

Forest Service

Southern Forest Experiment Station

New Orleans, Louisiana

Research Paper SO-218 November 1985

Growth and Yield of Uneven-Aged Shortleaf Pine Stands in the InteriorHighlands

Paul A. Murphy and Robert M. Farrar, Jr.

Growth and Yield of Uneven-Aged Shortleaf Pine Stands in the Interior Highlands

Paul A. Murphy and Robert M. Farrar, Jr.

SUMMARY

Equations are given to estimate current and projected volumes and projected basal **areas** of **uneven**aged shortleaf pine (*Pinus echinata* Mill.) **stands man**aged under the selection system. The independent variables are initial merchantable basal **area**, initial sawtimber basal **area**, site index for shortleaf pine (base **age** 50), and elasped time. The results **provide** guidelines for basal **area**, cubic-foot, and board-foot volume production of uneven-aged shortleaf pine stands on different sites in the Interior Highlands of the West Gulf.

INTRODUCTION

Shortleaf pine (*Pinus echinata* Mill.) has the widest range of the southern pines. It is found in 22 states in an area greater than 440,000 square miles (Lawson and Kitchens 1983). It amounts to one-quarter of the southern pine volume, is exceeded only by loblolly pine (*P. taeda* L.), and outranks the combined volumes of slash (*P. elliottii* Engelm.) and longleaf (*P. palustris* Mill.) pines. The greatest concentration of shortleaf pine is found in the Interior Highlands of Arkansas and east Oklahoma (Sternitzke and Nelson 1970). It is the only naturally occurring pine in the Interior Highlands, and it is there that shortleaf management is concentrated.

Despite its importance as a resource, shortleaf has been the most neglected of the major southern pines in terms of research information. This is particularly true for growth and yield information. There is some growth and yield data available for natural even-aged stands (U.S. Department of Agriculture, Forest Service 1929, Brinkman et al. 1965; Schumacher and Coile 1960; Sander and Rogers 1979; Murphy and Beltz 1981; Murphy 1982) and plantations (Smalley and Bailey 1974). Though Murphy and Farrar (1982, 1983) and Farrar et al. (1984) developed information for uneven-aged loblolly-shortleaf pine, their data carne from the West Gulf **Coastal** Plain where loblolly is predominant and usually preferred **over** shortleaf. **Hence**, shortleaf is usually a minor **component** in these **stands**. No models exist for uneven-aged **stands** where shortleaf is the predominant **species**, as in the Interior Highlands.

This paper presents a system of equations for **pre**dicting projected basal **areas** and current and **pro**jected volumes for selection-managed **stands** of **short**leaf pine.

PROCEDURE

Data

The data come from permanent inventor-y plots located in Conway, Garland, Perry, Pulaski, Saline, and Ye11 counties in Arkansas.¹ Over 400 0.2-acre plots have been measured four times, in 1966, 1972, 1978, and 1982. Individual tree records were maintained for all trees 5.6 inches d.b.h. and larger. The pertinent information collected on shortleaf pine was the following: (1) d.b.h. to the nearest 0.1 inch; (2) merchantable length on pulpwood trees (5.6 to 8.5 inches d.b.h.), the length from a 0.5-foot stump to a 4-inch top, outside bark, to the nearest 5 feet with a **five** foot minimum; (3) sawlog length for sawtimber trees (8.6 inches d.b.h. and larger), the length from a 1-foot stump to a 6-inch top, outside bark, to the nearest even foot with a minimum length of 10 feet; (4) and merchantable length for sawtimber trees, the length from a 1-foot stump to a 4-inch top, outside bark, to the nearest 5 feet; (5) tree product class; and (6) tree history. Site index (base age 50) for shortleaf pine was also determined for each plot using Misc. Publ. 50 (U.S.D.A., Forest Service 1929).

¹We thank Deltic Farm and Timber Co., Inc., of El Dorado, Arkansas, for kindly making these data available.

Paul A. Murphy and Robert M. Farrar, Jr. are principal mensurationists, Forestry Sciences Laboratory, Monticello, Arkansas, Sourthern Forest Experiment Station, USDA Forest Service, in cooperation with the Department of Forest Resources and Arkansas Agricultura1 Experiment Station, University of Arkansas at Monticello.

Individual tree volumes were calculated **in** the **fol**lowing manner: Merchantable cubic-foot volumes, **inside** bark, for shortleaf pines 5.6 inches d.b.h. and larger from a 0.5foot stump to a **4-inch-top**, outside bark, were calculated using the equation

$$C_{m} = 0.00274D^{2}H_{m} + 0.2997$$

where

- C_m = merchantable cubic-foot volume, i.b.,
- D = diameter breast height, and
- H_m = merchantable length to the nearest 5 feet from a 0.5-foot stump to a 4-inch top, outside bark.

Sawlog cubic-foot volumes, inside bark, for shortleaf pine sawtimber (8.6 inches d.b.h. and larger) from a 1-foot stump to a **6-inch** top, outside bark, were **deter**mined by equation

$$C_s = 0.002774D^2H_s + 1.415$$
,

where

- C_s = sawtimber cubic-foot volume,
- D = diameter breast height, and
- H_s = sawlog length to the nearest even foot from a 1-foot stump to a **6-inch** top, outside bark.

