Best Available Copy

Henty mernam

Fowneary 10sy

Document is available to the mblic brough the sathong gechnical Infoctation Service "uringfiela, Virqinia 22161

Prevaxed rer

 Wachimoton, \because. 2950 .

Best
 Available copy

Best Available Copy

This gockest tif aseminated unter the sponnorahip of the Gpowncmt of rransportation in the intexent sf intormt a memage．the Untted states．
aremons aumes m liability for ita content or wo therent．

Best Available Copy

> Technical Report Documentation Page

1. Report No. FA-AM-81-6 i FAA-AM Government Accession No.	3. Recipient's Catalog No.
4. Title and Subsitle EFFECT OF DIFFERENT RUNWAY SIZE ON PILOT PERFORMANCE DURING SIMULATED NIGHT IANDING APPROACHES	5. Report Dote
7. Auther! s) Henry W./Mertens mark F./Lewis	8. Performing Organization Report No.
9. Performing Oigenization Name and Address FAA Civil Aeromedical Institute P.O. Box 25082 Oklahoma City, Oklahoma 73125	10. Work Unit No. (TRA1S)
	13. Type of Repart and Period Covered
12. Sponsoring Açetev Nomo and Address Otflce si kuiation Medicine Fedryal Aviation Administration	$1 \cdot y^{!\cdots \cdots}=!$
800 Independenct Avenue, S.W. Washinite n, D.C. 20591	14. Sponsoring Agency Code
15. Supplementery Not. 1	
Wcik was perforred under Task AM-D-79-PSY-67 and AM-A-80/81-PSY-85.	

16: Abilfor:

Both mecdotal reports from pilots and theories of visual cues would predict lower approaches to narrow or long runways than to wide or short runways. practice with a particular width of runway would also be predicted to inerease subsequent approach anglos flown to wider runways, and decrease approach angles to narrower runways. Two experiments with instrument-rated pilots made quantitative tests of these prodictions

In Experiment I, three pilots flew simulated approaches and landings in a fixed-base simulator with a computer-genorated-image visual display. Practice approaches were flown with an $8,000-\mathrm{ft}$-long runway that was elther 75, 150 , or 300 ft wide test approaches were to runways with widths of $75,100,150,200$, and 300 ft . In Experiment II, 40 pilots centrolled the slant of a moving model runway during simulated night visual approaches. Five difforent models oimulated runways from 100 to 300 ft wide and 3,000 to 9,000 ft long. As predicted, training on a wide runway in Exporiment I lowered approach angle in approaches to narrover runways: a narrow practice runway also raised approach angles to wider runways. The magnitude of these practice offecte increased as distance from runway threshold decreased. There was also a teneral tendency for approach anglen to decrease as runway width decreased. The latter offect was corroborated in Experiment II: in addition, qenerated approach angles decreased with increasing rumway length. Giving half the pilots information about runway sige prior to each approach had no offect on responses. These tindings add to the quantitative evidence of danger in night visual approaches due to visual illugions and large variability in the visual perception of approach ancle.

Introduction.

Visual illusions are considered to be an important factor in causing a relatively high accident rate during night visual landing approaches (1-5,7-9, $12,13,15,23,24$). Analyses of many civilian (11,12,13) and military (22) accidents show that a relatively larde number of aircraft crash short of the runway in nighttime accidents unrelated to aircraft malfunction or adverse weather. Many of these crashes are thought to have been caused by a lack of visual information or to "erroneous information" in certain geographical situations (e.g., sloping runway or sloping terrain around the runway) (12). Until recently our knowledge of these visual illusions in the night approach situation has been based, in a large part, on anecdotal accounts by pilots who have survived some crashes. Because of the relatively high accident rate in the night approach situation and the high cost of such accidents in terms of human life, studies were undertaken to assess the alleged visual illusions quantitatively and to determine their cause so that (i) pilots could be given more explicit information concerning the hazards of night landing approaches and (ii) a means of altering the approach environment might be identified so as to effectively improve safety.

Previous research has shown that there is a general tendency for pilots to fly lower approaches at night in "blaek hole" conditions, in which only the edqe and end lights of an unfamiliar runway are avallable for vertical guidance during the approach, and that the perception of approach angle is extromely variable in this situation $(10,17,20,21)$. This problem of low and variable approaehes at night may be the result of large variations in the widths and lengths of runways at various airports. Some researchers have suggested that if the width and/or length of an unfamiliar runway differs radieally from that to which the pilot is accustomed, then the resulting illusions eause systematie deviations above or below the desired glidopath (1,7,23). Wulfeek, Wolsz, and Raben (26) stated the problem and a theoretical interprotation as follows:

A pilot approaching an unfamiliar airport may have trouble Judging position by the shape of the rectangle outlined by runway lights. For example, after a few landinge at one airport, he learns the length-to-width ratio for the runway that will show him he is approaching at the proper glide angle. If he goes into a strange airport where the runway is aither shorter or wider and attompty to use the same porspective cues as before, he will be tso high and come in at too steep an angle. Conversely, if the runway is longer or narrower, he will come in too low. These difficultios are to be expected from the geometry of the situation, and they are confirmed by pilots' experiences, though no experimental data are avallable. (p. 262).

