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OBJECTIVE ESTIMATION OF PERCEIVED SPEECH QUALITY USING
MEASURING NORMALIZING BLOCKS

Stephen Voran

Perceived speech qudity is most directly measured by subjective listening tests. These
tests are often dow and expensive, and numerous attempts have been made to
supplement them with objective estimators of perceived speech quality. These attempts
have found limited success, primarily in andog and higher-rate, error-free digita
environments where speech waveforms are preserved or nearly preserved. How to
objectively measure the perceived qudity of highly compressed digita speech, possibly
with bit errors or frame erasures, has remained an open question. We describe a new
gpproach to this problem, usng a smple but effective perceptud transformation, and a
hierarchy of measuring normdizing blocks to compare perceptualy transformed speech
ggnas. The reaulting estimates of perceived speech quality were corrdlated with the
results of nine subjective lisening tests. Together, these tests include 219 4-kHz
bandwidth speech encoders/decoders, transmission systems, and reference conditions,
with bit rates ranging from 2.4-64 kb/s. When compared with Sx other estimators,
ggnificant improvements were seen in many cases, paticularly a lower bit rates, and
when hit errors or frame erasures were present. These hierarchical structures of
measuring normdizing blocks, or other structures of measuring normdizing blocks, may
aso address open issues in perceived audio quality estimation, layered speech or audio
coding, automatic speech or speaker recognition, audio signal enhancement, and other
areas.

Key words.  audio qudlity; distance measures, measuring normalizing blocks; objective estimation of
audio qudity; objective estimation of speech quality; perceptud transformations, soeech
coding; speech qudity; subjective esimation of audio qudity; subjective estimation of
gpeech qudity

1. BACKGROUND

Digital speech encoding and transmission involves a four-way compromise between complexity, delay,
bit rate, and the percelved qudity of decoded speech. Complexity, delay, and bit rate can often be
quantified in farly sraightforward ways, but perceived qudity can be more difficult to messure.
Subjective ligening or conversation tests can be used to gather firghand evidence about perceived
speech qudlity, but such tests are often fairly expensve, time-consuming, and labor-intensve. These

" Theauthor iswith the Ingtitute for Tlecommunication Sciences, Nationd Teecommunications and Information
Adminigration, U.S. Department of Commerce, 325 Broadway, Boulder, Colorado 80303.



costs are often wdll-judtified, and there is no doubt that the most important measurements of perceived
speech quality will dways rely on forma subjective tests.

There are aso stuations where the costs associated with forma subjective tests do not seem to be
judtified. In particular, much speech coder/decoder odec) development and optimization work
gpparently relies on objective estimators of perceived speech qudity, aong with “informd listening
tests” Of 26 codecs described a the 1995 IEEE Workshop on Speech Coding for
Tdecommunications, only 11 had been tested in forma subjective tests. Segmentad sgnd-to-noiseratio
(SNRseg) or SNR was used to estimate perceived speech quality in ten cases, cepstra distance (CD)
was used twice, and Bark spectra distortion (BSD) was used once [1]. Codec evauations presented
at the 1997 |EEE Workshop on Speech Coding for Tdecommunications relied mainly on informa and
forma subjectivetests|[2].

SNR and SNRseg are smple to implement, have straightforward interpretations, and can provide
indications of perceived quality in some waveform-preserving speech systems. Unfortunately, as shown
in this report and in [3-5], when they are used to evaluate more generd coding and transmisson
gystems, SNR and SNRseg often show little, if any, corrdation to perceived speech qudity. The
continued popularity of these two estimators is likely due to their history, their smplicity, and the lack of
a widdy tested and accepted replacement. The main body of ITU-T Recommendation P.861
describes a perceived speech quality estimator called noise disturbance (ND), but its scopeis limited to
higher bit rate speech codecs operating over error-free channels [6]. How to objectively measure the
perceived qudity of highly compressed digita speech, possibly with bit errors or frame erasures has
remained an open question.

Researchers have recently begun to include explicit models for some of the known attributes of human
auditory perception in their estimators of perceived speech or audio qudity [6-15]. The moativation for
this perception-based approach is to create estimators that “hear” gpeech sgnas through the same
transformations that humans hear them. In principle, this was a sgnificant advance. In practice, when
edimators are evauaed, they often show modest improvement, a best. The limitations of the
perception-based approach can be traced to two sources.  First, while detailed models for the
detectability and perceived loudness of many different combinations of tones and narrow bands of noise
have been derived, the nonlinear, time-varying nature of human hearing makes aggregating those results
into practicd models for the processng of more generd sgnds (eg., speech) a formidable task.
Simplifying goproximations are often made, resulting in moderatdly complex models that generdly are
not tested beyond tones and noisg, if they aretested at all. Second, human perception of speech quality
involves both hearing and judgment. Extensive efforts to mode hearing have often been followed by
reaivey trivid modds for judgment. Our studies have lead us to reverse this emphads, resulting in a
sample, yet effective, mode for hearing, and a more sophisticated modd for judgment.

A high-level description of our gpproach isshown in Figure 1. The dday of the device under test isfirst
esimated and removed. The perceptud transformation contains asmple modd for hearing, and the
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distance measure models judgment. This partition is an gpproximation. There is no single clean dividing
line between human hearing and judgment. The distance measure generates auditory distance (AD)
vaues. These non-negative vaues increase as the input speech and output speech Sgnas move gpart
perceptudly. A logigtic function can be used to mgp AD into a finite interva, to better match finite
subjective test results. Note that Figure 1 describes an estimation agpproach based on the comparison
of two speech signals. This most closely pardlels the subjective tests known as degradation category
rating (DCR) tests. In DCR tedts, listeners hear the reference and test sgnals sequentidly, and are
asked to compare them. In the smpler and more popular absolute category rating (ACR) tedts,
listeners hear only the test Sgna and are asked to rate its qudity. In spite of the clear pardld to DCR
tedts, the gpproach shown in Figure 1 provides useful estimates of perceived speech qudity as
measured in ACR tests.

In the following sections we describe a delay estimation dgorithm and a smple but effective perceptud
transformation. We discuss distance measures, and the motivation behind measuring normaizing blocks
(MNB’s). MNB'’s are defined, and then combined in hierarchica dructures that form distance
measures. We provide evauations of the resulting objective estimators of perceived speech quality
through comparison with the results of nine subjective tests. Together, these tests include 219 4-kHz
bandwidth speech codecs, transmisson systems, and reference conditions, with bit rates ranging from
2.4-64 kb/s. When compared with Sx other estimators, the MNB-based estimators show significant
improvements in many cases, particularly a lower bit rates, and when bit errors or frame erasures are
present. Some benchmark objective estimates of perceived speech quality for stlandardized codecs are
provided aswedl. The estimation agorithms are described in full detall in Appendix A.



2. DELAY ESTIMATION

As shown in Figure 1, the dday of the device under test must be estimated and removed prior to the
esimation of perceived speech quaity. Many speech codecs do not preserve speech waveforms. When
waveforms are not preserved, waveform cross-corrdation and other waveform-matching techniques
give ambiguous or erroneous delay estimates. For this reason we have developed a two-stage delay
estimation agorithm that is included in ANSI Standard T1.801.04-1997 [16]. A coarse stage uses
gpeech envelopes, and a fine stage uses speech power spectra densties (PSD’s), both of which are
approximately preserved by speech codecs.