Board-foot volumes for the Doyle, Scribner, and International 1/4-inch rules were calculated using the following taper assumptions. For the first 16-foot log, a Girard form class of 82 was used; for the second log, a taper of 2.1 inches was used; and for the third and subsequent logs, a taper of 3.2 inches was used. A 0.3-foot trim allowance was used for each 16-foot log and the top fractional log.

The following plot variables were calculated **on** a per-acre basis for shortleaf pine:

- B_{mi} = the merchantable basal area in trees, 5.6 inches d.b.h. and larger, present at time i,
- B_{si} = the sawtimber basal area in trees, 8.6 inches d.b.h. and larger, present at time i,
- $V_{mi} = \mbox{merchantable cubic-foot volume, inside bark,} \\ \mbox{in trees, 5.6 inches d.b.h. and larger, from a} \\ 0.5\mbox{-foot stump to a 4-inch top, outside bark, to} \\ \mbox{the nearest 5 feet at time i,} \\ \end{tabular}$
- $V_{si} = \text{sawtimber cubic-foot volume, inside bark, in} \\ \text{trees, 8.6 inches d.b.h. and larger, from a 1-foot stump to a 6-inch top, outside bark, to the nearest even foot at time i,}$
- D_i = board-foot volume, Doyle rule, in trees, 8.6 inches d.b.h. and larger, from a 1-foot stump to a 6-inch top, outside bark, to the nearest even foot at time i,
- S_i = board-foot volume, Scribner rule, in trees, 8.6 inches d.b.h. and larger, from a 1-foot stump

to a **6-inch** top, outside bark, to the nearest **even** foot at time i,

 $I_i = board\text{-foot volume, International 1/4-inch} \\ \text{rule, in trees, 8.6 inches d.b.h. and larger,} \\ \text{from 1-foot stump to a 6-inch top, outside} \\ \text{bark, to the nearest even foot at time i.}$

Also,

Q =sisitining \$ on extlpfne, base age 50) ofplot in feet.

Summarizing the data resulted in 1,338 growth observations. To assure that the plots were predominantly shortleaf and uneven-aged in character, only those that were **classified** as being a pine type and having a pine understory, a pine overstory, and pine reproduction were used. Even with these restrictions, most plots had a minor hardwood component. Observations of plots that were cut during a growth period or had an excess of 10 percent mortality in merchantable basal area were deleted. Because the data were concentrated in a few site index and basal area classes, a restricted set of observations were randomly chosen to obtain a more uniform sample across the range of the data. This selection reduced the total observations used to 149. Table 1 shows the distribution of the plots.

Analysis

A stand level growth and yield prediction system consists of stand volume equations plus one or more basal area projection equations. Directly determined variables, such as present basal area, are used to estimate volumes of current stands. For future volumes, however, some variables—such as future basal area—must themselves be predicted before future volumes can be estimated.

The equation for projected merchantable basal **area** has **been** previously **used** by Moser and Hall (1969) and Murphy and Farrar (1982) for other uneven-aged conditions. It **is**

$$\mathbf{B_{m2}} = [\mathbf{k}, - {\{\mathbf{k}, - {\mathbf{B_{m1}}^{k_3}}\}} \mathbf{e}^{k_2 k_3 t}]^{1/k_3}$$

where

- \mathbf{B}_{m1} = merchantable basal **area** per acre at time 1,
- $\boldsymbol{B_{m2}}$ = merchantable basal area per acre at time 2,
 - t = elapsed time in years between times one and two, and
 - $k_i = coefficients$ to be estimated.

Since projected sawtimber volumes are of as much interest as merchantable volume, a sawtimber basal area projection equation was **also** incorporated into the equation system. It **is an** uneven-aged adaptation of **an** equation originally formulated for **even-aged** conditions (**Murphy** 1983) and **is**:

$$B_{s2} = B_{m2} [1 - \{1 - (B_{s1}/B_{m1})^{n_2}\} e^{n_1 n_2 t}]^{1/n_2},$$

where

- $\begin{array}{l} B_{s1} = {\rm sawtimber \ basal \ area \ per \ acre \ at \ time \ 1,} \\ B_{s2} = {\rm sawtimber \ basal \ area \ per \ acre \ at \ time \ 2,} \\ n_i = {\rm coeffkients \ to \ be \ estimated,} \end{array}$

and the other variables are as previously defined. The equation for merchantable volume is

$$\mathbf{V}_{\mathrm{mi}} = \mathbf{b}_0 \mathbf{B}_{\mathrm{mi}}^{\mathbf{b}_1} \mathbf{e}^{\mathbf{b}_2 \mathbf{Q}}$$

where

- $V_{\mbox{ml}}$ = merchantable \mbox{cubic} volume per acre at time 1,
- B_{mi} = merchantable basal **area** per acre at time i, Q = **site** index (shortleaf pine, base **age 50**), and $\mathbf{b}_{i} = \mathbf{coefficients}$ to be estimated.