This present study has been conducted in an attempt to quantify these visual effects, or illusions. Experiment I was designed (i) to evaluate deviations from the desired glidepath in simulated night approaches to unfamiliar runways of the same length but of various widths, and (ii) to determine the effect of practice with a particular runway width on subsequent approaches to runways of different widths. Experiment II was then conducted to compare the effects of varying runway width with the effect of varying runway length. The nighttime "black hole" was simulated in both experiments to provide maximum effect of variations in runway length and width.

EXPERIMENT I

In the first experiment, an aircraft simulator with a computer-generated visual display of the runway scene was used to measure performance during approaches to runways of constant length but varying width, following practice with a fixed runway width.

Familiarity with a particular runway width was accomplished by having subjects fly 20 simulated visual approaches and landings to a runway that was either 75,150 , or 300 ft wide. The effect of practice was then measured in 20 additional approaches in which five runway widths (75, 100, 150, 200, and 300 ft) were presented in random order, The theory of Wulfeck et al. would predict that approaches flown to runways of differing width but constant length would generate increasingly larger approach angles as a direct function of greater runway width. Additionally, the function relating runway width to approach angle should (i) shift upward following practice (familiarity) with the most narrow (75 ft) runway and (ii) shift downward after practice with the widest (300 ft) runway. The function should have an intermediate position between the two previous cases when practice is given with a runway of intermediate (150 ft) width. That is, approach angles should shift upward for widths greater than that of the practice runway and downward for test widths narrower than practice.

Method.

Subjects, Three men, pilots with instrument and multiongine ratings, served as subjects. All had at least $20 / 20$ acuity at the 30 - and 40 -inch distances measured by a test developed at the civil Acromedical Institute, and all passed the Farnaworth Lantern pest for color vision. The three subjects had exper jonce levels of 300. 4, 200, and 7,000 hours of ilying time.

Apparatus. The subjects How simulated Visual Flight Rules (VPR) approaches In a fixed-base sinulator comprising a specially modified Analog Training Computer. Model 610-J simulator, with a computer-generated image (CoI) visual display mounted in the cockpit windshicid to provide a gimulation of the outthewindshield visual seono synchronized with the gitatated aireraft'e fight. The simulator was modified to produce olectrical gignals corresponding to tho followimp paramoters of thight: (i) X and Y eoordinates, locating the aixcraft on the ground plane to the nearest. 3 it. (il) altitude cordinates to the nearest foot, (lii) roll, (iv) gitch, and (v) heading, The car sywtem has been described elsewhore (18). A 17-inch multicolor cathodegay tube was

mounted in front of the pilot and ahead of the cockpit windshield, at a distance of 3 ft from the pilot's eye. The display was controlled by a Digital Equipment Corporation PDP-11/45 computer with a VB-11 display processor and associated analog and digital inputs.

The display simulated a dynamic nighttime visual scene synchronized with the maneuvers of the aircraft simulator. Data bases were constructed to simulated runways $75,100,150,200$, and 300 ft wide. The length of all runways was $8,000 \mathrm{ft}$ and only runway lighting was visible in the out-the-windshield scene which simulated a "black hole" situation (lights simulating approach lighting, taxiways, terminal areas, other runways, etc., were excluded). The intensity of all simulated runway lights varied with distance and had a realistic appearance.

Procedure. In the first experimental session, each subject's acuity and color vision were tested. The subjects were then acquainted with the simulator. Recommended flap settings, airspeeds, and vertical speeds to be used were discussed at that time. Thirty to forty preliminary flights were then made to let each subject become familiar with the simulator before the experimental runs were begun. Each flight in both preliminary and experimental trials consisted of takeoff and climb to a designated altitude on a constant heading. When the subject had established level flight at the designated altitude and proper heading, the simulated position of the aircraft was moved by computer command to a position approximately $51 / 2$ to $61 / 2$ miles from threshold on the extended centerline of the runway. The designated altitude assigned for each approach was randomly selected from a table ranging from 1,100 to $2,700 \mathrm{ft}$ in 100 -ft steps. Although the subject always knew the altitude from which the approach was started, he was not informed of the distance frem the runway at the beginning of the approach. The task of the subject during both preliminary training and tosting was to fly a "normal" glidepath angle during the approach and to touch down about $1,000 \mathrm{ft}$ upwind from the runway threshold.

