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1 INTRODUCTION

EPA is undertaking an effort to develop a new set of modeling tools for the estimation of
emissions produced by on-road and off-road mobile sources.  The product of this effort will be
the Multi-scale mOtor Vehicle & equipment Emission System, referred to as MOVES. The
design of MOVES is guided by the following four considerations:

1) the model should encompass all pollutants (e.g., HC, CO, NOx, particulate matter, air
toxics, and greenhouse gases) and all mobile sources at the levels of resolution needed for
the diverse applications of the system;

2) the model should be developed according to principles of sound science;
3) the software design of the model should be efficient and flexible; and
4) the model should be implemented in a coordinated, clear, and consistent manner.

A critical element of MOVES is the use of data gathered using on-board emissions measurement
devices.  To explore this issue, in Fall 2001 EPA issued an on-board emission analysis
“shootout” contract in order to solicit several approaches for incorporating on-board emissions
into moves.  Three shootout contracts were issued to three organizations that worked
independently on the same general statement of work.  These organizations were NCSU,
University of California at Riverside (UCR), and Environ.  Each contractor had the flexibility to
choose any approach they preferred.  NCSU pursued a modal “binning” approach in which
operational bins were defined based on speed, acceleration, and power demand, and refined the
estimates within each modal bin using regression analysis.  UCR pursued a database approach,
deriving separate emissions for macroscale, mesoscale and microscale based on a database
lookup of individual vehicle and trip results.  Environ based their approach on a calculation of
vehicle specific power (power per unit mass, or vehicle specific power - VSP), aggregating
results over “microtrips” (20 or more seconds, defined by endpoints of stable operation).   EPA
also developed a conceptual approach based upon binning of data with respect to VSP bins.

The shootout results from NCSU, UCR, Environ, and EPA, revealed several promising
approaches for using on-board data in the development of MOVES exhaust emission rates.  In
particular, the development of modal emission rates using a “binning” approach was successfully
demonstrated by NCSU and EPA in the shootout analysis.  NCSU directly tackled the time series
nature of the on-board data and illustrated methods for dealing with the data to reduce the
influence of the time series.  The work by Environ illustrated potential benefits to averaging or
smoothing the data.  As a result of this work, the proposed design of MOVES is predicated on
emission rates defined by vehicle and modal operation “bins,” and the development of emission
rates for these bins in MOVES is the ultimate purpose of the methodology that will be developed
in this project.

The philosophy for MOVES is that it should be as directly data-driven as possible.  The
advantages of a data driven methodology are manifold and include the following:

• Emission rates can be developed from raw data
• Emissions estimates can be developed based upon summaries of actual data within given

bins
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• Emissions estimates from multiple bins can be weighted to represent any combination of
trip and vehicle characteristics.

• Inter-vehicle variability and fleet average uncertainty can be easily estimated based upon
appropriate averaging times

• Similar conceptual approaches can be used for different types of vehicles (e.g., on-road
gasoline and diesel, nonroad gasoline and diesel)

• Similar conceptual approaches can be used for different pollutants (i.e. HC, CO, NOx,
particulate matter, air toxics, and greenhouse gases)

• The development of bins can be based upon empirical evidence regarding combinations
of factors that have the most influence on aggregate emissions

• A modal/binning approach can easily support meso-scale and macro-scale analysis, and
can also support micro-scale analysis depending on how the approach is actually
implemented.

• A modal/binning approach for light duty gasoline vehicles (LDGV), heavy duty diesel
vehicles (HDDV) and nonroad diesel vehicles has been demonstrated by NCSU and EPA

• The NCSU approach for on-road vehicles is an intuitive and easy to explain one based
upon bins that correspond to idle, acceleration, cruise, and deceleration behaviors for
onroad vehicles.  The ability to easily explain the approach to policy makers and the
public is an important consideration in gaining acceptance for a new modeling approach.

• A statistical data-driven statistical approach for developing bins, using Hierarchical Tree-
Based Regression (HTBR) has been demonstrated and proven by NCSU and can be used
in the identification of appropriate binning criteria.

• Methods have been demonstrated by NCSU for handling cold start emissions as part of
the modal/binning approach.

• Methods have been explored and recommended by NCSU regarding estimation of modal
emission rates from aggregate data (e.g., dynamometer driving cycle data).

• The modal/binning approaches have been evaluated by validating the approaches in
comparison to real-world emission measurements.

• Time series analysis already performed by NCSU as part of the shoot-out establish a
credible scientific basis for determining appropriate averaging times for the
modal/binning approach to be developed in this project.

• The general framework for developing databases, analyzing the data, and developing
modal models has already been established at NCSU, both as part of the shootout project
and in other previous work.

A key goal of the binning methodology is to develop modal emission rates in a manner that does
not require additional modeling analysis, such as regression modeling, and that eliminates the
need for many correction factors common to existing models such as Mobile5 and Mobile6.
Ideally, the emission rates estimated for a specific bin should be based directly on the sample of
raw data falling into that bin.

On-board data is a promising means for developing tailpipe emissions estimates.  However, as
noted by EPA and as explained in the NCSU final report from the shootout (Frey, Unal, and
Chen, 2002), in the short-term other sources of data will continue to play an important role in
populating or evaluating MOVES.  Thus, an important step in the development of MOVES is to
evaluate the feasibility of techniques for applying the modal binning approach to data from other
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sources, such as driving cycle dynamometer data and remote sensing device (RSD) data.  For
example, Frey et al. (2002) demonstrated an approach for estimating modal emission rates from
aggregate data.

The key purpose of this project is to evaluate methods for developing modal emission rates from
disparate data sources (e.g., on-board data, laboratory second-by-second data, aggregate driving
cycle data, I/M data, and RSD data) for a relatively small “pilot” dataset of light duty vehicles.
In the shootout, NCSU demonstrated that similar approaches can be applied to HDDV and to
nonroad diesel vehicles; therefore, it is reasonable to focus resources on the example of LDGVs
in this project.  Furthermore, in previous work, NCSU demonstrated how to develop a bin for
cold starts.  Therefore, this project will focus on hot stabilized tailpipe emissions.  This project
will demonstrate at the proof-of-concept level the methodology for developing modal emission
rates in MOVES using a wide variety of data sources, including an evaluation of the applicability
of aggregate (bag) data and RSD data.

An important element of MOVES is the incorporation of uncertainty analysis as part of the
emission estimation process.  EPA has proposed to characterize emission rates for each
vehicle/operating bin with a mean value, a distribution form, and standard deviation, to allow for
the development of a utility in MOVES which would apply Monte Carlo analysis to generate
uncertainty estimates of model final results.  Moreover, this approach enables a change in how
normal and high emitters are characterized.  In previous models, EPA has stratified data into
normal and high emitter categories.  In the new approach, EPA proposes to treat all vehicles
within a bin as a continuous distribution.  Thus, for a given vehicle/operating bin, the distribution
of emissions will reflect the variability of emissions among all vehicles within the bin, including
what are now referred to as normal and high emitters.  This approach sets the stage for estimation
of the effect of I/M programs with respect to the characteristics of the distribution of inter-
vehicle variability in emissions.  For example, an I/M program would be expected to identify
some portion of the vehicles with emissions above some value and to repair/modify the vehicles
so as to reduce their emission rates.  This, in turn, would change the distribution of inter-vehicle
variability in emissions.

1.1 Objectives of this Project

The objectives of this project are as follows:

• Develop, demonstrate, and report an analytical approach for producing exhaust modal
emission rates and emission rate disitributions for MOVES from a variety of data
sources, possibly including aggregate (bag) data and RSD data.

• Develop, demonstrate, and report a methodology for estimation of model uncertainty and
variability in emissions estimates

• Validate the developed approach against an independent dataset
• Develop a recommended step-by-step methodology for generating modal emission rates

in MOVES.
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Figure 1-1.  Simplified Schematic of Project Tasks and Their Inter-Relationships

1.2 General Technical Approach

In this section, an overview is provided of the technical approach of this project.  This project
was organized based upon three major tasks:

• Task 1.  Develop Pilot Modal Emission Rates From Multiple Data Sources
• Task 2.  Perform Validation of Developed Model Against Independent Dataset
• Task 3.  Summarize Specific Methodologies for Developing Modal Emission Rates for

MOVES

The first task is comprised of many specific subtasks.  We subdivided Task 1 into subtasks as
follows:

• Task 1a:  Development of Analysis Dataset
• Task 1b:  Development of Binning Methodology
• Task 1c:  Characterization of Uncertainty
• Task 1d:  Applicability to Bag Data
• Task 1e: Applicability to RSD Data

The relationship among the three major tasks, and among the subtasks of Task 1, is illustrated in
Figure 1.  The key starting point of the work was the development of an analysis data set in
subtask 1a.  The other subtasks in Task 1, including subtasks 1b, 1c, 1d, and 1e, were dependent
upon the availability of the analysis data set, which included on-board data, second-by-second
laboratory data, IM240 data, aggregate (bag) data, and RSD data.  Task 1b included several

Task 1a:  Development of
Analysis Data Set

Task 1b:  Development
of Binning Methodology

Task 1c:  Character-
ization of Uncertainty

Task 1d:  Applicability to
Bag Data

Task 1e:  Applicability to
RSD Data

VSP Approach
NCSU Modal Approach
Averaging (1, 5, 10 seconds)
Units (g/sec or ratios)
Weighting (time, vehicle, trip)

Task 2:  Validation

Task 3:  Recommend
Methodology
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considerations that are illustrated by the tie-line to a box listing the binning approaches that were
evaluated, the averaging times that were compared, the emission factor units that were compared,
and the method for weighting of data.  The uncertainty analysis method in Subtask 1c depended
upon the binning approach selected as a result of Subtask 1b.  However, a two-way arrow is
shown between Subtasks 1b and 1c to illustrate the iterative nature of the selection of a binning
approach and an uncertainty analysis approach.  For example, the choice of averaging time and
of weighting method in Subtask 1b influenced the results obtained for the uncertainty analysis
method in Subtask 1c, and the availability of uncertainty analysis methods in Subtask 1c has
implications regarding which types of weighting methods were chosen as preferred in Subask 1b.
The applicability of bag and RSD data to the binning approach methodology also impact the
uncertainty characterization.  The specifics of these kinds of interactions among subtasks and
trade-offs are addressed in more detail in the discussion of each specific subtask.

In the process of developing the tasks during the course of the project, the following key
questions emerged and were addressed:

1. What dataset should be used for the final version of the conceptual model? (Task 1a,
Chapter 2)

2. Which binning approach should be used? (Task 1b, Chapter 3)

3. How much detail should be included in the binning approach, in terms of how many
explanatory variables and how many strata for each variable?  (Task 1b, Chapter 3)

4. What averaging time is preferred as a basis for model development? (Task 1b, Chapter 4)

5. What emission factor units should be used? (Task 1b, Chapter 5)

6.  What weighting approach should be used, when comparing time-weighted, vehicle
weighted, and trip weighted? (Task 1b, Chapter 6)

7.  How should variability and uncertainty be characterized? (Task 1c, Chapter 7)

8.  How should aggregate bag data be analyzed to derive estimates of modal emission rates?
(Task 1d, Chapter 8)

9.  What is the potential role and feasibility of incorporating RSD data into the conceptual
modeling approach? (Task 1e, Chapter 5)

10. How should the conceptual model be validated and what are the results of validation
exercises? (Task 2, Chapter 9)

1.3 Organization of this Report

This report is organized on the basis of the ten motivating questions of the previous section.  The
development of an analysis data set is addressed in Chapter 2.  Chapter 3 presents the empirical
and statistical basis for development of modal emissions modeling approaches.  The selection of
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a preferred averaging time for model development is discussed in Chapter 4.  Two major topics
are addressed in Chapter 5:  (1) what emission factor units should be used; and (2) evaluation of
the role of RSD data with respect to model development or model validation.  Three different
data weighting approaches based upon time, trip, and vehicle averaging are compared in Chapter
6.  Methods for quantifying variability and uncertainty are presented and compared in Chapter 7.
Methods for estimating modal emission rates from aggregate driving cycle data are presented
and evaluated in Chapter 8.  The conceptual modal emissions model developed in this work is
verified and validated in Chapter 9.  Chapter 10 provides a brief summary of the specific
methodology for developing modal emission rates that are recommended for future work.
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2 DEVELOPMENT OF ANALYSIS DATASET

The objective of Subtask 1a is to develop a combined data set for running exhaust emission rates
for LDGV based upon data provided by EPA. The dataset included the following data:

• Approximately 100,000 seconds of data from 17 on-board vehicles from the “shootout”
analysis;

• Approximately 75,000 seconds of data on 25 vehicles tested at EPA’s lab for the Mobile6
facility-specific driving cycles and other standard cycles;

• 82,800 seconds on 311 vehicles tested on the IM240 as part of the Colorado IM program;
• Bag-only and second-by-second data on 74 vehicles tested over FTP (i.e., Bag 2 and Bag

3) and US06 for development of UC Riverside’s Comprehensive Modal Emission Model;
and

• RSD data on 200,966 Tier 1 LDGVs collected as part of a Missouri’s Gateway Clean Air
Program.

The data sets typically contained the following information:

• The second-by-second datasets typically had the following data fields: time; vehicle
speed; fuel consumption; HC, CO, NOx, and CO2 emissions; vehicle engine size; vehicle
weight; vehicle age; vehicle technology; vehicle mileage; road grade (for on-board data);
ambient temperature; and ambient humidity. Some datasets, such as from on-board data,
typically also had data for more variables such as: engine RPM; latitude; longitude;
altitude; mass air flow; intake air temperature; engine load; and other engine related
variables.

• Bag data sets included total emissions for CO, HC, NOx, and CO2. The bag data were
typically from standard driving cycles for which either the standardized or actual test
second-by-second speed trace was available. Vehicle-related variables such as vehicle
engine size, vehicle mileage, vehicle age, vehicle technology, and vehicle weight were
available for “bag” data sets. Additional data were available for some “bag” data sets
such as a/c usage, ambient temperature, and relative humidity.

• RSD data included instantaneous vehicle speed and emission rates for pollutants
normalized to CO2 emissions, such as the ratios of CO/CO2, HC/CO2, and NOx/CO2. In
addition, vehicle-related data such as engine size and model year based upon the license
plate number that was observed during data collection, identification of the VIN based
upon registration data, and decoding of the VIN. However, information regarding
vehicle mileage accumulation was not available. Additional variables such as road grade,
ambient temperature, and relative humidity were available.

2.1 Development of a Combined Database

In performing the work for this study, our general philosophy was to make use of readily
available software tools where possible. Therefore, we made use of Visual Basic, Excel, and
SAS to a significant extent, consistent with our previous experience in working with similar
datasets.

The combined second-by-second dataset, including on-board data, laboratory dynamometer data,
and IM240 data, was created using programs written in Visual Basic and SAS. For this purpose,
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Visual Basic programs that were prepared in previous studies (Frey et al., 2001; Frey et al.,
2002) were utilized. The first step in developing a combined dataset was to make sure that each
data file has the same data fields. Each data file represents a vehicle or a trip.  A Visual Basic
code was utilized to process the data and arrange the data fields such that each file has the same
format.  Formatting of the fields was conducted with Visual Basic programs that were written for
this purpose in previous studies. After completing the processing of all data files, all of the data
was in Excel with the same format. The Excel files were first exported to SAS and combined
together in SAS using codes written specifically for this purpose.

For quality assurance purposes, the data were screened to check for errors or possible problems.
A notable issue was that there were zero and negative numbers in the second-by-second
emissions data.  Specifically, 13 percent of the data were comprised of zero or negative values
for CO, 12 percent for HC, 22 percent for NOx, and 0.8 percent for CO2.  Since measurements
errors could result in negative values that are not statistically significantly different from zero or
a small positive value, the data were retained as is.

Several post-processing steps were applied to the dataset.  The post processing steps included:
(1) humidity corrections for NOx emissions for the on-board data; (2) adjustments to the HC data
for the on-board data; and (3) calculation of derived variables such as acceleration, power
demand, and vehicle specific power.  Since the dynamometer data was already corrected for
humidity, a humidity correction was also applied to the on-board data. For this purpose, a
humidity correction factor that was reported in the on-board dataset was utilized.  The on-board
measurements of HC emissions were made using NDIR, whereas the dynamometer
measurements were made using FID.  In other work, the measurements of the on-board
instrument developed by Sensors that was used to collect the EPA on-board data were compared
with measurements made with a laboratory dynamometer.  By comparing the total HC emissions
for specific vehicles and driving cycles, it was observed that the NDIR measurements resulted in
lower values than did the FID measurements.  Based upon the available comparison data, a
correction factor of,1.65 was utilized to adjust the on-board HC measurements to an approximate
equivalent basis.  Because the adjustment factor was based upon an average of total trip
emissions, the adjustment factor does not take into account possible variability in the ratio of FID
to NDIR measurements on a second-by-second basis.

Variables such as acceleration, power demand and VSP were estimated from other variables such
as vehicle speed. Acceleration is estimated from the observed speed by taking second-by-second
differences in speed.  However, to account for the effects of road grade, the estimate of
acceleration was modified.  As indicated by Bachman (1999), gravity exerts a force on a vehicle
that must be counteracted. Therefore, the acceleration effect of road grade should be included in
order to estimate the effective acceleration. The effect of road grade on acceleration can be
quantified as:

(%)Gradient (mph/sec) 51.22(mph/sec)on Accelerati ×= (2-1)

Power demand was estimated using the following equation:

��� ×= (2-2)

where:
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P = Power Demand (mph2/sec)
v = Vehicle speed (mph)
a = Vehicle acceleration (mph/sec)

Vehicle Specific Power (VSP) was estimated using an equation given by EPA, which is:

( )( )( )[ ] 3v000302.0132.0gradesintana81.9a1.1v(kW/ton) VSP +++= (2-3)

The coefficients given in Equation (2-3) are specific for on-board data. However, coefficients for
dynamometer measurements were not available in this study, therefore, the same coefficients
were used for dynamometer data as well.  While it is recognized that the specific estimate of
VSP is a function of vehicle weight and of the specific values of the parameters for each
individual vehicle, it was beyond the scope of this study to develop detailed vehicle-specific
estimates of VSP.

2.2 Organization of the Data for Analysis

The combined database was used to create specific databases for different analyses throughout
the project.  These databases included the following:

• A “Modeling” or “Calibration” database comprised of data for most of the on-board
measurements, most of the EPA dynamometer data, and most of the NCHRP data.  This
database was also used as “Validation Data Set 1”

• “Validation Data Set 2” was comprised of a small sample of vehicles from the EPA on-
board, EPA dynamometer, and NCHRP data that were excluded from the modeling
database.

• IM240 data were used separately from the other data
• The NCHRP data were used in the analysis of methods for developing modal emission

rates from aggregate bag data
• “Validation Data Set 3” was comprised of data obtained from the California Air

Resources Board, and are also referred to as “ARB data.”
• RSD data included approximately 2,000,000 seconds of data. Of this dataset, 200,966

data points were selected randomly for analysis, where each point represents
measurement for one vehicle.

The data from on-board, EPA dynamometer and NCHRP dynamometer measurements were
combined into the modeling data set, and included:

• 71,699 seconds of data from 13 on-board vehicles from the “shootout” analysis;
• 68,482 seconds of data on 33 vehicles tested at EPA’s lab for the Mobile6 facility-

specific driving cycles and other standard cycles; and
• 92,000 seconds of data on 49 vehicles tested over FTP and US06 for development of UC

Riverside’s Comprehensive Modal Emission Model.

Therefore, the combined database for modeling has a total of 232,181 seconds of data. The
combined database has the following data fields:  source for data (e.g., EPA dynamometer);
vehicle make; vehicle model; VIN; number of vehicle tested; number of trip tested; speed;
acceleration; ambient temperature; ambient humidity; road grade; power estimate, positive
power estimate; Vehicle Specific Power (VSP) estimate; positive VSP estimate; CO, CO2, HC,
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NOx emissions; vehicle model year; vehicle engine displacement; number of cylinders; air
condition use; and vehicle net weight.

Validation Data Set 2 included the following data:

• 3 vehicles from EPA dynamometer data
• 3 vehicles from EPA On-board data
• 25 vehicles from NCHRP data

The validation dataset included 83,183 seconds of data. The data fields for this dataset were the
same as for the Modeling dataset.

The NCHRP dataset included 8 high-emitter vehicles as reported in a User’s Manual prepared by
University of California at Riverside. In preparing Validation Dataset 1 and 2, data were selected
randomly from NCHRP data. Six of the high emitter vehicles were included in Validation
Dataset 1, and two of them were included in Validation Dataset 2.

Validation Data Set 3 included data for 17 vehicles from 11 different UCC cycles.  The
validation dataset included nominal speed profiles and total emissions for 15 of the vehicles, and
actual speed profiles and second-by-second emissions for two of the vehicles. Detailed
information regarding the Validation Datasets is given in the Appendix.

Data for IM240 were utilized for comparative purposes, as described in this report, including
comparing average emission rates for the developed modes with respect to those obtained from
the calibration data. The IM240 dataset included 311 vehicles tested on the IM240 cycle, for a
total of 82,800 seconds of data. The data fields for this data set were the same as for the
Modeling dataset.

EPA obtained an RSD database from the state of Missouri that contained approximately 2
million records.  Of this dataset, 200,966 data points were selected randomly for analysis. This
dataset included data fields similar to the modeling database. However, vehicle net weight was
not available and engine displacement was only available for part of the dataset.  Each data point
in the RSD database used for analysis represents a unique vehicle.

2.3 Summary

Data from a variety of sources were reviewed and used to develop data bases for different
components of this project.  A modeling database comprised of approximately 232,000 seconds
of data from on-board and laboratory dynamometer measurements was compiled for use in
developing a conceptual modeling approach.  A separate IM240 database was developed for
comparison to the modeling data.  A database comprised of RSD data was developed in order to
answer key questions regarding the potential role of RSD data in model development or model
interpretation.  A database comprised of NCHRP dynamometer data was developed in order to
evaluate methods for estimating modal emissions from aggregate driving cycle data.  In addition
to the modeling data set, two other databases were developed for model validation purposes,
including an independent sample of on-board and dynamometer measurements for vehicles
similar to those used in the modeling data base and a separate database obtained from CARB.
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3 DEVELOPMENT OF A MODAL EMISSIONS MODELING APPROACH

The objective of this section is to demonstrate the modal “bin” approach on data for “running”
hot-stabilized exhaust emission rates, and to determine the best binning approach based upon
evaluation of alternative approaches.  This chapter focuses upon the use of one second data in
units of mass per time.  Chapter 4 compare different averaging times and Chapter 5 compares
different emission factor units.  The two most promising binning approaches identified in the
“shootout” were the VSP-based approach evaluated by EPA and the driving mode-based
approach evaluated by NCSU.  These two approaches were compared in this project.  A key
methodological component of this work was the use of Hierarchical Tree-Based Regression
(HTBR), using S-Plus software.  This chapter focuses on answering the second and third key
questions of this project:  (1) which binning approach should be used?; and (2) how much detail
should be included in the binning approach, in terms of how many explanatory variables and
how many strata for each variable?   First, the methodology for developing bins based upon
statistical methods is presented.  Results of analysis of the modeling data set based upon each of
the NCSU and VSP based approaches are presented.  An evaluation of each approach is made,
followed by a selection of a preferred approach.

3.1 Statistical Method for Developing Binning Criteria

HBTR is a forward step-wise variable selection method, similar to forward stepwise regression.
This method is also known as Classification and Regression Trees (CARTs). Conceptually,
HTBR seeks to divide a data set into subsets, each of which is more homogeneous compared to
the total data set.  At a given level of division, each of the subsets is intended to be different in
terms of the mean value.  Thus, HTBR is a statistical approach for binning data.  More
specifically, the method is based upon iteratively asking and answering the following questions:
(1) which variable of all of the variables ‘offered’ in the model should be selected to produce the
maximum reduction in variability (also referred to as deviance in HTBR methodology) of the
response?; and (2) which value of the selected variable (discrete or continuous) results in the
maximum reduction in variability (i.e., deviance) of the response?  The method uses numerical
search procedures to answer these questions. The HTBR terminology is similar to that of a tree;
there are branches, branch splits or internal nodes, and leaves or terminal nodes (Washington et
al., 1997).

The iterative partitioning process is continued at each node until one of the following conditions
is met: (1) the node of a tree has met minimum population criteria which is the minimum sample
size at which the last split is performed; or (2) minimum deviance criteria at a node have been
met (Frey et al., 2002; and Unal 1999).

In developing bins, vehicle-based variables such as vehicle class, mileage, age, engine size,
vehicle weight, and technology were utilized. Vehicle operation variables such as vehicle speed,
acceleration, and surrogate for power demand (i.e., Vehicle Specific Power) were included in
this analysis. Based upon the availability of the data, external parameters such as road grade, air
condition usage, ambient temperature, relative humidity were incorporated during HTBR
analysis. S-Plus scripts that were written in previous studies were used in this study.
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In developing bins both “unsupervised” and “supervised” techniques were utilized. In the
“unsupervised” technique, data is provided to the HTBR with no prior specification of branches
or nodes of the regression tree.  In this situation, HBTR is allowed to create whatever bins result
from direct application of HBTR.  In contrast, for the “supervised” technique, HTBR is forced to
start with pre-determined modes.  A partially supervised technique can often be a better approach
than a purely unsupervised technique.  This is because HTBR can be sensitive to artifacts of
variability in the data that may not be important from a practical perspective, and HBTR may
give unexpected or difficult to interpret results if the unsupervised technique is used.  Sometimes
HBTR will repeatedly “split” on the same subset of variables (e.g., speed and acceleration)
which may indicate the need for a new explanatory variable that is a function of the subset of
variables.  For example, if HBTR splits repeatedly on speed and acceleration, it may be better to
remove speed and acceleration as criteria for creating bins and instead offer some variable that is
a combination of both speed and acceleration, such as VSP or power demand.

The two binning approaches that were evaluated are the VSP approach demonstrated by EPA
and the driving mode approach demonstrated by NCSU (Frey et al., 2002).  VSP is a surrogate
for power demand and is a function of vehicle speed, road grade, and acceleration. In an
unsupervised approach, the selection of bins would be determined by the results of application of
HBTR, rather than based upon arbitrary bin assignments, such as those made by EPA as part of
the shootout (e.g., 1 kw/ton bins from –15 to +30).

The HBTR-based approach was also applied to the driving mode definitions developed by
NCSU.  As part of previous work (Frey et al., 2001; 2002), NCSU developed a priori driving
mode definitions. Idle is defined as based upon zero speed and zero acceleration. The definition
of the acceleration mode includes several considerations. First, the vehicle must be moving and
increasing in speed. Therefore, speed must be greater than zero and the acceleration must be
greater than zero. However, vehicle speed can vary slightly during events that would typically be
judged as cruising. Therefore, in most instances, the acceleration mode is based upon a minimum
acceleration of two mph/sec. However, in some cases, a vehicle may accelerate slowly.
Therefore, if the vehicle has a sustained acceleration rate averaging at least one mph/sec for three
seconds or more, that is also considered acceleration. Deceleration is defined in a similar manner
as acceleration, except that the criteria for deceleration are based upon negative acceleration
rates. All other events not classified as idle, acceleration, or decelerations are classified as
cruising. Thus, cruising is approximately steady speed driving but some drifting of speed is
allowed. It was shown by NCSU in previous studies (Frey et al., 2001; 2002) that emission
estimates for these driving modes are statistically significantly different from each other.  An
example comparison of modal emission rates for hot stabilized driving is given in Figure 3-1.

In working with the NCSU-based approach, two specific applications of HBTR were made.  In
the first, the data set was modified to include a bin category for each data point.  Unsupervised
HBTR was applied to the modified database to determine whether HBTR will subdivide the data
based upon the NCSU modal definitions preferentially compared to other possible binning
criteria.  Additional bins were developed using HBTR in order to further refine the binning
approach.  This type of approach was demonstrated briefly in the previous shootout project (Frey
et al., 2002) and was expanded in its application in this project.
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Figure 3-1.  Average Modal Emission Rates for LDGVs (Source:  Frey et al., 2002)

In developing modal “bins” in HTBR it should be kept in mind that there is a trade-off between
the number of bins and the usefulness of the empirical model based upon the bins.  While it is
possible to obtain additional explanatory power by increasing the number of bins, there are
diminishing returns associated with creation of an increasing number of bins.  Furthermore, the
HBTR determines bins based upon whether there are differences in the average emissions among
the possible bins.  It does not determine bins based upon what portion of trip or total emissions
are explained by each bin.  Therefore, it is possible to obtain a potentially large number of bins
that do not help explain a significant  portion of total trip or aggregate emissions.  Supervised
techniques are sometimes more useful than unsupervised techniques in helping to avoid a
proliferation of relatively useless bins.  Another method for dealing with the possible
combinatorial explosion of bins is to “prune” a tree created using HBTR.  For example, HBTR
could be allowed to develop a large number of bins for purposes of determining a practical upper
limit on the amount of deviance in the data set that can be explained by the bins.  Then, the
number of bins can be reduced to a point where there is still good explanatory power of the
binning approach with a much smaller number of bins.  This process requires some judgment and
therefore would be considered to be a supervised technique.  This approach has been
demonstrated previously (e.g., Rouphail et al., 2000; Frey et al., 2002).

Another important issue regarding bin development is that bins that are formed under different
branches of the tree (see Figure 3-2) may not be statistically significantly different from each
other
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Figure 3-2.  Sample Regression Tree Diagram (Numbers represent Node Numbers of the Tree)

when the number of bins increases.  All of the data are “fed” into the HBTR process as Node 1.
HBTR will divide into separate data sets at each branch in the tree.  Thus, the first split of the
data is into bins represented by Nodes 2 and 3.  Then, another split is made in which the data are
further subdivided into four nodes, Nodes 4, 5, 6, and 7.  A third split results in eight modes,
which are Nodes 8 through 15.  Each time a split is made, the two nodes that are subdivided
based upon a higher level node are statistically significantly different from each other with
respect to the mean value.  Thus, for example, Nodes 8 and 9 will have significantly different
mean values.  However, Nodes 9 and 10, which result from different branches, are not
guaranteed to have significantly different means.  Thus, it is possible that a larger number of
nodes could result in some overlap with respect to mean values.  In other words, the creation of a
large number of bins or nodes may not substantially increase explanatory power compared to a
smaller number of bins or nodes.  We evaluated the statistical significance of differences in the
average value of emissions associated with different bins and considered lack of statistical
significance of average values as a stopping criteria pertaining to the creation of additional
branches of the regression tree.

Not all modes are equally important.  Some modes are more important than others since they
represent a larger share of total emissions than others. For example, in a previous study by
NCSU it was found that acceleration and cruise modes are the most important modes in terms of
total trip emissions. Figure 3-3 illustrates the distribution of time spent in each driving modes
(i.e., cold-start, idle, acceleration, deceleration, and cruise) and the corresponding percentage
contribution of each mode to total trip emissions for each of four pollutants. One key finding is
that the idle and deceleration modes contribute relatively little to total emissions for any of the

1

2 3

7654

8 131211109 1514
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Figure 3-3.  Example of Average Distribution of Time and Emissions with Respect to Modes

(Source:  Frey et al., 2002)

four pollutants compared to cruise, acceleration, and cold start emissions.  Therefore, there is
likely to be little to be gained by spending resources to improve the explanatory power of the idle
and deceleration modes.  In contrast, cruising, acceleration, and cold start, in a general
descending order, are the most important contributors to total emissions.  Therefore, an iterative
approach was taken to develop bins. First bins were developed using the HTBR method.  The
percent contribution of each mode total emissions was estimated. Based upon these results, the
definitions of the modes were revised so that no single mode contributes disproportionately to
the total emissions represented in the database.

3.2 Development of the VSP-Based Modal Approach

In developing bins based upon VSP, first step was to explore the relationship between VSP and
emissions with the help of scatter plots.  Based upon exploratory analysis of the sensitivity of
emissions to VSP and other explanatory variables, a recommended approach was developed for a
modal model.

3.2.1 Exploratory Analysis

Figure 3-4 shows the relation between VSP and emissions for HC, NO, CO, and CO2. VSP data
were binned into 1kw/ton bins from -50 to +50 and the average within each bin is shown.
It is observed from these scatter plots that there is an approximately monotonic increase in
emissions for all four pollutants for positive VSP. Emissions tend to be very low for negative
VSP bins and tend to increase as VSP increases above zero. For very high values of VSP (i.e.,
VSP bins higher than 45) there is an apparent decrease for CO2 and NOx especially. The number
of data points in these bins are small, typically less than 100.  Thus, the reliability of the
estimates for the very high VSP bins in question.  However, one reviewer of this work indicated
that there is the possibility that emissions may actually decrease on average in the very high VSP
range.
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HBTR was applied to the modeling dataset in order to see whether VSP would be selected by
HTBR as the mot important explanatory variable. An example for this analysis is given for NO
emissions in Figure 3-5.  Vehicle operating parameters as well as vehicle technology parameters
were used as possible explanatory variables. These parameters are: speed; acceleration; VSP;
temperature; engine displacement; number of cylinders; a/c usage; temperature, odometer
reading; model year; and net weight. Of all these parameters VSP was selected as the first split
by HTBR. The vertical distance depicted for each branch is proportional to the reduction in
deviance associated with each explanatory variability.  In this specific case, splitting the data set
into two strata based upon a VSP criteria of 13.2 lead to a substantial reduction in deviance.
Under the second branch of the tree, a second split was made based upon vehicle net weight.
However, the reduction in deviance based upon further stratification by net weight is less than
the reduction in deviance from the first split based upon VSP.  At the lowest portion of the tree, a
second split based upon VSP is observed for the smaller net weight category of data.  When a
variable occurs repeatedly in the tree, such as VSP does in this case, that is evidence that the
variable plays an important role.  In this case, VSP alone helps explain a substantial portion of
deviance in the data.  When the data are further stratified, VSP explains additional deviance for
vehicles with a net weight less than 4,400 pounds.  This result illustrates that VSP is the most
important variable and therefore could be selected as the first criteria for developing bin
definitions.  Qualitatively similar results were obtained for other pollutants.

A judgment was made that it would be useful to separately analysis the role of vehicle operating
parameters (e.g., VSP) as distinct from vehicle characteristics (e.g., net weight, odometer
reading, engine size).  When only vehicle operating parameters were utilized in HTBR, VSP was
again found to be the most important explanatory variable.

Because VSP was consistently identified as the most important explanatory variable, modal bins
were developed using VSP.  HBTR was not used to develop the actual definitions of the bins.
While useful in identifying which variables offer the most capability to explain deviance in the
data set, an “unsupervised” approach to HBTR does not provide optimal bin definitions.  For
example, it is possible that nodes that occur under different branches of the tree may have similar
average emission rates.  From a practical perspective, it is not useful to have bins with similar
average emission rates, since the objective is to explain variability in emissions.  Therefore, a
“supervised” approach was adopted.  In the supervised approach, two key considerations were
taken into account.  The first is that ideally each mode should have a statistically significantly
different average emission rate than any other mode.  The second is that no single mode should
dominate the estimate of total emissions for a typical trip as represented by the database.
Therefore, to guide the selection of modal definitions, it was decided that no mode should
explain more than approximately 10 percent of total emissions. Based upon these two
considerations, VSP modes were defined.  It should be noted that same modes were defined for
all the pollutants. Table 3-1 gives the VSP modal definitions.

Figure 3-6 shows average modal rates for these bins for all four pollutants.  The average modal
rates are significantly different from each other for all four pollutants. In all four pollutants the
average modal rates for the first two modes, Modes 1 and 2, are higher than average rate for
Mode 3.  There is an increasing trend in emissions with increase in VSP bins for Modes 4
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Table 3-1.  Definitions for VSP Modes
VSP Mode Definition

1 VSP<-2
2 -2<=VSP<0
3 0<=VSP<1
4 1<=VSP<4
5 4<=VSP<7
6 7<=VSP<10
7 10<=VSP<13
8 13<=VSP<16
9 16<=VSP<19
10 19<=VSP<23
11 23<=VSP<28
12 28<=VSP<33
13 33<=VSP<39
14 39<=VSP
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through 14 for all of the pollutants.  For CO, the range in average modal emissions is more than
two orders-of-magnitude, when comparing Mode 3 and Mode 15.  A similar comparison for
NOx, HC, and CO2 implies a range of approximately one to two orders-of-magnitude.

Because each pollutant has a different sensitivity to the modal definitions, there are some cases
in which a mode may contribute approximately 10 percent to the total emissions of one pollutant
but a far lower percentage of total emissions for another pollutant, as shown in Figure 3-7.  For
example, for the high VSP bins, such as Modes 12, 13, and 14, approximately 10 percent of the
total CO emissions in the calibration data set are accounted for, for a total of over 30 percent of
the total CO emissions.  These four modes account for less than three percent of total travel time
in the database.  Furthermore, these modes account for only approximately 15 percent or less of
total NOx, HC, and CO2 emissions.  The implication is that high VSP has a more substantial
impact upon CO emissions than for the other pollutants.  This seems plausible, in that high VSP
is  likely  to  be  associated  with  an  increased  frequency  and  duration  of  command
enrichment, which tends to have more effect on CO emissions than, for example, NOx emissions.
Because pollutants respond differently to activity captured by each mode, it was necessary to
have 14 modes in order that no individual mode represent more than approximately 10 percent of
the emissions of any single pollutant.  Of course, the proportion of emissions in each mode is
conditional on the database used to estimate the modal emission rates.

3.2.2 Considerations in Refinement of the VSP-Based Modal Approach

In order to further improve modal definitions, parameters related to vehicle technology were
included in an analysis to determine which ones are most useful in further explaining variability
in emissions. These parameters included were: engine displacement; number of cylinders;
odometer reading; model year; and net weight.  Some of these parameters are correlated with
each other.  For example, odometer reading and model year tend to have a positive dependence,
and engine displacement, number of cylinders, and net weight tend to have a positive
dependence. The correlation analysis for these parameters is given in Appendix. Therefore, in the
final model, it is not expected to be necessary to include all of these.  Separate HTBR trees were
fit to data in each mode for each pollutant separately. Tables 3-2 through 3-5 summarize the
results of these analyses for CO, CO2, HC, and NOx respectively.

One of the observations from Tables 3-2 through 3-5 is that both net weight and engine
displacement are important variables for all of the pollutants for most of the modes. Engine
displacement is an important variable especially for CO and CO2, whereas odometer reading is
important especially for HC.  Based upon the results given in Tables 3-2 through 3-5,
improvements in the VSP modal definitions were considered based upon comparison of based
upon net weight or engine displacement.  In addition, the effect of stratification of VSP bins with
respect to odometer reading was also considered.
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Table 3-2.  Unsupervised HBTR Regression Tree Results for CO for Each of 14 VSP Modes
Mode 1st Cut point 2nd Cut point 3rd Cut point
1 E*  5.3 NW  4400 NW  3600
2 E  5.3   
3 E  5.3   
4 E  5.3   
5 E  5.3  NW  3600
6 NW**  4400 O  15000  
7 NW  4400 NW  3600  
8 NW  4200 O  15000 O  24000
9 NW  4200 C****  5  
10 NW  4200 C  5  
11 NW  4200 C 5  
12 NW  3800 NW  3200  
13 O***  15000  O  79000
14 NW  3300 O  45000 O  79000

Table 3-3.  Unsupervised HBTR Regression Tree Results for CO2 for Each of 14 VSP Modes
Mode 1st Cut point 2nd Cut point 3rd Cut point
1 NW  3200 C  5 O  25000
2 NW  3200   
3 C  5 NW  3200  
4 C  5 NW  2700 NW  3600
5 E  2.3 NW  2800 NW  3700
6 E  2.3 E  1.95 C> 7
7 NW  3700 E  1.95 E  3.9
8 NW  3700 E  1.95 E  3.5
9 E  3.5 O  46000  
10 E  3.5 O  44000  
11 E  3.5 O  46000  
12 E  3.5 O  37000  
13 E  3.5 O  23000  
14 E  3.5  O  60000

Note: “NW” means “Net Vehicle Weight (lbs)”, “O” means “Odometer Reading (miles)”,
“C” means “Number of cylinders”, “E” means “Engine Displacement (liters)”. The number
following the variables is the value of the cut point.
Results are not shown in cases where sample size was small
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Table 3-4.  Unsupervised HBTR Regression Tree Results for HC for Each of 14 VSP Modes
Mode 1st Cut point 2nd Cut point 3rd Cut point
1 O  77000   
2 O  77000  O  98000
3 O  79000   
4 O  79000  O  98000
5 O  78000  O  98000
6 O  78000  O  98000
7 O  78000 O  30000 O  98000
8 O  78000 O  26000  
9 O  78000 O  33000 O  95000
10 O  78000 O  32000  
11 O  43000  O  95000
12 O  43000  NW  2800
13 O  43000 O  15000 NW  3000
14 O  46000  NW  3000

Table 3-5.  Unsupervised HBTR Regression Tree Results for NOx for Each of 14 VSP Modes
Mode 1st Cut point 2nd Cut point 3rd Cut point
1 NW  3600 O  23000 NW  3800
2 O  66000  O  83000
3 O  30000  O  43000
4 NW  4400 O  66000  
5 NW  4400 O  66000  
6 NW  4400 O  66000  
7 NW  4400 O  66000  
8 O  70000 NW  2800 NW  3800
9 NW  4200 O  38000  
10 NW  4200 O  38000  
11 NW  4200 O  38000  
12 O  13000   
13 O  14000  O  95000
14 NW  3800 NW  3600 NW  2800

Note: “NW” means “Net Vehicle Weight (lbs)”, “O” means “Odometer Reading (miles)”,
“C” means “Number of cylinders”, “E” means “Engine Displacement (liters)”. The number
following the variables is the value of the cut point.
Results are not shown in cases where sample size was small
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Figures 3-8 and 3-9 present the effect of net weight and engine displacement, respectively, on
emissions as applied to the VSP modal bins.  For Figure 3-8, the data were stratified based upon
a vehicle weight of 4,000 pounds, and for Figure 3-9, the data were stratified based upon an
engine displacement of 3.5 liters.  These cut-offs were chosen based upon the results of Tables 3-
2 through 3-5 and were intended to be representative values.  Although for some pollutant/mode
combinations there is no significant or substantial difference in average emissions, for other
combinations there are statistically significant differences based upon either net weight or engine
displacement.  For example, for the higher VSP modes (e.g., Modes 10 to 14), average emissions
are larger for all four pollutants for the larger weight category.  In the case of CO2, the trend of
higher emissions for heavier vehicles is systematic among all of the positive VSP modes (i.e.
Modes 3 to 14); this difference is expected since heavier vehicles typically have lower fuel
economy and, hence, higher CO2 emissions than lighter vehicles.  For CO and NOx, for the most
part emissions of heavier vehicles are higher for the positive VSP modes.  For HC, the trend is
slightly different than other pollutants. For the first eight modes, lighter vehicles have higher
emissions; however, for Modes 10 to 14, heavier vehicles have significantly higher emissions.
These results confirm that vehicle net weight is an important variable.  The differences in
emissions between the weight categories is on the order of a factor of two to five in most cases.

