable with little modification from 2-D to 3-D. Since the motivations for zoning are the
same in 3-D as in 2-D, the same zoning actions would be valid. The extra dimension would

necessitate modification of the language for qualitative shape and configuration description; not
only the vocabulary would need modification, but probably the means of interactive input (moving
to a more graphical one) would as well. The idea of plan construction through subplan assembly
remains viable in 3-D. The basic flow of control of EZGrid would be appropriate for the zoning of
a 3-D problem as well as for a 2-D one. Some of the knowledge about fluid dynamics and zoning
is specific to 2-D problems, but because that knowledge is contained explicitly in the form of rules
in the knowledge base, identification of those rules needing modification is feasible.

Work on the additional task of automating zonal grid generation has been initiated in 2-D
in EZGrid. The parameters that are important in the specification of a zonal grid have begun to
be identified, and rules governing the number and distribution of grid points for simple 2-D zones
have been successfully developed. Although this is an extremely difficult problem, the framework
provided by EZGrid facilitates the classification of zones and their interface boundaries needed

for intelligent grid generation. For example, the way in which curves and objects are represented
in EZGrid permits curves to be classified as wake, body, or outer boundary curves; makes it easy
to determine which curves are shared over what portions; and allows for descriptions of zones in
terms such as side 1 - wake-body-wake, side 2 - outer boundary curve, etc. More work is needed

to capture the most effective parameterization of the 2-D grid generation problem, and in 3-D
additional parameters will be necessary.

6.3 Applicability of a Knowledge-Based Approach to Flow-Field Zoning

The second part of the two-fold goal of this work was to determine the applicability of a
knowledge-based programming approach to the domain of flow-field zoning. Some background
on knowledge-based programming was provided in section 1.3, including guidelines, or rules, for
identifying tractable problem domains for the application of knowledge-based techniques. It was
recognized at the outset that a knowledge-based approach for the automation of 2-D flow-field

zoning would present some difficulty because of aspects of zoning that break some of those rules.
The process of zoning was not well formulated and no language existed to describe it; thus it was

a difficult skill to teach. Furthermore, zoning a flow field involves perception, user bias (reflecting
the lack of expert consensus in evaluating zoning quality), and zoning design knowledge, none of
which are conducive to straightforward application of knowledge-based programming techniques.
The manner in which these difficulties were overcome is described in detail in chapters 2, 3, and
5, and is summarized briefly here. A model and language to describe the process of zoning was
developed as the first step in making the process automatable. Perceptual information is provided
interactively by the user using a simple qualitative shape and configuration description language.
The way in which a configuration is described (in terms of object groupings) determines whether
a problem can be decomposed into simpler subproblems. User bias is incorporated by means of a
tunable user bias profile, which consists of parameters measuring such quantities as the degree of
zone side orthogonality and the existence of singularities. The profile is tuned by the assignment of
qualitative weights to each parameter which reflect that parameter's importance or acceptability
to the user. Zoning design knowledge is encoded in the form of subplans, or sequences of actions
which govern the zoning of a single grouping of objects and which are assembled into plans for
the zoning of entire configurations.

These four developments-a zoning model, a shape and configuration description language,
a tunable user bias profile, and a method of problem decomposition and plan construction -
represent more than just engineering solutions to the problems of zoning automation. They
also represent contributions to both CFD and AI. The formulation of a model and language for
the process of zoning is not only necessary for its automation, but has the potential to provide
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valuable insight to present users of flow-field zoning methods. The tunable user bias profile
may be valuable to zoning expertsbecauseit representsan attempt to identify and parameterize
aspectsof zoning design that are not wen agreedupon. Identification of differencesis the first
step toward their resolution. Even if expert consensusremains elusive, the ability to measure
the consistencyof a single user in his or her tuning of the profile and in the resulting zoning
design could prove to be useful. J. S. Steger (NASA Ames, private communication) envisions
a graphical consistency-checkerbasedon the tunable user bias profile that not only evaluates
a zoning (obtained with or without the help of EZGrid), but highlights the aspects that are
most heavily penalizedboth before and after the weights of the tuned profile have beenapplied.
With such a system at his disposal, the expert in the comparison study in section 5.3 could have
performed a sensitivity analysis when confronted with apparent inconsistencies, leading perhaps
to a modification of either his profile or his zoning for case 2 (figures 5.5a-b), and resulting in a
more favorable comparison with the automatically generated candidate zoning of figures 5.5c-d.

The contributions of this research to the AI community fall primarily in the category of

feedback to the sector of that community concerned with the application of M/knowledge-based
techniques to "real-world" problems. The techniques developed by AI researchers using small,
weU-groomed test problems must be applied to the larger, less well-behaved problems typically
encountered outside the laboratory in order to discover any limitations due to scale, complexity,
or other factors. The application of knowledge-based techniques to the automation of flow-field
zoning has demonstrated several points:

1. A knowledge-based approach can be applied successfully to a problem which has perceptual
aspects-the language developed to describe qualitative shape and configuration (position)
information is simple, yet effective.

2. The absence of expert consensus on solution methodology and evaluation need not deter

application of knowledge-based techniques to a problem domain as long as it is possible to
characterize the differences among experts and incorporate those differences in such a way
that acceptable solutions can be obtained.

3. Within the category of design-type problems are those whose solutions are designed through
the composition of primitives (as opposed to being designed by the perturbation of an existing
solution). Many of those problems might be transformable to simpler selection-type problems,
as is the case with flow-field zoning, where subplans governing the zoning of single object
groupings are selected and assembled into a plan for the zoning of an entire configuration.

Because EZGrid is intended as a demonstration rather than a production system, the issue of
scale has not been fully addressed by this work. EZGrid contains over 400 rules in its knowledge
base; many times that number would be required to reach a broader degree of competence.
However, since test problems were selected that are representative of the full range of 2-D zoning
problems, the run-time complexity and scale of automatically zoning any 2-D problem has been
explored. Little effort was expended to make EZGrid efficient, with the exception of judiciously
activating and deactivating different theories in the knowledge base (to reduce the search through
the rules), and converting most backward-chaining rules to forward-chaining ones. Interestingly,
one of the most time-consuming portions of an EZGrid run (in both interactive-multiple-step
and automatic modes) is an activity that is easy and fast for a human-that of assessing the
situation prior to making a decision about the next appropriate zoning action to execute. To do
this, EZGrid must determine containment relations and object attributes (whether an object is
empty, connected, filled, etc.) for each object at each stage. It was stated in section 2.2 in the
description of the zoning model that as the design of a zoning progresses, more and more objects
are created. This proliferation of objects slows down the situation assessment phase at each stage
of an EZGrid run, whereas for a human, as the design progresses the situation becomes simpler
and easier to assess at a glance.