Speech envelopes are calculated in the coarse stage by rectifying speech samples and low-pass filtering
them to an gpproximate bandwidth of 125 Hz. These envelopes are then subsampled at 250 samples/s,
and cross-correlated. The peak in the smoothed cross-correlation function becomes the coarse delay
edimate with an uncertainty of +4 ms. Whenever possible, the fine stage then refines this estimate by
cross-correlating the PSD’s. Thisis done a severd different times, and the locations of the resulting
peaks are checked for consistency. For some speech codecs PSD’ s are not adequately preserved and
fine edtimates are not congstent. This indicates that, from a high resolution viewpoint, the delay is not
condant. In these Stuations the coarse delay edtimate, dong with its inherent 4-ms uncertainty,
becomes the totd delay estimate.

The two-stage processiis efficient because the coarse stage can search awide range of delay values, but

at low resolution. Once the coarse stage has finished its work, its low-resolution estimate provides a
garting place for the fine stage that follows. The fine stage needs to search only a narrow range of delay
vaues, consgtent with the uncertainty of the coarse estimate.






3. PERCEPTUAL TRANSFORMATIONS

Perceptud transformations seek to model human hearing. A useful perceptud transformation will
modify the representation of an audio sgnd in a way that is goproximately equivadent to the human
hearing process. The god isto mimic human hearing so that only information thet is perceptudly relevant
isretained. The literature of psychoacoudtics is full of experimenta results that describe how humans
perceive tones and bands of noise. From these results, one finds severd prominent properties of human
hearing that might be modeled in a perceptua trandformation. It is clear that the ear’s frequency
resolution is not uniform on the Hertz scde. It is dso clear that perceived loudness is related to sgnd
intengty in anonlinear way. The ear’s sengitivity is cdlearly afunction of frequency, and absolute hearing
thresholds have been characterized. Findly, many studies have demondrated time- and frequency-
domain masking effects.

Much less is known about how humans perceive more complex sgnals, such as speech. In typica
modds, complex Sgnds are decomposed into smple stimuli for which human auditory perception is
better understood. Internd representations for the smple stimuli are caculated, and then combined in
some manner to generate an internal representation for the origina signd. For example, if E( f ) isthe
cochlear excitation pattern dueto smple stimulus 1 and E;(f ) is the cochlear excitation pattern due to
ample simulus 2 then the total cochlear excitation pattern has often been modded as

E(f)=[E(f) p+Ez(f>p]%. @

However, different values of p have been sdected by various authors. The maximum function “p = ¥”
isusedin[17],p=1in[18-21], p=0.5in[22], and p = 0.48in[23]. In[24], p = 0.4 is shown to be
most useful when E( ) is used to estimate the perception of coding digtortions, and in [25] values of p
between 0.1 and 0.3 provide the best fit to experimental results. A comparative sudy with p = 0.25,
0.5, 1.0, and ¥ isgivenin[26].

We have studied many of the perceptua transformation components that have been proposed to model
various atributes of the hearing process [6-15],[17-33]. By observing correlations with subjective test
results, we have sought to identify the most effective perceptud transformation components, and the
most appropriate level of perceptua transformation detal for perceived speech qudity estimation
[26,34]. We have found that Smpler perceptua transformations can be as effective or more effective
than more complex ones. This observation is in generd agreement with [9,27]. In particular, we have
found that the nonuniform frequency resolution and the nonlinear loudness perception seem to be the
most important properties to model.

Thus, we have arived a a very ample, yet effective perceptud transformation. This perceptud
transformation is gpplied to frequency domain representations of the speech signas. Speech Sgnds are
broken into frames, multiplied by a Hamming window, and then transformed to the frequency domain
using a Fagt Fourier Transform (FFT). Our investigations have not identified any phase measurements
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that reliably result in perceptudly rdevant information. Thus only the squared magnitudes of the FFT
results are retained. The results that follow are based on a sample rate of 8000 samples/s, aframe size
of 128 samples (16 ms) and a 50% frame overlap. We have experimented with frame sizes of 64 and
256 samples, and found them to be less useful for this gpplication. We have aso experimented with the
frame overlap vaue, and have found thisto be aless critica parameter.

The nonuniform frequency resolution of the ear is treated by the use of a psychoacoustic frequency
scae. Several such scales have been proposed [20,30-33] and we have determined that for this
goplication, the minor differences between them are not particularly sgnificant. We have dected to use
aBark frequency scde. The Hertz scale frequency variable f is replaced with the Bark scale frequency
variable b usng the relaionship

- erxgmil 0

which can be found in [30]. Note that b increases gpproximately linearly with f below about 500 Hz,
and b increases according to a compressive nonlinearity above about 500 Hz. This scale was derived
to maich experimenta results on critical bands in human hearing [31]. Roughly spesking, on this Bark
scade, equd frequency intervas are of equa perceptud importance. We used this reationship to
regroup frequency domain samples that are uniformly spaced on the Hertz scde into bands that have
gpproximately uniform width on this Bark scae.

Many modds for loudness perception as a function of dgnd intendty are avalable as wel
[20,24,30,31]. Again, our studies indicate that for this gpplication, the choice of a modd is not criticdl,
aslong as it contains a compressive nonlinearity. We have chosen to use alogarithm to convert sgnd
intengity to perceived loudness.

We have aso implemented models for the inner-outer ear transfer function, absolute hearing thresholds,
equa loudness curves, and time- and frequency-domain masking effects. We have dected not to
include these models in our perceptua transformation. While these atributes of hearing have al been
well-documented in tone and noise experiments, modding them does not gppear to help with the
estimation of the percaived quality of 4-kHz bandwidth speech.



4. DISTANCE MEASURES

Distance measures seek to measure the perceived distance between two perceptudly transformed
sgnds. Unfortunatdly, many existing conventiona distance measures display properties that are clearly
inconsstent with human auditory judgment. As an example, consider a distance measure that takes the
form

DIX( 1), Y= aX(H)-v( ) af]”. ®

where X( f ) and Y( f ) are frequency-domain representations of the input and output of the device
under test, repectively, and the integration is over some band of interest with bandwidth W. Such
distance measures are invariant to the Sgn of the difference X( f )-Y( f ). This means tha the hissy
ggnd Y;( f) and the muffled sgna Y,( f ) in Figure 2 will received the same distance vaue, which
would not generaly be a perceptudly consistent result.

For a second example, consider the more refined distance measure

s J/gp
€1 . )
DIX(F),Y ()= &= o, (F)(X(f)-Y(f))*dfu
8" p v(f)s x(f) g
él R . uil/gn (4)
+ e OV (D(X(F)-Y())dfu
8" "n y(f)<x(f) g

In (4) thesgn of Y( f)-X(f) isacknowledged, with separate integrations, integration exponents g, and
weighting functionsw( f ). Withthesgnds X(f ), Y1(f ), and Y2(f ) shownin Figure 3, D[X(f ),

Y1( f)] = D[X(f),Y2(f)]. Thisisunlikely to be a perceptualy consstent result, because Y1( f ) has a
harsh sound, while Y,( f ) has a hollow sound. Anaogous examples exist for undesired time-domain
invariances.
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5. MEASURING NORMALIZING BLOCKS

Basad on our studies of conventiond distance measures, and our understanding of human hearing and
judgment, we concluded that listeners adapt and react differently to spectra deviations that span
different time and frequency scdes. We further observed that for the speech qudity estimation
gpplication, maximal perceptud consistency over a wide range of digtortion types requires a family of
andyses that cover multiple frequency and time scaes. The spectra deviations a one scde must be
removed o they are not counted again as part of the deviations at other scales. We aso concluded that
working from larger to smdler scaes is mos likely to emulate listeners patterns of adaptation and
reaction to spectral deviations. In light of these findings, we eected to form a distance measure from a
hierarchy of time and frequency measuring normalizing blocks.

