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Recovering Parameters of Johnson’s SB Distribution

Bernard R. Parresol

Abstract

A new parameter recovery model for Johnson’s S
B
 distribution is

developed. This latest alternative approach permits recovery of the range
and both shape parameters. Previous models recovered only the two
shape parameters. Also, a simple procedure for estimating the
distribution minimum from sample values is presented. The new
methodology employs the median and the first and second moments of
the distribution. The methodology is demonstrated by modeling diameter
distributions of unthinned loblolly pine plantations. Compatible
equations for projecting per-hectare values of number of trees and basal
area from initial stand conditions are presented, as well as equations for
predicting median diameter, mean diameter, and the location parameter.
Given estimates of these five stand attributes, the range and the two
shape parameters of the S

B
 distribution can be recovered. The 2χ

goodness-of-fit test rejected 56 cases out of 527 for conformance to an S
B

distribution. Though the S
B
 distribution is very flexible in terms of

distribution shape, about 10 percent of the loblolly plantation
observations did not follow this distribution. Nonetheless, deviation
analysis showed reasonable results, with 77 percent of the variation
explained in current and projected distributions (numbers of trees by
2.5-cm diameter class). Overall, the recovered S

B
 distributions provided

good approximations of the observed diameter distributions.

Keywords: Diameter distributions, kurtosis, Newton-Raphson method,
moments, parameter recovery model, percentiles, Pinus taeda, skewness.

Introduction

Forest managers have long relied on growth-and-yield
forecasts in making management decisions. Growth-and-
yield models that provide detailed stand distributional
information are particularly useful. Clutter and Bennett
(1965) introduced diameter distribution methodology using
the four-parameter beta probability density function (PDF)
to describe the distribution of the number of trees per unit
area by diameter at breast height (d.b.h.) class. Gove and
Patil (1998) refer to this as the d.b.h.-frequency distribution.
Bailey and Dell (1973) were the first to use the Weibull
probability density function as a d.b.h.-frequency
distribution model. They justified use of the Weibull over
the beta distribution because the Weibull has a closed form
expression for its cumulative distribution function (CDF)
and only three parameters. Hafley and Schreuder (1977)
introduced the S

B
 (system bounded) distribution (Johnson

1949) to the forestry literature.

The original approach for developing a diameter
distribution model involved (1) estimating the PDF
parameters from sample data using either the method of
moments or maximum likelihood and (2) development of
regression equations to relate the parameter estimates to the
stand variables age, site, and density. These so-called

parameter prediction models (Hyink 1980, Hyink and
Moser 1983) were straightforward to fit. Unfortunately,
functions for relating the PDF parameters to stand
characteristics usually accounted for only a small
percentage of the variation in the parameter estimates (i.e.,
low 2R  values; see Feduccia and others 1979, Smalley and
Bailey 1974). The alternative put forth by Hyink (1980)
was the parameter recovery method. In this method, the
parameters of the distribution function are solved
(recovered) from a system of equations derived by equating
measured or predicted forest stand attributes to their
analytical counterparts from the PDF. Parameter recovery
models are most often based on percentiles of diameter
distribution or moments of diameter distribution. The
parameter recovery method, in general, is superior to the
parameter prediction method for the projection of future
distribution parameters because d.b.h.-frequency
distribution characteristics, such as mean diameter and
diameter variance, can be projected with more confidence
than the distribution parameters themselves. In many
growth-and-yield studies the two methods—parameter
prediction and parameter recovery—are used
simultaneously. That is, some of the PDF parameters are
predicted, and others are solved using a parameter recovery
approach. Over the past two decades there have been many
diameter distribution growth-and-yield systems based on
parameter recovery (possibly in combination with
parameter prediction) using the Weibull distribution (e.g.,
Baldwin and Feduccia 1987, Cao and others 1982, Gove
and Patil 1998, Matney and Sullivan 1982, Zarnoch and
others 1991), and to a lesser extent the S

B
 distribution (e.g.,

Hafley and Buford 1985, Scolforo and Thierschi 1998,
Tham 1988). The goal of this article is to describe the
development and testing of a new alternative approach for
parameter recovery in the S

B
 distribution.

