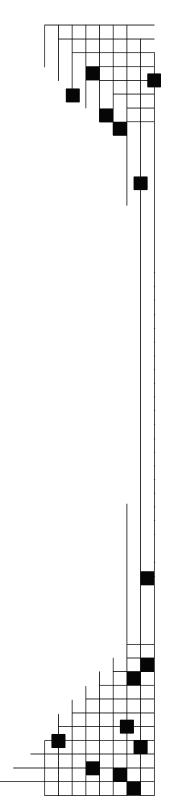


# **Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis** Gas Cleanup, and Oxygen **Separation Equipment**

**Task 2: Gas Cleanup Design and Cost** Estimates – Wood Feedstock

Nexant Inc. San Francisco. California Subcontract Report NREL/SR-510-39945 May 2006




# Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment

Task 2: Gas Cleanup Design and Cost Estimates – Wood Feedstock

Nexant Inc. San Francisco, California

NREL Technical Monitor: Kelly Ibsen Prepared under Subcontract No. ACO-5-44027 Subcontract Report NREL/SR-510-39945 May 2006



National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL

#### NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/ordering.htm</u>



Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

## Contents

| Sections  |                                                  | Page |
|-----------|--------------------------------------------------|------|
| Executive | e Summary                                        | ES-1 |
| Introduc  | ion and Methodology                              |      |
| Section 1 | Process Selection Rationale                      |      |
| 1.1       | Introduction                                     |      |
| 1.2       | Process Description and Rationale                |      |
| 1.2.1     | Low-Pressure Syngas Process Description          |      |
| 1.2.2     | High-Pressure Syngas Process Description         |      |
| 1.3       | Discussion                                       |      |
| 1.3.1     | Technologies Not Chosen                          |      |
| Section 2 | Equipment Design and Cost Estimates              |      |
| 2.1       | Introduction and Methodology                     |      |
| 2.2       | Key Design Assumptions                           |      |
| 2.2.1     | Sulfur and CO <sub>2</sub> Removal               |      |
| 2.2.2     | Tar Reforming                                    |      |
| 2.2.3     | Cyclones                                         |      |
| 2.2.4     | Heat Integration                                 |      |
| 2.2.5     | 1                                                |      |
| 2.3       | Operating Costs and Utility Requirements         |      |
| 2.4       | Differences with NREL Biomass to Hydrogen Design |      |
| 2.4.1     |                                                  |      |
| 2.4.2     |                                                  |      |
| 2.4.3     |                                                  |      |
|           | Changing Flows, Conditions, and Compositions     |      |
| 2.5.1     | 1                                                |      |
| 2.5.2     | 1 1                                              |      |
|           | Follow-Up and Areas for Further Study            |      |
| Section 3 | Labor Requirements                               |      |
| 3.1       | Summary                                          |      |
|           | Labor Requirements                               |      |
|           | Differences with Emery Energy 70 MWe Case        |      |
| 3.4       | Differences with NREL Biomass to Hydrogen Case   |      |

## Sections

| Append | lix A  | High-Pressure Syngas Design Case PFDs | A-1  |
|--------|--------|---------------------------------------|------|
| Append | lix B  | Low-Pressure Syngas Design Case PFDs  | B-1  |
| Append | lix C  | Equipment Lists and Data Sheets       | C-1  |
| Append | lix D  | Gas Cleanup Technologies Evaluated    | D-1  |
| D.1    | Intro  | duction                               | D-1  |
| D.2    | Partic | culate Removal Technologies           | D-1  |
| D.3    | Tar R  | Removal Technologies                  | D-5  |
| D.4    | Acid   | Gas Removal Technologies              | D-7  |
| D.5    | Amm    | nonia, Alkali, and Other Contaminants | D-13 |
|        |        |                                       |      |

## **Tables and Figures**

| Table A Syngas Clean-Up Case Summary                                       | ES-2         |
|----------------------------------------------------------------------------|--------------|
| Table 1-1 Syngas Compositions and Operating Parameters                     | 1-1          |
| Table 1-2 Gas Cleanup Requirements                                         | 1-2          |
| Figure 1-1 General Syngas Clean-Up Process Flow                            | 1-2          |
| Table 1-3 Tar Reformer Performance                                         | 1-3          |
| Table 2-1 Catalyst and Chemical Requirements                               | 2-4          |
| Table 2-2 High-Pressure Case Utility Requirements                          | 2-5          |
| Table 2-3 Low-Pressure Case Utility Requirements                           | 2-5          |
| Table 2-4 Examples of Typical Exponents for Equipment Cost Versus Capacity | 2-11         |
| Table 3-1 Labor Costs                                                      | 3-3          |
| Figure D-1 Principle of Barrier Filters                                    | D-2          |
| Table D-1 Comparison of Syngas Reforming Process Technology                | D <b>-</b> 7 |
| Figure D-2 Typical Amine System Flow Diagram                               | D-8          |
| Figure D-3 Typical Physical Solvent System Flow Diagram                    | D-10         |
| Figure D-4 Typical LO-CAT <sup>TM</sup> System Flow Diagram                | <b>D-</b> 11 |
| Figure D-5 Traditional ZnO Purification System                             | D-12         |

## **Executive Summary**

As part of Task 2, Gas Cleanup and Cost Estimates, the team investigated the appropriate process scheme for treatment of wood derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the BCL gasifier, and a high-pressure, direct system using GTI gasification technology, were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by NREL. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

The first task explored the different process options available for the removal of the main process impurities, including particulates, sulfur, carbon dioxide, tar, ammonia, and metals. From this list, selection of commercial technologies appropriate for syngas clean-up was made based on the criteria of cost and the ability to meet the final specifications. Preliminary flow schemes were established and presented to NREL; after discussion and modification, final designs, including unit sizes, energy use, capital and operating costs, and labor requirements, were developed. Finally, Nexant performed an analysis to determine how changes in syngas flowrates and compositions would impact the designs, for future reference as the plant size changes.

The technologies chosen for both cases did not differ considerably. Each case possesses the following pieces of equipment:

- Cyclones for particulate removal
- Tar cracking for the removal of heavy and light hydrocarbons. Steam is injected in varying amounts into the tar cracker to set the appropriate hydrogen to carbon monoxide ratio.
- Syngas cooling, necessary for downstream sulfur treatment, and a water quench/venturi scrubber for ammonia and trace contaminant removal
- Amine treatment for sulfur and carbon dioxide removal
- Zinc oxide beds for additional sulfur removal down to the low levels required for fuels synthesis
- Liquid phase oxidation of acid gas for sulfur recovery

The low-pressure gasifier case required the use of a process gas compressor to raise the gas pressure to the level appropriate for downstream treatment and product synthesis. Information was also provided for the level of clean syngas compression necessary to prepare both cases for methanol synthesis.

The results of the analysis for both cases can be seen in Table A below, with information on the capital and operating costs:

|                                  | Low-Pressure<br>BCL Gasifier | High-Pressure<br>GTI Gasifier |
|----------------------------------|------------------------------|-------------------------------|
| Wood Feedrate (MTPD)             | 2,000                        | 2,000                         |
| Syngas Rate (lb/hr)              | 316,369                      | 418,416                       |
| Total Installed Cost (\$MM)      | 109.4                        | 76.5                          |
| Power Required (MW)              | 18.5                         | (5.2)                         |
| Net Steam Required (lb/hr)       | 44,000                       | 114,000                       |
| Water Required (GPM)             | 37,806                       | 25,454                        |
| Natural Gas (MMSCFD)             | 7                            | 8                             |
| Catalysts and Chemicals (\$/day) | 1,931                        | 1,457                         |

## TABLE A SYNGAS CLEAN-UP CASE SUMMARY

The bulk of the cost difference between the two cases is due to the process gas compressor required in the low-pressure case. The two cases use similar equipment for all other steps of the process; although the cases had different gas flowrates and compositions, the equipment impact is small relative to that of the process gas compressor. While these results imply that direct gasification is preferred, this study did not take into account other differences in the two process schemes, such as the potential need for an oxygen plant in the high-pressure to chemicals case.

The team also compared the clean-up system design and costs versus the design developed by NREL for a recent biomass to hydrogen study. The cost for the clean-up section of the biomass to chemicals designs is more expensive due to three main reasons: more equipment necessary in the chemical production designs, the increase in steel prices from 2002 to 2005, and different engineering assumptions made in the chemicals production case. The main engineering difference is the cost assumed for the process gas compressor in the low pressure case; a larger compressor and selection of a different design type increases the installed cost by \$25MM versus the NREL design. In addition, gas clean-up cost assumptions made by NREL from previous studies likely underestimated the cost of the tar cracker and heat exchange equipment.

This study updates previous NREL investigations by providing the most up-to-date information for appropriate technologies and their respective costs. Future studies should focus on the following areas to further define suitable technologies and confirm costs:

- *Alternatives for Tar Removal:* Further study and analysis should be performed to validate the methods used by the team. In addition, alternative tar removal technology should be considered, including cracking within the gasifier.
- Process Integration, Gasification Systems and Biorefinery: Integration of the cleanup section with the other parts of the gasification plant will provide a better picture of the overall plant costs.
- Alternate CO<sub>2</sub>/Sulfur Removal Steps: A cost comparison of amine versus physical solvents would provide additional data to confirm the appropriate use of amine in this design Advanced technologies for acid gas removal, such as warm gas clean-up, should also be considered.

• *Other Impurities in the Syngas:* If it is deemed that the level of items such as metals and halides entering the scrubber will not adversely impact the FT or methanol catalysts, this step could be removed.

This study provides designs and costs for cleaning wood derived syngas in preparation for feed to liquid fuel synthesis units. Two different starting conditions, one with syngas derived from a low-pressure, indirect gasifier, and one from a high-pressure, direct gasifier, were evaluated. The goal was to provide NREL with a complete design package, including process flow diagrams, equipment specification sheets, mass and energy balances, capital and operating costs, and labor requirements, that can be used to evaluate the feasibility of biomass to chemicals technologies. The study also addressed how the designs would be impacted by changing flowrates and syngas compositions, so that the designs could be adapted to other process conditions.

The work was divided into three main task areas. The first Subtask (2.1) presented a list of possible gas clean-up technologies, with recommendations provided for the most suitable ones for additional analysis. The results of this study can be seen in Appendix D. Next, preliminary process flow diagrams were developed, along with an initial material balance (Subtasks 2.2.1 and 2.2.2). This was reviewed with NREL, and modifications made before the final design work began. The final phase consisted of performing equipment sizing, development of costs, and scaling analysis (Subtasks 2.2.3 through 2.2.7).

A variety of resources were used throughout the project to produce the final designs. In gathering the initial technology data, previous team studies, literature reviews, vendor information, and NREL input were all used to establish the items for consideration. Vendors and R&D facilities were especially helpful in providing data for novel technologies, such as tar cracking and liquid phase sulfur oxidation. Team members involved in biomass gasification, GTI and Emery Energy, provided valuable insight on reliability and feasibility issues.

HYSYS was used for modeling the overall process, with vendor input for specialty equipment. Design and performance of the amine system, LO-CAT<sup>TM</sup> unit, tar cracker, and process gas compressor were provided by vendors and estimated through other modeling work. All other process equipment was sized by the HYSYS program. Since the basis for the tar cracker, the NREL TCPDU, is not commercial, data from NREL was used, along with assumptions for bed fluidization needs and heat transfer requirements to produce a size estimate. Greater detail for the assumptions made can be found in Section 2.

Costing was performed in a similar fashion as design, with commercially available software, ICARUS, used for much of the equipment sized using HYSYS. All cost estimates use a second quarter 2005 basis. Quotes were obtained from vendors for unique and capitally intensive items, such as the process gas compressor, cyclones, ZnO beds, and LO-CAT<sup>TM</sup> unit. Industry derived cost curves were used for the amine system and as a check on other process items. Operating costs were developed from vendor supplied information and the energy balance. Finally, labor requirements are derived from a scale-up of a detailed study by Emery Energy specific to biomass gasification. For all results, comparisons were made throughout the study to results from previously developed NREL reports.

## Section 1

## 1.1 INTRODUCTION

The initial task for the Nexant team was to identify and evaluate all commercially available technology for clean-up of wood derived syngas. The technology list, with information on operating size ranges and conditions, materials of construction, and cleanup parameters, can be seen in Appendix D. After a review of technology options with NREL, flow schemes were developed for both the high and low pressure cases. The result of this analysis and justification for the technologies chosen is detailed in this section.

The compositions of the syngas from the gasifiers and the cleanup requirements are listed in Tables 1-1 and 1-2 below<sup>1</sup>. Each case being evaluated assumed a wood feedrate of 2,000 metric tonnes per day (MTPD).

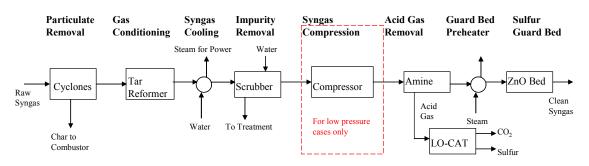
|                                       | Syngas from<br>BCL Gasifier            | Syngas from<br>GTI Gasifier            |
|---------------------------------------|----------------------------------------|----------------------------------------|
| Temperature, °F                       | 1,598°F (870°C)                        | 1,598°F (870°C)                        |
| Pressure                              | 33 psia (1.6 bar)                      | 460 psia (32 bar)                      |
| Steam/bone dry feed                   | 0.4 lb/lb                              | 0.76 kg/kg                             |
|                                       |                                        |                                        |
| Compositions                          | Mol% (wet)                             | Mol% (wet)                             |
| H <sub>2</sub>                        | 12.91                                  | 13.10                                  |
| CO <sub>2</sub>                       | 6.93                                   | 19.40                                  |
| CO                                    | 22.84                                  | 8.10                                   |
| H <sub>2</sub> O                      | 45.87                                  | 50.70                                  |
| CH <sub>4</sub>                       | 8.32                                   | 7.80                                   |
| C <sub>2</sub> H <sub>2</sub>         | 0.22                                   |                                        |
| C <sub>2</sub> H <sub>4</sub>         | 2.35                                   | 0.10                                   |
| C <sub>2</sub> H <sub>6</sub>         | 0.16                                   | 0.20                                   |
| C <sub>6</sub> H <sub>6</sub>         | 0.07                                   | 0.30                                   |
| Tar (C <sub>10</sub> H <sub>8</sub> ) | 0.13                                   | 0.10                                   |
| NH <sub>3</sub>                       | 0.18                                   | 0.10                                   |
| H <sub>2</sub> S                      | 0.04                                   | 0.04                                   |
| Gas Yield                             | 0.04 lbmol of dry gas/lb bone dry feed | 0.05 lbmol of dry gas/lb bone dry feed |
| Char Yield                            | 0.22 lb/lb bone dry feed               | 0.0514 lb/lb bone dry feed             |
| H <sub>2</sub> :CO molar ratio        | 0.57                                   | 1.62                                   |

#### TABLE 1-1 SYNGAS COMPOSITIONS AND OPERATING PARAMETERS

<sup>&</sup>lt;sup>1</sup> Information provided by Pamela Spath, NREL.

The gas pressure assumed from the BCL gasifier, 33 psia, is higher than initially evaluated during this project. Preliminary investigations were performed using a syngas pressure of 23 psia. Raising the pressure by 10 psia allows for a simpler and more reliable design, by allowing a water wash upstream of the compression stage.

| Process                   | Contaminants     | Level                 | Source/Comment          |
|---------------------------|------------------|-----------------------|-------------------------|
|                           | Sulfur           | 0.2 ppm               | Dry, 1981               |
|                           |                  | 1 ppmv                | Boerrigter, et al, 2002 |
|                           |                  | 60 ppb                | Turk, et al, 2001       |
| Fischer-Tropsch Synthesis | Halides          | 10 ppb                | Boerrigter, et al, 2002 |
|                           | Nitrogen         | 10 ppmv NH3           | Turk, et al, 2001       |
|                           |                  | 0.2 ppmv NOx          |                         |
|                           |                  | 10 ppb HCN            |                         |
|                           | Sulfur (not COS) | <0.5 ppmv             | Kung, 1992              |
| Mathemal Curthenia        |                  | (<0.1 ppmv preferred) |                         |
| Methanol Synthesis        | Halides          | 0.001 ppmv            | Twigg and Spencer 2001  |
|                           | Fe and Ni        | 0.005 ppmv            | Kung, 1992              |


## TABLE 1-2 GAS CLEANUP REQUIREMENTS

The main impurities in the syngas exiting the gasifier that must be removed are char, tars, hydrocarbons, sulfur, and CO<sub>2</sub>. In addition, trace contaminants such as ammonia, metals, halides, and alkali species were of sufficient concern that equipment was added to remove them as well. Finally, the syngas must also be adjusted to obtain the appropriate  $H_2$ /CO ratio.

## 1.2 PROCESS DESCRIPTION AND RATIONALE

A schematic for the process design developed for both cases can be seen in Figure 1-1. Both the low and high pressure cases used very similar processes for syngas clean-up: particulate removal with cyclones, tar reforming, cooling and water scrubbing, acid gas removal with amine, and sulfur polishing. The main difference between the cases is the inclusion of a compression step in the low-pressure case. A detailed description of each design is addressed in this section.

## FIGURE 1-1 GENERAL SYNGAS CLEAN-UP PROCESS FLOW



## 1.2.1 Low-Pressure Syngas Process Description

#### Particulate Removal

The syngas exiting the gasifier contains impurities that must be removed in order to meet the specifications required for methanol or FT synthesis. Cyclones are used as the initial step in the gas cleanup process to remove the bulk of the char entrained in the syngas stream. This technology is standard in industry due to its low cost and high level of performance for removing particulates. Syngas from the low-pressure gasifier is sent through four parallel cyclones operating at 1598°F and 33 psia.

#### Tar Reforming

Syngas is fed to a tar reformer to remove tars, light hydrocarbons, and ammonia before any additional gas treating or cooling. Reforming must occur prior to cooling the syngas to prevent tar condensation and deposition on downstream equipment. The tar reformer was modeled using NREL's "goal design" reactor conversion for the Thermochemical Pilot Development Unit (TCPDU). Table 1-3 shows the assumed reactor conversion rate as provided by NREL. In the tar reformer, tars (mono and polyaromatic compounds) and light hydrocarbons such as methane, ethylene, and ethane are converted to H<sub>2</sub> and CO. Ammonia is converted to N<sub>2</sub> and H<sub>2</sub>. Since the reactor effluent contains about 1.3 mol% CH<sub>4</sub>, and 0.2 mol% of other hydrocarbons, additional downstream steam reforming was deemed not necessary. This conclusion was confirmed by NREL<sup>2</sup>.

| Compound                                  | % Conversion |
|-------------------------------------------|--------------|
| Methane (CH <sub>4</sub> )                | 80           |
| Ethane (C <sub>2</sub> H <sub>6</sub> )   | 99           |
| Ethylene (C <sub>2</sub> H <sub>4</sub> ) | 90           |
| Tars (C10+)                               | 99.9         |
| Benzene (C <sub>6</sub> H <sub>6</sub> )  | 99           |
| Ammonia (NH <sub>3</sub> )                | 90           |

## TABLE 1-3 TAR REFORMER PERFORMANCE

Syngas exiting the tar reformer enters another cyclone to separate both entrained reforming catalyst and any residual char. The solids are then sent to a catalyst regenerator. The catalyst is sent to a regenerator vessel, where char and residual carbon is combusted. The hot, regenerated catalyst is then recycled back to the reactor vessel, acting as the heat source for the reforming reactions.

## Syngas Cooling

The remaining gas treatment steps require the syngas to be at a much lower temperature. Therefore, the gas is cooled in three stages from 1598°F to 225°F prior to scrubbing. The heat

<sup>&</sup>lt;sup>2</sup> Nexant team discussion with Pamela Spath, April 2005.

recovered from the process is used for steam generation throughout the system. The process design has been optimized as much as possible to use this steam, reducing the plant utility load. Integration was limited to the needs of the clean-up section; broader heat integration with the overall thermochemical platform or biomass refinery may lead to additional efficiency gains.

#### Scrubbing and Quench

The syngas is sent to the Syngas Venturi Scrubber, C-200, to remove any remaining ammonia, particulates, metals, halides, or alkali remaining in the system. The water circulation rate to the scrubber is adjusted such that the exiting syngas is quenched to the appropriate temperature for feed to the first stage of the compressor.