The relationship between emissions and engine displacement is shown for all pollutants and
modes in Figure 3-9.  Although there are some exceptions, particularly for the negative VSP
modes (e.g., Modes 1 and 2), typically vehicles with larger engine size have significantly higher
emissions by a factor of two to five.    Thus, engine displacement is also shown to be a
potentially important explanatory variable.  Since engine displacement and net vehicle weight
are highly correlated, there is little benefit to including both as criteria for stratification of the
data.  Engine displacement was selected as the criteria for further model development, although
it is likely that similar results would be obtained if net vehicle weight were selected instead.

Aside from either engine displacement or vehicle weight, it is clear from the results of Tables 3-2
through 3-5 that odometer reading is also an important explanatory variable.  The range of
cutpoints for odometer reading obtained from HBTR varies substantially from one pollutant to
another, and in some cases multiple cutpoints for odometer reading were obtained from the
analysis.  However, for simplicity and for consistency with other models and analyses, a single
cutpoint of 50,000 miles was selected.  This cutpoint is within the range of values obtained from
HBTR.

The average modal emission rates, and the 95 percent confidence intervals for the averages, are
shown in Figure 3-10 for the 14 VSP modes stratified with respect to two engine displacement
categories and two odometer reading categories.  The sample sizes for each mode for each strata
of engine displacement and odometer reading are shown in Figure 3-11.

For the lower engine displacement category of less than 3.5 liters, represented by Strata 1 and
Strata 3 in Figure 3-10, respectively, it is typically the case that the higher mileage vehicles have
higher emissions of HC and NO, only marginally higher emissions of CO, and comparable
emissions for CO2.  Similarly, for the larger engine displacement category of greater than 3.5
liters, the higher mileage vehicles have substantially higher HC and NOx emissions, marginally
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higher CO emissions, and comparable CO2 emissions for most modes.   Thus, it is clearly
important to compare emissions for different odometer reading categories, especially for HC and
NOx.

When comparing engine displacement categories for a given odometer category, it is typically
the case that the larger engine size category has higher CO2, CO, HC, and NOx emissions than
the lower engine size category.  However, there are some exceptions to this trend.  For example,
the lower mileage vehicles with larger engines tend to have lower NOx emissions for Modes 1
through 7 compared to any other strata, and for the higher VSP modes, the NOx emissions for the
larger engines are not substantially higher than that for the smaller engines for lower mileage
vehicles.  However, among the higher mileage vehicles, those with larger engines have
substantially higher NOx emissions than those with smaller engines.

The fact that there are important differences in emissions based upon engine size and odometer
reading for many modes for each of the pollutants confirms that engine size and odometer
reading are useful explanatory variables.  Therefore, the modal approach based upon 14 VSP
bins, each divided into four strata representing two engine size and two odometer reading
categories, was adopted for further analysis.  This approach is referred to as the “56-bin”
approach because of the 56 bins required (14 VSP bins x 2 engine displacement strata x 2
odometer reading strata = 56 bins in total).

3.2.3 Comparison of Modeling and IM240 Datasets

In this section comparison of modal results based upon the calibration dataset and the IM240
dataset is given based upon the preliminary VSP approach. For this purpose, the VSP bins that
were segregated via net weight are given.  The IM240 data were not used in the initial calibration
activity because IM240 data are for a smaller range of VSP than the calibration data and because
of concern that there may be significant differences in fuel characteristics.  An objective in
comparing the two data sets is to determine whether the results obtained based upon the
modeling data set are robust when the same binning criteria are applied to a different data set.  In
order to make this comparison, it is important to first stratify both datasets as much as possible to
correct for variability in key factors.  Based upon appropriate stratification, a more direct
comparison can be made between the data sets.

Figure 3-12 presents a comparison of modeling data and IM240 data based upon VSP bins where
vehicle net weight is less than 4,000lb.  For CO2, the results from the modeling data set and the
IM240 data are very similar, both in terms of general trends among all modes and in terms of
comparisons of mean emission rates for individual modes.  The only exception is an apparent
anomaly for Mode 1.  Aside from the anomaly, the comparison suggests that on average the
vehicles in the two data sets have similar CO2 emission rates, which also indicates that they have
similar fuel economy, since the vast majority of carbon in the fuel is emitted as CO2.  For the
other three pollutants, there are similarities in average emission rates for the highest VSP modes,
such as Modes 10 to 14, especially for CO and HC emissions.  For NOx, the emissions appear to
differ by a factor of approximately two for these modes.  The similarities for the higher modes
for CO and HC may suggest that vehicles emit similarly for these two pollutants under
conditions of high power demand and, presumably, increased occurrence and frequency of
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enrichment.  For all other modes, it is generally the case that the IM240 database reveals higher
average emission rates than does the calibration database.  This could be perhaps because there is
a higher proportion of high emitting vehicles, a different activity pattern of the vehicles, or
perhaps different fuel or ambient characteristics.

Figure 3-13 shows the comparison between the IM240 and the calibration data for net weight
greater than 4000lb.  There are not many data points in several of the VSP bins for the IM240
data. For Modes 11 and 12 there are less than 20 data points and for Modes 13 and 14 there are
no data points.  Thus, the results for Modes 11 and 12 are subject to considerable random
sampling error.  Similar to the case for the lower weight vehicles, for CO2 there are generally not
significant differences between average modal rates for the IM240 and calibration datasets. For
other pollutants, the IM240 database tends to have higher average modal rates than the
calibration data, especially for the first seven modes.

Overall, these comparisons suggest important similarities between the modeling and the IM240
datasets.  The general trend of an increase in emissions from Modes 3 to 14 is common to all
pollutants and for both vehicle size categories.  The results for CO2 agree very well, especially
for the smaller vehicle size category for which there is more IM240 data.  The results for NOx

are comparable in terms of general trend and relative variation in emissions among the modes,
but the average emissions are systematically higher for the IM240 data than for the modeling
data.  For HC, the average modal emissions from the IM240 data are substantially higher than for
the modeling data for Modes 1 through 7, but are statistically similar for the highest VSP modes.
For CO, the average modal emissions based upon the IM240 data are higher than those based
upon the modeling data set for the lower VSP modes for both vehicle size categories.  For the
smaller vehicle size category, for which there are more data, the CO emissions are similar for the
higher VSP modes.  Since the IM240 is based upon potentially different fuel than the modeling
data set, it is possible that differences in fuel may be important.  However, it is also likely that
the IM240 data set contains high emitting vehicles, and that the lower VSP modes may be more
susceptible to differences between normal and high emitting vehicles than the higher VSP
modes, which also typically represent higher emissions.

A more thorough comparison of different data sets is shown in Figures 3-14 through 3-17 for the
four engine displacement and odometer reading strata, respectively.  The data sets compared
include the EPA on-board data, the EPA dynamometer data, NCHRP data, and the IM240 data.
The first three are the constituent data of the modeling database.  Not all databases could be
compared for all four strata because of lack of data in some of the strata.  Generally, the CO2

results are comparable among the databases, although it appears that the NCHRP database
represents higher average CO2 emissions than does the IM240 database for higher mileage
vehicles with larger engines.  There tends to be more agreement regarding NOx emissions
estimates compared to CO and HC.  Both the on-board and dynamometer data from EPA tend to
be similar.  For example, for the smaller engines and lower mileage vehicles, the CO emissions
agree well for most of the modes, and for NOx the trends are very similar even though the
averages are similar primarily only for the lower VSP modes.  The on-board hydrocarbon
emissions values tend to be much higher than those of the other data sets except for the high VSP
modes, although the difference is not as pronounced for the larger engine size range.  Even
though emissions are not similar when comparing some of the datasets, a likely reason for such
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differences is a different mix of vehicles.  The differences among the data sets suggest that it is
important to obtain a good representative sample of vehicles so that the combined database will
adequately capture and represent variability in emissions.  The comparison also suggests that the
VSP definitions are useful in explaining variability in emissions within any of the data sets
individually.

3.3 NCSU Modal Approach:  Idle, Acceleration, Deceleration, and Cruise

This approach is based on the NCSU modal definitions that are given in previous reports.
The vehicle operating conditions were categorized into NCSU modes, which are idle,
acceleration, deceleration and cruise.  In order to refine the NCSU modes, HBTR was run for
each of the NCSU modes for all pollutants.  When both operating and vehicle technology
parameters were included in HBTR, VSP was typically selected as the most important
explanatory variable, except as noted below.  In a refined HBTR analysis based upon only
operating parameters of speed, acceleration and VSP, VSP was again selected as the most
important explanatory variable in most cases.

It was found that for the acceleration mode, VSP is most powerful in explaining the variability in
the emission rate. For example, Figure 3-18 shows the HBTR results for the acceleration mode
for NO. The first cut point is VSP, and it accounts for a large portion of the reduction of
deviance. VSP also is used for some additional stratification, along with speed.  However, the
portion of deviance explained by speed is very small compared to that explained by VSP.  Thus,
VSP is identified as the single most important variable to further improve the NCSU
Acceleration mode. Therefore, data within the acceleration mode were subdivided into addition
modes based upon VSP cut-offs.  The cut-offs were selected based upon the same criteria as
described for the VSP approach:  (1) ideally, each newly defined mode should have a
significantly different average emission rate compared to other modes; and (2) each mode should
account for not more than approximately 10 percent of the total emissions of a single pollutant.
Based upon these criteria, six modes were defined, as summarized in Table 3-6.

For the NCSU Cruise mode, it was found that VSP and Speed are both important variables that
are picked by HBTR. For example, Figure 3-19 shows the regression tree cruise mode results for
NO.  The data are first stratified with respect to VSP, resulting in a large reduction in deviance,
as indicated by the vertical length of the branches under the first split.  For the high VSP data,
the data are further stratified into smaller VSP categories, suggesting that VSP alone is useful in
explaining emissions as long as the VSP is above a cut-off (in the example, the cut-off is
approximately VSP=12).  For the lower VSP data, speed was found to be the most important
variable for further stratification of the data.  Therefore, in defining new modes within the cruise
mode, consideration was giving to using speed to stratify data for low VSP cases, and VSP alone
was used to discriminate among the high VSP data.  The specific criteria for the bins shown in
Table 3-6 were developed based upon judgment after reviewing HBTR results for all pollutants.
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|VSP<20.3884

Speed.mph<36.1904

VSP<12.605

VSP<25.6607

Speed.mph<32.3896

0.001956 0.005092
0.010230

0.011510
0.014280 0.021250

 
Figure 3-18:  Unsupervised HBTR Results for NCSU Acceleration Mode for NOx Emissions

(g/sec).

 

Figure 3-19.  Unsupervised HBTR Results for NCSU Cruise Mode for NOx Emissions (g/sec).

Notes for Figures 3-17 and 3-18:  The vertical distance of each branch indicates the proportional
explanatory benefit of each particular split, and the numbers at the bottom of the branches are the

average emission rates for the stratified data
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Table 3-6.  Definition of NCSU Driving Modes
ID Definition
1 NCSU Idle
3 NCSU Deceleration
21 NCSU Acceleration & VSP<8
22 NCSU Acceleration & 8�������
23 NCSU Acceleration & 15�������
24 NCSU Acceleration & 25�����		
25 NCSU Acceleration & 33�����
�
26 NCSU Acceleration & VSP�
�
41 NCSU Cruise & VSP������������	�
42 NCSU Cruise & VSP������	����������
43 NCSU Cruise & VSP��������������
44 NCSU Cruise & 12<VSP���
45 NCSU Cruise & 16<VSP���
46 NCSU Cruise & VSP>22
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For the deceleration mode, speed was the most important explanatory variable picked by HBTR
analysis. However, considering that the total emission contributed by the deceleration mode is
less than 10 percent for all four of the pollutants, it was deemed not necessary to further divide
deceleration into submodes. The idle mode was also not further refined, since idle contributes
only a small portion of total emissions.

In total, 14 modes were identified, including one idle mode, one deceleration mode, six
acceleration modes, and six cruise modes.  The definition of these modes is given in Table 3-6.
The time spent in each of the 14 modes, and the emissions contributed by these 14 modes is
shown in Figure 3-20.  The average emission values for each of the 14 modes for the four
pollutants are given in Figure 3-21,and the sample size for each mode is shown in Figure 3-22.
Figure 3-20 indicates that CO emissions were the binding consideration in determining the need
for six acceleration modes.  Specifically, the high VSP acceleration modes (i.e. Modes 24, 25,
and 26) each represent approximately 10 percent of the total CO emissions in the database, but a
far smaller percentage of emissions of the other three pollutants.  On the other hand, NOx

emissions were the binding constraint on determining the need for six cruise bins, since NOx

contributes approximately 10 percent to total NOx emissions for the high VSP cruise modes
(Modes 44, 45, and 46) and other pollutants contribute less than this percentage to their
respective totals.

The comparison of average emission rates in Figure 3-21 reveals that the lowest emission rates
for a given pollutant typically occur for idle, deceleration, and low speed cruising.  As cruising
speed increases for low VSP values, as represented by Modes 41, 42, and 43, the average
emission rate increases for all pollutants.  High VSP cruising results in higher average emissions
than low VSP cruising.  These results tend to confirm intuitive a priori assumptions that
emissions during cruising will typically be higher at higher speeds or under conditions of higher
engine load.  The ability to distinguish emissions for different types of cruising illustrates the
intuitive appeal of this particular modal binning approach:  it is relatively easy to explain the
relationship between vehicle activity and emissions with this approach.

For the acceleration mode, emissions for any of the pollutants increase with VSP, as illustrated
by comparing Modes 21, 22, 23, 24, 25, and 26.  For CO and HC, there is a significant increase
in emissions when comparing one mode with the next mode that has higher VSP.  For both NOx

and CO2 emissions, the average emissions increase substantially with VSP for the lower VSP
modes (i.e. Modes 21, 22, 23).  For Modes 24, 25, and 26, there are small increases in average
emissions as VSP increases.  These results suggest that CO and HC emissions are very sensitive
to VSP throughout the entire range of acceleration events, whereas NOx and CO2 emissions are
sensitive to lower ranges of VSP of less than about 25.  Above VSP=25, NOx and CO2 emissions
are less sensitive to VSP.  Thus, it appears to be the case that once a VSP threshold is reached,
NOx and CO2 emissions will not change much, but that CO and HC emission rates are more
sensitive to high (or perhaps aggressive) accelerations.
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After defining the 14 modes shown in Table 3-6, unsupervised HBTR was applied to data for
each pollutant and each mode to identify vehicle characteristics useful in further explaining the
variability in the emission rate. The vehicle characteristics considered included net weight,
number of cylinders, odometer readings and engine displacement.  Tables 3-7 through 3-10
summarize which variable was chosen for the first, second, and third cut-points in the regression
tree and also display the numerical values of the cut-offs.

There is variation regarding which variables were selected for the first stratification of the data,
implying that the choice of a preferred explanatory variable is conditional on the mode.
However, since the objective of this work is to develop modes that are both technically rigorous
but also sufficiently simple for practical application, it is preferred to identify one explanatory
variable that works well for all modes.  In reviewing the results of Tables 3-7 through 3-10, it is
apparent that the odometer reading is typically the most frequently selected variable for use in
the first stratification of the data.  The second most frequently selected variable for the first cut-
point is the net vehicle weight.  Odometer reading and net vehicle weight are also frequently
selected as the basis for the second and third cut-points.  These results suggest that both
odometer reading and net vehicle weight are important variables.  Therefore, both variables were
selected as the basis for further refinement of the modal definitions.

The selection of specific cutpoint values for odometer reading and net vehicle weight was made
based upon judgment.  The specific cutoffs from the HBTR analysis are different for different
modes and pollutants.  However, in order to keep the modal definitions as simple as possible,
only one representative cutpoint was selected for each variable.  The cutpoints for odometer
readings obtained from HBTR range from typically 12,000 to 80,000 miles.  However, many
values are within a range of plus or minus 15,000 miles compared to a chosen cutpoint of 50,000
miles.  The cutpoint of 50,000 miles was selected because it is representative of results from the
statistical analysis and is consistent with previous cutpoints used in other modeling work.  For
net vehicle weight, a representative cutpoint of 3,500 pounds was selected, which is
representative of many of the cutpoints in the range of 3,300 to 3,800 pounds identified in the
statistical analysis.

Using the same modal definitions as given in Table 3-6, the data were further binned into four
categories:

Net Weight <= 3,500 pounds AND Odometer Reading <= 50,000 miles
Net Weight <= 3,500 pounds AND Odometer Reading > 50,000 miles
Net Weight > 3,500 pounds AND Odometer Reading <= 50,000 miles
Net Weight > 3,500 pounds AND Odometer Reading > 50,000 miles

A comparison of average modal emission rates for these four categories is given in Figures 3-23,
3-24, 3-25, and 3-26 for CO, HC, NOx, and CO2 emissions, respectively.  The figures suggest
that at least for some pollutant/mode combinations that average emissions for these four
categories are statistically significantly different from each other (e.g., NO emissions for
acceleration modes 21, 22, 23, 24, and 25).  In some cases, there is more sensitivity to odometer
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Table 3-7.  Unsupervised HTBR Regression Tree Results for CO Emissions Based Upon the
NCSU Modal Approach.

Mode 1st Cut point 2nd Cut point 3rd Cut point
1 (Idle) Net 3328 O 79901 Net 3482
3 (Deceleration) E  4.1 N 5 O 17783
21 (Acceleration) O 75432 O 15210 O 12325
22 O 66163 O 15210
23 O 43433 O 15251 O 71964
24 E 3.9
25 Net 3587
26 O 43433
41 (Cruise) O 15210 O 12798 O 75432
42 O 15215 O 12789 O 56637
43 E 3.45 N 5 O 20892
44 E 3.45 N 5 Net 2862
45 Net 3659 N 5
46 O 79022 O 50177

Table 3-8.  Unsupervised HTBR Regression Tree Results for NOx Emissions Based Upon the
NCSU Modal Approach.

Mode 1st Cut point 2nd Cut point 3rd Cut point
1 (Idle) N 5 O 60158 E 3.45
3 (Deceleration) O 8785 E 3.45
21 (Acceleration) O 58057 O 29057 E 2.75
22 O 66163 O 38353 O 45900
23 O 63341 O 22195 O 43433
24 O 58560 O 12800 Net 3486
25 O 58057 Net 2813 E 2.3
26 O 58057 Net 2550
41 (Cruise) O 71964 E 0.75 Net 3754
42 Net 3611 O 57695 E 4.45
43 O 17220 E 3.05
44 O 17220 O 11493 Net 2531
45 O 38353 E 3 O 83491
46 O 83490 O 61024

Note: “Net” means “Net Vehicle Weight (lbs)”, “O” means “Odometer Reading (miles)”,
“N” means “Number of cylinders”, “E” means “Engine Displacement (liters)”. The number
following the variables is the value of the cut point.
Results are not shown in cases where sample size was small
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Table 3-9.  Unsupervised HTBR Regression Tree Results for HC Emissions Based Upon the
NCSU Modal Approach.

Mode 1st Cut point 2nd Cut point 3rd Cut point
1 (Idle)  O 79022 O 48626  O 98129
3 (Deceleration)  O 74867 E 5.3 Net 3613
21 (Acceleration)  O 79022 O 37236 O 48465
22 O 74867 O 37238 O 48465
23 O 77495 O 37326
24 O 43437 Net 2586
25 O 43433 Net 2967
26 O 45900  E 2.75
41 (Cruise) O 79022  E 5.3  O 10110
42 O 77495  Net 3611  E 4.9
43 O 77495  O 29949
44 O 77495  O 79022
45 O 77495  O 26082
46 Net 4375  O 43433  O 90660

Table 3-10.  Unsupervised HTBR Regression Tree Results for CO2 Emissions Based Upon the
NCSU Modal Approach.

Mode 1st Cut point 2nd Cut point 3rd Cut point
1 (Idle) N 5 Net 2454
3 (Deceleration) Net 3264 O 25347 E 3.45
21 (Acceleration) O 43433 E 3.45 N 5
22 O 43433 E 1.55 Net 3284
23 Net 3724 O 44035 Net 3568
24 Net 3724 E 1.95 Net 2688
25 Net 3724 E 2.1 O 22358
26 E 2.1 O 55582
41 (Cruise) Net 3034 Net 2246 E 1
42 Net 3551 Net 2788 E 2.5
43 E 2.45 Net 2983 Net 3626
44 Net 3724 E 1.95 O 45900
45 Net 3724 O 45900 O 37236
46 Net 3724 Net 2446

Note: “Net” means “Net Vehicle Weight (lbs)”, “O” means “Odometer Reading (miles)”,
“N” means “Number of cylinders”, “E” means “Engine Displacement (liters)”. The number
following the variables is the value of the cut point.
Results are not shown in cases where sample size was small

.
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reading than vehicle weight.  For example, for HC cruise modes, vehicles with higher odometer
readings have higher emissions than those with lower odometer readings, and average emissions
for a given odometer reading are similar for the two net weight categories.  In contrast, for NOx

emissions, it appears that older higher mileage vehicles generally have higher modal emission
rates than for the other three categories.  However, there are also many specific comparisons that
are not statistically significantly different from each other.  For example, for CO emissions the
average acceleration modal emissions rates for higher mileage vehicles are similar regardless of
vehicle weight.  Thus, although the specific trends are different for different pollutants, and
although in some cases there are not significant differences among the two or more of the four
categories for a given pollutant/mode, the results suggest that there are observable differences for
many pollutant/mode combinations.  Therefore, these categories may be useful in explaining
variability in emissions.

3.4 Selection of a Binning Method

The VSP and NCSU binning approaches were compared and evaluated.  The criteria for
evaluating the two approaches included the utility of each method to explain variability in
emissions, the ease of development of the bins, the interpretation of the bins, the ability to
explain the approach to model developers and users, and design issues for future model
development.  The choice of a preferred binning approach was made based upon the application
of both approaches to the same data sets.

A comparison of predictions made with both the NCSU-based and VSP-based approaches was
developed by using both approaches to predict the average emissions for driving cycles in the
modeling database for which there were ten or more vehicles.  The comparison is shown in
Figure 3-27.  The average prediction and the 95 percent confidence interval for the average
prediction is shown for each method and for each driving cycle.  The 95 percent confidence
intervals of the mean predictions overlap for all of the cycles and for all pollutants, indicating
that there is no statistically significant difference in predictions for the two methods.

The development of the bins is similar for both methods.  The interpretation of bins is different
for the two methods, with the NCSU approach being more intuitive to a lay person and the VSP
approach being consistent with approaches used in a variety of analyses of vehicle emissions.
The NCSU approach produces some bins that have similar average emission rates, even though
they represent different activities.  For example, the lower emission acceleration and cruise
modes have similar emissions.  Although neither method clearly stands out when compared to
each other, the VSP approach was selected as the basis for further analysis.
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4 SELECTION OF AN AVERAGING TIME FOR MODEL DEVELOPMENT

The objective of this chapter is to evaluate the potential benefits of working with data that have
been averaged over time when developing bins/modes.  The effect of data smoothing on binning
was determined by comparing the bins developed with data averaged over one second to those of
longer periods. For this purpose consecutive averaging of 5 and 10 seconds was utilized and
compared with each other and with the use of 1 second data.

4.1 Methodological Approach

As part of the shootout, NCSU found that there is autocorrelation in the second-by-second on-
board tailpipe emissions data (Frey et al., 2002).  In most cases, the autocorrelation was found to
be represented by a lag of up to four or five seconds.  Therefore, an averaging time of five
seconds should be sufficient to decrease the autocorrelation in the data by smoothing with
consecutive averaging.  However, to provide some margin for variability in the autocorrelation,
an averaging time of 10 seconds was also evaluated.  It was hypothesized that this longer
averaging time should further smooth the data and remove some of the high frequency variability
in the data.

In order to determine 5 and 10 second averages based upon the second-by-second data, a
program was written in Visual Basic. This program estimated 5 and 10 second consecutive
averages for emissions, as well as vehicle activity data, such as vehicle speed and acceleration.
In addition to estimating average vehicle activity during each activity period, peak values of
vehicle activity were estimated.  For example, it was hypothesized that emissions are more
sensitive to peak accelerations or peak VSP within an averaging period than they would be to
average acceleration or average VSP.

The use of averaging times requires reconsideration of the approach for developing bins.  For
example, data can be binned by average VSP or by peak VSP during the 5 or 10 second
averaging time.  It is possible, for example, for a 10 second period to have an average
acceleration of, say, only 1 mph/sec but to have a peak acceleration of, say, 5 mph/sec that took
place for a short duration.  The short duration, high acceleration that took place within the 10
second averaging period may in fact be associated with the largest share of emissions that took
place during the averaging time.  Therefore, it may be more effective to use the peak values of
key variables, such as VSP or power demand, as a basis for binning the data, rather than using
average values of these.

The basis for selection of a preferred averaging time was based upon the presence of statistically
significant differences in average emissions among modal bins and explanatory power of the
overall modal model.   In addition, approaches that resulted in less variability in emissions within
a bin would typically be preferred over approaches that have more variability in emissions within
a bin.

4.2 Results for Five and Ten Second Averaging Times

The assessment of different averaging times was performed for the VSP-based approach
identified as the preferred modeling approach in Chapter 3.  For the five and ten second-averaged
data, unsupervised HBTR was applied to the data sets for each pollutant. The variables used in
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the regression tree include mean speed, maximum speed, standard deviation of the speed, mean
acceleration, maximum acceleration, standard deviation of the acceleration, mean VSP,
maximum VSP, standard deviation of VSP, mean power, maximum power and standard
deviation of power. It should be noted that there is positive dependence between VSP and power.

Table 4-1 summarizes the variables that were picked during the unsupervised application of
HBTR for the first three cut points. Maximum VSP and maximum power were frequently
selected as the most important variables.  Since VSP includes power as part of the estimate, these
two variables are closely related to each other.  Therefore, for simplicity and consistency with
the one second averaging time analysis, VSP was chosen as the representative variable for
developing modes, and maximum VSP was selected as the specific criteria to use in defining
modes.  The approach for defining modes using a supervised technique is the same as previously
described, based upon seeking modes with average emission rates that differ from each other and
that do not contribute more than about 10 percent to total emissions for any individual pollutant.
A total of 14 modes were defined for both 5 and 10 second-averaged data, as given in Tables 4-2
and 4-3, respectively.  The time spent in each mode and the percentage of total database
emissions contributed by each mode for 5 and 10 second-averaged data are given in Figures 4-1
and 4-3, respectively.  Similarly, the average modal emission rates for each mode for all four
pollutants are given in Figure 4-2 for the 5-second average data and in Figure 4-4 for the 10-
second average data.

The sample sizes for the 1-second, 5-second, and 10-second averaging times for each of the 14
modes are compared in Figure 4-5.  Because the modal definitions are different for each of the
three approaches, it is not expected that there is a proportional distribution of data among the
modes when comparing the approaches.  However, it is the case that the total sample size
summed over all 14 modes for the 5-second averaging time is approximately one-fifth that of the
1-second averaging time, and similarly for the 10-second averaging time the overall sample size
is approximately one-tenth that of the 1-second averaging time.

Table 4-1.  Key Explanatory Variables for CO, NOx, HC, and CO2 Emissions (g/sec) Identified
Using Unsupervised HBTR for Five and Ten Second-Averaged Data

1st Cut Point 2nd Cut Point 3rd Cut Point
5 Seconds Average for CO Maximum Power Maximum VSP Mean VSP
10 Seconds Average for CO Maximum Power Maximum VSP Maximum Speed
5 Seconds Average for NOx Maximum VSP Maximum VSP Mean Power
10 Seconds Average for NOx Mean VSP Maximum VSP Maximum Power
5 Seconds Average for HC Maximum Power Maximum VSP Maximum Power
10 Seconds Average for HC Maximum Power Maximum VSP Mean Power
5 Seconds Average for CO2 Mean VSP Maximum VSP Mean VSP
10 Seconds Average for CO2 Mean VSP Maximum VSP Mean VSP
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Table 4-2.  Maximum VSP-Based Mode Definitions For Five Second-Averaged Data
ID Definition
1 MaxVSP <0
2 0 ���������	�


3 2 ���������	��

4 6 ���������	��

5 9 ���������	�


6 12 ���������	��

7 15 ���������	��

8 18 ���������	�


9 21 ���������	�
�

10 25 ���������	�
�

11 29 ���������	���

12 34 ���������	���

13 38 ���������	��


14 MaxVSP ���


Table 4-3.  Maximum VSP-Based Mode Definitions For Ten Second-Averaged Data
ID Definition
1 MaxVSP < 1
2 1 ���������	��

3 6 ���������	��

4 9 ���������	�


5 12 ���������	��

6 15 ���������	��

7 18 ���������	�


8 21 ���������	�
�

9 24 ���������	�
�

10 27 ���������	��

11 31 ���������	���

12 35 ���������	���

13 39 ���������	���

14 MaxVSP ����
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The results share many qualitative similarities compared to the analysis of 1-second data shown
previously.  For example, the contribution to total CO emissions is larger for the high maximum
VSP modes (e.g., Modes 10, 11, 12, 13, and 14) than the contribution to total emissions of other
pollutants.  For modes that are based only upon positive maximum VSP, the average emission
rates increase from one mode to the next as average VSP increases, for all pollutants and for both
averaging times.  The range of variability when comparing the mode with the largest average
emission rate to that with the lowest average emission rate is similar for all of the averaging
times for a given pollutant.  Some of the differences that are apparent as the averaging time is
increased is that there is less specific treatment of negative VSP cases and that the average
emissions for Mode 14 for either the 5-second or 10-second averaging times are typically the
same as or perhaps even a little less than that for Mode 13.  The lack of a monotonic increase
when comparing Modes 13 and 14 could be attributable in part to small sample sizes for these
two modes, but also could be attributable to the effects of averaging – for example, perhaps there
is less homogeneity in the data of Mode 14 than for other modes.

4.3 Evaluation of Different Averaging Times and Recommendations

Predicted versus actual emissions for individual trips/cycles in the modeling database were
evaluated for each of the three averaging times as a consideration to help in selecting a preferred
averaging time.  For that purpose predictions for Modeling dataset are compared for the three
averaging time methods. As seen in Figure 4-6, predictions with all three averaging methods are
similar. The 95 percent confidence intervals overlap for almost all of the cycles, for all
pollutants.  Overall, all three averaging times yield qualitatively similar results.   Thus, it is not
readily evident that one is clearly superior to another.

The five and ten second averaging times were found to offer no advantage over the one second
averaging time in terms of predictive ability with respect to total emissions for a trip.  Because it
is easier to work directly with the one second average data, the one second averaging time
approach was selected.
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5 COMPARISON OF EMISSION FACTOR APPROACHES AND EVALUATION OF
THE ROLE OF REMOTE SENSING DATA

In this chapter, two different approaches to developing emission factors are compared and
evaluated.  The objective of this chapter is to develop a recommendation for a preferred emission
factor approach, in response to the fifth key question of:  what emission factor units should be
used?.  The two approaches evaluated include mass per time emission factors (e.g., gram/second)
and the ratio of emissions of CO, HC, and NOx with respect to CO2.  The latter was based upon
evaluation of the molar ratio of CO/CO2, HC/CO2, and NOx/CO2.  Since most of the carbon in
the fuel is emitted in the form of CO2, the ratio approach is approximately equivalent to a gram
per gallon emission factor approach.  Previous studies by others (e.g,. Singer and Harley, 1996)
have touted the potential benefits of a fuel-based approach to development of area-wide emission
inventories.  However, such inventories are macro-scale in nature and would require a
representative average gram per gallon emission factor combined with good estimates of total
area wide fuel consumption.  For meso-scale or micro-scale predictions, it will be necessary to
estimate emissions at a more local scale.  In such instances, an understanding of the influence of
different driving modes on emission ratios is critically important.  Furthermore, in order to
predict mass emissions using emission ratios, it is necessary to be able to predict mass per time
CO2 emission rates or mass per time fuel consumption.

Since one motivation for considering emission factors is potentially to facilitate accommodation
of remote sensing data, this chapter also deals with an evaluation of the relevance of remote
sensing data for model development.  The evaluation is based upon comparison of modal
emission rates calculated based upon remote sensing data and compared with those calculated
from on-board measurements and dynamometer tests.  Therefore, this chapter also addresses the
motivating question:  What is the potential role and feasibility of incorporating RSD into the
conceptual modeling approach?

5.1 Background Regarding Emission Factor Units

Some investigators hypothesize that gram/gallon emission factors have less inherent variability
than do mass per time or mass per distance emission factors.  NCSU is currently conducting an
independent study of this hypothesis, based upon analysis of on-board second-by-second data
collected as part of a previous study (Frey et al., 2001).  Our preliminary findings do not fully
support the hypothesis.  As an example, we illustrate results for modal analysis of gram per
second and gram per gallon emission factors for NO for a 1999 Ford Taurus in Figure 5-1.  The
gram per gallon emission factors are approximately equivalent to the ratio of NO to CO2

emissions, since CO2 emissions are linearly proportional to fuel consumption to a very good
approximation.  In this case, there is significant variability in emissions among the four driving
modes considered regardless of the emission factor units employed.   For example, as shown in
Figure 5-1, the average acceleration emission rates are approximately a factor of 10 or more
greater than average idle emission rates for both emission factor units.  Thus, it is clearly not the
case in this instance that emission ratios or g/gallon
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Figure 5-1.  Average Modal Rates for Absolute and Normalized NO Emissions for a 1999 Ford
Taurus Driven on Chapel Hill Road in Cary, NC (Source:  NCSU)

emission factors have substantially less variability from one mode to another than do mass per
time emission factors.  The results tend to vary for different vehicles and for different pollutants
based upon our preliminary study.  For example, the g/gallon emission factors for HC may be
more nearly similar for different driving modes than the g/gallon emission factors for CO or NO.
CO2 emissions are almost constant regardless of the driving mode; however, this is because the
vast majority of carbon in the fuel is emitted as CO2.  Thus, a g CO2/gallon emission factor is
essentially a surrogate for the carbon content of the fuel.

Even if g/gallon emission factors are the same for different driving modes, the fuel consumption
rate is not.  Figure 5-2 illustrates the variability in fuel consumption rate on a mass per time basis
as a function of different driving modes.  For example, the average fuel consumption rate during
acceleration mode is approximately a factor of five times greater than that during the idle mode,
and the average differences in fuel consumption rate among the modes are statistically
significant.

5.2 Background Regarding Remote Sensing Data

There are two critically important limitations of RSD data that must be acknowledged:  (1) RSD
data are for a very short averaging time of approximately 1 second, with no information
regarding vehicle activity and emissions either before or after the “snapshot” of the
measurement; and (2) RSD data support estimation of relative emission rates (e.g., ratios of
HC/CO2 and NO/CO2 or similar), or fuel-based emission rates (e.g., g/gallon), but cannot
directly provide g/mile or g/sec emission rates.  Secondly, one would need to estimate fuel
consumption or CO2 emissions on a mass per time basis in order to convert all other g/gallon or
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ratio emission estimates to a mass per time basis.  RSD data will not provide a basis for
estimating CO2 emissions on a mass per time basis or for estimating fuel economy in order to
estimate gallon/sec fuel consumption.

Before combining RSD data with second-by-second data, it is first important to determine
whether RSD data and the second-by-second data are sufficiently consistent that a combination
of the two would be meaningful.  This comparison is possible if the second-by-second data are
converted to the same basis as the RSD data.  Therefore, as part of the evaluation of RSD data,
modal emission rates were calculated based upon RSD data using the modal definitions that were
applied to the modeling dataset, but taking into account the inability to stratify RSD data with
respect to odometer reading.  We hypothesize that relative differences in average emission rates
among the RSD-derived estimates should be similar to those observed based upon the second-
by-second data sources.  If not, then there may be some significant discrepancy in the data
sources that would caution against combining the RSD data into the model development process.

A key limitation of RSD data is that it is essentially a one second (or shorter) snapshot of
emissions at a specific location.  Therefore, there is no vehicle history available from which to
estimate modal emission rates for an averaging time greater than one second.  The range of inter-
vehicle variability and the range of uncertainty in average modal emissions estimated based upon
RSD data were also evaluated.  For example, if the RSD data were excessively noisy (high
variability) then it may not be useful as a supplement to other data sources in developing the
modal.

The appropriateness of using RSD data for developing the model depends on what type of
weighting scheme is preferable.  If a time-based weighting scheme is selected, then RSD data
will likely contribute only modestly to the estimation of average emissions within a bin, because
of the short duration of the RSD measurements.  If a vehicle weighted approach is selected, then
RSD data will contribute disproportionately to the estimation of average emissions, because it is
possible to obtain measurements on thousands of vehicles per day using RSDs, but each
measurement is for less than one second (typically).

The two emission factor approaches were compared and evaluated based upon the following
criteria:  (1) which approach results in a “simpler” model; (2) which approach is best able to
explain variability in emissions; (3) which approach has the least amount of residual error; (4)
which approach can best support model verification or validation; and (5) which approach offers
the most flexibility.  The comparison of mass per time factors versus ratios was performed for
both the NCSU and VSP based approaches, and results for both approaches are presented.  In
addition, the modal emission rates of both approaches were compared with those estimated from
RSD data. Because RSD data are based upon measurements made during less than one second,
the comparison of mass per time emission factors and emission ratios was done based only upon
the one second averaging time for the modeling database.
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Figure 5-2.  Average Modal Rates for Absolute Fuel Consumption for 1999 Ford Taurus Driven
on Chapel Hill Road (Source:  NCSU)

5.3 Comparison of Emission Factors and Emission Ratios Based Upon the NCSU Modal
Approach

The NCSU modal definitions were applied to emission ratios calculated from the modeling
dataset.  The results when applied to mass per time emission factors were previously described.
To compare with remote sensing data, the emission rates in the modeling dataset were converted
to molar ratios with respect to CO2.  Specifically, the emission rate in g/sec was divided by the
molecule weight of the pollutant to get the emission rate in mole/sec, and was further divided by
the CO2 emission rate in mole/sec.  The molecular weight used for the HC emission rate is
assumed to be as hexane (C6H14).  Figure 5-3 gives the comparison between the modeling dataset
and remote sensing data for each NCSU mode for each pollutant.
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The average emission rates for the NCSU modal bins have a different sensitivity when evaluated
in terms of emission ratios compared to the previously described analysis in terms of grams per
second.  For example, for the CO/CO2 ratio, there is relatively little sensitivity to the mode
definitions applied to the calibration data set when comparing the deceleration and cruise modes.
Idle is not shown because idle cannot be observed with the RSD database.  However, for the
acceleration modes, and particularly Modes 23, 24, 25, and 26, there is a substantial increase in
the CO/CO2 ratio as VSP increases.  Similar results are observed for the HC/CO2 ratios based
upon the calibration data set.  However, for the NO/CO2 ratio, the results for the calibration data
set are qualitatively similar to those obtained for the gram/second emission factor units.
Specifically, emissions for deceleration (Mode 3) are comparatively low.  Within the
acceleration mode, the emissions ratio increases as VSP increases, when comparing Modes 21
through 26.  For the cruise mode, the emissions ratio increases with average speed among the
three low VSP modes (Modes 41, 42, and 43) and with VSP for the three high VSP modes
(Modes 44, 45, and 46).  The results obtained with the second-by-second data help set
expectations for trends that would be expected in the RSD data set.