The SB Distribution

Johnson (1949) realized that a random variable X that is
bounded (i.e., has upper and lower limits) could be
transformed to approximate normality by the transformation

[ ] 1ln ( ) /( ) ( )z x x g xγ δ ξ ξ λ −= + − + − =

where ln is the natural logarithm and (0,1)Z �� . Now Z
has PDF

21
( ) exp

22

z
n z

π
 −=  
 
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where exp is the base of the natural logarithm. The equation
for Johnson’s S

B
 distribution therefore is

1 1( ) ( ( )) | ( ) / |f x n g x dg x dx− −=

or

2
1

exp ln ,
( )( ) 22

( ) , 0, , 0, 0

0    otherwise

x

x x x

f x x

δ λ ξγ δ
ξ ξ λ ξ λπ

ξ ξ λ δ γ λ ξ

    −  − +   − + − + −     =  < < + > −∞ < < ∞ > ≥




It is characterized by the location parameter ξ, the range
parameter λ, and shape parameters γ and δ.

Hafley and Schreuder (1977) examined the skewness
coefficient, 1β , and kurtosis coefficient, 2β , of various
statistical distributions as a measure of the flexibility of the
distributions in regard to their changes in shape. Skewness
is defined as

3/ 2
1 3 2/β µ µ=

and kurtosis as
2

2 4 2/β µ µ=

where

[ ]( ) ( )   and  ( )
r

r x E X f x dx f xµ
∞

−∞
= −∫  

is the PDF of X

Skewness is a departure from symmetry about the mean,
where negative values indicate a distribution with a longer
tail to the left and positive values a longer tail to the right of
the mean. Kurtosis is a measure of the heaviness of the tails
of a distribution; the larger the value of 2β  the more
sizeable the tails. There is a myth that kurtosis measures the
peakedness of a density, despite repeated examples to the
contrary (Ali 1974, Johnson and others 1980, Kaplansky
1945). For the standard normal, (0,1)Z �� , 1 0β =  and

2 3β = . Moment estimators of 1β  and 2β  are

3
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∑
where n is the sample size.

In figure 1, a graph of the 1 2β β−  space is presented showing
the Weibull, gamma, and lognormal distributions. By
convention the ordinate 2( )β  scale is presented upside
down. Certain combinations of 1β  and 2β  are
mathematically impossible and occur in the region above
the line 2 1 1 0β β− − = . The three distributions shown are
represented by lines in the 1 2β β−  space. Because the graph
of figure 1 presents 1β , the square of the skewness
coefficient, the positive and negative aspect of a distribution
is not obvious. The lower line of the Weibull plot in figure 1
is generated by negatively skewed shapes. The beta
distribution covers the region between the gamma line, the
impossible region, and the 2β  axis. Johnson’s S

B
 distribution

covers the region between the lognormal line, the
impossible region, and the 2β  axis. Hence, the beta and S

B

distributions cover a broad spectrum of shapes, fitting both
positively and negatively skewed data.

(1)

(2)

β1 - Skewness Squared
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Figure 1—The 1 2β β−  space.  The beta distribution covers the region
between the gamma line and the impossible region.  The S

B

distribution covers the region between the lognormal line and the
impossible region.  The + symbols mark skewness squared-kurtosis
values for the 527 unthinned loblolly pine plot observations.
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Because the S
B
 distribution is obtained by a transformation

on a standard normal variate, integration over specific
classes can be accomplished by application of the well-
tabulated standard normal. Further, the distribution can
easily be extended to multivariate forms (Hafley and Buford
1985, Knoebel and Burkhart 1991). These factors plus the
distribution’s flexibility in the 1 2β β−  space were the salient
points Hafley and Schreuder (1977) used to justify selection
of the S

B
 distribution over other distributions.