Of course, there are aspects of flow-field zoning that encourage the use of a knowledge-based
approach, based on the guidelines of section 1.3. The primary motivation for this approach was
the nature of flow-field zoning; it is an ill-structured problem for which no solution algorithm or
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formula exists. Knowledge-based techniques (separating knowledge and data from the use and
control of the knowledge and data, and emphasizing knowledge, including the heuristic variety)
worked well for this type of problem. The facts that zoning was not well formulated and that some
ideas about zoning were still evolving, while cited as deterrents to a knowledge-based approach,
actually became positive factors in the choice of such an approach. The evolutionary nature of
knowledge-based system development permitted ideas for solving this problem to evolve as well,
rather than requiring a well-planned specification prior to development.

The choice of a knowledge-based approach for the automation of flow-field zoning in 2-D
was therefore a reasonable one. The aspects of zoning which encouraged such an approach were
indeed positive contributors to the success of the research, and the difficulties arising from the
aspects which discouraged that approach were overcome, providing valuable feedback to the CFD
and the AI communities alike. The guidelines for a successful application of knowledge-based
programming techniques are clearly not hard-and-fast rules, but rather are good indicators for
how straightforward and quick the application is likely to be.

6.4 Opportunities for Further Research

Since EZGrid is intended to be the foundation of a future automated zonal grid generation
system in 3-D, future directions consist primarily of the actual extension to 3-D and the inclusion
of an automated zonal grid generation capability. The second section of this chapter briefly
discussed the extent to which EZGrid succeeds in forming a foundation for a 3-D system. A
modification of the language for qualitative shape and configuration description is certain to be
necessary. Above, below, upstream, and downstream provide insufficient relational information in
3-D, and ellipse, wedge, and the other primitive part shape descriptors are clearly limited to 2-D.
The join concept might have to be extended as well. A full 3-D civil transport aircraft geometry
would require a compound shape description involving many more parts than are encountered in
the 2-D test case geometries. The use of model templates for the identification of and reasoning
about typical aircraft shapes might ease the user's shape description burden. The implementation
of the 3-D version of this language should provide a more graphical user interface. In fact,
user interaction, especially of a graphical nature, is expected to be of more importance in a
3-D system. This expectation is based upon the greater complexity in geometric descriptions

and computations, and the need for more flexibility in order to gain user acceptance (the user
should be able to guide the system and input additional information whenever appropriate),
since a 3-D system would be ultimately intended as a production code rather than a proof-of-
concept code (like EZGrid). The hardware used for EZGrid development-the IRIS Graphics
Workstation-would still be suitable for the greater demands of a 3-D system on graphics and
user interaction, but access to computer-aided design (CAD) software would be necessary for 3-D
geometric manipulations, including zonal interface surface generation.

Automated zonal grid generation involves more than simply the construction of a knowledge-
based system to control the execution of an existing grid generator. The number and distribution

of grid points on zonal interface curves (surfaces in 3-D) must be specified; these quantities are
intimately related to the relationship of a zone to the other zones in the flow field, the types of
curves (surfaces) that make up the perimeter of the zone, and many of the same factors which
influenced the zoning, such as user bias and inflow conditions. The rules in EZGrid's knowledge
base which determine the grid point placement for a few simple cases represent a good start on
the solution to this problem, but all of the important parameters have not yet been identified,
particularly for grid generation in 3-D.
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APPENDIX A

ZONING ACTIONS AND CONSEQUENCES

This appendix contains a complete list of all possible zoning actions, the conditions necessary
for the application of those actions ill a zoning situation, and the consequences (i.e., changes to
the zoning situation) of each action. Also included are examples of each action, as were shown in
figure 2.5.

I. ZONING ACTION:

connection/envelop - parent-child
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment
- parent is not filled

- parent is not connected
- parent directly contains an object (child)

CONSEQUENCES:
- 1 new object created
- parent contains new object
- new object contains child

PARENT

--

2. ZONING ACTION:

connection/bridge - parent-child
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment
- parent is not filled
- parent directly contains an object (child)

CONSEQUENCES:
- 2 new objects created

- bridge object
- resultant object (= bridge + child)

- parent contains resultant object
- resultant object contains bridge, child

$ULTANT

PARENT

BRIDGE }

PARENT

DEGENERATE BRIDGE

RESU LTANT
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3. ZONING ACTION:

connection/cut - parent-child
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent is not connected

- parent directly contains an object (child)

CONSEQUENCES:

- 1 new object created

- parent contains new object

- parent still directly contains child

- parent filled by new object and child

PARENT

S I
I

I
NEW OBJECT I

t

4. ZONING ACTION:

connection/cut - parent-child
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent is connected

- parent directly contains an object (child)

CONSEQUENCES:

- 2 new objects created

- parent contains both new objects

- parent still directly contains child

- parent filled by new objects and child

PARENT

', JlNEW OBJECT _1

, -

5. ZONING ACTION:

connection/envelop - sibling-sibling
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent directly contains 2 objects (siblings)

CONSEQUENCES:

- 2 new objects created

- envelope object

- resultant object (= envelope + sibling #1)

- parent contains resultant object

- envelope contains sibling #2

- resultant object contains envelope, sibling #1

PARENT

_
/ /f"- 5

_ ((,,. .......... I
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6. ZONING ACTION:

connection/bridge- sibling-sibling
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment
- parent is not filled

- parent directly contains 2 objects (siblings)
CONSEQUENCES:

- 2 new objects created
- bridge object

- resultant object (- bridge + both siblings)
- parent contains resultant object
- resultant object contains bridge, siblings

PARENT

RESULTANT

BRIDGE

PARENT

RESULTANT

DEGENERATE BRIDGE

7. ZONING ACTION:

connection/wrap - sibling-sibling
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment
- parent is not filled

- parent directly contains 2 objects (siblings)
CONSEQUENCES:

- 2 new objects created
- wrapping object
- resultant object (- wrapping object +

both siblings
- parent contains resultant object
- resultant object contains wrapping object,

both siblings

PARENT

_/_-'- - -J_- _

_ _ -__- _
t_'-WRAP

,
\ ______: I

_RESULTANT /

8. ZONING ACTION:

connection/cut - self-interlor
CONDITIONS FOR APPLICABILITY:

