Forest Service
Northeastern
Area
Morgantown, WV
NA-TP-04-99

Changes in Composition
 of the

Mixed Mesophytic Forest:
Effects of Succession and Disturbance

Jim Steinman
USDA Forest Service Northeastern Research Station
Radnor, Pennsylvania

Changes in Composition

of the

Mixed Mesophytic Forest:

Effects of Succession and Disturbance

Abstract

This study investigated the hypothesis that air pollution is causing mortality of the larger overstory trees, which results in a shift in species composition. To determine if the theorized shifts in species composition have occurred, this study compared historical changes in forest composition as described by Braun (1940) with more recent changes as quantified by the Forest Inventory Analysis (FIA) program of the USDA Forest Service. FIA estimated recent composition changes using records of live, dead, and cut trees from 5,404 randomly sampled plots.

Analyses suggest that the forest overstory consisted mostly of late-successional species in the 1940s and early- and mid-successional species in the 1980s. Thus, differences were most likely due to disturbances (insects and diseases, fire, weather, pollution) that killed trees, which allowed pioneer species to occupy openings. Forest succession may account for the 6 percent of dead trees in the 1980s since the percentages of dead trees were significantly greater among early-successional species. Percentages and spatial gradients of dead trees of species tolerant to air pollutants were similar to dead trees of intolerant species. Most of the 4 percent of all trees cut in the 1980s were not late-successional species, which may have favored successional trends.

Keywords: mixed mesophytic forest, tree mortality, succession, disturbances, air pollutants

Table of Contents

Introduction I.
Role of Air Pollution I
Study Design 2
Methods 2
Study Area 2
Braun Historical Data 4
FIA Data 4
Analytical Procedure 5
Results and Discussion 7

1. Differences in Species Composition in the Last 50 Years 7
Historical Changes in Southeastern Kentucky 7
FIA Data: Composition of Mixed Mesophytic Forest 8
2. Rate of Tree Mortality 9
This section of the study ascertained whether trees were dying at an accelerated rate 9
Mortality Rate of Different Species 10
Rate of Mortality in Large Trees 11
Mortality by Geographic Locations 11
3. Causes of Recent Tree Mortality 18
Forest Succession 18
Logging and Land C/earing 18
Insects, Diseases, Weather, and Fire 19
Air Pollution 20
4. The Future Forest. 20
Conclusions 20
References 21
Appendices 23

List of Tables

Table 1 - Characteristics of Ecological Subregions that Contain the Mixed Mesophytic Forest (McNab and Avers 1994) 3
Table 2 - Distribution of FIA Sample Plots with Trees at least 10 inches DBH (by Forest Type and Ecological Subregion) 5
Table 3 - Distribution of all trees (live, dead, and cut) at least 10 inches DBH from 5404 FIAsample plots located in oak-hickory, northern hardwood, and oak-pine forest types6

List of Figures

Figure 1. States containing the mixed mesophytic forest and counties sampled by Braun (1950). . . . 1
Figure 2. Delineations of the mixed mesophtyic forest (Braun 1950) and ecological subregions (McNab and Avers 1994)
Figure 3. Species composition in southeastern Kentucky during the 1940s and 1988 as estimated by Braun (1950) and from FIA sample plots, respectively. 7

Figure4. Species composition of oak-hickory forest types by tolerance to competition (FIA data). . . . 8
Figure 5. Species composition of northern hardwood forest types by tolerance to competition (FIA data)
Figure 6. Percentages of dead trees and removed trees in oak-hickory forest types by tolerance to competition (FIA data)10

Figure 7. Percentages of dead trees and removed trees in northern hardwood forest types by tolerance to competition (FIA data).

Figure 8. Percentages of dead trees and removed trees by dbh class and tolerance to competition: Intolerant (INT), moderately tolerant (MOD), and tolerant (TOL) (FIA data).
Figure 9. Percentages of dead trees and removed trees in oak-hickory forest types by tolerance to competition and ecological subregion (FIAdata).
Figure 10. Percentages of dead trees and removed trees in northern hardwood forest types by tolerance to competition and ecological subregion (FIA data).
Figures 11-15. FIA plots containing at least three trees greater than 10 inches dbh. 13-17
Figure 16. Percentages of FIA plots containing dead trees of selected species for plots with and without evidence of any removed trees

Introduction

The mixed mesophytic forest was described by E. Lucy Braun (1950) as the portion of the Appalachian region of the United States (Figure 1) that contains a diverse mixture of mesophytes. Mesophytes are plants that grow best on moist sites. Field studies conducted by Braun in the 1940s included descriptions of the many tree species observed in the overstory (see Appendix Table A-l), including counts of overstory trees along sampled transects. Summaries of Braun's published counts (see Appendix Table B- 1) show species in the following order of abundance:

1. American beech
2. Sugar maple
3. Yellow-poplar
4. Eastern hemlock
5. American chestnut
6. White oak
7. Basswood
8. Chestnut oak
9. Hickory
10. Yellow buckeye

Various stress factors have contributed to modify the distribution and species composition (Martin 1992) of the forest. As with all forest ecosystems, trees compete for light, water, and nutrients; species tolerant of competition tend to succeed while intolerant species die (Spurr and Barnes 1992). This
relatively slow process of competition and survival is often abruptly interrupted by disturbances that kill trees, create forest openings, alter species composition, and modify forest succession trends (Abrams and Downs 1990; Abrams and Nowacki 1992). Disturbances in the mixed mesophytic forest include urban development, agriculture, logging, fire, drought, wind storms, forest insects, and diseases (Hicks and Mudrick 1993). The most influential tree disease in recent years has been chestnut blight [Cryphonectria parasitica (Mm-r.) Barr]. Chestnut blight has virtually eliminated the American chestnut tree from the forest overstory.

Role of Air Pollution

Air pollutants consisting of nitrogen, sulfur, and ozone have been present in the United States forests throughout the latter half of the 20th century. However, most studies to determine the effects of ambient air pollutants on mature forest trees have shown inconclusive results due to the following factors:

- Difficulty and expense involved in conducting controlled "cause and effect" field experiments.
- Lack of reference or benchmark data with which to compare increases in air pollution data.
- Reliance on evaluations that associate tree mortality and ambient air pollution along spatial gradients (Shriner and others 1990).

Studies of tree mortality and ambient air pollution in the northern Appalachian region have only been able to demonstrate a relationship between mortality of red spruce and concentrations of air pollutants at high elevations. Even so, two hypotheses exist for the mixed mesophytic forest. These hypotheses state that: (1) larger trees of some species are dying at an accelerated rate, and (2) mortality is due to the deposition of airborne nitrogen and exposure to ozone, which predispose trees to root pathogens (Little 1995).

Study Design

The current analysis focused on testing the hypothesis that trees of some species are dying at accelerated rates. Supportive analyses used quantitative data from the Forest Inventory and Analysis (FIA) program of the USDA Forest Service (Hansen and others 1992). FIA provides the best available source of high-quality and unbiased information obtained from an extensive system of randomly selected locations. Initial analyses were conducted to compare the overstory composition observed by Braun in the 1940s with the composition observed in the 1980s as gleaned from the FIA data. Subsequent analyses identified tree species and geographic locations with percentages of dead trees or cut trees that deviate from forest-wide averages. These results were then used to infer historical differences in species composition between the 1940s and 1980s, and the recent changes in species composition and forest succession trends.

Methods

Study Area

The location of the mixed mesophytic forest as described by Braun (1950) closely corresponds to delineations of ecological subregions (Table 1 and Figure 2) defined by McNab and Avers (1994). Use of subregion boundaries was desirable to facilitate comparisons among natural physiographic and climatic zones instead of political entities (e.g., states and counties). The southern extension of the forest in ecological subregion 231 C of Alabama was retained for analyses, although it has a warmer climate and more loblolly pine than the other subregions. Likewise, the northern extension in 212G of Pennsylvania was retained although it represents a cooler climate than the rest of the forest and has a higher proportion of black cherry.

While this study did not directly address the hypothesis that air pollutants cause trees to die, FIA data were utilized to identify likely causes of mortality based on the differential proportions of dead trees among species and locations. More rigorous hypothesis testing would require collection of data to frequently monitor the variability in tree health over time across the study region, and account for changes in health and mortality due to coincident effects of tree competition and disturbances such as forest insects and diseases. Such data are currently not available for the mixed mesophytic forest although they have been collected in other regions by the ongoing Forest Health Monitoring and North American Maple Projects (Twardus and Mielke 1995).

Figure 2. Delineations of the mixed mesophtyic forest (Braun 1950) and ecological subregions (McNab and Avers 1994).