Previous SB Models

In previous S
B
-based models the general approach has been

to specify the distribution minimum and maximum values,
thereby fixing ̂ξ  = minimum value and ̂λ  = maximum value
– minimum value, and to recover or otherwise estimate the
two shape parameters. Hafley and Buford (1985) presented
a modeling approach whereby they used a maximum
likelihood type estimating equation for δ, that is,

ˆ
ˆ

4 xs

λδ =

where xs  is the standard deviation of x (which is a function
of the first and second moments of a distribution), and for γ
they used

ˆ ˆ ˆ2 ˆˆ ln
ˆ ˆ ˆ ˆ

m m

m

x x

x

ξ λ ξγ δ
λδ λ ξ

 − − −= −   + − 

where mx  is the mode of x. Other researchers have relied on
the two-percentile method to recover γ  and δ. In Newberry
and Burk (1985) and Knoebel and Burkhart (1991) the 50th
and 95th percentiles were used. From the formulation of the
S

B
 distribution,

95 50
95 50

95 50

ln   and  ln
X X

Z Z
X X

ξ ξγ δ γ δ
ξ λ ξ λ

   − −= + = +   + − + −   

where 95Z  and 50Z  represent the standard normal values
corresponding to the cumulative frequencies of 95 percent
and 50 percent of the standard normal distribution, and 95X
and 50X  are the 95th and 50th percentiles of the observed
distribution. Because 50Z  = 0, we have

50

50

ˆ
ˆˆ ln

ˆ ˆ
X

X

ξγ δ
ξ λ

 −= −   + − 

Substituting into the equation for 95Z  and simplifying yields

95 50

95 50

1.645ˆ
ˆ ˆ

ln ln
ˆ ˆ ˆ ˆ

X X

X X

δ
ξ ξ

ξ λ ξ λ

=
   − −−   

+ − + −   

Newbury and Burk (1985) correctly pointed out that these
two percentile points, the 50th and 95th, do not necessarily
provide the optimal estimates for γ and δ.

Of course, many approaches have been used to determine
the S

B
 parameters, such as the four-percentile points

method, linear and nonlinear regression methods, and
maximum likelihood. These have been reviewed and
compared by Zhou and McTague (1996) and Kamziah and
others. (1999). The purpose of my brief review of the above
methodology is to provide a contrast against the
methodology presented in the next section.

Development of the SB Parameter
Recovery System

The parameter recovery method ensures compatibility
between stand characteristics generated from a distribution
function and predicted from regressions. To apply the
parameter recovery method, a system of equations involving
certain tree stand characteristics and the S

B
 parameters must

be developed. If we define a new variable Y with variate
values

( ) /y x ξ λ= −

then the S
B
 distribution [equation (1)] can be expressed as

2
1

( ) exp 0.5 ln , 0 1
(1 ) 12

y
f y y

y y y

δ γ δ
π

    = − + < <   − −    

where

ln[ /(1 )]yz y yγ δ= + −

Solving equation (5) for y gives

( ) / 1(1 ) ( )zy e g zγ δ− − −= + =

Setting z = 0 in equation (6) results in the median value of
Y:

/ 1
median (1 )y eγ δ −= +

hence

medianln(1/ 1)yγ δ= −

Because Y is a function of Z [see equation (6)],
( ) [ ( ) ]r rE Y E g Z= . As Z is a unit normal variable, the rth

noncentral moment of Y is

21
( ) exp( / 2) /[1 exp(( ) / )]

2
r

r y z z dzµ γ δ
π

∞

−∞

′ = − + −∫

(4)

(5)

(6)

(7)

(8)
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which can be evaluated using a formula due to Goodwin
(1949). Hill and others (1976) give an excellent algorithm
for evaluating S

B
 moments based on Draper’s (1952) form

of Goodwin’s integral.

Let us proceed by solving equation (4) for x, which gives
x yλ ξ= + . Taking the statistical expectation [i.e.,

( ) ( )E X E Y= +λ ξ ] we obtain

1( )x yλµ ξ′= +

Quadratic mean d.b.h. q( )D , number of trees per unit area
(N), and basal area per unit area (B) are related by the
equation (see Clutter and others 1983, p. 89)

q /( )D B N= � , thus 2
qB N D= ⋅�  where � is for units

conversion from d.b.h.2 to basal area ( / 40,000π=�  for
converting d.b.h.2 in cm2 to area in m2) and 2 2

q ( )D E X= . In
terms of our new variable Y, 2 2( ) [( ) ]E X E Yλ ξ= + =

2 2
2 1( ) 2 ( )y yλ µ ξ λ µ ξ′ ′+ + . Now B, expressed as a function

of the first and second moments of Y, becomes

2 2
2 1[ ( ) 2 ( ) ]B N y yλ µ ξ λ µ ξ′ ′= + +� �

The relationship in equation (7) is used to eliminate γ  in
equations (9) and (10) by substitution into equation (8). We
are then left with a system of two nonlinear equations and
two unknowns. Given estimates of B, N, median tree
diameter median( )d , average tree diameter mean( )d , and the ξ
parameter, plus the relationships in equations (9) and (10),
we can iteratively solve for parameters λ and δ. The
parameter γ  is then determined from equation (7).