#### Compression

Any residual condensate in the syngas exiting the scrubber is removed in the Syngas Compressor KO Drum, V-300. The cooled syngas stream is compressed to 445 psia using a 4-stage centrifugal compressor with interstage cooling. The compressor is modeled assuming a horizontally split centrifugal design, with a polytropic efficiency of 78% and 110°F intercoolers. After discussion with compressor vendors<sup>3</sup> and internal analysis by Nexant, it was determined that this type of compressor is appropriate for this gas flowrate, pressure ratio, and reliability requirements. While an integrally geared compressor was considered due to its lower cost, this type of compressor was not recommended due to the high flowrate and reliability required. The discharge pressure is designed such that the compressed gas is at the operating pressure range for FT synthesis.

## Sulfur Removal

Originally, the scheme developed was use of LO-CAT<sup>TM</sup> and ZnO polishing for H<sub>2</sub>S removal, followed by amine for CO<sub>2</sub> removal. After discussions with NREL, this was modified so that amine was used for both H<sub>2</sub>S and CO<sub>2</sub> removal. The ZnO beds remained in the design as a guard/polishing step after the amine unit, while the LO-CAT<sup>TM</sup> unit is now used to remove H<sub>2</sub>S from the acid gas stream. The benefit of this design is reduced load on both the LO-CAT<sup>TM</sup> and ZnO units; the flow going to the LO-CAT<sup>TM</sup> unit in this case is now only the acid gas stream instead of the entire syngas stream, and the inlet H<sub>2</sub>S concentration at the ZnO bed is expected to be lower. This should increase the lifespan of the ZnO catalyst.

The syngas exiting the gasifier contains ~400 ppmv of H<sub>2</sub>S. An amine unit with a high circulation rate can reduce the syngas sulfur concentration to below 10 ppmv, with a target of 2-3 ppmv. Due to the high amount of CO<sub>2</sub> removal required, it is this component that drives the circulation rate and unit size, not H<sub>2</sub>S. The ZnO beds are used as a polishing step to reduce the sulfur concentration to the < 0.1 ppmv level required for methanol and FT synthesis. The gas exiting the amine absorber is heated to the operating temperature of the ZnO beds, 750°F.

For the low-pressure case, DEA was selected, while MDEA is used for the high-pressure case. This selection is based on design simulation runs by matching the desired  $CO_2$  and  $H_2S$  removal

<sup>&</sup>lt;sup>3</sup> Consultation made with both Elliott Compressor and GE.

requirements to the selectivity of the amine solvents. Attempts were also made to choose solvents that minimized net energy requirements.

## Water-Gas Shift and CO2 Removal

FT synthesis requires a  $H_2/CO$  ratio of 2:1, and methanol synthesis requires the following stoichiometric ratio of  $H_2$ , CO, and CO<sub>2</sub>:

$$(H_2 - CO_2) / (CO + CO_2) = 2$$

The syngas stream exiting the ZnO beds has a  $H_2/CO$  ratio of 1.7 and a stoichiometric ratio of 0.89, which are inadequate for FT or methanol synthesis. A combination of water injection into the tar cracker, followed by CO<sub>2</sub> removal in the amine unit, has been selected to adjust these ratios. In methanol synthesis,  $H_2$  will react preferentially with CO<sub>2</sub> over CO to form methanol. This results in a significantly lowered methanol yield, greatly impacting the process efficiency. In FT synthesis, CO<sub>2</sub> acts as a diluent; however, for a design in which the off-gas from the FT reactor is recycled back to the reactor to improve conversion, removal of CO<sub>2</sub> is necessary to prevent CO<sub>2</sub> buildup in the reactor.

The initial designs for the low pressure system incorporated a shift reactor instead of water injection to assist in obtaining the necessary composition ratios. Further analysis and review with NREL led to the determination that a shift reactor was unnecessary, and that steam injection into the tar cracker is sufficient to perform the required shift. Elimination of this unit operation helps to reduce the overall system cost.

 $CO_2$  removal can be achieved through different processes such as chemical (amine) or physical (Selexol or Rectisol) absorption, as outlined in Appendix D. The syngas stream entering the  $CO_2$  removal unit is at about 420 psia and 110°F. Since physical absorption process is best suited for high pressure (>700 psia) and low temperature systems, an amine system was selected to remove  $CO_2$  from the syngas. In addition to the syngas already possessing the appropriate operating conditions for chemical absorption, an amine system is also likely to be less expensive than the Selexol or Rectisol system. A side-by-side cost analysis from vendors would be necessary to confirm the optimal design. Approximately 98% of the  $CO_2$  in the syngas stream must be removed in order to meet the stoichiometric ratio requirement for methanol synthesis.

The treated syngas exits the amine absorber at approximately 110°F and 440 psia. The treated syngas is sent to either the methanol or FT reactor. For methanol synthesis, the treated gas is compressed and heated to the operating conditions of the methanol reactor, about 1160 psia and 460°F. For FT synthesis, the treated gas is heated to 350°F.

## 1.2.2 High-Pressure Syngas Process Description

The cleanup process scheme for the syngas from the high-pressure gasifier is similar to that of the syngas from the low-pressure gasifier with the exception of the syngas compression step, differences in the heat balances, and process unit size variations due to different syngas compositions and conditions. Information about these differences is presented below.

Similar to the low-pressure case, high-pressure syngas is sent through a series of cyclones to remove the bulk of the char entrained in the syngas stream. The syngas is then sent to the tar reformer for removal of tars, methane, other light hydrocarbons, and ammonia. Steam is added to the syngas entering the tar reformer so that the shift reaction that occurs in the reformer can yield the required  $H_2/CO$  ratio for methanol or FT synthesis. Due to a more appropriate synthesis ratio in the raw syngas stream, less steam is required relative to the low-pressure case. The reformer effluent is then sent to the water scrubbing unit for removal of residual char, alkali, metals, halides, and ammonia.

Following the water scrubbing unit, the syngas is sent to an amine unit where MDEA is used for the removal of both H<sub>2</sub>S and CO<sub>2</sub>. As in the low-pressure case, a LO-CAT<sup>TM</sup> unit is used for sulfur recovery, while ZnO beds are used for reducing the syngas sulfur content to below < 0.1 ppmv H<sub>2</sub>S. Rationale for process selection of the sulfur and CO<sub>2</sub> removal units is similar to that of the low-pressure syngas case, although MDEA was used instead of DEA in the amine system. The treated syngas is sent to either the methanol or FT reactor. For methanol synthesis, the treated gas requires compression and pre-heating to 1160 psia and 460°F prior to entering the methanol reactor. For FT synthesis, the treated gas requires pre-heating to 350°F.

## 1.3 DISCUSSION

## 1.3.1 Technologies Not Chosen

As presented in Appendix D, a list of technologies was provided for performing the various gas cleanup tasks required. From this list, specific technologies have been selected for each of the designs presented here. Below is a list of the technologies that were not chosen, and the rationale behind those decisions.

## Particulate Removal

*Ceramic and Metal Candle Filters:* Candle filters could be used in place of cyclones for char and catalyst separation from the syngas stream. Little commercial experience exists in operating these types of filters at the temperatures  $(1500^{\circ}F^+)$  that the cyclones operate under. At this temperature, only ceramic filters could be considered. A recent study performed by Nexant for the DOE's National Energy Technology Laboratory<sup>4</sup> examined replacing a third stage cyclone with a ceramic candle filter. The cost of this high temperature filter, even assuming an "nth plant design", did not justify the change. Because of the limited commercial experience and high cost, these options were eliminated.

*Baghouse Filters:* As with candle filters, baghouse filters are not appropriate for high temperature applications. Therefore, they cannot replace the cyclones as an effective solids removal option.

*Electrostatic Precipitators:* Since dry ESPs can only operate up to  $\sim$ 750°F and wet ESPs up to  $\sim$ 200°F, this option cannot replace cyclones for solids removal. In addition, the high cost and waste streams produced make them unattractive relative to other filtration options.

<sup>&</sup>lt;sup>4</sup> "Gasification Alternatives for Industrial Applications: Subtask 3.3—Alternate Design for the Eastern Coal Case, DOE Contract DE-AC26-99FT40342, April 2005.

#### Tar and Hydrocarbon Removal

*Wet Scrubbing:* Due to the relatively low content of tar in the syngas stream and the non-power application being considered, wet scrubbing could be considered a viable option for tar removal. However, inclusion of a wet scrubber may make a steam reformer necessary to remove hydrocarbons from the system. In addition, wet scrubbing for tar removal creates considerable waste removal and treatment issues and lowers process efficiencies. A detailed analysis comparing the current configuration with a wet scrubber/steam reformer would be of interest to confirm these assumptions.

*Hydrocarbon Reforming (SMR/POx/ATR):* Due to the low content of hydrocarbons exiting the tar cracker, it was determined that this step was unnecessary. Both FT and methanol synthesis reactors should be able to handle the quantity of hydrocarbons without severely impacting performance.

**Other Technologies:** During the course of the design work for the current configuration, other alternatives, such as injection of cracking catalyst directly into the gasifier and changes in gasifier operation, were identified. Limited empirical data for these technology options make them impractical for design use at this time.

#### Sulfur Removal

**LO-CAT**<sup>TM</sup>: The initial designs for sulfur removal from the syngas stream used the LO-CAT<sup>TM</sup> technology due to the low net syngas sulfur content. Redesigns of the combined sulfur and  $CO_2$  removal system demonstrated that using LO-CAT<sup>TM</sup> for sulfur recovery and amine for sulfur and  $CO_2$  removal was more economic.

*Physical Solvents:* As can be seen in Appendix D, physical solvents (Rectisol/Selexol processes, for example) typically operate at low temperatures and high pressures. Changes in the stream pressure leaving the scrubber/quench may be required prior to entering a physical solvent unit for optimum performance, whereas the current process conditions are more appropriate for feed to an amine system. In addition, previous Nexant studies have determined little to no cost benefit in implementing a physical solvent system over other treatment methods for systems of this nature. A more in-depth analysis would be required to confirm the cost difference between physical absorbents and an amine/ZnO treatment system.

*COS Hydrolysis:* Due to the limited COS expected to be produced from a biomass gasification system, this removal step was omitted.

## 2.1 INTRODUCTION AND METHODOLOGY

Design and cost estimates were obtained using three major sources:

- HYSYS and ICARUS were used to obtain design and cost estimates for generic equipment such as vessels, pumps, compressors, and heat exchangers. The design basis was agreed upon after the submission of the design information outlined in Section 1.
- Vendor quotes were obtained for unique and specialized equipment such as cyclones, ZnO catalyst/reactors, LO-CAT<sup>TM</sup> sulfur absorption, and compressors. Some items, such as compressors and blowers, were estimated both by HYSYS/ICARUS and through vendor quotes in order to validate the results.
- The amine unit performance and energy requirements were estimated using commercially available software that is specific for amine unit modeling. Once performance requirements were obtained, an industry developed cost curve was used for estimating installed cost.

An updated set of PFDs can be seen in Appendices A and B. The design and cost estimates for the high-pressure and low-pressure cases are presented in the Equipment List and Data Sheets, which can be seen in Appendix C. The Equipment List groups process equipment by the following categories: reactors, cyclones, vessels, heat exchangers, compressors, pumps, turbines, and packaged units (the amine and LO-CAT<sup>TM</sup> units). Shown in the Equipment List are the following items:

- Unit size and weight
- Design duty (exchangers)
- Design temperature and pressure
- Power usage
- Materials of construction
- Price (uninstalled) on both a Q2 2004 and Q2 2005 basis
- Source for cost estimate
- Comments and notes

An installation factor of 2.57 was applied to all base equipment costs, with the exception of the process gas compressor, to arrive at the total installed cost. The installation factor was derived based upon previous experience and vendor estimates. An installation factor of 2.47 was used for the compressor based on previous detailed compressor cost analysis. The total installed cost for the low-pressure case is \$109MM, while the installed cost for the high-pressure case is \$76MM. The difference is largely due to the process gas compressor used in the low-pressure case.

## 2.2 KEY DESIGN ASSUMPTIONS

A complete description of the process and rationale for choosing the technologies in this deliverable can be seen in Section 1. Each case assumed a feedrate of 2,000 MTPD. Issues encountered when performing the unit designs are outlined below.

#### 2.2.1 Sulfur and CO<sub>2</sub> Removal

As mentioned in Section 1, DEA was selected for the low-pressure case, while MDEA is used for the high-pressure case. This selection is based on design simulation runs by matching the desired  $CO_2$  and  $H_2S$  removal requirements to the selectivity of the amine solvents. The level of  $CO_2$  removal is the major driving force in determining the amine system size and cost; without the need for  $CO_2$  removal, the unit cost decreases significantly.

#### 2.2.2 Tar Reforming

Design and cost estimation of the tar reformer/regenerator presented a challenge to the team. Because no commercial data exists on design or cost for the performance outlined by the "goal" TCPDU case, a number of assumptions have been made:

- Reaction temperatures equal to the inlet gas temperature (1598 and 1576°F). These temperatures are derived from conversations with NREL. Recent experimental studies at Iowa State University on catalytic tar destruction have demonstrated successful operation at ~1350 to 1550°F<sup>5</sup>. Sensitivity cases were run at 1472 and 1200°F; the results show that heat duty is strongly impacted by the reaction temperature. Since the catalyst is the heat carrier in the reaction, the reaction temperature will greatly impact natural gas use and catalyst circulation rates. Minimizing these factors will trade-off with catalyst activity as the reaction temperature is lowered. This may be an area for future optimization and testing at the TCPDU.
- Low pressure operation for the regenerator to cut down on combustion air blower costs. This design is assuming the use of a pressurized rotary lock to increase recycle catalyst pressure. There is the risk that a rotary lock may be inadequate for this service due to the high catalyst circulation rates leading to premature erosion. If this is the case, either a lockhopper system or pressurized regenerator vessel would need to be included, significantly adding to the cost.
- Catalyst recycle rate based entirely off of thermodynamic requirements. Because of the endothermic reforming reactions, the regenerated catalyst must carry the heat necessary to maintain reactor temperature.
- Catalyst heat capacity of 0.25 Btu/lb/°F
- Plug flow within the reactor, with a Gas Hour Space Velocity (GHSV) of 2000/hr, to establish the basis for the bed volume and catalyst inventory. The calculated cracker

<sup>&</sup>lt;sup>5</sup> Zhang, R., Brown, R., Suby, A., Cummer, K., "Catalytic Destruction of Tar in Biomass Derived Producer Gas", Energy Conversion and Management, Vol. 45, pp. 995-1014, 2004.

bed length was multiplied by a factor of four to account for deviations from ideal plug flow.

 Bed diameter calculated by first estimating the minimum and maximum bed fluidization velocities, then an average of these estimates taken. Fluidization velocities calculated from catalyst and syngas properties.

Both ASPEN and HYSYS were used to model these systems, with all necessary thermodynamic and kinetic assumptions included. The results from both simulations came out very close to one another with a very high heat duty (~150 to 170 MMBTU/hr) and catalyst circulation rate (~24,000 to 29,000 MTPD) in each case. While the cost of the actual vessels are not very high (\$1.3MM to \$1.5MM), the catalyst load is substantial, and costs could be high based on what assumptions are made for catalyst losses and system maintenance requirements. Since the catalyst is regenerated in the process, minimizing losses is key to reducing operating costs.

## 2.2.3 Cyclones

A number of assumptions were made for the particle size distribution, efficiency, and outlet particle loading. Since no explicit direction was given by NREL, assumptions using experimental data from small-scale gasifiers was assumed and given to vendors for sizing (99%+ particulate removal and an average particle size of 50 µm).

## 2.2.4 Heat Integration

The process heating and cooling needs were evaluated and heat integration performed to maximize heat recovery. The process design includes a steam cycle that recovers the majority of the process heat by generating steam. For hot process streams that could not be integrated in the steam cycle, cooling water was used to provide cooling duty. A steam turbine is included in the design to generate power from the excess process steam.

## 2.2.5 Methanol Compressor

It was assumed that a clean syngas pressure of 1160 psia was required for methanol synthesis. Therefore, a compression system with interstage cooling has been included in the design.

## 2.3 OPERATING COSTS AND UTILITY REQUIREMENTS

Catalyst and chemical needs, along with utility requirements, can be seen in Tables 2-1 through 2-3. The units with the highest operating cost are the amine system and the tar cracker. Steam cost contributes the largest cost component for the amine unit. A portion of the steam required for the amine unit is extracted from the steam turbine, and the remainder is assumed to be imported. About 44,000 lb/hr of steam is imported for the low-pressure case, and 113,500 lb/hr for the high-pressure case. Imports may be unnecessary if excess steam from elsewhere in the gasification unit is available.

The other major source of operating cost is the catalyst requirement for the tar cracker. The tar cracker specifics were determined by estimating the minimum fluidization velocity, required space velocity, and the required heat duty demanded of the regenerated catalyst. The total

amount of catalyst is equal to the settled bed volume of the two fluidized beds, plus an additional 10% for transfer line inventory. Due to the very high heat load and quantity of gas to be handled, the initial catalyst loading is substantial: ~300 tonnes in the HP case, and ~830 tonnes in the LP case.

The remaining catalyst and chemicals cost are in-line with the assumptions made by NREL; in fact, some of the costs used by NREL in the biomass to hydrogen report are used here either for consistency, or because little other information exists. For example, it is unknown what the cost will be of tar cracker catalyst that can perform as expected in the NREL "goal" design.

Nexant has not made assumptions for the total yearly operating cost at this time; this cost could vary considerably based on the assumptions made for plant performance and the assumptions for catalyst, chemicals, and power costs. An estimate for operating cost should be performed for an entire integrated gasification unit or biorefinery, instead of the clean-up unit as a stand-alone facility. Suggestions for proper estimation and reducing operating costs include:

- An availability of 85 to 90% would be appropriate for this design
- Both low and high pressure designs would likely require steam imports. This could come from purchases or excess steam production elsewhere in the gasification plant
- A 0.01% per day catalyst loss in the tar cracker, as assumed by NREL in the "goal" hydrogen design, is appropriate for initial cyclone operation, but will likely degrade over time. Typical catalyst assumptions and make-up rates for similar technologies range from 0.01% to 0.1%.

If a loss rate of 0.01% is assumed, and costs for the ZnO beds are amortized over the year, the daily catalyst and chemical cost is \$1931/day for the low-pressure case, and \$1457/day for the high pressure case. This takes into account tar cracker losses, ZnO bed replacement, and LO-CAT<sup>TM</sup> requirements. This is shown in Table 2-1 below.

| Variable                        | Amount Required                                                         | Cost                                                | Notes                                                                                                                                                                                                                  |
|---------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tar<br>Reformer<br>Catalyst     | Low- Pressure Case: 1,820,000 lbs<br>High-Pressure Case: 662,000 lbs    | Price: \$4.67/lb (NREL<br>H <sub>2</sub> Report)    | No commercial catalyst is currently<br>available for this operation. Assuming a<br>GHSV of 2000/hr, and a catalyst volume<br>equal to the settled bed volume of the two<br>fluidized beds plus 10% for transfer lines. |
| ZnO<br>Catalyst                 | Low-Pressure Case: 777 cubic feet<br>High-Pressure Case: 707 cubic feet | Price: \$355/cubic foot<br>(Johnson Matthey).       | Initial fill then replaced every year.<br>Catalyst inventory based on H <sub>2</sub> S removal<br>capacity from 2 ppmv to 0.1 ppmv.                                                                                    |
| Sulfur<br>Recovery<br>Chemicals | Low-Pressure Case: 1.7<br>Tonnes/Day of Sulfur Removal                  | Price: \$191/tonne<br>sulfur removed (GTP<br>Quote) | Assumes price for all LO-CAT™ chemicals required. Does not include utility requirements.                                                                                                                               |
|                                 | High-Pressure Case: 2.4<br>Tonnes/Day of Sulfur Removal                 |                                                     |                                                                                                                                                                                                                        |

#### TABLE 2-1 CATALYST AND CHEMICAL REQUIREMENTS

Steam, water, natural gas, and combustion air requirements are similar between both the high and low pressure cases. The main difference is in the power and cooling requirements. This is mostly due to the syngas compressor; the large energy and interstage cooling duty required adds considerably more to the utility requirements. Some of the cooling duty is recaptured in the steam system.

