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Steady Movement of Landslides in Fine-Grained Soils—
A Model for Sliding Over an Irregular Slip Surface

By Rex L. Baum' and Arvid M. Johnson®

Abstract

Slip-surface roughness can control the velocity of land-
slides in soils. Field observations indicate that many landslides
in soils move by gliding on slip surfaces. Slip surfaces have
asperities, including broad steps, depressions, and bumps that
can obstruct landslide movement. Landslides typically deform
at the asperities in order to stay in contact with the slip surface.
Slip-surface asperities can retard the movement of landstides in
soils, as asperities retard the movement of temperate glaciers
sliding on bedrock surfaces.

An irregular slip surface can control the velocity of a
landslide by causing redistribution of pore water near the slip
surface. In order to study the effects of this redistribution, we
have modeled a landslide, moving over an irregular slip sur-
face, as a porous-elastic solid sliding past a wavy rigid surface.
According to our model, water is forced to flow from zones of
high pressure at the proximal sides of bumps and is sucked into
zones of low pressure on the distal sides of bumps. Resistance
to sliding resulting from the irregularity of the surface augments
the shear strength of the slip surface. The analysis indicates that
the resistance to sliding depends on the roughness of the slip
surface, the velocity of the landslide, the hydraulic conductiv-
ity of the landslide debris, and the wavelength of the bumps.
Other things being equal, landslides in soils having low
hydraulic conductivity should move more slowly than land-
slides in soils having moderate or high hydraulic conductivity.

Our model is consistent with the observations of other
workers who found that the velocity of a landslide increases
gradually as the water level in the landslide rises. An increasing
water level generally results in decreased shear strength at the
slip surface. For example, it is known from the infinite slope
analysis that the strength of the landslide debris decreases as
the water table rises, but the driving force is constant. Accord-
ing to our model, the resistance to sliding (due to roughness of
the slip surface) increases to compensate for the loss in
strength. For the mechanism of sliding we have analyzed, the
resistance due to roughness is proportional to the velocity of
the landslide. Thus, as the water table rises, the landslide
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accelerates until the resistance to sliding over the irregular sur-
face increases sufficiently that it, combined with the strength of
the slip surface, balance the driving force.

INTRODUCTION

Surface roughness has been recognized as a source of
sliding resistance in rock slopes (Patton, 1966), glaciers
(Kamb, 1970) and faults (Byerlee, 1970). However, surface
roughness has only recently been recognized as a source of
significant sliding resistance for landslides in soils (Baum,
1988; Dounias and others, 1988; Mizuno, 1989). The basal
and lateral slip surfaces of landslides in soils are irregular;
they have bumps, steps, depressions, and other features. The
roughness of these surfaces can retard movement of a land-
slide so as to control its velocity.

Observations show that many landslides move for
weeks, months, or even longer at rates ranging from less than
a millimeter per day to a few meters per day. Keefer and
Johnson (1983, p. 44, 45) compiled data from many sources
on the maximum and average velocities of landslides in
soils. The average velocities range from 107 to 10 m/d
(meters per day), and the maximum velocities range from
1072 to 10* m/d (maximum velocities ranging from 102 to 10
4 m/d were attained during surges).

Landslides commonly move at constant rates for peri-
ods of several days. These periods are interrupted by shorter
periods (lasting perhaps several minutes) of acceleration and
deceleration. However, sustained acceleration resulting in
very rapid movement rarely occurs (Keefer and Johnson,
1983, p. 46-48).

Steady movement of landslides cannot be explained in
terms of slope stability theory, which predicts that a land-
slide will accelerate indefinitely as soon as the driving forces
exceed the frictional and cohesive resisting forces on the slip
surface (Keefer and Johnson, 1983, p. 48, 49). For example,
according to slope-stability theory, a slight increase of pore-
water pressure at the slip surface of a landslide at limiting
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equilibrium ought to cause the landslide to accelerate with-
out bound.

Field measurements show that velocities of landslides
increase gradually with increasing pore-water pressures.
Terzaghi (1950, p. 120) observed a linear relationship
between water level and velocity in a landslide that was
about 40 m deep. The velocity increased from about 60
mm/d when the water level was 3.0 m below the ground sur-
face to about 200 mm/d when the water level was only 1.0 m
below the ground surface. Rybat (1968, p. 140) observed
that a landslide, 5.4 m deep, accelerated from rest to about 8
mm/d as water levels increased by 1 m. The velocity of a
landslide in Japan increased from about 1 mm/d to 13 mm/d
as the water level in a borehole rose about 2 to 2.5 m (Japan
Society of Landslide, 1980, p. 9). Similar findings were
reported by Iverson (1986).

A popular model used to explain the steady movement
of landslides is inconsistent with some field observations. In
the model, the velocity at the basal boundary of the landslide
is assumed to be zero, and flow of soil is assumed to occur in
a layer of material above the basal boundary (Ter-Stepanian,
1965; Yen, 1969; Keefer, 1977; Suhayda and Prior, 1978;
Craig, 1981; Savage and Chleborad, 1982; Iverson, 1986;
and others). This model is usually justified on the basis of
inclinometer profiles; however, deformation of an inclinom-
eter tube might not bear a close resemblance to the deforma-
tion of the soil containing the tube. In fact, field observations
(Keefer and Johnson, 1983; Hutchinson, 1970; Prior and
Stephens, 1972; Niigata Laboratory, 1973) indicate that the
main body of a landslide moves primarily by sliding. Fur-
thermore these observations show that the velocity at the
basal slip surface nearly equals the velocity at the ground
surface, and deformation is concentrated near the slip
surface.

A possible explanation for the steady movement of
landslides in soils is that strength of material at the slip sur-
face is velocity dependent, although this explanation is dis-
counted by several investigators. Keefer and Johnson (1983)
determined that the shear strength of a sample of landslide
slip surface increased linearly with the log of the velocity, so
that the strength of the material tested increased only 2.5 per-
cent for each tenfold increase in velocity. They concluded
that such an increase is too small to account for the steady
movement of landslides. Similar results were obtained by
Kenney (1968), Ramiah and Purushothamaraj (1971), and
Mitchell (1976, p. 292), who indicate that shear strength of
soils generally increases 5 to 10 percent for each tenfold
increase in rate of deformation. Recently, however, Skemp-
ton and others (1989) have argued that this small velocity
dependence of the strength could explain the movements of
the Mam Tor landslide in England.

In this study, we investigated how roughness might
control the rate of movement of a landslide that moves
mainly by sliding on a basal slip surface as an alternative to
models that attempt to explain steady movement by means of
viscous flow or rate-dependent shear strength.

D2 Landslide Processes in Utah

Similarities between the movement of glaciers and the
movement of landslides in soils indicate that the mechanisms
that control the rate of sliding of temperate glaciers may be
analogous to that of landslides (Keefer and Johnson, 1983, p.
53). Both glaciers and landslides move slowly and steadily,
and some temperate glaciers are known to move by sliding
over irregular bedrock surfaces (Kamb and LaChapelle,
1964). Surface roughness (unevenness of the bedrock sur-
face) has been shown to retard movement of temperate gla-
ciers; regelation and plastic deformation of the ice make
sliding on the rough surfaces possible (Kamb and
LaChapelle, 1964; Lliboutry, 1968; Budd, 1970a; Kamb,
1970; Nye, 1969, 1970; Morland, 1976a, 1976b). In regela-
tion, water moves around asperities by melting of ice at the
proximal sides and refreezing at the distal sides of asperities.
The rate of regelation is controlled by the rate of heat transfer
in the ice and in the bedrock. In plastic deformation, solid ice
flows around asperities. The rate of plastic deformation is
controlled by the rheological properties of the ice.