There were three conditions of the experiment in which each subject participated. Each condition consisted of four experimental sessions with one session per day. These four sossions were divided into two famillarization (practice) seasions and two test suselons. Three runway widths 175, 150, and 300 (t) cemprised the three conditions used during the practice sessions. In each condition, the two practice segsions comprised 20 approaches 110 per segsion) to the appreptiate practice runway. The two practice eessions vere followed by two test sessions in which approaches were made to runways of five widehs: 75, 100, 250, 200, and 300 ft .

The 10 test approaches in each test session enngisted of two bloeks of tive approaches with all flive widthe given in a different random order in each block. Therefore, following practice approaches in a partieular condition, each subject made a total of four test approaches to ach of the five test runway widtis. It should be noted that in prelimina:" frials, which were qiven to acqualint eubjects with the simulator prior i ifa fisst experimental practice and test sessions, the width given each subject corresponded to the runway width adminigtered during the practice sessions of the first experim. montal condition.

The order in which the three experimental conditions (practice runway widths) were given was different for each subject. The three orders were: Subject 1-75, 300 , 150 ft ; subject $2-150,75,300 \mathrm{ft}$; subject $3-300,150,75 \mathrm{ft}$.

Results.
In each test trial, simulated altitude and distance of the aircraft were recorded at l-second intervals during the approaches. These data were then converted to generated approach angles (calculated by finding the angle whose tangent was the ratio of generated altitude to distance from the desired touchdown point, $1,000 \mathrm{ft}$ upwind from threshold).

Means of the approach angles (in degrees) as a function of practice runway width, test runway width, and distance, were evaluated by analysis of variance. Distance was evaluated in this analysis by obtaining the mean approach angle in each of the four $1-\mathrm{nmi}$ segments of each approach over the range of distances from $4-n m i(24,000 f t)$ to threshold. The significant effects in this analysis were the main effects of practice runway width ($p<.05$) and

Pigure 1. The main effects of (A) practice and (B) test runway width on gencrated approach angle in individual nubjeets.

Figure 2. The effect of practice and test runway width in each of the four l-nmi segments of approaches from $24,000 \mathrm{ft}$ to threshold.
the interactions of both practice runway width with distance ($\mathrm{p}<.01$) and test runway width with distance (p \& . 01). Fiqure la shows the significant main effect of practice runway width for each subject as well as for data averaged over subjects. Mean approach angles generated by pilots decreased as a function of practice runway width for all subjects. The effect of test runway width is shown in Fiqure 1B. Although the average over subjects indicates an increase in mean approach angle with test runway width, the curves for the individual gubjects show that this trend was consigtent for only one subject.

The signifieant intoractions of practice and tost rumway width with distance are shown in figure s, whore moan approaeh angles are ploted as a function of practice and tost rumay width aeparately for oach of the four 1-nai digtanee intervals between 24,000 tt and threghold. Figure 2 ghows that the tronds in the main eflects of both practice and tegt runway widh are generated at tio nearest distance interval and decrease with distanee from runway threaholl! Although the main effect of test runway width was not eonerstent in the throe gubjecta when data were averaged over all digtaneeg, a large effect of teat runway width la apparent at the nearegt distance interval to avaluate the consistancy of that regult in the data for individual subsecte the intergetion of iractice and tegt rumby width in the digtance interval from \therefore Esi fl to threghold was ploted in figure sor each gubleet. The:" data show a largo offect of teat runway wideh, with approach angle increasing as a function or test rumay with in the data of gubjecta and 2. Alehough the posgibility of a similiar trend is eugented in the data of rubject In the
 quite varibible and the curve for the 300 -ft prattice condition elearly does not guphert this trend. In the latter curve, approbeh angleg eqenerated have a pronounced v-shape; the curve decreases conalstently af tegt rusway

Figure 3. The effect for each subject of practice and test runway width in the last mile of approaches.
width increases up to 200 ft and then increases dramatically. The main of fect of practice runway width as ghown in Figure 3 is consistent in all three subjects and in accold with theoretical predictions. Agreement with the theory is less clear in the ease of the effoet ef test runway width due te variability in responses; but the predieted increase in approach angle with tost runway width is supported by trends in the data at near distances.