An attempt was made to define three equations in three
unknowns so that the ξ parameter could be recovered as
well. Taking the variance of equation (4) gives

2 2
2 1var( ) ( ) ( )X y yλ µ µ′ ′ = − 

However, this function is a combination of equations (9)
and (10), which is readily seen by subtracting the square of
equation (9) from equation (10). A system based on these
three equations cannot be solved. Next kurtosis was tried,
which, expressed in terms of noncentral moments, is

2 4
4 1 3 1 2 1

2 22
2 1

( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )

( ) ( )

y y y y y y

y y

µ µ µ µ µ µβ
µ µ

′ ′ ′ ′ ′ ′− + −=
′ ′ − 

However, the resulting complexity of this system of three
nonlinear equations posed such convergence problems that
it was abandoned.

Undoubtedly overall stand attributes such as volume and
basal area are less sensitive to errors in ξ than to errors in
the other three parameters. Hence, specifying ξ and
recovering the remaining parameters is probably the most
expedient approach.

Solution Technique

The solution of a system of nonlinear equations is a difficult
problem. A two-dimensional Newton-Raphson procedure is
relatively straightforward to program and has quadratic
convergence. The two-dimensional Newton-Raphson
method can be written in vector notation as (Ralston and
Rabinowitz 1978, p. 360)

2 1
(2) (2)

1
1

22 1
(1) (1)

1

i

i i

f f
fx x
ff fg

x x

+

=

 ∂ ∂  −    ∂ ∂ = −    ∂ ∂   −  ∂ ∂   x x

x x

where the determinant g is

1 1
(1) (2)

2 2
(1) (2)

f f

x xg
f f

x x

∂ ∂
∂ ∂=
∂ ∂

∂ ∂

The key to using equation (11) is correctly specifying the
partial derivatives of 1f  and 2f  with respect to (1)x  (the λ
parameter) and (2)x  (the δ parameter). I shall denote the
relationship in equation (9) as 1f  and in equation (10) as 2f .
The partial derivatives of equations (9) and (10) depend on
the partial derivatives of the moments of Y. Let us define the
pseudo-moment ( )r yµ′�  as

21/ 2 exp( / 2) /[1 exp(( ) / )]rz z z dzπ γ δ
∞

−∞

− + −∫

The partial derivatives of the moments of Y (see appendix)
can be shown to be functions of ( )r yµ′  and ( )r yµ′� . Using the
results of equations (A1) and (A2), the partial derivatives of

1f  and 2f  are:

( )1 21
1

median

( ) ( )
( )

y yf
y

d

λ µ µ
µ

λ λ ξ
′ ′−∂ ′= −

∂ − +

( )1 21
2

( ) ( )y yf λ µ µ
δ δ

′ ′− −∂ =
∂

� �

(9)

(10)

(11)

(12)

(13)

(14)
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( ) ( )

( )

2 3 1 2

2
median

2 1

2 ( ) ( ) ( ) ( )

                                                    2 ( ) ( )

y y y y
f

Nd

y y

λ λ µ µ ξ µ µ
λ ξ

λ
λµ ξµ

 ′ ′ ′ ′− − + −   ∂ = − + ∂  ′ ′+ + 

⋅��

( ) ( )2 3 1 22
2

2 ( ) ( ) ( ) ( )y y y yf
N

λ λ µ µ ξ µ µ
δ δ

 ′ ′ ′ ′− − + − ∂   =  ∂   
⋅

� � � �

� �

Substituting equations (13) through (16) into equation (11)
gives us the two-dimensional Newton-Raphson iteration
formula to solve the system of equations. The L