Similarly, surface roughness could retard movement
of landslides. Sliding over a rough surface might cause
movement of pore fluid, due to consolidation and swelling,
as well as plastic deformation of landslide debris. Consolida-
tion at the proximal sides and swelling at the distal sides of
asperities might play a role corresponding to that of regela-
tion in glaciers. The rate of consolidation and swelling is
controlled by the movement of water, which is related to the
permeability of the soil. Henceforth, this mechanism is
called forced circulation, because volume change of the soil
forces water to circulate from places of high pressure to
places of low pressure. Plastic deformation around the obsta-
cles might be distributed as plastic flow, or localized on slip
surfaces that form within the landslide debris. In either case,
plastic deformation will resist sliding. No matter what the
mechanism of deformation during sliding, the asymmetric
pressure distribution that occurs at the slip surface during
sliding results in a net force opposing sliding of the soil.
Mizuno (1989) analyzed a possible mechanism of plastic
deformation by assuming that deformation in an active land-
slide is analogous to deformation that occurs during
undrained triaxial creep tests, and derived an equation for
predicting the velocities of landslides in clayey soils. Forced
circulation of pore fluid around asperities is the model inves-
tigated here, as an alternative rate-dependent process to
explain the steady movement of landslides. We cannot cou-
ple forced circulation and plastic flow in a simple way, and
we have neglected plastic deformation in order to make our
analysis as simple as possible.
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parallel to the x-direction at the ground surface (fig. D8,
stresses for A>0) requires that

[Tns]zlﬁs cosl—[TM]zlSS sinA = [TZX]ZISx
-[T,] ZISZ. (2a)

In equation 2a, 3s, dx, and 8z are small increments par-
allel to s, x, and z, respectively. Note that Sx/8s=cos A and
8z/8s=sin A in the limit as 8s, 8x, and 8z become infinitesi-
mals. We divide equation 2a by &8s cos A to obtain

ns nn

[Ty, = (Ty,], tank = [T,], = (Tl tank.  (2b)

In equation 2b, tan A equals (dz;/dx), in the limit as 8x
becomes infinitesimal. The reader can verify that equation
2b is correct, whether A is greater or less than zero, by
observing how the normal stresses change their orientation
as A changes sign. All stresses shown in figure D8 are posi-
tive, according to the sign convention adopted previously.
For A>0 (tan A>0), the x-components of the normal stress act
in the opposite direction to the x-components of the corre-
sponding shear stresses. For A<0 (and tan A<0), the x-com-
ponents of the normal stresses act in the same direction as the
x-components of the corresponding shear stresses (fig. D8).

The left side of equation 2b is zero because the stresses
at the ground surface, [7,,1;, and [T,;],,, are zero. By substi-
tuting this result into equation le, we determine that

d [@ .
‘~L—‘CJ‘%Tmciz-Hyt(z1 —zo) sino, = [7‘@(120

dzo ' 3)

Equation 3 is an exact statement of the requirements
for equilibrium at any position along the slip surface. We
need an expression for the overall equilibrium of the land-
slide mass. If we assume that the waviness of the slip surface
of the landslide is periodic, with wavelength L;, that the
ground surface is stress-free and parallel to the x-axis; and
that the slope has an infinite extent, then we can derive such
an expression by integrating equation 3 with respect to x,
over one wavelength, L, and dividing by L,

l L g ZlT dz d +1 L - .
L)odx)z ** zdax+ O'Y,(Zl zp) (sina ) dx

- ZJ.O[ zx] zodx_ZJ‘O [Txx] zod_xdx - (da
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The first term on the left side of equation 4a is zero. The gra-

. o - d [4
dient of longitudinal force per unit width, d—JEJ.Zo T, dz (the

integrand of the first term), is a periodic function of x. The
1L b4
average value of the gradient, ZJO %J‘z; T, dz dx, mustbe

zero so that the longitudinal force per unit width does not
become infinite at large values of x. For example, if the aver-
age value of the gradient were a (non-zero) constant, then the
absolute value of the longitudinal force would increase with-
out bound in proportion to x. The second integral on the left
side can be evaluated explicitly, so that equation 4a simpli-
fies to

) 1 (L 1L dz,
Y,Z sina = ZJO (T, zde— ZJO (T,] zoﬁdx' (4b)

In equation 4b, Z is the average thickness of the landslide
mass. For convenience, we let

- Z,[o [Tyl rdx. (4c)

Equation 4b is an expression for overall equilibrium of
an infinite slope having a wavy, periodic slip surface. It
shows that the average shear stress due to weight of the land-
slide debris (left side of equation 4b) is balanced by the aver-
age shear stress at the slip surface (first term on right side of
equation 4b) and the average resistance (acting parallel to x)
due to roughness of the slip surface, R. If the slip surface is
perfectly smooth, such that (dzg/dx)=0, then the second inte-
gral on the right side of equation 4b, R vanishes, and the
equation reduces to the well-known expression of equilib-
rium for an infinite slope. Thus, R can be thought of as a cor-
rection term for the effect of roughness.

Roughness can increase the resistance to sliding only
if the material above the slip surface is stronger than the slip
surface. Baum (1988) has shown analytically, for a von
Mises plastic, that resistance to sliding is greater on a rough
(bumpy) slip surface than on a smooth one, provided that the
strength of the material is greater than the adhesion of the
material to the slip surface. Laboratory experiments, in
progress (Baum, unpub. data) corroborate this analysis.
However, if strength of the material equals the adhesion to
the rough slip surface, then sliding must occur on a smooth
surface within the material because the resistance to sliding
on the rough surface will exceed the strength of the material.

Roughness of the slip surface contributes to equilib-
rium of a landslide mass because the distribution of normal
force on the slip surface is asymmetrical. The compressive
normal stress, Ty,, is greater (in absolute value) on the prox-
imal sides of bumps than on the distal sides. The resultant
force due to the action of the normal stress on the bumps
opposes downslope movement of the landslide mass.



Thus, in a landslide, normal stress on the slip surface
contributes to equilibrium in two distinct ways. First, it con-
tributes to equilibrium by determining the shear strength, S,
as indicated by the Coulomb-Terzaghi yield criterion,

S=c¢-1 [T""]z0+ [P] Zo} tand’. (5a).

and second, it contributes to equilibrium through roughness.
In equation 5a, P is the pore pressure (negative in tension),
¢’ is the cohesion for effective stress and tan ¢’ is the coeffi-
cient of friction for effective stress. We assume, hereafter,
that the average shear stress at the slip surface equals the
average shear strength when the landslide is active.