- object is a zoning environment
- object is not filled
- object is not zoned

CONSEQUENCES:

- 2 new objects created, one on each side of cut
- object contains both new objects

/
/

NEW /
OBJECT /

#1 / NEW
/ OBJECT

/ _2
/

OBJECT

"-I
I
I
I
I
I

]
J
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9. ZONING ACTION:

connection/cut - self-exterior
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent directly contains an object (child)

(action applied to child)

CONSEQUENCES:

- 2 new objects created
- object enclosing region between child and cut

- resultant object (= first new object + child)

- parent contains resultant object

- resultant object contains first new object, child

NEW

INTERIOR /_-,,

OBJECT fi_"_\

RESULTANT

PARENT

10. ZONING ACTION:

separation/cut - sibling-sibling
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent directly contains at least two

different objects (siblings)
CONSEQUENCES:

- 2 new objects created, one on each side of cut

- parent contains both objects
- each new object contains one or more siblings

PARENT

NEW

_ OBJECT
#1

NEW

_ OBJECT

11. ZONING ACTION:

separation/partition- all-objects
CONDITIONS FOR APPLICABILITY:

- parent object is a zoning environment

- parent is not filled

- parent directly contains at least 2

objects (children)

CONSEQUENCES:

- n new objects created

(where n = number of children)
- parent contains all new objects
- each new object contains a child object

- parent filled by new objects

PARENT

r
"_""_' NEW OBJ. #2

I NEW OBJ. -'_3 I NEW__40 J" i i
....... ./..
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12. ZONING ACTION:

shape-alteration/envelop- self-actual
CONDITIONS FOR APPLICABILITY:

- object is the outer boundary zoning environment (OB)
- OB is not filled

CONSEQUENCES:
- 1 new object created
- OB contains new object
- new object contains all children of OB
- assertion that new object fills OB

(tantamount to setting new object equal
to OB - that not done directly so that OB_s

actual perimeter curves remain unchanged
for alternative zoning candidates)

NEW OBJECT

/
!
I

X
\

OB

I
I
I
I
I
I
I
I

_1

13. ZONING ACTION:

shape-alteration/envelop- self-actual
CONDITIONS FOR APPLICABILITY:

- object is a zoning environment

- object is not filled
- object is not zoned
- OB is filled

- object is one of OB's filling objects
CONSEQUENCES:

- 1 new object created
- old object contains new object
- new object contains all children of old object
- assertion that new object fills old object

(tantamount to setting new object equal
to old object - that not done directly so
that old object's actual perimeter curves
remain unchanged for alternative zoning candidates)

NEW OBJ./_"l,

\

OB

Zel II
.I

Ze2

OB FILLED BY Zel, Ze2

14. ZONING ACTION:

shape-alteration/envelop - self-virtual
CONDITIONS FOR APPLICABILITY:

- parent is a zoning environment
- parent is not filled
- parent directly contains an object (child)

(action applied to child)
CONSEQUENCES:

- 1 new object created
- parent contains new object
- new object contains child

CHI LD

NEW OBJECT

PARENT
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15. ZONING ACTION:

shape-alteration/wrap- self-virtual
CONDITIONS FOR APPLICABILITY:

- parent is a zoning environment
- parent is not filled

- parent directly contains an object (child)
(]action applied to child)

ONSEQUENCES:

- 2 new objects created
- wrapping object
- resultant object (= wrapping object + child)

- parent contains resultant object
- resultant object contains wrapping object, child

PARENT

RESULTANT

16. ZONING ACTION:

shape-alteration/cut - self-virtual
CONDITIONS FOR APPLICABILITY:

- parent is a zoning environment
- parent is not filled

- parent directly contains an object (child)
(action applied to child)
CONSEQUENCES:

- 2 new objects created
- object enclosing region between child and cut
- resultant object (= first new object + child)

- parent contains resultant object
- resultant object contains first new object, child

PARENT NEW

_OB INTERIOR

JECT

17. ZONING ACTION:

identification/identify - region
CONDITIONS FOR APPLICABILITY:

- parent is a zoning environment
- parent is not filled or empty
- parent is connected

aoCtion applied to unidentified region of parent)
NSEQUENCES:

- n new objects created
(where n = number of separate, unidentified
regions within parent object)

- parent contains all new objects
- all new objects empty
- parent filled by new objects and all other

objects that it directly contains

 wo.J CT

PARENT

I

,,
J
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APPENDIX B

AN EXAMPLE OF AN EZGRID DATABASE

The listing beginning on the next page details the contents of the EZGrid database at the
conclusion of an automatic run in which the flow field about a tilted, cambered airfoil was zoned.

Three stages were required to design and generate the single-zone result shown in the figure
below. Each proposition is surrounded by parentheses, just as it appears in the database. Note

that propositions involving zoning actions, e.g.,
executable (plan pl) (operator bridge)
application parent-child (OB bl)) (objective connection) (stage 1))

describe the action in a somewhat different form than the operator-operand pair of section 2.3.2.
The form of an action used here has three elements: an objective, an application, and an operator.

The objective and operator of this form are combined to be the operator of section 2.3.2. The
application and the objects to which the action is to be applied are combined to be the operand
of section 2.3.2. The reason for the difference lies in the fact that originally, zoning actions were

modeled as having three elements, and that is the model that was implemented. The operator-
operand model is conceptually identical, but is easier to explain and is more consistent with usual
mathematical terminology.

//

t

-- ! J --_

¢ t

i I
t I

Figure B.1. - Single-zone grid for cambered airfoil at a = 5 °, Moo = 0.8.
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Theory INIT - Stage 1

_userbias
_userbias
_userbias
_userbias

userbias
userbias
userbias
userbias

'mode automatic)
'userbias simplicity low)
'userbias skewness high)
_userbias smoothness medium)

mapping high)
efficiency low)
orthogonality high)
surface-vs-field low)
wake high)
tuples allowed)
singularities allowed)
intersections allowed)

userbias viscosity allowed)

body bl (stage 1))
original-body bl (stage 1))
contains OB bl (stage 1))
newcurve cl (object bl) (stage 1))
newobject bl (stage 1))
vertices bl done (stage 1))
]owcondition flow-direction left-to-right)
,_oning-environment OB (stage 1))
contains-body OB (stage 1))
'body OB (stage 1))