A time measuring normdizing block (TMNB) is shown in Fgure 4 and a frequency measuring
normdizing block (FMNB) is given in Figure 5. Each of these blocks takes perceptudly transformed
input and output Sgnds (X( f,t) and Y ( f,t), respectively) as inputs, and returns a set of measurements
and anormdized verson of Y( f,t). The TMNB integrates over some frequency scale, then measures
differences and normdizes the output sgnd a multiple times. Findly, the positive and negative portions
of the measurements are integrated over time. In an FMNB the converse is true. An FMNB integrates
over ome time scae, then measures differences and normdizes the output sSgnd a multiple
frequencies. Findly, the pogtive and negative portions of the measurements are integrated over

frequency.

We now formdize the MNB definitions. The TMNB operating on the band that extends from fl to fu
using the measurement time intervals defined by t;, i=0 to N, normdizes Y ( f,t) toY(f,t) and generates
2N messurements m( j):

Y(f,t)=Y(f,0)- &fl,1),

t

anax(e(ﬂ 1),0)dt |

2i- 1) =
m( | ) ti B ti-l t,
- tl
m(2i) = ——— gmin(e(fl.H).0)t, i=1toN, -
I
1 fu 1 fu
here e fl.t) = N (F L) df - X 1) df
where e(fl,t) fu-ﬂ?( ) fu-ﬂ?X( )
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The FMNB definition is anadlogous, with the roles of time and frequency exchanged. At time to , the
FMNB operating over time scae t, usng the measurement bands defined by f;, i=0 to N, normdizes

Y(ft) to \7(f ,t) and generates 2N measurements m(j):
Y(f.t)=Y(f,t)- e(f,t,),

m(2i- 1) = ﬁ é)nax(e(f,to),O)df :

i i-1 %,

. 1L .
m(Z)zﬁdmn(e(f,to),O)df, i=1to N, o

to+t to +t

17 1.
where e(f,t,) s tOY(f,t)dt- - O?((f,t)dt.

t

0 0

By design, both types of MNB’s are idempotent.
If MNB(X,Y) = (X,Y,m), then MNB(X,Y) = (X,Y,0). 7)

In other words, a second pass through a given MNB will not further dter the output sgnd, and the
vector of measurements resulting from that second pass will contain only zeros. The idempotency of
MNB'’s alows them to be cascaded and yet they measure the deviation a a given time or frequency
scale once and only once.

5.1 Distance Measuresthat Use M easuring Normalizing Blocks

In order to measure spectral deviations a multiple time and frequency scales, we have formed
hierarchica sructuresof TMNB’sand FMNB's, that operate at decreasing scales. In these structures,
spectrd deviations a one time or frequency scale are measured and removed before the next smaler
scae is conddered.  When used as distance measures in conjunction with the smple perceptua
transformation described above, this top-down agpproach appears to do a good job of emulating
listeners patterns of adaptation and reaction to spectra deviations. A generdized diagram of these
dructuresis shown in Figure 6. Each MNB in the structure generates a messurement vector m;j. Two
specific structures are shown in Figures 7 and 8. These are referred to as MNB structure 1 and MNB
dructure 2, respectively. As dways, a complexity-performance trade-off is a work here. These two
sructures were chosen for their balance of relatively low complexity and high performance as estimators
of perceived speech quality across awide range of conditions and quality levels. Other MNB structures
may be more appropriate for more specific gpeech or audio quality estimation gpplications. In addition,
these structures or other MNB structures may address open issuesin perceived audio qudity
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estimation, layered speech or audio coding, automatic speech or spesker recognition, audio sgnd
enhancement, and other areas.

Both MNB gructures start with an FMNB that is applied to the input and output Signds at the longest
avalabletime scde. Four measurements are extracted and stored in the measurement vector m. These
measurements cover the lower and upper band edges of telephone band speech (0-500 Hz and 3000-
3500 Hz)) In MNB structure 1, a TMNB is then gpplied to the input and output Sgnds at the largest
frequency scde (approximately 15 Bark). Six additiond TMNB's are then gpplied at a smaler scae
(approximately 2-3 Bark). Findly aresdud measurement is madeln MNB sructure 2, the middle
portion of the band undergoes two levels of binary band splitting, resulting in bands that are
approximately 2-3 Bark wide. The extreme top and bottom portions of the band are each treated once
by aseparate TMNB. Findly aresidual measurement is made.

The perceptua transformation and the MNB structures are described together in full detail in Appendix
A. Theidempotence of the MNB dong with the hierarchica nature of MNB structures leads to linear
dependence among the MNB measurements. As shown in Figures 7 and 8, only linearly independent
measurements are retained. Thus, MNB gtructure 1 results in 12 measurements, while MNB structure
2 resultsin 11 measurements. For these two dructures, a full set of linearly independent measurements
can be formed from just the positive portions of the error functions € f,t). These are the odd-numbered
measurementsin (5) and (6). Linear combinations of these measurements provide good estimates of the
perceptud distance between two speech signas and good estimates of perceived speech qudity. The
vaue tha results from this linear combination is caled auditory distance (AD):

AD = w' »m, (8)

where wisalength 12 (MNB structure 1) or 11 (MNB structure 2) vector of weights. In practice, AD
vaues are non-negative. When the input and output Sgnals are identicd, dl measurements are zero and
AD iszero. Astheinput and output Sgnas move apart perceptudly, AD increases.
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6. ESTIMATION OF PERCEIVED SPEECH QUALITY
6.1 Logistic Function

MNB structures 1 and 2 were designed to be used as distance measures. The AD distance vaues they
generate were intended to be used to estimate perceived speech quality. Subjective perceived speech
qudity ratings usudly cover finite ranges. The mean opinion score (MOS) scale is often used in ACR
tests, while the degradation mean opinion score (DMOS) scae is very popular for DCR tests. Both of
these scales cover theinterva from 1to 5. Thus, correation with these subjective rating scales may be
increased by mapping AD vdues into a finite range. We use the logidtic function with asymptotes a O
and 1:

1
BT ®

When a > 0, L(2) isadecreasing function of z
6.2 Corréation with Subjective Test Results

To judge the ussfulness of the L(AD) values as estimators of relative perceived speech qudlity, we
compared L(AD) and sx other established objective estimators of speech qudlity with the results of
forma subjectivetests. Nine ACR tests that use the MOS scale tests were available to us, and they are
summarized in Table 1. While the objective estimator structure more closdly pardlds DCR subjective
tests, only ACR subjective tests were available for this sudy. Together, these 9 tests include 219
4-kHz bandwidth speech codecs, transmission systems, and reference conditions, with bit rates
ranging from 2.4-64 kb/s, and some analog conditions as well. Both flat and intermediate reference
system (IRS)-filtered speech material [35] was included. IRS filtering smulates the sending
response of atypica telephone handset. A total of 22 hours of speech from at least 52 different
speakers, both male and female, in three different languages was used. This collection of speech
files and scores has alowed us to complete one of the most comprehensive tests of objective
estimators of perceived relative speech quality.