The results from analysis of the RSD data are qualitatively different from those obtained with the
calibration database, in at least two key respects.  First, the trend for inter-modal variability in
emissions is very different for the RSD data than for the calibration database for both NOx and
HC.  Specifically, there is much less variability when comparing the lowest and highest average
modal rates and the trends when comparing modes are either not as strong or are not apparent at
all.  For example, for the RSD HC/CO2 ratios, there is little apparent sensitivity to VSP among
the acceleration modes, in contrast to the observation based upon the calibration database.  The
average NOx/CO2 ratios estimated based upon RSD data are less sensitive to changes in VSP for
the acceleration modes, and to changes in speed and VSP for the cruise modes, than the
calibration data.  Because RSDs measure HC using NDIR, it may be the case that the RSD
measurements are not responding to total HC and that the ratio of measurable HC to total HC
might vary depending on the mode.  For the NOx/CO2 ratio, there has been discussion in the
literature and elsewhere to the effect that RSDs have less sensitivity to NOx than to
measurements for other pollutants; however, it is not known if this is an important factor in this
particular case.

The trends for the CO/CO2 ratio from the RSD data are more comparable to those from the
calibration data compared to the other two pollutants; however, the magnitude of the average
CO/CO2 emission estimates for the three highest VSP acceleration modes is substantially less
than that for calibration data set.  This might be because of differences in the vehicle mix;
however, the RSD data used for this analysis is based upon Tier 1 vehicles, as is the calibration
data set.  It is possible, perhaps, that there is a different mix of mileage accumulation or other
factors; however, since the average emission rates differ by a factor of two, and each average is
based upon a fairly large sample size, it could be the case that there are differences in the
estimates because of differences in the measurement techniques.  It is possible that the RSD data
may contain a better representation of high emitting vehicles, or of high emissions episodes for
normal emitting vehicles, than does the modeling data set.  These questions are revisited in the
next sections based upon comparison of emission ratios for the VSP-based approach using both
the modeling data set and the RSD data.
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5.4 Comparison of Emission Factors and Emission Ratios Based Upon the VSP Modal
Approach

Emission ratios were estimated for the 14 VSP modes based upon the modeling data set and were
compared with modal emission ratios estimated from the RSD data, as shown in Figure 5-4.

The results for the emission ratios estimated based upon the modeling data set indicate that for
the CO/CO2 ratio there is relatively little sensitivity of the ratios for the low VSP modes,
including Modes 1 through 10.  However, for the high VSP modes, the emission ratios increase
substantially with VSP.  An almost similar trend is observed for the HC/CO2 ratio, with the
exception that Mode 3 has a higher average emission rate than the other low VSP modes.  For
the NOx/CO2 ratio, the relative trend among the average emission ratios for each mode is very
similar to that observed for the mass per time emission rates.  For example, there is a monotonic
increase in the average NOx/CO2 emissions ratio from Mode 3 through Mode 14.  These results
illustrate that in order to capture variability in NOx emissions with a model, it would be
necessary to retain approximately the same number of modes as for the mass per time emission
factor approach.  Because the implementation of a modal modeling approach is simpler from a
software design and data management perspective if the same modal definitions are used for all
pollutants, the ability to capture variability in NOx emissions would be binding constraint
regarding a lower bound for the number of modes needed.  Thus, even though it might be
possible to have far fewer than 14 modes to adequately capture variability in CO and HC
emissions, a reduction in the number of modes applied to all pollutants would result in loss of
explanatory power for NOx.

The comparison of RSD data with the results from the modeling data set illustrates important
similarities and important differences.  The key similarities are the following:  (1) the average
CO/CO2 ratios are relatively small for the 10 lowest VSP modes; (2) the average CO/CO2 ratios
increase monotonically for the four highest VSP modes; and (3) the average emission ratios
agree well between the two data sources for both NOx/CO2 and HC/CO2 for Modes 12 and 13.
The key differences are:  (1) there is generally less variability among the average modal emission
ratios for the RSD data than for the modeling data set; (2) the RSD data produces lower average
ratios for CO/CO2 for Modes 13 and 14; and (3) the RSD data produces much higher average
ratio estimates for both HC/CO2 and NOx/CO2 for the low VSP modes.  These differences could
be because of a different combination of fuel, vehicle characteristics, and odometer reading
(which is unobservable with RSD technology) between the two data sets.  Presumably, the RSD
would contain better representation of on-road high emitters, and possibly such vehicles lead to
higher emissions for the lower VSP modes more so than for the higher VSP modes.  Thus, at
best, the comparison is inclusive.  However, it is not possible to stratify the RSD by odometer
reading, which complicates the ability to refine the comparison.

In the next sections, the activity underlying the RSD data is compared to that of the modeling
data set and of the IM240 data set to obtain additional insights regarding key differences between
the RSD data and the modeling data set.
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5.5 Comparison of Variability in Emission Ratios for Selected VSP Bins for the
Modeling and RSD Data Sets

In this section, the variability in emission ratios for selected modes is compared for both the
modeling and RSD data sets in order to evaluate the characteristics of the RSD data.  Since
odometer reading is not given in the remote sensing data, it is not possible to stratify the data by
odometer reading.  However, engine displacement is available in the RSD data.  Therefore, the
comparison is based upon the 14 VSP modes stratified by two engine displacement categories
with a cutpoint of 3.5 liters.  Examples are shown here for three selected modes based upon
engine displacements of less than or equal to 3.5 liters.

For VSP Mode 1, a comparison is shown in Figure 5-6 of the distribution of variability for
second-by-second data of the modeling dataset and of the data in the RSD data set.  Mode 1 is
based upon negative values of VSP.  For both the CO/CO2 and NOx/CO2 ratios, the RSD data
generally produces higher values than does the modeling data set.  Although not shown as data
values in the graphs because a log scale was used for the x-axis, the modeling data set contained
data values of less than zero, which are considered to reflect measurement error and not to be
significantly different than a true value of zero or just slightly greater than zero.  For the HC/CO2

ratio, the RSD data produced a distribution with less variability than the modeling data set.  Most
of the data in the modeling data set are based upon FID measurements, in comparison to the
NDIR method used in remote sensing.  Therefore, the difference in the shape of the distributions
from the two datasets may reflect differences attributable to the measurement methods.

 

Figure 5-6.  Comparison of Variability for CO/CO2, HC/CO2, and NOx/CO2 Ratios for Modeling
Data and Remote Sensing Data for VSP Mode 1 with Engine Size Less Than 3.5 Liters
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Figure 5-7.  Comparison of Variability for CO/CO2, HC/CO2, and NOx/CO2 Ratios for Modeling
Data and Remote Sensing Data for VSP Mode 7 with Engine Size Less Than 3.5 Liters

Figures 5-7 and 5-8 show comparisons of the variability in emission ratios for Modes 7 and 12,
respectively.  For the CO/CO2 and NOx/CO2 ratios, the general trends are similar to that for
Mode 1 in that the average value of the RSD data is generally larger than that of the modeling
data set.  Furthermore, the entire distribution of ratios for the RSD data is toward larger values
for most of the percentiles of the distribution, when compared to the modeling data set.
However, the modeling data set typically captures a wider range of variability than the RSD data,
as indicated by comparing the range from the lowest to the highest values of the distributions.
For example, the modeling data typically span three to five orders of magnitude, whereas the
RSD data typically span approximately two to three orders of magnitude in most cases.  The
upper tails of the emission ratio distributions are comparable for Modes 1 and 7 for both the
CO/CO2 and NOx/CO2 ratios.  For Mode 12, the upper tail of the RSD data distributions typically
have larger values than for the modeling data set.

For the HC/CO2 ratio, the results for Mode 7 are qualitatively similar to that for Mode 1.  For
Mode 12, the modeling data set produced a higher average value of the HC/CO2 ratio compared
to the RSD data set.  Typically, the RSD data produced a narrower range of values and smaller
values at the upper tail of the distribution when compared to the modeling data in the case of the
HC/CO2 ratio.

When comparing the three modes illustrated in Figures 5-6 through 5-8, it should be borne in
mind that the relative difference between the RSD data and the modeling data set decrease as the
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Figure 5-8.  Comparison of Variability for CO/CO2, HC/CO2, and NOx/CO2 Ratios for Modeling
Data and Remote Sensing Data for VSP Mode 12 with Engine Size Less Than 3.5 Liters

VSP increases.  For example, the distributions for the NOx/CO2 ratios for Mode 1 are more
separated from each other than is the case for Mode 12.

5.6 Comparison of Vehicle Activity in the RSD and Modeling Databases

For the CO/CO2 and NOx/CO2 ratios when compared for VSP modes, it is typically the case that
the RSD data produces larger average emission estimates and generally has higher emission
ratios than does the modeling data set.  In order to gain insight into possible reasons for these
differences, the vehicle activity in the RSD data base was compared with that of the modeling
database.  The comparison was done on the basis of the distribution of speed and acceleration
within specific modes.  The comparison was done for selected modes for vehicles with engine
displacement less than 3.5 liters.  Because odometer reading is unobservable for RSD
measurements, it was not possible to stratify the comparison with respect to odometer reading.
Three modes were selected for the comparison:  (1) Mode 1 to represent low VSP values; (2)
Mode 7 to represent moderate VSP values; and (3) Mode 12 to represent large VSP values.  The
cumulative distributions of both speed and acceleration, and the joint distributions of speed and
acceleration, are shown for both the modeling data and the RSD data in Figures 5-9, 5-10, and 5-
11 for VSP Modes 1, 7, and 12, respectively, for vehicles with engine displacement less than 3.5
liters.

For Mode 1, it is clear that the RSD data have less variability in speed than the modeling data.
Furthermore, the RSD data have a larger proportion of larger acceleration rates than the
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modeling data.  Mode 1 is based upon VSP values of less than -2 kW/ton.  Although the range of
VSP values in any individual bin is constrained by the definition of the mode, there are many
different combinations of speed and acceleration that can produce a narrow range of values of
VSP.  For example, large magnitudes of deceleration at low speed can produce the same VSP
estimate as a small magnitude of deceleration at higher speed.  When comparing the scatter plots
of acceleration versus speed for the modeling data set and the RSD data set, it is clear that the
modeling data set addresses a much wider range of combinations of acceleration and speed than
does the RSD data.  Most of the RSD data are for decelerations of greater than -3 mph/sec and
for speeds between 20 mph and 40 mph, versus decelerations of typically -5 mph/sec or greater
and speeds ranging from approximately zero to greater than 70 mph.  For this mode and strata,
the RSD data produced higher average emission ratios for all three pollutants.  It is clear that the
range of activity for Mode 1 is very different for the RSD data compared to the remote sensing
data.

For Mode 7, the remote sensing data have a much narrower range of speeds, from approximately
20 mph to 40 mph, compared to the modeling data, for which speed varies from approximately
10 mph to over 80 mph.  However, the RSD data typically have much larger values of
acceleration, with a range from approximately 1 mph/sec to as much as approximately 4
mph/sec.  The modeling data set has a large proportion of acceleration data of less than 1
mph/sec, although the upper tail of the cumulative distribution of acceleration includes a small
percentage of values greater than 4 mph/sec.  When comparing the scatter plots of acceleration
versus speed, it is clear that the modeling data set has a wider range of activity.  The larger
average acceleration for the RSD data set is a notable difference compared to the modeling data
set, and may be a key reason as to why the emission ratios for the RSD data tend to be larger
than for the modeling data set.

For Mode 12, the modeling data set has a remarkably wider range of variability in speed than the
RSD data, but also has a noticeably lower average value of acceleration.  The RSD data have
speeds ranging typically from approximately 25 mph to 50 mph, versus a range of approximately
20 mph to 80 mph for the modeling data set.  The RSD data have accelerations ranging from 2
mph/sec to 4 mph/sec, compared to a range of approximately 0 mph/sec to 4 mph/sec for the
modeling data.  A comparison of the scatter plots in Figure 5-11 suggests that the modeling data
capture a wider range of variability in activity, but have a much smaller proportion of activity
associated with larger accelerations when compared to the RSD data.  Thus, it is likely that these
differences in activity account for at least some of the differences in emissions.

It should be pointed out that although the statistical analysis presented in Chapter 3 identified
VSP, engine displacement, and odometer reading as the three most important explanatory
variables, there may be opportunities to further disaggregate the data in the future when working
with larger data sets than the one used in this study.  For example, as shown in Chapter 9, there
are some differences in average emissions for a VSP mode when taking into account differences
in speed and/or acceleration that might help explain additional variability not captured by the
model developed in Chapter 3.



79

Fi
gu

re
 5

-9
.  

C
om

pa
ri

so
n 

of
 V

eh
ic

le
 A

ct
iv

it
y,

 I
n 

T
er

m
s 

of
 S

pe
ed

 a
nd

 A
cc

el
er

at
io

n,
 f

or
 th

e 
R

em
ot

e 
Se

ns
in

g 
an

d 
M

od
el

in
g 

D
at

a 
Se

ts
,

fo
r 

V
SP

 M
od

e 
1 

fo
r 

V
eh

ic
le

s 
w

ith
 E

ng
in

e 
D

is
pl

ac
em

en
t L

es
s 

T
ha

n 
3.

5 
L

ite
rs

.



80

Fi
gu

re
 5

-1
0.

  C
om

pa
ri

so
n 

of
 V

eh
ic

le
 A

ct
iv

it
y,

 I
n 

T
er

m
s 

of
 S

pe
ed

 a
nd

 A
cc

el
er

at
io

n,
 f

or
 th

e 
R

em
ot

e 
Se

ns
in

g 
an

d 
M

od
el

in
g 

D
at

a 
Se

ts
,

fo
r 

V
SP

 M
od

e 
7 

fo
r 

V
eh

ic
le

s 
w

ith
 E

ng
in

e 
D

is
pl

ac
em

en
t L

es
s 

T
ha

n 
3.

5 
L

ite
rs

.



81

Fi
gu

re
 5

-1
1.

  C
om

pa
ri

so
n 

of
 V

eh
ic

le
 A

ct
iv

it
y,

 I
n 

T
er

m
s 

of
 S

pe
ed

 a
nd

 A
cc

el
er

at
io

n,
 f

or
 th

e 
R

em
ot

e 
Se

ns
in

g 
an

d 
M

od
el

in
g 

D
at

a 
Se

ts
,

fo
r 

V
SP

 M
od

e 
12

 f
or

 V
eh

ic
le

s 
w

ith
 E

ng
in

e 
D

is
pl

ac
em

en
t L

es
s 

T
ha

n 
3.

5 
L

ite
rs

.



82

5.7 Comparison of Emissions Ratios and Vehicle Activity Between the RSD and IM240
Databases

Because the RSD data are based upon observations of a large number of on-road vehicles, and
because the IM240 are based upon a sample of on-road vehicles that is believed to better
represent high emitters than other data sets used in this study, it was hypothesized that there may
be similarities between the IM240 dynamometer data and the RSD data.  To explore this
hypothesis, the average modal emission ratios estimated from the two data sets were compared.
The comparison was stratified based upon engine displacement since information was available
in both data sets regarding this explanatory variable.  The average emission ratios based upon
both data sets are shown in Figure 5-12 for vehicles with engine displacement of less than 3.5
liters and in Figure 5-13 for vehicles with engine displacement of greater than 3.5 liters.

Figure 5-12 illustrates a general similarity between the emission ratios estimated from the two
different datasets.  Particularly in the case of the HC/CO2 ratios, for 9 of the 14 modes there is
not a significant difference in the average ratios when comparing the two datasets.  Both datasets
imply high emission ratios for the low VSP modes, slightly lower emission ratios for the
moderate VSP modes, and relatively high values for Mode 13.  In the case of the CO/CO2 ratios,
although only 5 of the 14 modes are statistically similar to each other, the qualitative trends for
both data sets are similar.  In particular, the emission ratios for Modes 1 through 10 are relatively
constant for a given data set, but the average ratios increase substantially for Modes 11 through
13.  Mode 14 tends to have somewhat lower values than does Mode 13.  For the NOx/CO2 ratios,
the RSD data tends to have higher average values for the lowest VSP modes, and the IM240 data
tends to have higher average values for Modes 5 to 14.

The comparisons in Figure 5-13 are less clear than those of Figure 5-12 mainly because there are
fewer data, particularly for the IM240 database, that fall into this particular strata, and especially
for the high VSP modes (e.g., Modes 12, 13, and 14).  The results suggest that there are
similarities in the two datasets for CO and NOx, except for the highest VSP modes, and that for
HC the RSD data typically have higher ratios than the IM240 data except for Mode 1.

Overall, based upon the results shown in Figures 5-12 and 5-13, there are important qualitative
similarities in the average emission ratios for both data sets.  However, a key question is whether
the similarities in emissions are because of similarities in vehicle activity.  In order to answer this
question, the distributions of each of speed and acceleration were compared, as were the joint
distributions of both speed and acceleration.   These comparisons are shown in Figures 5-14, 5-
15, and 5-16 for Modes 1, 7, and 12 for vehicles with engine displacement of less than 3.5 liters.

For the Mode 1 comparison shown in Figure 5-14, the IM240 data have a wider range of speed,
but it is apparent that the distribution of speeds for the IM240 data are bimodal.  Thus, there is a
large proportion of speeds in the range of approximately 10 to 30 mph, as well as a smaller
proportion of speeds in the range of approximately 50 to 60 mph.  In contrast, as noted in the
previous section, the distribution of speeds for the RSD data is primarily between 20 mph and 40
mph.  The RSD data tend to have a larger proportion of larger acceleration rates than does the
IM240 data.  A comparison of the scatter plots for acceleration versus speed indicates that the
IM240 data captures a much wider range of variability in terms of different combinations of
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speed and acceleration than does the RSD data.  The RSD data had a higher average emission
ratio for NOx but lower ratios for CO and HC for Mode 1 for vehicles with engine displacements
less than 3.5 liters.

For the Mode 7 comparison, the IM240 data are strongly bimodal with respect to both speed and
acceleration.  The IM240 data have a wider range of values for speed and acceleration than do
the RSD data.  In particular, there is more representation of higher speeds and a similar
representation of the upper tail of the distribution of acceleration when comparing the IM240
data to the RSD data.

For Mode 12, the IM240 data typically represent somewhat higher speeds but also somewhat
smaller accelerations than does the RSD data.  However, for Mode 12, there are relatively few
data points for the IM240 data set in comparison to the RSD data.

Overall, although not conclusive, the comparison of vehicle activity in terms of speed and
acceleration between the IM240 and RSD data suggests that there are substantial differences in
activity patterns between the two data sets.  Thus, although in some cases both data sets have
similar emission ratios, it is possible that such apparent similarities are actually based upon
differences in the vehicle and in the vehicle activity.

5.8 Summary and Recommendations

The key findings from the comparison of emission factor units and from the evaluation of RSD
data are briefly summarized here, followed by more detailed discussion:

• When comparing RSD to the modeling data:
– There is less variability in emission ratios of CO/CO2 and HC/CO2 for the low

VSP bins
– There is substantial variability in emissions for the high VSP bins

• for NOx, there is a need for a similar number of modes for the emission ratios and for
mass per time units in order to explain variability in emissions.

• Need CO2 (or fuel use) on a mass per time basis anyway, which motivates the need for a
modal approach such as that developed in Chapter 3 on a mass per time basis

• Because of the variability in NOx emissions even when emission ratios are used, and
because of the need to use a mass per time approach to estimate CO2 emissions, the use
of emission ratios instead of mass per time emission factors for only a subset of
pollutants does not offer any significant advantage, especially from a software/model
design perspective.

• RSD data are not a strong candidate for use in model development because some key
variables are not observable, such as odometer reading.

• The HC/CO2 emissions data from RSD do not appear to be comparable to that from the
modeling dataset because of the measurement techniques employed.

The results of the application of the binning methods to the modeling data set suggest that there
is less variability in emission ratios of CO/CO2 and HC/CO2 for the low VSP bins.  However,
there is substantial variability in the NOx/CO2 ratio for the low VSP bins, and for all three
pollutants there is substantial variability in emissions among the high VSP bins.  Therefore, the
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use of emission ratios instead of mass per time emission factors does not offer any advantage in
terms of reducing the number of modes needed to model emissions, if the same number of modes
are to be applied to all pollutants for simplicity of software design and data management.

The potential role of RSD data was evaluated based upon several comparisons:  (1) comparison
of emission ratios for the RSD data versus the modeling data; (2) comparison of vehicle activity
for the RSD data versus the modeling data; (3) comparison of emission ratios for the RSD data
versus IM240 data; and (4) comparison of vehicle activity for the RSD data versus the IM240
data.  The RSD data typically lead to higher emission ratios than the modeling data, especially
for lower VSP modes (e.g., Modes 1 through 10), especially for the NOx/CO2 and HC/CO2

ratios.  Although it may be tempting to conclude that such differences are because the RSD data
might have a better representation of higher emitting vehicles, or of higher emissions episodes
with normal emitting vehicles, it is important to compare the vehicle activity of both data sets.  A
comparison of the speed and acceleration distributions for both data sets revealed that the RSD
data typically had lower average speeds and higher average accelerations than the modeling data
set.  As shown in Chapter 9, it can be the case within a VSP mode that some of the variability in
emissions can be explained in terms of speed and/or acceleration.  Therefore, although not
conclusive at this time, it is possible that the differences in emissions between the RSD data and
the modeling data may be attributable, at least in part, to differences in activity patterns.

A comparison of the IM240 and RSD data suggests that these two data sets have quantitatively
similar emission ratios in some cases and qualitatively similar emission ratio trends among the
modes in a number of cases.  However, a comparison of the speed and acceleration distributions
of the two datasets indicates that there is a substantially different activity pattern for the two data
sets, with the IM240 data based upon bimodal speed distributions with a wider range in
variability in speed, higher average speed, and lower average acceleration, than the RSD data.
Thus, it is possible that the apparent similarities between these two data sets in terms of average
emission ratios may be because of compensating differences in fleet mix and activity patterns, or
it is possible that the emission ratios are robust to the differences in activity patterns.

The key findings regarding the potential role of RSD data are discussed here.  RSD data were not
considered to be a strong candidate for use in model development because some key variables,
particularly odometer reading, are not observable.  Odometer reading has been shown in earlier
chapters to be an important predictive variable.  The HC/CO2 emissions data from RSD do not
appear to be comparable to that from the modeling dataset, which may be because of significant
differences in the measurement technique employed.  It is also possible that there are differences
in fuel composition that may cause some of the observed differences.  Finally, the differences in
emission ratios for the RSD data versus the modeling data may be attributable in part to
differences in activity patterns not yet captured by the conceptual modeling approach.  This latter
issue deserves some exploration as part of future work.

It has been hypothesized that RSD data may be useful in helping to better characterize the
distribution of different emitting vehicles, and particularly high emitting vehicles.  It should be
noted that because RSD measurements are a snapshot of typically less than one second, and
because a normal emitting vehicle can have episodes of high emissions depending on the activity
pattern, it is not conclusive that a single high emissions ratio measurement of a vehicle enables
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identification of such a vehicle as a high emitter.   Thus, it is possible that a high emission ratio
may be associated with a high emitting vehicle or it could be associated with a high emissions
episode for a normal emitting vehicle.  A comparison of the distribution of emission ratios for
the modeling data set versus that of the RSD data set suggests that the modeling data set captures
a wider relative range of variability than does the RSD data set, while at the same time the RSD
data often had higher average values than did the modeling data set.  The upper tails of the
distributions of variability for a given mode for the modeling data set often overlapped
substantially with the upper tails of the distributions for the RSD data, suggesting that the highest
emission ratios in either data set were comparable.  Thus, it could be the case that the modeling
dataset does not have the same proportional representation of high emitting vehicles, or of high
emissions episodes for normal emitting vehicles, as does the RSD data.  These differences were
typically more pronounced for the low and moderate VSP modes.  For the higher VSP modes,
the shapes of the distributions from the modeling data set and the RSD data set were very similar
for both the CO/CO2 and NOx/CO2 ratios.

The siting of the RSD instrument plays an important role in the range of activity that is observed.
It is clear from these data that the RSD sites had a much smaller range of variability in activity
patterns than did the dynamometer data or the onboard data that comprised the modeling data
base and the IM240 database.  Since RSD’s are often sited at locations that are expected to have
positive accelerations or situations in which vehicles are under load, it is possible that there is a
bias in the activity pattern of the RSD data that is perhaps in part responsible for the apparent
differences in emissions when compared to the modeling data set.  In this particular case,
although the range of speeds was typically less for the RSD data than for the other data sets, the
accelerations tended to be larger on average.  Given these differences, it did not seem fruitful to
try to proceed with methods for making adjustments to the modeling data set in order to better
match the emission ratios estimated from the RSD data.

It is possible that RSD data could be used indirectly as a recruiting tool to try to obtain a
representative sample of vehicles for dynamometer and on-board testing, in order to improve the
representation of differently emitting vehicles.

In brief summary, for the purposes of this study, there was no substantial advantage found for
using emission ratios instead of mass per time emission factors.  In either case, it is necessary to
estimate CO2 emission in mass per time units.   Therefore, for consistency, mass per time units
are recommended for further analysis.  Although there were differences in the emission ratios for
the RSD data versus the modeling data, there were also substantial differences in activity
patterns for the two data sets.   Therefore, the RSD data were not used as part of model
development, but the comparisons suggest that there may be opportunities to refine the
conceptual modeling approach in the future by considering additional binning criteria based upon
speed and/or acceleration for the VSP modes.
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6 COMPARISON AND EVALUATION OF DATA WEIGHTING APPROACHES

The objective of this chapter is to compare and evaluate three approaches for weighting data:  (1)
time-weighted; (2) vehicle weighted; or (3) trip-weighted.  Based upon comparison and
evaluation of these three approaches, a preferred approach is recommended.

6.1 Methodological Considerations

In the time-weighted approach, data in each bin are averaged with respect to time.  For second-
by-second data, each second of data will have equal weight.  For five second average data, each
five second time period of data will have equal weight.  For ten second average data, each ten
second time period of data will have equal weight.  The advantage of this approach is that data
can be combined from any number of vehicles within a vehicle category and the sample sizes
within each bin can become quite large.  Furthermore, the time-weighted approach can be used
to support estimation of emissions for any arbitrary averaging time larger than that of the original
data.  For example, 10 second average emission estimates can be developed by averaging over
10 seconds of one second data.  Therefore, it is possible to consider, for example, how cruise
emissions that take place during a one minute period of freeway cruising might vary from one
time period to another.  The inter-vehicle variability and fleet average uncertainty in emission
will be a function of the desired time periods.  Another advantage of the time-weighted approach
is that more weight is given to vehicles that have undergone longer periods of testing.  For
example, if RSD data were to be included in the development of a model based upon one second
averaging, each vehicle measured by the RSD would typically be represented by only one second
worth of data.  In contrast, a vehicle that has undergone substantial on-road emissions
measurement might be represented by tens of thousands of seconds of data.  Intuitively, it seems
appropriate to give more weight to vehicles that have undergone more testing time.

In the vehicle-weighted approach, data in each bin are averaged with respect to each vehicle.
Thus, for each vehicle, a single representative estimate of emissions would be developed.  For
example, the simplest vehicle-weighted approach would be to calculate an average emission rate
for each vehicle based upon data for that vehicle within a given bin. The average emission rate
for all data in the bin would then be calculated by averaging the emission rates estimated for
each vehicle represented in the bin.  This approach will tend to give less weight to vehicles for
which there are many seconds (or other averaging time periods) of data, and will give
disproportionate weight to vehicles for which there are relatively few time periods of data.  For
example, if there are 10 seconds of data for vehicle 1, 30 seconds of data for vehicle 2, and 50
seconds of data for vehicle 3, the average emission rate for each vehicle would first be calculated
Then, the three vehicle average values would be given equal weight to determine the average
over all three vehicles.  Thus, the average emission rate for Vehicle 1 would have equal weight
to that of Vehicle 2 or Vehicle 3 even though there are three and five times, respectively, as
much data for these latter two vehicles.   Of course, a minimum data requirement criterion could
be specified such that a vehicle average would be calculated only for vehicles for which there are
a minimum number of seconds of data.  However, there would still be variability in the amount
of testing time for different vehicles in the database, and there would remain a potential problem
that vehicles with less testing time than others would in effect have an influence comparable to
those with more testing time.
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The vehicle weight approach offers some potential disadvantages.  One is that the weight given
to different vehicles may be intuitively unappealing.  For example, in the extreme case, one
second of RSD data for a vehicle could be equally weighted with many hours of on-board data
for another vehicle.  Secondly, the use of a vehicle-weighted approach may complicate the
quantification of variability and uncertainty.  The range of inter-vehicle variability and of fleet
average uncertainty is a function of averaging time, with the latter point illustrated quantitatively
in Chapter 7.  For example, one second emissions of a vehicle varies much more from one
second to another than 10 second average emissions vary from one 10 second period to another.
With the time-weighted approach, it is possible to combine data to represent any averaging time
of interest, conditioned on assumptions regarding the structure of the database (e.g., statistical
independence).  With the vehicle weighted approach, the averaging time of the analysis is
unknown and is itself variable, because the average modal emission rate for one vehicle will
typically be based upon a different time period than that for another vehicle.  For example, if
there are five seconds of data in a given bin for one vehicle, and 10 minutes of data in the same
bin for another vehicle, the averages of each of the two vehicles are based upon disparate
averaging times.

The trip-weighted approach was included as an alternative to be evaluated in this study.  The
term “trip” essentially refers to an averaging time selected as the basis for aggregate emissions
measurements.  For example, data for each vehicle could be divided into segments representing
trips.  Each set of data from the same vehicle and “trip” within a bin would be averaged to arrive
at a “trip-average” emission estimate for that vehicle.  A vehicle for which there is a large
amount of on-board data might be represented by more than one such “trip”.  Therefore, this
approach will tend to give more weight to vehicles for which there are more data, similar to the
time-weighted approach.  Unlike the vehicle-weighted approach, there is some attempt in the
trip-weighted approach to have more comparability with respect to the averaging time of the
data.  However, there will still be variation in the number of averaging time periods that are the
basis for any trip average emission estimate in any given bin, since the speed profile of any given
trip will differ from any other given trip.  Therefore, this approach has the same qualitative
limitations as the vehicle-weighted approach.

In the vehicle weighted and trip-weighted approach, there is no direct way to control for
averaging time.  Therefore, the binned data will represent a mixture of unknown averaging times,
and any uncertainty estimate developed from these data will be of unknown pedigree with
respect to averaging time.  Thus, we compared the three approaches with respect to the
characterization of uncertainty in average emission rates.

In choosing a preferred weighting method, consideration was given to the following criteria:  (1)
technical rigor to support a defensible estimate of variability and uncertainty; (2) flexibility to
estimate variability and uncertainty for different averaging times; (3) practical aspects of the
performance of each method (e.g., tractability, ease of developing estimates); (4) compatibility of
the method with data availability and overall modeling objectives.

6.2 Comparison of Weighting Approaches

A component of this work that is also closely related to the issue of analysis of variability and
uncertainty is comparison of different approaches for weighting data.  Specifically, time, trip,
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and vehicle-weighted approaches were compared.  The analysis results reported in this section
are based upon 14 VSP bins without further binning.  The quantitative results for comparison of
the three approaches with respect to the 56-bin approach are given in the Appendix.

The empirical distributions of variability and fitted parametric distributions are displayed for the
examples of VSP Modes 1, 7, and 14 for each of the four pollutants considered and for the time-
weighted approach in Figures 6-1, 6-2, and 6-3, respectively.  For example, for VSP Mode 1, the
Weibull distribution fitted to the NOx data appears to adequately describe the general
characteristics of the data, including the central tendency, the upper tail, and the positive
skewness. However, there are some deviances in the fit that are noticeable, such between the 50th

and 90th percentiles.  Similarly, the lognormal distribution fit to the CO2 data offers a
qualitatively good fit, but deviates from the data in some respects, such as near the 20th percentile
and near the 65th percentile.  The deviations of the fitted distribution from the data in these two
cases are not large in an absolute sense, and are likely to be acceptable.  In contrast, the fitted
distributions for HC and CO for Mode 1 do not appear to offer good fits.  For Mode 7, all the
distributions fitted appear to capture the key trends in the data for all four pollutants.  For Mode
14, the fits are generally very good for NOx, HC, and CO2, but in the case of CO the fitted
distribution does not agree with the data, especially above the 70th percentile.  Overall, in most
cases, the fitted distributions appear to perform well.  In the case of CO for Mode 14, the mean
and standard deviation of the fitted distribution are substantially different than that of the data.

In addition to the time-weighted approach, the results shown graphically in Figures 6-4 through
6-6 are for the trip-weighted approach for Modes 1, 7, and 14, respectively.  Similar results are
displayed for the vehicle-weighted approach in Figures 6-7, 6-8, and 6-9 for Modes 1, 7, and 14,
respectively.  For the trip-weighted approach, the parametric distributions provide a good fit to
the data for Modes 1 and 7.  For Mode 14, the fits for HC and CO2 are good.  The fits for NOx

and particularly CO are less than ideal, although key qualitative trends are captured by the fits.
Generally, the comparison of the parametric distributions with the data is similar for the vehicle-
weighted approach:  the fits are typically good for Modes 1 and 7; the fits for HC and CO2 for
Mode 14 are good; and the fits for NOx and CO for Mode 14 are not as good.  As discussed in
Chaper 7, an alternative to fitting distributions using Maximum Likelihood Estimation (MLE) is
to use the Method of Matching Moments (MoMM).  In the latter method, the fitted distribution
such as a lognormal will have a mean and standard deviation the same as that of the data.  This
point is further illustrated in Chapter 7.

The selected types of distributions and the parameters of the fitted distributions are summarized
for all modes and pollutants in Table 6-1 for the trip-weighted approach.  A similar summary is
given for the vehicle weighted approach in Table 6-2.   Similar information regarding the time
weighted approach is given in the chapter on uncertainty analysis.

A direct graphical comparison of the variability associated with the time, trip, and vehicle
weighted approaches is given in Figures 6-10 and 6-11 for NO and HC, respectively, for Modes
1, 7, and 14.  It is typically the case that the time-based approach has a longer upper tail to the
right than the other approaches, which involve averaging of the data.  Mode 7 for NOx offers the
clearest example of the effects of averaging the data; in this case, the upper tail of the distribution
is substantially smaller than for the time-based approach.
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Figure 6-1. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #1
Characterized by Empirical and Fitted Parametric Probability Distribution Models for Second-

by-Second Data.

Sec-By-Sec, VSP Bin 1
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W L L L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Figure 6-2. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #7
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Second-by-Second Data.

Sec-By-Sec, VSP Bin 7
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W L W L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Figure 6-3. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #14
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Second-by-Second Data.

Sec-By-Sec, VSP Bin 14
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W L W L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF
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Figure 6-4. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #1
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Trip Average Means

Trip Average, VSP Bin 1
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona L L L L
a N = normal; L = lognormal; W = Weibull.
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Figure 6-5. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #7
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Trip Average Means.

Trip Average, VSP Bin 7
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W L W L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF
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Figure 6-6. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #14
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Trip Average Means.

Trip Average, VSP Bin 14
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W W W W
a N = normal; L = lognormal; W = Weibull.
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Figure 6-7. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #1
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Vehicle Average Means.

Vehicle Average, VSP Bin 1
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona L L L W
a N = normal; L = lognormal; W = Weibull.
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Figure 6-8. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #7
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Vehicle Average Means.

Vehicle Average, VSP Bin 7
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W L W L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF
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Figure 6-9. Variability in NOx, HC, CO2, and CO Emissions (g/sec) for VSP Mode #14
Characterized by Empirical Probability Distribution and Fitted Parametric Probability

Distribution for Vehicle Average Means.

Vehicle Average, VSP Bin 14
Pollutant NO HC CO2 CO
Fitted Parametric Distributiona W W W W
a N = normal; L = lognormal; W = Weibull.
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Figure 6-10.  Comparison of Variability in NOx Emissions for Time-Average, Trip-Average, and
Vehicle-Average Approaches, Characterized by Parametric Probability Distributions, for VSP

Modes #1, #7 and #14.
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Because different types of averaging lead to different weighting of information in the database,
the mean and standard deviation will differ depending upon which weighting approach is used.
Table 6-3 summarizes how much the estimate of mean emissions changes within a mode for a
given pollutant depending upon whether a trip-average or vehicle-average approach is used.  The
percentage changes shown in the table are with respect to the time-weighted mean values.  The
average value for the trip weighted approach can be either larger or smaller than that of the time-
weighted approach for a given pollutant when comparing different modes.  For example, the trip-
weighted average for NOx emissions for Mode 1 is 25 percent greater than for the time weighted
approach, but for Mode 8 the trip-weighted average is 20 percent less than that of the time-
weighted approach.  Both the trip- and vehicle-weighted approaches have substantially different
mean estimates in specific cases compared to the time weighted approach.  These differences
range from essentially no difference to an increase of over 100 percent or a decrease of as much
as –42 percent.  For NOx, CO, and HC, the differences in means exceed 10 percent in magnitude
for 80 percent of the pollutant/mode combinations.  In contrast, for CO2, a difference in mean
values of more than 10 percent in magnitude occurred for only approximately 30 percent of the
modes.  Thus, while mean CO2 emission estimates are more robust to the selection of averaging
methods, the average emissions of NOx, CO, and HC are dependent upon what method is
selected.

A similar comparison is shown in Table 6-4 for the difference in standard deviations estimated
based upon the three alternative weighting schemes.  The magnitude of the relative differences is
larger for the standard deviation than it is for the mean.  However, unlike the differences in mean
values, which may be higher or lower than the time-weighted approach, the standard deviations
based upon either the trip- or vehicle-weighted approaches are generally substantially smaller
than those based upon the time-weighted approach.  This result is expected, since averaging will
lead to a reduction in variability in the data.  The reduction in the standard deviation is on the
order of 30 to 60 percent.  For most pollutant/mode combinations, the vehicle-weighted approach
leads to more reduction in the standard deviation than does the trip weighted approach.  This is
because the database includes multiple trips for some vehicles.

The relative range of uncertainty in the mean modal emissions is given in Table 6-5 for time-
averages, in Table 6-6 for trip-averages and in Table 6-7 for vehicle-averages.  The relative
ranges of uncertainty in the mean modal emissions for trip-averages and vehicle-averages can be
compared with the time-weighted results.  Because the sample size becomes smaller as second-
by-second data are averaged, even though the variability in emissions decreases to some extent
(as indicated by the results in Table 6-4), the uncertainty in the average increases when compared
to the time based approach.  For example, consider the range of uncertainty in average NOx

emissions for Mode 1.  For the time-weighted approach, it is plus or minus 3 percent.  For the
trip-weighted approach, it is plus or minus 15 percent.  For the vehicle weighted approach, it is
plus or minus 26 percent.

The average emission rates and the 95 percent confidence intervals for the averages are
compared graphically in Figure 6-12 for each of the four pollutants and for each mode.
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The results for the “56-bin” approach given in the Appendix for the comparison of the three
weighting approaches are qualitatively similar to those shown in this chapter for the 14 VSP
bins.

6.3 Summary and Recommendation

The main findings from the comparison of the time, trip, and vehicle weighted approaches are as
follows:

• Compared to time-weighted approach, the means for the trip and vehicle weighted
approaches can be either higher or lower.

• The standard deviation decreases for the trip weighted approach, and further for the
vehicle weighted approach, when compared to the time weighted approach.

• Averaging time varies for both the trip and vehicle weighted approaches; there is no
standard averaging time

• The uncertainty in the average typically increases with more averaging over time,
because of smaller sample size.

• The trip and vehicle weighted approaches disproportionately give emphasis to trips or
vehicles with little data

Based upon these main findings, a judgment was made that the time weighted approach is the
preferred basis for development of a conceptual emission estimation model.  The time weighted
approach offers flexibility in the future to weight the data by vehicle or trip if so desired.  The
time weighted approach is predicated upon the assumption that data for a given vehicle
stratification (e.g., odometer reading and engine displacement) are representative of that strata.
It is easier from a software design and from an analysis perspective to work with time weighted
data, and such an approach will give more weight to vehicles or trips for which there are more
data, which is intuitively appealing.
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7 QUANTIFICATION OF VARIABILITY AND UNCERTAINTY

The estimation of uncertainty in the average emission rate for a mode depends upon the
variability in data for the mode, the variance within the data, and the sample size.  Key issues
addressed in the analyses include the adequacy of selected parametric probability distribution
models for representing variability in data, and whether the range of uncertainty in the mean
values is sufficiently small that a normality approximately can be used to represent uncertainty in
the mean.  To provide insight into these issues, results are presented of analysis of both
variability and uncertainty based upon the VSP modes for one-second average data.  This chapter
includes a review of methodological considerations, quantification of variability for individual
modes, quantification of uncertainty for individual modes, and estimation of uncertainty for
driving cycles or trips.