High-pressure case utility requirements can be seen in Table 2-2 below.

|         |                                    | Load BHP |             | Elect.<br>Power |             |            |           |      |       | Water, GPM |                    | Cooling<br>MMBTU/HR | Nat. Gas | Combustion<br>Air |
|---------|------------------------------------|----------|-------------|-----------------|-------------|------------|-----------|------|-------|------------|--------------------|---------------------|----------|-------------------|
| ltem No | Item Name                          | Norm.    | Max<br>(3). | ĸw              | 445<br>psig | 85<br>psig | 5<br>psig | psig | Cond. | Proc.      | C.W. circ.<br>(2). | Water               | MMSCFD   | MMSCFD            |
| H-200   | Quench Water Recirculation Cooler  |          |             |                 |             |            |           |      |       |            | 2,232              | 22.3                |          |                   |
| H-302   | Lean Solvent Cooler                |          |             |                 |             |            |           |      |       |            | 13,487             | 135.0               |          |                   |
| H-303   | Amine Stripper Reboiler            |          |             |                 |             | 243.9      |           |      | 244   |            |                    |                     |          |                   |
| H-305   | Acid Gas Condenser                 |          |             |                 |             |            |           |      |       |            | 8,520              | 85.3                |          |                   |
| H-400A  | K-400 Interstage Cooler            |          |             |                 |             |            |           |      |       |            | 1,046              | 10.5                |          |                   |
| H-401   | MeOH Reactor Preheater             |          |             |                 |             | 17.61      |           |      | 17.6  |            |                    |                     |          |                   |
| H-501   | Blowdown Cooler                    |          |             |                 |             |            |           |      |       |            | 84                 | 0.8                 |          |                   |
| K-100   | Combustion Air Blower              | 1,022    |             | 762             |             |            |           |      |       |            |                    |                     |          |                   |
| K-320   | Flue Gas Blower                    | 207      |             | 154             |             |            |           |      |       |            | 2                  | 0.02                |          |                   |
| K-400   | MeOH Compressor - 2 Stages         | 8,388    |             | 6,257           |             |            |           |      |       |            | 84                 | 0.8                 |          |                   |
| P-201   | Quench Water Recirculation Pump    | 3        |             | 2               |             |            |           |      |       |            |                    |                     |          |                   |
| P-300   | Lean Solvent Pump                  | 1,474    |             | 1,100           |             |            |           |      |       |            |                    |                     |          |                   |
| P-500   | Condensate Make-up Water Pump      | . 1      |             | . 1             |             |            |           |      |       |            |                    |                     |          |                   |
| P-501   | Deaerator Feed Pump                | 8        |             | 6               |             |            |           |      |       |            |                    |                     |          |                   |
| P-502   | Boiler Feed Water Pump             | 710      |             | 530             |             |            |           |      |       |            |                    |                     |          |                   |
| R-xxx   | Gasifier                           |          |             |                 | 139.6       |            |           |      |       |            |                    |                     |          |                   |
| R-100   | Tar Reformer                       |          |             |                 | 26          |            |           |      |       |            |                    |                     |          |                   |
| R-101   | Catalyst Regenerator               |          |             |                 |             |            |           |      |       |            |                    |                     | 7.8      | 84.4              |
|         | LO-CAT unit                        | 1,004    |             | 749             |             |            | 0.9       |      |       | 2,500      |                    |                     |          |                   |
| M-501   | Extraction Steam Turbine/Generator | (19,721) |             | (14,712)        | (165.6)     | (148.0)    |           |      |       |            |                    |                     |          |                   |
|         |                                    |          |             |                 |             |            |           |      |       |            |                    |                     |          |                   |
|         | TOTAL                              | (6,903)  |             | (5,150)         | 0           | 114        | 1         |      | 262   | 2,500      | 25,454             | 255                 | 8        | 84                |

TABLE 2-2 HIGH-PRESSURE CASE UTILITY REQUIREMENTS

Low-pressure case utility requirements can be seen in Table 2-3.

|         |                                                                                                                                                                                                                    |                           | Load BHP            |                         | Steam<br>M Pounds per Hour |            |           |       | Water, GPM |       | Cooling<br>MMBTU/HR | Nat. Gas | Combustion<br>Air |        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-------------------------|----------------------------|------------|-----------|-------|------------|-------|---------------------|----------|-------------------|--------|
| ltem No | ltem Name                                                                                                                                                                                                          | Norm.                     | Max<br>(3).         | ĸw                      | 85<br>psig                 | 35<br>psig | 5<br>psig | psig  | Cond.      | Proc. | C.W. circ.<br>(2).  | Water    | MMSCFD            | MMSCFD |
| H-200   | Quench Water Recirculation Cooler                                                                                                                                                                                  |                           |                     |                         |                            |            |           |       |            |       | 2,213               | 22.2     |                   |        |
| H-300A  | 1 st Stage intercooler                                                                                                                                                                                             |                           |                     |                         |                            |            |           |       |            |       | 12,188              | 122.0    |                   |        |
| H-300B  | 2nd Stage intercooler                                                                                                                                                                                              |                           |                     |                         |                            |            |           |       |            |       | 3,276               | 32.8     |                   |        |
| H-300C  | 3rd Stage intercooler                                                                                                                                                                                              |                           |                     |                         |                            |            |           |       |            |       | 2,766               | 27.7     |                   |        |
| H-300D  | Post compressor cooler                                                                                                                                                                                             |                           |                     |                         |                            |            |           |       |            |       | 1,819               | 18.2     |                   |        |
| H-402   | Lean Solvent Cooler                                                                                                                                                                                                |                           |                     |                         |                            |            |           |       |            |       | 11,388              | 114.0    |                   |        |
| H-403   | Amine Stripper Reboiler                                                                                                                                                                                            |                           |                     |                         |                            | 150.6      |           |       | 151        |       |                     |          |                   |        |
| H-405   | Acid Gas Condenser                                                                                                                                                                                                 |                           |                     |                         |                            |            |           |       |            |       | 2,900               | 29.0     |                   |        |
| H-500A  | K-500 Interstage Cooler                                                                                                                                                                                            |                           |                     |                         |                            |            |           |       |            |       | 1,105               | 11.1     |                   |        |
| H-501   | MeOH Reactor Preheater                                                                                                                                                                                             |                           |                     |                         | 18.8                       |            |           |       | 18.8       |       |                     |          |                   |        |
| H-601   | Blowdown Cooler                                                                                                                                                                                                    |                           |                     |                         |                            |            |           |       |            |       | 61                  | 0.6      |                   |        |
| K-100   | Combustion Air Blower                                                                                                                                                                                              | 910                       |                     | 679                     |                            |            |           |       |            |       |                     |          |                   |        |
| K-300   | Syngas Compressor - 4 Stages                                                                                                                                                                                       | 38,786                    |                     | 28,934                  |                            |            |           |       |            |       |                     |          |                   |        |
| K-420   | Flue Gas Blower                                                                                                                                                                                                    | 347                       |                     | 259                     |                            |            |           |       |            |       | 3                   | 0.03     |                   |        |
| K-500   | MeOH Compressor - 2 Stages                                                                                                                                                                                         | 8,717                     |                     | 6,503                   |                            |            |           |       |            |       | 87                  | 0.9      |                   |        |
| P-201   | Quench Water Recirculation Pump                                                                                                                                                                                    | 20                        |                     | 15                      |                            |            |           |       |            |       |                     |          |                   |        |
| P-400   | Lean Solvent Pump                                                                                                                                                                                                  | 802                       |                     | 599                     |                            |            |           |       |            |       |                     |          |                   |        |
| P-600   | Condensate Make-up Water Pump                                                                                                                                                                                      | 1                         |                     | 1                       |                            |            |           |       |            |       |                     |          |                   |        |
| P-601   | Deaerator Feed Pump                                                                                                                                                                                                | 7                         |                     | 5                       |                            |            |           |       |            |       |                     |          |                   |        |
| P-602   | Boiler Feed Water Pump                                                                                                                                                                                             | 570                       |                     | 425                     |                            |            |           |       |            |       |                     |          |                   |        |
| R-xxx   | Gasifier                                                                                                                                                                                                           |                           |                     |                         |                            | 73.47      |           |       |            |       |                     |          |                   |        |
| R-100   | Tar Reformer                                                                                                                                                                                                       |                           |                     |                         |                            | 53         |           |       |            |       |                     |          |                   |        |
| R-101   | Catalyst Regenerator                                                                                                                                                                                               |                           |                     |                         |                            |            |           |       |            |       |                     |          | 7.0               | 74.8   |
|         | LO-CAT unit                                                                                                                                                                                                        | 639.9                     |                     | 477                     |                            |            | 0.56      |       |            | 1,800 |                     |          |                   |        |
| M-601   | Extraction Steam Turbine/Generator                                                                                                                                                                                 | (26,019)                  |                     | (19,410)                |                            |            |           |       |            |       |                     |          |                   |        |
|         | TOTAL                                                                                                                                                                                                              | 24,781                    |                     | 18,486                  | 0                          | 44         | 1         |       | 169        | 1,800 | 37,806              | 378      | 7                 | 75     |
| NOTES:  | <ol> <li>All Figures shown above represen<br/>() indicates normal utility make<br/>* indicates intermittent usage or m<br/>2. CWS temperature is 80 F and CW<br/>3. Utility consumption for max. load c</li> </ol> | iake, not ir<br>R tempera | icludeo<br>iture is | d in totals<br>100 F. M |                            |            |           | tower | is not s   | shown |                     |          |                   |        |

## 2.4 DIFFERENCES WITH NREL BIOMASS TO HYDROGEN DESIGN

In general, the cost of the clean-up section of the biomass to chemicals designs is more expensive than for the NREL Biomass to Hydrogen design<sup>6</sup>. There are three main reasons for this: more equipment necessary in the chemicals designs, the increase in steel prices from 2002 to 2005, and different engineering assumptions made in the chemicals case. Information on each reason will be elaborated upon below.

#### 2.4.1 Added Equipment to Chemicals Design

The two major unit operations that are new to this design versus the hydrogen cases are the amine unit and the syngas compressor for methanol synthesis. In the hydrogen cases, a LO- $CAT^{TM}$  unit and ZnO bed was used for H<sub>2</sub>S removal, while the PSA removed carbon dioxide. The chemicals cases also use the LO-CAT<sup>TM</sup> and ZnO units, but instead of a PSA, an amine unit is used for the bulk H<sub>2</sub>S and CO<sub>2</sub> removal. The cost for the amine units is driven largely by the need for CO<sub>2</sub> removal; due to the low H<sub>2</sub>S content in the syngas, the cost of the amine unit would be roughly half as much if CO<sub>2</sub> removal was not required. The LO-CAT<sup>TM</sup> unit is used in this case for clean-up of the acid gas stream from the amine unit instead of bulk H<sub>2</sub>S removal. Because of the CO<sub>2</sub> content and different operating requirements versus the hydrogen case, the quote provided by GTP is roughly double the price used in the hydrogen case.

<sup>&</sup>lt;sup>6</sup> Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J. (2005). Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier. 161 pp.; NREL Report No. TP-510-37408.

In order to compress the clean syngas up to methanol synthesis pressure, a  $\sim$ 8,000 HP compressor is required. This unit was not necessary in the hydrogen case, adding to the overall cost. Taking into account a \$12MM credit by not using the PSA, the LP cost increases by  $\sim$ \$8.5MM, while the HP cost increases by  $\sim$ \$18.5MM due specifically to the extra equipment needed.

#### 2.4.2 Increase in Steel Price

NREL used 2002 as the cost basis for the biomass to hydrogen designs, while Nexant is using Q2 2005. The increase in steel price between 2002 and 2005 has been significant, impacting the prices quoted in the Nexant design. The Q2 2005 basis for hot-rolled steel is  $\sim$ \$400 to \$450/ton, up from  $\sim$ \$250 to \$300/ton in 2002<sup>7</sup>. Steel prices have been very volatile in the last 3 years due to strong worldwide demand, a sharp rise in energy prices, consolidation in the US steel market, and a weak US dollar.

Because of this basis difference, the 2002 NREL basis would need to be escalated not only for inflation but also for steel price in order to put it on the same basis as this study. It is difficult to place a blanket escalation factor on the design due to the impacts that steel price has on different pieces of equipment; for example, this may make up much of the difference in price in equipment like vessels and exchangers, but have less of an impact on compressor prices. Each unit should be evaluated independently to determine the impact that steel price has on overall unit cost.

## 2.4.3 Engineering Assumptions

A side-by-side comparison of all the major process units was performed for the HP and LP cases versus the NREL hydrogen design. A few differences were noticed that are outlined below. A direct comparison cannot be performed on units that were lumped into the "Gas Cleanup" section of the NREL design and not explicitly sized. While the major differences are outlined here, only a brief attempt at determining the cost difference has been made.

#### **Reactors and Columns**

**ZnO Beds:** While the size of the ZnO beds in this design is smaller than the hydrogen case, the installed cost is roughly double. This is likely due to the difference in steel price.

*Tar Reformer/Regenerator:* In the hydrogen design, this is included in the "Cleanup" costs, so no explicit design information is available. The NREL assumption for "Cleanup" took the average of a number of different studies; however, only one of these studies, Weyerhaeuser (2000), had a tar cracker. The "Cleanup" section for the Weyerhaeuser study was ~\$9MM greater than the other designs, implying that the majority of the cost may be due to the tar cracker cost. The NREL "Cleanup" assumption may be low since the hydrogen design has a tar cracker, yet only one of the studies used to obtain the "Cleanup" cost also has a tar cracker.

<sup>&</sup>lt;sup>7</sup> For more information, see the Bureau of Labor Statistics "Producer Price Series", along with Lazaroff, Leon, "Steel Regains Some Luster", Detroit Free Press, 25 July 2005

## Cyclones

Since these were part of the "Cleanup" average, no explicit design numbers were provided as part of the hydrogen study. Design quotes from vendors are used for this part of the plant in the chemicals design.

## Vessels

The Nexant estimate is higher than the hydrogen design due to 1) the venturi and quench being included as part of the "Cleanup" estimate, 2) larger vessel sizes for the steam system than what was assumed in the hydrogen design, and 3) steel prices. Depending on the price assumed for the venturi /quench in the hydrogen design, the Nexant estimate appears to be ~\$3MM greater than the hydrogen case.

## Heat Exchangers

A number of differences exist between the hydrogen and chemicals designs, making the installed cost for exchangers in the chemical production case ~\$4MM to \$6MM higher than in the hydrogen case:

- There is a large cost discrepancy between the exchangers downstream of the tar reformer. The Nexant designs are larger and considerably more expensive; Nexant assumed refractory lining, while it is unclear if this assumption is made in the hydrogen design.
- The Nexant design has a number of exchangers not included in the hydrogen design: amine precoolers (HP case), methanol compressor coolers (both cases), and ZnO coolers (both cases).
- A few of the exchangers in the hydrogen design are included in the "Cleanup" section, so it is difficult to make a direction comparison.

## **Compressors and Blowers**

As mentioned earlier, the syngas compressor for methanol synthesis adds ~\$7MM to the installed cost relative to the hydrogen case. This compressor was not necessary in the NREL hydrogen design.

There is a major difference between the NREL and Nexant assumptions for the syngas compressor in the LP case. While NREL shows an installed cost of ~\$12MM for a 30,000 HP compressor, Nexant estimates that a ~38,000 HP compressor is required at an installed cost of ~\$37MM (\$15MM for the equipment alone). The equipment cost comes directly from Elliott Compressor; checks on the validity of the estimate using cost curves, ICARUS, and other vendors show that this is within the +/- 30% estimate desired by the study. The NREL study assumed that an integrally geared compressor type would be appropriate, while this report uses a horizontally split centrifugal compressor recommended by vendors. Analysis using cost estimating software shows that this assumption is the main reason for the cost difference.

## Pumps

Both Nexant and NREL designs are in agreement in regards to the pumps.

#### Steam Turbine

The Nexant estimate is slightly higher than the NREL estimate, ~\$12MM installed versus \$10MM. This difference is likely due to steel prices.

The other difference that should be pointed out between the hydrogen and chemicals cases is the assumption made for the installation factor. NREL used a 2.47 installation factor, which is derived from literature sources. Nexant used 2.57 in both the HP and LP cases, except on the process gas compressor, where 2.47 is used. These numbers are derived independently from previous experience and vendor engineering estimates. While the factors are very similar to one another, this difference can make a 4% difference (\$2MM) on an equipment cost of \$20MM.

## 2.5 CHANGING FLOWS, CONDITIONS, AND COMPOSITIONS

Per the scope of work outlined by NREL as part of this project, Nexant has been asked to provide input on how the design estimates will be adjusted if the syngas flowrates or compositions vary. Information for both the high and low-pressure cases, along with the scaling factors appropriate for each major piece of process equipment, are outlined below.

## 2.5.1 Flowrate Impacts

In general the limits on process equipment sizes are usually the result of manufacturing restraints, transportation limits, and maintenance restrictions. For this evaluation, it was assumed that the throughput would be increased by 50% and the equipment size or capacity would increase accordingly. The affects of this change are discussed below with respect to both the low- and high-pressure cases.

## Low-Pressure Syngas Design Cases

For the Low-Pressure Syngas Design Cases some of the equipment has already reached size limitations that required multiple trains or parallel equipment. Thus, increasing the capacity by 50% will require more parallel equipment and a more complex and expensive piping manifold. Examples include:

- Gasifier Cyclones (4 required for the base capacity)
- Tar Reformer SG Cooler/Steam Generator (2 required)
- Tar Reformer SG Cooler/BFW Preheater (2 required)
- Compressor Interstage Cooling 1st stage (2 required)
- Syngas Venturi Scrubber/Quench Tower (2 required)

Thus, for a 50% increase in capacity, the design would require 6 gasifier cyclones, 3 of each major heat exchanger, and 3 venturi scrubbers.

Other items, such as the 1st Stage KO Drum, may require either a parallel unit or field construction due to equipment size and weight limitations during transportation. While the limits for ground transportation vary from state to state, typically, codes limit standard transport sizes to ~14 feet in width and height, 53 feet long and 80,000 pounds. Locating this facility in Iowa will mean that most equipment will be transported to the site either by rail or truck. Access to the Mississippi or Missouri Rivers may allow larger vessels to be used. For the 1st Stage KO Drum, the inside diameter would increase to about 16 feet (from a 13 foot diameter) at a capacity 50% greater than the base case. However, when considering transportation by road, auxiliary equipment such as nozzles and flanges must be taken into consideration. This item would be well beyond most road transportation limits in the U.S. To manage this limitation, options are either transportation by rail or barge, parallel pieces of equipment, or field fabrication.

Other equipment may exceed the maximum recommended size for a single train, and would require a second, parallel unit. This includes items such as the Syngas Compressor and the shell and tube heat exchanger for the Flue Gas Cooler/Steam Superheater service. In the latter case, the size of the heat exchanger is actually a maintenance issue. The diameter of the tube bundle of these units is larger than a normal bundle puller could handle (maximum limit is about 6-7 feet diameter). It then becomes an economic question of bringing in special maintenance equipment during turnarounds or using smaller, parallel process equipment.

#### High-Pressure Syngas Design Cases

For the High-Pressure Syngas Design Cases, most of the equipment is smaller than the corresponding equipment for the Low-Pressure Syngas Design Cases as a result of the high pressure operation. Only a few items, when scaled by +50%, would require a parallel unit. Two major exchangers, the Tar Reformer SG Cooler/Steam Generator and Flue Gas Cooler/Steam Superheater, were discussed above. Another area is equipment within the LO-CAT<sup>TM</sup> unit. These include the Inlet Gas KO Drum and the LO-CAT<sup>TM</sup> Oxidizer Vessel. The former would require a vessel with an inside diameter of over 17 feet and the latter would required an inside diameter of about 16 feet. As noted previously, the outside diameter (including nozzles and flanges) would be well beyond most road transportation limits in the U.S. Vendors for process items of this nature can provide input for the appropriate process configuration for this service.

Appropriate vessel sizing for the amine system is also of concern in this design. The amine system contains two relatively large columns – the scrubber and the regenerator. Considering a 50% increase in capacity, the column diameters will increase by about 20 to 25%. In particular, the regeneration column may exceed the transportation size limitations and thus, require parallel trains or field fabrication.

#### **General Information**

A plant that is 50% larger will require more plot area not only due to the larger equipment and storage, but due to offsite considerations. For example, the flare will have to be designed for a load that is 50% larger. This will require either a taller flare or moving the flare further away from the main process units. A higher flare may meet with height restrictions. Thus, the area that is restricted around the flare may increase.