The generalized equation for sawtimber volumes is

$$\mathbf{Z}_{si} = c_0 B_{si}{}^{c_1} e^{c_2 Q}$$
 ,

Table 1 .-- Plot distribution by shortleaf merchantable basal area, sawtimber basal area, and site index (base age 50) set at time one

0:4-	Marchantable	Sawtimber basal area (ft ²)						
index	basal area	<ll< th=""><th>ll-29</th><th>3049</th><th>50-69</th><th>7089</th><th>Total</th></ll<>	ll-29	3049	50-69	7089	Total	
ft	ft²			····· numbe	r of plots _			
<45	<11	3					3	
	11-29	3	4				7	
	3049		4	2			6	
	50-69			2	• • • • •		2	
	70-89	I			• • • • •	· • • • •	1	
	<i>>89</i>	• • •			••••		0	
	Total	7	8	4	0	0	19	
46-55	<11	7					7	
	ll-29	7	7	0			14	
	3049	2	7	6			15	
	50-69	• • •	1	7	2	1	10	
	70-89	• • •	• • • • •	I	3	1	5	
	> 89	• • •			••••		0	
	Total	16	15	14	5	1	51	
56-65	<11	7					7	
00 00	11-29	7	7				14	
	3049	2	7	7			16	
	50-69		3	7	2		12	
	70-89			1	3		4	
	>89				1		1	
	Total	16	17	15	6	0	54	
>65	<11	3					3	
	11-29	2	5				7	
	30-49	1	6	4			11	
	50-69		1	2	1		4	
	70-89	• • •	· •··		••••	· • • • •	0	
	>89		• • • •		••••		0	
	Total	6	12	6	1	0	25	
A11	<11	20					20	
sites	11-29	19	23				42	
51000	3049	5	24	19			48	
	50-69		5	18	5		28	
	70-89	1		2	6	1	10	
	>89				1		1	
	Total	45	52	39	12	1	149	

where

 \mathbf{Z}_{si} = sawtimber volume per acre of interest at time i

 $c_i = coefficients$ to be estimated,

 \mathbf{B}_{si} = sawtimber basal **area** at time i,

and the other variables are as previously defined. The volumes of interest are sawtimber cubic-foot volumes per acre and board-foot volumes per acre for the Doyle, Scribner, and International 1/4-inch log rules.

The coefficients were estimated by nonlinear least squares (SAS Institute 1982). The resulting equations are:

(1)
$$B_{m2} = [1.7819 - (1.7819 - B_{m1}^{0.11699})e^{-0.36313(0.11699)t}]^{(1/0.11699)t}$$

(2)
$$B_{s2} = B_{m2} [1 - \{1 - (B_{s1}/B_{m1})^{1.5036}\} e^{-0.017286(1.5036)t}]^{(1/1.5036)}$$

(3)
$$V_{mi} = 9.6209 B_{mi}^{1.1200_e 0.0031623 Q}$$

(4)
$$V_{ei} = 10.030 B_{ei}^{1.1554} e^{0.0017908 Q}$$

(5)
$$D_i = 16.327 B_{ei}^{1.2944} 0.0070266 Q_i$$

(6)
$$S_i = 37.227 B_{ei}^{1.2333} e^{0.0046645 Q}$$

(7)
$$I_i = 43.258 B_{si}^{1.2363_e 0.0041047 Q},$$

To evaluate the model, the predicted values were **compared** with the corresponding observed values. The results are in table 2. The basal area projection equations have little bias. Estimates of current merchantable cubic-foot volumes overpredict somewhat, and projected merchantable volumes are negatively biased. The equations for all other volume estimates overpredict slightly for current volumes, and the overpredictions are less pronounced for projected volumes. All the equations were deemed to predict with adeguate precision.

APPLICATION

Use of Tables

To illustrate the use of the accompanying tables, suppose it is decided to manage an uneven-aged shortleaf pine stand on land with a site index of 60 feet on a 7-year cutting cycle. The densities at the start of the cutting cycle are 60 and 45 square feet for merchantable and sawtimber basal areas, respectively. What will be the cyclic harvest under this management regime?

The first step is to obtain estimates of current volume. Looking at table 3, we find that the mer-

				Absolute de	eviations
Variable	Fit index ¹	Observed mean value	$Bias^2$	Mean	Standard deviation
B m2	0.92	47.2	0.2	5.2	4.0
B s2	0.92	31.2	-1.7	4.4	2.8
			i.b.		
V m1	0.90	'	-20	97	89
V_{m2}	0.93	638	22	97	97
V_{s1}	0.93	422	-16	58	62
V_{s2}	0.91	629	-14	93	78
		*******	fbm .		•
D_1	0.84	1,482	-58	337	351
D_2	0.85	2,325	- 8	431	554
S_1	0.89	2,403	-89	417	453
S_2	0.88	3,676	-49	605	692
I ₁	0.89	2,728	-110	487	519
I_2	0.88	4,191	-53	689	776

 $\begin{array}{l} {}^{1}I^{2}=1-\Sigma(y_{i}-\stackrel{\wedge}{y_{i}})^{2}/\Sigma(y_{i}-\overline{y})^{2} \\ {}^{2}Bias=\Sigma(y_{i}-\stackrel{\wedge}{y_{i}})/n \\ {}^{3}Absolute \ deviation=|y_{i}-\stackrel{\wedge}{y_{i}}|=d_{i} \end{array}$

Mean = $\Sigma d_i/n$

Standard deviation = $\sqrt{[\Sigma d_i^2 - (\Sigma d_i)^2/n]/(n-1)}$

where

y_i = ob served value,

 $\hat{\mathbf{y}}_i = \mathbf{predicted}$ value, and

n = 149, the number of observations.