The two contributions of normal stress to equilibrium
can be seen clearly in the equation of equilibrium by trans-
forming stresses at the slip surface in equation 4b to local
coordinates tangent and normal to the slip surface, and by
substituting the yield criterion for the slip surface (equation
S5a) into equation 4b. The equation for transformation of
stress to local coordinates (see fig. D8 and equations 2a and
2b)is

dz dz
O = (T, 0 -(T.] -2

x %o XX %y dx

[Tnx] Z0 - [Tnn] zoa

(5b)

Equations 5a and 5b are substituted into equation 4b to
show the two ways that normal stress at the slip surface con-
tributes to equilibrium

. _ 1 L ’ 4
YZ sino = ZJ-O (c'-{ [T"n]z0+ [P] ZO} tan¢’) dx
_Z,[o [T, od (50)

The first term on the right side of equation Sc deter-
mines the shear strength, and the second term determines the
resistance to sliding due to roughness. Significantly, the
effective normal stress (7,,+P) enters the shear strength
term, whereas the total normal stress enters the roughness
term,

The contribution of normal stress to equilibrium,
through the roughness of the slip surface, may seem unfamil-
iar to some readers. Perhaps it can be visualized by consid-
ering the action of one gear driving another gear in a
machine. Torque is transferred from one gear to the other
through the normal stresses acting on the faces of gear teeth
that are in contact. The gears are lubricated so that shear
stress on the faces of the teeth is small. Compressive normal
stress on the leading faces of these gear teeth is greater than
on the trailing faces. This asymmetrical distribution of stress
on the gear teeth is similar to the asymmetrical stress distri-
bution that we expect to occur at asperities on the slip surface
of a landslide.

THE ROLE OF FORCED CIRCULATION IN
THE EQUILIBRIUM OF A LANDSLIDE

Within the framework of the general theory of slope
equilibrium just described, we wish to focus on a possible
mechanism that can explain the observed rate dependence of
the forces that resist sliding. We have already noted that the
rate dependence of the shear strength of slip surfaces is too
weak to explain the steady movement of landslides, because
the shear strength increases only about 5-10 percent for each
tenfold increase in the rate of shearing, within the range of
rates tested (Kenney, 1968; Ramiah and Purushothamaraj,
1971; Mitchell, 1976; Keefer and Johnson, 1983). Thus, to
explain the steady movement, we examine a possible mech-
anism of sliding in which R is rate dependent.

The mechanism we propose, in order to explain the
rate dependence of R, is forced circulation of pore fluid
through the landslide debris. As the landslide moves over its
bumpy slip surface, high compressive normal stress on the
proximal sides of bumps forces fluid to flow away from the
proximal sides. Concurrently, low compressive normal
stress on the proximal sides of bumps allows the soil there to
swell, causing pore fluid to be drawn toward the distal sides
of bumps. As we have shown, the distribution of normal
stress on the slip surface determines R. Energy is dissipated
by means of the flow process during forced circulation. Slid-
ing by the mechanism of forced circulation is rate dependent,
because forced circulation is a diffusive and hence a rate-
dependent process that depends on the hydraulic conductiv-
ity of the soil and the path length of diffusion.

Our model for forced circulation applies to landslides
that fail in a ductile manner (without sudden loss of
strength), such as landslides on natural slopes that fail by a
gradual rise of the water table. Landslides having slip sur-
faces are very common and observations indicate that slip
surfaces of landslides in clayey materials commonly are
wavy (Mizuno, 1989, p. 96, 105). Thus, we believe our
model applies to most landslides that have relatively steady
motion. Driving forces in natural slopes tend to be near equi-
librium with the residual strength of the soil (Skempton,
1964). Any strength that is lost in the failure of such slopes
generally is lost progressively (Bjerrum, 1967; Palmer and
Rice, 1973). However, in slopes that fail in a brittle manner
(a sudden or abrupt loss of strength accompanies failure),
such as rock slopes or slopes underlain by quick clay, driving
forces are sufficient to overcome the peak strength of the
material and roughness of the failure surface cannot retard
sliding to a degree sufficient to prevent acceleration of the
failed mass.

We have solved a boundary-value problem that mod-
els forced circulation as the deformation and fluid flow
occurring in a porous elastic solid that is sliding over a wavy,
impermeable, rigid surface (details of the solution follow in
succeeding sections of this paper). Solving this problem

Steady Movement of Landslides in Fine-Grained Soils D13



allowed us to determine the normal stress on the slip surface
and thus compute a formula for R due to forced circulation,

(1-2p)°

o (6)
4KI1(1-p)

R = —¥, (A,

In equation 6, v, is the mean velocity of the landslide,
parallel to x; ¥, is the unit weight of water, A is the amplitude
of the bumps, X is the hydraulic conductivity of the landslide
debris, / is the wave number, equal to 2n/L; L is the wave-
length of sinusoidal bumps on the slip surface; (A/), the prod-
uct of the amplitude and the wave number, is the maximum
local slope of the slip surface with respect to x;, and U is
Poisson’s ratio for drained deformation of the soil. Hereafter,
Al is called the roughness.

Equation 6 helps to explain how a landslide can main-
tain equilibrium even when shear strength at the basal slip
surface decreases due to an increase in the average pore-
water pressure at the basal slip surface. If equation 6 is sub-
stituted into equation Sc, the following is obtained:

. 1{L ’
YZ sina = _J'O (¢~ {[T,,], + [P1, }rane’)dx

3
(1-2p)°

;. @)
4KI(1-p)

+7,(AD %y,

According to equation 7, if the average shear strength of the
slip surface (the integral on the right side of equation 7)
decreases, due to a decrease in effective stress, the landslide
can stay in equilibrium if R increases. Thus, R can increase
if the velocity, V,, increases, because other parameters that
determine R are nearly constant in a given landslide.

Our formula (equation 6) for resistance to sliding of a
landslide, by the mechanism of forced circulation, is similar
to the result Kamb (1970) obtained for a temperate glacier
sliding on a wavy bedrock surface by a mechanism of rate-
dependent plastic deformation (viscous flow). Kamb’s
(1970) formula for R, in our notation, is

R =-vn (At)"é, (8a)

where 1 is the viscosity of glacier ice.

However, our equation 6 differs in basic form from the
formula derived by Mizuno (1989) for resistance to sliding.
Mizuno (1989) assumed that landslide debris slides over an
uneven slip surface by the mechanism of soil creep. Creep is
used in the sense of undrained plastic deformation of a triax-
ial specimen subject to a constant load that is a fraction of the
static load needed to cause failure. Mizuno’s (1989) formula
for resistance to sliding (in our notation) is
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(8b)

4b na

nt (Al) 2(ADV,
R =- ln( ),

where a and b are constants to be determined from field data,
a has units of velocity, and b has units of inverse stress.

Mizuno’s (1989) corresponding formula for predict-
ing velocity of a landslide from R is

__ an —4bR
Yx = 204D e"p(n (AD) ) (e

Note that Mizuno’s (1989) formula indicates an exponential
relationship between R and v,, whereas our formula (equa-
tion 6) indicates a linear relationship between R and v,.