7.1 Methodological Considerations

In uncertainty analysis, there are several sources of uncertainty that must be considered.  The
first is the scenario being modeled.  The second is the model itself.  The third are the inputs to
the model.  In practice, the term “model uncertainty” is typically understood to mean uncertainty
regarding the functional form of the model itself.  Cullen and Frey (1999) address sources of
model uncertainty in detail in Chapter 3.  Since MOVES is anticipated to be a data-driven model,
the uncertainty associated with model structure will be associated with the definitions of the bins.
For example, suppose that average emissions are sensitive to variation in engine displacement,
but that a bin-based approach is implemented without using engine displacement as one of the
binning criteria. Then the “model” would fail to enable prediction of the sensitivity of average
emissions with respect to different engine displacements. In this case, one could argue that there
is uncertainty associated with an incomplete formulation of the model structure.  Once the model
structure is correctly specified, a technique can be applied for propagating uncertainty regarding
emissions in each bin to predict uncertainty of the final model results.  This latter approach
addresses uncertainty in the inputs to the model (i.e. the data within each bin) but does not
address uncertainty associated with the model structure.  The main objective this task is to focus
on a methodology for propagating uncertainty in the model input data (e.g., the data used in each
bin, and the activity data used to weight the binned data) in order to predict uncertainty in the
estimated emissions.  Another consideration is that for the model predictions to be accurate,
which means free of bias when comparing the average model predictions to the true average
emissions in the real world, the model must be developed based upon a representative data set.

There are several key considerations pertaining to this task, which are briefly summarized in the
following list, with more detailed discussion in the following text:

• Variability
• Uncertainty
• Choice of empirical versus parametric probability distribution models
• Averaging Time
• Bottom-Up versus Top-Down Approaches
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7.1.1 Variability and Uncertainty

Variability refers to real differences in emissions, such as from one vehicle to another.
Uncertainty refers to lack of knowledge regarding the true value of a quantity.  Sources of
variability include differences in vehicle/engine design, operating conditions, maintenance, fuel
composition, and ambient conditions (as examples).  Sources of uncertainty include random
sampling error, measurement error, lack of representativeness, and lack of information.  For
emission factor purposes, we are typically interested in average emissions for a particular fleet of
vehicles, rather than in trying to predict emissions for an individual vehicle.  Therefore, we are
typically more interested in characterizing uncertainty in the average emission estimate than in
characterizing inter-vehicle variability in the estimate.  The distinction between inter-vehicle
variability and fleet average uncertainty has been demonstrated quantitatively in many recent
studies based upon different sources of data, including dynamometer (bag) data, RSD, and on-
board data (e.g., Kini and Frey, 1997; Frey, Bharvirkar, and Zheng, 1999; Frey and Zheng, 2002;
Frey, Rouphail, Unal, and Colyar, 2001; Frey, Unal, and Chen, 2002; Frey and Eichenberger,
1997a&b; Frey, Rouphail, Unal, and Dalton, 2000).

7.1.2 Empirical Distributions

EPA has emphasized that it prefers a data-driven approach to development of MOVES.
However, there is a trade-off between a purely data driven approach versus one that includes
some abstraction and aggregation.  Specifically, in the context of quantitative analysis of
variability and uncertainty, there is a choice to be made regarding whether to base the analysis
upon empirical distributions or upon parametric distributions.  In the former, each data point in
the database, such as for a single bin, is assigned a probability. Typically, data are assumed to be
equally weighted but this need not be the case in all situations.  Based upon the data values and
the probability assigned to each data value, a step-wise empirical cumulative distribution
function can be developed.  An example of a step-wise empirical cumulative distribution
function is given in Figure 7-1 for a data set with sample size of 10.  A dataset such as this might
represent inter-vehicle variability in emissions.
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Figure 7-1.  Example of a Stepwise Empirical Cumulative Distribution Function
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The mean and standard deviation of the empirical distribution are calculated directly from the
data.  The empirical distribution has the advantage that it is “true” to the data.  However, there
are several important potential disadvantages:  (1) there is no interpolation within the range of
observed data (i.e. the distribution has only discrete values corresponding to the original data set,
and there is zero probability of sampling any other value); (2) there is no plausible extrapolation
beyond the range of observed data; and (3) one must retain all of the data in order to characterize
the empirical distribution.  Of these three potential disadvantages, the most important are the
second and third ones.  The second one is important especially for small data sets.  With any data
set, but especially smaller ones, it is unlikely that the observed highest value corresponds to the
true highest value, and that the observed lowest value corresponds to the true lowest value.
Thus, there is a possibility of failing to characterize the full range of variability.  The third
potential disadvantage is that one must retain all of the original data.  This is not a problem for a
very small data set, but for a very large data set this could be cumbersome.

7.1.3 Parametric Distributions

An alternative to empirical distributions is to use parametric probability distributions to represent
variability.  The most commonly used parametric distributions, such as lognormal, gamma, or
Weibull, typically have only two parameters.  The parameters are estimated using statistical
estimation approaches such as the method of matching moments or maximum likelihood
estimation.  The distribution is fully specified once the values of its parameters are estimated.
Frey and Zheng (2002) give details of these methods, and such methods are incorporated into the
AuvTool software recently developed for EPA/ORD (Zheng and Frey, 2002).  Thus, a data set of
any size can be represented based upon the type of distribution selected (i.e. lognormal, gamma,
Weibull) and the numerical values of its parameters.

Compared to empirical distributions, parametric distributions allow for interpolation within the
range of observed data, and for extrapolation to the upper and lower tails of the fitted
distribution.  The latter is a potential advantage because it is likely that the observed range of
variability is less than the true range of variability as previously discussed.  Because parametric
distributions provide a compact way of storing information regarding variability, the data storage
requirements will be less than if the empirical data set must be retained.  However, there are
some key disadvantages to the use of parametric probability distributions in MOVES.  If new
data are obtained and must be used to update the distributions for variability, then it will be
necessary to combine the new data with the previous data, and repeat the process of fitting a
parametric distribution to the data.  Alternatively, one could fit a distribution to the new data, and
compare the distribution fitted to the new data with the one that was fitted to the previous data.
If the two distributions are not significantly different from each other, then there would be no
compelling need to update the previous distribution.  If they are different, then one could create a
new mixture distribution.  For example, if the original fitted distribution was based upon 10,000
data values, and if the new distribution was estimated from a new set of 5,000 data values, a
mixture distribution could be defined in which 2/3 weight is given to the first (older) distribution
and 1/3 weight is given to the second (newer) distribution.

7.1.4 Averaging Time

The issue of averaging time must be explicitly considering regardless of the choice of the
empirical or parametric approach to characterizing variability.  The issue of averaging time is
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also closely related to Subtask 1b and is addressed in Chapter 4 and implicitly in Chapter 6.  For
example, suppose that the most basic form of data in MOVES is the average over a five second
time period.  Any distribution developed directly from the 5-second data would represent
variability in emissions from one 5-second averaging time to another.

The data within a bin may include multiple data values for each of many vehicles.  If the
objective is to estimate inter-vehicle variability, then all of the 5-second average data values for a
given vehicle should be averaged to arrive at a best estimate of the average emissions for a 5-
second period for a given bin for that vehicle.  This calculation would be repeated for all vehicles
in the bin. Then, the average values for each vehicle would be used to construct a distribution of
inter-vehicle variability within that bin.  The range of variability will be influenced by the fact
that the calculations are based upon a 5-second time period.  In contrast, if the objective were to
estimate variability in emissions for a 10-second time period, then the range of inter-vehicle
variability would tend to be somewhat smaller.  Through simple calculations with the data, as
long as there are sufficient data and as long as the data can reasonably be assumed to be
statistically independent, it is easy to combine data for two or more averaging time periods to
construct estimates of average emissions over longer time periods.

Calculation of inter-vehicle variability for different averaging times is conceptually straight-
forward when all data are retained within a bin and if empirical distributions are employed.  If
parametric distributions are employed, then it is necessary to develop an analytical procedure for
adjusting the distribution based upon different averaging times.  As a conceptual example, Frey
and Rhodes (1996) illustrated that the variability in power plant efficiency decreases as the
averaging increases from one hour, to one day, to one week, and so on.  By analyzing example
data sets, it is possible to develop an estimate of how the variance of the data is expected to
decrease as the averaging time increases.  For example, the variance is a function of averaging
time.  The mean would not change.  Thus, if a distribution were fitted to 5-second averaging time
data, a new distribution could be estimated for 10-second averaging time assuming the same
mean and using the empirically-derived function of variance versus averaging time.  We have
developed a conceptual example of an analytical averaging time adjustment method for the
parametric approach.

7.1.5 Normal and High Emitters

Regardless of whether empirical or parametric distributions are used, all data within a bin
represent the distribution for variability, including both “normal” and “high” emitters whose data
fall into the given bin.  Thus, there is no need for a discrete approach for normal and high
emitters as has been used in the past.  However, it is important to have a data set that is
representative of both normal and high emitters when developing estimates of average emissions,
of variability in emissions, and of uncertainty in average emissions.  The average emission rate is
calculated based upon all of the data within the bin, and therefore takes into account both normal
and high emitters.  Similarly, the standard deviation is calculated based upon all of the data
within the bin, and therefore takes into account both normal and high emitters.

EPA implies that as part of future work, the effects of I/M programs on the distribution of
emission will be evaluated, but this is not included as a task in this work.  For example, an I/M
program might identify vehicles with emissions above some cut-off, and result in modification or
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repair of the vehicle so that its emissions are acceptable.  The distribution of emissions can be
recalculated using numerical methods by truncating the distribution and by resampling from
within the range of acceptable emissions for those vehicles that successfully undergo repair or
modification.  The numerical method can also be developed to take into account repeated failures
of some proportion of the vehicles and other considerations pertaining to IM programs.

7.1.6 Uncertainty Estimates for Final Model Results

A key objective of MOVES is to estimate uncertainty in final model results.  To illustrate an
approach for estimating uncertainty in final model results, consider a simple conceptual example.
Suppose that we wish to know the fleet average tailpipe emissions for LDGVs operating on a
particular corridor.  As input assumptions, we specify information such as the typical speed
profile (e.g., an average estimate of second-by-second speed), road grade at specific locations
along the corridor, proportions of vehicles in different vehicle type categories, ambient
conditions, and proportion of vehicles in different mileage accumulation categories for each
vehicle type.  Based upon this type of information, weights are calculated for each bin in the
MOVES model.  If we focus on a specific vehicle type and mileage accumulation category, we
can narrow the discussion to consideration only of factors having to do with the speed profile and
the road grade.  For each bin, an average emission rate can be estimated.  Suppose that the
emissions are in units of grams per second.  In order to estimate the total emissions associated
with a given bin, there must be an estimate of the amount of time that the vehicle spends “in” the
bin (figuratively speaking), which can be obtained based upon the known or assumed speed
profile and based upon the road grade.  For example, if a VSP approach is used, the speed profile
and the road grade are used to estimate VSP, and the numerical value of VSP for a given
segment of the trip is used to determine from which bin an emission estimate is needed.  Thus, in
this example, an emission estimate is a time-weighted average of the mass per time emission
rates obtained from different bins.  The amount of time allocated to each of the bins will differ.

The uncertainty in the average emissions for the trip is based upon the uncertainty in the average
emission rates within each bin.  Potentially, there could also be uncertainty regarding the amount
of time (or weight) assigned to each bin.

The uncertainty in the average emission rate is typically influenced by the following key
considerations:  (1) random sampling error; (2) measurement error; and (3) lack of
representativeness.  The first of these three can be characterized based upon the variance in the
data for variability and upon the sample size.  For example, if normality conditions for the
sampling distribution of the mean are satisfied, the standard error of the mean is given the by
standard deviation for variability divided by the square root of the sample size.  If normality
conditions are not satisfied, then a more accurate result can be obtained using bootstrap
simulation.  For example, Frey and Rhodes (1996, 1998, 1999), Frey and Burmaster (1999),
Frey, Bharvirkar, and Zheng (1999), Frey and Bammi (2002a&b), Frey and Eichenberger
(1997b), and Frey and Zheng (2002a&b) have demonstrated the use of bootstrap simulation to
characterize uncertainty in mean emission rates in situations when data are positively skewed
and, in many cases, for small sample size.  The range of uncertainty in the average emissions is
typically asymmetric when there is a large amount of variability in the data and a small sample
size.  The use of a normality assumption in such situations can lead to uncertainty estimates for
the mean that predict negative emission rates, which is physically impossible.  Therefore, it is



120

important to employ an appropriate approach for quantifying uncertainty associated with random
sampling error.  We recommend the use of bootstrap techniques where appropriate, and we will
also explore simplified solutions obtained based upon the results of bootstrap simulation.  For
example, we hypothesize that it is possible to develop generic solution algorithms for estimating
asymmetric uncertainty ranges in the mean when the underlying data for variability can be fitted
reasonably well by a standard parametric distribution and when the coefficient of variation
(standard deviation divided by the mean) and the sample size of the original data are known.
Such algorithms could be used to make a rapid estimate of uncertainty in average emissions
without need to run a full bootstrap simulation in every case.

Random sampling error is typically the dominant source of uncertainty in the mean when the
sample sizes are small.  Random sampling error in the mean is relatively easy to quantify in
practice because it can be inferred from the standard deviation and the sample size of the data,
which are usually known.

Measurement error is a potentially important source of uncertainty and should be considered in
developing MOVES.  One drawback of estimating uncertainty based only upon random
sampling error is that for very large sample sizes, the random sampling error in the mean
becomes very small.  If the measurement error has a random component, then the range of
observed variability in the data is larger than the true range of variability in the actual emissions.
Therefore, random measurement errors in the data are reflected in the range of uncertainty in the
mean emission rates estimated using techniques for random sampling error.  However, if
measurement error has a systematic component (bias), statistical analysis alone will not detect
this without comparison to some benchmark.  Measurement error may not be well known,
however.  Therefore, this source of uncertainty can be difficult to quantify in practice.  Since the
random component of measurement error influences the estimate of uncertainty in the mean
obtained from random sampling error-based estimated, the primary consideration in
incorporating measurement error more fully into the analysis is to properly distinguish random
measurement error from observed variability (e.g., Zheng, 2002) and to account for biases in
measurements.

Uncertainty because of lack of representativeness cannot be quantified based upon statistical
analysis of variation within a dataset obtained by only one method.  In order to quantify
nonrepresentativeness, which relates to bias (also referred to as systematic error or lack of
accuracy), it is necessary to have a benchmark of the true value of the quantity.  By using on-
board data, a key goal of MOVES is to develop emission estimates based upon real-world on-
road data.  Thus, the fundamental basis of MOVES is to use representative, real world data.  The
validation aspects of this project also aim at testing the representativeness of the data used for
model development.  Overall, the focus of this project was on methods for quantifying
uncertainty associated with random sampling error, which also is influenced by random
measurement errors.

Monte Carlo simulation or similar numerical methods (e.g., Latin Hypercube Sampling) can be
used to propagate distributions for uncertainty in average emissions for a bin to arrive at an
estimate of uncertainty in the total emissions (e.g., Frey and Rhodes, 1996; Frey and Zheng,
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2001; Zheng and Frey, 2002).  In cases with linear models in which normality assumptions are
reasonable, analytical solutions can also be used (Cullen and Frey, 1999).

7.1.7 Bottom-Up and Top-Down Approaches

In the shoot-out, NCSU illustrated both a bottom-up and top-down approach for estimating inter-
vehicle variability and fleet average uncertainty in emissions.  The bottom-up approach was
based upon estimating variability or uncertainty for individual modes and using statistical
formulas to estimate the variability or uncertainty in the total emissions.  The top-down approach
was based upon comparing trip emissions predictions of the model with the actual observed trip
emissions.  Based upon statistical analysis of the parity plots of predictions versus observations,
a 95 percent probability prediction interval was estimated for inter-vehicle variability and a 95
percent confidence interval was estimated for uncertainty in the mean.

In principle, the bottom-up approach will be the more flexible and rigorous approach, and it will
also have an advantage of allowing for identification of which bins contributed the most to
uncertainty in the total emissions estimates.  The top-down approach will typically be an easier
but less flexible approach, and it will not provide any insight regarding key sources of
uncertainty.

The primary approach explored in this chapter is the bottom-up approach.  This approach is more
consistent with the EPA objective of characterizing variability in emissions within bins.
However, the top-down approach is illustrated in the validation comparisons of average driving
cycle emissions, as discussed in Chapter 9.

7.1.8 Summary of Methodological Considerations

The focus here is to demonstrate a methodology for characterizing inter-vehicle variability in the
binned data and uncertainty in the estimate of the final model result.  The methodology was
demonstrated for the pilot modal emission rates.  The emphasis of the work was on a parametric
distribution-based approach.  The parametric approach was selected because of the attractiveness
of compactly representing large data sets within a bin using only a distribution type and a few
parameters.  The adequacy of a purely parametric approach is assessed.  A method for properly
characterizing the effect of averaging time on variability (and, in turn, on uncertainty) is
demonstrated.

7.2 Quantification of Variability

Parametric probability distribution models that were considered for fit to data include normal,
lognormal and Weibull distributions.   These distributions were selected because they often offer
good fits to dataset.  In particular, the lognormal distribution is often a good candidate for fitting
to non-negative positively skewed data, and can be theoretically justified as a descriptor of
emissions data because both emissions and the lognormal distribution are based upon
multiplicative processes.  The Weibull distribution can also be used to fit to nonnegative
positively skewed data.  However, the Weibull distribution has additional flexibility to take on
different shapes and often has a shorter upper tail than the lognormal distribution does, when
viewed as a cumulative distribution function.  The less “tail-heavy” nature of the Weibull
distribution often provides an empirically better fit than does the lognormal distribution.  The
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normal distribution often provides a good fit but is appropriate for use with non-negative data
only if the ratio of the standard deviation to the mean is sufficiently small (e.g., around 0.2 or
less).  Otherwise, the normal distribution may lead to predictions of negative values with
unacceptable frequency.  In general, it is usually not appropriate to use the normal distribution to
represent variability within a bin, but it is often appropriate to use the normal distribution to
describe uncertainty in the average.

The probability density function (PDF) of the normal distribution is:
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The PDF of lognormal distribution:

2

2

2

)(ln
1

2

1
)( φ

ξ

φπ

−−

=
x

e
x

xf ∞<< x0 (7-2)

The PDF of the Weibull distribution, shape parameter k and scale parameter c:
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Fitting of parametric distributions to data was conducted using “SAS” software. Criteria for
selecting a best fit are inherently subjective, but can be aided by the use of statistical goodness-
of-fit tests (e.g., Cullen and Frey, 1999).  Each such test emphasizes a particular criterion for a
good fit, which may or may not be relevant to the needs of a particular analyst or assessment.
Furthermore, with very large sample sizes, which are often the case for data sets based upon
second-by-second data, the goodness-of-fit (GOF) tests are very sensitive and may reject a
distribution that in other respects would be acceptable.  For example, a visual comparison of the
distribution and the data may indicate that the distribution provides a “good” fit even though the
fit was rejected by the GOF test.

As examples, results of fitting parametric distributions to VSP mode data are shown for NOx,
HC, CO2, and CO in Figures 7-1, 7-2, 7-3 and 7-4 for VSP Modes 1, 4, 8 and 12, respectively.
The purpose here is to present representative results.  Graphical analysis was done, however, for
all bins, even though not all graphs are shown here.  The graphs were generated using SAS.  For
VSP Mode 1, the Weibull distribution fitted to the NOx data appears to adequately describe the
general characteristics of the data, including the central tendency, the upper tail, and the positive
skewness. However, there are some deviances in the fit that are noticeable, such between the 50th

and 80th percentiles.  Similarly, the lognormal distribution fit to the CO2 data offers a
qualitatively good fit, but deviates from the data in some respects.  The deviations of the fitted
distribution from the data in these two cases are not large in an absolute sense, and are likely to
be acceptable.  In contrast, the fitted distributions for HC and CO for Mode 1 do not appear to
offer good fits.  For Mode 4, all the distributions fitted appear to capture the key trends in the
data for all four pollutants.  For Mode 8, the fits are generally good for all four pollutants,
especially for NO.  For Mode 12, the fitted distributions appear to agree with the data.
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Figure 7-1. Variability in NOx, HC, CO2, and CO Emissions for VSP Mode #1 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,

Odometer reading < 50,000 miles, Engine Displacement < 3.5 liters.

Sec-By-Sec, VSP Bin 1
Pollutant NOx HC CO2 CO
Fitted Parametric Distributiona W L W L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Figure 7-2. Variability in NOx, HC, CO2, and CO Emissions for VSP Mode #4 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,

Odometer reading < 50,000 miles, Engine Displacement > 3.5 liters.

Sec-By-Sec, VSP Bin 4
Pollutant NOx HC CO2 CO
Fitted Parametric Distributiona W L L L
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Figure 7-3. Variability in NOx, HC, CO2, and CO Emissions for VSP Mode #8 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,

Odometer reading > 50,000 miles, Engine Displacement < 3.5 liters.

Sec-By-Sec, VSP Bin 8
Pollutant NOx HC CO2 CO
Fitted Parametric Distributiona W W W W
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Figure 7-4. Variability in NOx, HC, CO2, and CO Emissions for VSP Mode #12 Characterized
by Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time

Average, Odometer reading > 50,000 miles, Engine Displacement > 3.5 liters.

Sec-By-Sec, VSP Bin 12
Pollutant NOx HC CO2 CO
Fitted Parametric Distributiona W W L W
a N = normal; L = lognormal; W = Weibull.

Empirical CDF

Fitted Parametric Distribution
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Overall, in most cases, the fitted distributions appear to compare well with the data.  Because
statistical GOF tests are too sensitive, from a practical perspective, when the sample size
becomes large, alternative criteria for evaluating goodness-of-fit were sought.  One such criterion
is to evaluate the absolute difference between the mean of the data and the mean of the fitted
distribution.  A second criterion is to evaluate the absolute difference of the standard deviation of
the data versus that of the fitted distribution.  Therefore, these absolute differences were
calculated for each of the 14 VSP modes, for each of the four strata by engine displacement and
odometer reading reading, and for each of the four pollutants.

The distributions were fitted to the data using Maximum Likelihood Estimation (MLE).  The
choice of MLE was made on the basis that MLE is commonly used and is considered to be a
more statistically efficient method than other approaches, such as the Method of Matching
Moments (MoMM) (Cullen and Frey, 2002).  However, MLE has a potential disadvantage in
that the central moments of the fitted distribution (e.g., the mean and standard deviation) may not
be the same as those of the data to which the distribution was fit.  In contrast, for MoMM
estimates of the distribution parameters, the fitted distribution will have a mean and standard
deviation the same as that of the data.  In most cases, the difference of the means and standard
deviations between fitted distributions and the data are not large in an absolute sense, as shown
in Tables 7-1 and 7-2, respectively.  For example, for VSP Bins 1101 through 1114, which
represent data for odometer reading < 50,000 miles, and engine displacement < 3.5 liters, the
largest absolute deviation in the mean values for NOx is for Mode 12 of this strata (identified as
VSP Bin 1112 in Table 7-1), with an absolute difference of 0.0004 g/sec.  This difference is in
comparison to a mean from the data set of 0.0121 g/sec, and a mean from the fitted distribution
of 0.0125 g/sec.  Therefore, on a relative basis, this difference is only approximately three
percent of the mean of the data.  For the other 13 modes for this pollutant and strata, the absolute
differences are smaller.  However, in some cases, the relative differences are very large.  For
example, for Mode 1104, the absolute difference is -0.00028 g/sec compared to a data mean of
0.00117.  Thus, the relative difference in this case is -24 percent.  However, the absolute
difference in the mean for Mode 1104 is only 70 percent of the absolute difference for Mode
1112.  Typically, the largest absolute differences are small compared to the highest average
emission rates among the modes for given pollutant and strata, although there are some
exceptions (e.g., Mode 1211 for CO).   The exceptions typically point to situations in which a
single component distribution cannot provide a good fit because the data are inherently some
type of mixture distributions.

Based upon a review of the results in Tables 7-1 and 7-2, criteria for discriminating good and bad
fit were proposed for different pollutants.  These criteria are shown in the second column of
Table 7-3.  For example, for NOx, if the absolute difference in the mean of the MLE fitted
distribution versus that of the data is larger than the magnitude of the criteria value, which is
0.001 g/sec, the fit is judged not to be good.  When the absolute differences in the mean of the
fitted distribution is less than the criteria value, the fit was also judged to be acceptable.  Of the
56 modes, 49 of the modes for NOx have differences in the mean between the data and the fitted
distribution of less than the criteria value.  For CO, 48 of the modes satisfy the criteria value, for
HC 54 of the modes satisfy the critera, and for CO2 all 56 modes satisfy the criteria value.
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Table 7-3. Comparisons of Empirical Data Set and Fitted Parametric Distributions, Average
Difference for Good Fits, Fitting Based upon MLE

Mean Standard deviation

Pollutant
Criteria
(g/sec)a

No.
of

good
fits

Empirical
(g/sec)

Abs. diff
(g/sec)

Rel.
diff
(%)

Empirical
(g/sec)

Abs. diff
(g/sec)

Rel.
diff
(%)

NOx 0.001 49 0.00812 0.0000404 0.50 0.0116 0.00119 10
HC 0.001 54 0.00302 -0.0000192 -0.64 0.00570 0.000611 11
CO2 0.1 56 6.27 -0.0186 -0.30 1.81 0.0372 2.1
CO 0.1 48 0.140 0.00511 3.6 0.304 0.500 160

a A fit is good when its absolute difference in the mean is smaller than criteria value.

Table 7-4.  Comparisons of Empirical Data Set, Fitted Lognormal Distributions Based upon
MLE, and Fitted Lognormal Distributions Based upon MoMM, for the Two Worst

MLE Fits for CO.
MLE MoMM

Mean Standard Deviation Mean Standard Deviation

VSP

Bin
a

empirical
fitted
dist

diff empirical
fitted
dist

diff empirical
fitted
dist

diff empirical
fitted
dist

diff

1113 0.442 2.08 1.63 0.906 173 172 0.442 0.442 0 0.906 0.906 0

1114 0.882 15.8 15.0 1.52 6426 6424 0.882 0.882 0 1.52 1.52 0
a First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters.

From Table 7-3, it is apparent that the relative difference in the mean values of the fitted
distribution and the data is less than one percent for NOx, HC, and CO2 for the vast majority of
the modes, and less than four percent for the majority of the modes in the case of CO.  The
estimated standard deviation tends to be more sensitive to deviations of the fitted distribution
from the data than does the estimated mean.  For most of the modes and pollutants, the relative
difference between the standard deviation of the fitted distribution versus that of the data is less
than 10 percent, but there are some examples for CO in which the difference is substantially
larger.

In this study, MLE was used to estimate parameters of fitted parametric distributions for
representing variability in population.  If MoMM was used, there would have been no difference
in the mean and standard deviation between the empirical sample data and fitted distribution, as
shown for selected examples in Table 7-4.  In these two examples, which represent the worst fits
of parametric distributions to modal data for CO, the MoMM fitted distribution is confirmed to
have the same mean and standard deviation as the original data, whereas both the mean and
standard deviations of the distribution fitted using MLE are substantially different than the
values estimated directly from the data.  However, it is not likely that the mean and the standard
deviation of population will be exactly the same as those of sample.  The basis for fitting a
distribution using MLE is to estimate a distribution from which the data were most likely to have
been a sample, which is a different criterion than that for estimating a distribution using MoMM.
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Table 7-5. Recommendation of Mixture Distributions for Two Worst Fits
Dist. 1b Dist. 2b

Bina Pollutant Dist. 1 Dist. 2 Weight
Para 1 Para 2 Para 1 Para 2

1113 CO Lognormal Lognormal 0.7878 2.3619 -4.7782 0.6782 0.329
1114 CO Lognormal Lognormal 0.6367 2.1368 -5.4363 0.7358 0.6043
a First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters.
b Para 1 of lognormal is φ and Para 2 of lognormal is ξ.

Even though MoMM results in the same estimates of the mean and standard deviation as the
original data set, MoMM does not always provide a good fit.  For example, distributions fitted
using both MLE and MoMM for the case of CO emissions for odometer reading < 50,000 miles,
and engine displacement < 3.5 Liters, are shown in comparison to the empirical distribution of
the data for VSP Mode 14 in Figure 7-5.  A similar example is given for Mode 13, for CO for the
same odometer reading  and engine displacement category in Figure 7-6.  Figures 7-5 and 7-6
suggest that neither MLE nor MoMM provides an ideal fit compared to the data.  When
comparing MLE and MoMM fits for these two cases, it appears that MLE provides a better fit
for the lower percentiles of the distribution and MoMM provides a better fit for the upper tail of
the distribution.  However, it is also clear in these examples that the data are not well represented
by a single component parametric distribution, especially in the central portion of the
distribution.  A key question is whether occasional disagreements between fitted distributions
and data, such as these, can be tolerated in the model.  Alternatively, either mixture distributions
or empirical distributions can be used to represent data such as these.  For the same data as
shown in Figure 7-5, an illustration of the use of a fitted mixture distribution is shown in Figure
7-7.  Similarly, for the same data as shown in Figure 7-6, an illustration of the use of a fitted
mixture distribution is given in Figure 7-8.  The parameters of the mixture distributions shown in
Figures 7-7 and 7-8 are given in Table 7-5.  The mixture distributions comprised of only two
lognormal components are shown to agree very well with the empirical data in both cases.  The
mixture distributions were estimated using MLE as described by Zheng (2002) using a modified
version of AuvTool.  These example case studies illustrate that mixture distributions can be an
effective approach for achieving a good fit when a single component distribution is not adequate.
These case studies also suggest that the data in these modes may be comprised of two or more
subpopulations that might reflect different activity patterns or different vehicle characteristics.

Table 7-6 summarizes the type of parametric distribution and the parameters of the distribution
fitted to the data for each pollutant and mode based upon MLE approach.
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Figure 7-5. Comparison of Fitted Parametric Distribution Based upon Method of Matching
Moment and Maximum Likelihood Estimation, Mode 14 CO Emissions, Odometer reading <

50,000 miles, Engine Displacement < 3.5 liters.
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Figure 7-6. Comparison of Fitted Parametric Distribution Based upon Method of Matching
Moment and Maximum Likelihood Estimation, Mode 13 CO Emissions, Odometer reading <

50,000 miles, Engine Displacement < 3.5 liters
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Figure 7-7.  Mixture Distribution Comprised of Two Lognormal Components Fitted to Data for
Mode 14 CO Emissions for Odometer Reading < 50,000 miles and Engine Displacement < 3.5

Liters.

Figure 7-8.  Mixture Distribution Comprised of Two Lognormal Components Fitted to Data for
Mode 13 CO Emissions for Odometer Reading < 50,000 miles and Engine Displacement < 3.5

Liters.

Fitting a Distribution for

Data
(n=344)

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

0.0 3.4 6.9 10.3 13.7 17.1

Lognormal + Lognormal, Weight = 0.6367

CO (g/sec)

Mixture Distribution

Fitting a Distribution for

Data
(n=648)

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.2 4.4 6.6 8.7 10.9

Lognormal + Lognormal, Weight = 0.7878

CO (g/sec)

Mixture Distribution



14
0

T
ab

le
 7

-6
.  

Su
m

m
ar

y 
of

 S
in

gl
e 

C
om

po
ne

nt
 P

ar
am

et
ri

c 
Pr

ob
ab

ili
ty

 D
is

tr
ib

ut
io

ns
 F

itt
ed

 U
si

ng
 M

L
E

 f
or

 V
ar

ia
bi

lit
y 

in
 V

SP
 M

od
es

 f
or

N
O

x, 
H

C
, C

O
2, 

an
d 

C
O

 f
or

 V
eh

ic
le

s 
of

 D
if

fe
re

nt
 E

ng
in

e 
D

is
pl

ac
em

en
t a

nd
 O

do
m

et
er

 R
ea

di
ng

.

N
O

x
H

C
C

O
2

C
O

V
SP

 B
in

a

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

11
01

W
3.

00
E

-0
4

4.
58

E
-0

1
L

1.
86

E
+0

0
-9

.4
2E

+
00

W
1.

83
E

+0
0

1.
34

E
+0

0
L

2.
28

E
+0

0
-7

.6
5E

+
00

11
02

W
2.

00
E

-0
4

4.
29

E
-0

1
L

1.
80

E
+0

0
-1

.0
2E

+
01

W
1.

54
E

+0
0

1.
21

E
+0

0
L

2.
24

E
+0

0
-8

.5
2E

+
00

11
03

W
9.

74
E

-0
5

4.
68

E
-0

1
L

1.
85

E
+0

0
-9

.8
5E

+
00

W
1.

22
E

+0
0

1.
35

E
+0

0
L

2.
21

E
+0

0
-8

.5
2E

+
00

11
04

W
3.

00
E

-0
4

4.
17

E
-0

1
L

1.
78

E
+0

0
-9

.5
2E

+
00

L
5.

97
E

-0
1

6.
35

E
-0

1
L

2.
42

E
+0

0
-7

.6
6E

+
00

11
05

W
6.

00
E

-0
4

4.
29

E
-0

1
L

1.
74

E
+0

0
-9

.1
0E

+
00

W
3.

30
E

+0
0

2.
01

E
+0

0
W

2.
50

E
-0

3
4.

29
E

-0
1

11
06

W
9.

00
E

-0
4

4.
41

E
-0

1
L

1.
73

E
+0

0
-8

.7
5E

+
00

W
3.

97
E

+0
0

2.
21

E
+0

0
W

3.
50

E
-0

3
4.

22
E

-0
1

11
07

W
1.

20
E

-0
3

4.
46

E
-0

1
L

1.
74

E
+0

0
-8

.4
7E

+
00

W
4.

62
E

+0
0

2.
43

E
+0

0
W

4.
80

E
-0

3
4.

28
E

-0
1

11
08

W
1.

90
E

-0
3

4.
65

E
-0

1
L

1.
74

E
+0

0
-8

.2
4E

+
00

W
5.

20
E

+0
0

2.
51

E
+0

0
W

6.
10

E
-0

3
4.

16
E

-0
1

11
09

W
2.

20
E

-0
3

4.
64

E
-0

1
L

1.
69

E
+0

0
-8

.0
2E

+
00

W
5.

78
E

+0
0

2.
59

E
+0

0
W

7.
80

E
-0

3
4.

18
E

-0
1

11
10

W
2.

80
E

-0
3

4.
82

E
-0

1
L

1.
76

E
+0

0
-7

.8
5E

+
00

W
6.

32
E

+0
0

2.
49

E
+0

0
L

2.
60

E
+0

0
-5

.8
7E

+
00

11
11

W
4.

10
E

-0
3

5.
16

E
-0

1
W

1.
40

E
-0

3
6.

25
E

-0
1

W
7.

34
E

+0
0

2.
63

E
+0

0
L

2.
65

E
+0

0
-5

.2
3E

+
00

11
12

W
7.

60
E

-0
3

5.
61

E
-0

1
W

2.
20

E
-0

3
6.

35
E

-0
1

W
8.

52
E

+0
0

2.
73

E
+0

0
L

2.
67

E
+0

0
-4

.5
2E

+
00

11
13

W
1.

12
E

-0
2

6.
54

E
-0

1
L

1.
64

E
+0

0
-6

.5
2E

+
00

W
1.

01
E

+0
1

2.
67

E
+0

0
L

2.
97

E
+0

0
-3

.6
9E

+
00

(C
on

tin
ue

d 
on

 n
ex

t p
ag

e)
.



14
1

T
ab

le
 7

-6
.  

C
on

tin
ue

d.

N
O

x
H

C
C

O
2

C
O

V
SP

 B
in

a

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

11
14

W
1.

25
E

-0
2

6.
20

E
-0

1
L

2.
17

E
+0

0
-6

.3
5E

+
00

W
1.

14
E

+0
1

1.
97

E
+0

0
L

3.
47

E
+0

0
-3

.2
4E

+
00

12
01

W
6.

36
E

-0
5

4.
29

E
-0

1
L

1.
93

E
+0

0
-1

.0
6E

+
01

W
1.

76
E

+0
0

2.
12

E
+0

0
L

2.
57

E
+0

0
-8

.0
3E

+
00

12
02

W
4.

28
E

-0
5

4.
39

E
-0

1
L

1.
40

E
+0

0
-1

.1
2E

+
01

W
1.

51
E

+0
0

1.
41

E
+0

0
L

2.
06

E
+0

0
-8

.9
4E

+
00

12
03

W
3.

10
E

-0
5

4.
60

E
-0

1
L

1.
46

E
+0

0
-1

.1
1E

+
01

W
1.

60
E

+0
0

1.
71

E
+0

0
L

2.
28

E
+0

0
-8

.7
3E

+
00

12
04

W
2.

00
E

-0
4

3.
96

E
-0

1
L

1.
65

E
+0

0
-1

.0
4E

+
01

L
3.

64
E

-0
1

8.
91

E
-0

1
L

2.
34

E
+0

0
-7

.9
3E

+
00

12
05

W
3.

00
E

-0
4

3.
91

E
-0

1
L

1.
76

E
+0

0
-9

.8
1E

+
00

W
3.

92
E

+0
0

2.
87

E
+0

0
L

2.
46

E
+0

0
-7

.4
2E

+
00

12
06

W
4.

00
E

-0
4

3.
93

E
-0

1
L

1.
87

E
+0

0
-9

.3
9E

+
00

W
5.

20
E

+0
0

2.
67

E
+0

0
L

2.
59

E
+0

0
-6

.5
2E

+
00

12
07

W
9.

00
E

-0
4

4.
41

E
-0

1
L

1.
99

E
+0

0
-8

.8
6E

+
00

W
6.

29
E

+0
0

2.
44

E
+0

0
L

2.
63

E
+0

0
-5

.8
2E

+
00

12
08

W
1.

90
E

-0
3

4.
71

E
-0

1
L

1.
87

E
+0

0
-8

.4
1E

+
00

W
7.

40
E

+0
0

2.
57

E
+0

0
L

2.
88

E
+0

0
-5

.5
7E

+
00

12
09

W
3.

00
E

-0
3

4.
96

E
-0

1
L

1.
72

E
+0

0
-7

.8
9E

+
00

W
8.

48
E

+0
0

3.
12

E
+0

0
L

2.
72

E
+0

0
-4

.9
8E

+
00

12
10

W
4.

10
E

-0
3

5.
32

E
-0

1
L

1.
74

E
+0

0
-7

.5
5E

+
00

W
9.

75
E

+0
0

3.
28

E
+0

0
L

2.
39

E
+0

0
-4

.4
2E

+
00

12
11

W
7.

20
E

-0
3

5.
22

E
-0

1
L

1.
80

E
+0

0
-7

.0
4E

+
00

W
1.

29
E

+0
1

3.
76

E
+0

0
L

2.
96

E
+0

0
-3

.9
3E

+
00

12
12

W
9.

20
E

-0
3

6.
70

E
-0

1
L

1.
70

E
+0

0
-6

.1
3E

+
00

L
1.

62
E

-0
1

2.
66

E
+0

0
W

3.
36

E
-0

1
4.

22
E

-0
1

(C
on

tin
ue

d 
on

 n
ex

t p
ag

e)
.



14
2

T
ab

le
 7

-6
.  

C
on

tin
ue

d.

N
O

x
H

C
C

O
2

C
O

V
SP

 B
in

a

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

12
13

L
1.

73
E

+0
0

-5
.5

5E
+

00
W

5.
40

E
-0

3
7.

22
E

-0
1

W
1.

65
E

+0
1

9.
25

E
+0

0
W

4.
52

E
-0

1
5.

23
E

-0
1

12
14

L
1.

74
E

+0
0

-5
.1

0E
+

00
W

6.
20

E
-0

3
8.

86
E

-0
1

L
1.

27
E

-0
1

2.
85

E
+0

0
W

7.
13

E
-0

1
6.

78
E

-0
1

21
01

W
5.

00
E

-0
4

5.
20

E
-0

1
W

5.
00

E
-0

4
5.

61
E

-0
1

W
1.

69
E

+0
0

1.
43

E
+0

0
W

4.
20

E
-0

3
4.

77
E

-0
1

21
02

W
4.

00
E

-0
4

4.
74

E
-0

1
W

5.
00

E
-0

4
5.

39
E

-0
1

W
1.

79
E

+0
0

1.
57

E
+0

0
L

2.
31

E
+0

0
-6

.8
4E

+
00

21
03

W
2.