Table 2.-Evaluation Of prediction equations

chantable volume per acre is 1,141 cubic feet. Table 4 contains sawtimber volumes, and the estimates are found by interpolating between 40 and 60 square feet of sawtimber basal **area**. Current volumes are 909 cubic feet; 3,443 board feet (Doyle rule); 5,396 board feet (Scribner rule); and 6,133 board feet (**Interna**tional **1/4-inch** rule).

Projected volumes and basal **areas** are to be **deter**mined next, enabling **us** to then determine projected volumes. **Projected** basal **areas** are determined first. **An** initial merchantable basal **area** of 60 square feet and a projection period of 7 years yields a projected basal **area** of 75 square feet (table 5). These initial merchantable and sawtimber basal **areas** are needed to derive projected sawtimber basal **area in** table 6.

Table 3.—Merchantable cubic-foot volume per acre for unevenaged stands of shortleafpine for different merchantable basal areas and site indexes

Marchantabla		Site index	(ft)	
basal area	50	60	70	80
ft²		ft ³ , i.b.		
30	508	525	542	559
40	702	724	748	772
50	901	930	960	991
60	1,105	1,141	1,177	1,215
70	1,313	1,356	1,399	1,444
80	1,525	1,574	1,625	1,677
90	1,740	1,796	1,854	1,914

Table 4.-Sawtimber volumes per .cre for uneven-aged stands of shortleafpine for different sawtimber basal areas and site indexes

	Sourier		Board-foot volume				
Sawtimber basal area	volume	Doyle	Scribner	International 1/4-inch			
ft²	ft³, i.b.		fbm				
Site index 50							
20	349	1,121	1,891	2,156			
30	558	1,894	3,118	3,559			
40	778	2,749	4,446	5,080			
50	1,007	3,670	5,854	6,693			
60	1,244	4,647	7,331	8,385			
70	1,486	5,673	8,866	10,146			
80	1,734	6,743	10,453	11,967			
Site index 60							
20	356	1,202	1,981	2,246			
30	568	2,032	3,267	3,708			
40	792	2,949	4,658	5,292			
50	1,026	3,937	6,134	6,974			
60	1,266	4,985	7,681	8,737			
70	1,513	6,086	9,289	10,571			
80	1,765	7,234	10,952	12,469			
Site index 70							
20	362	1,290	2,076	2,341			
30	579	2,180	3,423	3,864			
40	807	3,164	4,881	5,514			
50	1,044	4,223	6,427	7,266			
60	1,289	5,348	8,047	9,103			
70	1,540	6,529	9,732	11,014			
80	1,797	7,760	11,475	12,991			
Site index 80							
20	369	1,384	2,175	2,439			
30	589	2,339	3,586	4,026			
40	821	3,394	5,114	5,745			
50	1,063	4,531	6,734	7,570			
60	1,312	5,737	8,432	9,484			
70	1,568	7,004	10,197	11,476			
80	1,830	8,325	12,023	13,535			

Projected sawtimber basal **area is** found by **interpolat**ing between the projected values for initial sawtimber basal **areas** of 40 and 50 feet-which are 55 and 65 square feet, respectively. Projected sawtimber basal **area is** thus 60 square feet. Merchantable cubic-foot volume in 7 years is found by using the projected merchantable basal **area** (from table 5) and linear interpolation in table 3; it is 1,465 cubic feet. **Sawtim**ber volumes are similarly found by consulting table 4 where sawtimber basal **area is** 60 square feet. They are 1,266 cubic feet; 4,985 board feet (Doyle rule); 7,681 board feet (Scribner rule); and 8,737 board feet (International **1/4-inch** rule).

Basal **area** growth for the period **is** 2 square **feet** per acre per year for both sawtimber and merchantable basal **areas**. Annual per-acre volume growth **is** 46 **cubic** feet for merchantable volume; 51 cubic feet for sawtimber; and 220, 326, and 372 board feet for the Doyle, Scribner, and International **1/4-inch** rules, **re**spectively.

Use of Equations

These growth and yield models can **also** be **used** for other purposes. **Many private** nonindustrial timberlands brought under management are understocked. The problem **is** to **increase** stocking while **simulta**neously providing the landowner a periodic **income** under a variety of constraints. One **common harvest**ing constraint **is** that there must be **an** operable cut of, **say**, at least a thousand board feet per acre (Doyle rule). The models can be **used** to derive a management strategy with these **objectives** and constraints.

For example, suppose a **tract** of uneven-aged **short**leaf pine **is** to be brought under management. The **site** index for shortleaf **is** 70 feet (base **age** 50) **on** the property, and the current stand has 45 square feet **in** merchantable basal **area** and 25 square feet **in saw**timber basal **area**. The desired management **regime is** a **7-year** cutting **cycle** and residual densities of 60 and 45 square feet for merchantable and sawtimber basal **areas**, respectively. How might this property be **man**aged to bring the stand up to these stocking goals while providing a periodic cut that **is** at least 1,000 board feet (Doyle rule)?