PRELIMINARY ANALYSIS OF THE EFFECT OF
FORCED CIRCULATION ON THE
MOVEMENT OF LANDSLIDES

We model a landslide as a deformable body that slides
at a constant velocity past a rigid body (fig. D9). The bound-
ary (that is, interface) between the bodies undulates. It is
assumed that variation of stresses generated by acceleration
is negligible near the interface and that no cavitation occurs
at the interface. The undulations are assumed to be wide,
symmetrical, low-amplitude steps. Movement is assumed
parallel to the x-axis, and the undulations are assumed to be
periodic in x, and independent of y. Consequently, plane
deformation is assumed to occur. The landslide is repre-
sented as an infinite strip bounded by z=z; and z=z;, and
moving parallel to the x-axis with a mean velocity of v, (fig.
D9). The basal slip surface, z, is a sinusoidal perturbation of
the x-y plane:

Z5 = Asin Ix. )

In order to investigate the resistance to sliding gener-
ated by forced circulation of pore water in a landslide, and
the effect of that resistance on the velocity of the landslide,
we assume that the landslide debris behaves like a fluid-infil-
trated, porous-elastic solid (Biot, 1941; Rice and Cleary,
1976). We have chosen such a model for material behavior
because the movement of pore water is considered the pri-
mary cause of time-dependent effects in fine-grained soils
(Terzaghi, 1925; Wroth and Houlsby, 1985, p. 6).



Ground surface, z=z,

. Direction of landslide movement

Water is squeezed out
of soil on upstream
2 sides of bumps
Tnn \
™~

L

Water is sucked into

swelling soil on down-
stream sides of bumps

Local coordinates

1

A/,_

Slip surface, z=zp,
Zo=A sin (/x)

Figure D9. Features of the model used to analyze the resis-
tance to sliding due to forced circulation. The ground surface is
aplane, and the x- and z-axes are parallel and perpendicular to
the ground surface, respectively. Sinusoidal undulations of the
slip surface have wavelength L and amplitude A. The maximum
local slope of the slip surface with respect to the x-axis is Al,

Perturbation Analysis of Equations Governing
Stress and Pore-Water Movement

Stress and pore-water movement in the landslide are
governed by the following equations:

aTxx a x .
St 3t sinat = 0, (1a)
aaT;x+aT25 -y, cosa = 0, (10a)
P (Tt Tt llzfl“P) -0, (10b)
and
i_fc(;l(i—;gw (Tog+ Ty +2P) = S(T, 4T, +2P).

(10c)

Equations 1a and 10a are the equilibrium equations,
equation 10b is the compatibility equation for stress diffu-
sion (Rice and Cleary, 1976), and equation 10c is the stress-
diffusion equation (Rice and Cleary, 1976). In equations 10b

where [ is the wave number, 2/L. The landslide is moving
toward the right so that the compressive stress, T, (shown by
heavy arrows), is greater on the upstream sides of the bumps
than on the downstream sides. The small curved arrows indicate
that water is flowing away from the upstream sides of the bumps
and is flowing toward the downstream sides of the bumps.

and 10c, P is the pore-water pressure, X is the hydraulic con-
ductivity, 7,, is the unit weight of water, G is the shear mod-
ulus, and u is Poisson’s ratio for drained deformation. We
assume that the soil skeleton is incompressible, so the coef-
ficients appearing in 10b and 10c are simpler than their coun-
terparts in Rice and Cleary (1976).

We use perturbation expansions of the field variables
to determine the stresses and pore pressure caused by defor-
mation near the wavy slip surface. The expansions are in
powers of Al, which is the maximum local slope of the slip
surface (with respect to x); Al, is small compared to unity.
Then (Al)2 must be small compared to Al. The pressure, P,
and the stress components; Ty;, T, and T,,; are determined
by the following expansions:

P=P+P+0(A)> (112)
Ty = Top+ Tex + O (AD?, (11b)
T, = Tyt Tex+ O (AD?, (11c)
and
T, = T, + izz"'o(f”)z, (11d)
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where O(AI)2 is the remainder term on the order of (A[)z.

The zero-order components of the stresses are known
from the infinite slope analysis and solutions for problems in
elasticity (Lambe and Whitman, 1969, p. 353-356; Jaeger
and Cook, 1969, p. 356),

Tzz = v,(z—2z) cosa, (12a)

T, = v,(z; -2 sina, (12b)
T, = " 12
x = WY' (Z-ZI)COSU.. (12¢)

Likewise, the zero-order pore pressure for slope-parallel
flow (we assume that the slip surface is impermeable) is
determined by the following:

P= (h—z)chosa; z<h. (13a)

The pore pressure is part of the head, H, that drives ground-
water flow. The complete expansion for the head is

Y, =7, (z cosou—x sino+7Y)

+(h=2)Y, (cosa) +P+O(AD% z<h. (13b)

In equation 13b, Y|, is the elevation of the origin of the x-z
coordinate system above some arbitrary datum, and 4 is the
height of the water table above the x axis.

We note that the zero-order stresses and pore pressure
are independent of x and r. By substituting equations 11a,
11b, 11¢c, 11d, 12a, 12b, 12¢, and 13a into equations la and
10a, 10b, and 10c, we derive the following for the first-order
variables:

OTex Ty,
o T O (142

aT,, T,

e + 32 (14b)

- - 1-2u-
V2 (Tyx + Top + 1_:'P) =0, (14¢)

and
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2KG (1 - N D
(a-w V2 (Tyx+ Tyz +2P) = — (Txx+ Toz +2P) .

Y, (1-20) at
(14d)

To simplify our analysis of the mechanism of forced
circulation, we assume the landslide is moving at a steady
rate, v, and introduce a new system of coordinates that
moves parallel with x in order to make the problem indepen-
dent of time (Rosenthal, 1946). Only two independent vari-
ables, & and z, remain after transforming the coordinates. Let

E=x-vi, (15a)

and

O =1 (15b)

We use the chain rule for partial differentiation to obtain for-
mulas for transforming partial derivatives to the &-z coordi-
nate system,

a_(ana (aeja s
3 - \3xr JoE T\ ax Jee (150)

and

1]

9 o d0 ) 9

(W)B—E"' (7]5@ (15d)

The partial derivatives of & and ©, appearing in equa-
tions 15¢ and 15d, are obtained by differentiating equations
15a and 15b with respect to x and r. The derivatives are
0&/ox=1, d&/dr=— V,, 00/dx=0, and dO/dr=1. Note that
0/00@=0, because a steady state of deformation is observed in
the new coordinate system. Equations 15¢ and 15d reduce to
the following when the values of the derivatives are substi-
tuted into the equations:

S{ICY

d

5= 3’ (15¢)
and

d _ d

& = '-VXE. (15f)

The field equation, 14d, for stress diffusion can be
rewritten as



V2 (Tyy+ Toe+2P) = %(%” +T,,+2P), (16a)

(Rice and Cleary, 1976, p. 230).
The diffusion constant, ¢, in equation 16a is deter-

mined by
C = —— | — .
7 ()

where v,,=9.8 kN/m® (Freeze and Cherry, 1979).
The field equation for stress diffusion in the new &-z
coordinate system is

(16b)

(i’gg + izz + 2}3)
9

The term on the right side of equation 16¢ accounts for
advection (conveyance) of water by the landslide debris.

If the absolute value of the coefficient, ¥,/c, is small
compared to 1, then advection can be neglected (Kamb,
1970). For steady landslides in which v,/K<100 and the
debris has typical values for G and p (G=10" Pa, p=0.3;
Lambe and Whitman, 1969), the coefficient on the right side
of equation 16c is small compared to 1; | -¥,/c| <0.03.
Advection causes a_small phase shift in the solution
for (Tge + T, + 2P) that has a negligible effect on the
magnitude of (Tee + T + 2P). Thus, Laplace’s equation
is a good approximation of the diffusion equation (16¢):

V(e + T 0 28) = [
tg+T:;+2P) = = ) . (16¢)

V2 (Ter +T,;+2P) = 0. (16d)

Equation 16d, together with the compatibility equa-
tion, the equilibrium equations, the constitutive equations,
and the boundary conditions govern the problem in the new
coordinate system. Transformation of equations 14a, 14b,
and 14c¢ is accomplished by simply replacing the x’s with ’s.