The sx established estimators are SNR [4], SNRseg [4], perceptudly weighted SNRseg (PWSNRseg)
[36], CD [4], BSD [15], and ND as defined in the main body of ITU-T Recommendation P.861 [6].
To create a uniform comparison, each of these estimators was passed through the logigtic function in
(9). For each estimator, the constants a and b were sdlected to maximize the coefficient of correlation
between the logigtic function output and MOS across the nine subjective tests. The maximizing vaues of
aand b are shown in Table 2. The resulting coefficients of corrdation are shown in Table 3.

The corrdation vaues in Table 3 were caculated after averaging dl available subjective scores for each
condition to a sngle score for that condition. Similarly, for each condition, dl avalable objective
estimates were averaged to generate a single objective estimate for that condition. Thus, we refer to
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Table 1. Summary of Materid in Nine Subjective Tests

Number of 10 Filtering of Takers per .
Test Conditions Conditions Input Speech Language Condition Files Minutes

PCM: 64, 48, 40 kb/s
ADPCM: 32 kb/s, X1, 2, 3, 4
APC: 16 kb/s, 2 versions North

1 22 Proprietary Codec: 16 kbps None American 4 176 8
SELP: 4.8 kb/s, 2 versions English
LPC: 2.4 kb/s
MNRU: 6 leves
Narrow-Band MNRU: 3 levels
PCM: 64 kb/s
Proprietary CELP A: 8 kb/s, over 9 RF channels, bit

errors and frame erasures North
2 35 Proprietary CELP B: 8 kb/s, over 9 RF channels, bit IRS filtered American 6 1050 100
errors and frame erasures English

AMPS over 9 RF channels
MNRU: 7 levels
ADPCM: 32 kb/s, clear and bit errors
CVSD: 32, 16 kb/s, clear and bit errors
VSELP: 8 kb/s
CELP: 4.8 kb/s, clear and bit errors North

3 27 IMBE: 4.8, 2.4 kb/s None American 6 1994 225
STC A: 4.8, 2.4 kb/s, clear and bit errors English

STC B: 2.4 kbls

LPC: 2.4 kb/s, clear and bit errors
POTS

MNRU: 8 levels
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ADPCM: 32 kb/s, x4

LD-CELP: 16 kb/s

VSELP: 8 kb/s

Proprietary Non-Waveform Codec: 6.4 kb/s

Proprietary Non-Waveform Codec: 4 kb/s, 3 input
leves

Proprietary Non-Waveform Codec: 4 kb/s, x2

Proprietary Non-Waveform Codec: 4 kb/s +
ADPCM: 32 kb/s

Proprietary Non-Waveform Codec: 4 kb/s + VSELP:

8 kb/s

Proprietary Non-Waveform Codec: 4 kb/s + RPE-
LTP: 13 kb/s

Proprietary Non-Waveform Codec: 4 kb/s + LD-
CELP: 16 kb/s + LD-CELP: 16 kb/s

MNRU: 7 levels

Both IRS
filtered and
unfiltered

North
American
English

2432

264

PCM: 64 kb/s, x1, 2, 4, 8, 16
ADPCM: 32 kb/s, x1, 2, 4

G.728 Candidate 16 kb/s, x1, 2, 4
MNRU: 9 levels

IRS filtered

North
American
English

1440

206

Same as test 5

IRS filtered

Japanese

N

1440

188

Same as test 5

IRS filtered

Itdian

1440

131

LD-CELP:; 16 kb/s

8 CELP Codecs. @3 kb/s, frame error rates 0, 1, 2,
3, 5%

MNRU: 6 levels

IRS filtered

North
American
English

1360

136

VSELP: 8 kb/s, 11 simulated radio environments
ACELP: 8 kb/s, 11 simulated radio environments
PCM: 64 kb/s

CELP: 4.8 kb/s

POTS

MNRU: 5 levels

Both IRS
filtered and
unfiltered

North
American
English

480

! The notation “xN” is used to indicate N passes through the indicated device.
2 The notation “codecl + codec2” is used to indicate that two different codecs were tandemed to creste a Single condition.
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Table 2. Optimized Vaues of Logigtic Function Parameters

Objective Estimator a b
SNR -0.0552 -0.3490
SNRseg -0.0542 -0.3927
PWSNRseg -0.1073 0.1910
CD 0.4175 -1.8274
BSD 6.3081 -0.7434
ND 0.5567 -1.7450

Table 3. Per-condition Coefficients of Correlation Between Subjective Scores and Objective Estimators

Test L(SNR) L(SNRseg) L(PWSNRseg) L(CD) L(BSD) L(ND)
1* 333 381 393 486 825 928
2 526 522 620 729 731 941
3+ 295 494 507 617 368 793
4 247 221 636 789 863 973
5 226 267 523 948 919 986
6 271 313 502 933 850 986
7 317 340 542 975 892 976
8 556 381 605 671 801 858
9 433 326 544 838 712 827

* These tests include conditions that are outside the defined scope of the ND agorithm.
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these corrdation vaues as “per-condition” corrdations. A more advanced andyss technique,
described in [37], recognizes the importance of the digtributions of the objective estimates and the
subjective scores for each condition, how they influence confidence intervas, and in turn, the find
conclusions that one draws from objective and subjective tests.

Table 3 demondrates the limitations of SNR, SNRseg, and PWSNRseg as estimators of perceived
gpeech quaity. CD and BSD tend to show higher corrdations for tests 5, 6, and 7, which contain only
conditions that tend to preserve waveforms. L(ND) appears to be the most reliable of these six existing
objective estimators, across these nine tests.  Since tests 1-4, 8, and 9 contain conditions that are
outside of the defined scope of the ND agorithm, we conclude that this agorithm can sometimes make
useful estimates outside of its scope. Because L(ND) appears to be the most reliable of these six
objective estimators, we use it as the reference againgt which to compare L(AD).

Table 4 shows per-condition correlation vaues for L(AD) as calculated by the two MNB structures.
Since L(ND) is used as a reference, that column from Table 3 is repesated as column 2 of Table 4 to
dlow for easy comparisons. Two versons of the estimators were evauated. These versions differ only
in the values of the weights used in (8), and the congtants used in (9).

The first verson of each edimator was created by optimizing variables in (8) and (9) to maximize
correlation between L(AD) and MOS acrosstests 1 and 2 only. The parameter a in (9) was absorbed
into the weights in (8), resulting in 13 or 12 free variables. These variables were used to fit 1,226 data
points, so the fitting problem was over-determined by an approximate factor of 100. The resulting
corrdation values are shown in Table 4, columns 3 and 4. These columns show that this limited
optimization results in an objective speech quality estimator that generdizes wdll to the other seven tedts.
This result is important because it indicates that these estimators do modd perception and judgment,
rather than inadvertently modeling some specific properties of the conditionsin tests 1 and 2.