'fiowconditionsneeded (angle-of-attack mach-number steadiness
accuracy boundary-conditions))

flowcondition mach-number 0.8)
[towcondition speed-regime transonic)
aowcondition speed-regime subsonic)
ftowcondition steadiness steady)
flowcondition angle-of-attack 0.0698132)
flowsolverinfo accuracy low)
flowsolverinfo boundary-conditions nil)
accuracy determined)
angle-of-attack determined)
steadiness determined)
mach-number determined)
describe-preliminary-coreobjects (stage 1))

(preliminary-corebody OB (bl)(stage 1))

(dimensionsneeded OB)
(construction-shape OB bullet)
(suggested-distance-in-chords upstream OB 4.0)
tsuggested-distance-in-chords downstream OB 4.0)

suggested-distance-in-chords above OB 6.0)
suggested-distance-in-chords below OB 6.9 )
compute OB (stage 1))
operation-objects (OB) (stage 1))
object-needed O B (type created) (specification object) (stage 1))
object-parameter OB (shape bullet) (stage 1))
object-parameter OB (upstream-length 2.03655) (stage 1))
object-parameter OB (downstream-length 2.7154)(stage 1))
object-parameter OB (above-width 2.7154) (stage 1))
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object-parameter OB (below-width 2.7154)(stage1))
object-parameters OB done (stage1))
object-curves OB (c2 c3) (stage1))
curve-neededc2 (type new) (object OB) (stage1))
curve-parameter c2 (begin-point ((point) (4.49353-3.47055))) (stage1))
curve-parameter c2 (begin-angleunspecified)(stage1))
curve-parameter c2 (interior-points (((point) (1.09928-3.47055))

oint) (1.07891-3.47055))((point)(-0.93727-0.486344))
(point) (1.078912.49786)) ((point)(1.09928 2.49786))))(stage 1))

curve-parameterc2 (end-point ((point)(4.49353 2.49786))) (stage 1))
curve-parameterc2 (end-angleunspecified)(stage1))
curve-parametersc2 done (stage 1))
numknots c2 7)
bctypes c2 (free free))
'bcvalues c2 (0.0 0.0 0.0 0.0))
'knot-locations c2 ((4.49353-3.47055) (1.09928-3.47055)

1.07891 -3.47055) (-0.93727-0.486344) (1.07891 2.49786)
1.09928 2.49786)(4.49353 2.49786))(stage 1))

curve-completed c2 (stage 1))
newcurve c2 (object OB) (stage 1))
curve-needed c3 (type new) (object OB) (stage 1))
curve-parameter c3 (begin-point ((point) (4.49353 2.49786))) (stage 1))

curve-parameter c3 (begin-angle unspecified)(stage 1))
curve-parameter c3 (interior-points nil) (stage 1))
curve-parameter c3 (end-point ((point) (4.49353-3.47055))) (stage 1))
curve-parameter c3 (end-angle unspecified)(stage 1))

curve-parameters c3 done (stage 1))
numknots c3 2)
bctypes c3 (free free))
bcv ues c3 (0.0 0.00.0 0.0))
_knot-locations c3 ((4.49353 2.49786)(4.49353-3.47055)) (stage 1))

1curve-completed c3 (stage))

_lnewcurve c3 (object OB) (stage 1))
object-completed OB (stage 1))

loperation-completed (stage 1)1

(newobject OB (stage 1))
[vertices OB done (stage 1))
(flowcondition domain-type external)
(describe-containment (stage 1))
(directly-contains OB bl (stage 1))
(describe-coreobjects (stage 1))
(corebody OB (bl) (stage 1))

(numbodies OB 1 (stage 1))
(coretype OB single (stage 1))

contained-environments OB nil (stage 1))
numenvironments OB 0 (stage 1))

describe-topology (stage 1))
describe-filling (stage 1))
configuration-grouping OB gl (bl))
configuration-groups OB 1)
flowconditionsneeded (viscosity turbulence turbulence-model

flow-direction angle-of-attack domain-type))

(flow-direction determined)
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'viscosity determined)
'batch-mode batch)
'endofinitialdata (stage 1))
'flowcondition viscosity inviscid)

Theory INIT-ACTION - Stage 1

preparesubplans (stage 1))
subplan spl gl (primary (((objective connection)

application parent-child $pc) (operator bridge)
strategy degenerate-zone) (strategy follow-wake)
strategy identify (original-body bl)))))
completion (((objective identification) (application region ($zl)

/operator identify)) (topology-imposition $z2 (strategy impose-c/))) )

readytoplan (stage 1))
plan pl (pending (((objective connection)

application parent-child $578) (operator bridge)
strategy degenerate-zone) (strategy follow-wake)
strategy identify (original-body b I )))
(objective identification)(application region ($576))
operator identify)) (topology-imposition $577 (strategy impose-c))))
executed nil)(stage 1))

readytozone (stage 1))
possible (objective connection) (stage 1))
possible (objective shape-alteration)(stage 1))
objective-executables (stage 1))
executable (objective connection) (stage 1))
possible (application parent-child (OB b 1)) (objective connection) (stage 1))
possible (application self-interior (OB)) (objective connection) (stage 1))
possible (application self-exterior (bl)) (objective connection) (stage 1))
application-executables (stage 1))
executable (application parent-child (OB bl))

(objective connection)(stage 1))
(possible (operator envelop) (application parent-child (OB bl))

(objective connection)(stage 1))
(possible (operator bridge) (application parent-child (OB bl))

(objective connection)(stage 1))
(possible (operator cut) (application parent-child (OB bl))

(objective connection)(stage 1))
(operation-executables (stage 1))
(executable (plan pl)(operator bridge)(application parent-child (OB bl))

(objective connection) (stage 1))

Theory T1 - Stage 2

(choose-action (plan pl)(operator bridge)
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(application parent-child (OB bl)) (objective connection) (stage 2))

assert-strategies (stage 2))
strategy degenerate-zone (stage 2))
strategy follow-wake (stage 2))
strategy identify (original-body bl) (stage 2))
chosen (operator bridge) (application parent-child (OB bl))

(ob jective connection) (stage 2))
(operation-objects (zel ze2)(stage 2))
(object-needed zel (type created) (specification curve) (stage 2))
(object-curves zel (c4) (stage 2))

(curve-needed c4 (type new) (object zel) (stage 2))
(curve-parameter c4 (begin-point ((curve cl 0.0) (1.77813 -0.755149)))