Characteristics of Ecological Subregions that

 Contain the Mixed Mesophytic Forest (McNab and Avers 1994)| Ecological Subregion | Geomorphology | Paleozoic
 Parent
 Materials | Soil Taxa | Potential
 Forest
 Vegetation | Elevation (ft) | Precip (in)
 Temp (F) | Growing Season (days) | Disturbance and Land Use |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 Laurentian Mixed Forest Province | | | | | | | | |
| 212G | dissected plateau | sandstone, siltstone, shale | Ultisols Inceptisols | Hemlock- N. hardwoods Appal. oakpine | 1000-2400 | $\begin{aligned} & 40-50 \\ & 46-48 \end{aligned}$ | 120-1 50 | Fire; forestry, oil, agriculture |
| 221 Eastern Broadleaf Forest Province | | | | | | | | |
| 221 E | dissected plateau | sandstone, siltstone, shale, coal | Ultisols Inceptisols | Appalachian hardwoods | 660-1350 | $\begin{aligned} & 35-45 \\ & 39-55 \end{aligned}$ | 120-1 70 | Fire, clearing: agriculture, urban |
| 221 H | dissected plateau | sandstone, shale, coal | Ultisols Inceptisols | Mixed; mesophytic, Appal. oak | 650-980 | 46-55 | 175 | Fire: forestry |
| 2211 | Faulted/ folded monoclinal mountains | sandstone, shale, Ilimestone | Ultisols Inceptisols | Appal. oak, Mixed Mesoph. | $800-1000$ | 46-55 | 175 | Fire; forestry |

231 Southeastern Mixed Forest Province

M221 Central Appalachian Broadleaf Forest - Coniferous Forest . Meadow Province

M221A	Faulted/ folded parallel ridges	limestone, sandstone, shale	Inceptisols Ultisols	Appal. oak, oak-hickory, pine	300-4800	$\begin{aligned} & 35-50 \\ & 46-60 \end{aligned}$	70	Fire; agric., forestry, urban
M221 B	Severely dissected plateau	sandstone, shale	Inceptisols Ultisols	Mixed hardwoods, spruce-fir	1000-4600	$\begin{aligned} & 40-60 \\ & 39-54 \end{aligned}$	110.160	Fire; forestry
M221C	Faulted/ folded monoclinal mountains	sandstone, shale	Inceptisols Ultisols	Mixed mesophytic, Appal. oak	2000-2600	$\begin{aligned} & 40-47 \\ & 45-50 \end{aligned}$	140-I 60	Fire; agriculture, forestry

Braun Historical Data

Reports by Braun (1940; 1950) include a valuable historical record of the characteristics of the mixed mesophytic forest during the 1940s. Field studies conducted by Braun included sampling along transects averaging 1 mile in length to obtain counts of living overstory trees. Braun sampled a total of 10,140 trees from 19 counties with most trees $(7,027)$ located in the Cumberland Mountains of southeastern Kentucky (see Figure 1). Published data from the various sampled areas provide a means to estimate the species composition of the forest during the 1940s.

Diameters and spacing in tree stands were not provided in the Braun reports, which precluded estimation of how trees of different sizes were distributed in stands. However, descriptions and within-stand photographs indicate an uneven aged forest with trees of various sizes. Some trees were reported to be at least 40 inches dbh (diameter at 4.5 feet above the ground), but photographs often depict one or two of these large diameter trees surrounded by trees of smaller sizes.

Counts of dead trees were also not collected in the Braun data, which prevented comparison with estimates derived from recent FIA data used in this study. Although Braun mentioned that American chestnut was disappearing due to chestnut blight, Braun did not mention the occurrence of mortality of other tree species.

FIA Data

The Northeastern Research Station FIA Eastwide Database (Hansen and others 1992) was used to estimate recent species composition and percentages of dead and removed trees, which represent cumulative amounts of mortality and cutting during a probable period of 10 to 15 years. Data were collected from an extensive network of randomly sampled plots measured over a span of four years in the following states: Alabama (1990), Kentucky (1988), Ohio (1991), Pennsylvania (1989), Tennessee (1989), and West Virginia (1989). A few plots in the FIA data included sample plots from Maryland (1986) and Virginia (1992).

The area of each sample plot was commonly $1 / 5$ acre, but varied among locations ($1 / 6$ to $1 / 4$ acre) as a function of different sampling designs. Variables used from plot records included approximate locations (latitude and longitude), forest type, stand size (trees dominated by saplings 1 to 5 inches dbh), poletimber (5 to 10 inches dbh), or sawtimber (>10 inches dbh), and stand basal area (total cross-sectional area of trees at 4.5 feet above the ground). Plot sizes were used to estimate the equivalent number of trees per acre of each tallied tree. Variables used from each tree record included species, diameter at breast height (dbh), crown position (dominant, codominant, intermediate, or suppressed), and status (live, standing or fallen dead, or cut). Records of dead trees and cut trees from previous inventories were used to determine diameter at breast height and crown position values 10 to 15 years earlier.

All tree species within the study area were of interest for evaluation. This comprehensive approach avoided bias towards any given species and facilitated more robust comparisons among a variety of species groups. However, greater emphasis was placed on species that Braun described as predominant in the overstory than on other species. Thus, analyses were confined to FIA plots within oakhickory, northern hardwood, and oak-pine forest types that mostly contain representative species of the mixed mesophytic forest.

Of the selected FIA plots, 68 percent was from oakhickory types and 19 percent was from northern hardwood forest types. Oak-hickory forest types were predominant in all ecological subregions except 212G, which had a majority of plots in northern hardwood forest types. Oak-pine forest types were represented by less than 10 percent of the plots in most subregions, and therefore some analyses were not conducted for these types.

Analyses were also confined to FIA plots within poletimber- and sawtimber-sized stands and to dominant and codominant trees at least 10 inches dbh . Trees of this size were chosen because they represent most of the relative stocking of mature stands and most of the removals from logging in the region (Birch and others 1992). With this criterion, a total of 5,404 FIA plots and 86,654 overstory trees at
least 10 inches dbh was chosen from the database (Table 2 and Table 3). Of this total, 32 groups of species were each represented by at least 150 trees, with an additional 12 species placed in a miscellaneous category. Each species was commonly represented by only one or two trees on a sample plot, and rarely by more than five trees.

Analytical Procedure

Analytical procedures to evaluate species composition, dead trees, and removed trees used percentages of numerical counts of trees in the overstory that were at least 10 inches dbh. Counts of trees were used because this measure can be interpreted and collected for later comparison with other data, and species composition from tree counts can be compared to historical estimates by Braun (1950). Although Braun did not include measurements of tree diameters in reported data, it was assumed in this study that overstory trees were greater than 10 inches in diameter and located in mature stands.

Species were analyzed individually and in groups based on whether they were intolerant, moderately tolerant, or tolerant of competition (Burns and Honkala 1990a; 1990b). The tolerance ratings of species generally correspond to the successional stage in which they predominate, where tolerant species characterize a late successional forest. A previous study showed differences in stocking
among species that vary in tolerance to competition and different successional stages of the forest (USDA Forest Service 1995).

Species composition of the forest was evaluated by combining tree data from all FIA plots within a given forest type or ecological subregion. Percentages of trees in each species were tabulated for each stratum. Tabulations were used to rank species by their abundance and to determine if any differences exist among forest types and ecological subregions. Species composition was also evaluated at six counties in southeastern Kentucky (counties of Bell, Clay, Harlan, Letcher, Perry, and Whitley) that correspond to a primary area sampled by Braun. A combined total of 3,618 trees from 206 FIA plots in these counties was used to determine percentages of each species and compared to those reported by Braun. Data from FIA plots were then used to estimate the composition of the forest in the same counties existing in 1988 and to interpret differences between surveys as temporal changes.

Proportions of dead trees and removed trees were analyzed separately using FIA data. Percentages of all live, dead, and removed trees were used to express the amount of dead and removed trees among species in a given stratum. Expressing the amount of dead and removed trees for all species in each stratum allowed comparison of averages (higher or lower) among species.

Table 2
 Distribution of FIA Sample Plots with Trees at least 10 inches DBH (by Forest Type and Ecological Subregion)

Forest Type		All	Ecological Subregion							
			212G	221E	221H	2211	M221A	M221B	M221C	231C
		68.1	30.3	72.4	----	Percent	plots ---	------		49.3
Oak-Hickory					75.6	82.7	72.5	63.4	89.8	
Northern										
Hardwood		18.5	62.6	16.5	2.2	5.5	12.8	31.9	8.1	0.0
Oak-Pine		5.1	1.1	2.7	11.2	7.2	8.3	0.6	0.8	23.5
Mixed Mesophytic		91.7	93.0	91.6	89.0	95.4	93.6	95.9	98.7	72.8
Types	$\mathrm{n}=$	5404	527	1974	a44	226	204	832	521	276
Softwoocl and		8.3	6.1	8.4	11.0	4.6	6.4	4.1	1.3	27.2
Other Types	$\mathrm{n}=$	490	34	181	104	11	14	36	7	103
All Types	$\mathrm{n}=$	5894	561	2155	948	237	218	868	528	379

Table 3
Distribution of all trees (live, dead, and cut) at least 10 inches DBH from 5404 FIA sample plots located in oak-hickory, northern hardwood, and oak-pine forest types

Species	Trees	Number of trees per sample plot					Plots with at least:	
		0	1-2	3-5	6-10	$11+$	1 tree	3 trees
	$n=$	Percent of 5404 plots					$n=$	$n=$
Ash sp.	2157	80.7	15.2	2.9	1.0	0.2	1044	221
Aspen sp.	594	95.4	3.0	1.2	0.2	0.1	246	82
Basswood sp.	1457	89.5	6.9	2.6	0.8	0.2	568	193
Beech	4446	77.2	12.2	5.8	3.7	1.1	1233	575
Birch sp.	1791	86.7	9.4	2.7	1.0	0.2	717	211
Black cherry	5240	77.4	12.0	5.2	3.2	2.2	1221	571
Black locust	1350	88.9	8.3	2.0	0.7	0.1	601	153
Black walnut	617	93.0	6.0	0.9	0.1	0.0	380	55
Blackgum	791	89.2	9.9	0.8	0.1	0.0	581	45
Buckeye sp.	280	97.2	2.3	0.4	0.1	0.0	149	25
Cucumbertree	786	91.8	6.8	1.1	0.2	0.0	441	73
Elm sp.	869	91.9	6.3	1.5	0.3	0.0	440	100
Hemlock sp.	923	93.5	4.0	1.8	0.6	0.1	350	133
Hickory sp.	5208	60.7	26.5	9.7	2.7	0.4	2124	692
Magnolia sp.	158	98.3	1.5	0.2	0.1	0.0	94	15
Maple, red	8047	58.2	24.7	10.1	4.1	2.9	2259	925
Maple, sugar	4624	73.1	18.7	5.9	2.9	1.3	1452	547
Oak, black	5236	65.9	21.0	8.9	3.6	0.7	1845	711
Oak, chestnut	8114	65.2	15.1	10.4	6.6	2.7	1883	1066
Oak, northern red	7626	56.2	25.9	11.4	4.6	1.9	2367	969
Oak, other red	555	95.6	3.3	0.9	0.2	0.1	239	60
Oak, scarlet	3277	77.6	14.5	5.4	2.1	0.4	1210	429
Oak, other white	429	95.7	3.4	0.8	0.1	0.0	233	47
Oak, white	8069	56.4	23.2	12.6	5.8	1.9	2356	1100
Pine, loblolly	488	97.7	1.0	0.7	0.4	0.1	124	68
Pine, pitch	281	97.2	2.2	0.5	0.0	0.0	149	32
Pine, shortleaf	598	95.4	3.3	0.9	0.3	0.1	247	70
Pine, Virginia	1171	92.3	4.9	1.8	0.8	0.2	417	152
Pine, white	433	97.1	1.9	0.6	0.4	0.1	157	55
Sassafras	463	95.4	3.9	0.5	0.1	0.1	249	38
Sweetgum	263	98.0	1.3	0.5	0.1	0.0	107	35
Yellow-poplar	9280	58.0	20.2	11.8	6.8	3.1	2267	1174
Other species	1075	87.7	2.1	0.3	0.0	0.0	663	16
All Species	86654	0.0	1.6	5.7	' $17.9{ }^{\text {a }}$	74.8	5404	5319

Statistical tests of independence were used to compare percentages among species and ecological strata to determine if differences were significant ($\mathrm{p}<0.05$) (Agresti 1990). In this procedure, the Chi-square test statistic was used to determine if there is significant difference in percentage of dead or removed trees in a given stratum and the percentage of dead or removed trees in all observations.