1
 norm

2

1
1

|| || i
i

f
=

= ∑f

was used to define convergence as

1|| || 0.002<f

Data

Data came from 287 plots (varying in size from 0.04 to
0.3 ha) established in unthinned loblolly pine (Pinus taeda
L.) plantations in north and central Louisiana, southern
Arkansas, southeast Texas, and southwest Mississippi.
Periodic remeasurements of stand conditions were taken
every 4 to 6 years on 125 of the plots. The database
consisted of 527 stand observations, 240 of which were
growth observations (remeasurements). Diameter at breast
height (1.37 m) to the nearest 0.25 cm was measured for
each tree on the plot. The average height of dominant and
codominant trees was obtained on each plot at each
measurement to determine site index. Stand ages ranged
from 5 to 45 years, trees per hectare ranged from 119 to
3,039, basal area per hectare varied from 1.15 to 48.2 m2,
and average height of dominants and codominants varied
from 5.2 to 27.4 m.

Figure 1 presents a plot of the 527 (1,b  2b ) values, calculated
from equations (2) and (3) on the diameter measurement
values. Few points fall near the line defined by the Weibull
distribution. Clearly, the S

B
 distribution covers most of the

( 1,b  2b ) values and therefore should be appropriate for
modeling these stand diameter distributions.

The 0th Percentile for the Distribution
Minimum Value

Estimates of the location parameters of the recovered
distributions are needed. In previous studies (Cao and
others 1982, Matney and Sullivan 1982, Zöhrer 1972)
regressions were developed on the sample plot minimum
diameters, then subjective adjustments, such as dividing the
prediction by 2, were made to estimate the threshold
parameters. Other studies (Dell and others 1979, Feduccia
and others 1979, Smalley and Bailey 1974) developed
direct estimation of threshold parameters from regressions
on maximum likelihood estimates (MLEs). Objective
methods are preferable, so maximum likelihood was used to
solve for the 527 ξ parameters. However, the MLEs were
unsatisfactory. Values of  ξ̂  were nearly 0 in most cases and
often were in conflict with the natural progression of
diameter over time.

Looking at plots of the empirical CDFs, I observed that the
curves tended to straighten at the ends. I took the three
smallest plot diameter values and linearly regressed down to
the 0th percentile value (fig. 2). Percentiles were calculated
on the ordered d.b.h. values d1, d2, . . ., dn as

( ) /( 1) 100ip d i n= + × . This technique gave reasonable
diameter values for the minimum distribution values.

(15)

(16)
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Figure 2—Empirical CDF of a loblolly pine study plot with a linear
regression line fitted to the three smallest values showing extrapolation
to the 0th percentile value.
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Stand Equations

Compatible projection models for number of trees surviving
and basal area were fitted to the sample data. Additionally,
prediction equations for median d.b.h., mean d.b.h., and the
ξ parameter also were fitted. Table 1 shows the equations
that predict stand attributes. The loblolly pine site index
curve used was that of Popham and others (1979).

In addition to stand attribute values, starting values are
required to begin the iteration of equation (11). For the
range parameter, the following equation gave good starting
values:

2 2initial 12.29 0.2562 0.0123 ( / ) 0.00338 /x xs N A s N Aλ = + ⋅ − ⋅ + ⋅ ⋅

where 2
xs  is the variance of d.b.h. in cm2, N is number of

trees per hectare, and A is stand age in years. For δ, the
value 1.2 was determined to be a good starting point, based
on the observation that δ often occurs between 1 and 1.5 for
S

B
 diameter distributions.

Results

A FORTRAN program was written to facilitate use of the
parameter recovery model and to provide a means of

Table 1—Equations for predicting unthinned loblolly plantation stand attributes

Equationa

6 1.06412 2.38353 2.47812 2
2 1 2 1 1 1 1 1

b

ˆ 1.05409 10 ( ) ( / ) exp(4.56524 10 )

240; 0.964; RMSE 83.5

N N A A N B HD B

n FI

− −= − −

= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

20.42213 4.38106 10 2.49276 21 12.69457
2 1 2 1 1 1 2 1

ˆ 405.39237( ) exp( 5.10433 10 )

240; 0.942; RMSE 2.3674

B B A A B HD A B

n FI

− − −⋅= + − −

= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2
median q

ˆ 0.51862 1.02175 1.60392 10 ( 1 if 20 else 0)