To create the most effective estimator, one must use al avalable data. Thus, we created a second
versgon of each esimator by optimizing variables in (8) and (9) to maximize corrdaion across dl nine
tests. This involved fitting 11,812 data points, so the fitting problem was over-determined by a factor
greater than 900. The resulting corrdaions are shown in columns 5 and 6 of Table 4. When dl nine
tests are considered together, MNB structure 2 appears to be dightly more useful than MNB structure
1. Both gructures show dramatic improvements over L(ND) on tests 3, 8 and 9, which contain the
lower rate speech codecs, bit error, and frame erasure conditions. We have provided four scatter plots
to dlow for visud interpretations of per-condition corrdation vaues. Each plot shows an objective
edimator vs MOS, using a single point per condition. Four cases were selected to display a range of
correation vaues. Figure 9 shows L(BSD) for test 3 where the per-condition correlation, r , is .368.
Figure 10 shows L(ND) for test 3 where r =.793. Figure 11 gives L(AD) using the fully optimized
MNB structure 2, dso on test 3, with r =.959. Findly, Figure 12 shows L(AD) using the fully optimized
MNB structure 1, on test 5, where r =.986.
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Table 4. Per-condition Coefficients of Correlation Between Subjective Scores and Objective Estimators

Test L(ND) L(AD)
MNB-1 MNB-2 MNB-1 MNB-2
Weights optimized using only tests 1 and 2. Weights optimized using tests 1-9.
1 .928 931 .928 932 .956
2 941 .965 .963 951 .945
3 793 .939 944 935 .959
4 973 .964 979 977 976
5 .986 .955 .963 .986 .984
6 .986 .965 .969 .983 .982
7 976 967 971 .980 984
8 .858 954 953 .936 961
9 827 921 923 910 942
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Figure 12. MNB structure 1 as an estimator of perceived speech quaity on test 5, r =.986.
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6.3 Observations and Discussion

The optimized vaues of the variablesin (8) and (9) are given in Table A-1. Because the measurements
have different variances, the weights do not indicate the rlative importance of the measurements. Note
that one weight in Table A-1 is zero, indicating that the first measurement in MNB structure 2 does not
presently provide useful information for this gpplication. We retain this measurement for completeness,
and for its potentid future utility in this or other gpplications. In both structures, the first four weights are
applied to FMNB measurements taken at the edges of the speech band. For MNB structure 1, w(1)
and W(2) indicate that to maximize estimated speech qudity, energy below 250 Hz (outsde the
telephony speech passband) should be minimized, but only if energy above 250 Hz can be retained.
Smilaly, w(3) and w(4) indicate that energy above 3250 Hz should be minimized, but not at the
expense of energy below 3250 Hz. These data-driven mathematica results agree with our intuitions
about in-band speech power and out-of-band noise. As part of a sendtivity andyss, we determined
that when the weights in w are perturbed from their optima vaues by 10%, resulting coefficients of
correlation are reduced by about 1%. In addition, 1% and 0.1% perturbations in the weights result in
0.1% and 0.01% reductionsin correlation, respectively.

Table 4 shows that corrdations between fully optimized MNB estimators and subjective scores range
from .910 to .986. Given the breadth of conditions covered by the nine tests, these are very
encouraging results. In particular, the improved ability to estimate perceived speech quality for lower
rate speech codecs, some of which are operating with bit errors or frame erasures, represents an
important advance. Based on this improvement, ITU-T Recommendation P.861 has been updated by
the indluson of an MNB dgorithm in Appendix Il of the Recommendation [38]. The agorithm that
gppearsthere is an earlier verson of MNB structure 2 described in this report.

For unoptimized software implementations, we found that either of the MNB-based estimators requires
gpproximately 920,000 floating-point operations to process 1 second (8,000 samples) of speech.
Because the bulk of these operations is devoted to the FFT, both MNB agorithms can be run at the
same time using only 940,000 floating-point operations. Similarly, an unoptimized implementation of the
ND dgorithm required about 1.21 million floating-point operations to process 1 second (8,000
samples) of speech.

We have dso implemented the MNB estimators with the frame overlap reduced from 50% to zero.
This reduces the number of computations in the unoptimized implementation by a factor of two but has
surprisgngly little impact on estimator performance for the conditions described in Table 1. When the
frame overlap is reduced to zero and the parameters given in Table A-1 are optimized, the resulting
coefficients of corrdation shown in Table 4 dl change by less than 0.5% from their origind vaues. In
gpite of this result, we do not recommend implementations with zero frame overlgp because the
esimator could be extremely vulnerable to certain periodic, frame-synchronous noises and distortions.
In addition, 50% overlap of Hamming windows places equa weight on each speech sample but zero
overlap does not place equal weight on each speech sample.
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6.4 Benchmark Values

Tables 5-8 provide benchmark values of AD and L(AD) for both MNB agorithms. Results are given
for 11 standardized speech codecs and for 14 modulated noise reference unit (MNRU) [39] conditions.
Within each table, AD and L(AD) results generdly agree with known results on the perceived quaity of
these codecs and MNRU conditions. These results provide context for AD or L(AD) measurements
made on other codecs or conditions.

Each condition in Tables 5-8 was evauated using a totd of 64 English-language sentence pairs. These
64 sentence pairs come from 4 female and 4 mde takers, each providing 8 different sentence pairs.
Together, the 64 sentence pairs last aout 400 seconds. Two sets of vaues were computed.
Wideband speech recordings were band limited to 200-3400 Hz using a flat bandpass filter and then
passed through the 25 conditions listed in the tables. Vaues for this “flat speech” experiment are given
in Tables5 and 6. In addition, wideband speech was filtered according to the IRS sending sengtivity
characterigtic [35] and then passed through the 25 conditions. Vauesfor this“IRS speech” experiment
aregivenin Tables7 and 8. The tables provide a mean vaue taken across dl 64 sentence pairs, as well
as the half-width of the 95% confidence interva about that mean. As indicated in the tables, conditions
1-5 use mlaw compression. The results for Alawv compresson were computed as well, and in dl
cases, their confidence intervals overlap those of the milaw results.

The MNRU is the most common reference condition for subjective and objective speech qudity
asessments. A common anchoring technique uses MNRU conditionswith Q (SNR) vauesat 5- or
6-dB increments. We have provided benchmark vaues for MNRU conditions with Q values between
0 and 40 dB, in 5- and 6-dB increments. In addition, (10) through (13) give quadratic fits between Q
and AD for the 4 casesthat correspond to Tables 5-8.

AD » 00003 X% - 01862>Q+81859, 0£QE 40, MNB- 1, Flat Speech (10)
AD » 0.0020%Q? - 02583>Q+7.6220, 0£Q£40, MNB - 2, Flat Speech (12)
AD » 0.0024>Q? - 02719>Q+82523, 0£Q£40, MNB - 1, IRS Filtered Speech (12)
AD » 0.0031Q? - 02846XQ + 69276, 0£Q£40, MNB - 2, IRSFiltered Speech (13)

When coupled with (9), these results dlow oneto relate Q to L(AD). These rdaionships in turn dlow
reference to subjective test resultsthat are given in terms of Q.
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Table 5. MNB Structure 1 Benchmark Vaues for Flat Speech