To compare percentages of dead trees in sampled FIA plots at different locations, only plots with at least three live, dead and/or removed trees of a subject species were used. Percentages of plots with dead trees present or absent among forest types and ecological subregions were compared.

To determine if dead trees and removed trees on the same plot were associated, each plot was designated as having removals present or absent depending on evidence of at least one removed tree of any species. To facilitate statistical tests of association, analyses were confined to species represented on at least 50 sample plots. The percentages of plots with dead trees of individual species were determined for the groups of plots with and without removals, and tests of independence were used to determine if percentages were significantly different ($\mathrm{p}<$ 0.05) for groups that were compared.

Maps of plot locations and their corresponding attributes were also used to show where dead trees were present or absent for individual tree species. Spatial distributions of plots containing dead trees were visually interpreted to determine if plots occurred in groups or if they appeared to be randomly scattered.

Results and Discussion

1. Differences in Species Composition in the Last 50 Years

Historical Changes in Southeastern Kentucky

In the 1940s, Braun (1950) reported that 84 percent of the overstory trees in the Cumberland Mountains of southeastern Kentucky consisted of 10 species (see Figure 3 and Appendix Table B-1). Data collected from FIA plots in the same counties during

1988 showed that a different set of 10 species accounted for 83 percent of the overstory. Oak, hickory, red maple, and yellow-poplar were more abundant; beech, sugar maple, hemlock, basswood, and buckeye were less frequent. American chestnut was notably absent.

Braun estimated that the American chestnut comprised 10 percent of the overstory and observed that trees were dying from chestnut blight. The eventual loss of chestnut from the overstory is a well-known event. However, corresponding decreases in American beech, sugar maple, eastern hemlock, and yellow buckeye did not coincide with any disease or insect pest outbreak (e.g., beech bark disease [Nectria coccinea var. faginata (Pers.:Fr.)] or hemlock woolly adelgid [Adelges tsugae Annand]). Because these species are tolerant of limited growing conditions and therefore predominate late successional forests, it is not likely that they were outcompeted by other species. It is more likely that disturbances such as logging and land clearing created forest openings that were rapidly colonized by early successional species well adapted to increased light, moisture, and nutrient availability.

FIA data show that early successional species, including yellow-poplar, scarlet oak, hickory, black locust, Virginia pine, and red maple, were more abundant in 1988. The increase of red maple also corresponds to the capability of this species to easily regenerate and out-compete other species on a range of hydric to xeric sites (Burns and Honkala 1990a; 1990b). competition (FIA data).

Figure 4. Species composition of oak-hickory forest types by tolerance to

Conversely, Figure 5 shows that the composition of northern hardwood forest types more closely resembled the composition of southeastern Kentucky in the 1940s. These results suggest that the mixed mesophytic forest region in the late 1980s were at an earlier stage of succession than that observed by Braun in the 1940s.

By definition, the oak-hickory forest types contain fewer tree species tolerant of competition than the northern hardwood types. FIA data show that only 16 percent of the trees in the oak-hickory type were of tolerant species as compared to 49 percent of the
trees in the northern hardwood type. Most of this difference was due to greater percentages of red maple, sugar maple, American beech, basswood, and hemlock in the northern hardwood type. Conversely, high percentages of oak species in the oakhickory type explain why 44 percent of the trees are moderately tolerant of competition, while only 9 percent of the trees in the northern hardwood type were moderately tolerant. The two groups of forest types are similar in that at least 40 percent of their trees were intolerant of competition. However, intolerant species in the oak-hickory type were mostly yellow-poplar, scarlet oak, and hickory species, and those in the

Moderately Tolerant Species

Tolerant Species

Figure 5. Species composition of northern hardwood forest types by tolerance to competition (FIA data).
northern hardwood type are mostly black cherry, sweet birch, and ash species.

Various pine and other oak species were not common and mostly found in the minor component of oak-pine forest types (see Appendix Table C1). Pine species comprised about 40 percent of the oakpine forest and consisted of Virginia pine, shortleaf pine, loblolly pine, eastern white pine, and pitch pine. Only 7 percent of the trees in this type were of species tolerant of competition.

2. Rate of Tree Mortality

This section of the study ascertained whether trees were dying at an accelerated rate.

Data show that percentages of dead trees in the oak-hickory and northern hardwood types were similar at 6 and 7 percent, respectively. About 6 percent of the trees in the northern hardwood types were removed as compared to 3 percent in the oak-hickory types.

Records of dead trees and removed trees in the FIA database represent cumulative amounts of mortality and cutting that occurred during the 10 - to 15 -year period between measurements of sampled plots. Analyses of data from the mixed mesophytic forest show that 6 percent of trees with at least 10 inches dbh were still standing or fallen dead and 4 percent have been removed (see Appendix Table C- 1).

Mortality Rate of Different Species

Percentages of dead trees varied greatly among species, which indicate different rates of mortality and consequent changes in species composition. In the oak-hickory forest type, 7 percent of trees intolerant of competition were dead compared to 4 percent of tolerant species and 5 percent of species that were moderately tolerant (Figure 6). Species in the northern hardwood type that were tolerant of competition also had lower proportions of dead trees than species that were intolerant or moderately tolerant (Figure 7 on next page). These differences suggest that most of the recent mortality is related to the dynamics of forest succession.

In the oak-hickory forest type, species with the greatest proportions of dead trees were elm, black locust, pitch pine, Virginia pine, and scarlet oak. Species with the greatest percentages of dead trees in the northern hardwood type were black locust, birch, cucumbertree, elm, hemlock, and chestnut oak. Most of these species were intolerant of competition and representative of early stages of forest succession. Although elm is moderately tolerant of competition, high percentages of dead elm were most likely due
to Dutch elm disease (DED) and elm yellows. DED is caused by a fungus [Ophiostoma ulmi (Buism.) Nannf.] and elm yellows is caused by a phytoplasm (Hicks and Mudrick 1993).

Tree cutting also accounts for recent mortality. In the oak-hickory type forest, loblolly pine, shortleaf pine, and Virginia pine showed the highest percentages of removed trees (9 to 25 percent) (see Figure 6 and Appendix Table A-3). Black oak, northern red oak, black cherry, black walnut, and sweetgum were also being removed faster than average from the oak-hickory forest. Within the northern hardwood

Figure 6. Percentages of dead frees and removed frees in oak-hickory forest types by tolerance to competition (FIA data).
forest, species moderately tolerant of competition were removed more frequently than the tolerant and intolerant species (see Figure 7 and Appendix Table C-1). For example, black oak, chestnut oak, northern red oak, and white oak accounted for most of the 13 percent of removed trees. Another 10 percent each of moderately tolerant (cucumbertree and elm) and intolerant species (black walnut and yellowpoplar) were also removed.

Rate of Mortality in Large Trees

Species in this study were represented by two sizes of trees: (1) those that were 10 to 15 inches dbh, and (2) trees larger than 15 inches dbh (see Appendix Table C-2). Proportions of dead trees were significantly greater among larger trees of hickory, scarlet oak, shortleaf pine, Virginia pine, elm, magnolia,

Figure 7. Percentages of dead frees and removed frees in northern hardwood forest types by tolerance to competition (FIA data).
and beech. However, for all combined species intolerant of competition (Figure 8), there were more dead trees in the 10 to 15 inch class.

Figure 8. Percentages of dead trees and removed trees by dbh class and tolerance to competition: In tolerant (INT), moderately tolerant (MOD), and tolerant (TOL) (FIA data).

In general, more of the larger trees (>15 inches dbh) were removed than trees that were 10 to 15 inches dbh for most species. These results indicate selective logging of timber species and support previous studies showing that changes in forest composition and structure are partly due to a disproportionate removal of large trees of marketable species (Birch and others 1992).

Mortality by Geographic Locations

Significantly greater percentages of dead trees belonged to intolerant species within oak-hickory forests (Figure 9) at the Appalachian plateau (ecological subregions 212G, 221 E and 221 H) than in mountainous areas (subregions M221A, M221B, and M221C). Specifically, at least 10 percent of the aspen, birch, black locust, sassafras, scarlet oak, and Virginia pine were dead when they occurred in the plateau subregions (Appendix Tables C-3 through C-10). Percentages of dead trees of moderately tolerant species (mostly oak) were also greater in the northern hardwood forests of the Appalachian plateau than in other subregions (Figure 10).

Figure 9. Percentages of dead trees and removed trees in oak-hickory forest types by tolerance to competition and ecological subregion (FIA data).