Airy’s stress function (Malvern, 1969) facilitates solu-
tion of equations 14a, 14b, 14¢, and 16d. The stress function
automatically satisfies the equilibrium equations; the follow-
ing relationships hold between the stress components and the
stress function:

%0 -

? = Tee, (17a)
z

’o -

a—; = 1zz (17b)

and

%6 -

aé—az = "ng. (17C)

When the stress function is substituted into the simplified
diffusion equation (16d) and the compatibility equation
(14c¢), two equations relating the stress function and the pore-
pressure function are obtained,

V2 [V2p+2P) =0 (182)

and

Vz[V2&,+ (1 2”)13] = 0. (18b)
1-u

The Laplacian, V2, is a linear operator and the quanti-
ties in square brackets in equations 18a and 18b satisfy
Laplace’s equation; therefore, any linear combination of
these quantities also satisfy Laplace’s equation. Equations
18a and 18b can be combined algebraically to show that P
satisfies Laplace’s equation and § satisfies the biharmonic
equation:

viP =0 (18¢)

Vo =0 (18d)

Thus, we solve equations 18c and 18d subject to boundary
conditions at the slip surface, in order to determine the rela-
tionship between the rate of movement and the resistance to
sliding due to forced circulation.

Derivation of Boundary Conditions for
Sliding and Forced Circulation

We have made several assumptions in setting up a
boundary value problem that describes forced circulation of
water as a landslide moves over its slip surface. Many of the
assumptions are embodied in the boundary conditions.

A boundary condition on z; is that sliding is tangential
to 2,

[v.] =0.

nl g, (19a)
This assumption is consistent with our observations of slip
surfaces and with the observations of others (for example,
Lambe and Whitman, 1969) that soil subject to constant nor-
mal load shears at constant volume once the residual strength
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is attained. This assumption (equation 19a) would be vio-
lated if our model included (Coulomb-type) plastic deforma-
tion, because dilation would occur at the slip surface (Savage
and Smith, 1986)

The velocity, v,, can be written in terms of the x and z
components of velocity, v, and v,,

(v, = (19b)

— 1 + .
2 [v,] ZOsmE) [vz]zocose
In equation 19b, 0 is the counterclockwise angle between the
x-axis and a line tangent to zy; thus,

dz
tane = Tx—

(19¢)
If we set v, equal to zero in equation 19b and solve for v,, we
determine that

[v), = [v,], tane. (19d)

2,

We can expand the components of the velocity in a
perturbation series as we have done for the stresses,

v, = ¥ +v,+0(AD?, (20a)

and
v, = ¥, +v,+0(AD?, (20b)

but
Vv, = constant, (20c)

and
v, =0, (20d)

where v, is the constant rate of sliding in the absence of slip-
surface irregularities; v, is zero because sliding is assumed
to be parallel to the x-axis.

When equations 19¢, 20a, and 20b are substituted into
equation 19d, a boundary condition for ¥, results:

_ ~ 2 - ~ 2 dZO
[vz+vz+0(Al) ]Zo = [v,+v,+ O (A]) ]ZoTx_'

We previously defined v, and v, to be constants,
independent of x and z (equations 20c, 20d); v, is zero
because the average movement is parallel to the x-axis and
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the mean slope of the slip surface. The term ¥,(dzy/dx) is
second order because it is the product of two first order quan-
tities, ¥, and (dzy/dx). By dropping terms higher than first
order, the relationship between [v,], and [v ], reduces to

_ dz,

7], = () @

Formulas similar to equation 21 have been used by Nye
(1969), Kamb (1970), and Morland (1976a). The geometry
of the slip surface enters the solution of equations 18c¢ and
18d through equation 21.

A second boundary condition concerns the shear stress
at the slip surface. The obvious assumption is that the shear
stress is determined by the yield criterion (equation 5a). The
normal stress [T,,,,]ZO, shear stress [T,,S]Zo, and pore water
pressure [P]zO, can be expanded (as in equations 11a, 11b,
l11c, and 11d) in the yield criterion,

[Tns + ins +0 (AD) 2] Z
= ¢~ [Ty +P+Tpn+P+0 (4D, tang’ . (222)

Equation 22a can be resolved into two equations by collect-
ing terms of zero and first order and deleting terms of second
order,

(T, 4 = ¢’ = [Ty + Pl zotanq)’, (22b)
and
(Tasl gy = ~[Tun+ P), tan¢). 220)

The zero-order shear stress is a constant. In the zero-
order approximation, the slip surface is a plane parallel to the
Xx-axis so [Tns]zo= [Tu]zO and [Tnn]z0=[Tzz]z0° Thus, the zero-
order shear stress is determined by substituting equations 13
and 17a into equation 22b,

(Tesl, = ¢+ (Zy,~ hy,) (cosa) (tan¢’) . (22d)

We have analyzed and attempted to solve a boundary-
value problem that models forced circulation with Coulomb
friction at the boundary (first-order shear stress determined
by equation 22c). However, we were unable to determine an
appropriate boundary condition to replace equations 19a or
21, because Coulomb friction at the boundary would cause
dilation and contraction at the slip surface.



In order to overcome the difficulties connected with
using equation 22c¢ as a boundary condition, we have
assumed that the first-order shear stress is zero everywhere
on the boundary,

[Tasl, = 0. (23)

This assumption is equivalent to letting the coefficient of
friction in equation 22c be zero. The coefficient of residual
friction of clayey materials ranges from 0.08 to 0.36
(Skempton, 1964; Lambe and Whitman, 1969). This
assumption results in the constants being determined by a
system of linear equations that are readily solved.

We use the standard equations for transformation of
stress (Hill, 1950, p. 347) to put equation 23 in terms of
[Tody

Tus= (Tgz— Txy) sin@ cosO

+ f’zx (00526 - sin’8) . (24a)

Leading terms in the Taylor series expansions of cos 0, sin
0, and tan O are 1, 6, and 9, respectively. If we neglect higher
order terms in the Taylor expansions, we can write

i'ns = (izz - %xx) 0+ i'zx (1- 92) . (24b)

Recall that tan 6=A/ cos (Ix), and that for small 6, 6= tan 9;
thus 8 = A/ cos (/x). Making this substitution of tan 6 for 8
shows that the right side of equation 24b consists of one first-
order term, sz, and some second-order terms,

Tus = Tox+ O (AD2 (24¢)
Thus, we replace equation 23 with
[Tl = O, o5
or in the moving coordinate system,
[Tee) 0 =0 (25b)

The velocity of the landslide also enters the solution of
equations 18c and 18d through the flow at the wavy bound-
ary. We assume that the slip surface is impermeable to water,
so that

(4,1, =0, (26)

In equation 26, g, is the component of the specific discharge
that is normal to the slip surface. We can rewrite equation 26
in terms of g, and g, by expanding them in terms of pertur-
bation series,

g+, +0(AD?, (27a)

9x

and

g, = G,+3,+0(AD>. 27b)

By following steps similar to those used in deriving equation
21 from equation 19a, we determine that