Variability within the responses of an individual subject was measured by calculating the range of regponson in the four approaches made in a partieular experimental condition. Mean intrasubject ranges for each practice runway width, test funway width, and distance are shown in Table 1. These data were not given further gtatistical analyais. The only variable affecting intrasubject regponse variation was distance. The intrasubject range of approach angley consfetently inereased as distance from runway threshold decreased. There was no consistent effect attributable to practice runway width or test runway width. Difforences among subjects were also not great. The most important finding was that the range of aproach angles was quite large in the last mile of the approach in all three subjects: intrasubject range approached a value of 3^{0} in the responses of two subjects.

Variation between subjects in approch angle way measured in termat of the range of individual subject means for each conbination of practice runway width, test runway width, and distance interval. Thege intersubject

TABLE 1. Intrasubject Variability (Range) of Generated Approach Angles (in degrees) as a Function of Practice and Test Runway Widths and Distance

Practice Runway	Subject			Mean
	S1	S2	53	
75 ft	2.26	1.64	1.77	1.89
150	1.49	2.31	1.33	1.71
300	1.13	1.36	1.33	1.27
Test Runway				
75 ft	1.76	1.89	1.26	1.64
100	1.28	1.50	1.27	1.35
$1{ }^{\text {F }}$	1.89	1.86	1.91	1.89
200	1.54	1.54	1.46	1.51
300	1.67	2.07	1.49	1.74
Distance Interval				
0-1.	1.67	2.71	2.75	2.44
1-2	1.66	1.89	1.27	1.60
2-3	1.54	1.47	1.05	1.35
$3-4$	1.44	1.01	.94	1.10

variability data are gumarized in Table 2. The average intersubject range is given for weh practice runway wideh, test runway width, and distanee Interval. Again, only distance appeaze to be gyteratirally related to vaytability.

Piscugsion.

This experiment was an attemet to guantify a visual iliugion in the pilot's parception of vertical position in the night apprach gituation due to variation in rumay widh and prior practice with partieular rumbay wdehey Anecdotal referenees to runway width "lusions in the aviation iferature suggest that pereoptual errors in judghents of approsch angle as a tunction

TABLE 2. Intersubject Variability (Range) of Generated Approach Angles
(in degrees) as a Function of Practice and Test Runway Width and Distance

Practice Runway (ft)	Range
75	1.22
150	1.44
300	1.13
$\begin{aligned} & \text { Test Runway } \\ & \text { (ft) } \\ & \hline \end{aligned}$	
75	1.49
100	. 86
150	1.37
200	1.10
300	1.49
Bistance Interval(nmi)	
0.1	1.94
$1=$	1.16
$2-3$	1.01
$3=4$	0.94

of difforences betwoon fanillar and gtx nge rurweys are many and consistont.
 practice with a particular rinway on gubsequent generated approach angles with rumbys of difering bice. The pregent finding aleo fndicatea that wigual experiences with a partientar whay over the ghort term lonly 20 practice approaches)are gutyelent to bian rasponget. Thus, "familiaxity" with a particular runway gite appeare to lone if effect as function of futervening experience with tumay of different size.

Of partheular indortence to pilots. we believe, was the pindig that in the late wie of the appaosh ta particular runtay, the biasing effects of tfenal experfence with a parbicular (prion) runtay of a diferent wideh will reatil in the later approach being flown above or bolow the deafred approach path by as much an one deatee or more, an the average. The fact that the variability of aturach angley way larue, both within the aproaches of an fontuidual pilot and anomg all pilot stojects, doeg thot detract from tha isportance of the fiegent inding. Rather, it gerves to enghasise the fact
 aparoaches at night. The pilot's perceptio $)$ approach angle in repeated abspoaches in the same environment is, therefore, best described by a dietribution of responses in which variability, as well as central tetidency, muge be considered. the offect af the rumay widh illusion is so shift the whole
distribution of responses that can occur in a given runway situation up or down the scaic of approach angles. In this regard, a low approach and resulting crash short of the runway is most probable in the case when a response in the lower extreme of the distribution occurs and when the pilot's recent prior experience with a wider runway has shifted his response distribution downward. likewise, a high approach with a probable overshoot of the runway is most likely to occur after recent experience with another more narrow runway.

EXPERIMENT II

Although Experiment I did not vary the length of the simulated runway, the theory of wulfeck et al. (26) also predicts that approaches flown to runways of differing length but constant width should generate approach angles that decrease as a direct function of test runway length. This prediction was tested in Experiment II, and the effect of variation in runway width reexamined, again in a simulated nighttime "black hole" situation. The comparison of length and width effects has sicnificance not only in quantifying visual illusions in the night approach to landing situation but also has significatse in determining which cues in the runway image are important in the perception of the approach path at night.