(stage 2))

new-connection (cl (0.0 (c4 0.0))) (stage 2) (theory tl))

curve-parameter c4 (begin-angle 5.36057) (stage 2))
curve-parameter c4 (interior-points (((point) (1.90781 -0.864631))

(point) (2.05507-0.94899)) ((point)(2.21346-1.00992))
(point) (2.37852-1.04939)) ((point) (2.54706-1.06934))
(point) (2.71675-1.07159)) ((point) (2.88605-1.05976))
(point) (3.05535-1.04792)))) (stage 2))

(curve-parameter c4 (end-point ((curve c3 0.577209)

(4.49353-0.947162))) (stage 2))
new-connection (c3 (0.577209 (c4 1.0))) (stage 2) (theory tl))
'curve-divided c3 (stage 2))
curve-parameter c4 (end-angle 3.14159)(stage 2))
curve-parameter c4 (begin-derivative-weight 0.0848561) (stage 2))
curve-parameter c4 (end-derivative-weight 0.720851) (stage 2))

curve-parameters c4 done (stage 2))

numknots c4 10)
bctypes c4 (specified specified))
bcvalues c4 (0.0512308 -0.0676459 0.720851 -1.71864e-06))
knot-locations c4 ((1.77813 -0.755149) (1.90781 -0.864631)

2.05507-0.94899' (2.21346 -1.00992) (2.37852 -1.04939)
2.54706 -1.06934' (2.71675 -1.07159) (2.88605 -1.05976)
3.05535-1.04792' (4.49353-0.947162)) (stage 2))

curve-completed c4 (stage 2))
newcurve c4 (object zel) (stage 2))
object-completed zel (stage 2))
zoning-environment zel (stage 2))

degenerate zel (stage 2))
zoned zel (stage 2))
newobject zel (stage 2))
vertices zel done (stage 2))
object-needed ze2 (type resultant) (specification merge) (stage 2))
object-completed ze2 (st:
operation-completed (sta ee2_/)

contains OB ze2 (stage 2
contains ze2 bl (stage 2)
contains OB bl (stage 2"

contains ze2 zel (stage
contains OB zel (stage I

zoning-environment ze2 Lage 2))
contains-environment ze2 (stage 2))
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newobject ze2 (stage 2))
vertices ze2 done (stage 2))
leading-edge ze2 done (stage 2))
updateplan (stage 2))

plan pl (pending (((objective identifcation)

application region ($737)) (operator identify))
topology-imposition $738 (strategy impose-c))))

executed (((objective connection) (application parent-child (OB bl))
operator bridge) (strategy degenerate-zone) (strategy follow-wake)
strategy identify (original-body bl)))))(stage 2))

updateframe (stage 2))
connection-list ((cl (0.0 (c4 0.0)))(c3 (0.577209 (c4 1.0))))

(stage 2) (theory t I ))

updated connections (stage 2)(theory tl))
body bl (stage 2))
original-body bl (stage 2))
contains-body ze2 (stage 2))
body ze2 (stage 2))
body OB (stage 2))

zoning-environment O B (stage 2))
contains-body OB (stage 2))
contains-environment OB (stage 2))

'endofinitialdata (stage 2)
describe-containment (st_
directly-contains ze2 bl
directly-contains ze2 zel
directly-contains OB ze2

;e 2))
rage2))
_tage 2))

describe-coreobjects (sta!
'corebody zel nil (st _ge 2
numbodies zel 0 (stage 2
'corebody ze2 (bl) (_tage))
'numbodies ze2 1 (stage 2
'coretype ze2 single qstag_

'numbodies OB I (stage

coretype OB single istag, )))
contained-environments zel nil (stage 2))
'connected zel (stage 2))
'numenvironments zel 0 (stage 2))

empty zel (stage 2))
contained-environments ze2 (zel) (stage 2))
'connected ze2 (stage 2))
'numenvironments ze2 1 (stage 2))
'contained-environments OB (ze2) (stage 2))
'connected OB (stage 2))
'numenvironments OB 1 (stage 2))
'describe-topology (stage 2))
'describe-filling (stage 2))
'filled ze2 (stage 2))
filling-objects ze2 (zel bl) (stage 2))
zoned ze2 (stage 2))
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Theory T1-ACTION - Stage 2

readytoplan (stage 2))
readytozone (stage 2))
possible (objective connection)(stage 2))
possible (objective shape-alteration)(stage 2))
possible (objective identification) (stage 2))
objective-executables (stage 2))
executable (objective identification) (stage 2))

(possible (application region (OB)) (objective identification) (stage 2))
(application-executables (stage 2))
(executable (application region (OB)) (objective identification) (stage 2))
(possible (operator identify ) (application region (OB))

(objective identification)(stage 2))
(operation-executables (stage 2))
(executable (plan pl)(operator identify)(application region (OB))

(objective identification) (stage 2))

Theory T2 - Stage 3

(choose-action (plan p I ) (operator identify ) (application region (O B))
(objective identification) (stage 3))

assert-strategies (stage 3))
chosen (operator identify) (application region (OB))

(objective identification) (stage 3))
operation-objects (ze3) (stage 3))
object-needed ze3 (type resultant)(specification subtract)(stage 3))
object-completed ze3 (stage 3))
operation-completed (stage 3))
zoning-environment ze3 (stage 3))
newobject ze3 (stage 3))
vertices ze3 done (stage 3))
_contains OB ze3 (stage 3))
updateplan (stage 3))

updateframe (stage 3))
contains OB ze2 (stage 3))
contains ze2 bl (stage 3))
contains OB bl (stage 3))
contains ze2 zel (stage 3))
contains OB zel (stage 3))
body bl (stage 3))
original-body bl (stage 3))
body ze2 (stage 3))
body OB (stage 3))
zoning-environment zel (stage 3))
degenerate zel (stage 3))
zoned zel (stage 3))
zoning-environment ze2 (stage 3))

contains-body ze2 (stage 3))
contains-environment ze2 (stage 3))
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zoning-environmentOB (stage3))
contains-body OB (stage3))
'contains-environmentOB (stage3))
_zonedme2 (stage 3))
_filled me2 (stage 3))
'connection-fist ((cl (0.0 (c4 0.0))) (c3 (0.577209 (c4 1.0))))