_ dzg
[qZIZO = qx(—a;). (27¢)
In equations 27a and 27b
g, = -K tana, a constant, (27d)
and
q,=0, (27¢)

because mean flow is assumed to be parallel to the slope. For
landslides on gentle to moderate slopes (0<15°), tan o=
O(AD). Thus, substituting equation 27d into 27c, shows that
[4.),= O(AD?, so that it can be neglected in the continuity
equation, thus

[q],, = 0. Q79

To relate the components of flow to the volumetric
strains at the slip surface, we use a form of the continuity
equation derived by combining equations A2.9, A2.10, and
A2.12 of Freeze and Cherry (1979, p. 532).

dq, 9dq, pp 9v, 9v,
—E——a—z—=nﬁﬁ+$+a—z . (28)

In equation 28, B represents the compressibility of water, n
represents the porosity of the soil, ¢, and g, are components
of the specific discharge vector or Darcy velocity vector of
the fluid relative to the grains, v, and v, are components of
the velocity vector of the solid, and DP/Dt is the total-time
or material-time derivative,
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— = Y —F V. — A —
Dt - rax Ve T

Equation 28 is a mathematical statement of the law of con-
servation of mass for the fluid and solids that constitute the
landslide material. The equation ensures that the change in
mass of fluid within a representative elemental volume of the
material is balanced by flow of water and solids into or out
of the element.

When equations 11a, 13a, 20a, 20b, 20c, 20d, and 27a,
27b, 27d, 27e, and 27f are substituted into equation 28 and
terms of O(Al)? are dropped, the expression becomes

-9g T
—qx = nB( oP

_ . oP aﬁ] v, o,
ax an + VZa—Z + E

+§+3z.’ 29

because the x and r derivatives of the zero-order quantities
dy» 4, P, vy, and v, are zero(the zero order quantities are
all constants with respect to x and 1.)

Let

, (30)

for small strains, where € is the volumetric strain, and 0&/0t
is the rate of volumetric strain. In equation 30,

e = Exy+E, @an

where E, and E, are the normal components of strain.
When equations 30, 15¢, and 15f are combined with
equation 29, it simplifies to
g _OP _ Qe
E =T, @)

However, the quantity nf is small compared to Al, so that the
first term on the right side of equation 32 can be neglected in
a first-order analysis.

The specific discharge, 5§, is determined by Darcy’s
law,

oP o)
£

The elevation head does not appear in equation 33, because
the elevation head is a zero-order quantity. We substitute

X

B = -
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equation 33 into equation 32 and neglect the first term on the

right side to derive
9’ VoY \[92
RS R
&, %
Equation 34 relates fluid flow to volume change at the
slip surface. Equations 21, 25b, and 34 determine the bound-

ary conditions needed to solve the boundary-value problem
that models forced circulation.

Solution for the Stresses and Velocities in the
Porous-Elastic Material

We use the first-order approximations of the boundary
conditions (equations 21, 25b, and 34) to guess the form of
the pore-pressure function, P, which satisfies equation 18c
and the stress function, §, which satisfies equation 18d,

P = exp(-12) [c,cos IE+c,sin [E] (35a)

and

&) = (c3+c lz) exp(=lz) [cscos 1€+ cqsin IE]
(35b)

Note that equation 35b is an incomplete solution of equation
18d. In a complete solution, exp(—/z) would be replaced by
[exp(—iz)+cq exp(lz)]. We can neglect the exp(iz) part of the
solution because the effects of forced circulation are greatest
near the slip surface and we expect them to be undetectable
at heights above the slip surface where z is greater than L.

We proceed to solve equations 35a and 35b together
with the boundary conditions for the velocities, stresses, and
the pore pressure. Then we compute the resistance to sliding
from the solution for the normal stress, Tgr.

The free-slip boundary condition (equation 25) in
terms of ¢ and the quasi-static coordinate system is,

%0 J
|:§€a—z y =0, (36)
where 3%4/0E0z is determined by
9%
ng = 1 [cy+ ¢4 (lz~ 1) 1exp (~I2)

(~cgsin IE +cqcos IE). 37



When equation 36 is substituted into equation 37, and
zis set equal to zero, we determine that

¢y = ¢, (38)

Thus, c3 and ¢4 can be set equal to unity and their numerical
value can be absorbed into c5 and cg.

To apply the velocity boundary condition, equation
21, we use the definition of v, and transform coordinates;

thus,
_ ey L (o,
Vv, = (W)‘—)Vz = —vx a—g-)

We compute @i, by integrating the constitutive equation
relating fzz and Ezz.

The constitutive equations that govern the behavior of
the porous-elastic solid are listed in Rice and Cleary (1976).
We have assumed that the soil particles are incompressible,
so that the pore-pressure coefficient, B (Skempton, 1954;
Lambe and Whitman, 1969), is equal to one, and Poisson’s
ratio for undrained loading, y,, is 0.5. For this assumption,
the constitutive equations of Rice and Cleary (1976, p. 229)
simplify to the following equations (in terms of the new
coordinate system, equations 31):

2GEge = Teg—p (Teg+ Tpp) + (1-20) P, (39)

and
2GE,; = Ty~ u(Teg + Typ) + (1-2u) P. (39¢)

After making the appropriate substitutions for the
stress function into equation 39¢, we integrate to derive an
expression for v;:

- ([P0 o .
Vv, = (ﬁ)a_ﬁj{a_g—_uv ¢+(1—2H)P dz
+£(8). (40)

In equation 40, A&) must be zero, because ¥,—0 as
z—0. We perform the operations indicated in equation 40 to
obtain an expression for v,

<t

c
-(1-2p) —ll-] sinl§ +1[1(2+12) ¢

c
—21uc6—(l—2u)—l%]cos g} - (C3))

In equation 41, z is set equal to zero, and the velocity
boundary condition (equation 21) is used to solve for the
constants; thus, by collecting sine and cosine terms, two
expressions relating the constants are obtained

c
0 = 2cs-2pcs-(1-20) 5, (@42
and
- _ﬁxl )
V“Al = ﬁ I:ZICG - 2’”66 - (1 - 2u) -—I-] . (42b)
Equations 42a and 42b simplify to
(1-we
2 5
=2 4
=2 T (43a)
and
2GAI+ 2P (1-p) g
Cy = (43'))

1-2u

Now we use the boundary condition given by equation
34 to solve for c5 and cg. To compute €, we use equations
39a and 39c, and the definition of :

e= gt +Ez;
Thus,
~ 1-2].1 2= ~
e-T{V ¢+2P}, 44)
and
de 1-2pu

3 = __26_{—213exp(-lz) [—cgsin 1€

+cgcos IE] +21 exp (~lz) [-cysin 1§
+cyc08 IE]} @5)
We differentiate equation 35a to compute an expression for

@%PIED);
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P 2 .
—a—? = ~I" exp(~lz) {c,cos I§+c,sin IE} . (46)

Equations 45 and 46 are substituted into equation 34,
the no-flow condition at the boundary, to obtain two more
equations relating the unknown constants. When z is set
equal to zero and the sine and cosine terms are collected, the
following expressions are obtained.

ixyw(l -2u) 5
lCl = —‘?(—;———— [“l C6+02] (47)
vy, (1-2p)
ley = =t IPes=c)).  (48)

Equations 43a, 43b, 47, and 48 constitute a system of four
algebraic equations that can be solved simultaneously for the
unknown constants, ¢y, ¢y, s, and c.