Percentages of removed trees were also greater in the northern hardwood forest types of subregions $212 \mathrm{G}, 221 \mathrm{E}, \mathrm{M} 221 \mathrm{~B}$, and M221C (see Figure 10). Species with the greatest proportions of removed trees in the mountainous subregions of M221B and M221C were cucumbertree, red maple, oak, and yellow-poplar. Black walnut, elm, oak, and yellowpoplar were removed more than other species in subregion 221 E , while hemlock, beech, and oak were more frequently removed in subregion 212G. In the oak-hickory forest, subregions 212G and M221B also had greater percentages of removed trees than other subregions.

Figures 11-15 on the following pages show the locations of plots with dead trees and illustrate the differences in mortality among ecological subregions. Throughout the region, an average of 20

Figure 10. Percentages of dead trees and removed trees in northern hardwood forest types by tolerance to competition and ecological subregion (FIA data).
percent of the plots contained dead trees. However, significantly more plots in subregions $212 \mathrm{G}, 221 \mathrm{E}$, and 221 H contained dead trees of several species (see Appendix Table D- 1). Subregion 212 G contained plots with the highest number of dead trees, where dead birch, hemlock, sugar maple, and chestnut oak were found on at least 30 percent of the plots containing these species. Red maple was the only species with dead trees on less than 20 percent of the sampled plots. Subregions 221E and 221 H also contained many species with dead trees on more than 20 percent of the plots (see Appendix Table D-l). In 221 E , significantly more than 20 percent of the plots contained dead black locust, elm, scarlet oak, Virginia pine, hickory, black cherry, and beech. Significantly greater percentages of plots in subregion 221 H contained dead beech, hickory, black oak, and scarlet oak.

Dead Trees greater than 10 inches DBH:

- Present Absent

Figure 11. FIA plots containing at least three trees greater than 10 inches dbh .

Dead Trees greater than 10 inches DBH:
Present Absent

Figure 12. FIA plots containing at least three trees greater than 10 inches $d b h$.

Dead Trees greater than 10 inches DBH:

- Present Absent

Figure 13. FIA plots containing at least three trees greater than 10 inches $d b h$.

Dead Trees greater than 10 inches DBH:

- Present - Absent

Figure 14. FIA plots containing at least three trees greater than 10 inches dbh.

Dead Trees greater than 10 inches DBH:

- Present - Absent

Figure 15. FIA plots containing at least three trees greater than 10 inches dbh.

The maps also show that plots containing dead trees were often in proximity to plots with no dead trees. The interspersion of plots with and without dead trees and lack of well-defined spatial patterning suggests that tree mortality is not associated with any widespread disturbance. Exceptions occur within subregion 221 E , which had more plots with dead hickory and yellow-poplar; a similar situation was observed in southeastern Ohio. Additionally, the northern section of subregion M221B has a greater frequency of plots with dead red maple, chestnut oak, northern red oak, and white oak than the southern section.

3. Causes of Recent Tree Mortality

Forest Succession

Most dead trees in the mixed mesophytic forest were probably the result of competition among species during forest succession. FIA data showed that species with the greatest percentage of dead trees were mostly trees that occupied forests at early stages of succession, were intolerant of competition, and which were not among the list of species deemed characteristic of the forest 50 years ago (Braun 1950). These species include aspen, sweet birch, black locust, scarlet oak, sassafras, and Virginia pine. Conversely, species with lower than average percentages of dead trees were moderately tolerant or tolerant of competition and were characteristic of the mixed mesophytic forest in a mid- to late-successional stage. The greater proportion of dead trees of early-successional species suggests that the composition of the forest tends to change to one that more closely resembles the historical forest.

Rates of forest succession may vary among geographic locations as a function of inherent differences in climate, physiography, and soils that affect competitive interactions among tree species. These influences are somewhat evident from differential percentages of dead trees of some species among ecological subregions. The co-occurrence of northern hardwood forest types and oak-hickory types may also indicate that some forest stands have progressed to late-successional stages sooner than others. However, some of these stands will not progress to a cover of late-successional species because of restrictive site conditions (Spurr and

Barnes, 1992). Oak-hickory forest types represent the climax stage of succession in these cases.

Logging and Land Clearing

Cutting of trees is a disturbance that has occurred mostly on private non-industrial land where larger trees of more marketable species are selectively harvested (Birch and others 1992). FIA data showed that 4 percent of all overstory trees (consisting mostly of oak, sugar maple, black cherry, and yellow-poplar) in the region have been cut. These data indicate that species with the greatest proportion of removed trees are not the same as those with the greatest percentages of dead trees. Removal of trees therefore represents a selective disturbance with a distinct influence on changes in species composition. The tendency to cut early- and midsuccessional species may be accelerating forest succession processes. This hypothesis could not be tested with data used in this study, but results from other studies have demonstrated recent increases in species tolerant and moderately tolerant of competition (Abrams and Downs 1990).

Some of the mortality in the forest may also be a consequence of poorly planned logging operations which wound and weaken remaining trees (Nichols and others 1994). At least one-third of the FIA plots containing dead black cherry, chestnut oak, or hickory species also had stumps of removed trees (Figure 16; see also Appendix Table D-2). In contrast, less than 20 percent of the plots that contained dead trees of these species had no evidence of tree cutting. Dead trees of ash, red maple, sugar maple, northern red oak, scarlet oak, and yellow-poplar were also more frequently associated with stumps of removed trees. Additional analyses indicated that dead trees of several species were more frequently associated with removed trees in 221E and M221B than in other subregions (see Appendix Tables D-3 and D-4). Species associated with evidence of logging included black cherry, sugar maple, red maple, chestnut oak, white pine, and yellow-poplar. These results indicate that a portion of tree mortality in the mixed mesophytic forest is related to logging injury. Even so, analyses in this study do not offer definitive evidence because trees on some of the FIA plots were probably cut after neighboring trees died.

Figure 76. Percentages of FIA plots containing dead trees of selected species for plots with and without evidence of any removed trees.

Insects, Diseases, Weather, and Fire

Forest insects, diseases, weather events, and fire regularly occur within the mixed mesophytic forest and are likely explanations for some of the recent tree mortality. Although exact locations of past disturbances were not available, the percentages and locations of dead trees of some species are indicative of several documented disturbances (Hicks and Mudrick 1993; Twardus and Mielke 1995).

In addition to preventing American chestnut from regaining status in the overstory, chestnut blight also infects scarlet oak (Torsello and others 1994). This disease may explain why more than 10 percent of the scarlet oak analyzed in this study were dead (see Appendix Table C-1). The particularly high percentage of dead scarlet oak in subregion 2211 implies that this species will become a smaller component of the overstory here than in some other areas.

In the last two decades, gypsy moth [Lymantria dispar L.] defoliation and beech bark disease have caused the deaths of the oak and beech components of the forests in western Pennsylvania, Maryland, and northern counties of West Virginia. High percentages of dead elm in the forest may be attributed to Dutch elm disease and elm yellows. Other insects, diseases, weather events, and fires have also caused tree mortality of other species and have played a role in shaping the composition of the forest (Hicks and Mudrick 1993).

Air Pollution

Tree species of the mixed mesophytic forest that are sensitive to sulfur, nitrogen and/or ozone air pollutants are: ash, white oak, yellow-poplar, black cherry, loblolly pine, Virginia pine, eastern white pine, birch, and aspen (Shriner and others 1990). While this study did not attempt to quantify the relationships between tree mortality and air pollution, FIA data show that several species sensitive to pollutants had percentages of dead trees equal to or less than species insensitive to pollutants. For example, yellow-poplar, a species sensitive to air pollutants, has significantly less dead trees than black locust, which is said to be tolerant of pollutants. In addition, dead trees of pollutant-sensitive species did not occur along well-defined spatial gradients. Fewer dead trees were found in mountainous ecological subregions, which is naturally subjected to greater amounts of pollutants.

4. The Future Forest

Forest succession is a dynamic natural process that will continue to cause changes in species composition of the mixed mesophytic forest as it matures. Different disturbances to the forest are likely to recur in the future, and just like any weather phenomenon, their locations, timing, and magnitude are not predictable. The effects of air pollutants on forest trees are also still uncertain and can only be determined by continual monitoring of the forest.

Continual monitoring of the forests comes from two sources: FIA and Forest Health Monitoring (FHM) programs at each of the eight research stations of the USDA Forest Service. Each Forest Service research station is required by law to conduct FIA programs. Northeastern Area, State and Private Forestry, conducts the FHM program in cooperation with the National Association of State Foresters (NASF).

FIA measures sampled plots to estimate a variety of resource attributes. All states containing mixed mesophytic forests are remeasured every 1 to 5 years. Analyses in this study pertaining to the overstory of the mixed mesophytic forest could easily be applied to new FIA data as these become available. Historical comparisons of species compo-
sition and percentages of dead trees and removed trees as estimated in this study can be made to quantify changes in forest composition.

The FHM program includes measurements from sampled plots that are similar in design to those implemented by the FIA program (USDA Forest Service 1997). In the mixed mesophytic forest, FHM plots are currently measured at randomly selected locations in Maryland, Ohio, Pennsylvania, Virginia, and West Virginia at the time this publication was written (1998). The FHM plots are less numerous than FIA plots, but include more measurements of forest health including conditions of tree crowns and evidence of tree damage. The abundance and diversity of pollutant-sensitive lichens and ozone-sensitive plants are also quantified on or near the FHM plots. Analyses of data from these surveys will provide more detail about the conditional status of the mixed mesophytic forest at the turn of the century.