A differont task, requifing leus training of subjects, and a different visual sinulation technique were used in Experiment if to study runway size offets. Different lengths (3,000 to 9,000 ft) and widths (100 to 300 ft) of Funway lifhtifa syetems were gimulated with seale fodels. The eask of the pilot was always to control a model, as it moved toward him over the simulated diftance range of 23,000 to 5,000 ft fom threshold. te produce a normal" afproach angle, and to produce the game "normal" approach angle on all aktompts. The affect of prior kntwledge of runway size was algo stuaied by giving half the pilots information about runway size prior to each simulated appreach.

Methed.

Subjects. Ferty male pilotg served as gubjects. They ware betwean 25 and cs yiars of age and wete active in sir cartier, military, or general aviation.
 The ghojecta were randordy aghigned to two groupg difoering in whether they were gizen himway gige infertation. Tventy gubjecte in one group were not (tiven runway oltalinformation: thoy had median experienee level of 1.950
 gujeetg in the growp that was given runway gles lotormation had a modian enterience level of 1,450 hourg with an interguartile range of 2.615 houts.
 informilon Gremp" had heaty wultiengine aircrat. exparience. All other subu jects fiew light sifale and Ewifi enging airerafis.

Ageatatus. The abwatatu used in this stuty has been deseribed in dotail
 of rubtay lithting syatems containing edge and end lights onty, with lights colored approptately. Runway with wag vafied in three of the wals. Tho

Figure 4. Schematic of apparatus (Al and A2, removable targets for aligning optical system; B1 and B2, baffles; C, cart; F , rotation axis; H , horizontal line-of-sight; Ml and M2, mirrors; 0 , eye position; P1, P2, P3, segments of the optical axis; Q, apparent axis of radial motion; R, runway model; T, track; B, viewing angle; θ, model slart.
length of $6,000 \mathrm{ft}$. The two additional models had $150-\mathrm{ft}$ widths, but had lengths of 3,000 and $9,000 \mathrm{ft}$. Length/width ratios of 20:1, 40:1, and 60:1 were represented in these models. The models were created in $1,200: 1$ scale using a fiber optic technique described previously (18). The light box on which the models were mounted for experimental trials contained fluorescent sources and intensity was adjusted to simulate an average luminous intensity of 120 candelas for individual white runway lights.

A schematic diagram of the apparatus is shown in Figure 4. It consisted of a runway model (R), the cart and track (C and T) on which the model runway moved toward the subject, and a mirror viewing system (M1 and M2). The model was viewed monocularly from an enclosed observation booth through a $12-\mathrm{mm}$ aperture at B1. This arrangement enabled the model to move directly toward the observation point along a virtual optical path (0) which was 3° below the straight ahead direction (H). Since the model was seen in an otherwise dark field, variation in the slant of the model (0) appeared to the subject. as a change in approach angle. The slant of the model and, hence, apparent approach angle, was controlled by the subject during the experimental trials. Model slant was measured and recorded to the nearest 0.1° throughout each experimental trial. Jargets Al and A2, shown in Figure 4, were only present curing optical alignment of the system.
procedure. The subject's task was to control the runway model as it moved toward him in order to produce what looked like a "normal" upproach angle, and to produce the same angle on every subsequent trial. Durinq each trial, the model was visible and was controlled continucusly by the subject as it moved toward the observation position over a simulated sistance range of $23,000 \mathrm{ft}$ to $5,000 \mathrm{ft}$ from threshold. The sinulated approach speed was a constant 125 knots.

After familiarization, four practice trials were given each subject with the 150-ft-wide, 6,000-ft-long runway. Fifteen test trials with all five runways followed. prior to the start of each test trial, the model was set at a simulated approach angle of $0.5^{\circ}, 3.0^{\circ}$, or 5.5°. Each of the 15 combinations of five runways and three starting angles appeared once in random order in the series of test trials given each subject. In the "Size Information Group," subjects were told the simulated size of the runway prior to each trial. No feedback concerning performance was given any subjects during the experimental period. Experimental sessions lasted approximately 2 hours for each subject.

Results.
Approach angle was the dependent variable. It was defined as the angle between the line-of-sight to the runway threshold and the plane of the runway model. Approach angles were measured for the present analysis at half-mile $(3,000 \mathrm{ft})$ intervals from 17,000 to $5,000 \mathrm{ft}$ from threshold.

Figure 5. The effect on generated approach angles of runway size and distanco fron runway threshold.

Figure 6. The effect on generated approach angles of verbal size information and actual runway size.