#### Estimating the Capital Investment Cost

In most cases the capital cost for a capacity increase or decrease of 50% can be estimated using exponential methods. That is, the new capital cost can be estimated by using capacity ratio exponents based on published correlations and the following formula:

$$C_2 = C_1 (q_2/q_1)^n$$

where C stands for cost, q for flowrate, and where the value of the exponent n depends on the type of equipment. In reviewing the literature for the various exponents, some discrepancies in published factors are apparent due to variation in definition, scope and size. Technology has also advanced over time, making it less expensive to produce larger machinery now than in years past. In addition, new regulations dictate expenditures for environmental control and safety not included in earlier equipment. In the table that follows, the most recent literature information is listed. Traditionally, when a specific value is not known, an exponent value of 0.6 is often used for equipment and a value of 0.7 for chemical process plants (usually expressed in terms of annual production capacity). Table 2-4 gives typical values of n for most of the equipment included in these designs.<sup>8,9,10,11,12</sup>

| Equipment                    | Size Range | Units                                      | Exponent** |
|------------------------------|------------|--------------------------------------------|------------|
| Reactor – fixed beds         | N/A        |                                            | 0.65-0.70  |
| Column (including internals) | 300-30,000 | Feed rate, million lb/yr                   | 0.62       |
| Cyclone                      | 20-8,000   | Cubic feet/m                               | 0.64       |
| Vessel – vertical            | 100-20,000 | US gallons                                 | 0.30       |
| Vessel – horizontal          | 100-80,000 | US gallons                                 | 0.62       |
| Heat exchanger (S&T)         | 20-20,000  | Square feet                                | 0.59       |
| Venturi scrubber             | N/A        |                                            | 0.60       |
| Compressor – centrifugal*    | 200-30,000 | hp                                         | 0.62       |
| Blower*                      | 0.5 - 150  | Thousand standard cubic feet<br>per minute | 0.60       |
| Pump*                        | 0.5-40     | hp                                         | 0.30       |
|                              | 40-400     |                                            | 0.67       |
| Turbine                      |            | hp                                         | 0.81       |
| Pressure discharge           | 20-5,000   |                                            |            |
| Vacuum discharge             | 200-8,000  |                                            |            |
| Motor                        | 10-25      | hp                                         | 0.56       |

#### TABLE 2-4 EXAMPLES OF TYPICAL EXPONENTS FOR EQUIPMENT COST VERSUS CAPACITY

<sup>&</sup>lt;sup>8</sup> Perry, Robert H., and Green Don W., Perry's Chemical Engineers' Handbook, 7th edition, page 9-69.

<sup>&</sup>lt;sup>9</sup> Walas, Stanley M., "Chemical Process Equipment – Selection and Design," Butterworths, page 665

<sup>&</sup>lt;sup>10</sup> Blank, L. T. and A. J. Tarquin, "Engineering Economy," McGraw-Hill

<sup>&</sup>lt;sup>11</sup> Peters, Max S. and Timmerhaus, Klaus D., "Plant Design and Economics for Chemical Engineers," McGraw-Hill, page 170

Remer, Donald S. and Chai, Lawrence H., "Design Cost Factors for Scaling-up Engineering Equipment," *Chemical Engineering Progress*, August 1990, pp 77-82

| Equipment    | Size Range | Units | Exponent** |
|--------------|------------|-------|------------|
|              | 25-200     |       | 0.77       |
| Package unit | N/A        |       | 0.75       |
| Other        | N/A        |       | 0.6 - 0.7  |

excluding driver

\* this estimating method gives only the purchase price of the equipment; additional installation cost for labor, foundations and construction expenses will make the final cost higher.

#### 2.5.2 Composition Impacts

The major units that will be impacted by a large change in syngas composition are the tar reformer and the venturi scrubber. Due to the relatively low concentration of sulfur in the syngas stream, +/-50% fluctuations in the H<sub>2</sub>S content should not impact how the sulfur removal system is designed. Significant changes in the inlet H<sub>2</sub>/CO ratio may also require modifications of the design in order to establish the appropriate downstream composition.

The obvious change that will influence the design of the tar reformer is the amount of hydrocarbons in the syngas from the gasifier. Currently, the design is assuming that a separate reformer is not necessary, with the tar reformer converting most hydrocarbons exiting the gasifier. If either the hydrocarbon yield increases or the tar reformer conversion is lower than planned, a separate reformer for light hydrocarbons should be considered. The amount and type of hydrocarbons will affect the operating conditions which will in turn affect the water gas shift reaction. A change in the  $H_2$ /CO ratio may require divorcing the shift reaction from the tar reformer (i.e., a separate shift reactor instead of just adding steam to the tar reformer).

A 50% increase in particulates may require different/larger cyclones or a redesign of the venturi scrubber in order to handle the larger load. This is largely controlled by the gasifier operation; reliable performance data should be established prior to deciding upon a particulate removal scheme. Higher particulate loading than planned can significantly hurt overall plant performance.

A 50% increase in H<sub>2</sub>S will not affect the sulfur recovery processes. LO-CAT<sup>TM</sup> can handle between 150 lbs to 20 tonnes of sulfur per day, and concentrations between 100 ppm and about 10% H<sub>2</sub>S. Even at 50 percent more H<sub>2</sub>S, the concentration still remains within the operating limits for LO-CAT<sup>TM</sup>. In addition, the solvent circulation rate in the amine unit can be increased to remove additional H<sub>2</sub>S if the sulfur concentration is higher than expected.

## 2.6 FOLLOW-UP AND AREAS FOR FURTHER STUDY

The analysis performed sets the base case for the clean-up section of two different biomass-tochemicals designs. After in-depth analysis of these cases, the team has identified a number of areas for further study:

 Alternatives for Tar Removal: A number of assumptions have been made for sizing and costing of this unit. Greater study and analysis, both in the laboratory and through simulations, should be performed to determine if the methods used are valid. In addition, alternative tar removal technology should be considered, including:

- Introduction of tar cracking catalyst into the gasifier. Typically, this has not been done due to concerns with deactivation and erosion.
- Gasifier operation to reduce hydrocarbon yields.
- Using a water wash for tars, followed by a standard reformer for hydrocarbons.
   While this increases the cost of quenching and wastewater handling, the cost tradeoff may be economic.
- Process Integration, Gasification Systems and Biorefinery: Integration of the cleanup section with the other parts of the gasification plant will provide a better picture of the overall plant costs. In addition, use of this thermochemical platform has been considered for future application into an integrated "biorefinery". This base case could be used for a determination of the process requirements and offerings that a thermochemical platform could provide.
- Alternate CO<sub>2</sub>/Sulfur Removal Steps: Based on the design information provided and past studies that have been examined, the steps incorporated for CO<sub>2</sub> and sulfur removal has been determined to be appropriate at this stage. A cost comparison of amine versus physical solvents and new technologies for acid gas removal would provide additional data to confirm the appropriate use of amine in this design.

New technology is currently being explored to remove sulfur without having to cool to 110°F or below. Since none of this technology is currently commercial, it has not been evaluated for use in this design. If available however, warm sulfur clean-up may increase efficiency in this design, by reducing the amount of reheat necessary prior to entering the shift reactor.

• *Other Impurities in the Syngas:* For the low pressure case, a scrubber has been included to remove residual ammonia, and any metals, halides, or alkali remaining in the system. If it is deemed that the level of these impurities entering the scrubber will not adversely impact the FT or methanol catalysts, this step could be removed.

## Section 3

## 3.1 SUMMARY

The labor projections for the 2000 MTPD biomass gasification plant are based on a combination of 1) models developed from Emery Energy's 70MWe Gasification Plant design completed under prior DOE contracts, 2) additional "adders" for the scale and complexity (chemical plant nature / hydrogen production) of the 2000 MTPD plant being considered, and 3) previous experience of Nexant and other team members. The high pressure, oxygen-blown, 2000 MTPD plant requires labor skills with slightly greater operating experience than power-only facilities, and thus commands a premium for these skills.

The labor rates derived from Emery's 70 MWe Biomass IGCC (1200 MTPD plant) case were ~\$1,650,000 per year (not including subcontracted services) versus the \$2,274,720 projected for the labor costs for the 2000 MTPD biomass to chemicals design. This difference of roughly \$625,000 represents the higher level of experience needed for the larger plant, greater materials handling rates, and increased labor for plant maintenance. A discussion of the reasons for this difference, along with differences between the recent NREL Biomass to Hydrogen report, is contained below. Some of the main differences with the NREL Hydrogen report include different job descriptions, the use of a back-up shift crew, utilization of contract labor, and lower assumptions for overhead costs.

## 3.2 LABOR REQUIREMENTS

The following labor categories and positions will be required for the 2000 MTPD biomass plant.

- General Plant Manager: Responsible for all personnel and plant decisions, including new employee hiring, operator training, fuel contracts, maintenance contracts, general equipment purchases, external communications, and operating schedules. Engineering degree required, with 10+ years of chemical plant operating experience. Salary of \$100,000/yr.
- Administrative Assistant/Company Controller: Support the general plant manager, manages personnel records, completes company payroll, manages time accounting records, manages company benefits, employee investment accounts, and insurance enrollments. Accountant degree required with 5+ years of experience. Salary of \$45,000/yr.
- Secretary/Receptionist: Supports the General Plant Manager and Company Controller. Receives visitors, answers phone, and attends to office administrative duties. Salary/Wages of \$25,000/yr.
- *Laboratory Manager:* Oversees all laboratory equipment and laboratory technicians. Responsible for product quality; testing performed both on finished product and intermediate streams (via on-line equipment and sample draws). Works straight days, with some overtime possible. Salary/Wages of \$50,000/yr.
- *Laboratory Technician:* Responsible for sample gathering, analytical equipment maintenance, and laboratory testing. Works straight days, with some overtime

possible. Shift operating crew can assist with some sample gathering as necessary; contract equipment technicians can assist with analytical equipment repair as necessary. Salary/Wages of \$35,000/yr.

- *Shift Operating Crew:* The plant will be operated by a four-member crew shift each week, with responsibilities defined below:
- *Shift Superintendent.* The shift superintendent is the chief operator who mans the control station and simultaneously directs the activities of the shift crew. The shift superintendent is a degreed engineer who understands the plant, understands the technical and physical operations, and makes key operating decisions. The shift superintendent ensures compliance with plant quality, safety, industrial hygiene, and environmental requirements. 5-10 years of chemical plant operating experience is preferred for this position. Salary of \$75,000/yr.
- **Support Operator.** The support operator aids the shift superintendent with plant operation. The support operator is also tasked with bulk material handling such as feedstock receipts/inspection/weigh-in and ash weigh-out/disposal shipments. The support operator attends to feed and ash sampling/characterization, waste water disposal sampling, and provides general plant support in relief of the shift superintendent. The support operator is also tasked with monitoring plant emissions rates, including daily/weekly calibration of effluent gas monitors. The support operator verifies that plant operating records and daily logs are correct. This position coordinates fuel characterizations and waste water analyses. A novice degreed engineer or experienced technician is sufficient for this position. Salary of \$45,000/yr
- Millwright. The shift millwright conducts hourly and daily equipment inspections, safety rounds, completes scheduled equipment process maintenance, supports equipment maintenance and equipment replacements, contracts and supervises crafts such as pipe fitters, electricians, welders, and special instrument technicians when such functions exceed the millwright's capabilities. The millwright preferably has an associate degree in mechanical, industrial, or design engineering technology with 5-10 years experience. Salary of \$60,000.
- *Millwright Assistant/Yard Labor*. Supports millwright and accompanies millwright and contracted crafts, particularly during dangerous work activities, such as confined space entries and working from heights. The millwright assistant supports tool setup, job errands, and plant cleanup. Salary of \$35,000.

Shifts run for 12 hours with two crews per day. Crews report to work 30 minutes prior to the shift turnover to perform receive shift operating instructions and to pass information on critical operations and maintenance. Each crew member is allotted 30 minutes for a meal break. Thus, each shift extends 12.5 hours, with 0.5 hours meal break, or 12 hours of labor. Crews operate on a 4 days on / 4 days off rotation. This requires 84 hours on average per crew member for any two-week pay period.

Five complete shift teams are engaged. The fifth crew provides coverage for individual vacations, sick leave, and holidays. The fifth crew also fills in for continuing training and for

new hire training. The fifth crew also supports ongoing maintenance and periodic outage/turnaround planning. In addition, the fifth crew supports updates to control system programming, data collection, and instruments. The millwright assistant on the fifth crew supports plant cleanup and janitorial activities. The fifth crew works 40-hour straight days when not substituting for members of the four-crew rotation.

Table 3-1 summarizes the plant operating labor by category, salary, and total cost.

| Position                                                    | Number  | Base Salary or<br>Hourly Rate | Annual<br>Overtime<br>and Holiday<br>Hours | Overtime Rate | Total Annual<br>Cost |
|-------------------------------------------------------------|---------|-------------------------------|--------------------------------------------|---------------|----------------------|
| General Plant Manager                                       | 1       | \$100,000                     | N/A                                        | N/A           | \$100,000            |
| Company Controller                                          | 1       | \$45,000                      | N/A                                        | N/A           | \$45,000             |
| Secretary/ Receptionist                                     | 1       | \$25,000                      | None                                       | N/A           | \$25,000             |
| Laboratory Manager                                          | 1       | \$50,000                      | 240                                        | \$30          | \$57,200             |
| Laboratory Technician                                       | 2       | \$35,000                      | 240                                        | \$22.50       | \$80,800             |
| Shift Superintendent                                        | 5       | \$75,000                      | 680                                        | \$45          | \$405,600            |
| Support Operator                                            | 5       | \$45,000                      | 680                                        | \$25          | \$242,000            |
| Millwright                                                  | 5       | \$60,000                      | 680                                        | \$32.50       | \$322,100            |
| Millwright Assistant                                        | 5       | \$15.00/hr                    | 560                                        | \$22.50       | \$144,000            |
| Total Base Salaries and Wages                               |         |                               |                                            |               | \$1,421,700          |
| General Overhead and<br>Benefits<br>(60% of total salaries) |         |                               |                                            |               | \$853,020            |
| Total Base Wages and<br>Benefits                            |         |                               |                                            |               | \$2,274,720          |
| Subcontracted Crafts                                        |         |                               |                                            |               |                      |
| Welder                                                      | \$80/hr | 1200                          |                                            |               | \$96,000             |
| Electrician                                                 | \$75/hr | 640                           |                                            |               | \$48,000             |
| Pipe Fitter                                                 | \$65/hr | 600                           |                                            |               | \$39,000             |
| Insulator/Painter                                           | \$60/hr | 400                           |                                            |               | \$24,000             |
| Carpenter                                                   | \$55/hr | 400                           |                                            |               | \$22,000             |
| Instrument Technician                                       | \$90/hr | 400                           |                                            |               | \$36,000             |
| Total Subcontracted<br>Labor                                |         |                               |                                            |               | \$265,000            |
| Total Labor and Benefits<br>(Operating Labor Cost)          |         |                               |                                            |               | \$2,539,720          |

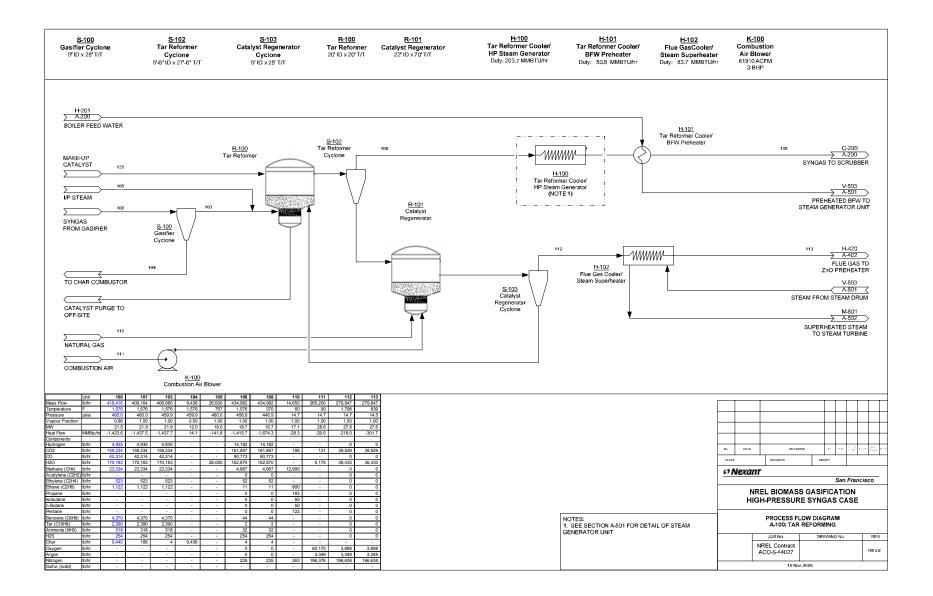
#### TABLE 3-1 LABOR COSTS

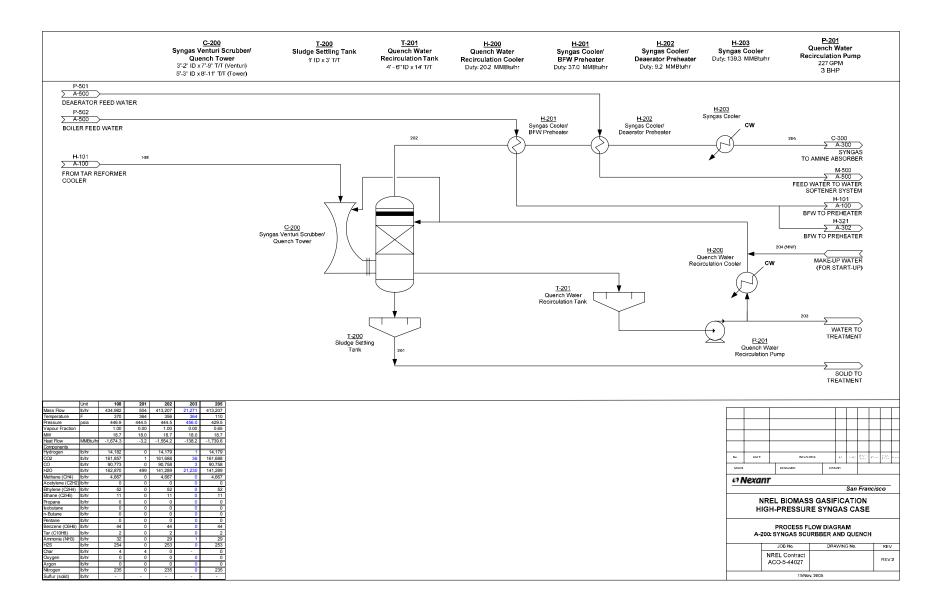
## 3.3 DIFFERENCES WITH EMERY ENERGY 70 MWE CASE

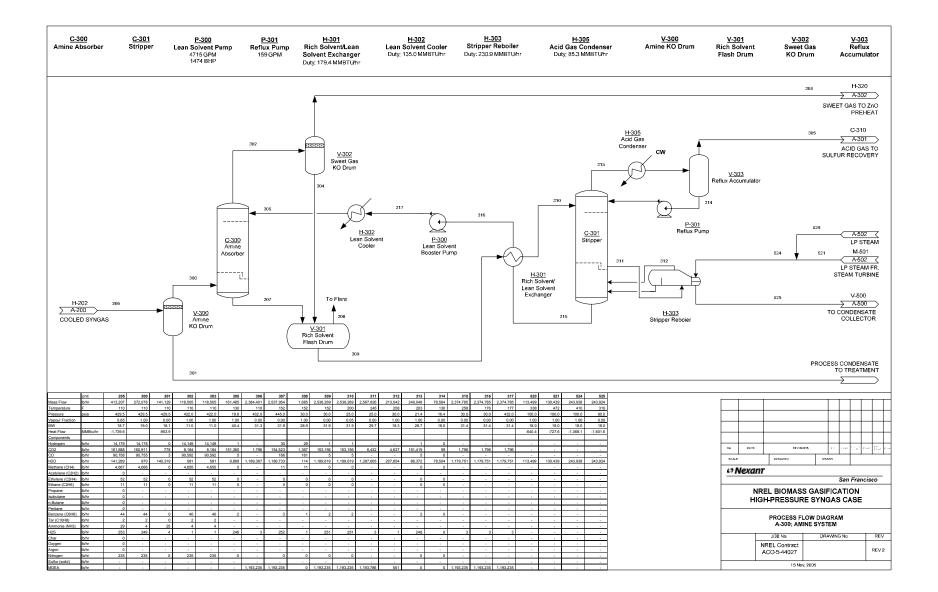
Both the complexity and size of this facility increases the labor costs over what Emery Energy has assumed for their 70 MWe biomass gasification facility. The size of the unit (1200 MTPD vs. 2000 MTPD) slightly increases the number of shift workers and contract hours required, but does not increase the plant management or engineering requirements. This represents an economy-of-scale advantage enjoyed by larger gasification facilities; while the total labor requirement is greater than the 1200 MTPD facility, the marginal amount of labor required decreases as plant size increases.