Condition Mean AD Half-width of 95% | MeanL(AD) | Haf-width of 95% CI
Cl on Mean AD on Mean L(AD)
G.711 PCM, mlaw, 64 kbps 1.9144 0.0645 0.9395 0.0040
G.726 ADPCM mlaw, 40 kbps 2.3810 0.0545 0.9077 0.0048
G.726 ADPCM milaw, 32 kbps 2.9522 0.0543 0.8480 0.0070
G.726 ADPCM milaw, 24 kbps 3.9458 0.0571 0.6753 0.0121
G.726 ADPCM milaw, 16 kbps 5.1584 0.0745 0.3866 0.0176
G.728 LD-CELP, 16 kbps 3.2460 0.0710 0.8048 0.0112
GSM 6.10 RPE-LTP, 13 kbps 3.3194 0.0532 0.7949 0.0086
TIA/EIA 635 VSELP, 8 kbps 3.5978 0.0531 0.7462 0.0100
FS1016 CELP, 4.8 kbps 4.2856 0.0532 0.5981 0.0127
FS1015 LPC, 2.4 kbps 4.9589 0.0684 0.4340 0.0164
MELP, 2.4 kbps [40] 4.4928 0.0748 0.5475 0.0182
MNRU, Q=40 1.5366 0.0365 0.9586 0.0015
MNRU, Q=36 1.8960 0.0522 0.9411 0.0030
MNRU, Q=35 2.0097 0.0568 0.9343 0.0036
MNRU, Q=30 2.7244 0.0785 0.8728 0.0086
MNRU, Q=25 3.6246 0.0933 0.7368 0.0171
MNRU, Q=24 3.8173 0.0951 0.6986 0.0189
MNRU, Q=20 4.6089 0.1020 0.5182 0.0244
MNRU, Q=18 5.0027 0.1059 0.4244 0.0252
MNRU, Q=15 5.5805 0.1127 0.2985 0.0236
MNRU, Q=12 6.1346 0.1209 0.2013 0.0198
MNRU, Q=10 6.4870 0.1272 0.1532 0.0169
MNRU, Q=6 7.1354 0.1388 0.0893 0.0115
MNRU, Q=5 7.2862 0.1414 0.0783 0.0103
MNRU, Q=0 7.9791 0.1497 0.0418 0.0059
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Table6. MNB Structure 2 Benchmark Values for Flat Speech

Condition Mean AD Hdf-width of 95% | MeanL(AD) | Haf-width of 95% Cl
Cl on Mean AD on Mean L(AD)
G.711 PCM, mlaw, 64 kbps 0.8605 0.0334 0.8997 0.0030
G.726 ADPCM mlaw, 40 kbps 1.1822 0.0296 0.8669 0.0034
G.726 ADPCM milaw, 32 kbps 1.6170 0.0406 0.8078 0.0063
G.726 ADPCM mlaw, 24 kbps 2.4503 0.0545 0.6465 0.0124
G.726 ADPCM mlaw, 16 kbps 3.6229 0.0824 0.3665 0.0187
G.728 LD-CELP, 16 kbps 1.8195 0.0454 0.7743 0.0080
GSM 6.10 RPE-LTP, 13 kbps 1.6594 0.0419 0.8011 0.0066
TIA/EIA 635 VSELP, 8 kbps 2.1782 0.0461 0.7060 0.0095
FS1016 CELP, 4.8 kbps 2.7902 0.0486 0.5667 0.0118
FS1015 LPC, 2.4 kbps 3.8886 0.0790 0.3084 0.0163
MELP, 2.4 kbps [40] 3.0911 0.0959 0.4935 0.0232
MNRU, Q=40 0.6219 0.0214 0.9196 0.0016
MNRU, Q=36 0.8669 0.0324 0.8991 0.0029
MNRU, Q=35 0.9468 0.0359 0.8915 0.0034
MNRU, Q=30 1.4778 0.0554 0.8274 0.0076
MNRU, Q=25 2.2351 0.0770 0.6915 0.0155
MNRU, Q=24 2.4129 0.0818 0.6527 0.0175
MNRU, Q=20 3.1958 0.1017 0.4669 0.0243
MNRU, Q=18 3.6213 0.1123 0.3686 0.0255
MNRU, Q=15 4.2878 0.1272 0.2382 0.0237
MNRU, Q=12 4.9660 0.1402 0.1428 0.0187
MNRU, Q=10 5.4123 0.1475 0.0991 0.0149
MNRU, Q=6 6.2511 0.1596 0.0476 0.0084
MNRU, Q=5 6.4478 0.1624 0.0398 0.0072
MNRU, Q=0 7.3357 0.1727 0.0173 0.0033
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Table 7. MNB Structure 1 Benchmark Vaues for IRS Filtered Speech

Condition Mean AD Hdf-width of 95% | MeanL(AD) | Haf-width of 95% Cl
Cl on Mean AD on Mean L(AD)
G.711 PCM, mlaw, 64 kbps 1.6095 0.0406 0.9554 0.0019
G.726 ADPCM mlaw, 40 kbps 2.6178 0.0504 0.8863 0.0052
G.726 ADPCM milaw, 32 kbps 3.2749 0.0554 0.8018 0.0088
G.726 ADPCM mlaw, 24 kbps 4.1863 0.0537 0.6214 0.0125
G.726 ADPCM mlaw, 16 kbps 5.3573 0.0688 0.3413 0.0153
G.728 LD-CELP, 16 kbps 3.2370 0.0630 0.8070 0.0101
GSM 6.10 RPE-LTP, 13 kbps 3.6603 0.0582 0.7339 0.0112
TIA/EIA 635 VSELP, 8 kbps 3.8011 0.0700 0.7049 0.0145
FS1016 CELP, 4.8 kbps 4.3568 0.0716 0.5803 0.0170
FS1015 LPC, 2.4 kbps 5.2181 0.0911 0.3743 0.0205
MELP, 2.4 kbps [40] 4.8443 0.0701 0.4614 0.0171
MNRU, Q=40 1.4121 0.0288 0.9634 0.0011
MNRU, Q=36 1.6163 0.0393 0.9552 0.0018
MNRU, Q=35 1.6834 0.0431 0.9521 0.0021
MNRU, Q=30 2.1452 0.0667 0.9248 0.0052
MNRU, Q=25 2.8320 0.0952 0.8583 0.0127
MNRU, Q=24 2.9971 0.1001 0.8369 0.0147
MNRU, Q=20 3.7362 0.1180 0.7124 0.0246
MNRU, Q=18 4.1487 0.1237 0.6255 0.0285
MNRU, Q=15 4.8046 0.1278 0.4736 0.0301
MNRU, Q=12 5.4782 0.1285 0.3226 0.0261
MNRU, Q=10 5.9331 0.1279 0.2357 0.0216
MNRU, Q=6 6.8134 0.1248 0.1160 0.0124
MNRU, Q=5 7.0248 0.1239 0.0963 0.0105
MNRU, Q=0 7.9904 0.1221 0.0395 0.0047
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Table 8. MNB Structure 2 Benchmark Vaues for IRS Filtered Speech