(stage 3) (theory t2))
filling-objects me2 (me1 bl) (stage 3))
coretype me2 single (stage 3))
corebody ze2 (bl) (stage 3))
'numbodies me2 1 (stage 3))
'contained-environments me2 (me1) (stage 3))
'connected me2 (stage 3))
numenvironments me2 1 (_tage 3))
endofinitialdata (stage 31
describe-containment (st
directly-contains me2 bl
directly-contains me2 me1
directly-contains OB me3
directly-contains OB me2
describe-coreobjects (sta_
corebody me3 nil (stage 3
numbodies me3 0 (stage 3
corebody me1 nil (stage 3
numbodies zel 0 (stage 3
corebody OB (me2) (stag_
numbodies OB 1 (stage 3

coretype OB single (stag_

;e 3))
tage 3))

stage 3))
stage 3))

contained-environments me3 nil (stage 3))
connected ze3 (stage 3))
numenvironments me3 0 (stage 3))
empty me3 (stage 3))
contained-environments zel nil (stage 3))
connected me1 (stage 3))
numenvironments me1 0 (stage 3))
empty me1 (stage 3))
contained-environments OB (me3 me2) (stage 3))
'connected OB (stage 3))
numenvironments on 2 (stage 3))
describe-topology (stage 3))
possible topology-imposition me3 (stage 3))
strategy impose-c (stage 3))
desirable topology-imposition me3 (stage 3))
sidelist me3 done (stage 3))
zone me3 (stage 3) (theory t2))
zoned me3 (stage 3))
plan pl (pending nil) (executed ((topology-imposition me3

strategy impose-c) ) ((objective identification)
application region (OB)) (operator identify))
(objective connection ) (application parent-child ( O B b I ))
operator bridge) (strategy degenerate-zone) (strategy foUow-wake)
strategy identify (original-body b 1))))) (stage 3))

(describe-filling (stage 3))
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'filled OB (stage 3))
'filling-objects OB (ze3 ze2) (stage 3))
'zoned OB (stage 3))
'zoningeomplete (stage 3) (theory t2))

describe-grid ze3 (c7 cl c4) (c9) (c2) (c6) (stage 3))
grid-type ze3 inviscid (body-sides etaO) (stage 3))
grid-size ze3 66 15)
grid-spacing ze3 xiO (15 0.00910158 0.273047))
grid-spacing ze3 xil (15 0.00666667 0.2))
describe-xi-spacing ze3 (c7 cl c4) 7.39676 (c2) 14.7501 (stage 3))

grid-control-point ze3 etal ((curve c2 0.25546)(0.911677-3.45999)))
grid-control-point ze3 etal ((curve c2 0.645673) (-0.227126 1.77827)))
grid-control-point ze3 eta1 ((curve c2 0.884181) (2.86871 2.49641)))
grid-spacing ze3 etaO (66 0.086024 0.08611))
grid-spacing ze3 etal (12 0.176552 0.0833333) (24 0.0479767 0.0416667)

(24 0.0771451 0.0416667) (6 0.0862374 0.394416))
(grid-spacing ze3 done (stage 3))
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APPENDIX C

EXAMPLE RULES FROM THE EZGRID KNOWLEDGE BASE

META RULES

META rules link lisp files to MRS propositions, and contain forward chaining instructions,
as shown by the following two examples:

(assert '(lisp WhichVertexFQ which_vertex))
- note: the first function name is the MRS name, the second is the actual lisp function

name

(assert '(toassert _p fc))

- note: the & denotes an MRS meta-level variable, which can be matched with propositions
rather than just with simple terms, as is the case with ground-level variables such as Sx

SITUATION RULES

These rules update the zoning situation at each stage by determining the varying properties
of each object, such as whether it is zoned, empty, or filled, and what it contains.

(if (and (sidelist $z done (stage $n))
(zoning-environment $z (stage $n))

(empty Sz (stage $n))
(PROVABLE (zoneshaped $z)))

(zone $z (stage Sn)))
-- note: PROVABLE is an MRS term which invokes backward chaining on the proposition

which follows it

(if (and (describe-containment (stage Sn))
(zoning-environment Szl (stage $n))

(contains $zl $z2 (stage $n))
(DirectlyContainsRQ $zl $z2 $n))

(directly-contains $zl $z2 (stage $n)))
- note: DirectlyContainsRQ is a lisp function that returns true or false, and which looks

for intermediate containment relations to determine direct containment

(if (and (describe-filling (stage $n))
zoning-environment $z (stage $n))
UNKNOWN (filled $z (stage $n))
contained-environments $z $ce (stage $n))
corebody $z $cb (stage $n))
ApplyFQ append ($ce $cb) $clist)
AllCurvesSharedRQ $z $clist))

(filled$z (stageSn)))
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CONTROL RULES

CONTROL rules contain knowledge about how to build up EZGrid's database structure and
when to begin plan construction.

(if (and (end-of-initial-data (stage Sn))

mode automatic)
> $nl)

AssertDataRQ $n)
UNKNOWN (zoning-complete (stage $n))

EvalFQ theory Sth)
ApplyFQ concat ($th-action) $newname)

(StartNewWheoryRQ Sth $newname))

(ready-to-plan (stage $n)))

FRAME RULES

FRAME rules contain knowledge about which variable object properties can be assumed
invariant and reasserted at the next stage of the zoning.

(if (and (update-frame (stage $n))

- $n 1 $m)
filled $z (stage Sin)))

(filled $z (stage $n)))

(if (and (update-frame (stage $n))
(- Sn 1 Sm)

filled Sz (stage Sin))
corebody $z $cb (stage $m)))

(corebody $z $cb (stage $n)))

INFLOW RULES

These rules contain basic fluid dynamics knowledge about speed regime, Mach angle, and
high lift conditions.

(if (and (flow-conditions-needed $condition-list)
(MEMBER mach-number $condition-list)

(GetFlowConditionRQ math-number)) ,,-

(mach-number determined))
- note: the lisp function GetFlowConditionRQ gets the information from the user and

asserts a proposition (flow-condition $condition $value) into the database

(if (and (flow-condition angle-of-attack Sa)

(_> $a 0.087)) ; radians
(flow-condition classification high-lift))
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OB RULES

The knowledge contained by OB rules consists of basic CFD knowledge, such as what shape
the outer boundary should be for a given configuration, and how far away the boundaries should

be placed based on inflow conditions, boundary conditions, and desired solution accuracy•

(if (and

(and

(flow-condition speed-regime subsonic)
'UNKNOWN (flow-condition speed-regime transonic))

• *

dimensions-needed OB)
'flow-condition steadiness steady)

flowsolver-mfo accuracy $a)
'flowsolver-info boundary-conditions $b)

'MaximumRangeNeededRQ $a $b))

(suggested-distance-in-chords upstream OB 6.0)
suggested-distance-in-chords downstream OB 6.0)
suggested-distance-in-chords above 10.0)
suggested-distance-in-chords below 10.0)))

(if (and (flow-condition classification high-lift)
UNKNOWN (correction high-lift (stage $n)))

dimensions-needed OB)
suggested-distance-in-chords above OB $da)
suggested-distance-in-chords below OB $db)

* Sda 1.5 $dl)
* $db 1.5 $d2)

(and correction high-lift (stage $n))

;uggested-distance-in-chords above OB Sdl)
suggested-distance-in-chords below O S $d2)))

ACTION RULES

These rules contain knowledge about what circumstances make certain zoning actions possi-
ble.