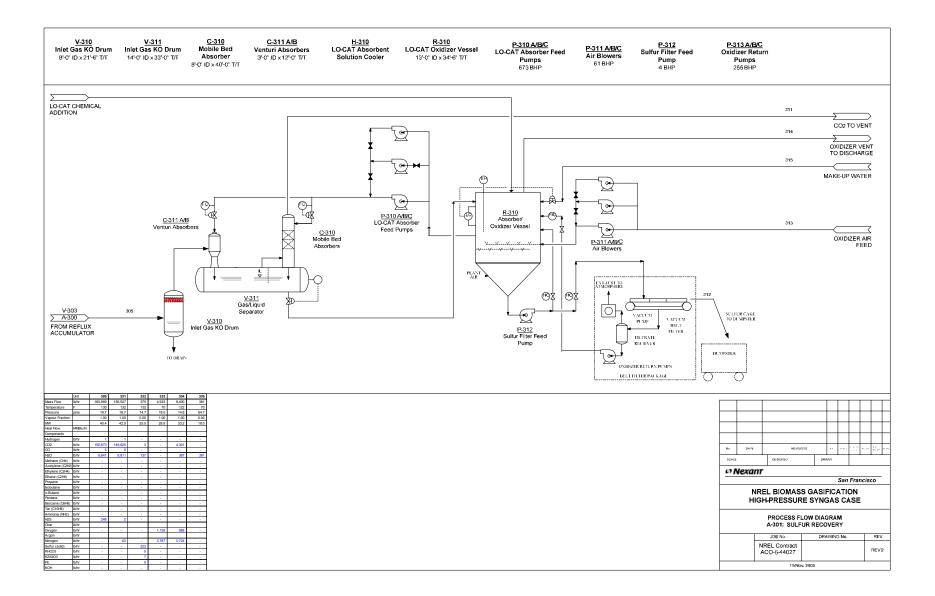
This design contains additional equipment than what is assumed in Emery Energy's 70 MWe facility design. While this design does not contain a gas turbine, steam turbine, or HRSG, additional equipment includes enhanced sulfur removal (an amine system and ZnO beds), chemicals synthesis equipment, and tar cracking. It is this increase in complexity, rather than the increase in size, that adds the majority of the increase in labor costs.

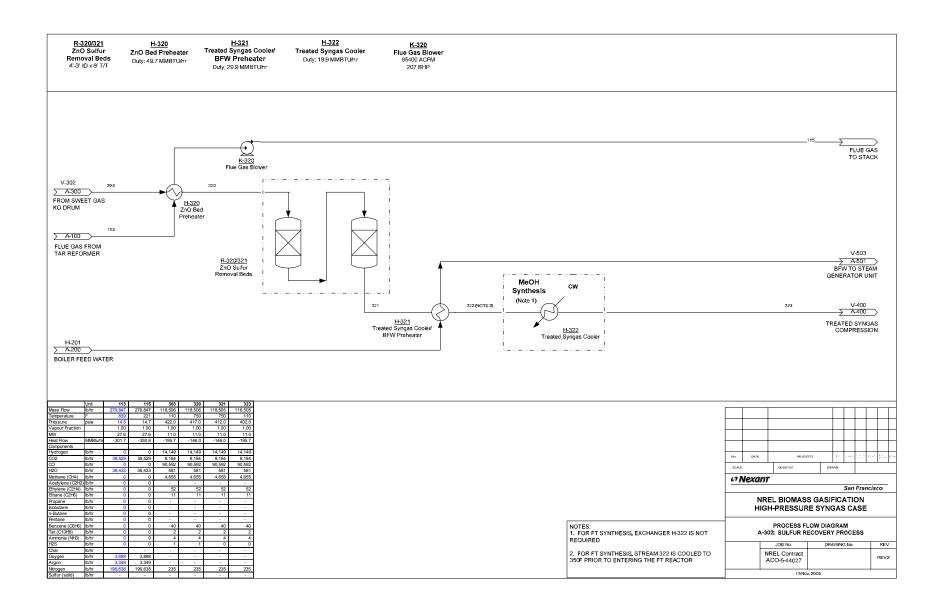
## 3.4 DIFFERENCES WITH NREL BIOMASS TO HYDROGEN CASE

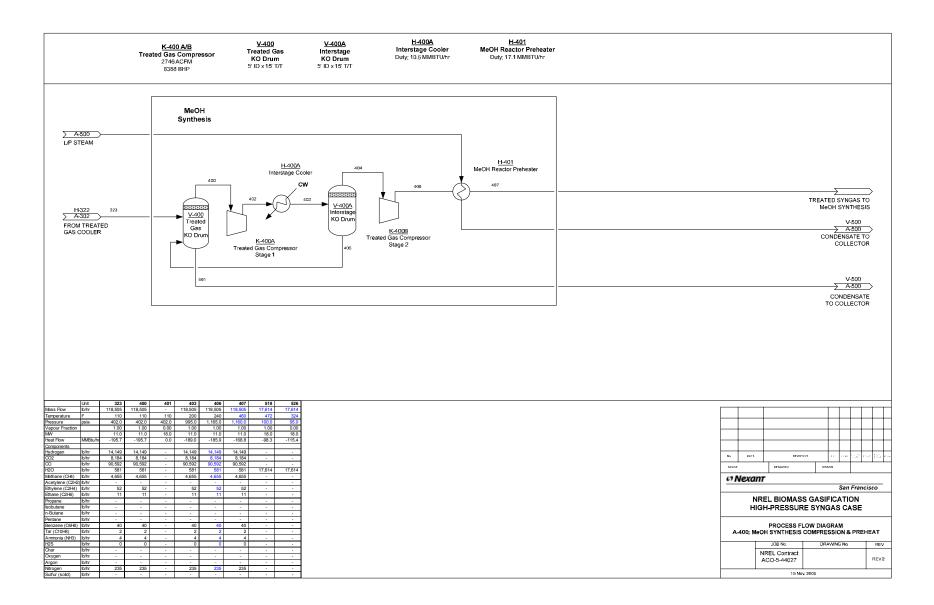

In the 2005 study, NREL made assumptions for the labor requirements necessary for a 2000 TPD wood gasification to hydrogen plant. The size being considered in this design is exactly the same, and the complexity is roughly the same as the NREL case. The only main difference is the inclusion of chemicals synthesis equipment, which takes the place of the PSA and related equipment required for hydrogen production.

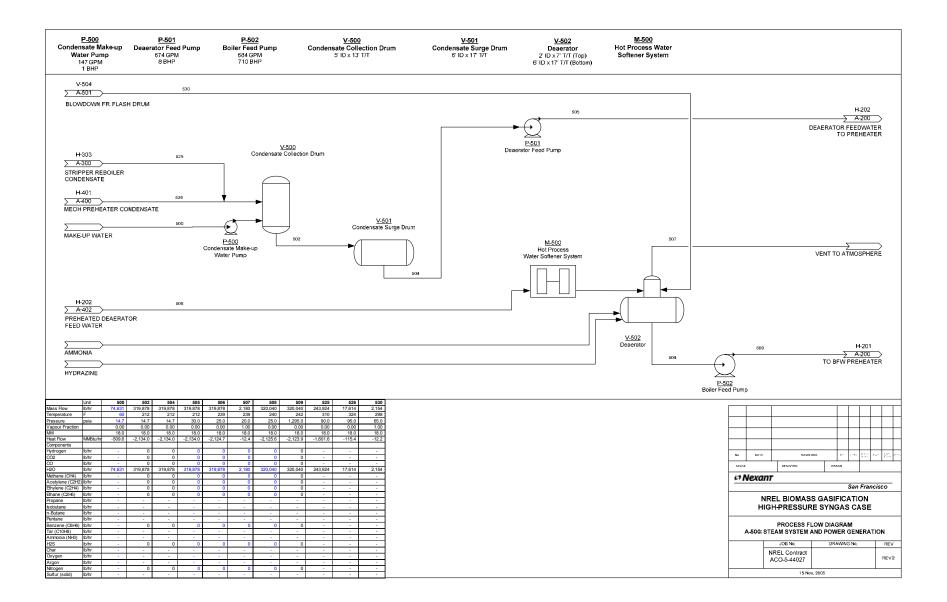

The labor requirements developed for the chemicals synthesis cases are lower by almost \$1.5MM due to the assumptions made by the Nexant team. The main differences are highlighted below:


- *Salary Assumptions:* In general, slightly higher salaries are assumed in the chemicals synthesis design for employees such as the plant manager, engineers, and operators. Higher salaries may be necessary to attract workers to facilities employing complicated and novel technologies.
- *Administrative Assistants:* Instead of the three assistants assumed by NREL, this design assumes only two: the company controller/administrative assistant and the main receptionist. The main difference is that the truck handling work performed by the assistant in the NREL design will now be split amongst the millwrights and assistants.
- Work Assignments for Shift Workers: As mentioned in the job descriptions, it is assumed that support operators will assist with yard issues, feedstock delivery, and field work, while the superintendent will largely be responsible for control issues. This reduces the need for yard employees and operators whose sole job is to man control boards. The five crews effectively allow for additional personnel capable of supporting offloading and weighing of the biomass feedstock.
- *Subcontract Labor:* In order to reduce the need for full-time staff for part-time work, a number of specific skills, such as welders, electricians, and carpenters, will be

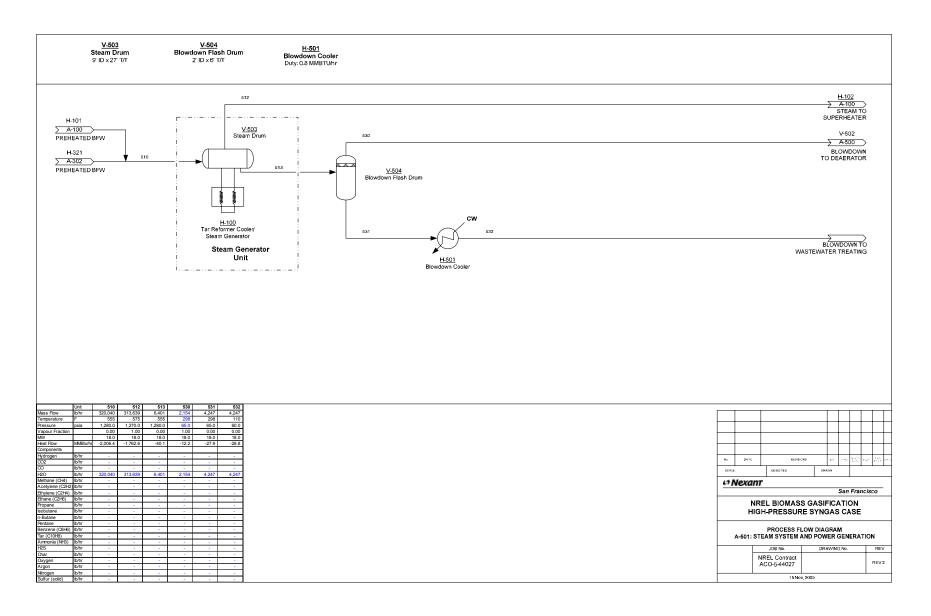

contracted out. This reduces the overall labor costs and overhead. No subcontract labor was assumed in the NREL hydrogen case.

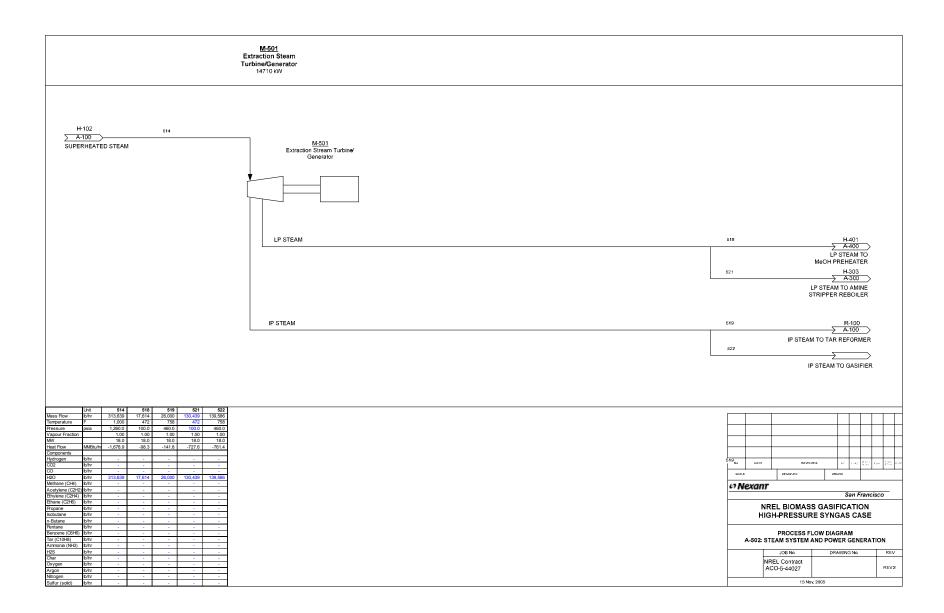

- **Overhead:** The labor estimate made in this case has roughly half as much full-time staff by utilizing more contract labor and changing the job description of day and shift employees. This is one reason that the estimate for overhead expenses (60%) is less than the biomass to hydrogen case (95%). In addition, the assumption has been made that a small firm will own and operate this facility. In general, overhead has been found to be less in smaller firms than in large multinationals; this assumption could be revised based on the ownership basis. This assumption for the overhead rate has been confirmed by Emery Energy, and is consistent with other small gasification companies that have limited facilities and indirect labor costs.
- **Overtime Assumptions:** The NREL hydrogen case assumed straight salaries for all employees, with no overtime. The chemicals case assumes ~2500 hours of overtime per year, roughly split over the 4 main shift worker categories. Allowing overtime reduces the number of full-time employees required, and decreases overall labor costs versus the NREL hydrogen case.
- Back-Up Shift Crew: Unlike the NREL hydrogen design, the back-up fifth shift team would be available to cover a number of different duties during the day shift, decreasing the need for specialty workers in each area.