Conclusions

This study showed the interplay between various factors involved in forest succession and the disturbances associated with temporal and spatial changes in the mixed mesophytic forest. Analyses of data published by Braun (1950) and FIA data collected by the Northeastern Research Station showed the following:

- Two-thirds of all analyzed FIA plots were in the oak-hickory type. This suggests that most of the forest in the 1980s was in an earlier stage of succession than that observed by Braun in the 1940s.
- Six percent of all trees at least 10 inches in diameter on FIA plots were observed as standing or have fallen (dead), and 4 percent had been removed.
cl Differential proportions of dead trees among species correspond to expected mortality from competition during forest succession; species intolerant of competition had the greatest proportions of dead trees.
- For most species intolerant of competition, percentages of dead trees that were 10 to 15 inches in diameter were significantly greater than of dead trees larger than 15 inches.
[A greater proportion of dead trees belonged to early successional species, which suggests that forest composition is changing to one that more closely resembles the historical forest as described by Braun.
\square Differences in dead trees among locations were most evident in ecological subregion 212G covering north central Pennsylvania, where dead sweet birch, hemlock, sugar maple, and chestnut oak were found on at least 30 percent of the sampled plots containing these species.

D Dead trees of species sensitive to pollutants did not occur along well-defined spatial gradients; fewer dead trees were found in mountainous ecological subregions where trees were exposed to higher amounts of pollution.

References

Abrams, M.D.; Downs, J.A. 1990. Successional replacement of old-growth white oak by mixed mesophytic hardwoods in southwestern Pennsylvania. Can. J. For. Res. 20: 1864-1870.

Abrams, M.D.; Nowacki, M.D. 1992. Historical variation in fire, oak recruitment, and postlogging accelerated succession in central Pennsylvania. Bull. Torr. Bot. Club. 119: 1928.

Agresti, A. 1990. Categorical data analysis. John Wiley and Sons, Inc. New York, NY. 558 p.

Birch, T.W.; D.A. Gansner; S.L. Arner; R.H. Widmann. 1992. Cutting activity on West Virginia timberlands. North. J. Appl. For. 9: 146-148.

Braun, E.L. 1950. Deciduous forests of eastern North America. MacMillan Publishing Co., Inc. New York, NY. 596 p.

Braun, E.L. 1940. An ecological transect of Black Mountain, Kentucky. Ecological Monographs. 10: 193-241.

Burns, R.M.; Honkala, B.H., tech. coords. 1990a. Silvics of North America: 1. Conifers. Agriculture Handbook 654. USDA Forest Service. Washington, D.C. Vol. 1,675 p.

Bums, R.M.; Honkala, B.H., tech. coords. 1990b. Silvics of North America: 1. Hardwoods. Agriculture Handbook 654. USDA Forest Service. Washington, D.C. Vol. 2, 877 p.

Hansen, M.H., Frieswyck, T., Glover, J.F., Kelly, J.F. 1992. The Eastwide forest inventory data base: users manual. Gen. Tech. Rep. NC-151. St. Paul, MN: USDA Forest Service, North Central Forest Experiment Station. 48 p.

Hicks, R.R.; Mudrick, D.A. 1993. 1993 forest health: a status report for West Virginia. West Virginia Department of Agriculture. Charleston, West Virginia. 68 p.

Little, C.E. 1995. The dying of the trees: the pandemic in America's forests. Penguin Books USA Inc. New York, NY. 275 p.

Martin, W.H. 1992. Characteristics of old-growth mixed mesophytic forests. Natural Areas Journal. 12: 127-135.

McNab, W.H.; Avers, P.E., comps. 1994. Ecological subregions of the United States: Section descriptions. Administrative Publication WO-WSA-5. Washington, DC: USDA Forest Service. 267 p.

Nichols, M.T.; Lemin, R.C., Jr.; Ostrofsky, W.D. 1994. The impact of two harvesting systems on residual stems in a partially cut stand of northern hardwoods. Can. J. For. Res. 24: 350-357.

Shriner, D.S.; Hecks, W.W.; McLaughlin, S.B.;
Johnson, D.W.; Irving, P.W.; Joslin, J.D.;
Peterson, C.E. 1990. Response of vegetation to atmospheric deposition and air pollution. NAPAP SOS/T Report 18, In: Acidic deposition: state of science and technology, Volume 3. National Acid Precipitation Program. Washington, DC. 206 p.

Spurr, S.H.; B.V. Barnes. 1992. Forest succession.
In: Forest ecology. Krieger Publishing Company. Malabar, Florida: 399-420.

Torsello, M.L.; Davis, D.D.; Nash, B.L. 1994. Incidence of Cryophonectria parasitica cankers on scarlet oak (Quercus coccinea) in Pennsylvania. Plant Disease. 78: 3 13-3 15.

Twardus, D.B.; Mielke, M.E., coord. eds. 1995.
Forest health highlights: northeastern states. USDA Forest Service. Radnor, PA. 134 p.

USDA Forest Service. 1997. Forest health
monitoring 1997 Field Methods Guide. USDA Forest Service, National Forest Health Monitoring Program, Research Triangle Park, NC 27709.325 p .

USDA Forest Service. 1995. Shifts in stocking reveal forest health problems. NA-TP-07-95. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station. 9 p.

Appendices

List of Appendices

Table A-I
Common and Scientific Names of Trees in the Overstory of the Mixed Mesophytic Forest A-I
Table B-I
Species Composition of Different Geographic Areas as Summarized from Data by Braun (1950) B-I
Table C-IPercentages of species composition (C), dead trees (D), and removed trees (R)by forest type and shade tolerance for all combined ecological subregions.C-I
Table C-2
Percentages of dead trees and removed trees on FIA sample plots by diameter class. C-2
Table C-3Percentages of species composition (C), dead trees (D), and removed trees (R)by forest type and shade tolerance for ecological subregion 212G.C-3
Table C-4Percentages of species composition (C), dead trees (D), and removed trees (R)by forest type and shade tolerance for ecological subregion 221 E.c-4
Table C-5
Percentages of species composition (C), dead trees (D), and removed trees (R)by forest type and shade tolerance for ecological subregion M221 A.C-5
Table C-6
Percentages of species composition (C), dead trees (D), and removed trees (R)
by forest type and shade tolerance for ecological subregion M221 B C-6
Table C-7
Percentages of species composition (C), dead trees (D), and removed trees (R)
by forest type and shade tolerance for ecological subregion M221 C c-7
Table C-8
Percentages of species composition (C), dead trees (D), and removed trees (R)by forest type and shade tolerance for ecological subregion 221 H .C-8
Table C-9
Percentages of species composition (C), dead trees (D), and removed trees (R)
by forest type and shade tolerance for ecological subregion 221 L c-9
Table C-I 0
Percentages of species composition (C), dead trees (D), and removed trees (R)
by forest type and shade tolerance for ecological subregion 231 C c-10
Table D-I
Percentages of FIA plots with dead tree species by ecological subregion. D-I
Table D-2
Percentages of FIA plots with dead tree species on plots with and without tree removals. D. 2
Table D-3
Percentages of FIA plots with dead tree species on plots with and without tree removals. D. 3
Table D-4
Percentages of FIA plots with dead tree species on plots with and without tree removals. D. 4

Table A-I
Common and Scientific Names of Trees in the Overstory of the Mixed Mesophytic Forest

Common Name	Scientific Name
Ash, Green	Fraxinus pennsyivanica Marsh.
Ash, White	Fraxinus americana L.
Aspen, Blgtooth	Popuius gandidetata Michx.
Aspen, Quaking	Popuius tremuloides Michx.
Basswood, American	Tiiia americana L
Basswood, American	Tllia heterophyiia Vent.
Beech, American	Fagus grand/flora Ehrh
Birch, Sweet	Betuia lenta L.
Birch, Yellow	Betuia aiiehaniensis Britton
Blackgum	Nyssa sylvatica Marsh.
Buckeye, Ohio	Aescuius giabra Wild
Buckeye, Yellow	Aescuius octandra Marsh.
Cherry, Black	Prunus serotina Ehrh.
Chestnut, American	Castanea dentata (Marsh.) Borkh.
Cucumbertree	Magnolia acuminata L.
Elm, American	Ulmus americana L.
Elm, Slippery	Ulmus rubra Muhl.
Hemlock, Carolina	Tsuga caroiiniana Englem.
Hemlock, Southern	Tsuga canadensis (L.) Carr.
Hickory, Bitternut	Carya cordiformis (Wangenh.) K. Koch
Hickory, Mockernut	Carya tomentosa (Poir.) Nutt.
Hickory, Pignut	Carya glabra (Mill.) Sweet
Hickory, Shagbark	Carya ovata (Mill.) K. Koch.
Hickory, Shellbark	Carya iaciniosa (Michx. f.) Loud.
Locust, Black	Robinia psuedoacacia L.
Magnolia, Fraser	Magnolia fraseri Walt.
Maple, Red	Acer rubrum L.
Maple, Sugar	Acer saccharum Marsh.
Oak, Black	Quercus velutina Lam.
Oak, Chestnut	Quercus prinus L.
Oak, Northern Red	Quercus rubra L.
Oak, Scarlet	Quercus coccinea Muenchh.
Oak, Shumard	Quercus shumardii Buckl.
Oak, Southern Red	Quercus falcata Michx.
Oak, White	Quercus aiba L.
Persimmon	Diospyros virginiana L.
Pine, Eastern White	Pinus strobus L.
Pine, Loblolly	Pinus taeda L.
Pine, Pitch	Pinus rigida Mill.
Pine, Shortleaf	Pinus echinata Mill.
Pine, Virginia	Pinus virginiana Mill.
Sassafras	Sassafras aibidum (Nutt.) Nees
Sweetgum	Liquidambar styracifiua L.
Walnut, Black	Jugians nigra L.
Yellow-Poolar	Liriodendron tulipifera L.