The effocts of varying xunway size and distance on generated approach angles are illustrated in Figure 5. 3oth runway size and distance had effects statistically significant at the 0.01 level, as did their interaction. For the three $6,000-\mathrm{ft}$ runways, qenerated mproach angles increased as runway width increased. Mean approseh angles for the 300%, 50 - , and $100-\mathrm{ft}$-wide runways were $2.80^{\circ}, 2.23^{\circ}$, and 2.01°. respectively. For the three 150 -ft-wide runways, approach angles increased as runway length decreased. Mean approach angles for the $3,000-6,000-$, and $9,000-f t$ runways wore $2.74^{\circ}, 2.23^{\circ}$, and 1.96°. respectively. Runways of difforent sizes but with identical length/ width ratios, produced gimilar approach angles on the average, and mean approach angle ineroaned as a function of runway lengthiwidth ratio. Howevor, when length ard width effects for individual subjects were oxamined, there was no significant corrolation found $(r=0.05)$.

The effect of knowledge of runway size is shown in Fiqure 6 . Mean approach angles were approximatoly $0.5^{\circ} \mathrm{higher}$ in the group given knowledge of runway size prior to each trial, but that effect was not statietieally significant. Thore was also no interaction of knowledge of runway size with variation in simulatod runway size in tho production of approach angles.

Tre min effect of starting angle was significant. at the .01 level as was its interaction :ith distance. In general, approach angles increased as a function of starting angle. The difference in mean approach angle between the 5.5° and 0.5° starting angle conditions was 0.78° at the 17,000 -ft distance. This difference decreased to 0.25° at the $5,000-\mathrm{ft}$ distance. There was no interaction of starting angle with either simulated runway size or information ahout runviny size.

TABLE 3. Intersubject Range in Degrees as a Function of

Runway Size and Distance From Threshold

	RUNWAY SI7E (FEET)					
DISTANCE (FEET)	$\underline{150 \times}$	3,000	6,000	6,000	6,000	9,000
					MEAN	
3,000	4.68	6.55	5.88	4.49	4.56	5.23
8,000	3.90	5.26	4.59	3.79	3.95	4.30
11,000	4.59	4.55	3.85	3.06	3.48	3.91
14,000	4.98	4.14	3.44	3.56	3.43	3.91
17,000	4.51	3.33	3.54	3.33	3.86	3.71
MEAN	4.53	4.77	4.26	3.65	3.86	

TABLE 4. Intrasubject Ranga in Degrees as a Function of
Runway isize and Distance From Threshold

DI STANCE (HEFT)	RUNWAI SIZE (FEEI)					MEAN
	$15^{7} \mathrm{x}$	300 x	$1.50 \times$	$100 \times$	$150 \times$	
	3,000	6,000	6,000	$\underline{1}$	9,000	
5,000	.90	1.07	. 85	. 73	. 74	. 86
8.000	.77	. 77	. 68	. 73	. 61	. 71
11,000	. 79	. 87	. 73	. 72	. 56	. 73
14,000	. 84	. 98	. 89	. 75	. 72	. 82
17.000	. 97	1.02	1.05	. 99	. 83	. 97
MEAN	. 85	.94	. 82	. 78	. 69	

An important finding eoneoras the variability of rosponses between subjects in a givon expeximental condition. The average range of tesponses between sublects (intersubject varlability) owei all exper fmental coniltions was 4. 2^{6}. Intorsubjoct rango is shown in Tabla 3 as a function of runway size and distance. There is tontency for the intersubject range of responses to vary invorsoly with boch distance and runway lenesh/width ratio.

The range of responses within a given experimental condition was determined for each subject as a measure of intrasubject variability. Intrasubject variability averaged over subjects is shown as a function of runway size and distance in Table 4. In the case of the mean intrasubject range of responses, variability again varies inversely with runway length/width ratio. Intrasubject variability initially decreases with distance, from 17,000 to 11,000 ft , and then increases at the nearest, $5,000 \mathrm{ft}$, distance. These fluctuations in mean intrasubject range of responses were small, however, on the order of 0.2°.

Discussion.
The present experiment did not permit feedback to the pilots concerning their accuracy of response. Responses were analogous, therefore, to responses to unfamiliar runways of widely varying size. The present study demonstrates the existence of illusions due to variations in both runway length and width in simulated nighttime "black hole" situations. As runway length/width ratio was increased from $20: 1$ to $60: 1$, approach angles decreased by 0.84°, from 2.77 to 1.96°, on the average. These findings, and the findings of Experiment I. corroborate warnings of runway size illusions from anecdotal reports of pilots, and have implications regarding which cues in the runway image produce the illusions.