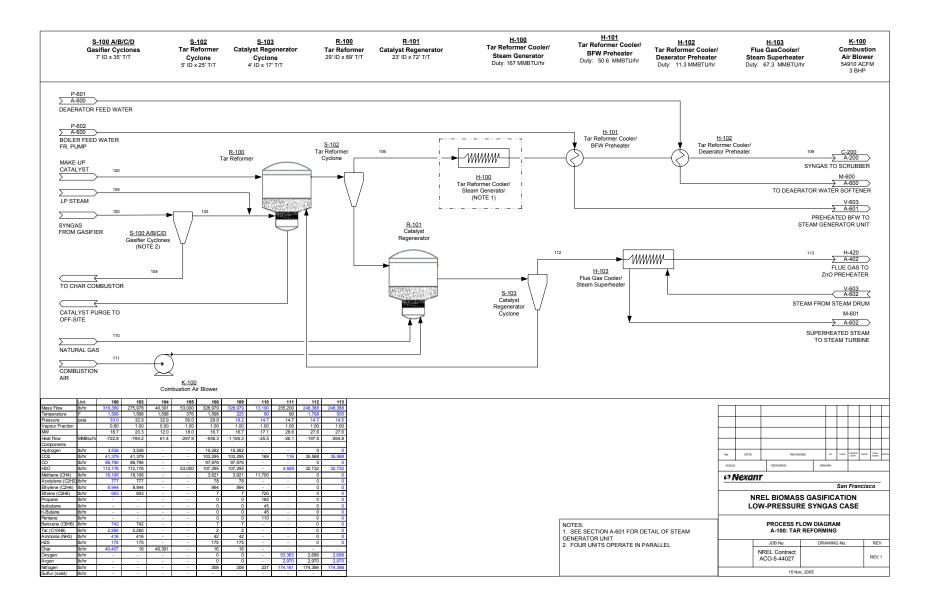


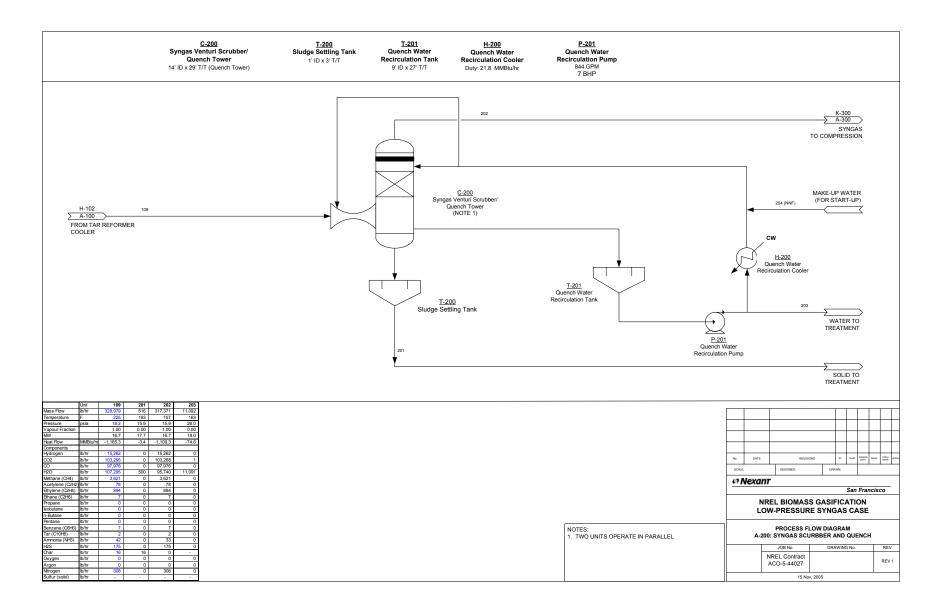



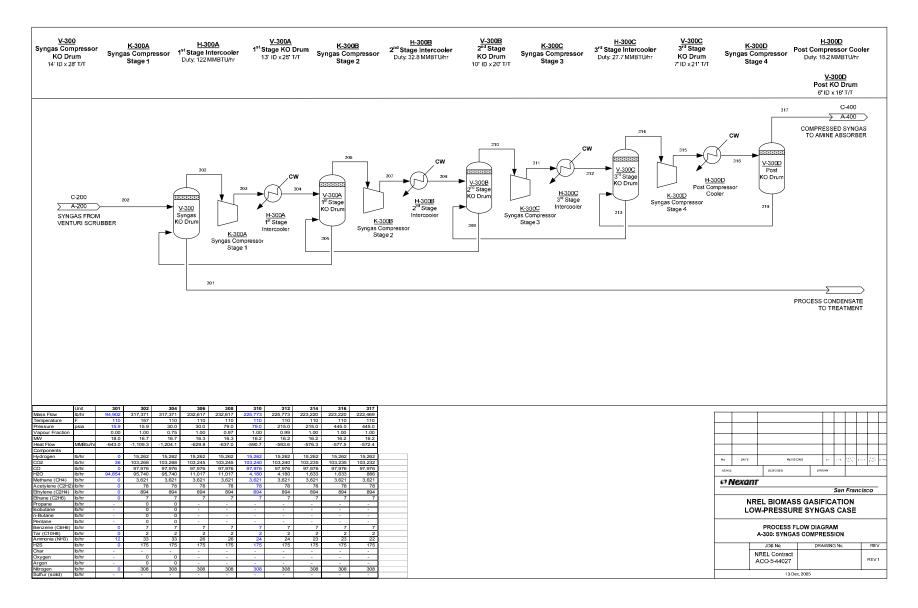


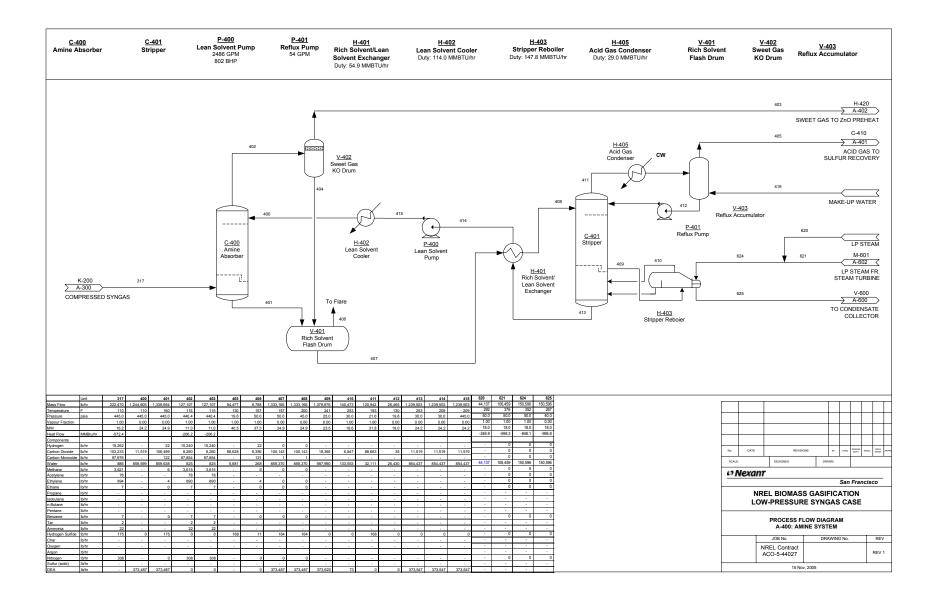



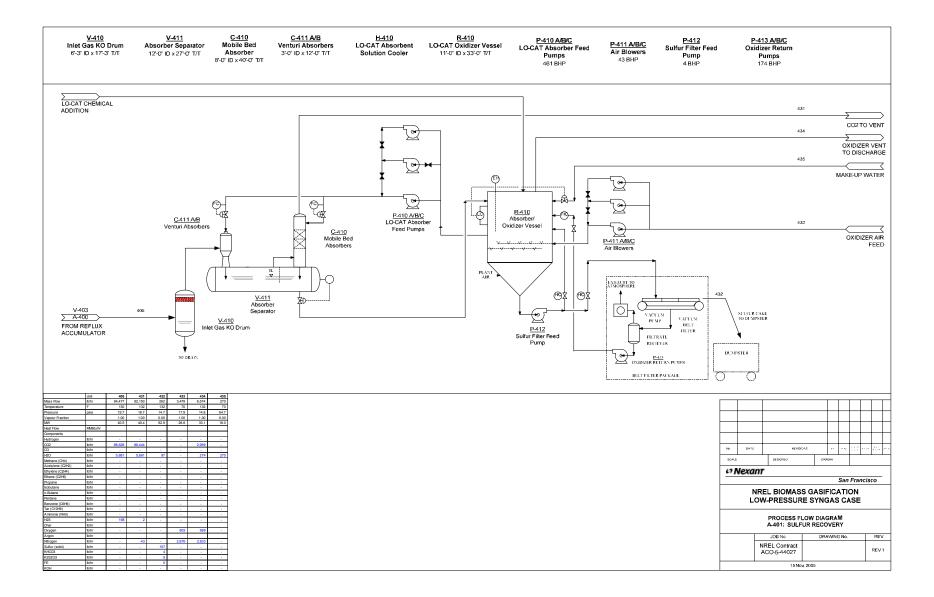



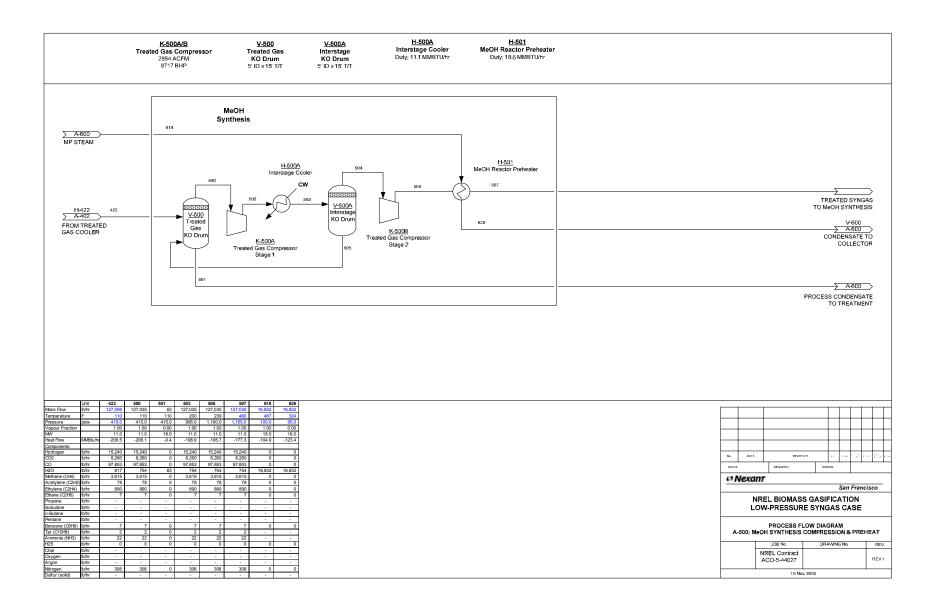



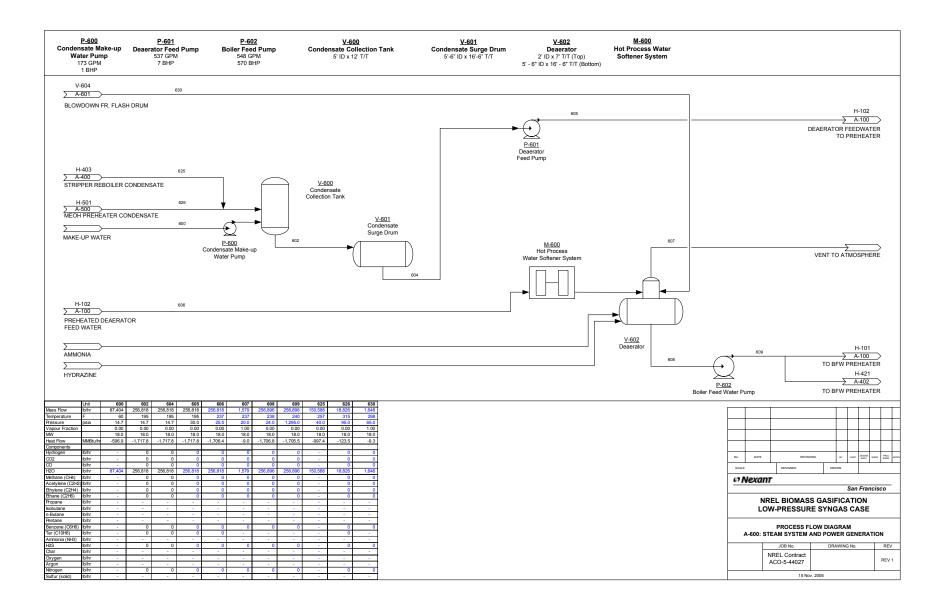



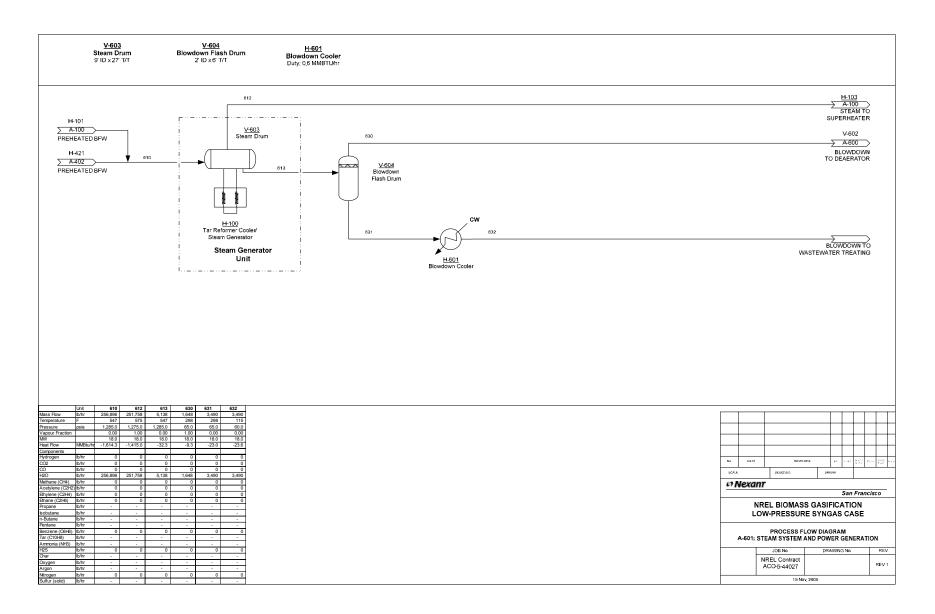



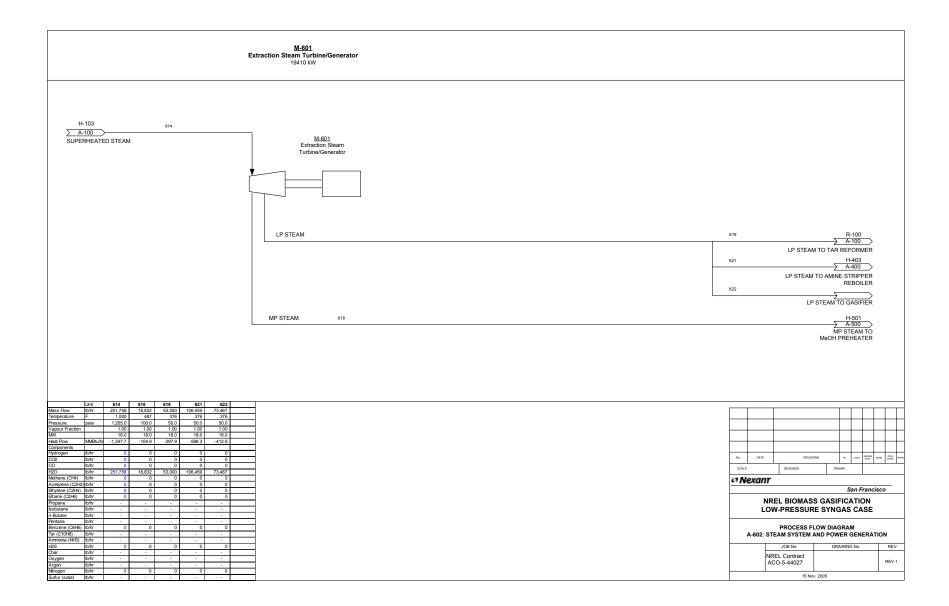















The following two appendices show the equipment lists for the high-pressure and low-pressure syngas design cases, along with detailed data sheets for some of the major pieces of equipment. No specific detail was developed for the tar cracking equipment due to the preliminary nature of its design. In addition, no additional information beyond what is presented in the equipment list was produced for vessels and pumps. Detailed equipment sheets are only shown for exchangers, cyclones, and compressors, where additional design data was developed.

|                |                                                         |                          |                       |                                                  |             |        |                            | Desic           |              | 0.000       | ating        |              |                               |                               |                                         |                         |                                 |                                                                |
|----------------|---------------------------------------------------------|--------------------------|-----------------------|--------------------------------------------------|-------------|--------|----------------------------|-----------------|--------------|-------------|--------------|--------------|-------------------------------|-------------------------------|-----------------------------------------|-------------------------|---------------------------------|----------------------------------------------------------------|
| Item No        | Description                                             | Туре                     | Quantity<br>Per Train | Size                                             | Weight      | Head   | Design Duty                | P               | т            | P           | T            | Power Useage | Materials                     | Price, total<br>(unistalled)  | Price Escalated,<br>total (uninstalled) | Total Installed<br>Cost | Quote Source                    | Comments                                                       |
|                |                                                         |                          |                       |                                                  | lbs         | PSI    |                            | PSIG            | ٩F           | PSIG        | ۰F           | (No.) HP     |                               | Q2 2004 Cost Index<br>(US \$) | Q2 2005 Cost Index<br>(US \$)           | (US \$)                 |                                 |                                                                |
| Reactors       |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              | Refractory lined              |                               |                                         |                         |                                 |                                                                |
| R-100          | Tar Reformer                                            | Fluidized Bed            |                       | 20' ID x 20' T/T                                 |             |        |                            | 490             | 1675         | 445         | 1576         |              | CS                            |                               | \$950,942                               |                         | GTI                             | 662,000 lbs catalyst req'd                                     |
| R-101          | Catalyst Regenerator                                    |                          |                       | 22' ID x 70' T/T                                 |             |        |                            | 20              | 1950         | -           | 1850         |              | Refractory lined<br>CS        |                               | \$329,616                               |                         | GTI                             |                                                                |
| R-320          | ZnO Beds                                                | Vertical                 | 1                     |                                                  | 43,856      |        | 2 ppmv H2S inlet           | 445             | 850          | 402         | 750          |              | CS                            |                               | \$219,280                               |                         | Johnson Matthey                 |                                                                |
| R-321          | ZnO Beds                                                | Vertical                 | 1                     | 4' - 3* ID x 8' T/T                              | 43,856      |        | 2 ppmv H2S inlet           | 445             | 850          | 402         | 750          |              | CS                            |                               | \$219,280                               |                         | Johnson Matthey                 | 707 ft3 total catalyst volume req'd                            |
| Total          |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               | \$1,719,118                             |                         |                                 |                                                                |
| Cyclones       |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         |                                 |                                                                |
| S-100          | Gasifier Cyclone                                        | Cyclone                  |                       | 5' ID x 25' T/T                                  |             |        | 3304 lb/hr dust<br>loading | 490             | 650          | 445         | 1576         |              | CS w/ 4" refractory<br>lining |                               | \$355,000                               |                         | Fisher Kosterman                | Refractory lining will bring the<br>shell temperature to 590F. |
|                |                                                         |                          |                       |                                                  |             |        | 1128 lb/hr dust            |                 |              |             |              |              | CS w/ 4" refractory           |                               |                                         |                         |                                 | Refractory lining will bring the                               |
| S-102          | Tar Reformer Cyclone                                    | Cyclone                  | 1                     | 5' - 6" ID x 27' - 6" T/T                        |             |        | loading<br>1128 lb/hr dust | 490             | 650          | 442         | 1576         |              | lining<br>CS w/ 4" refractory |                               | \$410,000                               |                         | Fisher Kosterman                | shell temperature to 590F.<br>Refractory lining will bring the |
| S-103          | Catalyst Regenerator Cyclone                            | Cyclone                  | 1                     | 5' ID x 25' T/T                                  |             |        | loading                    | 490             | 650          | 442         | 1576         |              | Lining                        |                               | \$265,000                               |                         | Fisher Kosterman                | shell temperature to 590F.                                     |
| Total          |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               | \$1,030,000                             |                         |                                 |                                                                |
| Columns, V     | essels & Tanks                                          |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         |                                 |                                                                |
|                |                                                         |                          |                       | 3" - 2" ID x 7" - 9" T-T (Venturi);              |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         |                                 |                                                                |
| 0.000          | Syngas Venturi Scrubber & Quench Tower                  | Vertical                 |                       | 5' - 3" ID x 8' - 11" T-T (Quench<br>Tower)      |             |        |                            | 485             | 420          | 432         | 370          |              | CS                            |                               | \$316.000                               |                         | EPA Cost Curve                  |                                                                |
| C-200<br>V-400 | Treated Gas KO Drum                                     | Vertical                 | 1                     | 5' ID x 15' T-T                                  | 31700       |        |                            | 400             | 420          | 432         | 110          |              | CS                            | \$31 700                      | \$37,580                                |                         | ICARUS                          |                                                                |
| V-400A         | Interstage KO Drum                                      | Vertical                 | 1                     | 5' ID x 15' T-T                                  | 29300       |        |                            | 1030            | 250          | 980         | 200          |              | CS                            | \$57,800                      | \$68,522                                |                         | ICARUS                          |                                                                |
| V-500          | Condensate Collection Drum                              | Vertical                 | 1                     | 5' ID x 13' T-T                                  | 4170        |        |                            | 15              | 265          | 0           | 212          |              | CS                            | \$14,745                      | \$17,480                                |                         | ICARUS                          |                                                                |
| V-501          | Condensate Surge Drum                                   | Horizontal               | 1                     | 6' ID x 17' T-T                                  | 6300        |        |                            | 15              | 145          | 0           | 94           |              | CS<br>CS                      | \$22,195<br>\$31,350          | \$26,312<br>\$37,165                    |                         | ICARUS                          |                                                                |
| V-502          | Deaerator                                               | Horizontal               | 1                     | 6' ID x 17' T-T; 2' ID x 7' T-T                  | 7900        |        |                            | 25              | 290          | 10          | 240          |              |                               |                               |                                         |                         | ICARUS                          |                                                                |
|                | Steam Drum                                              | Horizontal               | 1                     | 9' ID x 27' T-T                                  | 139300      |        |                            | 1335            | 625          | 1265        | 575          |              | SA 302B                       | \$764,205                     | \$1,018,227                             |                         | ICARUS                          |                                                                |
| V-504<br>T-200 | Blowdown Flash Drum                                     | Vertical<br>Horizontal   | 1                     | 2' ID x 6' T-T<br>1' ID x 3' T/T                 | 1300<br>300 |        |                            | 65<br>475       | 350<br>415   | 50<br>430   | 298<br>364   |              | CS<br>CS                      | \$8,200<br>\$4,800            | \$9,721<br>\$5,690                      |                         | ICARUS<br>ICARUS                |                                                                |
| T-200<br>T-201 | Sludge Settling Tank<br>Quench Water Recirculation Tank | Horizontal<br>Horizontal | 1                     | 4' - 6" ID x 14' T/T                             | 3600        |        |                            | 475             | 415          | 430         | 364          |              | CS                            | \$4,800<br>\$14,460           | \$5,690                                 |                         | ICARUS                          |                                                                |
| Total          | Querich water Redirculation Tank                        | Horizoniai               |                       | 4-0 ID X 14 1/1                                  | 3000        |        |                            | 4/5             | 360          | 430         | 311          |              | 63                            | \$14,400                      | \$1,553,840                             |                         | ICARUS                          |                                                                |
| Used Freehouse |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         |                                 |                                                                |
| Heat Excha     |                                                         |                          |                       | 5' - 7* ID x 12' T-T                             |             |        |                            | T 1335          | 625          | 1270        | 575          |              | CS                            |                               |                                         |                         |                                 |                                                                |
| H-100          | Tar Reformer SG Cooler/Steam Generator                  | Shell & Tube             | 2                     | Surface area: 5206 SQFT                          |             |        | 203.7 MMBTU/hr             | S 485           | 1675         | 442         | 1576         |              | CS - refractory               | \$1,465,600                   | \$1,664,628                             |                         | ICARUS                          | Refractory Lined                                               |
| H-101          | Tar Reformer SG Cooler/BFW Preheater                    | Shell & Tube             | 1                     | 7' - 6" ID x 20' T-T<br>Surface area: 23969 SQFT |             |        | 50.84 MMBTU/hr             | T 1335<br>S 485 | 600<br>675   | 1270<br>437 | 551<br>624   |              | CS<br>CS                      | \$513,500                     | \$583,233                               |                         | ICARUS                          |                                                                |
| H-102          | Flue Gas Cooler/Steam Superheater                       | Shell & Tube             | 1                     | 8' - 4" ID x 14' T-T<br>Surface area: 8915 SQFT  |             |        | 83.65 MMBTU/hr             | T 1335<br>S 15  | 1100<br>1900 | 1255<br>0   | 1000<br>1798 |              | 316S<br>CS - refractory       | \$1,598,750                   | \$1,815,860                             |                         | ICARUS                          | Refractory Lined                                               |
| H-200          | Quench Water Recirculation                              | Shell & Tube             | 1                     | 3' - 6" ID x 10' T-T<br>Surface area: 2867 SQFT  |             |        | 22.34 MMBTU/hr             | T 485<br>S 20   | 415<br>150   | 441<br>5    | 364<br>100   |              | CS<br>CS                      | \$80,000                      | \$90,864                                |                         | ICARUS                          |                                                                |
|                |                                                         |                          |                       | 4' - 8" ID x 14' T-T                             |             |        |                            | T 1335          | 400          | 1280        | 349          |              | CS                            |                               |                                         |                         |                                 |                                                                |
| H-201          | Amine Precooler/BFW Preheat                             | Shell & Tube             | 1                     | Surface area: 7511 SQFT<br>3' - 4" ID x 6' T-T   |             |        | 36.99 MMBTU/hr             | S 470<br>T 30   | 410<br>300   | 427<br>15   | 356<br>239   |              | CS<br>CS                      | \$260,300                     | \$295,649                               |                         | ICARUS                          |                                                                |
| H-202          | Amine Precooler/Deaerator FW Preheat                    | Shell & Tube             | 1                     | Surface area: 585 SQFT<br>8' ID x 8' T-T         |             |        | 9.24 MMBTU/hr              | S 465<br>T 65   | 400<br>150   | 422<br>50   | 338<br>100   |              | CS<br>CS                      | \$16,260                      | \$18,468                                |                         | ICARUS                          |                                                                |
| H-203          | Amine Precooler                                         | Shell & Tube             | 1                     | Surface area: 11541 SQFT<br>8' ID x 8' T-T       |             |        | 139.3 MMBTU/hr             | S 460<br>T 450  | 350<br>800   | 432         | 305<br>750   |              | CS<br>CS                      | \$309,600                     | \$351,644                               |                         | ICARUS                          |                                                                |
| H-320          | ZnO Preheater                                           | Shell & Tube             | 1                     | Surface area: 19400 SQFT<br>5' ID x 16' T-T      |             |        | 49.69 MMBTU/hr             | S 15<br>T 1335  | 910<br>615   | 0 1270      | 839          |              | CS<br>CS                      | \$288,000                     | \$327,110                               |                         | ICARUS                          | -                                                              |
| H-321          | ZnO SG Cooler/BFW Preheater                             | Shell & Tube             | 1                     | Surface area: 5440 SQFT                          |             |        | 29.85 MMBTU/hr             | S 440           | 800          | 397         | 565<br>750   |              | CS                            | \$192,600                     | \$218,755                               |                         | ICARUS                          |                                                                |
| H-322          | Post ZnO Syngas Cooler                                  | Shell & Tube             | 1                     | 3' ID x 8' T-T<br>Surface area: 1620 SQFT        |             |        | 19.91 MMBTU/hr             | T 65<br>S 435   | 150<br>420   | 50<br>393   | 100<br>370   |              | CS<br>CS                      | \$56,100                      | \$63,718                                |                         | ICARUS                          |                                                                |
| H-400A         | MeOH Compressor Interstage Cooler                       | Shell & Tube             | 1                     | 1' - 11" ID x 6' T-T<br>Surface area: 476 SQFT   |             |        | 10.47 MMBTU/hr             | T 1035<br>S 65  | 390<br>150   | 985<br>100  | 338<br>50    |              | CS<br>CS                      | \$32,200                      | \$36,573                                |                         | ICARUS                          |                                                                |
|                |                                                         |                          | <u> </u>              | 6' ID x 18' T-T                                  |             |        |                            | T 1210          | 515          | 1150        | 460          |              | CS                            |                               |                                         |                         |                                 |                                                                |
| H-401          | MeOH Syngas Preheat                                     | Shell & Tube             | 1                     | Surface area: 16212 SQFT<br>1' - 3" ID x 4' T-T  |             |        | 17.14 MMBTU/hr             | S 100<br>T 65   | 525<br>150   | 85          | 472          |              | CS<br>CS                      | \$355,140                     | \$403,368                               |                         | ICARUS                          |                                                                |
| H-501<br>Total | Blowdown Cooler                                         | Shell & Tube             | 1                     | Surface area: 130 SQFT                           |             |        | 0.84 MMBTU/hr              | S 65            | 350          | 50          | 298          |              | ČŠ                            | \$19,100                      | \$21,694<br>\$5,891,565                 |                         | ICARUS                          |                                                                |
| Total          |                                                         |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               | \$5,691,565                             |                         |                                 |                                                                |
| Compresso      | rs & Blowers                                            |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         | 011 01 -                        |                                                                |
| K-100          | Combustion Air Blower                                   | Blower                   | 2                     | 61910 ACFM                                       |             | 5      |                            |                 |              | 0           | 90           | 1800         | CS                            |                               | \$274,305                               |                         | Chicago Blower Corp./<br>ICARUS | Used ICARUS to cost motor. 2 -<br>100% blowers                 |
|                | Flue Gas Blower                                         | Blower                   | 2                     | 85400 ACFM                                       |             | 0.4    |                            |                 |              | 0           | 214          | 207          |                               |                               | \$233.875                               |                         | Scaled fr. Chicago Blower       | 2 - 100% blowers                                               |
| K-400          | MeOH Compressor - 2 Stages                              | Centrifugal              | 1                     | 2746 ACFM                                        | 74,500      | 758    |                            |                 | i            | 387         | 110          | 8388         | CS<br>CS                      | \$2,133,200                   | \$2,522,936                             |                         | ICARUS                          |                                                                |
| Total          |                                                         |                          |                       |                                                  |             |        |                            |                 |              | 1           |              |              |                               |                               | \$3,031,115                             |                         |                                 |                                                                |
| Pumps          |                                                         |                          | 1                     |                                                  |             | •      |                            |                 |              | 1           |              |              |                               |                               |                                         |                         |                                 |                                                                |
| P-201          | Quench Water Recirculation                              | Centrifugal              | 2                     | 282 GPM                                          | 420         | 14     |                            | 475             | 360          | 430         | 311          | 3            | CS                            | \$10,600                      | \$11,021                                |                         | ICARUS                          | 2 - 100% pumps                                                 |
| P-500          | Condensate Make-up Water Pump                           | Centrifugal              | 2                     | 147 GPM                                          | 440         | 5      |                            | 20              | 110          | 0           | 60           | 1.3          | CS                            | \$5,400                       | \$5,614                                 |                         | ICARUS                          | 2 - 100% pumps                                                 |
| P-501          | Deaerator Feed Pump                                     | Centrifugal              | 2                     | 674 GPM                                          | 680         | 15     |                            | 30              | 150          | 0           | 98           | 8            | CS                            | \$17,200                      | \$17,883                                |                         | ICARUS                          | 2 - 100% pumps                                                 |
| P-502<br>Total | Boiler Feed Water Pump                                  | Centrifugal              | 2                     | 684 GPM                                          | 9,000       | 1,270  |                            | 1345            | 290          | 11          | 240          | 710          | CS                            | \$325,000                     | \$337,903<br>\$372,421                  |                         | ICARUS                          | 2 - 100% pumps                                                 |
|                |                                                         |                          | 1                     |                                                  |             |        |                            |                 | t            | 1           |              |              |                               |                               | \$3/2,421                               |                         |                                 |                                                                |
| Steam Turb     | ine                                                     |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         |                         |                                 |                                                                |
| M-501          | Steam Turbine                                           | Steam Turbine            | 1                     |                                                  | 172,900     | -1,160 |                            |                 |              | 1245        | 1000         | (14710 kW)   | CS                            | \$4,534,500                   | \$5,362,953                             |                         | ICARUS                          |                                                                |
| Total          |                                                         |                          | I                     |                                                  |             |        |                            |                 |              | +           |              |              |                               |                               | \$5,362,953                             |                         |                                 |                                                                |
| Package Un     |                                                         |                          |                       |                                                  |             |        |                            |                 |              | +           |              |              | <u> </u>                      |                               |                                         |                         |                                 |                                                                |
|                | Amine Unit                                              | I                        | 1                     | 1 1                                              |             |        |                            |                 |              | 1           |              |              |                               |                               |                                         | \$22,413,600            | GRI Cost Curve                  | 1                                                              |
|                | LO-CAT Unit                                             |                          | 1                     | 1                                                |             |        |                            |                 |              | 1           |              |              |                               |                               | \$3,998,550                             |                         | Gas Technology Products         | 1                                                              |
|                |                                                         |                          |                       |                                                  |             |        |                            |                 |              | 1           |              |              |                               |                               |                                         |                         |                                 |                                                                |
| TOTAL EQU      | JIPMENT COST, (excld. Package units)                    |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               | \$18,961,012                            | \$48,729,802            |                                 | Installation factor of 2.57 used                               |
| TOTAL INST     | TALLED COST                                             |                          |                       |                                                  |             |        |                            |                 |              |             |              |              |                               |                               |                                         | \$76,491,952            |                                 |                                                                |
|                |                                                         |                          |                       |                                                  |             |        |                            |                 |              | -           |              |              |                               |                               |                                         |                         |                                 |                                                                |