Table B-I

Species Composition of Different Geographic Areas as Summarized from Data by Braun (1950)

Species	Cumberland Mountains ($\mathrm{n}=7027$)	$\begin{gathered} \text { Appalachian } \\ \text { Plateau } \\ (n=2250) \end{gathered}$	Allegheny Mountains ($\mathrm{n}=863$)	All Areas $(n=10140)$
Ash sp.	1.3	2.6	5.6	1.9
Birch sp.	1.4	1.0	11.5	2.2
Black cherry	0.1	0.0	2.1	0.2
Black locust	0.2	0.0	0.1	0.2
Hickory sp.	3.4	6.7	0.9	3.9
Oak scarlet	0.7	0.0		0.5
Pine sp.	1.4	0.1		1.0
Sassafras	0.1	0.0		0.0
Yellow-poplar	9.6	12.5		9.4
Walnut black	0.5	0.9		0.6
Ail Intoierants	16.5	23.7	20.3	19.6
Chestnut	9.5	1.5	13.4	6.1
Elm sp.	0.1	1.0		0.3
Magnolia sp.	1.4	2.1	5.5	1.9
Oak, black	0.4	1.3		0.5
Oak, chestnut	5.9	2.7	0.9	4.6
Oak, n. red	3.0	3.1	6.7	3.3
Oak, white	7.1	13.0	1.1	7.9
All Moderates	27.5	24.6	27.7	26.9
Basswood sp.	6.3	4.0	6.5	6.0
Beech	16.9	20.4	17.7	17.7
Blackgum	1.9	2.6		1.9
Buckeye sp.	4.6	1.5		3.7
Hemlock sp.	7.6	15.5		6.7
Maple, red	2.5	2.6	10.7	3.2
Maple, sugar	12.2	3.9	15.0	10.6
Ail Tolerants	52.2	50.6	51.9	51.6
Other species	1.6	0.9	0.1	1.5
Total	100.0	100.0	100.0	100.0

Table C-I
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for all combined ecological subregions.

Species	Forest Type												
	Oak-Hickory				Northern		Hardwood		Oak-Pine				
	$\mathrm{n}=$	\% c	\% D	\% R	$\mathrm{n}=$	\% C	\% D	\% R	$\mathrm{n}=$	\% C	\% D		R
Ash sp.	1030	1.7	5.7	3.6	1098	5.6	6.9	5.1	29	0.7	.--		...
Aspen sp.	308	0.6	14.0	1.2	280	1.7	24.2	2.9	6	0.2	---		---
Birch sp.	625	1.2	7.7	1.4	1156	6.5	12.1	4.7	10	0.3	.--		-..
Black cherry	1174	2.0	5.5	4.9	4031	19.7	5.2	5.9	35	0.9	5.1		0.0
Black locust	1054	1.9	20.6	1.7	293	1.7	24.9	4.8	3	0.1	"'		**
Black walnut	502	0.9	9.3 .	4.6	104	0.6	4.7	9.9	11	0.4	-		\ldots
Hickory sp.	4684	(if) 84	\% 6.7	2.3	345	1.8	6.7	7.1	179	5.5	3.5		0.7
Oak, scarlet	3103	4.8	10.3	4.3	19	0.1	...	-..	155	3.7	9.9		0.9
Pine, loblolly	145	0.2	0.4	24.9	0				323	7.7	1.1		6.1
Pine, pitch	207	0.4	211.7"	4.2	2	0.0	...	--.	72	2.0	11.7		2.3
Pine, shortleaf	274	0 .	6 12.4	10.1	0				324	9.9	10.1		4.5
Pine, Virginia	500	1.0	20.1	9.4	16	0.1	\cdots	-->	655	19.6	7.9		2.6
Sassafras	422	0.8	18.9	0.6	40	0.3	17.2	0.0	1	0.0	---		"+
Sweetgum	213	0.4	4.5	8.9	2	0.0	---	---	48	1.4	5.3		0.0
Yellow-poplar	8378	13.4	2.7	3.4	613	3.0	2.6	9.6	289	7.0	2.7		2.0
All Intolerant	22619	38.4	7.3	3.6	7999	41.0	0.4	5 5%	2140	59.4	6.4		2.9
Cucumbertree	580	0.9	3.4	1.8	183	0.9	14.5	10.7	3	0.1	-.		-..
Elm sp.	549	1.0	18.6	2.8	308.	1.7	119	9. 1	12	0.4	---		---
Maanolia SD.	122	0.2	0.8	2.5	32	0.2	4.2	0.0	2	0.1	-		
Oak, black	4966	7.2	6.5	5.1	114	0.5	7.7	117.7	156	3.6	6.8		2.9
Oak, chestnut	7800	12.1	4.0	3.3	111	06	16. V \|	$12.1{ }^{\text {ax }}$	203	4.9 '	0.1		1.8
Oak, northern red	6782	9.5	4.5	5.2	730	3.2	6.1	17.3	114	2.9	1.7		0.0
Oak, other red	402	0.7	3.0	2.2	9	0.0	...		144	3.6	5.4		0.8
Oak, other white	315	0.5	10.9	2.3	7	0.0	...	-.'	107	2.8	12.3		2.4
Oak, white	7451	11.7	2.8	4.0	213	1.1	7.3	13.7	405	9.2	1.5		1.5
Pine, white	163	0.2	6.9	4.0	69	0.3	8.0	6.8	201	4.0	5.9		0.0
All Intermediate	29130	44.1	4.6	4.1	1776	8.5	9.11	13.4	1347	31.7	4.0		1.5
Basswood sp.	759	1.2	3.6	3.6	695	3.5	2.9	2.4	3	0.1	\cdots		---
Beech	2529	3.1	4.9	1.5	1888	8.6	6.9.	5.7	29	0.7	---		---
Blackgum	712	1.1	5.1	2.2	51	0.2	4.3	7.6	28	0.7	---		---
Buckeye sp.	231	0.4	3.0	1.6	46	0.2	0.0	3.9	3	0.1	---		---
Hemlock sp.	341	0.5	2.6	2.5	522	2.3	11.9	7.3	60	1.3	2.7		0.0
Maple, red	4245	7.4	3.1	1.7	3648	18.5'	3.7	5.5	154	3.9	4.2		0.9
Maple, sugar	1614	2.6	3.3	2.8	2984	15.4	4.3	4.3	26	0.7	...		-
All Tolerant	10431	16.3	3.6	2.0	9834	48.6	4.8	5.0	303	7.4	4.1		2.9
Other Species	707	1.2	19.0	1.3	314	1.6	12.3	7.0	54	1.4	9.7		0.0
All Species	62867	100	5.6	3.5	19923	100	6.6	6.1	3844	100	5.5		2.4

Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater ($p<0.05$) than percentages for all species.

Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-2
Percentages of dead trees and removed trees on FIA sample plots bv diameter class.

Highlighted values for a given diameter c/ass are significantly greater ($p<0.05$) than percentages for the other class.

Table C-3
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion 212G.

Species	Forest Type							
	Oak-Hickory				Northern Hardwood			
	$\mathrm{n}=$	\% C	\% D	\% R	$\mathrm{n}=$	\% C	\% D	\% R
Ash sp.	45	1.2	11.9	0.0	401	5.1	7.6	5.2
Aspen sp.	56	2.1	24.0	2.9	210	3.1	28.4	3.9
Birch sp.	70	2.6	2.7	0.0	556	8.0	13.8	5.6
Black cherry	98	3.2	3.7	0.3	1972	22.9	4.5	5.7
Black locust								
Black walnut	9	0.2	...	**				
Hickory sp.	26	0.8	\cdots	-	29	0.4	-..	...
Oak, scarlet	125	4.0	8.1	12.1	4	0.0	---	-..
Pine, loblolly								
Pine, pitch	22	0.7	**	**	1	0.0	---	-.
Pine, shortleaf								
Pine, Virginia								
Sassafras					1	0.0	-..	-
Sweetgum								
Yellow-poplar	77	2.2	37.2	1.5	55	0.6	5.9	0.0
All Intolerant	528	17.1	13.5	4.7	3229	40.2	8.6	5.4
Cucumbertree	40	1.3	10.5	0.0	53	0.6	13.7	7.6
Elm sp.	10	0.3	-..	**	5	0.1-.
Magnolia sp.								
Oak, black	174	5.1	8.7	8.3	13	0.1	"	---
Oak, chestnut	324	10.9		3.8	21	0.3	...	-..
Oak, northern red	1100	29.5	9:3	7.8	157	1.7	8.8	8.5
Oak, other red	3	0.1	-..	-	2	0.0	...	---
Oak, other white								
Oak, white	449	14.3	5.2	6.0	40	0.5	13.0	3.7
Pine, white	15	0.4	---	---	36	0.4	3.4	3.6
All Intermediate	2115	61.8	6.0	6.5	327	3.7	11.0	6.3
Basswood sp.	7	0.3	-	-	121	1.6	6.5	6.1
Beech	43	1.5	9.8	9.9	604	7.4	5.5	5.7
Blackgum	2	0.1	**	**	4	0.1	"	\cdots
Buckeye sp.								
Hemlock sp.	23	0.7	---	---	206	2.3	14.4	13.1
Maple, red	505	17.3	2.8	2.7	2209	28.3	3.7	5.2
Maple, sugar	33	1.1	12.6	7.2	1187	16.0	5.4	5.2
All Tolerant	613	20.9	3.6	3.8	4331	55.6	5.0	5.6
Other Species	8	0.2	-..	\cdots	34	0.5	4.0	0.0
All Specles	3264	100	6.9	5.6	7921	100	6.6	5.5

[^0] or removed trees significantly greater ($p<0.05$) than percentages for all species.

Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-4

Percentages of species composition (C), dead trees (D), and removed trees (F?) by forest type and shade tolerance for ecological subregion 221 E .

Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater $(p<0.05)$ than percentages for all species.

Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-5
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion M221 A.

[^1]Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-6
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion M221 B.