(if (and (ready-to-zone (stage $n))
(zoning-environment $z (stage $n))
(UNKNOWN (possible (operator connection/Sop) (stage $n)))

(UNKNOWN (Filled $z (stage $il))
(UNKNOWN (Empty $z (stage $n)))

(possible (operator connection/Sop)(stage $n)))

(if (and (executable (operator connection/Sop)(stage $n))
zoning-environment $z (stage $n))

_UNKNOWN (filled $z (stage $n)))

coretype $z multiple (stage $n))
directly-contains $z $bl (stage Sn))

directly-contains $z $b2 (stage $n))
UNPROVABLE (IS $bl $52))

_UNKNOWN (possible (operator connection/Sop)
operand sibling-sibling/($52 $bl)) (stage $n))))
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(possible (operator connection/Sop) (operand sibling-sibling/($b2 Sbl))))

GENERATE RULES

GENERATE rules contain knowledge about how to execute zoning actions. The examples
selected here show a chain of inference leading up to the construction of one or more new objects,
beginning with the number and type of objects required and the curves needed to construct that
object, proceeding to what curve parameters are needed for each curve and the translation of those
parameters into the inputs needed by the curve generation function, and ending with completion
requirements and new object type and containment information.

(if (and (chosen (operator shape-alteration/envelop) (operand self-virtual ($ol $o2)))

(GetNewNameFQ ZE $z))
(and (operation-objects ($z) (stage $n))

(object-needed $z (type created)(specification curve)(stage $n))))

(if (and (object-needed $z (type created) (specification curve) (stage $n))

(UNKNOWN (mode automatic))
(chosen (operator *or) (operand Sod) (stage Sn))
(SpecifyCurveFQ Sz $or Sod $n $type)

(MEMBER $type (new existing))
(GetNewNameFQ C $c))

(and (curve-needed $c (type St) (object $z) (stage Sn))
(another-curve $c (stage $n))))

(if (and (curve-needed $c (type St) (object $z) (stage $n))
UNKNOWN (mode automatic))

object-needed $z (type created) (specification curve)(step $n))
SpecifyBeginPointfQ $c $t $bp))

(curve-parameter $c (begin-point $bp) (stage $n)))

(if (and (curve-parameter $cl (begin-point ((curve $c2 $u) $p) (stage $n))
(curve-needed $cl (type new) (object $z) (stage $n))

(new-connection ($c2 ($u ($cl 0.0))) (stage $n)))

(if (and

(and

curve-parameters $c done (stage $n))

curve-parameter $c (begin-angle unspecified) (stage Sn))
curve-parameter $c (end-angle Sea) (stage Sn))

NUMBER Sea)
curve-parameter $c (end-derivative-weight Sew) (stage Sn))
GetDirectionDerivativesFQ unspecified nil Sea Sew (($dxl Sdyl) (Sdx2 $dy2))))

bc-types $c (free specified))
'bc-values $c ($dxl $dyl $dx2 $dy2))))

(if (and (curve-completed $c (stage $n))

object-curves $z $oclist (stage $n))

MEMBER $c $oclist)
AllCurvesDoneRQ $oclist $n))

(object-completed $z (stage $n)))
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(if (and

(and

(object-needed $z2 (type resultant)(specification merge)(stage $n))
operation-objects ($zl $z2) (stage $n))
object-completed $zl (stage Sn))
object-needed $zl (type created) (specification curve)(stage $n))
chosen (operator Sot) (operand parent-child/(Sp $c)) (stage $n))

GetFQ $c curvelist $clistl)
GetFQ $zl curvelist $clistJ)

ApplyFQ append ($clistl $clist2) $clist3)
MergeCurvelistsFQ $clist3 ($clist4))
PutpropRQ $z2 $clist4 curvelist))
(object-completed $z2 (stage $n))
zoning-environment $z2 (stage $n))
newobject $z2 (stage $n))))

(if (and (operation-completed (stage $n))
(chosen (operator shape-alteration/envelop) (operand
parent-child/($p $c))) (operation-objects ($z) (stage $n))

(and (contains $p $z (stage $n))
(contains Sz $c (stage Sn))))

PLAN RULES

These rules contain knowledge about the sequences of zoning actions and execution strategies
that best zone a flow-field grouping in certain situations, about how to assemble subplans into

plans, and how to tie in plans with the propositions that trigger zoning action selection.

(if (and prepare-subplans (stage 1))
configuration-grouping Sze $g ($b))
user-bias wake high)
construction-shape OB bullet)
original-body $b (stage 1))
flow-condition flow-direction left-to-right)
'GetFQ $b type simple-airfoil)
GetFQ $b leading-edge (blunt $1e))
GetFQ $b trailing-edge (sharp $te))
GetNewNameFQ SP Ssp)

(subplan $sp $g
(primary (((operator connection/bridge)(operand parent-child/($p Sc)) (strategy de-
generate-zone) (strategy follow-wake) (strategy identify (original-body $b)))))
(completion (((operator identification/identify)(operand region/(Szl))) (topology-im-
position $z2 (strategy impose-C)))))

(if (and (ready-to-plan (stage 1))
(configuration-groups OB 1)
(configuration-grouping OB $gname $g)
(subplan $sp $gname (primary $pl) (completion $cl))
(GetNewNameFQ P Sp)
(ApplyfQ append ($pl $cl) Spend))

(plan $p (pending Spend) (executed nil) (stage 1)))

(if (and (operator-executables (stage $n))
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mode automatic)
plan $pl (pending (((operator $or) (operand Sod)) . Sr)) (executed $el) (stage $n))
possible (operator Sot) (stage $n))
UNKNOWN (undesirable (operator $or) (stage $n)))

(executable (operator $or)(stage $n)))

AUTO RULES

These rules contain knowledge about how to execute the chosen zoning action using the

execution strategies suggested by the chosen plan.