00
E

-0
4

4.
90

E
-0

1
L

2.
00

E
+0

0
-8

.9
8E

+
00

W
1.

18
E

+0
0

1.
27

E
+0

0
L

2.
17

E
+0

0
-7

.7
3E

+
00

21
04

W
7.

00
E

-0
4

4.
53

E
-0

1
L

1.
85

E
+0

0
-8

.4
9E

+
00

W
2.

70
E

+0
0

2.
13

E
+0

0
W

5.
70

E
-0

3
5.

19
E

-0
1

21
05

W
1.

40
E

-0
3

5.
10

E
-0

1
L

1.
78

E
+0

0
-8

.0
7E

+
00

W
3.

61
E

+0
0

2.
58

E
+0

0
W

9.
10

E
-0

3
5.

67
E

-0
1

21
06

W
2.

30
E

-0
3

5.
55

E
-0

1
W

1.
10

E
-0

3
6.

28
E

-0
1

W
4.

41
E

+0
0

2.
98

E
+0

0
W

1.
45

E
-0

2
6.

21
E

-0
1

21
07

W
3.

60
E

-0
3

6.
26

E
-0

1
W

1.
60

E
-0

3
6.

78
E

-0
1

W
5.

28
E

+0
0

3.
33

E
+0

0
W

2.
08

E
-0

2
6.

70
E

-0
1

21
08

W
4.

90
E

-0
3

6.
66

E
-0

1
W

1.
90

E
-0

3
7.

30
E

-0
1

W
5.

94
E

+0
0

3.
44

E
+0

0
W

2.
68

E
-0

2
6.

90
E

-0
1

21
09

W
6.

10
E

-0
3

6.
98

E
-0

1
W

2.
30

E
-0

3
7.

31
E

-0
1

W
6.

58
E

+0
0

3.
52

E
+0

0
L

1.
55

E
+0

0
-4

.0
9E

+
00

21
10

W
8.

00
E

-0
3

7.
07

E
-0

1
W

2.
50

E
-0

3
7.

34
E

-0
1

W
7.

11
E

+0
0

3.
45

E
+0

0
L

1.
55

E
+0

0
-3

.9
3E

+
00

21
11

W
1.

06
E

-0
2

7.
26

E
-0

1
W

3.
20

E
-0

3
7.

52
E

-0
1

W
7.

86
E

+0
0

3.
25

E
+0

0
L

1.
50

E
+0

0
-3

.6
0E

+
00

(C
on

tin
ue

d 
on

 n
ex

t p
ag

e)
.



14
3

T
ab

le
 7

-6
.  

C
on

tin
ue

d.

N
O

x
H

C
C

O
2

C
O

V
SP

 B
in

a

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

21
12

W
1.

27
E

-0
2

7.
92

E
-0

1
W

3.
90

E
-0

3
7.

54
E

-0
1

W
8.

48
E

+0
0

3.
27

E
+0

0
L

1.
62

E
+0

0
-3

.0
9E

+
00

21
13

W
1.

38
E

-0
2

7.
65

E
-0

1
W

4.
80

E
-0

3
7.

54
E

-0
1

W
9.

31
E

+0
0

2.
92

E
+0

0
L

1.
91

E
+0

0
-2

.8
0E

+
00

21
14

W
1.

50
E

-0
2

8.
02

E
-0

1
W

6.
20

E
-0

3
7.

72
E

-0
1

W
9.

50
E

+0
0

2.
82

E
+0

0
L

2.
08

E
+0

0
-2

.5
1E

+
00

22
01

W
3.

00
E

-0
4

4.
92

E
-0

1
L

1.
63

E
+0

0
-8

.8
7E

+
00

W
1.

84
E

+0
0

2.
55

E
+0

0
L

2.
50

E
+0

0
-6

.9
5E

+
00

22
02

W
2.

00
E

-0
4

4.
53

E
-0

1
L

1.
29

E
+0

0
-9

.2
7E

+
00

W
1.

90
E

+0
0

2.
06

E
+0

0
L

2.
34

E
+0

0
-8

.4
4E

+
00

22
03

W
4.

00
E

-0
4

5.
17

E
-0

1
L

1.
31

E
+0

0
-9

.0
9E

+
00

W
1.

60
E

+0
0

1.
32

E
+0

0
L

2.
17

E
+0

0
-8

.5
0E

+
00

22
04

W
1.

30
E

-0
3

4.
71

E
-0

1
L

1.
11

E
+0

0
-8

.4
1E

+
00

L
2.

27
E

-0
1

1.
05

E
+0

0
L

2.
22

E
+0

0
-6

.7
5E

+
00

22
05

W
2.

70
E

-0
3

4.
43

E
-0

1
L

1.
15

E
+0

0
-8

.0
2E

+
00

L
2.

01
E

-0
1

1.
40

E
+0

0
W

9.
70

E
-0

3
4.

81
E

-0
1

22
06

W
4.

70
E

-0
3

5.
04

E
-0

1
L

1.
26

E
+0

0
-7

.6
5E

+
00

L
1.

89
E

-0
1

1.
66

E
+0

0
W

2.
18

E
-0

2
4.

93
E

-0
1

22
07

W
7.

00
E

-0
3

5.
71

E
-0

1
L

1.
44

E
+0

0
-7

.2
6E

+
00

L
1.

93
E

-0
1

1.
85

E
+0

0
W

4.
28

E
-0

2
5.

33
E

-0
1

22
08

W
9.

80
E

-0
3

5.
77

E
-0

1
L

1.
65

E
+0

0
-6

.7
6E

+
00

L
1.

78
E

-0
1

2.
01

E
+0

0
W

9.
13

E
-0

2
5.

58
E

-0
1

22
09

W
1.

13
E

-0
2

5.
88

E
-0

1
W

3.
50

E
-0

3
6.

89
E

-0
1

L
1.

66
E

-0
1

2.
16

E
+0

0
W

1.
21

E
-0

1
6.

44
E

-0
1

22
10

W
1.

24
E

-0
2

5.
47

E
-0

1
W

3.
30

E
-0

3
6.

38
E

-0
1

L
1.

66
E

-0
1

2.
32

E
+0

0
L

1.
63

E
+0

0
-2

.7
3E

+
00

(C
on

tin
ue

d 
on

 n
ex

t p
ag

e)
.



14
4

T
ab

le
 7

-6
.  

C
on

tin
ue

d.

N
O

x
H

C
C

O
2

C
O

V
SP

 B
in

a

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

D
is

tb
pa

ra
 1

pa
ra

 2
D

is
tb

pa
ra

 1
pa

ra
 2

22
11

W
2.

38
E

-0
2

6.
49

E
-0

1
W

4.
90

E
-0

3
6.

75
E

-0
1

L
1.

61
E

-0
1

2.
54

E
+0

0
L

1.
61

E
+0

0
-2

.3
1E

+
00

22
12

W
2.

61
E

-0
2

6.
78

E
-0

1
W

8.
10

E
-0

3
6.

72
E

-0
1

L
1.

09
E

-0
1

2.
70

E
+0

0
W

5.
02

E
-0

1
5.

64
E

-0
1

22
13

W
4.

10
E

-0
2

8.
95

E
-0

1
W

1.
50

E
-0

2
8.

28
E

-0
1

L
1.

44
E

-0
1

2.
82

E
+0

0
W

1.
85

E
-0

1
6.

76
E

-0
1

22
14

W
7.

12
E

-0
2

1.
09

E
+0

0
W

2.
16

E
-0

2
6.

95
E

-0
1

L
1.

09
E

-0
1

2.
94

E
+0

0
W

1.
77

E
+0

0
6.

53
E

-0
1

a  F
ir

st
 tw

o 
di

gi
t o

f 
V

SP
 B

in
s:

 1
1:

 o
do

m
et

er
 r

ea
di

ng
 <

 5
0,

00
0 

m
ile

s 
an

d 
en

gi
ne

 d
is

pl
ac

em
en

t <
 3

.5
 li

te
rs

; 1
2:

 o
do

m
et

er
 r

ea
di

ng
 <

50
,0

00
 m

ile
s 

an
d 

en
gi

ne
 d

is
pl

ac
em

en
t >

 3
.5

 li
te

rs
; 2

1:
 o

do
m

et
er

 r
ea

di
ng

 >
 5

0,
00

0 
m

ile
s 

an
d 

en
gi

ne
 d

is
pl

ac
em

en
t <

 3
.5

 li
te

rs
; 2

2:
od

om
et

er
 r

ea
di

ng
 >

 5
0,

00
0 

m
ile

s 
an

d 
en

gi
ne

 d
is

pl
ac

em
en

t >
 3

.5
 li

te
rs

.
b  W

 =
 W

ei
bu

ll;
 p

ar
a 

1 
of

 W
ei

bu
ll 

is
 s

ca
le

 p
ar

am
et

er
 a

nd
 p

ar
a 

2 
of

 W
ei

bu
ll 

is
 s

ha
pe

 p
ar

am
et

er
; L

 =
 lo

gn
or

m
al

; p
ar

a 
1 

of
 lo

gn
or

m
al

 is
 φ

an
d 

pa
ra

 2
 o

f 
lo

gn
or

m
al

 is
 ξ

; P
ar

am
et

er
s 

w
er

e 
ca

lc
ul

at
ed

 u
si

ng
 S

A
S.



145

7.3 Quantification of Uncertainty in Mean Emission Rates

A particular concern in this study is whether a normality approximation can be used to represent
uncertainty in the mean.  A normality assumption is convenient because it is easy to calculate the
range of uncertainty in the mean in such situations.  When a normality assumption is not
applicable, a numerical method, known as bootstrap simulation, was used to quantify uncertainty
in the mean.  Typically, the normality assumption is influenced by the sample size, sample mean,
and standard error of mean (SEM).  When either sample size 40<n , or when the SEM divided
by the mean was greater than 20, then bootstrap simulation was done to estimate the sampling
distribution of the mean.  Overall, in most cases, a normality assumption was applicable.  Table
7-7 indicates situations for which a normality assumption was suspected to be inadequate.  These
situations include VSP Modes 12 (NOx), 13 (NOx and CO), and 14 (All Pollutants) for odometer
reading < 50,000 miles and engine displacement > 3.5 liters, and Mode 14 (All Pollutants) for
odometer reading > 50,000 miles and engine displacement > 3.5 liters.  In each of these cases,
either the sample size is less than 40 or the relative standard error of the mean is greater than 0.2.
Therefore, in these cases, bootstrap simulation was used to quantify uncertainty in the mean.
Uncertainty estimates for all other modes and strata were based upon application of the normality
assumption.

Table 7-7. VSP Modes for Which Uncertainty in the Mean Was Quantified by Bootstrap
Simulation.

Bina NO HC CO2 CO

1212
21.0=

mean

SEM
,

77=n

n/a n/a n/a

1213
32.0=

mean

SEM
,

52=n

n/a n/a
20.0=

mean

SEM
,

52=n

1214
30.0=

mean

SEM
,

39=n

19.0=
mean

SEM
,

39=n

020.0=
mean

SEM
,

39=n

21.0=
mean

SEM
,

39=n

2214
14.0=

mean

SEM
,

34=n

21.0=
mean

SEM
,

34=n

019.0=
mean

SEM
,

34=n

16.0=
mean

SEM
,

34=n
a First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters; 12: odometer reading < 50,000 miles and engine displacement > 3.5 liters; 21:
odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22: odometer reading >
50,000 miles and engine displacement > 3.5 liters.
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The absolute range of uncertainty in the mean values for each pollutant and VSP-based mode is
given in Figure 7-9 for NOx and HC and in Figure 7-10 for CO and CO2.  The relative range of
uncertainty in the mean values for each pollutant and VSP-based mode is given in Table 7-8.
The relative range of uncertainty is typically less than plus or minus 50 percent for most cases.
For CO2, the range of uncertainty is less than plus or minus 5 percent in nearly all cases.  The
relative range of uncertainty is generally smaller for the strata which have larger sample sizes.
For example, for vehicles with engine displacement less than 3.5 liters and odometer reading less
than 50,000 miles, the typical range of uncertainty is less than plus or minus 10 percent for 12 of
14 modes for modal NOx emissions, less than plus or minus 10 percent for 10 of 14 modes for
HC, less than plus or minus three percent for CO2 for all modes, and less than plus or minus 20
percent for all modes for CO.  However, for vehicles with engine displacement greater than 3.5
liters in the same odometer reading category, the typical range of uncertainty is plus or minus 30
percent for NOx, 40 percent for HC, 7 percent for CO2, and 40 percent for CO.  The latter
category has a much smaller sample size than the former.

In the several cases identified in Table 7-7 for which the normality assumption was suspected to
be inapplicable, it was confirmed based upon the results of bootstrap simulation that the
sampling distributions of the means were not normal.  For example, for NOx emissions for Mode
13 for odometer reading < 50,000 miles and engine displacement > 3.5 liters, uncertainty in the
mean was quantified by bootstrap simulation based upon the empirical distribution of data.  The
relative 95 percent confidence interval was found to be minus 48 percent to plus 73 percent.  The
confidence interval is positively skewed and the wide range of uncertainty in this case is
attributed to a large SEM relative to the mean.  In Table 7-8, uncertainty estimates based upon
bootstrap simulation are highlighted in bold.  For the cases in which uncertainties in the means
were quantified by bootstrap simulation, parametric distributions were fit to the sampling
distributions of the means using the AuvTool software.  As an example, a graphical comparison
is given in Figure 7-11 of the empirical distribution of the bootstrap replications of the mean and
a fitted parametric distribution is given for NOx emission of Mode 12 based upon an odometer
reading < 50,000 miles and engine displacement > 3.5 liters.  A summary of parameters for
parametric distributions fitted to the bootstrap replications of the means is given in Table 7-9.

Normal, lognormal, Weibull, beta and gamma distributions were considered as possible fits for
the sampling distributions.  The PDFs of the normal, lognormal, and Weibull distributions have
previously been given in Equations (7-1), (7-2), and (7-3), respectively.  The PDF of the beta
distribution is:

11 )1(
),(

1
)( −− −= βα

βα
xx

B
xf

)(

)()(
),(

βα
βαβα

+Γ
ΓΓ

=B (7-4)

The PDF of gamma distribution is:

)(
)(
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r
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xrr

Γ
=
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∫=Γ ∞ −−
0

1)( dxexr xr ∞<≤ x0 (7-5)
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Figure 7-11. Empirical Distribution of Bootstrap Replications of Mean Values and Fitted Beta
Distribution for Uncertainty in the Mean for NOx Emissions (g/sec) of Mode 12, Odometer

Reading < 50,000 miles, Engine Displacement > 3.5 Liters.

Table 7-9.  Parameters of Parametric Probability Distribution Fit to the Bootstrap Replications of
the Means for Selected Modes, Strata, and Pollutants, Based upon Empirical Bootstrap

Simulation

VSP
Bin

Odometer
reading (miles)

Engine
displacement

(liters)
Pollutant Distributiona First

Para.
Second

Para

12 < 50,000 > 3.5 NOx Beta 22.275 1761.856
13 < 50,000 > 3.5 NOx Beta 3.431 96.093
13 < 50,000 > 3.5 CO Gamma 25.328 0.029
14 < 50,000 > 3.5 NOx Beta 10.482 511.286
14 < 50,000 > 3.5 HC Beta 25.413 3911.552
14 < 50,000 > 3.5 CO2 Weibull 17.169 39.735
14 < 50,000 > 3.5 CO Normal 0.895 0.191
14 > 50,000 > 3.5 NOx Beta 42.992 595.202
14 > 50,000 > 3.5 HC Beta 21.873 805.28
14 > 50,000 > 3.5 CO2 Weibull 18.658 33.446
14 > 50,000 > 3.5 CO Gamma 36.591 0.058

a
���������	
����	�����	��
���
��������	�����	��
�������������	
����	�����	��
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The parametric distributions fit to the bootstrap replications of the means generally offered an
excellent fit.  The use of parametric distributions to describe uncertainty in the mean offers the
key advantage of compactness and eliminates the requirement to save the bootstrap replications
of the mean.  There was one case shown in Table 7-9 for which a normal distribution was found
to provide the best fit.  However, for the other 10 cases shown, beta, gamma, or Weibull
distributions offered the best fit and captured the skewness in the sampling distributions of the
mean.

7.4 Uncertainty Correction Factor for Averaging Time

Uncertainty in the mean emission rate based upon a 1-second time period was quantified for each
bin.  However, the range of uncertainty varies depending upon the averaging time of the data.
The objective of this section is to demonstrate how the range of uncertainty varies with
averaging time and to demonstrate an approach for adjusting estimates of uncertainty in the mean
emission rates for a one second averaging time to other averaging times.

Uncertainty in the mean is related to the Standard Error of Mean (SEM).  Therefore, it is
convenient to develop a correction factor to adjust the SEM for different averaging times.  To
evaluate the relative change of the SEM, a correction factor for a t-second time period was
defined as Equation (7-6):

sec1

sec
sec

−

−
− =

SEM

SEM
CF t

t (7-6)

where: CFt-sec: correction factor for t-second time period, no unit
SEMt-sec: standard error of mean for t-second time period, g/sec
SEM1-sec: standard error of mean for 1-second time period, g/sec

Using a relative correction factor enables a straight-forward adjustment of the uncertainty range
for different time periods.  For example, if the absolute 95 percent confidence interval of mean
for a 1-second period is minus 0.1 gram/sec to plus 0.1 gram/sec, then the absolute 95 percent
confidence interval of mean for 5-second period can be calculated as minus 0.1CF5-sec gram/sec
to plus 0.1CF5-sec gram/sec.  If the correction factor has a value of 2, then the uncertainty in the
mean for the 5-second averaging time would be from minus 0.2 g/sec to plus 0.2 g/sec in this
example..

In Figures 7-12 to 7-15, for each of four vehicle strata (combinations of odometer reading
reading and engine displacement categories), respectively, the relative standard error of the mean
(or correction factor defined in Equation 7-6) is plotted with respect to averaging time.  The data
for this analysis was obtained from the data set used to evaluate 10-second consecutive averages
as a basis for model development.  For each 10-second averaging time, there are two five-second
averages and ten 1-second averages that can be compared in order to evaluate the range of
uncertainty for each of these three averaging times.  Each graph in each figure displays the
standard error of the mean for the five-second averaging time divided by that for the 1-second
averaging time, for each of 14 VSP modes. Similar data are shown for the 10-second averaging
time.  A simplified correction factor was estimated by fitting a polynomial regression through the
data in the graphs.  Although the analysis could be extended to averaging times longer than 10
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seconds, as the averaging time increases, the sample size decreases.  Therefore, for
demonstration purposes, the largest averaging time considered was ten seconds.  As an example,
Figure 7-11 shows that the correction factor increases as the averaging time increases.  However,
the marginal change becomes smaller as the averaging time increases.  We hypothesize that the
correction factor may reach a plateau or a maximum at some averaging time larger than 10-
seconds; however, we also hypothesize that such a plateau or maximum may not be much larger
than the correction factor estimated at 10-seconds.  Therefore, as an initial estimate pending
further analysis in future studies, we suggest that the correction factor applied to averaging times
greater than 10-seconds be the same as that for 10 seconds.

Of the 16 graphs shown in Figures 7-12 through 7-15, 14 of them display the same general
characteristic of a reduction in the marginal increase in the correction factor as the averaging
time increases.  For only two cases, which are both for CO2 emissions for odometer reading and
engine displacement strata for which the sample size is relatively small, the correction factor
appears to reach a peak at approximately 8 seconds averaging time and decreases from 8 seconds
to 10 seconds averaging times.  Thus, for these two case, shown in Figures 7-13 and 7-15, the
correction factor for the 10 second averaging time is not substantially different from the
correction factor for the 5 second averaging time.  Although it is possible that the correction
factor for these two cases might decrease as averaging time increases beyond 10 seconds, as a
conservative assumption the value of the correction factor at 10 seconds is suggested for use for
averaging times longer than 10 seconds.  For CO as shown in Figure 7-13, there appears to be
some data that may represent outliers, leading to an estimate of the correction factor for an
individual mode as large as approximately 9.0 for the 10 second averaging time.  This potential
outlier may be because of a small sample size for that particular mode.

Table 7-10 summarizes the polynomial regression models fit to the data shown in Figures 7-12
through 7-15.  Also shown in the table is the value of the correction factor at the 10 second
averaging time for each pollutant and each odometer reading and engine displacement strata.
These values are recommended for use for averaging times greater than 10 seconds.  For NOx,
the correction factors for 10 seconds or greater averaging time range from 2.14 to 2.54 among
the four strata.  The corresponding ranges for HC, CO2, and CO are 2.50 to 2.70, 1.99 to 2.43,
and 2.35 to 2.90.  Thus, a typical value of these correction factors at 10 seconds or greater
averaging time is approximately 2.5, implying that the range of uncertainty for averaging times
of 10 seconds or more is a factor of approximately 2.5 greater than that at 1 second.  This
difference is substantial and illustrates the importance of properly accounting for averaging time
when performing uncertainty analysis.

As observed in Figures 7-12 through 7-15, there is variability in the value of the correction factor
at the 10 second averaging time when comparing results for each of the 14 modes.  It was
hypothesized that perhaps a portion of the inter-mode variability in the correction factor for a
given averaging time could be explained based upon VSP.  Therefore, the values of the
correction factors at 10 seconds were normalized with respect to the average correction factor at
10 seconds (as shown in the last four columns of Table 7-10), and the normalized correction
factors, which are described here as “bin adjustment factors,” were plotted versus mode as shown
in Figures 7-16 through 7-19 for four different odometer reading and engine displacement strata.
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The bin adjustment factor (BAF) for a given bin is given by:

sec10

sec,10

−

−=
ACF

CF
BAF k

k     (7-7)

Where:
BAFk, Bin Adjustment Factor for Bin k at 10 second;
CF10-sec,k, Correction Factor for Bin t at 10 second;
ACF10-sec, Average Correction Factor for Bin 1 to Bin 14 at 10 second.

The data shown in Figures 7-16 through 7-19 indicate that typically the bin correction factor is
smaller for the larger VSP modes than for the lower VSP modes, although there are exceptions.
For example, for NOx emissions for higher mileage vehicles, it appears that the bin correction
factor increases as VSP increases.  For 13 of the 16 graphs shown in the four figures, the typical
range of variation of the bin adjustment factor is approximately plus or minus five percent or
less.  For vehicles with larger engine displacement, there are three cases in which the range of
variation of the bin adjustment factor is approximately plus or minus 20 percent or more,
including HC and CO2 emissions for vehicles with odometer reading less than 50,000 miles and
CO2 for vehicles with odometer reading greater than 50,000 miles.  It is possible that this
apparent difference for the larger engine vehicles compared to the smaller engine vehicles
represents a real difference or possibly it could be an artifact of having smaller sample sizes for
the larger engine vehicles.  In general, while the linear curve fits capture the overall trends of the
data among the 14 modes, it is clear that the variation of the bin adjustment factor with respect to
VSP mode is not truly linear in all cases.  In future work, it may be worth exploring other curve
fits to these data and/or exploring the use of other explanatory variables, such as the mid point
value of VSP for each mode instead of the mode number, in order to improve the estimation of
the bin adjustment factor.

A summary of the Bin Adjustment Factors developed based upon the data and curve fits shown
in Figures 7-16 through 7-19  is given in Table 7-11.

7.5 Estimation of Uncertainty in Model Results

In this section, two methods are evaluated and compared for estimating uncertainty in the total
emissions for a trip or driving cycle.  These methods include the numerical method of Monte
Carlo simulation and an analytical method based upon a linear model and normality assumptions
for uncertainty in individual modes.  These two methods are illustrated for a case study example
of predicting uncertainty in total trip emissions for the IM240 driving cycle.  This case study is
followed by case studies for uncertainty in total emissions for several different driving cycles and
then by a case study for multiple vehicles on a selected driving cycle.

7.5.1 Estimation of Uncertainty in Total Emissions Based Upon the IM240 Driving
Cycle:  Comparison of Monte Carlo Simulation and Analytical Approaches

This example demonstrates the prediction of total emissions from IM240 cycle. The prediction
was based upon quantified uncertainty in VSP modes in which the uncertainty was adjusted for
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Table 7-11. Bin Adjustment Factors for Correction Factor of Time Adjustment at “� 10 seconds”
for NOx, HC, CO2, and CO and for Four Odometer Reading and Engine Displacement

Strata.
Odometer
reading
(mile)

Engine
displacement
(liters)

NOx
a HCa CO2

a COa

< 50,000 < 3.5 y = -
0.0084x +
1.0634

y = -
0.0121x +
1.0907

y = -
0.0074x +
1.0553

y = -
0.0169x +
1.127

< 50,000 > 3.5 y = -0.001x
+ 1.0078

y = -
0.0394x +
1.2954

y = -0.04x +
1.3001

y = -0.033x
+ 1.1125

> 50,000 < 3.5 y = 0.0073x
+ 0.9453

y = -
0.0062x +
1.0467

y = -
0.0006x +
1.0047

y = 0.003x
+ 0.9775

> 50,000 > 3.5 y = 0.0074x
+ 0.9448

y = -
0.0099x +
1.0742

y = -
0.0425x +
1.3186

y = -
0.0129x +
1.097

a y: bin adjustment factor (no unit); x, bin number (from 1 to 14)

averaging time using the correction factors for averaging time adjustment.  The standard IM240
cycle contains 240 seconds.  The temporal allocation of the IM240 cycle into VSP modes is
given in Table 7-12.  Most of the time spend in the IM240 cycle is represented by VSP modes 1
through 8.  Only 10 seconds are spent in Modes 9 through 11, combined, and no time is spent in
the highest VSP modes 12, 13, or 14.

Table 7-12.  Allocation of the Standard IM240 Driving Cycle Into VSP Modes With Respect to
Time Spent in Each Mode.

VSP Mode Number Total Seconds
1 41
2 24
3 16
4 37
5 47
6 19
7 29
8 17
9 4
10 3
11 3
12 None
13 None
14 None
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Thus, total emissions from IM240 cycle are calculated based upon a sum of emission from each
bin, based upon summing the products of the time spent in each mode multiplied by the
respective mode average emission rate:

TE = 41�EFmode1 + 24�EFmode2 + 16�EFmode3 + 37�EFmode4 +
47�EFmode5 + 19�EFmode6 + 29�EFmode7 + 17�EFmode8 +
4�EFmode9 + 3�EFmode10 + 3�EFmode11 (7-8)

where:
TE: total emissions, g
EF: 1-second based emission factor for each VSP mode (g/sec)

As an illustrative example, uncertainty in total NOx emissions from the IM240 cycle for a vehicle
with odometer reading < 50,000 miles and engine displacement < 3.5 liters was predicted. For
Modes 1 through 11 applied to the IM240 cycle for this particular pollutant and vehicle strata,
the quantified uncertainty in the 1-second average modal emissions can reasonably be based
upon a normality assumption.  To estimate uncertainty in total emissions, the quantified
uncertainty in the 1-second average emissions of each mode was adjusted based upon the total
amount of time spent in the mode using the averaging time correction factor previously
described.  The input assumptions for prediction of uncertainty in total emissions are given in
Table 7-13.  These assumptions include the probability distribution assumed for uncertainty in
the mean for each mode, the mean modal emission rate, the standard deviation of the distribution
for uncertainty in the mean (i.e. the standard error of the mean), the numerical value of the
correction factor applied, and the numerical value of the bin adjustment factor applied.  For
Modes 1 through 8, 10 or more seconds were spent in each mode.  Therefore, the correction
factor applicable to 10 or more seconds is used for these modes.  For Modes 9, 10 and 11, less
than 10 seconds were spent in each mode.  Therefore, the correction factor was estimated from
the polynomial curve fits presented in Table 7-10.  For cases in which the averaging time was
less than 10 seconds, a bin adjustment factor was not applied.  The correction factor and bin
adjustment factor were multiplied with the standard deviation of the modal emission rate to
arrive at a new standard deviation for the modal emission rate appropriate for the particular
averaging time of each mode.  For example, for Mode 1, the corrected standard deviation was
(1.97x10-5 g/sec) x (2.47) x (1.0248) = 4.99x10-5 g/sec.

Monte Carlo simulation was used to propagate uncertainty in each modal emission rate, using
Equation (7-8), in order to estimate uncertainty in total emissions.  For the Monte Carlo
simulation, a sample size of 10,000 was selected.  When performing Monte Carlo simulation, the
selection of sample size is typically based upon a compromise between the precision of the
estimated uncertainty for the model output versus the computational burden.  A sample size of
10,000 is not necessary in every case.  Smaller sample sizes may provide adequate results.
Moreover, other methods aside from Monte Carlo simulation, such as Latin Hypercube
Sampling, can be used to obtain precise estimates of the distribution of a model output using
smaller sample sizes than required for Monte Carlo simulation.  Cullen and Frey (1999) and
Morgan and Henrion (1990) provide more discussion on criteria and methods for selecting
sample sizes for Monte Carlo simulation and for Latin Hypercube Sampling.  The results from
Monte Carlo simulation are shown in Table 7-14 and in Figure 7-20.
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Table 7-13. Input Assumptions for Prediction of Uncertainty in Total NOx Emissions for a Cast
Study of the IM240 cycle, for Vehicles with Odometer Reading < 50,000 Miles and

Engine Displacement < 3.5 Liters.
NOx Emission Factor

Mode
Number

Input
Distribution

Mean Modal
Emission Rate

(g/sec)

Standard Deviation of
Mean Modal

Emission Rate (g/sec)

Correction
Factor

Bin
Adjustment

Factor
1 Normal 0.000901 1.97E-05 2.47 1.025
2 Normal 0.000628 2.04E-05 2.47 1.03
3 Normal 0.000346 9.26E-06 2.47 1.033
4 Normal 0.001173 2.46E-05 2.47 1.033
5 Normal 0.001706 3.56E-05 2.47 1.031
6 Normal 0.002368 5.12E-05 2.47 1.027
7 Normal 0.003103 6.86E-05 2.47 1.02
8 Normal 0.004234 9.44E-05 2.47 1.011
9 Normal 0.005069 0.000141 1.77 Nonea

10 Normal 0.005865 0.00017 1.54 Nonea

11 Normal 0.007623 0.000301 1.54 Nonea

a no Bin Adjustment Factor is needed because time period is smaller than 10 seconds.

Table 7-14.  Example Prediction of Uncertainty in Total Emissions for NOx Emissions From the
IM240 Cycle for Vehicles with Odometer Reading < 50,000 Miles and Engine

Displacement < 3.5 Liters Based upon Monte Carlo Simulation

Cycle IM240

Vehicle Odometer reading < 50,000 miles, engine displacement < 3.5 liters

Pollutant NOx

meana, b 0.45 g

Lower -0.02 g
Absolute 95% CIa, b

Upper 0.02 g

Lower -4.4 %
Relative 95% CIa, c

Upper 4.4 %
a based upon Monte Carlo Simulation results of 10,000 runs
b unit: gram
c unit: %
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Cumulativ e Chart

Certainty is 95.00% from 0.43 to 0.47 gram

.000

.250

.500

.750

1.000

0

10000

0.43 0.44 0.45 0.46 0.48

10,000 Trials    56 Outliers

Forecast: NO, IM240

Figure 7-20. Quantified Uncertainty in Total NOx Emissions from the IM240 Cycle for Vehicles
with Odometer Reading < 50,000 Miles and Engine Displacement < 3.5 Liters Based upon

Monte Carlo Simulation.

The results from the Monte Carlo simulation are a total NOx emissions mean estimate of 0.45
grams with a 95 percent range of uncertainty of plus or minus 0.02 grams, or plus or minus 4.4
percent of the mean.  In this particular case, even with the correction factor for averaging time
adjustment and the bin adjustment factor applied to each mode, the range of uncertainty in the
estimated average total emissions was sufficiently narrow that a normality assumption would be
justifiable.

As an alternative to Monte Carlo simulation, an analytical solution was developed.  For a linear
model and for an assumption of normality for uncertainty in each modal emission rate, the
uncertainty in the total emissions can be estimated as follows:

∑ ×=
n

i
iitotal WUU 2)( (7-9)

Where:
Utotal: Uncertainty in the sum of the quantities (i.e. half the 95% CI)
Ui: Uncertainties associated with each quantity, (i.e. half the 95% CI)
Wi: Weight associated with each quantity

The weight is the fraction of total time spent in each mode.  The analytical solution for the
IM240 cycle is that the average total emissions are 0.45 grams and the uncertainty is
approximate minus or plus 0.018 grams for a 95% confidence interval, corresponding a relative
range of minus or plus 4 percent, which is similar to numerical simulation results.

The analytical method offers the advantage of reduced computing resources required to estimate
total uncertainty in emissions, when compared to the Monte Carlo simulation approach.
However, the analytical method is limited to situations in which there are a linear combination of
normal distributions.  Therefore, if in the future there was a need to include uncertainty in not
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Table  7-15.  Allocation of the ART-EF, IM240, FTP (Bags 2 and 3) and US06 Driving Cycles
Into VSP Modes With Respect to Time Spent in Each Mode.

Seconds Spent in Each Mode by Driving Cycle
VSP Mode

ART-EF IM240 FTP US06
1 85 41 201 113
2 51 24 119 19
3 196 16 336 69
4 66 37 294 26
5 40 47 212 40
6 31 19 105 55
7 18 29 60 64
8 10 17 27 61
9 5 4 8 45
10 2 3 5 56
11 3 3 32
12 9
13 21
14 11

only the modal emission rate but also in the fraction of time spent it each mode, the analytical
method presented here would not be applicable.  Cullen and Frey (1999) provide an overview of
approximate analytical methods for propagating the standard deviation of distributions for model
inputs through a model in order to estimate the standard deviation of the model output.

7.5.2 Estimation of Uncertainty in Total Emissions of Selected Driving Cycles

In this section, uncertainty estimates are developed for total emissions of NOx, HC, CO2, and CO
for four selected driving cycles, including ART-EF, IM240, FTP, and US06.  These four cycles
represent different ranges of VSP and of total emissions.  The uncertainty in total emissions was
quantified using the analytical method explained in the previous section.  The distribution of the
total time of each cycle by VSP mode is given in Table 7-15.  For the ART-EF cycle, over 90
percent of the total cycle time is spent in Modes 1 through 6, and there is no representation of
Modes 11 through 14.  As previously discussed, for the IM240 cycle most of the activity occurs
in Modes 1 through 8.   The FTP is similar to the IM240 cycle in that most of the time is spent in
Modes 1 through 8.  The US06 cycle is more widely distributed over the 14 modes compared to
the other three cycles.

The results of the uncertainty analysis for the IM240, ART-EF, FTP, and US06 cycles are shown
in Tables 7-16 through 7-19, respectively.  Each table shows results for the mean total emissions,
absolute uncertainty, and relative uncertainty for NOx, HC, CO2, and CO and for four strata
based upon odometer reading and engine displacement.
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The relative range of uncertainty, on a percentage basis in comparison to the mean total
emissions, is similar for the four cycles for a given pollutant and strata in most cases.  For
example, for vehicles with odometer reading less than 50,000 miles and engine displacement less
than 3.5 liters, the relative uncertainty range is approximately 4 to 7 percent for NOx, 6 to 13
percent for HC, one percent for CO2 and 10 to 16 percent for CO when comparing all four
driving cycles.  Within these ranges, the US06 cycle tends to have larger relative uncertainty
compared to the other three cycles.  For example, for the same vehicle strata, the uncertainty in
NOx emissions for the US06 cycle is plus or minus 7 percent compared to only plus or minus 4
percent for the IM240, ART-EF, and FTP cycles.  The uncertainty estimates for the US06 cycle
are larger than for the other three cycles for NOx for all strata and for CO for strata 11 (<50,000
miles, < 3.5 liters) and 21 (>50,000 miles, <3.5 liters).

Setting aside the differences between the US06 and the other cycles, the typical ranges of
uncertainty also vary by strata, with smaller ranges of uncertainty for those strata for which there
are more data.  These include the strata for engine displacement less than 3.5 liters for both
odometer reading ranges.  For these two strata, a typical range of uncertainty is plus or minus 4
percent for NOx, plus or minus 6 percent for HC, plus or minus 1 percent for CO2, and plus or
minus 10 percent for CO.  For the larger engine displacement strata for both odometer reading
ranges, the typical ranges of uncertainty are plus or minus 10 percent for NOx, plus or minus 25
percent for HC, plus or minus 2 percent for CO2, and plus or minus 25 percent for CO.  The
uncertainty ranges are typically narrowest for CO2.

The relative uncertainty ranges in NOx emissions are typically larger than that for CO2 but less
than that for HC and CO.  The relative uncertainty ranges for HC and CO are comparable to each
other in most cases.  Thus, the key insights are that:  (1) the amount of uncertainty appears to
increase as the average VSP or range of VSP of a cycle increases; (2) the amount of uncertainty
is a function of sample size; and (3) the relative amount of uncertainty is smallest for CO2,
largest for both HC and CO, and in between for NOx.  Furthermore, the relative range of
uncertainty for these particular cycles is as small as only one or two percent for CO2 and as large
as 30 percent or more for HC and CO.  Thus, in some cases, the range of uncertainty in total
emissions is substantial.

The uncertainty estimates presented in this section represent uncertainty in total emissions for a
single vehicle of a given odometer reading and engine displacement.  In order to estimate
uncertainty in total emissions for a fleet of vehicles, these estimates can be multiplied by the total
number of vehicles operated on each activity pattern for each strata.  For example, suppose that
100 vehicles of odometer reading less than 50,000 miles and engine displacement less than 3.5
liters were operated on an activity pattern similar to the US06 cycle.  The total emissions and the
relative range of uncertainty would be 230 g ± 6.5% for NOx, 72 g ± 13% for HC, 233,400 g
±1.2% for CO2, and 3,500 g ± 16% for CO.  Suppose in addition that there were 100 vehicles in
each of the other three odometer reading and engine displacement strata.  In this case, the results
would be be 1,520 g ± 9.6% for NOx, 505 g ± 12% for HC, 1,207,000 g ±0.7% for CO2, and
25,900 g ± 14% for CO.  Of course, the method for estimating uncertainty in total emissions can
be expanded to account for the sum of total emissions and uncertainty in total emissions when
different vehicles are operating on different activity patterns.
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7.5.3 Estimation of Uncertainty in Total Emissions for Different Numbers of
Vehicles

The purpose of this section is to illustrate that the relative range of uncertainty in total emissions
for a particular activity pattern is not a function of the number of vehicles operating on that
pattern for a given strata.  As a case study, the mean total emissions and the uncertainty in the
mean total emissions was estimated for 13 vehicles operating on the ART-EF cycle.  In this case
study, the inter-vehicle variability in the speed traces for each test is taken into account.  The
allocation of the second-by-second emission data from the driving cycle tests into VSP modes is
summarized in Table 7-20.  Although on average the distribution of modes among the 13
vehicles is similar to the distribution of modes for the standard ART-EF cycle as shown in Table
Table 7-15, there is variability in the amount of time spent in each mode from one test to another.
For example, for 12 of the tests the amount of time spent in Mode 3 varied from 191 seconds to
211 seconds, while for another test the amount of time spent in this mode was 253 seconds.  For
comparison, the standard ART-EF speed trace has 196 seconds in Mode 3.  Thus, it is the case
that individual tests do not exactly reproduce the standard speed trace.

As an example, the uncertainty in total NOx emissions were quantified for the 13 vehicles taking
into account inter-vehicle variability in the speed traces and uncertainty in the emission rate for
each individual mode.  The average estimate of mean total NOx emission from the  13 vehicles,
based upon Monte Carlo simulation with 10,000 replications, is 7.11 grams.  The quantified
absolute 95% confidence interval is from 6.84 gram to 7.38 gram, corresponding to a relative
range of minus 3.8 percent to plus 3.8 percent.  The CDF of the quantified uncertainty in the
mean total emissions is shown in Figure 7-21.

The relative range of uncertainty of plus or minus 3.8 percent is influenced in part by the
variability in the distribution of the modes among the 13 vehicles because of the variability in the
speed traces for each test.  From the previous section, the uncertainty estimated based upon the
standard speed trace for the same strata of vehicles was plus or minus 3.9 percent.  The
difference in the relative range of uncertainty of 0.1 percent is most likely attributable to the role
of inter-vehicle variability in the speed traces.  Therefore, these results illustrate that the relative
range of uncertainty in mean total emissions is relatively insensitive to the number of vehicles
tested or for which predictions are being made, even though there may be some inter-vehicle
variability in the speed traces.