A proposed strategy **is** to maintain a **7-year** cutting **cycle** and to cut 75 percent of growth and **see** if the harvesting constraint **is** followed. In this illustration, equations will be **used** instead of tables.

The present stand will be allowed to **grow** 7 years and then be harvested. To determine merchantable basal **area in** 7 years, equation (1) **is used**,

$$\begin{split} B_{m2} &= [1.7819 - (1.7819 \\ &- 45^{0.11699} \} e^{-0.36313(0.11699)7}]^{(1/0.11699)} , \\ &= 61.1 \text{ square feet } . \end{split}$$

The periodic growth is 61.1 - 45.0 or 16.1 square feet. If 75 percent of periodic growth is to be har-

Table 5.—Projected merchantable basal area per acre for unevenaged shortleafpine stands for different elapsed times and initial merchantable basal areas

	Initial merchantable basal area (\mathbf{ft}^2)						
Elapsed	time	30	40	50	60 7	0 80	90
years				•••• ft ²			
1	32	42	52	62	72	82	92
2	34	45	55	64	74	84	93
3	37	47	57	67	76	86	95
4	39	49	59	69	78	87	97
5	41	52	61	71	80	89	98
6	43	54	64	73	82	91	100
7	46	56	66	75	84	93	101
8	48	58	68	77	86	94	102
9	50	61	70	79	88	96	104
10	53	63	72	81	89	97	105

vested, then 12.1 square feet of merchantable basal **area** will be cut, and the residual density is 49.0 square feet. Equation (1) is **used** again to project basal **area** for 7 years, and the whole **process** is repeated until the stocking goal is reached. The following table summarizes the cyclic harvests and residual densities for merchantable basal **area**:

Merchantable Basal Area

Time	Before cut	Cut	After cut
years	ون ، وه یون په ۳۰۰ ون و ۳۰	ft ²	ب با 6 نز به د بر و نه د بر و نه و و و
0	45.0		4s.u
7	61.1	12.1	49.0
14	64. 9	11.9	53. 0
21	68. 7	11.8	56. 9
28	72. 3	12.3	60. 0
35	75.1	15.1	60. 0

The residual stocking goal for merchantable basal **area is** reached **in** 28 years, and regular cyclic **cuts** for merchantable basal **area** and volume occur after that.

The cutting schedule for sawtimber basal **area** is **computed** next. The projected sawtimber basal **area** in 7 years, given initial basal **areas** of 45 square feet for mechantable trees and 25 square feet for sawtimber trees, **is** determined by equation (2),

$$\begin{split} \mathbf{B_{s2}} &= \ 61.1[1 - \{1 \\ &- \ (25/45)^{1.5036}\} e^{-0.017286(1.5036)7}]^{(1/1.5036)} \\ &= \ \mathbf{39.1} \ \text{ square feet} \ . \end{split}$$

The periodic.growth is 39.1 – 25.0 or 14.1 square feet per acre, and the **first cycle** cut for sawtimber basal **area** is 75 percent of periodic growth: 10.6 square feet. Values for subsequent cutting **cycles** are determined **in** the **same** manner, and the following table may be constructed:

El ansed	Initial merchantable			Initial	sawtinb	er basal :	area (ft ²)	
time	basal area	20	30	40	50	60	70	80	90
years	ft2					ft²		·	·
1	30	22	32						
	40	22	32	42					
	50	22	32	42	52				
	60	22	32	42	52	62			
	70	23	32	42	5Z 59	62	72	00	
	90	23	33	42	52	62 62	72 72	82 82	92
2	30	24	34						
	40	24	34	45					
	50	24	34	44	55				
	60	24	34	44	54	64			
	70	25	35	44	54	64	74		
	80	26	35	44	54	64	74	84	02
	90	20	50	40	34	04	74	84	93
3	30	25	37						
	40 50	26	36	47	= 7				
	50 60	40 27	30 36	40 46	57 56	67			
	70	27	37	46	56	66	76		
	80	28	37	47	56	66	76	86	
	90	29	38	47	56	66	76	85	95
4	30	27	39						
	40	27	38	49					
	50	28	38	49	59				
	60	29	38	48	59	69			
	70	30	39	49	58	68	78	07	
	80 90	3 I 3 2	40 41	49 49	58 59	68	78 77	87 87	97
5	30	29	41						
-	40	29	40	52					
	50	30	40	51	61				
	60	31	41	50	61	71			
	70	32	41	51	60	70	80		
	80	34	42	51	60	70	79	89	
	90	35	43	52	61	70	79	89	98
6	30	31	43						
	40	31	42	54	64				
	5U 60	3 <i>6</i> 22	46	00 52	04 62	7 2			
	70	35	43	53	62	72	82		
	80	36	44	53	62	72	81	91	
	90	38	46	54	63	72	81	90	100
7	30	33	46						
	40	34	45	56					
	50	34	44	55	66				
	60	36	45	55	65	75			
	70	37	46	55	64	74	84		
	80 90	39 40	47 48	55 56	64 65	74 73	83 82	93 92	101
8	30	1 25	49			-		-	
U	3V /A	35 36	40 47	58					
	50	37	47	57	68				
	60	38	47	57	67	77			
	70	40	48	57	66	76	86		