(if (and (object-needed $z (type created) (specification curve) (stage $n))

(mode automatic)
(strategy degenerate-zone (stage $n ))
(chosen (operator connection /bri dge ) (operand Sod) (stage $n ))
(GetNewNameFQ C $c))

(and (object-curves $z ($c) (stage $n))
(curve-needed $c (type new) (object $z) (stage $n))))

(if (and (curve-needed $c (type new) (object $z) (stage $n))
(mode automatic)
(strategy (follow-base-protrusion ( $p 1 )) ( stage $n) )
(object-needed $z (type created) (specification curve)(stage $n))
(object-curves $z ($c $c2) (stage $n))
(chosen (operator connection/bri dge) (operand parent-child / ( $p $ch)) (stage $n))

ApplyFQ get_joins ($ch $p 1) ((($pl front-end $11) ($p2 back-end (at-corner top-side))

_etFQ $pl back-end (base ($topbase Sbottombase))))

(curve-parameter $c (begin-point $bottombase ) (stage $n )))
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APPENDIX D

USER BIAS PROFILE
PARAMETER MEASUREMENT FUNCTIONS

1. Zonal Simplicity

simplicity = 0.5
#zones #zonal interfaces

+
#body sides #zones

(0.5 is a relative function weight)

2. Zone Corner Skewness

8_e_ness --

zones
E E

all zones corner vertices

190° - corner angle]

45 °

3. Zone Side Smoothness

smoothness -- 1 E E
zones

all zones non-corner vertices

]180 ° - vertex angle]

90 °

4. Zone Side Mapping Disparity

1

mapping = 0.15# zones E
all zones

((ratiol x ratio2) - 1.0)

(0.15 is a relative function weight)

ratiol is the ratio (> 1) of the lengths of one pair of opposite

sides of a zone, and ratio2 is the ratio (> 1) of the length of

the remaining pair of opposite zone sides
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5. Potential Grid Point Efficiency

1
efficiency

# body sides Z-_
all body sides

length of body curves)1.0 - length of all curves

6. Zone Side Orthogonality at Body Surfaces

orthogonality -
1

# bodies Z
all zones

( Z
body side corner vertices

190° - corner angle]

45 °

+ Z 1180 ° - vertex90° angle[)

body-nonbody noncorner vertices

7. Surface Versus Field Quantities

surface - vs - field = efficiency x
# body sides

# bodies

8. Wake Resolution

wake _-
1 ( Z # trailing-edge points per body)

# trailing-edge points all bodies

- (# wake curves)
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9. Zone Tuple Points

1
tuples -

zones
(connections between 3 or more zones)

all curve connections

10. Singularities at Body Surfaces

singularities --
# bodies

M1 zones

body-nonbody noncorner vertices

1180 ° - vertex angle I

90 °

11. Zone/Body Intersections

intersections --
1

# bodies
zones

Z
body-nonbody corner vertices

12. Viscosity in More Than One Direction

1
viscosity

# bodies
all zones

(# coordinate directions having at least one body curve - 1)
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APPENDIX E

COMPARISON STUDY TEST CASE PROBLEM STATEMENTS

This appendix contains copies of the problem statement worksheets given to the zoning
expert and returned with the expert's responses for the two test cases described in section 5.3.
The expert was given the flow conditions and geometry, and was asked to tune the user bias

profile and sketch a zoning for each case.

EZGrLd / Human Expert Comparison Test Case I

Givens
- external flow
- turbulent

steady
- high accuracy solution

desired
standard far-field

boundary conditions
- Minf - 0.8
- alpha - 6 degrees

User Bias Archetype Sattingat
1. zonal simplicity J_
2. zone skewness n_
3. zone smoothness _,.
4. side mapping disparity
5. potential grid pt. efficiency
6. orthogonallty at bodies
7. surface vs. field quantities
8. wake resolutlon
--t-- J--e-*-e--e--e-e-_-t_t

9. zone triple points
10. zone singularities at bodies 5-
11. zone / body intersections _2=_
12. viscosity supported in > I

direction !

possible values for archetype settings I - 8:
(n)o (1)ow (m)edium (h)Igh importance

possible values for settings 9 - 12:
1. allowed but not important
2. allowed
3. somewhat discouraged
4. discouraged
5. strongly discouraged
6. not allowed at all

** Please sketch your preferred zoning for the given configuration,
flow conditions, and objectives, and based on the archetype settings
you have provided

** Please answer the following questions:

i. How far away should the outer boundary be from the bounding
rectangle of the given geometry? (Specify in terms of body bl
chords upstream, downstream, above, and below)

2. How long did it take you to come up with the zoning design for

this problem? _o _+_.

3, Whet factors had the greatest influence on your deslgn?

4. How long would it take you (an estimate) to put your design on
the computer so that grids could be generated?

bAYS

_O_LD _$_ A K _ _ob_. Fo_ _Hi_

{_Ld_LATIo_ _AT U_a_r t_ Z_E_ I _-_
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EZGrld / Human Expert Comparison Test Case 2

Glvenz

- external flow

- turbulent

- steady

- high accuracy solution
desired

- standard far-fleld

boundary conditions
- Minf - 0.8

- alpha - 6 degrees

User Blas Archetype Settinge_

1. zonal simplicity _L
2. zone skewness

3. zone smoothness
4. side mapping disparity
5. potential grid pt. efficiency ,,_

6. orthogonality at bodies

7. surface vs. field quantities _n_

8. wake resolution
t • • * • * * • • • •

9. zone triple points

I0. zone singularities at bodies

11. zone / body intersections _.y__
12. viscosity supported in > 1

direction

possible values for archetype settings 1 - 8:
(n)o (1)ow (m)edium (h)igh importance

possible values for settings 9 - 12:

1. allowed but not important
2. allowed

3. somewhat discouraged

4. discouraged
5. strongly discouraged
6. not allowed at all

*• Please sketch your preferred zoning for the qLven configuration,
flow conditions, and objectives, and based on the archetype settings

you have provided

• * Please answer the following questions:

i. How far away should the outer boundary be from the bounding

rectangle of the given geometry? (Specify in terms of body bl
chords upstream, downstream, above, and below)

2. How long did it take you to come up with the zoning design for

this problem? (_ rn,ns.

3. What factors had the greatest influence on your design?

4. How long would it take you (an estimate) to put your design on

the computer so that grids could be generated?

3 DAY5
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