7.6 Summary and Recommendations

This chapter has demonstrated several key issues pertaining to quantification of variability and
uncertainty in vehicle emissions estimates.  With regard to characterization of variability, the key
points addressed in this work include the following:

• Single component distributions are often useful and reasonably accurate for estimating
inter-vehicle variability in emissions for most modes and vehicle strata, but they do not
work well for all modes and vehicle strata;

• Single component distributions whose parameters are estimated using Maximum
Likelihoood Estimation (MLE) can have means and standard deviations that are
substantially different from that of the data;
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Table 7-20.  Allocation of the Actual ART-EF Driving Cycle Speed Traces Into VSP Modes
With Respect to Time Spent in Each Mode for 13 Different Vehicles

Vehicle IDVSP
bina #7 #10 #11 #15 #18 #21 #22 #26 #27 #39 #42 #48 #50
1101 74 64 74 75 68 71 73 71 67 54 72 73 61
1102 54 67 55 45 51 53 59 57 62 50 56 56 69
1103 206 198 200 202 211 206 202 200 202 253 202 199 191
1104 42 66 51 62 56 52 50 56 60 55 56 54 99
1105 43 33 41 50 38 47 34 45 36 40 42 39 47
1106 42 35 38 31 36 34 42 29 32 24 38 40 16
1107 19 17 20 16 18 19 24 19 22 4 15 22 10
1108 8 10 12 8 10 8 7 12 9 11 9 8 5
1109 8 6 7 7 9 5 7 8 6 2 6 4 2
1110 6 4 3 6 5 7 4 5 4 2 6 6 2
1111 2 1 2 4 1
1112 2
1113 2
1114
a First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters

Cumulativ e Chart
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Figure 7-21.  Quantification of Uncertainty Based upon Monte Carlo Simulation for Total NOx

Emission from 13 Vehicles Tested on the ART-EF Cycle.
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• The mean and standard deviations of fitted distribution can be forced to match those of
the data if the Method of Matching Moments (MoMM) is used instead of MLE;

• In specific examples evaluated here, distributions fitted using MoMM appeared to better
represent the upper tail of the distribution of emissions for a given mode than did
distributions fitted using MLE;

• The distribution of emissions within any given mode is typically positively skewed and
for most modes either a lognormal or a Weibull distribution could provide an adequate fit
to the data;

• There were a few modes out of 56 for which single component distributions (e.g.,
lognormal, Weibull) could not provide a good fit to the data;

• Case studies were developed illustrating that two component mixtures of lognormal
distributions could be fit to data sets for which a single component distribution was a
poor fit, and that the mixture distribution provided an excellent fit to the data.

• For mixture distributions, MLE is a more readily available and easily applied parameter
estimation method than MoMM; however, the differences between these two techniques
become less important when the fit of the distribution to the data is very good.

• The use of parametric distributions, whether single component or mixtures, was shown to
be a feasible approach for characterizing variability.

With regarding to the characterization of uncertainty in mean emissions for specific modes, the
main findings of this work are as follows:

• The sample sizes are sufficiently large and/or the relative standard error of the means are
sufficiently small, in most cases, so that a normality assumption can be applied for most
modes when estimating uncertainty in the mean emission rates;

• The estimation of uncertainty in the mean emission rates can be based directly upon the
data and need not be based upon the distributions fitted to the data to represent
variability; therefore, any discrepancies between the fitted distributions for variability and
the data need not influence the uncertainty analysis;

• For situations in which the sample size is less than 40 or the relative standard error of the
mean is greater than 0.2, a more detailed assessment is necessary regarding whether a
normality assumption is appropriate for estimating uncertainty in mean modal emission
rates;

• The numerical method of bootstrap simulation can be used to estimate the sampling
distribution of the mean for situations in which a normality assumptions is suspected to
be inaccurate;

• The results of bootstrap simulation may sometimes confirm that a normality assumption
is appropriate, or may provide a strong indication that a normality assumption is not
appropriate;

• Parametric distributions, such as beta, Weibull, gamma, and lognormal, can be fit well to
the distributions of bootstrap replications of the mean in order to compactly represent
uncertainty in mean modal emissions even for cases in which a normality assumption is
not valid;

• The range of uncertainty in mean modal emission rates is a function of averaging time;
therefore, it was necessary to develop an averaging time correction factor in order to
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adjust uncertainty estimates developed based upon one second averages to uncertainty
estimates applicable for other averaging times;

• When comparing a 10 second average to a 1 second average, the range of uncertainty
increases by a factor of approximately 2.5;

• A method was demonstrated for estimating averaging time correction factors; the results
of analysis of data from the modeling database suggest that the rate of increase of the
correction factor becomes small for an averaging time of 10 seconds; therefore, the
correction factor values estimated for the 10 second averaging time are suggested for use
for averaging times longer than 10 seconds.

• The averaging time correction factor has some sensitivity to average VSP within a mode;
therefore, a “bin adjustment factor” was developed in order to produce a mode-specific
refined estimate of the correction factor.

With respect to the estimation of uncertainty in total emissions, the key findings of this work are
as follows:

• Monte Carlo simulation is a flexible method for accounting for uncertainty in not just the
modal emission rates but also in activity data, such as the percentage of time spent in
each mode;

• The computational burden of Monte Carlo simulation depends on the selected sample
size for the numerical simulation of uncertainty; the choice of sample size can be made
taking into account trade-offs between the precision of the estimate of uncertainty in the
model output versus computational time.  Furthermore, techniques such as Latin
Hypercube Sampling can be used to reduce the sample size for a given level of precision
in the estimated distribution for a model output;

• For simple models involving linear combinations of normal distributions, an analytical
approach will give an exact solution with relatively little computational burden; however,
in order to include uncertainty from activity data in addition to uncertainty in modal
emission rates, the analytical approach must be modified to an approximate approach;

• The results obtained from Monte Carlo simulation and from the analytical solution for
linear models based upon normality were shown to be equivalent for a case study of
estimating uncertainty in total emissions for a standard driving cycle;

• Based upon case studies for four driving cycles, four pollutants, and four vehicle strata,
the key insights are that:  (1) the amount of uncertainty appears to increase as the average
VSP or range of VSP of a cycle increases; (2) the amount of uncertainty is a function of
sample size; and (3) the relative amount of uncertainty is smallest for CO2, largest for
both HC and CO, and in between for NOx.  For the specific case studies, the uncertainty
range was as narrow as plus or minus 1 percent for CO2 and as large as plus or minus 30
percent for HC and CO;

• Uncertainty estimates for total emissions of individual vehicles can be aggregated to
make estimates of uncertainty in total emissions for a fleet of vehicles;

• Inter-vehicle variability in speed traces for a standardized driving cycle had little
influence on the uncertainty estimates for multiple vehicles for the case study of the
ART-EF cycle;
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• The relative range of uncertainty in total emissions for multiple vehicles is relatively
insensitive to the number of vehicles even when there is inter-vehicle variability with
respect to a standard speed trace, for the example of the ART-EF cycle.

The recommendations based upon this work include the following with respect to quantification
of variability:

• It is feasible to use parametric distributions to represent variability in emissions for
specific modes and the use of parametric distributions is preferred over empirical
distributions because they represent a more compact method of summarizing variability.

• The Method of Matching Moments appears to be a preferred method for fitting
distributions to data because the mean and standard deviation of the fitted distribution
will be the same as that of the data and because distributions fitted using MoMM appear
to provide a better fit to the upper tail of the distribution, compared to MLE.  Therefore,
the use of MoMM is recommended for additional evaluation and application.

• Single component distributions such as lognormal and Weibull distributions will typically
be able to adequately describe variability for most modes.

• In cases where single component distributions fail to provide an adequate fit, a two
component lognormal mixture distribution is recommended as a strong candidate for
substantially improving the fit.

• It is not necessary for the uncertainty analysis to be conditioned on the distributions fitted
to represent variability within modes; therefore, if there are discrepancies between the
fitted distributions and the data, such discrepancies need not introduce any error into the
uncertainty analysis.

With respect to quantification of uncertainty in mean modal emission rates, the recommendations
based upon this work include the following:

• The development of uncertainty estimates for mean emissions should be based directly
upon the data if there are problems in fitting distributions for variability to the data;
however, if the fits of the distributions for variability are good, then the uncertainty
analysis can be based either upon the data or upon the fitted distributions for variability;

• A normality assumption will typically be adequate for most modal emission rates as long
as there are sufficient data;

• For modes for which the sample size is less than 40 and/or the relative standard error of
the mean is greater than 0.2, the assumption of normality should be tested by developing
a sampling distribution of uncertainty in the mean based upon bootstrap simulation;

• For cases in which a normality assumption is not valid, bootstrap simulation can be used
to estimate a distribution of bootstrap replications of the mean, and a parametric
distribution such as beta, Weibull, gamma, or lognormal can be fit to the distribution of
the means;

• The range of uncertainty in modal emission rates must be adjusted for different averaging
times using an approach such as the correction factor and bin adjustment factor approach
demonstrated here.
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With respect to the quantification of uncertainty in total emissions, the recommendations based
upon this work include the following:

• A simple analytical approach for estimating uncertainty in total emissions is adequate as
long as the uncertainty in modal emission estimates are normal or approximately normal
for most or all of the modes and as long as there is no need to include uncertainty in
vehicle activity in the estimate;

• An analytical calculation method based upon normality can be included for comparison
purposes even if a Monte Carlo method is also used; for example, results from the
analytical method could be used as a quality assurance check on the Monte Carlo
simulation results;

• A Monte Carlo simulation-based methods, including variants based upon Latin
Hypercube Sampling, is recommended if the objective is to include uncertainty in activity
as an input to the estimation of uncertainty in total emissions;

• In situations for which the sample sizes are small and/or the variability in data is large,
normality assumptions will not be valid.  For such situations, a Monte Carlo-based
method is preferable.

• The range of uncertainty is sufficiently large in many cases that a quantitative uncertainty
analysis is well-justified.
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8 FEASIBILITY OF ESTIMATING MODAL EMISSIONS FROM AGGREGATE
BAG DATA

The objective of this task is to evaluate a methodology for deriving modal emission rates from
data in which only aggregate emission results are available, in order to answer the key question:
How should aggregate bag data be analyzed to derive estimates of modal emission rates?  The
first section provides background and theory, upon which the analyses in the later sections are
based.

8.1 Methodological Overview

In order to estimate modal emission rates, the fraction of time spent in each mode for a driving
cycle is estimated based upon the second-by-second speed trace used for the bag measurements
(preferably the actual speed trace for the test, as opposed to the nominal speed trace), and any
other available information regarding simulation of loads with the dynamometer. A system of
equations for the unknown modal emissions, the fraction of time in each mode, and the total
(agrgretage) emissions is developed since the average emission rate for each trip can be
represented by the fraction of time spent in each mode multiplied by modal emission rate.  For
example for four different modes for running exhaust emissions, as was the case for the shootout
project that was conducted by NCSU, the following equation was specified (Frey, Unal, and
Chen, 2002):

ERcs x ftcs + ERidle x ftidle + ERaccel x ftaccel + ERdecel x ftdecel + ERcruise x ftcruise  = ERave (8-1)

    where,
ERi = emission rate for mode i (g/sec)
fti = fraction of time spent in mode i
Subscripts

cs = cold start mode
idle = idle mode
accel = acceleration mode
decel = deceleration mode
cruise = cruise mode
ave = average of all modes

From the bag data, the average emission rate for the entire bag (or trip) can be estimated.  From
the speed trace, the fraction of time in each mode can be estimated.  Therefore, the unknowns are
the modal emission rates.

In order to solve systems of equations such as the one given in Equation (8-1), there are different
methods. A system where the number of equations used is the same as the number of unknowns
is identified as a “square” system, and has unique solutions (Kress, 1998).  For “square” systems,
an exact solution is sought by using methods such as Gaussian Elimination.

Systems which have a number of equations less than the number of unknowns are identified as
“underdetermined” systems, and the solutions of these systems of equations are not unique.
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Such systems can be converted to "square" systems by adding additional equations, such as an
assumption regarding the ratio of the g/sec emission rate for one mode with respect to another.

Conditions where there are more equations than unknowns are identified as “overdetermined”
cases.  In these cases, which are likely to be common with respect to the use of existing vehicle
emissions bag data, least-squares methods can be used to find solutions (Kress, 1998).

According to Kress (1998), in order to be able to solve linear systems directly, the system should
be “well-conditioned”, rather than “ill-conditioned”. “Ill-conditioned” systems occur when small
errors in the data of a linear system cause large errors in the solution (Kress, 1998; Hildebrand,
1987).  The minimum number of equations (i.e., one equation represents one measurement of
bag data) that are desirable in order to have a well-conditioned system will depend on number of
unknowns, which is the number of modal “bins” in this case.  Techniques for solving well-
conditioned over-determined systems include least-squares regression and constrained least-
squares. In the latter method, constraints can be included. For example, if it is known that
emissions in one mode should be less than that of other modes, this can be added as a constraint
in the system. Further, a non-negativity constraint can be included.   In this study, both Least-
Squares and Constrained Least-Squares were investigated.  From the previous study it was
observed that Constrained Least-Squares produced good results.

The performance of the modal emission estimation approach based upon aggregate data was
evaluated based upon application of the method to second-by-second data.  Specifically, the
second-by-second data were used to estimate the fraction of time spent in each mode and the
total (or trip average) emission rate.  The calculation procedure described above was applied to
estimate the modal emission rates.  The estimated modal emission rates were compared to the
actual modal emission rates.  Uncertainty in the predictions of the solution technique were
characterized by evaluating the distribution of the differences between the predicted modal
emission rates and the actual modal emission rates.  Ideally, if the solution method is unbiased,
the average difference between the predicted and actual modal emission rates will be zero.  If the
average difference is not zero, then there is a bias.  The magnitude of the bias was evaluated to
determine whether it was significant. The uncertainty in the modal emission estimates obtained
from the bag (aggregate) data must be considered in the uncertainty analysis of the emissions
model if these modal emission estimates are used in the model.

8.2 Bag-Based Modal Emissions Estimation for Four Modes (Idle, Acceleration, Cruise,
Deceleration) and for 14 VSP Modes

The objective of this portion of the work was to develop a methodology for deriving modal
emission rates from data in which only aggregate emission results are available.  The method
was first applied to relatively simple modal emission models, including the four basic modes of
idle, acceleration, cruise, and deceleration defined by NCSU in previous work and the 14 VSP
modes defined in this project. The generic equation underlying the estimation process can be
specified as:

ER1* ft1 + …+ ERi* fti +… + ERn* ftn = ERavg (8-2)

Where,
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ERi :   emission rate for mode I (g/sec)
 fti    :    fraction of time spent in mode i

Subscripts:
      i:       mode i
      n:      total number of modes
      avg:  average of all modes

From the bag data, the average emission rate for the entire bag (or trip) can be estimated. From
the speed trace, the fraction of time in each mode can be estimated. Therefore, the unknowns are
the modal emission rates.

Initially, tests of the method were done on two preliminary versions of modal definitions,
including the four original NCSU based bins and the 14 VSP based bins developed in this
project.  The NCSU approach is comprised of four driving modes: idle, acceleration,
deceleration, cruise, which are assigned mode numbers from 1 to 4 sequentially for purposes of
this analysis.

Because the equation above corresponds to one trip and there are hundreds of trips in the data
set, the equation is an “overdetermined” square system in which there are more equations than
unknown variables. The techniques for solving such systems include least-squares and
constrained least-squares as previously discussed. We used both of them and compared their
applicability.

The basic assumption of the least squares method is to find a curve that has the minimal sum of
the deviations squared (least square error) from a given set of data:

Min    y = f1(x)* f1(x) + …+ fi(x)* fi(x) +… + fm(x)* fm(x)      (8-3)
Where
          fi(x) = fti1* x1 +…+ ftij* xj +…+ ftin* xn  ����avgi

          xj:  the emission rate of mode j
          m: number of trips
          n:  number of modes
          ERavgi :   aggregated emission rate for all modes in trip i(g/sec)
          Ftij    :    fraction of time spent in mode j in trip i

For the constrained least square method, the approach is to solve the above least squares problem
additionally with some constraints which may be linear or non-linear equations or inequalities.
For example, it is known that emission rates in the acceleration mode should be larger than that
in the idle modes, from which, we can assume:  xaccel > xidle . The constrained least squares
problem is a special form of Nonlinear Programming, which is one of the classic topics in
Operations Research. In the NLP terminology, the previous equation is an objective function
which is nonlinear and quadratic.

At first, only simple constraints were used, but results with these were not promising, so strict
constraints were created.  Hence, there are 3 tests conducted respectively on each pollutant for
each binning approach: unconstrained, basic constraints, and strict constraints.  The basic
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constraints just consider the order of emission rates of all the modes  and their non-negative
characteristic.  For example, the following is the set of basic constraints set for the NCSU
approach used in the test:

                 X2 > X4 > X3 > X1 > 0 (8-4)

                 Where   X2:  emission rate of acceleration mode
                              X4:   emission rate of cruise mode
                              X3:   emission rate of deceleration mode
                              X2:    emission rate of idle mode

If the space of the control variables X is not sufficiently focused, it is possible that the estimated
optimal value of X* might lie in an area that is infeasible, such as negative values. Thus, the
more concentrated the effective space of X is, the more accurate the test results would typically
be. Based on this, strict constraints were developed.  To develop the strict constraints, the
emission rates of each mode for each trip were calculated as ratios with respect to the smallest
emission rate among all the modes, which is idle in the case of the NCSU approach,  and then
statistically summarized over the all the trips to get the means and confidence limits of those
ratios.  These ratios were used to develop the strict constraints..  The strict constraints also
include either explicitly or implicitly the basic constraints set.  Since the form of the latter was
shown above, here just the additional strict constraints are displayed:

                 a * X1 <  Xi  < b* X1 (8-5)

                 where   X1: the lowest emission rate among all the modes
                              a: the low bound of confidence limits for ratio Xi/ X1  (confidence=0.05)
                              b: the high bound of confidence limits of ratio Xi/ X1    (confidence=0.05)

Below is an example of complete strict constraints set for HC emissions based upon NCHRP
data under the NCSU bin approach:

                   X2 > X4 > X3 > X1 > 0 (8-6)
                   56.5 * X1 <  X2  < 73.4* X1

                     1.8 * X1 <  X3  <   7.1* X1

                     3.6 * X1 <  X3  < 13.3* X1

                    Where X2:  emission rate of acceleration mode
                                  X4:   emission rate of cruise mode
                                X3:   emission rate of deceleration mode
                                X2:    emission rate of idle mode

The SAS mathematical programming software was used to solve the above NLP problem. The
test was done based upon the NCHRP data set, which has more than one hundred trips and
92,000 observations. The results are shown in Tables 8-1 through 8-4 for NOx, HC, CO, and
CO2, respectively.  The results are summarized graphically in Figures 8-1 through 8-4 for the
same four respective pollutants.  The results indicate that for the analysis of only four modes, the
accuracy of estimating the average modal emission rates is less than desirable.  For example, the
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Table 8-1.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for NOx:  Comparison of No Constraint, Basic Constraint,

and Strict Constraint Solutions.
Mode Actual NCa ERRORd Cb ERRORd SCc ERRORd

Er1 2.84 -12.3 -5.35 0 -1 0.78 -0.72
Er2 65.5 -285 -5.35 28.44 -0.57 34.05 -0.48
Er3 3.18 972.02 304.94 28.44 7.95 3.49 0.1
Er4 22.76 -148.98 -7.54 28.44 0.25 31.81 0.4
Avg. Error 131.4 2.44 0.43

Table 8-2.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for HC:  Comparison of No Constraint, Basic Constraint,

and Strict Constraint Solutions.
Mode Actual NCa ERRORd Cb ERRORd SCc ERRORd

Er1 1.18 28.69 -23.36 0 1 0.49 0.59
Er2 19.7 -207.09 11.51 8.38 0.57 27.54 -0.4
Er3 2.8 295.24 -104.39 8.38 -1.99 3.46 -0.23
Er4 6.58 -12.31 2.87 8.38 -0.27 4.05 0.38
Avg. Error 35.53 0.96 0.4

Table 8-3.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for CO:  Comparison of No Constraint, Basic Constraint,

and Strict Constraint Solutions.
Mode Actual NCa ERRORd Cb ERRORd SCc ERRORd

Er1 20.04 -3561.8 178.74 0 1 1.02 0.95
Er2 2013.96 -3957.6 2.97 688.62 0.66 1345.18 0.33
Er3 77.15 31522 -407.57 688.62 -7.93 152.54 -0.98
Er4 447.11 -6407.3 15.33 688.62 -0.54 636.76 -0.42
Avg. Error 151.15 2.53 0.67

Table 8-4. Results of Estimation of Modal Emission Rates (g/sec) from Aggregate Data for Four
NCSU Driving Modes for CO2:  Comparison of No Constraint, Basic Constraint, and

Strict Constraint Solutions.
Mode Actual NCa ERRORd Cb ERRORd SCc ERRORd

Er1 0.89 1.67 0.87 0 -1 0.96 0.07
Er2 5.76 -45.07 -8.82 3.4 -0.41 4.61 -0.2
Er3 0.98 84.78 85.14 3.4 2.46 1.01 0.02
Er4 3.29 -5.87 -2.78 3.4 0.03 3.65 0.11
Avg. Error 24.4 0.97 0.1

Notes for Tables 8-1 through 8-4:
a NC: No Constraint
b C: Constraint
c SC: Strict Constraint
d Error: (Predicted-Actual)/Actual
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Figure 8-1.  Predicted versus Observed NOx NCSU Modal Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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Figure 8-2.  Predicted versus Observed HC NCSU Modal Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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Figure 8-3.  Predicted versus Observed CO NCSU Modal Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.

y = 0.7827x + 0.4207

R2 = 0.9434

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

Observed Modal Rate (g/sec)

P
re

d
ic

te
d

 M
o

d
al

 R
at

e 
(g

/s
ec

)

Figure 8-4.  Predicted versus Observed CO2 NCSU Modal Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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slopes of the best fit lines in the parity plots deviate substantially from an ideal value of 1 for all
four pollutants.  However, the strict constraints do produce modal estimates that qualitatively
preserve the relative ordering among modes and that yield an acceleration mode with an
emission rate substantially higher than for the other modes.

The results based upon application to the 14 VSP-based modes are shown in Tables 8-5 through
8-8 and Figures 8-5 through 8-8 for NOx, HC, CO, and CO2, respectively.   These results are
generally more promising, with the slope of the best fit line in the parity plots closer to one than
was the case for the analysis based upon only four modes, and with coefficients of determination
for the parity plots in excess of 0.80.  The results are especially promising for CO2.

As exspected, among three types of test, the test based on strict constraints gave the best
performance, which confirms that the focus on the effective area of the control variables X will
improve the predication accuracy.

Comparing the differences among the four pollutants, only the results for CO2 are satisfying,
with a predication error of approximately 10% or less.  A possible reason for the superior results
with CO2 but not for the other pollutants is that is CO2 has small inter-trip and inter-vehicle
variance of the modal emission rates.  Too much variability in modal emission rates from one
vehicle to another may be the source of difficulties in estimation of modal rates for the other
pollutants.
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Table 8-5.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for 14
VSP Modes for NOx:  Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.
NOx Actual NCa ERRORd Cb ERRORd SCc ERRORd

ER1 4.54 357.88 77.82 11.23 1.47 2.53 -0.44
ER2 4.66 109.4 22.48 0 -1 2.47 -0.47
ER3 4.27 154.63 35.18 11.23 1.63 1.24 -0.71
ER4 13.71 -83.57 -7.09 11.23 -0.18 8.12 -0.41
ER5 20.26 -10.52 -1.52 11.23 -0.45 11.52 -0.43
ER6 25.97 -583.9 -23.48 11.23 -0.57 12.14 -0.53
ER7 34.1 -423.49 -13.42 11.23 -0.67 12.14 -0.64
ER8 48.69 -533.89 -11.97 11.23 -0.77 29.89 -0.39
ER9 61.91 260.33 3.21 11.23 -0.82 48.79 -0.21
ER10 86.39 515.21 4.96 95.29 0.1 66.9 -0.23
ER11 123.44 576.05 3.67 95.29 -0.23 80.16 -0.35
ER12 173.84 295.88 0.7 95.29 -0.45 93.48 -0.46
ER13 176.49 908.56 4.15 381.74 1.16 118.5 -0.33
ER14 201.72 849.94 3.21 1283.26 5.36 211.03 0.05
Avg. Error 15.2 1.06 0.4
a NC: No Constraint
b C: Constraint
c SC: Strict Constraint
d Error: (Predicted-Actual)/Actual

Table 8-6.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for 14
VSP Modes for HC:  Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.
HC Actual NCa ERRORd Cb ERRORd SCc ERRORd

ER1 3.69 130.98 34.51 0 -1 2.25 -0.39
ER2 2.27 0.84 56.12 0 -1.63 1.41 -0.63
ER3 1.92 23.35 66.48 5.52 -1.93 1.16 -0.75
ER4 4.02 2.09 31.65 0 -0.92 3.01 -0.36
ER5 5.97 -61.98 21.34 5.52 -0.62 4.04 -0.24
ER6 6.07 -177.83 20.96 5.52 -0.61 4.96 -0.24
ER7 7.57 49.79 16.82 5.52 -0.49 8.87 -0.19
ER8 11.15 -16.64 11.41 5.52 -0.33 8.87 -0.13
ER9 13.71 215.81 9.28 35.33 -0.27 22.33 -0.1
ER10 17.22 -169.45 7.39 35.33 -0.21 22.33 -0.08
ER11 28.09 110.83 4.53 35.33 -0.13 39.42 -0.05
ER12 50.43 -98.42 2.52 35.33 -0.07 39.42 -0.03
ER13 73.6 -180.59 1.73 35.33 -0.05 50.35 -0.02
ER14 98.75 146.08 1.29 211.99 -0.04 248.96 -0.01
AvgError 20.43 0.59 0.23
a NC: No Constraint
b C: Constraint
c SC: Strict Constraint
d Error: (Predicted-Actual)/Actual
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Table 8-7.  Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for 14
VSP Modes for CO:  Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.
CO Actual NCa ERRORd Cb ERRORd SCc ERRORd

ER1 149.59 23220 154.22 0 -1 121.22 -0.19
ER2 124.14 -2308 -19.6 0 -1 0 -1
ER3 83.59 -2028 -25.27 0 -1 36.62 -0.56
ER4 273.76 -2467 -10.01 0 -1 179.45 -0.34
ER5 338.76 -13068 -39.58 0 -1 179.45 -0.47
ER6 307.11 -2760 -9.99 0 -1 310.19 0.01
ER7 393.27 -1282 -4.26 1716 3.36 595.48 0.51
ER8 608.03 7636 11.56 1716 1.82 1114.42 0.83
ER9 755.63 17311 21.91 3403.35 3.5 1722.36 1.28
ER10 1015.26 -21646 -22.32 3403.35 2.35 1722.36 0.7
ER11 2063.31 -7639 -4.7 3403.35 0.65 4262.86 1.07
ER12 5530.73 -17753 -4.21 3403.35 -0.39 7571.34 0.37
ER13 10336.3 -31840 -4.08 3403.35 -0.67 7571.34 -0.27
ER14 16338.64 -39599 -3.42 3403.35 -0.79 13287 -0.19
AvgError 23.94 1.4 0.56
a NC: No Constraint
b C: Constraint
c SC: Strict Constraint
d Error: (Predicted-Actual)/Actual

Table 8-8.  Results of Estimation of Modal Emission Rates (g/sec) from Aggregate Data for 14
VSP Modes for CO2:  Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.
CO2 Actual NCa ERRORd Cb ERRORd SCc ERRORd

ER1 1.09 14.78 12.52 1.28 0.17 1.04 -0.05
ER2 1.26 4.43 2.5 1.28 0.01 1.19 -0.06
ER3 1.26 3.83 2.05 1.15 -0.08 1.23 -0.02
ER4 2.46 -4.37 -2.78 1.28 -0.48 2.32 -0.06
ER5 3.2 -9.19 -3.87 1.28 -0.6 3.07 -0.04
ER6 3.95 9.73 1.46 6.18 0.56 3.81 -0.04
ER7 4.69 -2.04 -1.44 6.18 0.32 4.95 0.05
ER8 5.52 -3.63 -1.66 6.18 0.12 5.81 0.05
ER9 6.41 9.47 0.48 6.18 -0.04 6.77 0.06
ER10 7.42 -8.69 -2.17 6.18 -0.17 7.82 0.05
ER11 8.89 17.11 0.93 7.04 -0.21 9.27 0.04
ER12 10.61 6.73 -0.37 7.04 -0.34 10.49 -0.01
ER13 11.87 9.74 -0.18 7.39 -0.38 11.75 -0.01
ER14 13.34 33.77 1.53 43.5 2.26 13.03 -0.02
AvgError 2.42 0.08 0.04
a NC: No Constraint
b C: Constraint
c SC: Strict Constraint
d Error: (Predicted-Actual)/Actual
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Figure 8-5.  Predicted versus Observed NOx Modal Emission Rates Based upon the 14 Mode
VSP Approach Estimated From NCHRP Data Using the Strict Constraints Approach.

y = 0.7346x + 3.2797

R2 = 0.861

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Observed HC Emissions (mg/sec)

P
re

d
ic

te
d

 H
C

 E
m

is
si

o
n

s 
(m

g
/s

ec
)

Figure 8-6. Predicted versus Observed HC Modal Emission Rates Based upon the 14 Mode VSP
Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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Figure 8-7.  Predicted versus Observed CO Modal Emission Rates Based upon the 14 Mode VSP
Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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Figure 8-8.  Predicted versus Observed CO2 Modal Emission Rates Based upon the 14 Mode
VSP Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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8.3 Bag-Based Modal Emissions Estimation for the "56-bin" VSP-based Approach

In this section, evaluation of the modal estimation method for bag data was applied to the
stratified bin approach. The original NCHRP data set was divided into 4 subsets of data in terms
of odometer reading and engine displacement, based upon cut points of 50K miles and 3.5 liters,
respectively.  For each of the four subsets, the 14 VSP modes were applied.  From the previous
section, a key conclusion was that the strict-constraint method is more effective than the
unconstrained and basic-constraint methods.  Thus, the focus in this section was upon the strict
constraint method.  In the previous section, the strict constraints were developed based upon
analysis of the NCHRP data set.  In this section, the ranges for the strict constraints were
developed based upon the NCHRP data set and, alternatively, based upon the modeling data set.

The results of the predicted modal emission rates estimated from the aggregate data, and the
observed values, are shown in Tables 8-9 through 8-24.  There are four tables for each pollutant,
with each of the four tables representing a different vehicle strata with respect to odometer
reading and engine displacement.  All of the results for CO2 based upon the strict constraints
cases are shown in Figures 8-9 through 8-16.  Selected results for the modal emissions estimated
for HC are shown in Figures 8-17 through 8-22.

The results for CO2 were generally very good, especially for the case in which the range of
values for the constraints were estimated from data in the NCHRP database.  For all four vehicle
strata, the average relative error in the predicted versus observed modal emission rates was less
than 10 percent, except for the first strata (odometer reading < 50,000 miles, engine displacement
< 3.5 liters) when constraints were developed based upon the modeling database.  These results
imply that when the constraints are more representative of the data from which the modes are
being estimated, the results will tend to be better.  Figure 8-11 and 8-12 illustrate that the modal
emission rates for CO2 estimated using the constraints estimated from the NCHRP data are
better than those estimated using the constraints based upon the modeling database.  In
particular, the slope of the trend line for the predicted versus observed modes is closer to one,
indicating a more accurate result.  A similar comparison can be observed for Figures 8-13 and 8-
14.

The results for HC were generally not as good as those for CO2.  The average relative errors for
the modal estimates, as indicated in Tables 8-13 through 8-16, were typically 0.37 to 0.64 for the
six cases in which results could be obtained.  In two cases, it was not possible to get a solution.
The predicted modal emissions tend to be low for the higher VSP modes, as illustrated in Figures
8-17 through 8-19, although there are examples in Figures 8-20 through 8-22 in which the
predictions for the higher VSP modes are relatively more accurate.

For both NOx and CO, the estimation method failed for most cases. For NOx, it was possible to
get results in only three of eight cases, and the errors in these cases ranged from 0.24 to 0.55.
For CO, it was possible to get results in only two of eight cases, with errors of 0.48 and 0.94.

Overall, the key findings of the attempts to estimate modal emission rates for the 56-bin
approach based upon NCHRP data were:  (1) the method worked well only for CO2; the method
worked for HC for most cases but the accuracy of the predictions was less than desirable; and (3)
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Table 8-9.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO2 Emissions (g/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 0.94 1.58 0.68 0.91 -0.03

ER2 1.06 1.51 0.42 0.95 -0.10

ER3 1.2 1.26 0.05 1.08 -0.10

ER4 2.21 2.16 -0.022 2 -0.10

ER5 2.86 2.62 -0.084 2.63 -0.08

ER6 3.53 3.03 -0.14 3.25 -0.08

ER7 4.19 4.25 0.014 4.51 0.08

ER8 4.92 4.82 -0.02 5.31 0.08

ER9 5.74 5.51 -0.04 6.18 0.08

ER10 6.67 6.18 -0.07 7.13 0.07

ER11 7.82 7.34 -0.06 8.65 0.11

ER12 9.49 9.2 -0.03 9.9 0.04

ER13 10.89 11.61 0.066 11.48 0.05

ER14 12.08 12.29 0.017 12.18 0.01

Avg. Error   0.122  0.072
a Error: (Predicted-Actual)/Actual

Table 8-10.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO2 Emissions (g/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 1.03 1.24 -0.20 1.01 0.019

ER2 1.31 1.4 -0.07 1.18 0.099

ER3 1.07 1.08 -0.01 1 0.065

ER4 2.4 2.29 0.05 2.17 0.096

ER5 3.15 2.85 0.10 2.9 0.079

ER6 3.84 3.46 0.10 3.58 0.068

ER7 4.55 5.07 -0.11 4.86 -0.068

ER8 5.32 5.81 -0.09 5.68 -0.068

ER9 6.16 6.56 -0.06 6.6 -0.071

ER10 7 7.55 -0.08 7.54 -0.077

ER11 8.43 8.66 -0.03 9.07 -0.076

ER12 9.91 8.66 0.13 10.54 -0.064

ER13 10.54 9.15 0.13 11.27 -0.069

ER14 11.92 9.9 0.17 11.27 0.055

Avg. Error   0.09  0.070
a Error: (Predicted-Actual)/Actual
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Table 8-11.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO2 Emissions (g/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 1.5 1.56 -0.04 1.55 -0.033
ER2 1.53 1.66 -0.08 1.41 0.078
ER3 1.66 1.33 0.20 1.52 0.084
ER4 2.93 2.36 0.19 2.63 0.102
ER5 3.88 2.93 0.24 3.7 0.046
ER6 4.94 5.46 -0.11 4.75 0.038
ER7 5.95 6.55 -0.10 6.67 -0.121
ER8 7.05 7.95 -0.13 7.9 -0.121
ER9 8.23 7.95 0.03 9.28 -0.128
ER10 9.64 7.95 0.18 9.28 0.037
ER11 11.13 12.94 -0.16 12.25 -0.101
ER12 14.24 18.87 -0.33 15.19 -0.067
ER13 15.84 18.87 -0.19 15.25 0.037
ER14 17.47 18.87 -0.08 15.25 0.127
Avg. Error   0.15  0.080

a Error: (Predicted-Actual)/Actual

Table 8-12.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO2 Emissions (g/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 1.67 1.64 0.018 1.64 0.02

ER2 1.97 2.15 -0.091 2.15 -0.09

ER3 1.69 1.54 0.089 1.54 0.09

ER4 3.5 3 0.143 3 0.14

ER5 4.48 4.07 0.092 4.07 0.09

ER6 5.46 5.1 0.066 5.1 0.07

ER7 6.48 6.74 -0.040 6.74 -0.04

ER8 7.64 6.97 0.088 6.97 0.09

ER9 8.83 9.42 -0.067 9.42 -0.07

ER10 10.3 11.36 -0.103 11.36 -0.10

ER11 12.54 13.41 -0.069 13.41 -0.07

ER12 14.75 13.41 0.091 13.41 0.09

ER13 16.96 20.25 -0.194 20.25 -0.19

ER14 18.76 21.42 -0.142 21.42 -0.14
Avg. Error   0.092  0.09

a Error: (Predicted-Actual)/Actual
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Table 8-13.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  HC Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 2.18 0 3.26 -0.50

ER2 1.67 0 0.93 0.44

ER3 1.82 0 1.16 0.36

ER4 4.11 0 2.75 0.33

ER5 4.16 0 3.26 0.22

ER6 5.37 0 7.09 -0.32

ER7 6.56 0 7.79 -0.19

ER8 8.82 0 7.79 0.12

ER9 10.52 0 7.91 0.25

ER10 13.25 0 26.16 -0.97

ER11 24.06 0 27.79 -0.16

ER12 31.79 0 27.79 0.13

ER13 59.91 0 27.79 0.54

ER14 70.41 0 27.79 0.61
Avg. Error    0.37

a Error: (Predicted-Actual)/Actual

Table 8-14.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  HC Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 4.98 2.52 0.494 2.37 0.52

ER2 2.06 1.73 0.160 1.27 0.38

ER3 0.95 1.33 -0.400 0.91 0.04

ER4 3.11 2.79 0.103 2.18 0.30

ER5 5.15 3.19 0.381 2.73 0.47

ER6 5.17 4.38 0.153 3.73 0.28

ER7 6.17 11.42 -0.851 11.65 -0.89

ER8 7.67 13.01 -0.696 11.65 -0.52

ER9 13.26 13.01 0.019 11.65 0.12

ER10 15.18 27.09 -0.785 28.75 -0.89

ER11 24.58 42.49 -0.729 46.4 -0.89

ER12 44.64 42.49 0.048 46.4 -0.04

ER13 70.17 42.49 0.394 46.4 0.34

ER14 116.55 42.49 0.635 46.4 0.60
Avg. Error   0.418  0.45

a Error: (Predicted-Actual)/Actual
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Table 8-15.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  HC Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 1.58 0 0.94 0.41

ER2 1.45 0 0.75 0.48

ER3 1.84 0 2.48 -0.35

ER4 2.39 0 2.01 0.16

ER5 9.17 0 4.4 0.52

ER6 4.72 0 5.42 -0.15

ER7 5.48 0 5.42 0.01

ER8 11.3 0 27.42 -1.43

ER9 12.66 0 27.42 -1.17

ER10 20.14 0 27.42 -0.36

ER11 20.14 0 42.75 -1.12

ER12 71.33 0 91.07 -0.28

ER13 70.54 0 91.07 -0.29

ER14 77.97 0 91.07 -0.17
Avg. Error    0.49

a Error: (Predicted-Actual)/Actual

Table 8-16.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  HC Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 10.75 1.59 0.852 1.59 0.85

ER2 7.39 1.78 0.759 1.78 0.76

ER3 5.71 3.8 0.335 3.8 0.33

ER4 8.51 0 1.000 0 1.00

ER5 15 7.29 0.514 7.29 0.51

ER6 14.76 8.35 0.434 8.35 0.43

ER7 20.53 9.15 0.554 9.15 0.55

ER8 35.71 44.64 -0.250 44.64 -0.25

ER9 34.84 86.61 -1.486 86.61 -1.49

ER10 43.06 86.61 -1.011 86.61 -1.01

ER11 64.77 122.99 -0.899 122.99 -0.90

ER12 137.02 122.99 0.102 122.99 0.10

ER13 161.42 122.99 0.238 122.99 0.24

ER14 209.61 315.45 -0.505 315.45 -0.50
Avg. Error   0.639  0.64

a Error: (Predicted-Actual)/Actual
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Table 8-17.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 144.4 0 116.78 0.19

ER2 86.18 0 35.4 0.59

ER3 82.35 0 45.98 0.44

ER4 284.3 0 179.31 0.37

ER5 283.62 0 210.11 0.26

ER6 300.11 0 279.07 0.07

ER7 393.08 0 479.53 -0.22

ER8 625.93 0 479.53 0.23

ER9 749.09 0 2438.1 -2.25

ER10 1033.99 0 2684.08 -1.60

ER11 2576.85 0 2684.08 -0.04

ER12 3944.7 0 3204.4 0.19

ER13 8785.4 0 8891.55 -0.01

ER14 12567.67 0 8891.55 0.29
Avg. Error    0.48

a Error: (Predicted-Actual)/Actual

Table 8-18.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 150.28 0 63.17 0.58

ER2 130 0 0 1.00

ER3 48.96 0 30.66 0.37

ER4 221.4 0 111.62 0.50

ER5 285.13 0 111.62 0.61

ER6 241.95 0 252.67 -0.04

ER7 277.95 0 340.68 -0.23

ER8 327.58 0 430.83 -0.32

ER9 519.72 0 2103.27 -3.05

ER10 651.3 0 2225.11 -2.42

ER11 1249.86 0 5239.32 -3.19

ER12 6740.72 0 5239.32 0.22

ER13 12956.1 0 5239.32 0.60

ER14 23713.22 0 22508 0.05
Avg. Error    0.94

a Error: (Predicted-Actual)/Actual
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Table 8-19.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading >50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 80.7 0 0

ER2 129.75 0 0

ER3 130.09 0 0

ER4 227.75 0 0

ER5 637.64 0 0

ER6 280.52 0 0

ER7 416.31 0 0

ER8 696.73 0 0

ER9 1094.9 0 0

ER10 1253.14 0 0

ER11 2031.25 0 0

ER12 8029.59 0 0

ER13 8933.28 0 0

ER14 12979.73 0 0
Avg. Error    

a Error: (Predicted-Actual)/Actual

Table 8-20.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  CO Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 263.35 0 0

ER2 316.27 0 0

ER3 145.17 0 0

ER4 440.86 0 0

ER5 456.54 0 0

ER6 592.43 0 0

ER7 740.36 0 0

ER8 1305.73 0 0

ER9 1135.74 0 0

ER10 1793.1 0 0

ER11 2394.7 0 0

ER12 8240.6 0 0

ER13 13064.57 0 0

ER14 19173.19 0 0
Avg. Error    

a Error: (Predicted-Actual)/Actual
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Table 8-21.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  NOx Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 4.4 6.61 -0.502 0

ER2 3.85 5.82 -0.512 0

ER3 4.41 3.77 0.145 0

ER4 11.8 9.85 0.165 0

ER5 15.52 9.85 0.365 0

ER6 18.17 18.71 -0.030 0

ER7 22.95 18.71 0.185 0

ER8 33.86 45.54 -0.345 0

ER9 47.21 45.54 0.035 0

ER10 65.22 89.59 -0.374 0

ER11 78.39 89.59 -0.143 0

ER12 137.34 121.26 0.117 0

ER13 141.33 121.26 0.142 0

ER14 183.97 121.26 0.341 0
Avg. Error   0.243  

a Error: (Predicted-Actual)/Actual

Table 8-22.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  NOx Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 2.66 0 0

ER2 1.39 0 0

ER3 1.75 0 0

ER4 7.56 0 0

ER5 11.67 0 0

ER6 18.45 0 0

ER7 26.75 0 0

ER8 37.46 0 0

ER9 53.37 0 0

ER10 68.14 0 0

ER11 65.56 0 0

ER12 125.35 0 0

ER13 141.54 0 0

ER14 120.47 0 0
Avg. Error    

a Error: (Predicted-Actual)/Actual
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Table 8-23.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  NOx Emissions (mg/sec)

for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 1.58 0 0

ER2 1.45 0 0

ER3 1.84 0 0

ER4 2.39 0 0

ER5 9.17 0 0

ER6 4.72 0 0

ER7 5.48 0 0

ER8 11.3 0 0

ER9 12.66 0 0

ER10 20.14 0 0

ER11 20.14 0 0

ER12 71.33 0 0

ER13 70.54 0 0

ER14 77.97 0 0
Avg. Error    

a Error: (Predicted-Actual)/Actual

Table 8-24.  Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates:  NOx Emissions (mg/sec)

for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.
Mode Actual CONSTRAINT_ALLDATA Error a CONSTRAINT_NCHRP Error a

ER1 8.2 19.68 -1.400 19.68 -1.40

ER2 9.36 13.18 -0.408 13.18 -0.41

ER3 8.1 8.46 -0.044 8.46 -0.04

ER4 32.86 41.91 -0.275 41.91 -0.28

ER5 57.24 47.23 0.175 47.23 0.17

ER6 82.87 78.71 0.050 78.71 0.05

ER7 109.92 86.39 0.214 86.39 0.21

ER8 155.13 137.75 0.112 137.75 0.11

ER9 173.28 177.1 -0.022 177.1 -0.02

ER10 229.28 177.1 0.228 177.1 0.23

ER11 362.89 177.1 0.512 177.1 0.51

ER12 490.97 177.1 0.639 177.1 0.64

ER13 485 214.1 0.559 214.1 0.56

ER14 543.47 2172.47 -2.997 2172.47 -3.00
Avg. Error   0.545  0.55

a Error: (Predicted-Actual)/Actual
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Figure 8-9.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes Estimated
From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:  Engine

Displacement < 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-10.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement < 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-11.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:

Engine Displacement > 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-12.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement > 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-13.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:

Engine Displacement < 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-14.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement < 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-15.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:

Engine Displacement > 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-16.  Predicted versus Observed CO2 Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement > 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-17.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement < 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-18.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:

Engine Displacement > 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-19.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement > 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-20.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement < 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-21.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:

Engine Displacement > 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-22.  Predicted versus Observed HC Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:

Engine Displacement > 3.5 liter and Odometer Reading > 50,000 Miles.
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the method failed in most cases for NOx and CO.  A likely reason for the failure to obtain results
in many cases for the 56-bin approach is that the sample sizes for the stratified data sets are
smaller than for the case of the 14-mode approach in the previous section.  An implication is that
it may be necessary to have a sufficient large data set in order to estimate modal emission rates
from aggregate data.  It is also apparent that the strict constraint approach produces better results
when the bounds of the constraints are derived from data similar to that being analyzed.