There are at least three cues involving runway image size and shape which pormit prediction of offects of varying runway width and length on pilot fudgment of approach angle. These are (i) linear perspective, (ii) runway image height, and (iii) length/width ratio in the runway image. Linear perspective can be defined as the magnitude of the base anglos of the trapezc dal runway image when the pilot's oye is aligned with the extended centerline. Linear perspective increases with approach angle and distance, and varies inversely with runway width. The innear perspective cue may predict an offect of width if the pilot's porceptual systom utilizes the natural relation between linear perspective and distanee learned for a particular (familiar) runway and the normal approach angle. Applying such a learned function to a wider runway would cause the pilot to produce a higher than normal approach angle, and a narrower runway would cause low approaches, This cue system would predict runway width offects, but would not predict the effects of varying runway length observod in the present experimont.

The second eue, runway image height, incroases with aproach anglo and runway length, and decreases with distance from the runway. Applying a loarned relation of inage height to dintance would cause high approaches with shortex than normal runways and low approaches wi ch longer than normal runways. The image haight cue will prodict runway longth effects, but will not prediet the effect of varying runway width that was obsorved in this study.

A third cue which will predict rumay gize effects on pereoption of approach angle is the ratio of length to width in the runway image (26) described above. It can be shown goonetrically, for all runways with the amo ratio of actual lonth to actual width, that tho ratio of runway image height to image width of the far ond is function of only one variable.
approach angle (21). The ratio appropriate for a given approach angle increases with actual length/width ratio in the runway, but is independent of absolute dimensions of the runway. Applying a particular learned value of image length/width ratio to runways with actual length/width ratios greater or less than normal will result in a deviation below or above the normal approach angle, respectively. The present finding of both length and width effects is in agreement with predictions of the image length/width cue. The lack of significant correlation between length and width effects, however, suggests the possibility that image height and linear perspective, working independently, may have caused the runway size effects observed. An alternative possibility is that the image length/width cue determined the illusions, but response variability obscured the relation of length and width effects. Additional research is required to discriminate between these possibilities.

The fact that variability of generated approach angles was large does not detract from the importance of runway size effects. The effect of varying runway size is to shift the distribution of pilot responses that can occur in a given situation up or down the scale of approach angles.

Giving pilots knowledge of runway size did not have any effect on the magnitude of illusions due to variation in runway size. This finding most probably reflects the unconscious nature of the process involved in the perception of approach angle. Harris (6) has theorized that due to the unconscious nature of perception, simply telling pilots of the danger of visual illusions in night approaches will not lessen that danger as long as the pilot still relies on the same vulnerable perceptual process. The present finding supports Harris' view. The need for imoroved techniques of training pilots to counteract visual illusions in night visual approachos and to adapt to different runway situations is clear.

OVERVIEN
The findings of this study provide empirical evidence of illusions in judgments of approach angle due to variations in both length and width of runways. The findings also demonstrate the interaction of recent practice with a specific runway with those runway siae effocts. These findings add to the accumulating body of experimental evidence concerning the oxistence of differont sourees of errors in the perception of approach angle, errors which make tho night approach situation dangerous, eapecially in the visual environnent ealled the "black hole," where the only lighte visible on the ground are the edgo and ond lighte of the runway $(17,20,21)$. These findings also support a prodiction of (i) inereased chance of making a dangerous, low approdeh when a pilot ilies? nighttime approach to an unfaniliar runway that has a large ratio of length to width and (il) an even greator danger if the pilot's recont exporience was with a runway with a amallor ratio of length to width.

These data also support previous studies whieh show judgment of approach angle to be extremely varlable in the nighteime approach situation $(10,17)$. Alchough it is somotimos stated that cues in the runway image formed by the boundarv-marking (odge) lights reprosent the minimum cues that a pilot needs for landing (16), tho resules of tho presont study add to a growing baso of
evidence that these cues may often be a source of rather large error in judgment of approach angle, and are, therefore, insufficient for a safe approach to landing. The present findings also support the recommendation that landing aids such as Instrument Landing Systems (ILS), and Visual Approach Slope Indicator (VASI) systems be utilized at night to supplement natural visual information at all airports where, otherwise, the lack of surrounding ground lights forces reliance on ineffective visual cues even in good visibility conditions. Although the problem of varying the amount of information on the approach scene can be performed most easily in the laboratory or through use of a computer-controlled aircraft simulator with a CGI visual display, there remains a continuing need for studies of flight paths in actual night approaches as a function of environmental conditions, including variation in runway size, to validate the simulation data recorded in this study.