Condition Mean AD Hdf-width of 95% | MeanL(AD) | Haf-width of 95% Cl
Cl on Mean AD on Mean L(AD)
G.711 PCM, mlaw, 64 kbps 0.7007 0.0230 0.9135 0.0018
G.726 ADPCM mlaw, 40 kbps 1.4589 0.0433 0.8309 0.0062
G.726 ADPCM milaw, 32 kbps 2.0275 0.0560 0.7354 0.0112
G.726 ADPCM mlaw, 24 kbps 2.8975 0.0739 0.5405 0.0180
G.726 ADPCM mlaw, 16 kbps 3.9852 0.0940 0.2904 0.0181
G.728 LD-CELP, 16 kbps 1.9666 0.0455 0.7477 0.0085
GSM 6.10 RPE-LTP, 13 kbps 1.9071 0.0454 0.7587 0.0083
TIA/EIA 635 VSELP, 8 kbps 2.4007 0.0620 0.6572 0.0139
FS1016 CELP, 4.8 kbps 2.8412 0.0687 0.5536 0.0166
FS1015 LPC, 2.4 kbps 4.1366 0.1037 0.2622 0.0188
MELP, 2.4 kbps [40] 3.4433 0.0863 0.4085 0.0201
MNRU, Q=40 0.5631 0.0201 0.9238 0.0015
MNRU, Q=36 0.7183 0.0268 0.9120 0.0022
MNRU, Q=35 0.7698 0.0291 0.9077 0.0025
MNRU, Q=30 1.1213 0.0450 0.8730 0.0052
MNRU, Q=25 1.6646 0.0667 0.7982 0.0110
MNRU, Q=24 1.7990 0.0710 0.7755 0.0126
MNRU, Q=20 2.4236 0.0899 0.6500 0.0203
MNRU, Q=18 2.7858 0.0978 0.5662 0.0235
MNRU, Q=15 3.3875 0.1084 0.4230 0.0254
MNRU, Q=12 4.0407 0.1176 0.2828 0.0226
MNRU, Q=10 4.4979 0.1226 0.2034 0.0188
MNRU, Q=6 5.4260 0.1309 0.0948 0.0105
MNRU, Q=5 5.6576 0.1326 0.0772 0.0089
MNRU, Q=0 6.7363 0.1414 0.0285 0.0038
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7. CONCLUSION

There is a clear need for estimators of perceived relative speech qudity that provide reliable estimates,
especidly for lower-rate speech codecs, errored transmisson channels, and other Situations where
waveforms are not preserved. Although they are clearly not perceptudly consstent, SNR-based
edimators are gill in common use, probably due to their history, their smplicity, and the lack of awiddy
tested and accepted replacement.  The recent attempts to incorporate models for human auditory
perception into these estimators are clearly an important step forward. Unfortunately, it is not clear how
sample models for the perception of tones and bands of noise might be best combined to create
perceptua transformations that modd the perception of more generd signds such as speech. In
addition, judgment is at least as important as hearing, but many highly refined hearing models have been
followed by farly ampligic judgment modds, resulting in estimators that do not perform as reliably as
one might hope. Our studies of perceptual transformations and distance measures have lead us to
reverse this emphagis, resulting in a smple yet effective mode for hearing, and a more sophidticated
modd for judgment.

Listeners adapt and react differently to spectral deviations that span different time and frequency scaes.
This motivates the development of a family of analyses that cover multiple frequency and time scaes.
To best emulate ligteners patterns of adaptation and reaction to spectra deviations, these andyses
should proceed from larger scales to smdler scales. Further, spectra deviations at one scale must be
removed S0 they are not counted again as part of the deviations a other scaes. To meet these
requirements, we have developed time measuring normaizing blocks and frequency measuring
normdizing blocks. These idempotent blocks have been combined to form two hierarchicad structures
that comprise two distance measures. In effect, these structures decompose a codec output signa in a
pace defined partly by human hearing and judgment, and partly by the codec input 9gnd. The
parameters of this dynamic decomposition are combined linearly to form a measure of the perceptua
distance between those two sgnas, which in turn is used to form an estimate of relative perceived

speech qudlity.

Nine ACR subjective tegts, usng the MOS scale were available for testing objective estimators of
perceived speech quality. Together, these 9 tests included 219 4-kHz bandwidth speech codecs,
transmission systems, and reference conditions, with bit rates ranging from 2.4-64 kb/s, and some
andog conditions aswell. This collection of speech files and scores has alowed us to complete one of
the most comprehensve tests of objective estimators of perceived relative speech qudity. Six
established estimators were tested dong with the new MNB-based estimators. When the MNB
esimators were optimized using only two of the tests, they generaized well to the other seven teds.

The corrdlations between subjective scores and the fully optimized MNB estimators range from .910 to
.986. Given the breadth of conditions covered by the nine tests, these are very encouraging results. In
particular, the improved ability to estimate perceived soeech qudity for lower rate speech codecs, some
of which are operating with bit errors or frame erasures represents an important advance. The two
MNB sructures presented here were chosen for their balance of rdatively low complexity and high
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performance as estimators of perceived speech quality across a wide range of conditions and quality
levels. Other MNB structures may be more appropriate for more specific speech or audio quality
estimation agpplications. In addition, these structures or other MNB structures may address open issues
in perceived audio quality estimation, layered speech or audio coding, automatic speech or speaker
recognition, audio sgna enhancement, and other aress.

Formd subjective tests will very likdy dways provide the find definitive word when codecs and
transmission systems are evaluated in mgor sandardization, marketing, and procurement decisons. But
objective estimators of perceived relative gpeech quaity have arole to play aswell. That role continues
to expand as new estimators, like those described here, demonstrate increased reliability across broader
ranges of test conditions. Perceptudly congstent objective estimators of speech quality can provide a
meaningful common language for designers and developers who wish to compare ther results, but do
not have access to subjective testing facilities.  Estimators may aso be consulted to ad in design
decisons that might otherwise be made on the basis of a single designer’s perception and judgment
done. In this stuation, a large number of talkers, languages, or other relevant conditions can be tested
with little effort in a comparatively short time.  Findly, objective estimators are particularly well-suited
for continuoudy monitoring speech transmisson and Storage systems of interest, and reporting
deviations from established basdline qudlity levels.
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APPENDIX A: DESCRIPTION OF MNB ALGORITHMS

This gppendix provides complete descriptions of the MNB agorithms at aleve of detall that alows for
implementation. To implement MNB sructure 1, follow steps A.1-A.6 and A.8. To implement MNB
dructure 2, follow steps A.1-A5, A7, and A.8. To avoid a proliferation of variable names, this
gppendix does not use a unique variable for each intermediate result. Rather, variables are reused, just
as they would be in a programming language.

A.l. Signal Preparation

The input to the adgorithm is a pair vectors x and y. These vectors contain speech samples from the
input and output of the speech device under test, respectively. The recommended speech sample
precisonis at least 16 bits. The assumed sample rate is 8000 samples/s. The vectors must contain at
least 1 s of telephone bandwidth speech. (Vectors used in the development of these agorithms ranged
from 3 to 9 s in duration.) It is assumed that the two vectors have the same length, and are
synchronized. Synchronization may be accomplished as described in reference [16] of the report. The
mean vaue is then removed from each of the N1 entriesin x and y:
: - S . - S .
X)) =x() - mxa x(i),  y(@) =y()- mxa ¥(i), 1EIi£NL

j=1 =1
Next, each of the vectorsis normdized to acommon RMS levd:
e g wh e m ot
x() =x() gzad x()a » YO =y &wza y(i)'a ,1Ei£NI.

e = u e = u

A.2. Transformation to Frequency Domain

Each vector is next broken into a series of frames, with 128 samples in each frame. The frame overlap
is 50%, s0 each frame begins 64 samples from the start of the previous frame. Any samples beyond the
find full frame are discarded. Each frame of samples is multiplied (sample by sample) by the length 128
Hamming window:

P - Do

h(i) =054- 0.46 cos £~ 1£i £128.