 Table
 6.-Projected sawtimber basal area per acre for uneven-aged stands of shortleaf pine for different elapsed times, initial merchantable basal areas, and initial sawtimber basal areas

	Initial	Initial sawtinber basal area (ft^2)							
Elapsed time	nerchantable basal area	20	30	40	50	60	70	80	90
years	ft²				••••••	ft ²		*******	
	80	41	49	57	66	75	85	94	
	90	43	50	58	67	75	84	93	102
9	30	37	50						
	40	38	49	61					
	50	39	49	59	70				
	60	40	49	59	69	79			
	70	42	50	59	68	78	88		
	80	44	51	59	68	77	86	96	
	90	46	53	60	68	77	86	95	104
10	30	40	53						
	40	40	51	63					
	50	41	51	61	72				
	60	42	51	61	71	81			
	70	44	52	61	70	80	89		
	80	46	53	61	70	79	88	97	
	90	48	55	62	70	79	87	96	105

 Table
 6.—Projected
 sawtimber
 basal
 urea
 per
 acre for
 uneven-aged
 stands
 of
 shortleaf
 pine
 for

 different
 elapsed
 times, initial
 merchantable
 basal
 areas, and
 initial
 sawtimber
 basal

 areas
 (Continued)
 initial
 initial

Sawtimber Basal Area

Time	Before cut	cut	After cut
years		ft^2	
0	25.0		25.0
7	39.1	10.6	28.5
14	42.9	10.8	32.1
21	46.6	10.9	35.7
28	50.3	11.0	39.3
35	53.9	11.0	42.9
42	57.6	12.6	45.0
49	59.7	14.7	45.0

The residual stocking goal for sawtimber basal **area is** reached **in** 42 years, two cutting **cycles** later than for merchantable basal **area**. The cyclic harvest for **saw**-timber basal **area is** 14.7 square feet after the **stock**-ing goal **is** reached.

Now that merchantable and sawtimber basal **areas have been** determined, volumes can be calculated. Merchantable volumes are calculated using equation (3). The initial volume is

 $V_m = 9.6209 [45]^{1.1200} e^{0.0031623(70)} , \\ = 853 \text{ cubic feet }.$

The volume in 7 years is determined by substituting the projected merchantable basal **area**, which is 61.1 square feet,

The residual volume **is** found by using the residual merchantable basal **area** 49.0 square feet **in** equation **(3)**,

$$V_m = 9.6209[49.0]^{1.1200} e^{0.0031623(70)} ,$$
 = 938 cubic feet .

The harvest **is** determined by subtracting after-cut from before-cut volumes. The remaining values are determined **in** like manner. The following tabulation can now be constructed for merchantable cubic-foot volume:

Merchantable Cubic-foot Volume

Time	Before cut	cut	After cut
years	***	ft ³ , i.b	
0	853	0	853
7	1,201	263	938
14	1,285	260	1,026
21	1,370	261	1,109
28	1,451	274	1,177
35	1,514	337	1,177

After the stocking goal **is** reached **in year** 28, the cyclic harvest for merchantable volume **is** 337 cubic feet. Periodic annual growth **is** 48 **cubic feet**.

Sawtimber cubic-foot volumes are **determined** by equation (4). The cubic volume **for sawtimber at** time zero **is**,

$$V_s = 10.030[25]^{1.1554} e^{0.0017908(70)} ,$$

= 469 cubic feet

Subsequent volumes and **cuts** are determined by **fol**lowing the **procedures** already developed. When these **have been** calculated, the following table can be **devel**oped:

Sawtimber Cubic-foot Volume

Time	Before cut	cut	After cut
years		– ft³, i.b. –	
0	469	0	469
7	786	241	545
14	875	249	626
21	962	255	707
28	1,051	260	791
35	1,139	264	875
42	1,230	306	924
49	1,281	357	924

After the stocking goal for sawtimber is reached in year 42, the periodic cut will be 357 cubic feet for sawtimber. Periodic annual growth is 51 cubic feet.

Board-foot volumes for the Doyle rule are **calcu**lated using equation (5). The initial volume for the Doyle rule **is**

> **D** =16 $327(25)^{1.2944}e^{0.0070266(70)}$, = 1,722 board feet

After the volumes for the remainder of the planning period are calculated, the following tabulation can be **assembled:**

Doyle Board-foot Volume

Time	Before cut	Cut	After cut
years		fbm	
0	1,722	0	1,722
7	3,072	1,032	2,040
14	3,464	1,084	2,380
21	3,855	1,124	2,731
28	4,256	1,164	3, 092
35	4,655	1,191	3,464
42	5,072	1,387	3,685
49	5,313	1,628	3,685

After the residual stocking goal is reached, the **periodic** cut is 1,628 board feet (Doyle rule), and the **periodic** annual growth is 233 board feet per acre. **Notice** that **all** the **cuts** are more than 1,000 board feet, so the harvesting constraint is **satisfied** by this management strategy.