Resistance to Sliding Due to
Forced Circulation

We can now compute the resistance to sliding due to
forced circulation, using equations 4c, 12b, 17a, and 35b.
Resistance to sliding due to roughness results only from the
first order normal stress. The resistance to sliding due to the
zero-order normal stress is zero, because (dz,/dx) is periodic,
[Txx]insaconstan(, and the average value of (dz/dx) is zero,

0 1L — dzo
= Z,[o [Txx]zo(a)‘“-

Thus, the resistance to sliding, R, is determined by substitut-
ing equations 31 into equation 4¢

1 L - dz,
i e

On the boundary, the normal stress, [Txl;, due to forced cir-
culation is determined by substituting equations 35b and 38
into 17a,

(49a)

(49b)

[%éél 2 = —lzlcscos I€ + cgsin €] (49¢)

Equations 49c¢ and 9 are substituted into equation 49b to
compute R,
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R - _(APCS) (50)
B 2

The constant c5 is determined by solving equations
43a, 43b, 47 and 48 simultaneously:

7 AY, (1-21)°
vy (1-2p)
2K12(1—p)2[1+("—n——{—ﬂ
2KGI(1-p)

The formula for R can now be written out fully by substitut-
ing equation 51 into 50:.

(51

C5=

-v, (AD %y, (1-2p)°
R = . (52)

5y (1-2u)
4K1(1_“)2[1+(Mf}
2KGI(1 - )

An approximate formula for R that applies when
V,/K<100 is derived by neglecting part of equation 52.

For combinations of v, i, G, and X typical for silty

V.Y, (1-21)
2KGI(1-p)
nator of equation 52) is small compared to 1. The resistance,
R, is approximately
o ANy, (1 -2m)°
4KI(1-w?

2
and clayey soils, the term ( ) (in the denomi-

(33)

The corresponding expression for resistance to sliding
due to plastic deformation at the base of a glacier (Kamb,
1970) is

1_
R = —5v.(AD’m. (54)

In equation 54, 1 is the viscosity of glacier ice. The negative
sign in the right hand side of equations 50, 51, 52, 53, and 54
are a result of the sign convention used in computing the
stresses. When R is substituted into equation 4b, it is clear
that the resistance to sliding due to forced circulation aug-
ments the shear strength of the slip surface, because the neg-
ative sign preceding R in equation 4b cancels the negative
sign in the formula for R.

For short wavelengths, the resistance due to forced cir-
culation is small, and it increases with increasing wave-
length, so that forced circulation will occur at short (perhaps



less than 10 m) wavelength bumps on the slip surface. This
result is consistent with the fact that diffusion becomes more
difficult as the path length, which is proportional to the
wavelength, increases. At sufficiently long wavelengths, the
resistance to sliding ‘caused by forced circulation might
become so great that some other mechanism of deformation
becomes active near the slip surface, in much the same way
that regelation gives way to viscous drag as the wavelength
increases (Kamb, 1970). In glaciers, viscous drag is active at
long wavelengths, because the viscous drag decreases with
increasing wavelength (at constant roughness, equation 55).
We do not know what mechanism in landslides might corre-
spond to viscous drag in glaciers. One possibility is the creep
deformation analyzed by Mizuno (1989); however, it
appears to be independent of wavelength.

Equations 52 and 54 were derived for the case where
the boundary is impermeable. If the boundary is permeable,
pore-fluid diffusion is active at asperities having longer
wavelengths (other things being equal), because the water
flows through material beneath the landslide as well as
through the slide, effectively reducing the resistance to flow
of water. A permeable boundary has the same effect on the
resistance to sliding, or the velocity of the landslide, as does
increasing the permeability of the soil above the slip surface.

DISCUSSION AND CONCLUSION

Roughness of slip surfaces can affect the velocity of
landslides. We have shown that forced circulation of water
around asperities can control the velocity of a landslide.

We have not observed forced circulation occurring in
landslides, but forced circulation is a plausible mechanism
for the slow movement of landslides in clayey soils because
most rate-dependent properties of soils have been attributed
to the movement of pore water, and landslides move by slid-
ing on uneven slip surfaces. Consolidation is considered the
primary cause of time-dependent effects in fine-grained soils
(Terzaghi, 1925; Wroth and Houlsby, 1985, p. 6). This sug-
gests that movement of pore water might play an important
role in controlling the velocities of landslides.

The mechanism of forced circulation is consistent
with the observed linear relationship between landslide
velocity and the average height of the water table (Terzaghi,
1950). In a wide, thin landslide where the water table is
unconfined and flow is parallel to the ground surface, R is
proportional to the mean pressure head at the slip surface,
cos o. The velocity dependent resistance to sliding, R,
needed to maintain equilibrium is determined by the differ-
ence between the shear stress due to weight of the debris and
the shear strength at the slip surface. An expression for R is
determined by substituting equations 4c, 22d, and 49b into
4b and rearranging:

R = Zy {si 1 "
= ‘YI{Slna— ——Z—ﬂ

H (cosa) (tan¢p’)} — ¢’

(55)
Equation 55 indicates that as the average pore pressure
(hy,) at the slip surface rises, the shear strength due to fric-
tion on the slip surface decreases in proportion to the change
in A, but the driving forces remain constant. Consequently, R
must increase linearly as A increases, in order to provide
enough resistance at the slip surface to compensate for the
loss of shear strength and balance the driving forces acting
on the landslide. This increase in R causes a corresponding
increase in the velocity of the landslide.
For the mechanism of forced circulation, the velocity
of the landslide, v, is proportional to R. Rearranging equa-
tion 53 yields

_ 4KRI(1-p)?
(Ah%y, (1-2w°

In equation 56, R is determined by equation 55. Thus,
according to the mechanism of forced circulation (equations
55 and 56), the steady velocity increases linearly with the
mean height of the water table. Furthermore, equations 55
and 56 indicate that the maximum velocity of a given land-
slide is determined by the maximum height attained by the
average pressure head at the slip surface.

The relationship between velocity, shear stress, avail-
able shear strength, and resistance to sliding due to forced
circulation are shown in figure D10. The shear stress tending
to cause sliding is approximately constant, as indicated by
the horizontal line in figure D10 (assuming that the total unit
weight of soil does not change significantly through time).
Sliding occurs when the water table exceeds its critical
height, h.,. When the critical height is exceeded, the shear
stress exceeds the available shear strength, and sliding
begins. However, the resistance to sliding due to forced cir-
culation, R, augments the shear strength to exactly balance
the shear stress and maintain equilibrium. If the average
water table reaches some steady height, k (fig. D10), the
slide will reach a steady velocity, V,, consistent with R.

The amount of resistance to sliding that can result
from forced circulation is shown in figure D11. Figure D114
shows R graphed as a function of V,/K for typical values of
L, Al, yu, and v,. The graph shows R only for values
of v,/K<100 because we have neglected advective transport
of water in deriving equation 54. Errors in R, due to neglect-
ing advection, should become significant when v,/K is
greater than a few hundred. Figure D11A indicates that R is
less than S kPa if v,/K<100.