## HIGH PRESSURE SYNGAS DESIGN CASE

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report United States Department of Energy/National Renewable Energy Laboratory

C-2

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             | Des              | lan                   | Oper        | eting        |                 |                               |                               |                               |                 |                           |                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|---------------------------------------------------|-------------------|------------|-----------------------------|------------------|-----------------------|-------------|--------------|-----------------|-------------------------------|-------------------------------|-------------------------------|-----------------|---------------------------|----------------------------------------------------------------|
| -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          | 1        | T                                                 | r –               | r –        |                             | Des              | lign                  | Oper        | ating        |                 | r                             | Price, total                  | Price Escalated,              | Total Installed |                           |                                                                |
| Item No         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type                       | Quantity | Size, each                                        | Weight            | Head       | Design Duty, total          | Р                | т                     | Р           | т            | Power Useage    | Materials                     | (unistalled)                  | total (uninstalled)           | Cost            | Quote Source              | Comments                                                       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   | lbs               | PSI        |                             | PSIG             | ۰F                    | PSIG        | ٩F           | (No.) HP        |                               | Q2 2004 Cost Index<br>(US \$) | Q2 2005 Cost Index<br>(US \$) | (US \$)         |                           |                                                                |
| Reactors        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   | Ibs               | PSI        |                             | PSIG             | 9°                    | PSIG        | 4            | (No.) HP        |                               | (US \$)                       | (US\$)                        | (US\$)          |                           |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluidized Bed              | 1        |                                                   |                   |            |                             |                  |                       |             |              |                 | Refractory lined              |                               |                               |                 |                           |                                                                |
| R-100           | Tar Reformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluidized Bed              | 1        | 29' ID x 89' T/T                                  |                   |            |                             | 30               | 1700                  | 15          | 1598         |                 | CS                            |                               | \$921,786                     |                 | GTI                       | 1,820,000 lbs catalyst reg'd                                   |
| R-101           | Catalyst Regenerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 1        | 23' ID x 72' T/T                                  |                   |            |                             | 30               | 1700                  | 15          | 1598         |                 | Refractory lined<br>CS        |                               | \$545.886                     |                 | GTI                       |                                                                |
|                 | ZnO Beds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vertical                   | 1        | 4' - 6" ID x 8' T/T                               | 44,522            |            | 2 ppmv H2S inlet            | 455              | 850                   | 415         | 750          |                 | CS                            |                               | \$222,610                     |                 | Johnson Matthey           |                                                                |
|                 | ZnO Beds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vertical                   | 1        | 4' - 6" ID x 8' T/T                               | 44,522            |            | 2 ppmv H2S inlet            | 455              | 850                   | 415         | 750          |                 | CS                            |                               | \$222,610<br>\$1,912,892      |                 | Johnson Matthey           | 777 ft <sup>3</sup> total catalyst volume req'd                |
| Total           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               | \$1,912,892                   |                 |                           |                                                                |
| Cyclones        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               |                               |                 |                           |                                                                |
| S-100           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            | 14,142 lb/hr dust           |                  | 650 (see              |             |              |                 | CS w/ 4*                      |                               |                               |                 |                           | Refractory lining will bring the shell                         |
| A/B/C/D         | Gasifier Cyclone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cyclone                    | 4        | 7" ID x 35" T/T                                   |                   |            | loading                     | 33               | comments)             | 18          | 1598         |                 | refractory lining             |                               | \$1,225,000                   |                 | Fisher Kosterman          | temperature to 590F.                                           |
| S-102           | Tar Reformer Cyclone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cyclone                    | 1        | 5' ID x 25' T/T                                   |                   |            | 1,000 lb/hr dust<br>loading | 33               | 650 (see<br>comments) | 15          | 1598         |                 | CS w/ 4*<br>refractory lining |                               | \$370,000                     |                 | Fisher Kosterman          | Refractory lining will bring the shell<br>temperature to 590F. |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | <u> </u> |                                                   |                   |            | 1,000 lb/hr dust            | 33               | 650 (see              |             |              |                 | CS w/ 4*                      |                               |                               |                 |                           | Refractory lining will bring the shell                         |
| S-103           | Catalyst Regenerator Cyclone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cyclone                    | 1        | 4' ID x 17' T/T                                   |                   |            | loading                     | 33               | comments)             | 15          | 1598         |                 | refractory lining             |                               | \$250,000                     |                 | Fisher Kosterman          | temperature to 590F.                                           |
| Total           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               | \$1,845,000                   |                 |                           |                                                                |
| Columns, V      | essels & Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               |                               |                 |                           |                                                                |
| C-200           | Syngas Venturi Scrubber & Quench Tower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical                   | 2        | 14' ID x 29' T/T                                  |                   |            |                             | 19               | 275                   | 4           | 225          |                 | CS                            |                               | \$340,000                     |                 | Croll Reynolds            |                                                                |
| V-300<br>V-300A | Syngas KO Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vertical                   | 2        | 14' ID x 28' T/T<br>13' ID x 26' T/T              | 31,500<br>25,500  |            |                             | 16<br>30         | 210<br>160            | 1           | 157<br>110   |                 | CS<br>CS                      | \$306,800<br>\$73,400         | \$363,711<br>\$87,016         |                 | ICARUS                    |                                                                |
|                 | 1st Stage KO Drum<br>2nd Stage KO Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical                   | 1        | 10' ID x 20' T/T                                  | 25,500            |            |                             | 79               | 160                   | 64          | 110          |                 | CS                            | \$73,400                      | \$64,373                      |                 | ICARUS                    |                                                                |
| V-300C          | 3rd Stage KO Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vertical                   | 1        | 7" ID x 21' T/T                                   | 21,900            |            |                             | 220              | 160                   | 200         | 110          |                 | CS                            | \$41,800                      | \$49,554                      |                 | ICARUS                    |                                                                |
| V-300D          | Post KO Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical                   | 1        | 6' ID x 18' T/T                                   | 23,600            |            |                             | 475              | 160                   | 430         | 110          |                 | CS                            | \$45,400                      | \$53,822                      |                 | ICARUS                    |                                                                |
| V-500<br>V-500A | Treated Gas KO Drum<br>Interstage KO Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical<br>Vertical       | 1        | 5' ID x 15' T/T<br>5' ID x 15' T/T                | 14,900<br>29,300  |            |                             | 440              | 160<br>250            | 400<br>980  | 110<br>200   |                 | CS<br>CS                      | \$31,800<br>\$57,800          | \$37,699<br>\$68,522          |                 | ICARUS<br>ICARUS          |                                                                |
| V-600           | Condensate Collection Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vertical                   | 1        | 5' ID x 12' T/T                                   | 3,990             |            |                             | 1,030            | 250                   | 0           | 195          |                 | CS                            | \$14,100                      | \$16,716                      |                 | ICARUS                    |                                                                |
| V-601           | Condensate Surge Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Horizontal                 | 1        | 5' - 6" ID x 16' - 6" T/T                         | 5,483             |            |                             | 15<br>25         | 245                   | Ö           | 195          |                 | CS                            | \$19,320                      | \$22,904                      |                 | ICARUS                    |                                                                |
|                 | Deserator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical                   | 1        | 6" ID x 18" T/T; 2" ID x 6" T/T                   | 7,800             |            |                             |                  | 290                   | 10          | 237          |                 | CS                            | \$35,700                      | \$42,322                      |                 | ICARUS                    |                                                                |
| V-603<br>V-604  | Steam Drum<br>Blowdown Flash Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Horizontal<br>Vertical     | 1        | 9' ID x 27' T/T<br>2' ID x 6' T/T                 | 139,300           |            |                             | 1335<br>65       | 625<br>350            | 1270<br>50  | 575<br>298   |                 | SA 302B<br>CS                 | \$764,205<br>\$7.500          | \$1,018,227<br>\$8,891        |                 | ICARUS                    | 1                                                              |
| T-200           | Sludge Settling Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Horizontal                 | 1        | 1' ID x 3' T/T                                    | 300               |            |                             | 16               | 180                   | 1           | 128          |                 | CS                            | \$4,000                       | \$4,742                       |                 | ICARUS                    |                                                                |
| T-201<br>Total  | Quench Water Recirculation Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Horizontal                 | 1        | 9' ID x 27' T/T                                   | 15,300            |            |                             | 16               | 180                   | 1           | 128          |                 | CS                            | \$60,700                      | \$71,960<br>\$2,250,458       |                 | ICARUS                    |                                                                |
| Total           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               | \$2,250,458                   |                 |                           |                                                                |
| Heat Excha      | ngers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               |                               |                 |                           |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | 6' ID x 14' T/T                                   |                   |            |                             | T 1335           | 625                   | 1270        | 575          |                 | CS                            | 1                             |                               |                 |                           |                                                                |
| H-100           | Tar Reformer SG Cooler/Steam Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shell & Tube               | 2        | Surface area: 5354 SQFT<br>4' - 9" ID x 14' T/T   |                   |            | 167 MMBTU/hr                | S 30<br>T 1335   | 1700<br>600           | 15          | 1598<br>542  |                 | CS - refractory               | \$989,400                     | \$1,129,202                   |                 | ICARUS                    | Refractory Lined                                               |
| H-101           | Tar Reformer SG Cooler/BFW Preheater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shell & Tube               | 2        | 4 - 9 ID x 14 1/1<br>Surface area: 6667 SQFT      |                   |            | 50.61 MMBTU/hr              | S 20             | 675                   | 1,280<br>12 | 624          |                 | CS<br>CS                      | \$682,550                     | \$775,240                     |                 | ICARUS                    |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -        | 6' - 3" ID x 14' T/T                              |                   |            |                             | T 30             | 280                   | 15          | 227          |                 | CS                            |                               |                               |                 |                           |                                                                |
| H-102           | Tar Reformer Cooler/Deaerator FW Preheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Shell & Tube               | 1        | Surface area: 5621 SQFT                           |                   |            | 11.34 MMBTU/hr              | S 20             | 350                   | 9           | 300          |                 | CS                            | \$104,600                     | \$118,805                     |                 | ICARUS                    |                                                                |
| H-103           | Flue Gas Cooler/Steam Superheater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shell & Tube               | 1        | 7' - 6" ID x 14' T/T<br>Surface area: 5770 SQFT   |                   |            | 67.26 MMBTU/hr              | T 1335<br>S 15   | 1100                  | 985         | 1275<br>1798 |                 | 316S<br>CS - refractory       | \$1.016.858                   | \$1,154,947                   |                 | ICARUS                    | Refractory Lined                                               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | 5" - 11" ID x 10' T/T                             |                   |            |                             | T 30             | 150                   | 5           | 100          |                 | CS                            |                               |                               |                 |                           | renderory enice                                                |
| H-200           | Quench Water Recirculation Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shell & Tube               | 1        | Surface area: 9232 SQFT                           |                   |            | 22.2 MMBTU/hr               | S 30             | 215                   | 11          | 161          |                 | CS                            | \$203,800                     | \$231,476                     |                 | ICARUS                    |                                                                |
| H-300A          | Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               |          | 6' - 10" ID x 12' T/T<br>Surface area: 14235 SQFT |                   |            | 122 MMBTU/hr                | T 35<br>S 65     | 400<br>150            | 20<br>50    | 344<br>100   |                 | CS<br>CS                      | \$802,600                     | \$911,593                     |                 | ICARUS                    |                                                                |
| H-300A          | Compressor interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silei a Tube               | -        | 3' - 11" ID x 10' T/T                             |                   |            | 122 MMD10/11                | T 65             | 150                   | 50          | 100          |                 | CS                            | \$802,000                     | 3911,053                      |                 | IGAROS                    |                                                                |
| H-300B          | Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | Surface area: 3435 SQFT                           |                   |            | 32.79 MMBTU/hr              | S 85             | 400                   | 69          | 350          |                 | CS                            | \$72,300                      | \$82,118                      |                 | ICARUS                    |                                                                |
| H-300C          | Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | 4' - 3" ID x 10' T/T                              |                   |            | 27.69 MMBTU/br              | T 230<br>S 65    | 400                   | 205         | 349<br>100   |                 | CS                            | \$95,000                      | \$107,901                     |                 | ICARUS                    |                                                                |
| H-300C          | Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | Surface area: 4368 SQFT<br>3' - 6" ID x 10' T/T   |                   |            | 27.69 MMB1U/hr              | S 65<br>T 485    | 330                   | 435         | 277          |                 | CS                            | \$95,000                      | \$107,901                     |                 | ICARUS                    |                                                                |
| H-300D          | Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | Surface area: 2934 SQFT                           |                   |            | 18.21 MMBTU/hr              | S 65             | 150                   | 50          | 100          |                 | CS                            | \$74,900                      | \$85,071                      |                 | ICARUS                    |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | 7' - 6" ID x 8' T/T                               |                   |            |                             | T 465            | 800                   | 420         | 750          |                 | CS                            |                               |                               |                 |                           |                                                                |
| H-420           | ZnO Preheater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | Surface area: 14480 SQFT<br>5' - 4" ID x 12' T/T  |                   |            | 52.90 MMBTU/hr              | S 15<br>T 1335   | 990<br>600            | 0           | 945<br>542   |                 | CS<br>CS                      | \$289,300                     | \$328,587                     |                 | ICARUS                    |                                                                |
| H-421           | ZnO Syngas Cooler/BFW Preheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell & Tube               | 1        | Surface area: 6915 SQFT                           |                   |            | 40.57 MMBTU/hr              | S 455            | 800                   | 410         | 750          |                 | CS                            | \$244.300                     | \$277,476                     |                 | ICARUS                    |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | 2' - 6" ID x 8' T/T                               |                   |            |                             | T 65             | 150                   | 50          | 100          |                 | CS                            |                               |                               |                 |                           |                                                                |
| H-422           | ZnO Syngas Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shell & Tube               | 1        | Surface area: 1190 SQFT<br>2' - 6" ID x 8' T/T    |                   |            | 11.86 MMBTU/hr              | S 450<br>T 1.035 | 315                   | 405         | 265          |                 | CS                            | \$41,210                      | \$46,806                      |                 | ICARUS                    |                                                                |
| H-500A          | MeOH Compressor Interstage Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shell & Tube               | 1        | Surface area: 511 SQFT                            |                   |            | 11.06 MMBTU/br              | S 65             | 150                   | 50          | 100          |                 | CS                            | \$33,800                      | \$38,390                      |                 | ICARUS                    |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | 6' ID x 14' T/T                                   |                   |            |                             | T 1,261          | 515                   | 1,145       | 460          |                 | CS                            |                               |                               |                 |                           |                                                                |
| H-501           | MeOH Syngas Preheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shell & Tube               | 1        | Surface area: 12712 SQFT                          |                   |            | 18.45 MMBTU/hr              | S 100            | 540                   | 85          | 487          |                 | CS                            | \$278,500                     | \$316,320                     |                 | ICARUS                    |                                                                |
| H-601           | Blowdown Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shell & Tube               | 1        | 1' ID x 4' T/T<br>Surface area: 89 SQFT           |                   |            | 0.609 MMBTU/hr              | T 65<br>S 65     | 150<br>350            | 50<br>50    | 100<br>298   |                 | CS<br>CS                      | \$18,400                      | \$20,899                      |                 | ICARUS                    |                                                                |
| Total           | , 100 (100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               | \$5,624,833                   |                 | 100.0100                  |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          | 1        |                                                   |                   |            |                             |                  |                       | I –         |              |                 |                               |                               |                               |                 |                           |                                                                |
| Compresso       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                          | 1        | +                                                 |                   |            |                             |                  | -                     |             |              |                 | l                             | +                             |                               |                 | Chicago Blower Corp./     | Used ICARUS to cost motor. 2 -                                 |
| K-100           | Combustion Air Blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blower                     | 2        | 54910 ACFM                                        |                   | 3          |                             |                  |                       | 0           | 90           | 1600            | CS                            |                               | \$256,425                     |                 | ICARUS                    | 100% blowers                                                   |
| K-420           | Flue Gas Blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blower                     | 2        | 73100 ACFM                                        |                   | 0.4        |                             |                  |                       | 0           | 176          | 177             | CS                            |                               | \$202,375                     |                 | Scaled fr. Chicago Blower | 2 - 100% blowers                                               |
| K-300<br>K-500  | Syngas Compressor- 4 stages<br>MeOH Compressor- 2 stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Centrifugal<br>Centrifugal | 1        | 131800 ACFM<br>2854 ACFM                          | 333,100<br>31,100 | 434<br>745 |                             |                  |                       | 1<br>399    | 157<br>115   | 38,786<br>8,717 | CS<br>CS                      |                               | \$15,000,000<br>\$2,369,000   | \$37,050,000    | Elliott<br>Ariel Corp.    | 2.47 installation factor                                       |
| Total           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Genunuyar                  |          | 2004 AGEM                                         | 31,100            | 740        |                             |                  |                       | 399         | 110          | 0,/1/           | 03                            | L                             | \$17,827,800                  |                 | Aller Corp.               |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               |                               |                 |                           |                                                                |
| Pumps<br>P-201  | Quench Recirculation Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Centrifugal                | 1        | 2422 CDM                                          | 900               | 10.10      |                             | 26               | 211                   | 1.18        | 160.9        | 20              | C.8                           | \$91.000                      | 804.812                       |                 | ICADUS                    | 2 100% ритер                                                   |
| P-600           | Condensate Make-up Water Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Centrifugal                | 2        | 2423 GPM<br>172 GPM                               | 800<br>440        | 10.12      |                             | 20               | 211                   | 0           | 60           | 20              | CS<br>CS                      | \$6.320                       | \$94,613<br>\$6,571           |                 | ICARUS<br>ICARUS          | 2 - 100% pumps<br>2 - 100% pumps                               |
| P-601           | Deaerator Feed Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centrifugal                | 2        | 172 GPM<br>537 GPM                                | 810               | 15.3       |                             | 30               | 160                   | 15          | 108.8        | 7               | CS                            | \$17,400                      | \$18,091                      |                 | ICARUS                    | 2 - 100% pumps                                                 |
| P-602<br>Total  | Boiler Feedwater Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Centrifugal                | 2        | 548 GPM                                           | 8,900             | 1275       |                             | 1350             | 278                   | 20          | 227.9        | 570             | CS                            | \$316,800                     | \$329,377<br>\$448,651        |                 | ICARUS                    | 2 - 100% pumps                                                 |
| rotai           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |          | +                                                 | -                 |            |                             |                  |                       |             |              |                 |                               |                               | \$448,651                     |                 |                           |                                                                |
| Steam Turb      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            | <u> </u>                    |                  |                       |             |              |                 |                               |                               |                               |                 |                           |                                                                |
|                 | Steam Turbine- 2 extraction stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steam Turbine              | 1        |                                                   | 221,200           | -1200      |                             |                  |                       | 1,250       | 1,000        | (19410 kW)      | CS                            | \$5,459,900                   | \$6,457,424                   |                 | ICARUS                    |                                                                |
| Total           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          | +                                                 |                   |            |                             |                  |                       |             |              |                 | -                             | +                             | \$6,457,424                   |                 |                           |                                                                |
| Package Ur      | its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                          | 1        | 1                                                 |                   |            | 1                           |                  |                       | I           |              |                 | 1                             | 1                             |                               | 1               |                           | 1                                                              |
| A-400           | Amine Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |          |                                                   |                   |            |                             |                  |                       |             |              |                 |                               |                               |                               | \$12,452,000    | GRI Cost Curve            |                                                                |
| A-401           | LO-CAT Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | <u> </u> | +                                                 |                   |            |                             |                  |                       | <u> </u>    |              |                 |                               | +                             | \$3,733,550                   | \$5,003,550     | Gas Technology Products   |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          | 1        | 1                                                 |                   |            |                             |                  |                       | -           |              |                 |                               | 1                             |                               |                 |                           |                                                                |
| 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          | 1        |                                                   |                   |            |                             |                  |                       | I           |              |                 |                               |                               |                               |                 |                           | Installation factor of 2.57 used on all                        |
|                 | JIPMENT COST, (excld. Package units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                          |          |                                                   |                   |            |                             |                  |                       | L           |              |                 |                               |                               | \$36,367,057                  | \$91,963,336    |                           | equipment except syngas compressor                             |
| TOTAL INS       | TALLED COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |          |                                                   |                   |            | <u> </u>                    |                  |                       |             |              |                 |                               |                               |                               | \$109,418,886   |                           |                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                                   |                   |            |                             |                  |                       |             |              | -               |                               |                               |                               |                 |                           |                                                                |