8.4 Characterization of Uncertainty in Predicted Modal Emissions

The objective of this part of work is to characterize the distribution of errors in the predicted
modal emissions in order to identify whether biases in the modal estimates are statistically
significant.  Because the results from the 56 bin approach were not satisfying, this work was
based upon the results obtained with the 14 VSP bin approach.

In order to characterize uncertainty in the predictions, the distribution of the error of each modal
prediction, based upon the difference between the actual value for each vehicle minus the
predicted value, was estimated. These distributions are summarized by presenting the mean,
standard deviation, 95 percent confidence interval on the mean, and skewness. The results are
presented for NOx, HC, CO, and CO2 in Tables 8-25 through 8-28, respectively.  The
predictions are based upon the strict constraint method. The average observed and predicted rates
are given in Tables 8-5 through 8-8, respectively, for these same pollutants.

Table 8-25 summarizes the analysis of the distribution of prediction errors among all the vehicles
and cycles in the database for predictions of modal emissions for NOx emissions.  The mean
prediction error is given for each VSP mode along with the standard deviation, lower and upper
limit for the 95 percent confidence interval on the mean, number of data points, and skewness
estimate. The average prediction error for each mode is slightly different than zero, indicating the
possibility that the modal predictions are biased.  For example, for VSP mode 11, average
prediction error is -0.0008. However, 95 percent confidence interval on the mean includes zero,
which indicates that at a significance level of 0.05, the mean prediction error is not statistically
significantly different from zero.  Furthermore, the average prediction error is not statistically
significantly different from zero for all VSP modes for NOx as well as for all other pollutants.
Thus, the results indicate that there are no statistically significant biases in the mean estimates of
the prediction error.

However, the range of the prediction error is substantial in many cases.  For example, for NOx,
the standard deviation of the prediction error is 5.1 mg/sec for Mode 1, compared to an observed
emission rate of 4.5 mg/sec.  Similarly, the standard deviation is 276 mg/sec versus an average
observed emission rate of 202 mg/sec for Mode 14.  For NOx, HC, and CO, the standard
deviation of the prediction error is comparable to the average emission rate for each mode.  In
contrast, the standard deviation of the prediction error for CO2 is approximately one third of the
mean observed emission rate for CO2.  When the standard deviation of the prediction error is
large relative to the mean emission rate, the distribution of the prediction error tends to be
positively skewed.  For example, the range of skewness of the prediction errors among the 14
VSP modes is 2.7 to 4.4 for NOx, 2.0 to 5.2 for HC, and 1.0 to 4.3 for CO.  In contrast, the
distributions of the prediction errors for CO2 tend to have only slight skewness, ranging from a



212

Table 8-25.  Summary of Analysis of Uncertainty in the Prediction Error for the NOx Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode VSP-Based

Approach.

VSP bin Mean Std Dev N

Lower
Limit
(95%)

Upper
Limit
(95%) Skewness

1 0.0005 5.09 90 -1.05 1.05 2.77
2 -0.0017 5.71 90 -1.18 1.18 2.99
3 0.0043 4.73 90 -0.97 0.98 2.69
4 0.0027 18.64 90 -3.85 3.85 3.25
5 0.0013 28.68 90 -5.92 5.93 3.56
6 0.0019 37.30 90 -7.70 7.71 4.40
7 -0.0046 48.75 90 -10.08 10.07 4.38
8 -0.0017 65.79 90 -13.59 13.59 4.03
9 -0.0012 79.83 90 -16.49 16.49 3.76
10 -0.0018 104.07 90 -21.50 21.50 2.82
11 -0.0008 165.71 77 -37.01 37.01 2.66
12 0.0038 220.48 45 -64.42 64.42 2.72
13 -0.0054 215.91 41 -66.09 66.08 2.98
14 -0.0016 276.33 37 -89.04 89.04 2.74

Table 8-26.  Summary of Analysis of Uncertainty in the Prediction Error for the HC Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode VSP-Based

Approach.

VSP bin Mean
Std
Dev N

Lower
Limit
(95%)

Upper
Limit
(95%) Skewness

1 -0.00188 8.41 90 -1.740 1.736 4.45
2 -0.00173 5.03 90 -1.041 1.038 4.38
3 -0.00532 4.07 90 -0.847 0.837 4.54
4 0.00137 6.75 90 -1.394 1.396 4.23
5 -0.00490 10.49 90 -2.171 2.162 3.48
6 0.00329 10.98 90 -2.265 2.271 5.15
7 -0.00247 14.32 90 -2.961 2.956 4.90
8 0.00304 20.38 90 -4.207 4.213 4.10
9 0.00077 21.18 90 -4.375 4.376 3.67
10 0.00335 26.06 90 -5.381 5.388 3.62
11 -0.00135 41.84 77 -9.348 9.345 3.00
12 -0.00331 64.50 45 -18.84 18.84 2.38
13 0.00126 85.35 41 -26.12 26.12 2.03
14 -0.00448 123.3 37 -39.73 39.72 2.49
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Table 8-27.  Summary of Analysis of Uncertainty in the Prediction Error for the CO Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode VSP-Based

Approach.

VSP
bin Mean Std Dev N

Lower
Limit
(95%)

Upper
Limit
(95%) Skewness

1 0.0028 233 90 -48.04 48.04 2.3
2 -0.0055 241 90 -49.88 49.87 2.5
3 0.0024 186 90 -38.49 38.50 3.4
4 0.0021 428 90 -88.51 88.52 2.1
5 0.0025 686 90 -141.8 141.8 4.0
6 0.0044 529 90 -109.3 109.3 3.4
7 -0.0005 747 90 -154.3 154.3 4.2
8 0.0042 1250 90 -258.2 258.2 3.7
9 0.0008 1472 90 -304.1 304.1 4.3
10 0.0031 1818 90 -375.5 375.5 4.1
11 0.0036 3324 78 -737.6 737.6 2.8
12 0.0021 190 45 -3859 3859 1.6
13 -0.0001 8622 41 -2639 2639 1.3
14 -0.0044 12297 37 -3962 3962 1.0

Table 8-28.  Summary of Analysis of Uncertainty in the Prediction Error for the CO2 Modal
Emission Rates (g/sec) Estimated from Aggregate Data For the 14 Mode VSP-Based

Approach.

VSP bin Mean
Std
Dev N

Lower
Limit
(95%)

Upper
Limit
(95%) Skewness

1 0.00336 0.34 90 -0.068 0.075 0.37
2 0.00340 0.45 90 -0.089 0.096 0.53
3 -0.00466 0.39 90 -0.086 0.076 0.37
4 -0.00046 0.80 90 -0.165 0.164 0.49
5 0.00007 0.89 90 -0.184 0.184 0.28
6 -0.00262 1.02 90 -0.213 0.207 0.17
7 0.00366 1.20 90 -0.245 0.253 0.24
8 -0.00207 1.39 90 -0.289 0.285 0.15
9 0.00160 1.65 90 -0.340 0.343 0.10
10 -0.00313 1.94 90 -0.405 0.398 0.04
11 0.00202 2.49 77 -0.553 0.557 -0.11
12 -0.00189 2.67 45 -0.782 0.779 0.45
13 -0.00017 2.98 41 -0.911 0.911 0.56
14 0.00237 3.25 37 -1.044 1.049 0.46

magnitude of 0.04 to 0.56 among the 14 modes.  These results illustrate that the predictions for
CO2 are generally substantially better than those for the other three pollutants.
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The range of uncertainty in the mean prediction error is typically a factor of approximately five
less than the standard deviation of the prediction error, because the 95 percent confidence
interval of the uncertainty in the mean is estimated based upon a factor of 1.96 multiplied by the
standard error of the mean, which in turn is estimated based upon the standard deviation of the
data divided by the square root of sample size.  For a sample size of 90, which is typical of many
of the estimates, this amounts to a factor of 0.207 multiplier of the standard deviation to arrive at
the upper and lower ranges of the 95 percent confidence interval.  Thus, the range of uncertainty
in the mean error is comparable in many cases to a range of approximately plus or minus 25 to
50 percent of the mean observed emission rate for NOx, HC, and CO, and approximately plus or
minus 7 percent of the mean observed emission rate for CO2.  These ranges of uncertainty are
larger than the ranges of uncertainty estimated based upon the modeling database in Chapter 7.
Thus, it would be the case that incorporation of emissions estimates obtained from aggregate
data would entail additional uncertainty than estimates obtained from second-by-second data.

8.5 Summary and Conclusions

The key findings from this analysis include:

• The strict constraint method gave the best results.
• The least squares optimization method with strict constraints worked for all of the cases

for the four driving cycle approach (idle, deceleration, acceleration, and cruise) and for
the 14 mode VSP-based approach.

• The method worked for the VSP 56 mode approach for CO2 for all four vehicle strata, but
success was more limited with the other three pollutants.

• The failures to obtain solutions or to obtain sufficiently accurate solutions for HC, CO,
and NOx with the 56-bin approach may be attributable to small sample sizes.

• The analysis of uncertainty in modal predictions for the 14 Mode VSP-based approach
clearly illustrates that the quality of the predictions are substantially better for CO2 than
for the other pollutants.

• The standard deviation of prediction errors for a given mode for NOx, HC, and CO based
upon the 14-mode VSP approach is typically of the same order of magnitude as the
observed mean emission rate, implying that the distribution of prediction errors are
positively skewed.

• The standard deviation of prediction errors for a given mode for CO2 based upon the 14
mode VSP approach are approximately one third of the observed mean emission rate,
implying that the distribution of prediction errors are relatively symmetric.

• The range of uncertainty in modal estimates obtained from aggregate bag data are
substantially larger than those obtained from second-by-second data

The key recommendations from this work are that the constrained least squares optimization
method can be effective at estimating modal emission rates from aggregate data as long as there
is a sufficiently large sample size of data.  The method worked well for the 14-mode VSP case
compared to the 4-mode NCSU case.  Thus, the method appears capable of handling a relatively
large number of modes for a given data set.  The predictions are generally much better for CO2

than for the other pollutants.  Thus, this technique works well for CO2 even for cases in which
solutions could not be obtained for other pollutants.  For future work, it may be worth exploring
other types of constraints than those addressed in this project.  For example, the “strict
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constraints” employed in this work allowed for considerable variability in the ratio of the
emission rate for a particular mode with respect to another mode.  An even stricter constraint
would be to require that these ratios be defined for much narrower ranges or that some or all
combinations of ratios be point estimates.  Of course, the more that constraints are imposed upon
the solution, the more critically dependent the solution becomes upon the accuracy of the
constraints themselves.  If modal emission estimates are used in a modeling framework such as
moves, the uncertainty in those estimates must be incorporated as well, since the range of
uncertainty in modal emissions rates estimated from aggregate data will typically be much larger
than that when estimated from second-by-second data.
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9 VALIDATION OF THE CONCEPTUAL MODEL

This report presents three validation studies in which a VSP-based binning approach was used to
estimate hot stabilized tailpipe emissions of CO2, CO, HC, and NOx. The VSP-based approach is
based upon 1 second data in mass per time emission factor units.

The first case study includes the data utilized for model development and is only a consistency
check in response to comments received by EPA from the FACA committee.  The second
validation case study is based upon comparisons of the model with EPA dynamometer, EPA on-
board, and NCHRP dynamometer data that were withheld from the modeling dataset.  The third
validation case study is based upon an independent dataset from the California Air Resources
Board.

9.1 Validation Case Study 1

In this study, internal consistency of the modeling approach was evaluated by:  (1) estimating
average modal emission rates for individual driving cycles using data only from the vehicles that
were tested on those cycles based upon data in the modeling database; and (2) making
predictions of average cycle emissions based upon the estimated modal emission rates.  The
purpose of this comparison was to demonstrate that the modal emissions approach is internally
consistent in disaggregating and re-aggregating the emission estimates for a driving cycle.  For
this purpose, three driving cycles and on-board data were selected for analysis. The three cycles
were: ART-EF; FTP; and US06.  These cycles were selected because there were ten or more
vehicles tested on these cycles in the modeling database and these three cycles different ranges
of speeds, VSP, and emissions.

In Table 9-1, number of vehicles, number of trips and number of seconds of data associated with
each of the selected driving cycles are reported. Validation Dataset 1 includes more than 100
vehicles and 169,112 seconds of data. Key characteristics of the cycles utilized for Validation
Dataset 1 are given in Table 9-2, including average speed, maximum speed, minimum speed,
maximum acceleration, average VSP, and Maximum VSP. For the on-board data, for which
there was not a standard cycle, these statistics were calculated based upon all of the available
data for all vehicles and trips.  The average speeds for the cycles vary between 12 mph and 47
mph, with the lowest average speed associated with the ART-EF cycle and the highest average
speed associated with the US06 cycle. The average maximum acceleration among all the cycles
is approximately 6 mph/sec. Except for the FTP, all of the cycles have a maximum acceleration
greater than 6 mph/sec.  Two cycles, ART-EF and FTP, have an average VSP less than 5
Kw/ton, and two cycles, ART-EF and FTP, have maximum VSP less than 50 Kw/ton.

The predicted vehicle average total emissions and the observed vehicle average total emissions
for the three driving cycles and for the on-board measurements are shown graphically in Figure
9-1.  The 95 percent confidence intervals for the means are also shown. Comparisons between
predicted and observed average total vehicle emissions are given in Tables 9-3 through 9-6 for
CO2, CO, HC, and NOx, respectively. These tables present average observed values for each
cycle with 95 percent confidence intervals, average predicted values for each cycle with 95
percent confidence intervals.
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Table 9-1.  Summary of Validation Dataset I

Vehicle Characteristics Cycle Number of vehicles Number of seconds
ART-EF 12 6024

FTP 24 32952
US06 22 13251

Engine Size < 3.5 liter
Odometer < 50,000

On-Board 7 36096
ART-EF 0 0

FTP 6 8238
US06 4 2436

Engine Size ������	
��
Odometer < 50,000

On-Board 6 35603
ART-EF 0 0

FTP 15 20595
US06 11 6010

Engine Size < 3.5 liter
Odometer ��������

On-Board 0 0
ART-EF 0 0

FTP 4 5492
US06 4 2425

Engine Size ������	
��
Odometer ��������

On-Board 0 0

Table 9-2.  Key Characteristics of the Activity Pattern of the ART-EF, FTP75 and US06 Cycles
and of the On-Board Measurements Used in Validation Dataset I.

Cycle
Name

Time
(s)

Average
Speed
(mph)

Max
Speed
(mph)

Min
Speed
(mph)

Max
Acceleration
(mph/sec)

Mean
VSP
(Kw/ton)

Max
VSP
(Kw/ton)

Art-EF 504 12 40 0 5.8 0.9 22.8
FTP75 1875 21 57 0 3.3 2.2 25.1
US06 622 47 81 0 7.4 8.3 54.5

On-Board 1525 33 83 0 7.4 4.6 78.3
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Table 9-3. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset I for CO2

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
ART-EF 926 800 - 1000 926 900 – 950 0 Y

FTP75 2740 2500 - 2900 2740 2600 – 2900 0 Y

US06 2790 2600 - 3000 2790 2600 - 2900 0 Y
On-Board 16800 11200 - 22000 16800 12000 - 21000 0 Y

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-4. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset I for CO

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
ART-EF 0.49 0.30 - 0.80 0.49 0.47 – 0.51 0 Y

FTP75 11 0.29 - 21 11 9.4 – 12 0 Y

US06 78 60 – 96 78 72 – 84 0 Y

On-Board 120 60 - 170 120 77 - 150 0 Y
a Diff: ((Predicted-Observed)/Observed)*100

Table 9-5. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset I for HC

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
ART-EF 0.033 0.006 - 0.060 0.033 0.032 - 0.035 0 Y

FTP75 0.4 0.13 - 0.67 0.4 0.35 – 0.44 0 Y

US06 0.83 0.55 - 1.1 0.83 0.66 - 1.0 0 Y

On-Board 11 6.4 - 15 11 8.0 – 14 0 Y
a Diff: ((Predicted-Observed)/Observed)*100

Table 9-6. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset I for NOX

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
ART-EF 0.24 0.11 - 0.36 0.24 0.22 - 0.25 0 Y

FTP75 1.4 0.90 – 2.0 1.4 1.1 – 1.7 0 Y

US06 2.6 1.7 - 3.6 2.6   2.2 - 3.0 0 Y

On-Board 21 11 - 31 21 15 - 27 0 Y
a Diff: ((Predicted-Observed)/Observed)*100
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The percentage difference in predicted and observed values is presented in Tables 9-3 through 9-
6. An indication is given as to whether the confidence intervals for the predicted and observed
means overlap.

The average total emissions predictions from the model are exactly the same as the observed
values for all the cycles and for the on-board data:  in all cases the percentage difference between
the mean prediction and the mean observation is zero percent, and the confidence intervals for
the predicted and observed means overlap.  The three cycles and the on-board data differ
substantially in terms of total average emissions.  For example, the observed values for CO range
between 0.5 grams to 115 grams when comparing the ART-EF cycle and the on-board data,
respectively.   Thus, the performance of the modeling approach is robust over a wide range of
different emissions estimates.

The main findings from Validation Case Study 1 are:

- Percent difference in the predicted versus observed values are all zero
- There was excellent agreement between the predicted and observed CO2, CO, HC, and NOx

emissions over a wide range of emissions
- The methodology for disaggregating driving cycle or trip emissions into driving modes, and

re-aggregating the average modal emissions to make estimates of driving cycle or trip
emissions, is demonstrated to be internally consistent, as is expected.

9.2 Validation Case Study 2

For Validation Case Study 2, model predictions were prepared based upon average modal
emission rates calibrated to the modeling data set for all vehicles, all driving cycles, and all on-
board data.  Model predictions were made for an independent data set of emissions for vehicles
that were not included in the modeling data set.  The independent data set, referred to as
Validation Data Set 2, is summarized in Table 9-7.  This data set is comprised of 81,808 seconds
of data from EPA dynamometer, EPA on-board measurement, and NCHRP dynamometer data.
The number of vehicles, number of trips and number of seconds of data associated with each
driving cycle are reported in the table. Validation Data Set 2 includes 78 vehicles, 83 trips, and
16 different cycles, including the on-board data as a lumped category.  It should be noted that the
number of vehicles tested on some cycles is very small. Specifically, except for the FTP75 and
US06 cycles, three or fewer vehicles were tested.  For validation purposes, comparisons were
made only for FTP75, US06 cycles, and On-Board data for which many vehicles and/or many
seconds of data were available.  Key characteristics of the cycles utilized for the Validation
Dataset II are given in Table 9-2. Key characteristics of vehicles in this dataset are shown in
Appendix A.

The predicted and observed average total emissions for specific cycles, and the 95 percent
confidence intervals on the averages, are shown in Figure 9-2 for total emissions of CO2, CO,
HC, and NOx.  The comparisons are summarized in Tables 9-8 through 9-11 for CO2, CO, HC,
and NOx emissions, respectively.
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Table 9-7. Summary of Driving Cycles, Number of Vehicles, Number of Trips, and Samples
Size for Validation Dataset II

Data Source
Cycle

NO. of
Vehicles No. of Trips Total Seconds

EPA Dynamometer ART-AB 2 2 1471
EPA Dynamometer ART-CD 2 2 1255
EPA Dynamometer ART-EF 3 3 1507
EPA Dynamometer FWY-AC 2 2 1029
EPA Dynamometer FWY-D 2 2 809
EPA Dynamometer FWY-E 2 2 909
EPA Dynamometer FWY-F 3 3 1321
EPA Dynamometer FWY-G 2 2 777
EPA Dynamometer FWY-HI 3 3 1825
EPA Dynamometer LOCAL 2 2 1047
EPA Dynamometer NONFWY 2 2 2693
EPA Dynamometer NYCC 3 3 1795
EPA Dynamometer Ramp 2 2 529
NCHRP FTP75 24 24 32950
NCHRP US06 21 21 12648
On-Board Data On-Board 3 18 19243
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 Table 9-8.  Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset II for CO2

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-9.  Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset II for CO

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-10.  Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset II for HC

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-11.  Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset II for NOX

a Diff: ((Predicted-Observed)/Observed)*100

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
FTP75 2563 2480 - 2645 3195 3164 - 3227 25 N
US06 2596 2505 - 2686 2491 2440 - 2542 -4 Y

On-Board 17775 14367 - 21184 19612 16083 - 23142 10 Y

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
FTP75 10.6 8.3 - 13.0 17.4 16.7 - 18.0 64 N
US06 75.1 67.7 - 82.5 34.9 32.2 - 37.5 -54 N

On-Board 328.4 161.0 - 495.8 199.8 162.7 - 236.9 -39 Y

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
FTP75 0.69 0.49 - 0.89 1.26 1.20 - 1.32 83 N
US06 0.93 0.80 - 1.06 1.08 1.02 - 1.13 16 Y

On-Board 13.17 7.49 - 18.85 9.40 7.02 - 11.78 -29 Y

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
FTP75 2.06 1.61 - 2.51 2.33 2.24 - 2.42 13 Y
US06 2.53 2.09 - 2.97 2.93 2.78 - 3.07 16 Y

On-Board 16.60 11.57 - 21.62 21.05 16.46 - 25.65 27 Y
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As observed in Figure 9-2, the predicted average total CO2 emissions are close to the observed
average total CO2 emissions, especially for the US06 cycle and the on-board data.  In these latter
two cases, the confidence intervals of the predicted and observed means overlap. The predicted
average CO2 emissions are within 25 percent of the observed average values for the FTP75
cycle.

For CO, the qualitative trends of the model predictions are similar to that of the observed data, as
illustrated in Figure 9-2.  For example, the on-board data had the highest observed total
emissions and also had the highest predicted total emissions.  Both the observed and predicted
emissions decreased when comparing the FTP75 driving cycle to the US06 driving cycle.
Except for the FTP75 cycle, the model underpredicted the observed emissions.  The
underprediction is suggestive of a different vehicle mix in Validation Data Set 2 versus the
modeling data set. Validation Data Set 2 contains a larger proportion of smaller engine sizes and
higher mileage than does the modeling data set.  Nonetheless, the model predictions were not
statistically significantly different from the observed values for the on-board data, and were
comparable in magnitude to the data from the two driving cycles.

Qualitatively, the model predictions perform well compared to the observations for HC
emissions.  Similar to the situation for CO emissions, the model appropriately predicts the
highest emissions for the on-board data, which have the highest observed emissions.  The US06
and FTP75 cycles are predicted to have moderate emissions, comparable in magnitude to the
observed values.  Furthermore, the predictions of the model were not statistically significantly
different from the observed emissions for the US06 driving cycle and for the on-board data.

For NOx, the model performed well for all three of the comparisons.  In particular, the
confidence intervals of the model predictions overlapped with the confidence interval of the
observed emissions.  Thus, the model predictions were not statistically significantly different
than the observed values.  Therefore, the average error in the model prediction ranging from 13
to 27 percent among the three comparisons are not considered significant and are within the
random error of the data.

The overall findings of this case study are:

- There is good concordance in the model predictions versus the observations in terms of the
ordinal ranking of which cycles have the highest and lowest emissions.

- The predictions for CO, HC, and NOx tend to be better when the prediction for CO2 is also
reasonably close.  For example, the predictions for all three pollutants were very good for the
on-board data, and the predictions of two of the three pollutants were very good for the US06
cycle.  The CO2 predictions were generally very good for these three data sets.  In contrast,
somewhat surprisingly, the predictions were generally not as good as expected for the FTP75
cycle, for which the CO2 average prediction was also different from the average observed
value by 25 percent.

- A comparison of CO2 predicted and observed values may be a good diagnostic tool for
identifying systematic differences between data sets.  It appears that the Validation Data Set
2 is more heavily weighted toward vehicles with smaller engines compared to the calibration
data set.



227

- The systematic differences observed here for CO2 suggest that additional refinement may be
warranted for the engine displacement criteria when binning data.  For example, rather than
grouping all engine displacements of less than 3.5 liters into a bin for a given VSP, it may be
appropriate to further subdivide this bin into two or more subcategories.

9.3 Validation Case Study 3

Validation Dataset III includes California Air Resources Board (CARB) data provided by the
EPA. This dataset includes data from the following cycles: UCC17; UCC20; UCC25; UCC30;
UCC35; UCC40; UCC45; OLD UCC50; UCC50; Modified Unified Cycle (MUC); and UCC60.
The data provided by EPA did not include second-by-second speed profiles for each test.
However, nominal speed profiles for these cycles were provided. The nominal speed profiles
were used to determine the fraction of time that the vehicle was in each VSP mode.  Table 9-12
summarizes Validation Dataset III.  A total of 17 vehicles were tested, over 164 tests, on 11
different cycles. However, the number of vehicles tested on some cycles was small. For example,
four or fewer vehicles were tested on the MUC, UCC50, and UCC60 cycles.  For comparison
purposes, only cycles for which 10 or more vehicles were tested were utilized in this study.

Key characteristics of the cycles utilized for Validation Dataset III are given in Table 9-13.
Average speeds for the cycles ranges between 13 mph and 53 mph.  The lowest average speed
occurred for the UCC17 cycle and the highest average speed occurred for the UCC60 cycle. The
lowest maximum speed of 37 mph occurred for the UCC17 cycle and the highest maximum
speed of 81 mph occurred for the UCC60 cycle.   Except for the Old UCC50 and UCC50 cycles,
all cycles have a maximum acceleration of less than 7 mph/sec. Seven of the 11 cycles have an
average VSP of less than 5 Kw/ton.  The UCC35, Old UCC50, and UCC60 cycles have a
maximum VSP greater than 50 Kw/ton.

Since engine displacement data were not available for Validation Data Set III, it was assumed
that all vehicles in this dataset have engine displacement less than 3.5 liters based upon
discussion with EPA.

The average predicted and observed emissions, along with 95 percent confidence intervals are
shown in Figure 9-3 for all four pollutants.  The comparisons are detailed in Tables 9-14 through
9-17 for CO2, CO, HC, and NOx emissions, respectively.  The predictions were made using the
average modal emission rates estimated from the modeling database.

For CO2, the average model predictions are close to the average observed values as indicated by
the fact that for six of the eight cycles for which comparisons were done, the means agreed to
within 10 percent.  Furthermore, for seven of the cycles, the confidence intervals of the
predictions overlapped with the confidence intervals of the observations, and for all cycles the
mean predictions were within 15 percent.  These findings imply strong agreement between the
model predictions and the observations.  The model average predictions vary among the driving
cycles by a factor of approximately 8 for the largest to the smallest prediction compared to a
factor of approximately 10 for the average observations.  The model appears to slightly
overpredict for the lower emissions cycles.
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Table 9-12. Summary of Driving Cycles, Number of Vehicles, Number of Tests, and Sample
Size for Validation Dataset III

Data Source
Cycle

No. of
Vehicles No. of Tests Total Seconds

ARB data UCC17 17 17 7174
ARB data UCC20 17 17 15048
ARB data UCC25 17 17 15372
ARB data UCC30 17 17 17712
ARB data UCC35 17 17 24318
ARB data UCC40 17 17 24012
ARB data UCC45 17 17 23472
ARB data OLD UCC50 15 15 34663
ARB data MUC* 4 20 46760
ARB data UCC50 2 4 8768
ARB data UCC60 2 4 11240

* MUC: Modified Unified Cycle

Table 9-13.  Key Characteristics of the Activity Patterns of the Driving Cycles in Validation
Dataset III.

Cycle ID
Time
(s)

Average
Speed
(mph)

Max
Speed
(mph)

Min
Speed
(mph)

Max
Acceleration
(mph/sec)

Mean
VSP
(Kw/ton)

Max
VSP
(Kw/ton)

UCC17 422 13 37 0 4.6 1.4 22.3
UCC20 836 18 44 0 5.7 1.9 25.6
UCC25 854 23 50 0 5.9 2.5 23.1
UCC30 984 27 59 0 5.5 3.1 35.8
UCC35 1351 32 69 0 5.6 4.1 68.2
UCC40 1334 36 72 0 5.5 5.1 48.9
UCC45 1304 45 71 0 5.7 6.5 43.3

OLD
UCC50 2039 48 76 0 8.1 7.8 86.5
MUC* 2338 17 67 0 6.9 2.1 35.1
UCC50 2192 43 72 0 7.5 6.3 28.1
UCC60 2810 53 81 0 6.4 9.2 57.2

* MUC: Modified Unified Cycle



22
9

F
ig

ur
e 

9-
3.

  C
om

pa
ri

so
n 

of
 O

bs
er

ve
d 

an
d 

Pr
ed

ic
te

d 
A

ve
ra

ge
 T

ot
al

 E
m

is
si

on
s 

of
 C

O
2,

 C
O

, H
C

, a
nd

 N
O

x 
fo

r 
E

ig
ht

 U
C

C
 D

ri
vi

ng
C

yc
le

s 
fo

r 
V

al
id

at
io

n 
D

at
as

et
 I

II
.

0.
111010
0

UC
C1

7
UC

C2
0

UC
C2

8
UC

C3
0

UC
C3

5
UC

C4
0

UC
C4

5
O

ld
 U

CC
50

CO Emissions (g)

O
bs

er
ve

d

Pr
ed

ict
ed

11010
0

10
00

10
00

0

UC
C1

7
UC

C2
0

UC
C2

8
UC

C3
0

UC
C3

5
UC

C4
0

UC
C4

5
O

ld
 U

CC
50

CO2 Emissions (g)

O
bs

er
ve

d

Pr
ed

ict
ed

0.
010.

1110

UC
C1

7
UC

C2
0

UC
C2

8
UC

C3
0

UC
C3

5
UC

C4
0

UC
C4

5
O

ld
 U

CC
50

HC Emissions (g)

O
bs

er
ve

d

Pr
ed

ict
ed

0.
111010
0

UC
C1

7
UC

C2
0

UC
C2

8
UC

C3
0

UC
C3

5
UC

C4
0

UC
C4

5
O

ld
 U

CC
50

NO Emissions (g)

O
bs

er
ve

d

Pr
ed

ict
ed



230

Table 9-14. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset III for CO2

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)

CIs
Overlap

UCC17 800 722 - 879 915 902 - 929 14 N
UCC20 1787 1632 - 1941 1975 1941 - 2008 11 Y
UCC25 2050 1888 - 2211 2196 2155 - 2237 7 Y
UCC30 2407 2220 - 2594 2617 2568 - 2666 9 Y
UCC35 3690 3416 - 3963 3849 3771 - 3926 4 Y
UCC40 4078 3799 - 4356 4084 3998 - 4171 0 Y
UCC45 4586 4257 - 4916 4439 4338 - 4540 -3 Y

OLD
UCC50 7856 7235 - 8477 7252 7070 - 7435 -8 Y

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-15. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset III for CO

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
UCC17 2.9 0.8 – 4.9 4.3 3.9 - 4.7 48 Y
UCC20 8.6 3.9 – 13.4 9.8 9.0 - 10.6 14 Y
UCC25 8.3 4.4 – 12.2 11.6 10.7 - 12.6 40 Y
UCC30 12.8 7.6 – 18.0 15.5 14.4 - 16.6 21 Y
UCC35 24.3 11.9 – 36.8 25.1 23.6 - 26.5 3 Y
UCC40 31.2 18.1 – 44.4 29.0 27.4 - 30.5 -7 Y
UCC45 29.5 16.9 – 42.1 34.4 32.9 - 35.9 17 Y
OLD

UCC50
47.7 22.4 – 73.1 54.8 52.2 - 57.4

15 Y
a Diff: ((Predicted-Observed)/Observed)*100
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Table 9-16. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset III for HC

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
UCC17 0.08 0.04 - 0.12 0.29 0.23 - 0.36 263 N
UCC20 0.20 0.12 - 0.29 0.62 0.48 - 0.76 210 N
UCC25 0.24 0.16 - 0.31 0.68 0.53 - 0.83 183 N
UCC30 0.34 0.24 - 0.44 0.81 0.63 - 0.99 138 N
UCC35 0.56 0.36 - 0.76 1.20 0.94 - 1.46 114 N
UCC40 0.67 0.45 - 0.89 1.28 1.01 - 1.56 91 N
UCC45 0.71 0.49 - 0.93 1.40 1.10 - 1.69 97 N

OLD
UCC50 1.19 0.74 - 1.63 2.21 1.71 - 2.71 86 N

a Diff: ((Predicted-Observed)/Observed)*100

Table 9-17. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset III for NOX

Cycles

Mean
Obs.
(g)

95 %
CI

Mean
Pred.

(g)
95 %

CI
Diff. a

(%)
CIs

Overlap
UCC17 0.65 0.29 -  1.00 0.59 0.53 - 0.65 -9 Y
UCC20 1.25 0.54 - 1.96 1.36 1.22 - 1.50 9 Y
UCC25 1.57 0.70 - 2.44 1.62 1.45 - 1.79 3 Y
UCC30 1.98 0.86 - 3.11 2.00 1.79 - 2.21 1 Y
UCC35 3.34 1.22 - 5.46 3.09 2.76 - 3.42 -7 Y
UCC40 4.67 1.34 - 8.00 3.46 3.10 - 3.82 -26 Y
UCC45 4.47 1.64 - 7.30 3.99 3.56 - 4.42 -11 Y

OLD
UCC50 9.41 6.7 - 16 6.54 5.79 - 7.29 -30 Y

a Diff: ((Predicted-Observed)/Observed)*100
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For CO and NOx, the confidence intervals overlap for all eight of the driving cycles when
comparing predicted and observed averages.  This suggests strong agreement between the model
and the observations for all of the cycles evaluated.  The CO predictions typically are larger than
the observed values and the prediction errors are as large as approximately 40 percent for the
lower emission cycles and not larger than approximately 20 percent for the higher emission
cycles.  The observed CO emissions vary by a factor of 16 from the smallest to the largest
values, and the predicted CO emissions vary similarly by a factor of 13.  For NOx, the prediction
errors were less than plus or minus 10 percent for five of the eight cycles, and were less than or
equal to plus or minus 30 percent for all cycles.  The observed NOx emissions varied by a factor
of 15 from the smallest to the highest values, while the predictions varied similarly by a factor of
11.

For HC, the predictions were typically a factor of two to three larger than the observed values.
However, the qualitative trend of the predictions was similar to the observed values when
comparing cycles in terms of rank ordering with respect to emissions.  For example, the model
predicted the lowest emission rate for the UCC17 cycle and the highest emission rate for the Old
UCC50 cycle, which is consistent with the observations.

There is some uncertainty regarding the regulations to which some of the vehicles in the CARB
data set are subject.  It is possible that some of the vehicles may be TLEV, rather than Tier 1,
vehicles, although specific information regarding this was not available with the data set.  TLEV
vehicles are subject to a more stringent HC emission standard but are otherwise the same as Tier
1 vehicles.  The comparison suggests that the CARB vehicles have similar CO2, CO, and NOx

emissions but lower HC emissions when compared to the predictions made based upon modal
emissions rates estimated from the modeling data set.  An analysis was done for two subsets of
the CARB database:  (1) vehicles believed to be subject to Tier 1 standards; and (2) vehicles
believed to be subject to TLEV standards.  It turned out that these two subgroups of vehicles did
not have any statistically significant difference in emissions with each other taking into account
all four pollutants and all eight driving cycles.  Thus, to the extent that TLEV vehicles may be
present in the CARB database, the specific sample of TLEVs would not appear to have different
average emissions than the specific sample of Tier 1 vehicles.  It is possible, therefore, that the
predicted and observed HC emissions may differ for reasons other than emission standards, such
as perhaps because of different fuels.  There was also uncertainty as to whether the HC emissions
reported in the CARB database were for total hydrocarbons or for non-methane hydrocarbons
(NMHC).   The data were used assuming that they represented total hydrocarbons.  However, if
the HC data were actually for NMHC, then it would be necessary to add the estimated methane
emissions in order to calculate the total observed hydrocarbons, in which case the comparison
would improve.  Confirmation on this point could not be obtained during the time period of this
study.