We expect the steady velocities of landslides in clayey
soils to be correlated with the average hydraulic conductivity
of the landslide material. Figure D11B shows R/Zy, sin
(where Zy, sin a is the shearing stress due to the weight of the

Vx

(56)
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Figure D10. Relationship between shear strength,
shear stress, the resistance to sliding due to roughness
(R), mean height of water table above the slip surface
(h), and the velocity of a landslide (V,). No movement
occurs when h<h., because the available shear
strength exceeds the average shear stress. Movement

landslide material) graphed as a function of v,/K. Of course,
R must be less than or equal to the shear stress, Zy, sin o, and
we expect it to be less than 10 percent of the shear stress in
most cases. Figure D11B indicates that the maximum steady
velocities of landslides should range from about one tenth to
a few thousand times the hydraulic conductivity, assuming
that R/Zy, sin « rarely exceeds 0.1. Thus, a scatter plot of
velocity versus hydraulic conductivity for various landslides
should show a trend of landslides with higher hydraulic con-
ductivity having greater velocities than those with lower
conductivity.

The large range of velocities of steady landslides
might be explained by the mechanism of forced circulation.
The velocity of the landslide is proportional to the hydraulic
conductivity, K, of the soil (equation 50). The conductivity
of fine-grained soils ranges over several orders of magni-
tude, from 10712 to 1075 m/s (Freeze and Cherry, 1979, p.
29). The average velocities of steadily moving landslides in
fine-grained soils also range over several orders of
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Velocity

occurs at velocity v, when the water table is at a height,
h, between the critical height and the maximum height
(hshs2), so that R plus the shear strength equals the
average shear stress. The height of the shaded triangular
area along any vertical line h - v, is R.

magnitude, from 10719 t0 1073 m/s (Keefer and Johnson,
1983). A few landslides in clayey soils may actually move
much faster than 1073 m/s (R.M. Iverson, USGS, written
commun., 1988). However, observations indicate that most
landslides in clay soils, which have very low permeability,
move steadily and slowly. For example, debris of the Aspen
Grove landslide, near Ephraim, Utah, was clay and silty clay
that presumably had a low permeability. The peak velocity
of the landslide (Baum, 1988), which occurred when the
water table was at the ground surface, was only 20 cm/day
(2.3x107® my/s). The peak velocity of the Thistle landslide
(Duncan and others, 1986, p. 11) was 48 m/day (5.6x10~*
m/s). Of landslides in clayey soils that were active in central
Utah during 1983 and 1984, the Thistle landslide moved
faster than any others we know of and the Aspen Grove land-
slide moved at a speed we consider typical of the landslides
in central Utah.

Forced circulation will produce a complicated pattern
of seepage within a moving landslide. For example, figure
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Figure D11, Graphs showing resistance to sliding due to
forced circulation, R (computed using equation 53). (A) R is
plotted against v,/K for typical field values of the parameters;
#=0.3, ¥,,=9.80 kN/m3 (Lambe and Whitman, 1969); values of
Aland L indicated on the graph are from Mizuno (1989). (B) R

D12 shows contours of total head in a landslide in which
flow, due to forced circulation, is superposed on flow
parallel to the slope with the water table at the ground sur-
face. Total head, H, in figure D12, is determined by the
formula,

VyA

H =z, cos a.—x sin a+% exp (=Iz) cos Ix, (57)

which is derived by substituting equation 35a into equation
13b. In equation 57, H is the head, z; is the height of the
water table (and the ground surface) above the x-axis, o, is
the slope of the ground surface, and ¥,A/K is the constant c
(equation 35a) divided by the unit weight of water, Yy for
the case where U is zero. The following parameters were
used in equation 57 to determine the contours of head shown
in figure D12: v,/K is unity, / is 1 m™!, A is 0.1 m, and zy is
2 m. For this combination of parameters, ¢; in equation 35a
is approximately 0.0005 ¢y, and, therefore, is negligible.
Although the details of the flow pattern resulting from
forced circulation vary with the choice of parameters, some
general features are illustrated by figure D12. Upward-
directed flow, emanating from the proximal sides of the sinu-
soidal bumps, fans outward and some of the water seeps out
of the ground surface along roughly horizontal flow lines
(flow lines are perpendicular to contours of head). A small
amount of water, emanating from the proximal side of a
bump, flows upslope toward the zone of suction and dilation
at the distal side of the neighboring bump. However, flow
directed upslope might not occur in all cases. Flow near the

©
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001
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divided by the shear stress, Zy, sin @, is plotted against v,/K for
typical field values of the parameters: Z ranges from 1 to 30 m,
Y,=18.8 kN/m3, v,,=9.8 kN/m>, u=0.3 (Lambe and Whitman,
1969), a=15° A/=0.2, and L ranges from 1to 10 m,

distal sides of bumps is directed downward, and some water
infiltrates from the ground surface in these areas.

The water level in observation wells (open tubes), or
the pore pressure measured by piezometers, will depend on
the position of the instrument with respect to the slip surface.
The pore pressure near the distal sides of bumps ought to be
lower than average, whereas the pore pressure near proximal
sides of the bumps ought to be higher than average. How-
ever, testing the hypothesis of forced circulation by measur-
ing pore pressure in an active landslide might have
ambiguous results, because one needs to know the shape of
the failure surface and the general pattern of groundwater
flow in the slope in order to interpret the measurements.

We do not have enough field data to verify the mech-
anism of forced circulation, but at the Minor Creek landslide
in northern California, the hydraulic conductivity is known
well enough to use equation 53 to estimate the velocity. This
landslide has an average hydraulic conductivity, K, of
5%1078 mss (Iverson and Major, 1987) and a maximum
velocity of a few decimeters per month (Iverson, 1986), or
from about 4x1078 to 2x10~7 m/s. Using data from a stability
analysis by Iverson and Major (1987), we calculate that R
equals 0.13 kPa when the landslide is moving at its maxi-
mum velocity. Using this value for R and assuming that the
wavelength, L, is between 1 and 10 m (range of wavelengths
reported by Mizuno, 1989); the roughness, Al, is 0.2 (the
average field value determined by Mizuno, 1989), and p is
0.3; we calculate a maximum velocity for the Minor Creek
landslide of 1.3x1077 m/s (for L=1 m) or 1.3x1078 m/s (for
L=10 m). Our calculated velocities are of the same order of
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Figure D12. Cross section showing contours of total head, H, in a hypothetical landslide. The pattern of head results from
the superposition of slope-parallel flow and forced circulation due to sliding on the uneven slip surface.

magnitude as the maximum velocity observed by Iverson
(1986).

We expect our analysis of the mechanism of forced
circulation to poorly represent operation of the mechanism in
landslides that have been displaced less than one wave-
length, and to represent the operation of forced circulation
with acceptable accuracy in landslides that have been dis-
placed at least a few wavelengths. Nonlinear deformation of
soil, such as irreversible deformation that results in hystere-
sis during repeated cycles of loading and unloading, was not
considered in our analysis. However, permanent deforma-
tion is greatest during the first cycle of loading and unload-
ing, which would correspond to displacement of the
landslide over one wavelength. Hysteresis diminishes during
repeated cycles of loading and unloading of clay samples, or
in other words, loading and unloading curves tend toward
each other (Lambe and Whitman, 1969, p. 321) so that the
modulus for unloading (swell index) approximately equals
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the modulus for loading (compression index). Thus, after a
landslide has been displaced several wavelengths, hysteresis
should be negligible, and equation 53 should determine the
resistance due to forced circulation with fair accuracy.
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