Species	Forest Type							
	Oak-Hickory				Northern Hardwood			
	$\mathrm{n}=$	\% c	\%D	\% R	$\mathrm{n}=$	\% C	\% D	\% R
Ash sp.	101	1.0	4.9	5.8	182	3.5	5.8	5.4
Aspen sp.	20	0.3	14	0.3	...	-
Birch sp.	233	2.7	11.7	2.6	436	9.5	9.7	5.1
Black cherry	360	3.7	4.5	6.1	958	18.1	2.5	3.9
Black locust	196	2.3	16.9	2.4	98	2.2	16.9	2.2
Black walnut	32	0.3	8.6	21.9	7	0.1	---	---
Hickory sp.	452	4.9	6.7	0.5	103	2.0	7.9	6.3
Oak, scarlet	293	2.8	5.1	4.6	2	0.0	-."	...
Pine, loblolly Pine, pitch	14	0.1				
Pine, shortleaf Pine, Virginia	8	0.1				
Sassafras	72	0.9	17.0	0.0	4	0.1	...	---
Sweetgum	1	0.0	...	-..				
Yellow-poplar	1504	14.1	2.3	4.3	173	3.2	2.6	7.5
All Intolerant	3286	33.4	6.2	3.7	1977	39.0	5.8	4.6
Cucumbertree	130	1.3	2.3	4.9	81	1.7	19.4	15.4
Elmsp.	14	0.1	\%	-.-	33	0.7	5.1	0.0
Magnolia sp.	58	0.6	0.0	0.0	27	0.5-
Oak, black	297	2.8	7.2	4.1	22	0.3	\cdots	---
Oak, chestnut	1308	13.0	6.0	4.2	40	0.8	26.2	14.4
Oak, northern red	1996	IL 18.5	4.4	5.5	284	Wers 5.0	2.8	19.7
Oak, other red	13	0.1	.-.	-.				
Oak, other white	1	0.0	---	---	1	0.0	---	-.-
Oak, white	718	7.0	2.6	2.2	51	1.0	0.0	10.7
Pine, white	14	0.1				
All Intermediate	4549	43.6	4.6	4.4	539	10.0	7.8	15.2
Basswood sp.	138	1.4	3.9	10.0	263	4.9	0.9	0.2
Beech	346	2.9	3.4	2.4	631	11.6	9.1	6.8
Blackgum	97	0.8	2.8	3.8	17	0.3
Buckeye sp.	9	0.1	-..	-..	9	0.1	\cdots	...
Hemlock sD.	84	0.7	1.2	4.3	175	2.9	4.0	6.4
Maple, red	1238	- 3.2	2.4	1.3	752	14.5	1.8	8.4
Maple, sugar	296	- 3.0	0.7	3.5	727	- 13.9	4.9	4.1
All Tolerant	2206	22.1	2.3	2.5	2574	46.2	4.5	5.9
Other Species	81	0.9	9.7	0.0	149	2.6	9.1	14.0
All Species	10124	100	4.7	3.7	5239	100	5.5	6.5

[^2]Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-7
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion M221 C.

Highlighted values represent species that comprise at /east 5 percent of the composition or with percentages of dead or removed trees significantly greater $(p<0.05)$ than percentages for all species.

Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-8
Percentages of species composition (C), dead trees (D), and removed trees (I?) by forest type and shade tolerance for ecological subregion 221 H .

[^3]Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table C-9
Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion 221 L .

Species	Forest Type							
	Oak-Hickory				Oak-Pine			
	$\mathrm{n}=$	\% c	\% D	\%R	$\mathrm{n}=$	\% c	\% D	\% R
Ash sp.	46	1.7	4.7	1.2	2	1.4		
Aspen sp.								
Birch sp.	23	1.0	-.-	..-				
Black cherry	25	1.1	---	...	2	0.9	...	**
Black locust	48	2.6	9.7	1.0				
Black walnut	25	0.9	---	---	1	0.6	".	-.
Hickory sp.	235	9.4	7.9	0.9	10	4.8	**	...
Oak, scarlet	95	3.7	16.1	11.3	7	3.0	.-.	..-
Pine, loblolly					8	4.0	-"	---
Pine, pitch	1	0.0	---	--"				
Pine, shortleaf	17	0.8	..-	--	29	17.3	-."	"'
Pine, Virginia	38	1.6	18.2	2.8	61	32.7	10.4	0.0
Sassafras	13	1.0	---	---				
Sweetgum	10	0.4	\cdots	---	1	0.4	---	\cdots
Yellow-poplar	516	19.4	2.0	3.6	18	16.0	---	-.-
All Intolerant	1092	43.7	5.8	3.3	139	71.1	8.3	2.3
Cucumber-tree	21	0.8	---	...				
Elm sp.	16	0.5	---	---				
Maanolia so.	15	0.8	--	-.-				
Oak, black	192	6.0	4.2	2.0	12	94.8	---	..-
Oak, chestnut	446	13.9	2.7	0.4	5	2.2	-.-	...
Oak, northern red	202	6.6	4.8	2.0	12	4.5	.-.	--.
Oak, other red	36	1.1	2.3	1.8	3	1.4	-.-	...
Oak, other white	12	0.7	...	--	4	1.9	..-	-*
Oak, white	236	8.2	2.6	2.6	28	8.9	---	...
Pine, white	4	0.1	1	0.1	---	-.-
All Intermediate	1182	38.9	3.8	1.5	65	23.9	8.7	0.0
Basswood ${ }_{\text {sp. }}$	43	1.4	2.1	15.9				
Beech	104	2.8	6.3	0.0	2	0.6	...	-.-
Blackgum	63	1.9	16.9	3.3	1	0.2	.--	-
Buckeye sp.	14	0.5	..-	...				
Hemlock sp.	24	0.9	---	...				
Maple, red	138	5.2	4.8	0.0	4	1.9-.
Maple, sugar	98	3.4	2.3	5.1	1	0.5	.-.	...
All Tolerant	484	18.1	5.3	3.5	8	3.2	--	--
Other Species	38	1.4	26.7	0.0	3	1.9	---	\cdots
All Species	2798	100	5.2	2.8	215	100	8.0	1.6

[^4]
Table C-IO

Percentages of species composition (C), dead trees (D), and removed trees (R) by forest type and shade tolerance for ecological subregion 231C.

Species	Forest Type							
	Oak-Hickory				Oak-Pine			
	$\mathrm{n}=$	\% c	\%D	\% R	$\mathrm{n}=$	\% c	\% D	\% R
Ash sp.	30	1.2	1.9	0.0	7	0.7	...	-.
Aspen sp.								
Birch sp.					5	0.6	...	-
Black cherry	7	0.4	...	**	3	0.3	--	".
Black locust								
Black walnut	4	0.1	--.	...	1	0.2	\cdots	-..
Hickory sp.	327	15.0	1.9	2.5	78	8.4	1.4	1.8
Oak, scarlet	120	5.3	12.6	1.9	31	2.8	4.5	0.0
Pine, loblolly	141	5.1	0.0	25.0	270	22.2	0.9	3.6
Pine, pitch								
Pine, shortleaf	62	3.6	5.9	15.9	61	7.2	5.6	6.6
Pine, Virginia	53	2.7	13.3	32.5	104	13.1	8.7	5.9
Sassafras								
Sweetgum	107	4.5	6.1	1.3	45	4.8	5.6	0.0
Yellow-poplar	187	6.5	1.3	0.0	52	4.2	0.0	0.5
All Intolerant	1038	44.3	4.4	7.3	657	64.6	3.8	3.4
Cucumbertree	1	0.0	---	...				
Elm sp.	17	0.7	...	-.	5	0.5	...	--.
Magnolia sp.	1	0.0	1	0.1	"'	**'
Oak, black	133	5.3	5.5	4.3	30	2.7	3.3	3.4
Oak, chestnut	401	17.1	0.5	0.8	68	6.9	0.0	0.0
Oak, northern red	84	3.2	0.8	2.5	22	2.1
Oak, other red	207	8.1	1.6	0.6	71	6.2	7.0	1.8
Oak, other white	98	4.0	4.1	2.7	45	4.1	3.4	1.9
Oak, white	295	11.2	1.6	1.7	101	8.9	0.0	0.7
Pine, white								
All Intermediate	1237	49.7	1.9	1.7	343	31.5	2.3	1.4
Basswood sp.	2	0.1	\cdots	\cdots	I	0.1	-..	-..
Beech	47	1.1	0.0	7.4	5	0.4
Blackgum	43	2.0	0.7	3.2	7	0.8	...	---
Buckeye sp.								
Hemlock sp.					1	0.2	...	-..
Maple, red	43	1.7	5.5	1.5	9	1.0	-.	***
Maple, sugar	7	0.3				
All Tolerant	142	5.2	2.0	3.3	23	2.4	---	---
Other Species	21	0.8	---	--	14	1.5	...	\cdots
All Species	2438	100	3.1	4.3	1037	100	3.4	2.7

Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater ($p<0.05$) than percentages for all species.

Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

Table D-I
Percentages of FIA plots with dead tree species by ecological subregion.