527; 0.988; RMSE 0.5428

d D A I I A I

n FI

−= − + − = ≥ =

= = =

⋅ ⋅ ⋅

�
q meanln( ) 1.95405 0.43658 ln( )

527; 0.999; RMSE 0.1732

D d HD

n FI

− = − +

= = =

2 2 2
q q mean

ˆ 0.90155 0.018167 0.27733( ) 0.43026

523; 0.757; RMSE 2.1996

D D d HD

n FI

ξ = − + − − +

= = =

a Notation: A = stand age in years, B = basal area in m2 per hectare, d
mean

 = average d.b.h. in cm, d
median

 =
median d.b.h. in cm, qD  = quadratic mean d.b.h. in cm, HD = average height of dominants and codominants
in m, N = number of surviving trees per hectare, and ξ = distribution minimum d.b.h. in cm. Subscripts refer
to time of measurement.

b Statistics: fit index, 2 2ˆ1 ( ) / ( )i i i iFI y y y y= − − −∑ ∑ ; root mean square error, RMSE = 2ˆ( ) /( )i iy y n p− −∑ ;
where n = number of observations, p = number of parameters, iy  = observed value, y  = observed mean value,
and ˆiy  = predicted value.

b
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checking the model against the data. Inputs into the
program were initial age, initial basal area, initial number of
trees, initial height of dominant and codominant trees or
base age 25 site index, the number of projection periods,
and the time length between projection periods. The
program provided the recovered parameter values, current
and future stand tables, and histograms.

Initial stand conditions for each of the 287 plots were input
into the program, and 287 current and 240 future stand
tables were generated and compared against the observed
distributions. A convergent solution was obtained on all 527
observations. On the average, convergence was obtained in
3 to 4 iterations. From a purely mechanical viewpoint, the
S

B
 parameter recovery model worked extremely well. The

degree of correspondence between the actual and predicted
d.b.h.-frequency distributions was evaluated next.

For all observations, differences were calculated between
observed and predicted number of trees by 2.5-cm d.b.h.
classes. The generated S

B
 distributions accounted for 77

percent of the observed variation in number of trees by
d.b.h. class. The standard deviation was 67 trees per
hectare. Residual analysis showed no apparent prediction
bias except in the smallest diameter class, where numbers
were slightly underestimated.

The 2χ  goodness-of-fit test, using 2.5-cm classes, was
performed on each of the observations. These tests resulted
in rejection of the hypothesis that diameter distribution is
from an S

B
 distribution in 56 cases at the 0.01α =  level.

While this number is considerably larger than the expected
number of rejections (0.01 527 5)× ≅ , it was not
unanticipated. The graph of skewness squared-kurtosis
values in figure 1 clearly shows some values outside the
range covered by the S

B
 distribution. Of the 56 cases

rejected, 50 had values [i.e., (1,b  2b ) points] that fell below
the lognormal line. Taking these 50 observed plot
distributions into account (56 50 6)− = , the 2χ  test results
are very reasonable. It was concluded, therefore, the
recovered S

B
 distributions provided good approximations of

the observed diameter distributions.

Discussion

A parameter recovery framework was developed using the
stand level values of mean d.b.h. and basal area, in
conjunction with median d.b.h., and the first and second
moments of the S

B
 distribution. The resulting system of two

nonlinear equations [equations (9) and (10)] plus equation
(7), which form the parameter recovery model, allowed for

the determination (i.e., recovery) of the range and both
shape parameters of the S

B
 distribution. The approach of

Hafley and Buford (1985) and the two-percentile method
used by Newbury and Burk (1985) and Knoebel and
Burkhart (1991) do not require iterative procedures.
However, Kamziah and others (1999) were critical of the
two-percentile method because “. . . the parameters γ and δ
were estimated based only on two percentiles, and λ was
not estimated simultaneously from these percentiles.” They
felt it was important to interconnect the value of the range
parameter to the overall shape of the distribution, because
the range and shape parameters provide feedback to each
other (a gestalt, if you will) and, therefore, should be
estimated simultaneously.

This same criticism can be applied to the approach of
Hafley and Buford (1985). This new alternate methodology
provides that link between the range and shape parameters.
The methodology can be extended to the S

BB
 distribution, a

bivariate distribution that is commonly used for describing
simultaneously diameter and height structure (Tewari and
Gadow 1999). In that case, the marginal distributions for
diameter and height would be determined as outlined, but a
strategy for determining the correlation parameter to tie the
marginal distributions together would have to be developed.