The **following** harvest schedule for sawtimber **volume** for the Scribner was determined using equation (6):

Scribner Board-foot Volume

Time	Before cut	cut	After cut		
years		fbm			
0	2,734	0	2,734		
7	4,746	1,533	3,213		
14	5,321	1,600	3,721		
21	5,892	1,650	4,242		
28	6,474	1,698	4,776		
35	7,051	1,730	5,321		
42	7,652	2,008	5,644		
49	7,998	2,354	5,644		

The periodic cut **is** 2,354 board feet (**Scribner** rule) **after** the residual stocking goal **is** reached, and **periodic** annual growth **is** 336 board feet.

Finally, the board-foot volumes, International 1/4inch rule, were calculated using equation (7).

International 1/4-inch Board-foot Volume

Time	Before cut	Cut	After cut			
years		fbm	· •			
0	3,084	0	3,084			
7	5,361	1,736	3,625			
14	6,013	1,812	4,201			
21	6,660	1,869	4,791			
28	7,320	1,925	5,395			
35	7,973	1,960	6,013			
42	8,655	2,277	6,378			
49	9,047	2,669	6,378			

After the cyclic harvest levels are stabilized, the **periodic** cut is 2,669 board feet (International 1/4-inch rule). Periodic annual growth is 381 board feet.

A variety of other strategies could **have been used** to rehabilitate the stand. For example, half of growth could be cut provided that the harvest was at least 1,000 board feet (Doyle rule). If **an** operable volume was not present, the **cycle** cut could be deferred. The cutting **cycle** length **in** this case would be variable **in** length. The potential applicability of these growth and yield models **is** limited **only by** the imagination of the **user**.

A program to use these growth and yield models on the **TI-59²** programmable **calculator** is available from the authors **upon** request. **Also** available'is a listing of **an** example worksheet and cell **contents** for using the

9

models in the electronic spreadsheet **program Super-Calc.**² The SuperCalc output for the foregoing **exam**ple is shown in the appendix. **Some** corresponding values differ slightly due to differences in the text example and those **used** in the spreadsheet program.

CONCLUSIONS

Users should consider several **factors** when using these models. First, the data carne from plots that exhibited a well-defined uneven-aged structure with shortleaf pine present as overstory, understory, and reproduction. Plots were **also defined** as being **in** the shortleaf pine forest type. Therefore, these equations should be restricted to these kinds of conditions.

Merchantable basal **areas** and volumes are for shortleaf pine trees 5.6 **inches** d.b.h. and larger; **saw**timber basal **areas** and volumes, 8.6 **inches** d.b.h. and larger. Merchantability standards for both **merchantable** and sawtimber volumes should **also** be **con**sulted.

Projected basal **areas** do **include ingrowth**, and the amount of ingrowth **reflects** average conditions **repre**sented in the data. Basal **area** predictions will be **inaccurate** in situations in which there is little ingrowth or where a large amount of shortleaf pines less than 5.6 inches d.b.h. are present and **capable** of **contribut**ing a large amount of **ingrowth**.

Projection periods should be limited to 10 years or less. Table 1 should **also** be **consulted** to **see** if your stand conditions are represented. If your **stands** are outside the range of the sample data or another **geo**graphic **area** is involved, the results should be treated with caution and validated if possible.

Shortleaf pine in the Interior Highlands is an important resource, and the results presented here provide data heretofore unavailable about the growth and yield of this species in uneven-aged stands. This information should be valuable to forest managers who would consider this management option but have been hanipered by the previous lack of growth and yield data.

LITERATURE CITED

Brinkman, K. A.; Rogers, N. F.; Gingrich, S. F. Shortleaf pine in Missouri, stand density affects yield. Res. Paper CS-14. U.S. Department of Agriculture, Forest Service; 1965. 14 p.