1. Busby, D. E.: Visual Illusions: Runway Width and Slope. FAA AVIATION NEWS, 14:12-13, 1975.
2. Busby, D. E.: Visual Illusions II: Terrain Features. FAA AVIATION NEWS, 14:16-17, 1976a.
3. Busby, D. E.: Visual Illusions III: Atmospheric Distortion. FAA AVIATION NEWS, 14:12-13, 1976b.
4. Busby, D. E.: Visual Illusions IV: Relative Motion. FAA AVIATION NEWS, 14:7, 1976c.
5. Cocquyt, P.: Sensory Illusions. SHELL AVIATION NEWS, 178:19-24, 1953.
6. Harris, J. L., Sr.: What Makes a Visual Approach 'Nonvisual?' AIR LINE PILOT, 46:14-19-, 1977.
7. Hartman, E. O., and G. K. Cantrell: Psychological Factors in "Landing Short" Accidents. FLIGHT SAFETY, 2:26-32, 1968.
8. Hasbrook, A. H.: Anatomy of a Landing Cue by Cue. BUSINESS AND COMMERCIAL AVIATION, 29:54-60, 1971.
9. Hasbrook, A. H.: The Approach and Landing: Cues and Clues to a Safe Touchduwn. BUSINESS AND COMMERCIAL AVIATION, 32:39-43, 1975.
10. Hasbrook, A. H., P. G. Rasmussen, D. M. Willis, and M. M. Conners: Pilot Performance and Stress Response During Day and Night Visual Landing Approaches. Unpublished paper presonted at th. 1975 annual seientific meeting of the Aorospace Medical Association, San Francisco, California, April 29 - May 1. 1975.
11. Kirchner, O. E.: Critical Factors in Approach and Landing Accidents, Part 1 - Statistics. Flight Safety Foundation, December 1960.
12. Kraft, C. L.: Measurement of Height and Distance Information Provided Pilots by the Extra-Cockpit Visual scene. In: Visual Pactors in Transportation systems: Proceodings of Spring Moeting, Committec on VIsion, National Academy of Sciences, National Research Council. Washington, D.C., pp. B4-101, 1969.
13. Kraft, C. L..: A Psychophysical Contribution to Air Safety: Simulator Studies of Visual Illusions in Night Approaches. In: H. L. Pick, Jr.. H. W. LLebowitz, J. E. Singer, A. Stainschnoider, and H. W. Stevenson (Eds.). pgychology: From Research to practice. New York: Plenum Press, 19. 363-385, 1978.
14. Kraft, C. L., and L. W. Shaffer: Visual Criteria for out of the Cockpit Visual scenes. In: North Atlantie Treaty Organization AGARD Procoedinge, 249:3-1 to 3-8, 1979.
15. Kuhlman, R. L.: Approach with Care. FLYING, 78:88-90, 1966.
16. Langewiesche, W.: Stick and Rudder. New York: McGraw-Hill, 1944.
17. Lewis, M. F., and H. W. Mertens: Pilot Performance During Simulated Approaches and Landings Made With Various Computer-Generated Visual Glidepath Indicators. AVIATION, SPACE, AND ENVIRONMENTAL MEDICINE, 50: 991-1002, 1979.
18. Lewis, M. F., H. W. Mertens, and T. Kempsell: A Real-Time Graphics Systems for RSX-11D. In: Proceedings of the Digital Equipment Computer Users Society, 2:441-442, 1975.
19. Mertens, H. W.: Laboratory Apparatus for Studying Visual Space Perception of the pilot in Simulated Night Approaches to Landing. PERCEPTUAL AND MOTOR SKILLS, 45:1331-1336, 1977.
20. Mertens, H. W.: Comparison of the Visual Perception of a Runway Model in Pilots and Nonpilots During Simulated Night Landing Approaches. AVIATION, SPACE, AND ENVIRONMENTAL MEDICINE, 49:1043-1055, 1978.
21. Mertens, H. W.: Runway Image Shape as a Cue for Judgment of Approach Angle. FAA Office of Aviation Medicine Report No. AM-79-25, 1979.
22. Miholick, J. I.: Pilot Induced Landing Mishaps Where Visual Cues Were a Factor. USAF Safety Officer's Study Kit, December 1977.
23. Pitts, D. G.: Visual Illusions and Aircraft Accidents. USAF School of Aerospace Medicine Division (AFSC), Brooks AFB, Texas, SAM-TR-67-28, 1967.
24. Riordan, R. H.: Monocular Visual Cues and Space Perception During the Approach to landing. AEROSPACE MEDICINE, 45:466-771, 1974.
25. Vinacke, W. E.: Illusions Experionced by Aircraft pilots while Flying. JOURNAL OF AVIATION MEDICINE, 18: 308-325, 1947.
26. Wulfeck, J. W., A. Weisz, and M. W. Rabent Vision in Military Aviation Wright-Patterson Air Development Center, Air Research and Development Comand, Wright-Patterson AFB, Ohio, WADC Technical Report 58-399, 1958.

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unloss yo designated by other authorized documents.
 whet mot dometitute is somemene of toy oommerral produot.