The wealth of literature on diameter distribution modeling
suggests no one system will universally fit all situations. In
this study approximately 10 percent of the plots could not
adequately be modeled using the S

B
 distribution. A better

understanding of the biological relationships that
underscore stand development over time is necessary to
further develop existing approaches. Nevertheless, the S

B

parameter recovery system developed in this paper is
tractable for use in stand modeling and yielded good
representations of unthinned loblolly pine stands.
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Appendix

The partial derivatives of the moments of Y [ ( )r yµ′ , see equation (8)] with respect to λ and δ are derived below.  These
derivatives are needed for the computation of the partial derivatives of equations (9) and(10).  First, performing a change-of-
variable from mediany  to mediand  [where we let d, for tree diameter, replace x in equation (4)], we have from equation (7) that

[ ]medianln /( ) 1dγ δ λ ξ= − − .  Substituting for γ where necessary, we have

[ ]

2
median

1

2

1
median

1
median

ln[ /( ) 1]( ) exp( / 2)

[1 exp(( ) / )]2

1 exp( / 2)

[1 exp(( ) / )]2

( ) ( )

exp(( ) / )

exp(( ) / )

r
r

r

r r

d zy r z
D dz

z

r z
dz

d z

r
y y

d

z

z

λ
δ λ ξµ

λ γ δ δπ

λ ξ γ δπ

µ µ
λ ξ

γ δ

γ δ

∞

+
−∞

∞

+
−∞

+

′ − − −∂ −  = −  ∂ + −  

−= −
− + + −

′ ′= − −
− +

⋅ − ⋅

⋅ −

⋅

∫

∫

and

2
median

1

2

2 1

ln[ /( ) 1]( ) exp( / 2)

[1 exp(( ) / )]2

1 exp( / 2)

[1 exp(( ) / )]2

exp(( ) / )

exp(( ) / )

r
r

r

d zy r z
D dz

z

r z
z dz

z

z

z

δ
δ λ ξµ

δ γ δ δπ

δ γ δπ

γ δ

γ δ

∞

+
−∞

∞

+
−∞

′ − − −∂ −  = −  ∂ + −  

−= −
+ −

⋅ − ⋅

⋅ − ⋅

∫

∫

Because of the extra z, the integral does not reduce to the difference of two S
B
 moments as it did in the derivative with respect

to λ.  Using the pseudo-moment ( )r yµ′�  defined in equation (12), we can express the partial derivative as

[ ]12

( )
( ) ( )r

r r

y r
y y

µ µ µ
δ δ +

′∂ ′ ′= − −
∂

⋅ � �

(A1)

(A2)
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Parresol, Bernard R. 2003. Recovering parameters of Johnson’s S
B
 distribution. Res. Pap. SRS-31.

Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 9 p.

A new parameter recovery model for Johnson’s S
B
 distribution is developed. This latest alternative approach

permits recovery of the range and both shape parameters. Previous models recovered only the two shape
parameters. Also, a simple procedure for estimating the distribution minimum from sample values is presented.
The new methodology employs the median and the first and second moments of the distribution. The methodol-
ogy is demonstrated by modeling diameter distributions of unthinned loblolly pine plantations. Compatible
equations for projecting per-hectare values of number of trees and basal area from initial stand conditions are
presented, as well as equations for predicting median diameter, mean diameter, and the location parameter.
Given estimates of these five stand attributes, the range and the two shape parameters of the S

B
 distribution can

be recovered. The 
2χ  goodness-of-fit test rejected 56 cases out of 527 for conformance to an S

B
 distribution.

Though the S
B
 distribution is very flexible in terms of distribution shape, about 10 percent of the loblolly

plantation observations did not follow this distribution. Nonetheless, deviation analysis showed reasonable
results, with 77 percent of the variation explained in current and projected distributions (numbers of trees by
2.5-cm diameter class). Overall, the recovered S

B
 distributions provided good approximations of the observed

diameter distributions.

Keywords: Diameter distributions, kurtosis, Newton-Raphson method, moments, parameter recovery model,
percentiles, Pinus taeda, skewness.
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