- Farrar, R. F., Jr.; Murphy, P. A.; Willett, R. L. **Ta**bles for estimating **growth** and yield of **uneven**aged **stands** of loblolly-shortleaf pine **on** average sites **in** the West Gulf **area**. Arkansas Agricultura1 Experiment Station Bulletin 874. 1984; 21. p.
- Lawson, E. R.; Kitchens, R. N. Shortleaf pine. In: Silvicultura1 systems for the major forest types of the United States. Agricultura1 Handbook 445. U.S. Department of Agriculture, Forest Service. 1983; 157-161.
- Moser, J. W.; Hall, O. F. Deriving growth and yield functions for uneven-aged forest stands. Forest Science. 15: 183-188; 1969.
- Murphy, P. A. Sawtimber **growth** and yield for natural, **even-aged stands** of shortleaf pine **in** the West Gulf Res. Paper SO-181. New Orleans, LA: U.S. Department of **Agriculture**, Forest Service, **South**ern Forest Experiment Station; 1982. 13 **p**.
- Murphy, P. A. A nonlinear timber yield equation system for loblolly pine. Forest Science. 29: 582– 591; 1983.
- Murphy, P. A.; Beltz, R. C. Growth and yield of shortleaf pine in the West Gulf region. Res. Paper SO-169. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station; 1981. 15 p.
- Murphy, P. A.; Farrar, R. M., Jr. Interim models for basal **area** and volume projection of uneven-aged loblolly-shortleaf pine **stands**. Southern Journal of Applied Forestry. 6: 115-119; 1982.
- Murphy, P. A.; Farrar, R. M., Jr. Sawtimber volume predictions for uneven-aged loblolly-shortleaf pine **stands on** average sites. Southern Journal of **Ap**plied Forestry. 7: 45-49; 1983.
- Sander, 1. L.; Rogers, R. Growth and yield of shortleaf pine in Missouri: 21-year results from a thinning study. In: Proceedings of Symposium on the Mangement of Pines in the Interior South. Tech. Pub. SA-TP-2. Atlanta, GA: U.S. Department of Agriculture, Forest Service, Southeastern Area, State and Private Forestry; 1979. 14-27.
- SAS Institute. SAS user's guide: statistics. SAS Institute. Carey, NC: 1982. 584 p.
- Schumacher, F. X.; Coile, T. S. Growth and yields of natural **stands** of the southern pines. T. S. Coile, Inc., Durham, NC; 1960. 115 p.
- Smalley, G. W.; Bailey, R. L. Yield tables and stand structure for shortleafpine plantations in Tennessee, Alabama, and Georgia Highlands. Res. Pap. SO-97. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station; 1974. 57 p.
- Sternitzke, H. S.; Nelson, T. C. The southern pines of the United States. **Econ.** Bot. 24: 142-150; 1970.
- U.S. Department of **Agriculture**, Forest Service. Volume, yield, and stand tables for second-growth southern pine. **Misc.** Pub. 50. Washington, DC. 1929. (rev. 1976) 202 p.

²TI-59 is a trademark of Texas Instruments, and SuperCalc is a trademark of Sorcim Corporation. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute oficial endorsement or approval of the product or firm by the USDA to the exclusion of others which may be suitable.

Appendix-Shortleaf Pine Growth and Yield

11	A U-A Bhl.:	B ;; USh16YD	C ;	; D ;	; E ;	I F II Before-cut	6	H }	I	H	J	K	L IFTER-CUT	N 11	N I
31	Tire	<i>S.I</i> .		Be	NerCF	Bs	SawCF	Doyle			Be	NerCF	Bs	SawCF	Doyle
11 51 71	0	80		45.00	880	25.00	477	1847			45.00	880	25.00	471	1847
71	1	80		61.08	1240	39.08	199	3293			49. 00	969	28.50	555	2189
9: 101	14	80		64.93	1328	42. 86	890	3711			53. 00	1057	32.10	637	2553
111	21	Во		68.71	1414	46.64	981	4141			56. 90	1145	35.70	720	2930
13:	28	80		12. 32	1498	50. 34	1071	4570			60. 00	1215	39. 30	805	3318
15:	35	Bo		75. 14	1563	53. 95	1161	4999			60. 00	1215	42. 90	891	3716
171	42	Bo		75. 14	1563	51.56	1251	5431			60.00	1215	45.00	941	3953
191 191 201	49	Bo		15. 14	1563	59.68	1304	5698			60.00	1215	45.00	941	3953
21:	56	80		75. 14	1563	59.68	1304	5698							
24: 25: 26: 21: 28: 29:	0	P ;;	e :	1 R 11	S	1 T 11 Cut	V !;	V ;;	Ň	::	I II	Y ;;	Z ; P. A. I.	AA ::	AB ;
2: 31	Tire	S.1.		Be	NerCF	Bs	SawCF	Doyle			Be	NerCF	BS	SawCF	Doyle
51	0	Bo		.00	0	.00	0	0							
71 R!	7	Bo		12.08	211	10. 58	244	1104			2. 30	51. 33	2. 01	46.04	207
9¦ 10·	14	BO		11.93	210	10. 76	253	1158			2.28	51. 29	2.05	41.16	218
11:	21	80		11.81	269	10.94	261	1212			2. 24	50.96	2.08	49. 13	221
13: 14:	28	BO		12. 32	263	3 11.04	266	1253			2. 20	50. 39	2.09	50. 14	234
151 161	35	Bo		15. 14	348	11.05	270	1263			2.16	49.16	2.09	50. 82	240
171 181	42	Bo		15. 14	348	12.56	310	1483			2.16	6 49.16	2.09	51.45	246
19: 20;	49	Bo		15.14	348	14.68	292	1744			2. 14	1 49.76	2.10	51. 8 7	249
21 i 22:	56	Bo									2.1	6 49.76	2.10	51.81	249
23: 24 i			CUT =	93.51	2138	81.61	1967	9238							
25: 26			Change =	30.14	683	34. 68	827	3850							
271 281			YIELD =	123. 72	2821	116. 29	2794	13089							
29:			M.A.I. =	2. 21	50. 38	2.08	49.89	234							

Murphy, Paul A.; Farrar, Robert M., Jr. Growth and yield of uneven-aged shortleafpine **stands in** the Interior Highlands. Res. Paper SO-218. New Orleans, LA: U.S. Department of **Agriculture**, Forest Service, Southern Forest Experiment Station; 1985. ll p.

Equations are given to **estimate** current and projected **volumes** and projected basal **areas** of uneven-aged shortleafpine (*Pinus echinata* Mill.) **stands** managed under the selection system.