Ecological Subregion															
Species	All	212G	221 E	221H		2211		231 C		MR21 A		N221 B		M221 c	
	n ¢ \%	$\mathrm{n} \stackrel{1}{\mathrm{~T}}$ \%	$\mathrm{n} \frac{1}{\mathrm{~T}}$ \%	$\mathrm{n}=$	\%	n $\stackrel{1}{=}$	\%	n $\frac{1}{7}$		n =	\%	$\mathrm{n} \frac{1}{T}$	\%	$\mathrm{n}=$	\%
ash sp.	22123.1	5427.8	10525.7	a		3		2		12		33	18.2	4	
bassuood sp.	19310.9	19	5010.0	14		7		0		a		52	9. 6	43	7.0
beech	575 24.5	$86 \quad 23.3$	17526.9	80	33.8	1 a		7		11		128	21.1	70	18.6
birch 5 p.	21131.8	75-38.7	2733.3	1		2		1		11		79	27.9	15	
black cherry	57121.2	19324.4	20127.4	0		3		0		9		162	11.1	3	
black locust	153 39.2	0	7851.3	3		5		0		23	26.1	33	27.3	11	
cucunber-tree	7319.2	a	12	5		1		0		6		18		23	31.5
elm sp.	10049.0	2	88477	1		2		1		0		5		1	
heriock sp.	13324.8	3540.0	2133.3	16		3		0		5		39	1 a .0	14	
hickory sp.	69223.1	7	27925.8	145	29.0	33	36.4	59	a. 5	22	13.6	65	21.5		
maple, red	92515.7	27218.8	25515.7	65	15.4	11		5		19		262	13.4	36	
maple, sugar	54717.7	13729.9	18514.1	28	21.4	18		1		17		122	10.7	39	la. 0
oak, black	711-24.6	$27 \quad 29.6$	35225.0	154	31.2	27	11. 1	19		22	13.6	39	20.5	71	16.9
oak, chestnut	\#\# 17.9	4436.4	30822.7	217	14.8	60	18.3	70	1. 4	71	9. 9	165	21.8		13.7
oak, northern red	969 19.5	13026.9	30121.3	75	25.3	33	15.2	9		59	11.9	281	17.8		11.1
oak, scarlet	42932.6	17	14531.7	126	48.4	15		14		13		42	14.3		21. 1
oak, white	\#\#\# 12.6	7025.7	49912.8	237	13.9	38	21. 1	62	3.2	43	0.0	105	10.5	46	6.5
pine, Virginia	15234.2	0	60.36 .7	52	28.9	11		23	30.4	3		1		2	
yell ow popl ar	\#\#\# 9.4	13	48113.3	169	6. 5	71	4.2	30	3. 3	20	0.0	192	7.8	198	6.6
Average	\#\#\# 19.6	63 27.3	19121.8	73	22.6	19	16.0	16	6.5	20	10.0	96	15.7	49	12.8

Highlighted values represent species with dead trees found on a percentage of plots significantly greater ($p<0.05$) than the overall average of 19.6 percent.
Percentages are only shown for species represented by at least 20 sample plots within a given forest type.

Table D-2
Percentages of FIA plots with dead tree species on plots with and without tree removals.

Species	All Types				Northern Hardwood				Oak-Hickory				Oak-Pine			
	With Removals		Without Removals		$\begin{gathered} \text { With } \\ \text { Removals } \end{gathered}$		Without Removals				Without Removals		$\begin{gathered} \text { With } \\ \text { Removals } \end{gathered}$		Without Removals	
	$\mathrm{n}=$	\%														
Ash sp.	49	30.6	172	20.9	29	48.3	107	22.4	20	5.0	64	18.8	-		1	
Basswood sp.	22	9.1	171	11.1	12		89	10.1	10		82	12.2	0		0	
Beech	111	30.6	464	23.1	56	30.4	189	23.8	54	29.6	273	22.7	1		2	
Birch sp.	31	35.5	180	31.1	26	30.8	125	35.2	5		54	20.4	0		1	
Black cherry	125	32.8	446	17.9	97	37.1	331	19.0	28	17.9	111	14.4	0		4	
Black locust	21	52.4	132	37.1	5		29	37.9	16		103	36.9	0		0	
Cucumberrre	11		62	19.4	3		14		8		48	14.6	0		0	
Elm sp.	26	53.9	74	47.3	12		25	36.0	14		48	52.1	0		1	
Hemlock	19	36.8	114	22.8	14		64	31.3	5		43	11.6	0		7	
Hickory sp.	119	31.1	573	21.5	8		24	16.7	109	30.3	531	22.0	2		18	
Maple, red	172	24.4	753	13.7	81	25.9	297	16.5	89	23.6	435	12.0	2		21	9.5
Maple, sugar	116	29.3	431	14.6	84	32.1	275	17.1	31	22.6	154	10.4	1		2	
Oak, black	128	26.6	583	24.2	6		8		119	27.7	558	24.2	3		17	
Oak, chestrut	141	31.9	925	15.8	2		8		138	32.6	884	16.3	1		33	3.0
Oak, northern red	169	23.7	800	18.6	31	12.9	60	21.7	138	26.1	728	18.4	0		12	
Oak, scarlet	53	43.4	376	31.1	0		0		49	44.9	363	30.6	4		13	
Oak, white	182	15.9	918	12.0	9		18		169	16.6	844	12.1	4		56	8.9
Pine, Virginia	25	40.0	127	33.1	0		1		11		43	44.2	14		83	26.5
Yellow-poplar	169	17.2	1005	8.1	19	21.1	64	10.9	143	17.5	910	7.6	7		31	16.1
Average	89	27.2	437	18.0	26	31.0	91	20.5	61	25.0	330	17.3	2		16	17.3

Highlighted values represent species with dead trees found on a percentage of plots significantly greater ($p<0.05$) than the overall average oft9.6 percent. Percentages are only shown for species represented by at least 20 sample plots within a given forest type.

Table D-3
Percentages of FIA plots with dead tree species on plots with and without tree removals.

Species	Ecological Subregion															
	212G				221 E				221 H				2211			
	With Removals		Without Removals													
	$\mathrm{n}=$	\%														
Ash sp.	12		42	23.8	24	29.2	81	24.7	3		5		0		3	
Basswood sp.	2		17		6		44	11.4	2		12		2		5	
Beech	28	28.6	58	20.7	34	29.4	141	26.2	11		69	33.3	3		15	
Birch sp.	19		56	39.3	3		24	29.2	0		1		0		2	
Black cherry	50	34.0	143	21.0	46	43.5	155	22.6	0		0		1		2	
Black locust	0		0		14		64	51.6	1		2		0		5	
Cucumber-tree	3		5		1		11		1		4		0		1	
Elm sp.	0		2		26	53.9	62	45.2	0		1		0		2	
Hemlock	10		25	36.0	1		20	35.0	2		14		0		3	
Hickory sp.	3		4		62	25.8	217	25.8	21	42.9	124	26.6	7		26	26.9
Maple, red	65	26.2	207	16.4	50	26.0	205	13.2	10		55	16.4	2		9	
Maple, sugar	35	34.3	102	28.4	43	32.6	142	8.5	6		22	18.2	3		15	
Oak, black	6		21	28.6	74	27.0	278	24.5	22	40.9	132	29.6	4		23	13.0
Oak, chestnut	4		40	32.5	60	33.3	248	20.2	32	21.9	185	13.5	4		56	17.9
Oak, northern red	20	30.0	110	26.4	74	25.7	227	19.8	11		64	25.0	5		28	14.3
Oak, scarlet	3		14		23	39.1	122	30.3	12		114	45.6	1		14	
Oak, white	13		57	26.3	98	19.4	401	11.2	34	11.8	203	14.3	7		31	19.4
Pine, Virginia	0		0		9		51	37.3	7		45	28.9	3		8	
Yellow-poplar	4		9		77	$22.1=$	404	11.6	22	13.6	147	5.4	12		59	5.1
Average	15	30.3	48	24.3	38	28.7	152	20.0	10	24.4	63	21.6	3		16	14.8

Highlighted table values denote a significantly greater percentage of plots $(p<0.05)$ with both dead and removed trees than adjacent values for plots with dead trees and no removed trees. Percentages are only shown for categories with at least 20 sample plots.

Table D-4
Percentages of FIA plots with dead tree species on plots with and without tree removals.

Species	Ecological								Subregion								
	231C				M221A				M221B					M221 c			
	With Removals		Without Removals		WithRemovals		Without Removals		With Removals			Without Removals		With Removals		Without Removals	
	$\mathrm{n}=$	\%	$\mathrm{n}=$	\%	$\mathrm{n}=$	\%	$\mathrm{n}=$	\%	n	$=$	\% n	$\mathrm{n}=$	\%	$\mathrm{n}=$	\%	$\mathrm{n}=$	\%
Ash sp.	0		2		2		10		7		26		19.2	1		3	
Basswood sp.	0		0		1		7			7		45	11.1	2		41	4.9
Beech	3		4		0		11		24	4	29.2	104	19.2	a		62	16.1
Birch sp.	0		1		0		11			a		71	28.2	1		14	
Black cherry	0		0		1		a		27	7	11.1	135	11.1	0		3	
Black locust	0		0		1		22	22.7		4		29	24.1	1		10	
Cucumbertree	0		0		0		6			5		13		1		22	13.6
Elm sp.	0		1		0		0			0		5		0		1	
Hemlock	0		0		0		5			4		35	17.1	2		12	
Hickory sp.	11		48	a. 3	2		20	10.0		7		58	19.0	6		76	13.2
Maple, red	1		4		0		19		41	1	24.4	221	11.3	3		33	9.1
Maple, sugar	0		1		4		13		23	3	17.4	99	9.1	2		37	16.2
Oak, black	4		15		2		20	15.0		7		32	18.8	9		62	19.4
Oak, chestrut	5		65	1.5	4		67	9.0	20	20	40.0	145	19.3	12		119	10.9
Oak, northern red	2		7		3		56	12.5	47		23.4	234	16.7	7		74	12.2
Oak, scarlet	1		13		1		12			5		37	13.5	7		50	20.0
Oak, white	10		52	3.9	2		41	0.0	13	3		92	10.9	5		41	7.3
Pine, Virginia	6		17		0		3			0		1		0		2	
Yellow-poplar	6		24	4.2	0		20	0.0	29		10.3	163	7.4	19		179	4.5
Average	3		13	4.2	1		18	9.4	15		21.8	81	14.6	5		44	11.2

Highlighted table values denote a significantly greater percentage of plots $(p<0.05)$ with both dead and removed trees than adjacent values for plots with dead trees and no removed trees. Percentages are only shown for categories with at least 20 sample plots.

[^0]: Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead

[^1]: Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater ($p<0.05$) than percentages for all species.

[^2]: Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater $(p<0.05)$ than percentages for all species.

[^3]: Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater ($\mathrm{p}<0.05$) than percentages for all species.

[^4]: Highlighted values represent species that comprise at least 5 percent of the composition or with percentages of dead or removed trees significantly greater $(p<0.05)$ than percentages for all species.

 Values for dead trees or removed trees are not shown for species with less than 30 sampled trees.