After multiplication by the Hamming window, esch frame is tranformed to a 128 point frequency
domain vector using the FFT. Scding in FFT implementations is gpparently not well sandardized. The
FFT usad in this dgorithm should be scaled so that the following condition is met. When aframe of 128
red-vaued samples, each with vaue 1, is the input to the FFT (no Hamming window), then the complex
vauein the DC bin of the FFT output must be 128+0-j.

For each transformed frame, the squared-magnitude of frequency samples 1 through 65 (DC through
Nyquist) areretained. The results are stored in the matrices X and Y. These matrices contain 65 rows,
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and N2 columns, where N2 is the number of frames that are extracted from the N1 origind samplesin x
andy.

A.3. Frame Sdection

Only framesthat meet or exceed energy thresholdsin both X and Y are used in calculation of AD. For
X, that energy threshold is set to 15 dB below the energy of the pegk framein X:

-15

xenergy(j):g_ X(i,j), xthreshold=10 * xmax (xenergy(j))-

For Y, the energy threshold is set to 35 dB below the energy of the pesk framein .

N - S = :
yenergy(J)=a Y(i,]) . ythreshold =10 * >max(yenergy())-

Frames that meet or exceed both of these energy thresholds are retained:

{xenergy(j)3 xthreshold} AND {yenergy(j)3 ythreshold} b frame| isretained.

If any frame contains one or more samples that are equa to zero, that frame is eliminated from both
X and Y. These matrices now contain 65 rows, and N3 columns, where N3 is the number of frames that
have been retained. If N3=0, the input vectors do not contain suitable sgnas and this dgorithm is
terminated.

The thresholds given above gppear to be the most useful for the generd problem of estimating percelved
gpeech qudlity across the conditions given in Table 1 of the report. Other thresholds may be more
useful for other, more specific gpplications. In particular, multiple thresholds that separate a speech or
audio ggnd into severd categories (eg., man dsgnd, background noise, or slence) may be
advantageous.

A.4. Perceived Loudness Approximation

Each of the frequency domain samples in X and Y is then logarithmicdly trandformed to an
gpproximeation of perceived loudness.

X(i, j) =1040g,, (X(i,)), Y(i,j)=10x0g, (Y(i,j)), 1£i£65, 1£ £ N3.
A.5. Frequency Measuring Normalizing Block

An FMNB is appliedto X and Y at the longest avallable time scde, defined by the length (N1) of the
input vectors. Four measurements are extracted and stored in the measurement vector m. These
measurements cover the lower and upper band edges of telephone band speech. Positive and negative
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portions of the measurements are not separated. Temporary vectors f1, 2, and {3 are used for
clarity.
g3 gl3
f1(i)=wa Y(,j) - %A X(i,j), 1£i£65 (measure)
j=1 j=1
Y(@i,))=Y(,))- fi(i), LEi £65, 1£ JEN3 (normaizeY)
f2(1)=f1(i)- f1(17),1£i£65 (normalize measurement tolkHz)

4
f3(1)=1Q f2(1+4xi- 1) +j), 1£i£16 (smooththemeasurement)

=1

M@ m@ mE m@)|=[f30) 32 f313) 314)] (save4 mesurements)
A.6. Structure 1 Time Measuring Normalizing Blocks

In MNB structure 1, a TMNB is gpplied to X and Y at the largest frequency scale (approximately 15
Bak). Sx additiond TMNB's are then gpplied at a smdler scde (approximately 2-3 Bark). Finaly a
resdua messurement is made. The result is eight additiond measurements that are stored in the length
12 column vector m. Temporary variables tO, t1, and t2 ae used for clarity. A graphicd
representation of MNB dructure 1 is given in Figure 7 of the report. The operations are grouped into
steps a, b, and ¢ below.

a Largest Scale TMNB (14.9 Bark wide)
65 65
to(j) =&a Y@.j) - &a X(i,j), 1£ jEN3 (measure)

i=2 i=2

Y(i,)=Y(,])- tO(j), 2Ei£65, 1£ | £N3 (normalizeY)
N3

m (5):N—13é max (t0( j),0) (savepositive portion of measurement)
j=1

b. Define the vector of band limitsg=[2 7 12 19 29 43 66]". Then the Sx snal-scde TMNB’s
areimplemented by the following pseudocode.

fork=1t06
. gkgr-1 gkl )
t1(J) =gmenoo A Y(0.)) - soeem A X(0,]), 1£ JEN3  (measure)
i=g(k) i=g(K)

Y(i,)=Y(@,)-t1(j), 9g(k)Ei£g(k+1)- 1, 1£ j£N3 (normalizeY)
N3

m(5+k):NA3§‘ max (t1(j),0) (savepositiveportion of measurement )
j=1

end
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C. Resdua Messurement
t2(i, j) =Y(i,j)- X(i,]),1£1£65, 1£ £ N3 (measure residual)
65 N3

m (12):@5, é_ max (t2(i, j),0) (savepositiveportionof residual measurement)
i=2 j=1

A.7. Structure 2 Time Measuring Normalizing Blocks

In MNB structure 2 the middle portion of the band undergoes two levels of binary band splitting,
resulting in bands that are approximately 2-3 Bark wide. The extreme top and bottom portions of the
band are each treated once by a separate TMNB. Findly, a resdual measurement is made. The result
is saven additiond measurements that are gored in the length 11 column vector m. A graphicdl
representation of MNB structure 2 is given in Figure 8 of the report. Temporary variaoles t0, t1, and
mO, are used for clarity. The operations are grouped into steps aand b below.

a Define the vectors of band limits u=[27437197121929]" and
v =[642651842 1118 28 42]". Thendl TMNB's areimplemented by the following pseudocode.

fork=1t09
v(k) v(k)

. & & .
t0(J) =vootmor A Y(.)) - voosior @ X(0,)), 1£ JEN3 (measure)

i=u(k) i=u(k)

Y(i,D=Y(@1,)-t0(j), u(k)Ei£v(k), 1£ jEN3 (normaizeY)
N3

mO(k):N%é‘ max (t0(j),0) (savepositiveportion of measurement)
j=1

end

[m) m@E) m@ mE mE@ m@o)]=[moE) moE) moE) mo@ moE) mo@)

b. Residua Measurement
ta(i, j)=Y(@,])- X(i,)), LEi£65, 1£ J£ N3 (measureresidual)
65 N3

m (11)2@601 601 max (t1(i, j),0) (savepositive portion of residual measurement)
i=2 j=1

A.8. Linear Combinationsand L ogistic Functions

The 12 or 11 measurements from MNB structures 1 and 2, respectively, are next combined linearly to
generate an AD vaue
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Findly the AD vdue is passed through the logigtic function to generate the find agorithm output, L(AD):
1
L(AD) =
(AD)=

aAD+b
(S

The weights and logistic parameters used in these steps are given in Table A-1.

Table A-1. Linear Combination Weights and Logistic Parameters for MNB Structures 1 and 2

Structure 1 Structure 2

w(1) 0.0034 0.0000
w(2) -0.0650 -0.0837
w(3) -0.1304 -0.1199
w(4) 0.1352 0.1260
w(5) 0.5931 0.1660
w(6) 0.2040 0.6387
w(7) 0.5577 0.2195
w(8) 0.1008 0.0122
w(9) 0.0627 1.5544
w(10) 0.0052 0.0954
w(11) 0.0107 0.1720
w(12) 1.1037

a 1.0000 1.0000

b -4.6877 -3.0613
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