The main findings from Validation Case Study 3 are:

- There was excellent agreement between the predicted and observed CO2, CO, and NOx

emissions.
- There appears to be excellent concordance between the predicted and observed HC

emissions.
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9.4 Preliminary Exploration of Refinements to the Modal Modeling Approach

Validation Case Study II indicated that there was some disagreement between the model
predictions and the observed values particularly for the FTP75 cycle.  It was observed that the
validation data set tended to have vehicles with smaller engines than did the modeling dataset.
Therefore, a refinement to the modal modeling approach was explored in which the modeling
database was stratified into more engine displacement categories than was used in the “56-bin”
approach developed in Chapter 3.  In addition, a second type of refinement was explored in
which an additional explanatory variable was sought for purposes of disaggregating each VSP
bin.  Based upon an analysis of the sensitivity of the average emissions in a VSP bin to
acceleration and to average speed, as illustrated in Appendix A in Figure A-7, either of these two
variables was identified as potentially useful in further disaggregating the modeling database to
create additional bins.  Speed was selected as the explanatory variable for further consideration
because speed is directly measured and because speed and acceleration are inversely related to
each other for most of the VSP bins, as illustrated by the scatter plots shown in Chapter 5 in
Figures 5-10 and 5-11.  Thus, there is little need to include both speed and acceleration as
additional explanatory variables.

In the case of refinement of the modal modeling approach based upon additional engine
displacement categories, three levels of engine displacement were used, rather than two as in the
original VSP-approach. These levels are: engine displacement less than 2.0 liter; engine
displacement greater than 2.0 liters and less than 3.5 liters; and engine displacement greater than
3.5 liter. In this approach, there are totally 84 bins, (2 odometer reading categories, 3 engine
displacement categories, and 14 VSP modes).  The average modal emission rates for this “84-
bin” approach are given in Appendix A in Figures A-5 and A-6 for vehicle with odometer
reading less than 50,000 miles and for vehicles with odometer reading greater than 50,000 miles,
respectively.  Using these average modal rates, predictions were made and compared to the
observed values for Validation Dataset II.  There was no significant improvement in the
predictions based upon the disaggregating of engine displacement into three instead of two
categories.

In the case of refinement of the modal modeling approach based upon speed, two levels of speed
were defined for each VSP mode based upon a selected cut point of 32 mph.  The average
emission rates for each VSP mode for the low and high speed bins are shown in Appendix A in
Figures A-8 through A-11 for vehicles with the following characteristics, respectively:  (1)
engine displacement less than 3.5 liters and odometer reading less than 50,000 miles; (2) engine
displacement greater than 3.5 liters and odometer reading less than 50,000 miles; (3) engine
displacement less than 3.5 liters and odometer reading greater than 50,000 miles; and (4) engine
displacement greater than 3.5 liters and odometer reading greater than 50,000 miles.  For the
higher speed bins, the average emission rates tend to be higher in many cases, such as for CO2

emissions for the lower VSP modes, for CO for most modes, for HC especially for the lowest
VSP modes, and for NOx for low to moderate VSP modes.  The comparison of the average
modal emission rates for the two speed bins for a given VSP mode suggests that there are
opportunities to refine the estimation of emission rates by considering speed as an additional
explanatory variable.  A trade-off is that the sample size of each bin becomes smaller, leading to
wider confidence intervals in some cases.  When the speed disaggregated VSP modes were used
to make predictions of cycle emissions for Validation Case Study 2, there was not a significant
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improvement in the prediction of total emissions compared to the predictions from the “56-bin”
approach.  Thus, it may be the case that additional levels of detail at the micro scale may not lead
to substantial improvements in predictions at the macro scale.  However, it is likely that
disaggregation of VSP bins by speed will lead to more accurate predictions at the micro- or
mesoscale.

Of the two refinements to the modal modeling approach explored here, the refinement based
upon speed appears to offer promise for improving the accuracy of microscale or mesoscale
predictions, even though it may not help substantially in improving macroscale predictions, at
least for the conditions evaluated in this study.

9.5 Summary and Recommendations

The main findings from all three verification and validation case studies are:

- The modal modeling approach is internally consistent, as demonstrated by Validation Case
Study I.  Specifically, it is possible to reproduce total trip emissions based upon proper
estimating and combination of average emissions for individual modes.

- The model generally performs well for the higher emission cycles and for cycles or
conditions that are represented by a large portion of the data in the modeling data set.

- The model is highly responsive, predicting a wide range of variability in average emissions.
- Although the model tends to ove-rpredict for low emissions cycles, such cycles may be less

important from an inventory perspective than the high emissions cycles for which the model
performs better.

- The model performance for the low emissions cycles could be improved by working with
modeling datasets that have a larger representation of such cycles, or perhaps by refining the
modal definitions to better represent such cycles.

- A promising approach for refining the modal modeling method is to consider speed as an
additional explanatory variable.

- Comparisons of CO2 emissions appear to be a good method for determine the comparability
of two datasets:  in the case of the ARB data sets, there was excellent agreement for CO2 and
this extended to the other pollutants.  For Validation Data Set 2, there were systematic
differences in CO2 for one of the driving cycles for which comparisons were done that
appeared to extend to at least some of the other pollutants (e.g., CO, HC).

Overall, the results of the case studies illustrate the flexibility and robustness of a modal-based
approach for making predictions for a wide variety of driving cycles and for on-board data.
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10 RECOMMENDATIONS FOR METHODOLOGY FOR MODAL MODEL
DEVELOPMENT

This report has explored in detail a number of key issues pertaining to the methodology for
developing a modal emissions model.  The main focus of the case studies have been with respect
to hot stabilized tailpipe emissions from Tier 1 vehicles.  However, when taking in the context of
recent previous work by NCSU to develop approaches for estimating cold start emissions for
gasoline vehicles, as well as modal emission rates for heavy duty diesel vehicles, this report
combined with the previous efforts clearly demonstrates the feasibility of a modal modeling
approach.

The key questions that were addressed in this work were the following:

1. What dataset should be used for the final version of the conceptual model? (Task 1a,
Chapter 2)

2. Which binning approach should be used? (Task 1b, Chapter 3)

3. How much detail should be included in the binning approach, in terms of how many
explanatory variables and how many strata for each variable?  (Task 1b, Chapter 3)

4. What averaging time is preferred as a basis for model development? (Task 1b, Chapter 4)

5. What emission factor units should be used? (Task 1b, Chapter 5)

6.  What weighting approach should be used, when comparing time-weighted, vehicle
weighted, and trip weighted? (Task 1b, Chapter 6)

7.  How should variability and uncertainty be characterized? (Task 1c, Chapter 7)

8.  How should aggregate bag data be analyzed to derive estimates of modal emission rates?
(Task 1d, Chapter 8)

9.  What is the potential role and feasibility of incorporating RSD data into the conceptual
modeling approach? (Task 1e, Chapter 5)

10. How should the conceptual model be validated and what are the results of validation
exercises? (Task 2, Chapter 9)

The answers to these questions are briefly summarized here, and are given in more detail in the
respective chapters devoted to each topic.

The data set used for the conceptual model was comprised of EPA dynamometer data, EPA on-
board data, and NCHRP dynamometer data.  These data comprised the modeling database.  The
modeling database was compared to several other databases, including an IM240 database and an
RSD database.
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The binning approach selected was a 14 mode VSP-based approach.  However, it was shown that
an approach based upon driving modes of idle, acceleration, cruise, and deceleration produced
comparable predictions for total emissions.  Thus, the 14 mode VSP-based approach is not
unique in its capability to predict emissions, but it is expected to facilitate design of a modeling
system perhaps moreso than the other approach.

There is a trade-off between improving the explanatory power of a model and having a model
that becomes complicated to code or use.  Odometer reading and engine displacement were
identified as key explanatory variables.  Engine displacement is highly correlated with vehicle
net weight and with the number of cylinders of the engine.  Therefore, it is not necessary to
include net vehicle weight or number of cylinders if engine displacement is selected as an
explanatory variable.  Odometer reading is weakly correlated with model year.  This suggests
that there might be a role for model year in future model development.  Because this study
focused upon Tier 1 vehicles, with much of the data spanning only a very limited range of model
years, it is possible that the influence of model year is understated with respect to this analysis
and that it may be more important for other types of vehicles.  Ambient parameters such as
humidity were accounted for in correcting NOx emissions.  Ambient temperature was not found
to be a significant explanatory variable.  On the other hand, as discussed in Chapter 9, there may
be an opportunity to improve the explanatory power of the 14 mode VSP-based approach by
including either speed or acceleration as a criteria for further disaggregating the bins.

The method for selecting the specific definitions of the 14 VSP bins took into account that each
pollutant has a different sensitivity to VSP.  Thus, a “supervised” technique was used in which
the contribution of any individual mode to total emissions for a given pollutant was considered
as a key criteria.  This approach produced one set of modal definitions that worked well for all
four pollutants.

An approach based upon “56 bins” for which the 14 VSP modes were stratified into two
odometer reading categories and two engine displacement categories performed reasonably well
when predictions were compared to observations for independent data sets, as reported in
Chapter 9.  The validation case studies thus emphasize that the modal emissions approach is
feasible.  A key benefit of the conceptual modeling approach is that it works for all four
pollutants considered, and it is not necessary to develop a separate approach for each pollutant.

Three averaging times were compared with respect to ability to make predictions of trip
emissions.  No substantial difference was found.  Thus, for simplicity, the one second averaging
time was recommended for model development and was employed in this work.  However,
although the issue of averaging time may not have a significant effect on prediction of average
emissions, there is a significant effect on the prediction of uncertainty in average emissions.  As
noted in Chapter 7, the range of uncertainty in the average modal emission rates is a function of
averaging times, and the uncertainty estimates should be adjusted appropriately when making
predictions of uncertainty.

Three weighting approaches were compared, including time, trip, and vehicle weighted
approaches.  It is clear that the average emission estimates will differ depending on which
approach is used, because each approach gives a different amount of weight to different
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subgroups of the data.  For example, the time weighted approach gives equal weight to each data
point.  The trip weighted approach gives each trip (or driving cycle test) equal weight, even
though trip lengths may differ and even though some vehicles may be represented by many trips
and others may be represented by only one.  The vehicle weighted approach gives each vehicle
equal weight regardless of the total testing time or number of trips (or tests).   When comparing
time, trip, and vehicle weighted approaches, the standard deviation of the variability in emissions
decreases in the same order because each successive approach involves more averaging.
However, the averaging time is not standardized for the trip and vehicle weighted approaches.
Because averaging time is important to accurate estimation of uncertainty, preference was given
in this work to the time weighted approach.

With regard to emission factor units, there was no clear overall advantage for emission ratios
versus mass per time emission factors for CO, HC, and NOx.  Although it is the case that there is
less variability in the averages among many of the modes for CO and HC for emission ratios
when compared to mass per time emission rates, for NOx there is substantial variability across all
modes regardless of the units used.  For software design purposes, it is simpler to use the same
approach for all pollutants.  Thus, an emission ratio approach would require a similar number of
modes as the mass per time approach.  In this regard, there was no clear advantage.
Additionally, it is necessary to estimate mass per time emissions of CO2, or to estimate mass per
time fuel consumption, in order to convert emission ratios for CO, HC, and NOx to mass
emission rates as would be required for an emission inventory model.  Although an emission
ratio approach offers some benefits of simplicity when applied to an areawide macroscale
emission inventory based upon information such as fuel sales, an emission ratio approach
nonetheless would require modal estimates of CO2 emissions or fuel use when applied to
mesoscale emission inventories.  Thus, for consistency in the modeling approach, the preferred
strategy was to use mass per time emission rates for all pollutants and to apply the same modal
emissions approach for all pollutants.

Considerable attention was devoted in this work to methods for characterizing variability in
emission rates for individual modes, uncertainty in average emissions for individual modes, and
uncertainty in total emissions estimated based upon weighted combinations of modes.  The
recommendations regarding these issues are given in more detail in Chapter 7.  In brief, the
feasibility of representing variability in modal emission rates with parametric distributions was
demonstrated.  In some cases, single component parametric distributions cannot provide a good
fit, but in such cases a two component mixture of lognormal distributions provided an excellent
fit.  The Method of Matching Moments is recommended as a preferred parameter estimation
method if the objective is to have the mean and standard deviation of the fitted distributions
match those of the data.  For mixture distributions, MoMM is not considered a feasible
parameter estimation method and Maximum Likelihood Estimation is recommended.  However,
the differences in results between MoMM and MLE become smaller as the goodness-of-fit
improves.  Thus, a well fitting mixture distribution will typically have a mean and standard
deviation similar to that of the data.

The analysis of uncertainty need not be conditioned upon the assumptions made regarding the
characterization of variability based upon parametric distributions.  For example, uncertainty in
the mean can be estimated directly based upon the data using analytical or numerical methods.  It
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is recommended that the sample size and the relative standard error of the mean of each bin
quantified.  If the sample size is less than 40 and/or if the relative standard error of the mean is
greater than 0.2, then bootstrap simulation is recommended as a technique for quantifying the
sampling distribution of the mean.  In all other cases, a normality assumption will typically be
more than adequate.  Parametric distributions can be fit to sampling distributions obtained from
bootstrap simulation.  Thus, for all modes, it is possible to use parametric distributions to
represent uncertainty in the mean, which will facilitate software design and model applications.

Both numerical and analytical methods for propagating uncertainty through a model were
explored.  Numerical methods such as Monte Carlo simulation or Latin Hypercube Sampling
offer the advantage of increased flexibility to accommodate many kinds of distributions and
models, including situations in which uncertainty is quantified not only for modal emission rates
but also for vehicle activity (e.g., percentage of time spent in different modes and trip duration).
In contrast, the analytical approach offers the advantage of less computational burden but is also
less flexible.  An exact solution can be obtained for linear combinations of normal distributions,
such as when uncertainty in only modal emission rates is quantified and when all such
uncertainties are assumed to be normally distributed.  Approximate analytical solutions can be
developed for other situations, such as when propagating uncertainty in both activity and
emission rates.  If this latter approach is to be further considered, the approach should be
evaluated quantitatively in comparison to a Monte Carlo approach to make sure that it will
produce sufficiently accurate results.  If a Monte Carlo approach is adopted, consideration should
be given to also including an analytical approach for use as a quality assurance tool.

The range of uncertainty in total emissions estimates was large enough in many cases to justify
the importance of performing an uncertainty analysis.  For example, for HC  and CO emissions
the range of uncertainty was as large as plus or minus 30 percent for selected vehicle groups and
for four different driving cycles.

With respect to the issue of how to estimate modal emission rates from aggregate dynamometer
data (for which no second-by-second data are available), the results were mixed.  It is possible to
develop good modal emission estimates especially for CO2 as long as there is a sufficient sample
size and as long as sufficient constraints are specified in the least squares optimization approach.
However, the range of uncertainty in the predicted modal emission rates can be much larger than
the uncertainty in modal emission rates obtained from second by second data.  The results imply
that it is important to develop good estimates of the constraints; however, when applied to
vehicle groups for which there are no or few comparable second-by-second data, such as for
older carbureted vehicles, it may be difficult to develop good estimates of what the constraints
should be.  An alternative approach is to arbitrarily specify more stringent constraints, such as
defining ratios to be multiples of each other, in which case the estimation problem becomes
simpler but the answers obtained will be highly conditional upon such constraints.

The most critical issue in the modal modeling approach is to have a representative data set.  This
issue cannot be sidestepped regardless of the modeling approach employed.  A representative
data set should have proportional representation of vehicle emission rates and activity patterns
similar to that in the real world.  The development of such a database is resource limited and
requires considerable judgment.  In this particular work, the modeling database used for
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development and demonstration of the modal emissions concept was compared to other
databases, including IM240 and remote sensing data.  It appears to be the case that modeling
database produces lower emissions estimates for some modes and comparable emissions
estimates for others when compared to these other data sources.  A possible reason for the
differences could be because of a different representation of high emitting versus normal
emitting vehicles.  However, another reason that was explored is that the activity patterns of the
modeling database are generally different than those of the IM240 and RSD data.  Thus, a key
question is not only whether the modeling database contains sufficient representation of high
emitting vehicles, but also whether the IM240 and RSD data contain adequate or appropriate
representation of real world activity patterns from which it is useful to make inferences regarding
emissions.  The modeling database contained some high emitting vehicles, and it was apparent
that the upper range of emission rates for a given mode of the modeling database were typically
comparable to the upper range of emission rates from these other databases.  Thus, the question
is not whether the modeling database represents high emitting vehicles and/or high emitting
episodes.  Clearly, it does.  The question is whether it contains a sufficient proportional
representation of such situations.  The evidence to support an answer to this question is
inconclusive given the different nature of the activity patterns for the IM240 and RSD databases
compared to that of the modeling database, as well as the possibility of other potential
confounding factors, such as fuel effects.  From a methodological perspective, the main
implication of these comparisons in terms of future model development is to make sure that the
modeling database for future work is more comprehensive in terms of sample size and coverage
of vehicles considered to be both normal and high emitters.

Three approaches were taking toward validation of the conceptual modeling approach.  The first
was to perform a consistency check, which demonstrated that the modal emission approach can
be applied to a dataset to disaggregate emissions into modes, and that it is possible to reaggregate
the model emissions and reproduce the total trip emissions.  The second was to compare model
predictions to observed values for a set of vehicles similar to but not identical to those used in the
modeling data base.  The comparison demonstrated that differences in vehicle mix between the
modeling database and the validation database can lead to differences when comparing predicted
and observed emissions.  However, for cases in which the model and the observed values agreed
well for CO2 emissions, they also tended to agree well for emissions of the other three pollutants.
In the future, it is worthwhile to perform similar validation studies by withholding data from the
modeling database for some of the trips made by a subset of vehicles, rather than to withhold
from the modeling database all data for a particular set of vehicles.  Such an approach would
improve the likelihood that the vehicles in the validation data set are similar to those in the
modeling data set.  The third validation case study involved prediction of emissions for an
independent set of vehicles based upon data provided by CARB.  The comparison of predicted
and observed emissions was generally excellent for CO2, NOx, and CO for eight different driving
cycles.  The model overpredicted for HC in all cases; however, it is possible that CARB may
have reported only nonmethane hydrocarbons instead of total hydrocarbons or that there was a
fuel effect.  A potential distinction between Tier 1 and TLEV vehicles in the CARB database
was explored.  However, no significant difference in emissions was found for vehicles that might
be TLEVs versus those that were Tier 1; therefore, it was not useful to report results separately
for these two possible categories.
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A key criteria for comparison when performing validation studies is to evaluate the statistical
significance of differences between predicted and observed emissions.  Emissions for individual
vehicles can vary by orders of magnitude even for the same driving cycle; therefore,
comparisons based upon a small number of vehicles will typically have wide confidence
intervals for the mean and will be less reliable than those based upon a larger set of vehicles.
Since the objective of an emission inventory model is to make accurate predictions for a fleet of
vehicles, it is important to have a quantitative understanding of the level of uncertainty
associated with mean predictions of the model, as has been demonstrated in this work.

In conclusion, this work has demonstrated the feasibility of an empirically-based method for
modal emissions model.  The methods demonstrated in this work can and should be incorporated
or adapted for use in the development of MOVES and other emission estimation systems.



241

11 REFERENCES

Bachman, W. H. (1999), A GIS-Based Modal Model of Automobile Exhaust Emissions Final
Report; Prepared by Georgia Institute of Technology for U.S. Environmental Protection Agency;
Atlanta, Georgia.

Cullen, A.C., and H.C. Frey (1999).  The Use of Probabilistic Techniques in Exposure
Assessment:  A Handbook for Dealing with Variability and Uncertainty in Models and Inputs.
Plenum:  New York, 1999.  335 pages.

Frey, H.C., R. Bharvirkar, and J. Zheng (1999), Quantitative Analysis of Variability and
Uncertainty in Emissions Estimation, Prepared by North Carolina State University for the U.S.
Environmental Protection Agency, Research Triangle Park, NC.  July 1999.

Frey, H.C., and S. Bammi (2002a), "Quantification of Variability and Uncertainty in Lawn and
Garden Equipment NOx and Total Hydrocarbon Emission Factors," Journal of the Air & Waste
Management Association, 52(4):435-448..

Frey, H.C., and S. Bammi (2002b), "Probabilistic Nonroad Mobile Source Emission Factors,"
ASCE Journal of Environmental Engineering, accepted for publication.

Frey, H.C., and D.E. Burmaster (1999), “Methods for Characterizing Variability and
Uncertainty:  Comparison of Bootstrap Simulation and Likelihood-Based Approaches,” Risk
Analysis, 19(1):109-130 (February 1999).

Frey, H.C., and D.A. Eichenberger (1997a), “Quantification of Uncertainty in Remote Sensing-
Based School Bus CO and Hydrocarbon Emission Factors,” Paper No. 97-RP143.07,
Proceedings of the 90th Annual Meeting (held June 18-13 in Toronto, Canada), Air and Waste
Management Association, Pittsburgh, Pennsylvania, June 1997 (CD-ROM).

Frey, H.C., and D.A. Eichenberger (1997b), Remote Sensing of Mobile Source Air Pollutant
Emissions:  Variability and Uncertainty in On-Road Emissions Estimates of Carbon Monoxide
and Hydrocarbons for School and Transit Buses, FHWY/NC/97-005, Prepared by North
Carolina State University for North Carolina Department of Transportation, Raleigh, June 1997.  

Frey, H.C., and D.S. Rhodes (1996), “Characterizing, Simulating, and Analyzing Variability and
Uncertainty:  An Illustration of Methods Using an Air Toxics Emissions Example,” Human and
Ecological Risk Assessment: an International Journal, 2(4):762-797 (December 1996).

Frey, H.C., and D.S. Rhodes (1998), “Characterization and Simulation of Uncertain Frequency
Distributions:  Effects of Distribution Choice, Variability, Uncertainty, and Parameter
Dependence,” Human and Ecological Risk Assessment: an International Journal, 4(2):423-468
(April 1998).

Frey, H.C., and D.S. Rhodes (1999), Quantitative Analysis of Variability and Uncertainty in
Environmental Data and Models:  Volume 1.  Theory and Methodology Based Upon Bootstrap
Simulation, Report No. DOE/ER/30250--Vol. 1, Prepared by North Carolina State University for
the U.S. Department of Energy, Germantown, MD, April 1999.



242

Frey, H.C., N. Rouphail, A. Unal, and J. Colyar (2000), "Emissions and Traffic Control:  An
Empirical Approach," Presented at CRC On-Road Vehicle Emissions Workshop, San Diego,
CA, March 27-29, 2000.

Frey, H.C., N.M. Rouphail, A. Unal, and J.D. Colyar (2001), Emissions Reduction Through
Better Traffic Management:  An Empirical Evaluation Based Upon On-Road Measurements,
FHWY/NC/2002-001, Prepared by North Carolina State University for North Carolina
Department of Transportation, December 2001.  323 pp.

Frey, H.C., A. Unal, and J. Chen (2002), Recommended Strategy for On-Board Emission Data
Analysis and Collection for the New Generation Model, Prepared by North Carolina State
University for the Office of Transportation and Air Quality, U.S. Environmental Protection
Agency, Ann Arbor, MI.  February 2002.

Frey, H.C., and J. Zheng (2000), User's Guide for Analysis of Uncertainty and Variability in
Emissions Estimation (AUVEE), Prepared by North Carolina State University for Office of Air
Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle
Park, NC, September 2000.

Frey, H.C., and J. Zheng (2001), Methods and Example Case Study for Analysis of Variability
and Uncertainty in Emissions Estimation (AUVEE), Prepared by North Carolina State University
for Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency,
Research Triangle Park, NC, February 2001.

Frey, H.C., and J. Zheng (2002a), "Quantification of Variability and Uncertainty in Utility NOx

Emission Inventories," J. of Air & Waste Manage. Assoc., in press for September 2002 issue.

Frey, H.C., and J. Zheng (2002b), "Probabilistic Analysis of Driving Cycle-Based Highway
Vehicle Emission Factors," Environmental Science and Technology, undergoing revision for
April 2002 resubmission.

Frey, H.C., J. Zheng, Y. Zhao, S. Li, and Y. Zhu (2002), Technical Documentation of the
AuvTool Software for Analysis of Variability and Uncertainty, Prepared by North Carolina State
University for the Office of Research and Development, U.S. Environmental Protection Agency,
Research Triangle Park, NC.  February 2002.

Hildebrand, F. B. (1987), Introduction to Numerical Analysis, Dover: New York, 669 pages.

Kini, M.D., and H.C. Frey (1997), Probabilistic Evaluation of Mobile Source Air Pollution:
Volume 1, Probabilistic Modeling of Exhaust Emissions from Light Duty Gasoline Vehicles,
Prepared by North Carolina State University for Center for Transportation and the Environment,
Raleigh, December 1997.

Kress, R. (1998), Numerical Analysis, Springer: New York, 326 pages.

Morgan, M.G., and M. Henrion (1990), Uncertainty, Cambridge University Press:  New York.
1990.

Rouphail, N.M., H.C. Frey, A. Unal, and R. Dalton (2000), ITS Integration of Real-Time
Emissions and Traffic Management Systems, IDEA Project No. ITS-44, Prepared by North
Carolina State University for the IDEA Program, Transportation Research Board, National



243

Research Council, Washington, DC.  May 2000. (available at
www4.ncsu.edu/~frey/freytech.html).

Unal, A. (1999), “Measurement, Analysis, and Modeling of On-Road Vehicle Emissions Using
Remote Sensing,” M.S. Thesis, Department of Civil Engineering, North Carolina State
University, Raleigh, NC.

Washington, S., J. Wolf, and R. Guensler (1997), “A Binary Recursive Partitioning Method for
Modeling Hot-Stabilized Emissions from Motor Vehicles,” Prepared by School of Civil and
Environmental Engineering, Georgia Institute of Technology for the 76th Annual Meeting of the
Transportation Research Board, Atlanta, Georgia.

Zheng, J. (2002), PhD Dissertation, Department of Civil Engineering, North Carolina State
University, Raleigh, NC.

Zheng, J., and H.C. Frey (2002), AuvTool User’s Guide, Prepared by North Carolina State
University for the Office of Research and Development, U.S. Environmental Protection Agency,
Research Triangle Park, NC.  February 2002.



24
4

12
 

A
P

P
E

N
D

IX
 A

Fi
gu

re
 A

-1
. R

el
at

io
ns

hi
p 

be
tw

ee
n 

A
ir

 C
on

di
tio

n 
U

se
 a

nd
 E

m
is

si
on

s



24
5

Fi
gu

re
 A

-2
. R

el
at

io
ns

hi
p 

be
tw

ee
n 

R
el

at
iv

e 
H

um
id

it
y 

an
d 

E
m

is
si

on
s



24
6

Fi
gu

re
 A

-3
. R

el
at

io
ns

hi
p 

be
tw

ee
n 

A
m

bi
en

t T
em

pe
ra

tu
re

 a
nd

 E
m

is
si

on
s



24
7

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

0.
00

00
01

0.
00

00
1

0.
00

01
0.

00
1

0.
01

0.
1

C
O

/C
O

2

Cumulative Probability

 M
od

el
in

g 
da

ta
 R

em
ot

e 
S

en
si

ng

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

0.
00

00
01

0.
00

00
1

0.
00

01
0.

00
1

0.
01

0.
1

H
C

/C
O

2

Cumulative Probability

 M
od

el
in

g 
da

ta
 R

em
ot

e 
S

en
si

ng

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91 1E

-0
8

1E
-0

7
0.

00
00

01
0.

00
00

1
0.

00
01

0.
00

1
0.

01
0.

1

N
O

/C
O

2

Cumulative Probability

 M
od

el
in

g 
da

ta
 R

em
ot

e 
S

en
si

ng

Fi
gu

re
 A

-4
.  

C
om

pa
ri

so
n 

of
 V

ar
ia

bi
lit

y 
fo

r 
M

od
el

in
g 

D
at

a 
an

d 
R

em
ot

e 
Se

ns
in

g 
D

at
a 

fo
r 

V
SP

 M
od

e 
7 

w
ith

 E
ng

in
e 

Si
ze

 L
es

s 
T

ha
n 

3.
5

L
ite

rs
 a

nd
 M

od
el

 Y
ea

r 
at

 1
99

6.



24
8

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

HC Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t<
=

2 
Li

te
rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
3.

5 
Li

te
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
111010
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO2 Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t<
=

2 
Li

te
rs

2 
Li

te
rs

 <
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
 3

.5
 L

ite
rs

 

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
00

1

0.
010.
1110

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t 
<

=
2 

Li
te

rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
 3

.5
 L

ite
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

NOx Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t 
<

=
2 

Li
te

rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
3.

5 
Li

te
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

Fi
gu

re
 A

-5
.  

A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

eh
ic

le
s 

w
ith

 O
do

m
et

er
 R

ea
di

ng
s 

L
es

s 
th

an
 5

0,
00

0 
m

ile
s 

B
as

ed
 U

po
n 

V
SP

 B
in

s



24
9

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

HC Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t<
=

2 
Li

te
rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
3.

5 
Li

te
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
111010
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO2 Emissions (g/sec)
E

ng
in

e 
D

is
pl

ac
em

en
t<

=
2 

Li
te

rs

2 
Li

te
rs

 <
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
 3

.5
 L

ite
rs

 

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
00

1

0.
010.
1110

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t 
<

=
2 

Li
te

rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
 3

.5
 L

ite
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

NOx Emissions (g/sec)

E
ng

in
e 

D
is

pl
ac

em
en

t 
<

=
2 

Li
te

rs

2 
Li

te
rs

<
 E

ng
in

e 
D

is
pl

ac
em

en
t 

<
3.

5 
Li

te
rs

E
ng

in
e 

D
is

pl
ac

em
en

t 
>

=
3.

5 
Li

te
rs

Fi
gu

re
 A

-6
.  

A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

eh
ic

le
s 

w
ith

 O
do

m
et

er
 R

ea
di

ng
s 

G
re

at
er

 th
an

 5
0,

00
0 

m
ile

s 
B

as
ed

 U
po

n 
V

SP
 B

in
s



25
0

Fi
gu

re
 A

-7
.  

E
va

lu
at

io
n 

of
 A

ve
ra

ge
 C

O
 E

m
is

si
on

 R
at

es
 f

or
 1

4 
V

S
P

 B
in

s 
w

it
h 

R
es

pe
ct

 to
 A

cc
el

er
at

io
n 

(l
ef

t p
an

el
) 

an
d 

S
pe

ed
 (

ri
gh

t
pa

ne
l)

.

  
  



25
1

0
.0

01

0
.0

1

0
.11

1
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

CO Emissions (g/sec

S
p

ee
d

 >
 3

2
 m

p
h

S
p

ee
d

 <
 3

2
 m

p
h

1

1
0

1
0

0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

CO2 Emissions (g/sec
S

p
ee

d
 >

 3
2

 m
p

h

S
p

ee
d

 <
 3

2
 m

p
h

0
.0

00
1

0
.0

01

0
.0

1

0
.11

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

HC Emissions (g/sec

S
p

ee
d

 >
 3

2
 m

p
h

S
p

ee
d

 <
 3

2
 m

p
h

0
.0

00
1

0
.0

01

0
.0

1

0
.11

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

NOx Emissions (g/sec

S
p

ee
d

 >
 3

2
 m

p
h

S
p

ee
d

 <
 3

2
 m

p
h

Fi
gu

re
 A

-8
.  

A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

SP
 B

in
s 

fo
r 

E
ng

in
e 

D
is

pl
ac

em
en

t <
 3

.5
 li

te
r 

an
d 

O
do

m
et

er
 R

ea
di

ng
 <

 5
0K

 m
ile

s
fo

r 
T

w
o 

D
if

fe
re

nt
 S

pe
ed

 S
tr

at
a



25
2

0.
00

1

0.
010.
1110

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

11010
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO2 Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

HC Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

00
1

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

NOx Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

Fi
gu

re
 A

-9
.  

A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

SP
 B

in
s 

fo
r 

E
ng

in
e 

D
is

pl
ac

em
en

t >
 3

.5
 li

te
r 

an
d 

O
do

m
et

er
 R

ea
di

ng
 <

 5
0K

 m
ile

s
fo

r 
T

w
o 

D
if

fe
re

nt
 S

pe
ed

 S
tr

at
a



25
3

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

11010
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO2 Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

HC Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

NOx Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

Fi
gu

re
 A

-1
0.

  A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

SP
 B

in
s 

fo
r 

E
ng

in
e 

D
is

pl
ac

em
en

t <
 3

.5
 li

te
r 

an
d 

O
do

m
et

er
 R

ea
di

ng
 >

 5
0K

 m
ile

s
fo

r 
T

w
o 

D
if

fe
re

nt
 S

pe
ed

 S
tr

at
a



25
4

0.
00

1

0.
010.
1110

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

11010
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

CO2 Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

HC Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

0.
00

01

0.
00

1

0.
010.
11

1
2

3
4

5
6

7
8

9
10

11
12

13
14

NOx Emissions (g/sec)

Sp
ee

d 
> 

32
 m

ph

Sp
ee

d 
< 

32
 m

ph

Fi
gu

re
 A

-1
1.

  A
ve

ra
ge

 M
od

al
 E

m
is

si
on

 R
at

es
 f

or
 V

SP
 B

in
s 

fo
r 

E
ng

in
e 

D
is

pl
ac

em
en

t >
 3

.5
 li

te
r 

an
d 

O
do

m
et

er
 R

ea
di

ng
 >

 5
0K

 m
ile

s
fo

r 
T

w
o 

D
if

fe
re

nt
 S

pe
ed

 S
tr

at
a



255

Table A-1. Correlation Among Parameters

Parameter
Net
Weight Odometer

Number of
Cylinders

Engine
Displacement

Model
Year

Net Weight 1 0.35 0.76 0.78 0.00
Odometer  1 0.18 0.10 0.47
Number of
Cylinders   1 0.93 0.01
Engine
Displacement    1 -0.02
Model Year     1

Table A-2. Summary of Vehicles in Validation Dataset •

Source Vehicle Year
Net

Weight
Engine

Size
Odomet

er
EPA 1 1997 2826 2 15806
EPA 2 1997 3553 3 58197
EPA 3 1996 3633 3 10102
EPA 4 1997 3650 3.1 22549
EPA 5 1996 2966 2.2 68768
EPA 6 1997 3223 2.5 17312
EPA 7 1996 3669 3.1 22000
EPA 8 1996 3279 3.1 23894
EPA 9 1996 3500 2.2 7573
EPA 10 1999 3538 3 19208
EPA 11 1996 3627 3.1 24798
EPA 12 1997 3699 3 12328
EPA 13 1996 2283 1.3 76931
EPA 14 1996 3625 3.1 17233
EPA 15 1997 3598 3.1 15248
EPA 16 1998 4216 4.6 19177
EPA 17 1998 4250 6.2 5098
EPA 18 1996 3625 3 18992
EPA 19 1998 3628 3.1 4983
EPA 20 1999 2827 1.6 10674
EPA 21 1999 2849 1.8 23800
EPA 22 1996 3338 N/A 30418
EPA 23 1997 2826 N/A 15768
EPA 24 1996 3633 N/A 9997
EPA 25 1997 3650 N/A 22093
EPA 26 1997 3223 N/A 17207
EPA 27 1996 3669 N/A 21951

(Continued on next page)
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Table A-2.  (Continued).

Source Vehicle Year
Net

Weight
Engine

Size
Odomet

er
EPA 28 1996 3279 N/A 23799
EPA 29 1996 3627 N/A 24708
EPA 30 1997 3699 N/A 1220
EPA 31 1997 3598 6 15182
EPA 32 1998 4250 8 5038
EPA 33 1998 3628 6 4829

NCHRP 1 1995 2250 1.5 23249
NCHRP 2 1996 4000 4.6 13287
NCHRP 3 1996 3500 3.8 22607
NCHRP 4 1995 3750 4 50541
NCHRP 5 1995 2250 1.6 49814
NCHRP 6 1995 2250 1.5 43708
NCHRP 7 1995 3000 2 21468
NCHRP 8 1996 3000 2 15096
NCHRP 9 1994 4250 4.3 43625
NCHRP 10 1994 2750 1.8 27339
NCHRP 11 1996 4000 4.6 16390
NCHRP 12 1996 2500 2 5312
NCHRP 13 1995 3500 3.8 28905
NCHRP 14 1996 2625 1.9 18000
NCHRP 15 1994 3000 3 49492
NCHRP 16 1995 2750 1.6 35291
NCHRP 17 1996 2625 1.9 7107
NCHRP 18 1996 2875 2.2 5690
NCHRP 19 1995 3500 2.2 29209
NCHRP 20 1996 3625 3.8 25877
NCHRP 21 1995 3375 3 22197
NCHRP 22 1995 3250 2.2 37194
NCHRP 23 1996 2875 1.9 13719
NCHRP 24 1996 3250 2.4 14212
NCHRP 25 1996 2875 1.8 4280
NCHRP 26 1995 2375 1.5 56213
NCHRP 27 1994 3500 2.2 56197
NCHRP 28 1993 2625 1.9 63125
NCHRP 29 1994 3000 2.5 56338
NCHRP 30 1996 2750 1.6 13845
NCHRP 31 1994 3250 2.2 57192
NCHRP 32 1997 2750 2 370
NCHRP 33 1994 4000 4.6 58923
NCHRP 34 1994 3875 3.8 54825
NCHRP 35 1996 2875 1.8 29480

(Continued on next page)
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Table A-2.  (Continued).

Source Vehicle Year
Net

Weight
Engine

Size
Odomet

er
NCHRP 36 1995 4000 3 51286
NCHRP 37 1995 2750 1.6 54843
NCHRP 38 1994 3125 2.5 56936
NCHRP 39 1993 2625 1.9 150139
NCHRP 40 1993 3250 2.2 72804
NCHRP 41 1995 3000 2.2 20606
NCHRP 42 1994 2875 2.5 72483
NCHRP 43 1994 4500 4.3 78060
NCHRP 44 1995 3625 3 63558
NCHRP 45 1994 2750 1.8 28630
NCHRP 46 1996 3250 2 105430
NCHRP 47 1998 2875 2.2 100250
NCHRP 48 1994 4000 3 100160
NCHRP 49 1998 3375 2.2 13247

On-Board 1 1998 3550 3.1 44362
On-Board 2 1997 3508 3 79984
On-Board 3 1996 3464 3 96099
On-Board 4 1996 3464 2.5 96099
On-Board 5 1998 2553 1.9 37278
On-Board 6 1999 3068 3.1 26288
On-Board 7 1999 2392 1.9 43242
On-Board 8 1999 2515 2 39429
On-Board 9 1997 3318 2 71446
On-Board 10 1998 2548 3 47439
On-Board 11 1998 2548 3 47439
On-Board 12 1996 2935 2.2 86999
On-Board 13 1996 3508 3 94321
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Table A-3. Summary of Vehicles in Validation Dataset •

DATA Vehicle Year GVWR
Engine

Size
Odomet

er
EPA 1 1996 4036 2.4 30669
EPA 2 1996 N/A 3.1 21219
EPA 3 1996 N/A 1.6 9433

NCHRP 1 1996 3500 3.8 22651
NCHRP 2 1996 2625 1.6 20975
NCHRP 3 1997 3625 3 3415
NCHRP 4 1994 3625 3 22258
NCHRP 5 1995 2375 1.5 52111
NCHRP 6 1994 2625 1.5 78056
NCHRP 7 1994 2375 1.5 57742
NCHRP 8 1995 3625 3.3 62007
NCHRP 9 1994 3000 2.5 57407
NCHRP 10 1994 3875 3.8 72691
NCHRP 11 1993 2625 1.6 61032
NCHRP 12 1994 2625 1.9 64967
NCHRP 13 1996 2000 1 32034
NCHRP 14 1993 3500 2.2 97869
NCHRP 15 1994 3500 2.5 61040
NCHRP 16 1994 3250 3.1 80877
NCHRP 17 1993 2750 1.8 102240
NCHRP 18 1994 2625 1.5 91045
NCHRP 19 1997 2625 1.6 6172
NCHRP 20 1997 3375 3.1 3015
NCHRP 21 1997 3250 2 23099
NCHRP 22 1995 2625 1.9 104890
NCHRP 23 1996 2625 1.9 111203
NCHRP 24 1999 2875 3.1 100250
NCHRP 25 1995 2875 2.5 100250

On-Board 1 1998 4721 3 78187
On-Board 2 1998 N/A 2.2 56803
On-Board 3 1998 5166 2 41319
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Table A-3. Summary of Vehicles in Validation Dataset •I

DATA Vehicle Year
Net
weight Odometer

ARB 2 1994 3500 65294
ARB 5 1997 3250 23503
ARB 24 1995 2750 12698
ARB 33 1996 3375 28454
ARB 36 1993 3250 52196
ARB 41 1995 2250 6181
ARB 49 1993 3500 40626
ARB 59 1993 3250 47368
ARB 77 1993 3125 37353
ARB 79 1994 2875 23730
ARB 84 1995 3125 3188
ARB 187 1994 4000 88592
ARB 216 1993 3375 90080
ARB 258 1995 2750 32015
ARB 315 1993 4000 66932
ARB 341 1995 3500 49437
ARB 342 1995 2750 14904
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