## LOW PRESSURE SYNGAS DESIGN CASE

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report United States Department of Energy/National Renewable Energy Laboratory C-3

## DATA SHEETS, HIGH PRESSURE DESIGN

| Job No.           Customer         NREL         Ref No.         HP Syngas Case           Address         Proposal No.         Date         Rev. 0           Plant Location         Date         Rev. 0         Service of Unit         Tar Reformer SG Cooler/HP Steam Generator         Item No.         H-100           Size 67x 144         Type         BEM - HORZ Connected in         2 Parallel         1 Series           SurfUnit (Eff)         10411 ft <sup>a</sup> Shells/Unit 2         Surface/Shell (Effective)         5206 ft <sup>a</sup> Fluid Allocation         PERFORMANCE OF ONE UNIT         Probaside         Fluid Name         Probaside           Fluid Name         Syngas fr Tar Reformer         Preheated BFW         Total Fluid Entering         10/1           Vapor         435.000         0         0         1313.900           Uquid Density (In/Out)         Ib/ft <sup>a</sup> 0.000/0.000         46.162/45.419           Liquid Density (In/Out)         Ib/ft <sup>b</sup> 0.0000         0.313.900           Liquid Density (In/Out)         Btu/h-ft-F         0.000         0.320           Vapor Moleght (In/Out)         Btu/h-ft-F         0.000         0.320           Vapor Meight (In/Out)         Btu/h-ft-F         0.0285         0.0216.25                                                                     |                        | h                              | leat Exchanger Spec | fication shee | et                   |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|---------------------|---------------|----------------------|-----------------------|
| Address         Proposal No.           Plant Location         Date         Rev. 0           Service of Unit         Tar Reformer SG Cooler/HP Steam Generator         Item No         H-100           Size 67x 144         Type         BEM - HORZ Connected Item No         2 Parallel         1 Series           Suff/Unit (Eff)         10411 ft <sup>a</sup> Shells/Unit 2         Sufface/Shell (Effective)         5206 ft <sup>a</sup> PERFORMANCE OF ONE UNIT         Fluid Allocation         Shellside         Tubeside         Tubeside           Fluid Name         Syngas fr Tar Reformer         Preheated BFW         313,900         0         1313,900           Vapor         435,000         0         313,900         143,1900         143,1900           Vapor         435,000         0         313,900         146,162,45,419         149           Liquid Density (In/Out)         Ib/ft <sup>a</sup> 0.000         0.061         164,445,419           Liquid Density (In/Out)         Ib/ft <sup>a</sup> 0.000         0.031         164,41           Liquid Density (In/Out)         CP         0.000         0.041         164,45,419           Liquid Density (In/Out)         Ib/ft-F         0.000         0.0320         Vapor Moleight (In/Out)         18,661,866 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<> |                        |                                |                     |               |                      |                       |
| Plant Location         Date         Rev. 0           Service of Unit         Tar Reformer SG Cooler/HP Steam Generator         Item No         H-100           Size 67x 144         Type         BEM - HORZ Connected in         2 Parallel         1 Series           StarfUnit (Eff)         10411 ft <sup>2</sup> Shells/Unit         2 Surface/Shell (Effective)         5206 ft <sup>2</sup> Fluid Allocation         PERFORMANCE OF ONE UNIT         Tubeside         Tubeside           Fluid Allocation         Syngas fr Tar Reformer         Preheated BFW           Total Fluid Entering         Ib/hr         435,000         0           Vapor         435,000         0         313,900           Vapor         435,000         0         313,900           Steam         0         313,900         1444           Uquid Density (In/Out)         Ib/ft <sup>1</sup> 0.000         0.091           Liquid Density (In/Out)         Ib/ft <sup>1</sup> 0.000         0.320           Vapor Viscosity         cP         0.000         0.320           Vapor Specific Heat         Btu/b-F         0.000         0.320           Vapor Specific Heat         Btu/b-F         0.067         0.025           Temperature (In/Out)         cP         1                                                                                                          |                        | EL                             |                     |               | HP Syngas C          | ase                   |
| Service of Unit         Tar Reformer SG Cooler/HP Steam Generator         Item No         H-100           Size 67x 144         Type         BEM - HORZ Connected in         2 Parallel         1 Series           SurfUnit (Eff)         10411 ft <sup>a</sup> Shells/Unit         2         Surface/Shell (Effective)         5206 ft <sup>a</sup> Fluid Allocation         PERFORMANCE OF ONE UNIT         Preheated BFW         Tubeside         Tubeside           Fluid Name         Syngas fr Tar Reformer         Preheated BFW         313,900         0           Vapor         435,000         0         0         13,900           Vapor         435,000         0         0         313,900           Steam         0         313,900         0         0         13,900           Liquid Density (In/Out)         Ib/ft <sup>a</sup> 0.000/0.000         4.616245.419         0           Liquid Specific Heat         Btu/b-F         0.000         1.644         1           Liquid Viscosity         CP         0.0025         0.0200         0.025           Temperature (In/Out)         Btu/b-F         0.492         0.774         0.025           Vapor Viscosity         CP         0.025         0.0200         1.285.000         0.025                                                                                                            |                        |                                |                     |               |                      |                       |
| Size 67x 144         Type         BEM - HORZ Connected in         2 Parallel         1 Series           Surf/Unit (Eff)         10411 ft <sup>2</sup> Shells/Unit         2         Surface/Shell (Effective)         5206 ft <sup>2</sup> Fluid Allocation         Shells/Ide         Tubeside         Tubeside           Fluid Allocation         Shells/Ide         Tubeside         Tubeside           Fluid Name         Syngas ft Tar Reformer         Preheated BFW         Preheated BFW           Vapor         435,000         0         313,900           Liquid         0         313,900         Steam         0         313,900           Noncondensable         0         313,900         Liquid Specific Heat         Btu/b-F         0.000         0.091           Liquid Specific Heat         Btu/b-F         0.000         0.320         Vapor Noi Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200         Vapor Specific Heat         Btu/b-F         0.482         0.774           Vapor Viscosity         cP         0.0285         0.0200         Vapor Specific Heat         Btu/b-F         0.482         0.774           Vapor Viscosity         cP         0.0285         0.0000                                                                                     |                        |                                |                     |               |                      | Rev. 0                |
| Surf/Unit (Eff)         10411 ft²         Shells/Unit         2         Surface/Shell (Effective)         5206 ft²           PERFORMANCE OF ONE UNIT         Pereheated BFW           Fluid Allocation         Shellside         Tubeside           Fluid Name         Syngas fr Tar Reformer         Preheated BFW           Otal Fluid Entering         Ib/hr         435,000         313,900           Vapor         435,000         0         313,900           Liquid Density (In/Out)         Ib/ht?         0.000/0.000         46.162/45.419           Liquid Density (In/Out)         Ib/ht?         0.0000         0.0311           Liquid Viscosity         CP         0.000         0.0311           Liquid Viscosity         CP         0.000         0.0311           Liquid Density (In/Out)         Ib/ht?         0.0000         0.0311           Uiguid Specific Heat         Bt//ht-Ft         0.000         0.320           Vapor Mol. Weight (In/Out)         Bt//ht-Ft         0.492         0.774           Vapor Mol. Weight (In/Out)         Ft/sec         4.35.04         8.337           Vapor Mol. Weight (In/Out)         Ft/sec         4.35.04         8.337           Vapor Mol. Weight (In/Out)         Ft         1.576.0624.0                                                                                                         |                        |                                |                     |               |                      |                       |
| PERFORMANCE OF ONE UNIT           Fluid Allocation         Shellside         Tubeside           Fluid Allocation         Syngas IF Tar Reformer         Preheated BFW           Total Fluid Entering         Ib/hr         435,000         313,900           Vapor         435,000         0           Liquid         0         313,900           Steam         0         313,900           Noncondensable         0         313,900           Liquid Density (In/Out)         Ib/ht <sup>P</sup> 0.000         0.091           Liquid Specific Heat         Btu/ht-F         0.000         0.091           Liquid Specific Heat         Btu/ht-F         0.000         0.320           Vapor Microstity         CP         0.000         0.320           Vapor Specific Heat         Btu/ht-F         0.000         0.320           Vapor Specific Heat         Btu/ht-F         0.067         0.025           Vapor Specific Heat         Btu/ht-F         0.067         0.025           Temperature (In/Out)         ft/s62,003/3245         5.000/133         F           Operating Pressure Drop (Allow/Calc)         psi         5.000/3245         5.000/133           Presure Drop Allow/Calc)         psi                                                                                                                                                        |                        |                                |                     |               |                      | 1 Series              |
| Fluid Allocation         Shellside         Tubeside           Fluid Name         Syngas fr Tar Reformer         Preheated BFW           Total Fluid Entering         Ib/hr         435,000         313,900           Vapor         435,000         0         313,900           Vapor         435,000         0         313,900           Steam         0         313,900         313,900           Noncondensable         0         313,900         4435,000         0           Fluid Vaporized or Condensed         0         313,900         4435,000         0.000           Liquid Density (In/Out)         Ib/ftP         0.0000         46,162/45,419         1444           Liquid Specific Heat         Bt//lb-F         0.000         0.320         990           Vapor Mound Weight (In/Out)         Bt//lb-F         0.0285         0.0200         0.774           Vapor Specific Heat         Bt//lb-F         0.492         0.774         90.025           Temperature (In/Out)         rF         1,576.0624.0         556.0/575.0         0.025           Vapor Thermal Conductivity         Bt//lb-F         0.492         0.774         90.00         0.0255         0.0001.00         0.00500         1.285.000         Velocity                                                                                                                       | Surf/Unit (Eff) 104    | 11 ft <sup>2</sup> Shells/Unit |                     | ( )           | 5206 ft <sup>2</sup> |                       |
| Fluid Name         Syngas fr Tar Reformer         Preheated BFW           Total Fluid Entering         lb/hr         435,000         313,900           Vapor         435,000         0           Liquid         0         313,900           Steam         0         313,900           Noncondensable         0         313,900           Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         lb/ft*         0.0000         46.162/45.419           Liquid Specific Heat         Btu/hr-Ft         0.000         0.0291           Liquid Specific Heat         Btu/hr-Ft         0.000         0.320           Vapor Thermal Conductivity         Btu/hr-Ft         0.0285         0.0200           Vapor Specific Heat         Btu/hr-Ft         0.067         0.025           Vapor Specific Heat         Btu/hr-Ft         0.067         0.025           Temperature (In/Out)         FF         1,576.0/624.0         556.0/575.0           Operating Pressure         psi (Abs)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Fresure Drop (Allow/Calc)         psi         5.000/1.3360         0.005000                                                                                                                                                   |                        |                                | PERFORMANCE OF ONE  | UNIT          |                      |                       |
| Total Fluid Entering         Ib/hr         435,000         313,900           Vapor         435,000         0           Liquid         0         313,900           Steam         0         313,900           Noncondensable         0         313,900           Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         Ib/ft <sup>P</sup> 0.0000         46.162/45.419           Liquid Density (In/Out)         Ib/ft <sup>P</sup> 0.0000         0.091           Liquid Specific Heat         Btu/lb-F         0.000         0.320           Vapor Mol. Weight (In/Out)         Btu/hr-ft-F         0.000         0.320           Vapor Viscosity         CP         0.0285         0.0200           Vapor Viscosity         CP         0.0285         0.0200           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         "F         1.576.0/624.0         556.0/575.0           Operating Pressure         psi(Abos)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133                                                                                                                                                | Fluid Allocation       |                                | Shellside           |               |                      | Tubeside              |
| Vapor         435,000         0           Liquid         0         313,900           Steam         0         313,900           Noncondensable         0         313,900           Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         Ib/ft <sup>4</sup> 0.000/0.000         46.162/45.419           Liquid Specific Heat         Bt/lb-F         0.000         0.320           Vapor Mol. Weight (In/Out)         Bt/lb-F         0.000         0.320           Vapor Specific Heat         Bt/lb-F         0.0285         0.0200           Vapor Specific Heat         Bt/lb-F         0.492         0.774           Vapor Specific Heat         Bt/lb-F         0.492         0.774           Vapor Thermal Conductivity         Bt/lb-F         0.492         0.774           Vapor Thermal Conductivity         Bt/lb-F         0.492         0.774           Vapor Thermal Conductivity         Bt/lb-F         0.0265         0.0200           Vapor Thermal Conductivity         Bt/lb-F         0.925         0.0200           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.0007.1323         5.0007.1333                                                                                                                                        | Fluid Name             |                                | Syngas fr Tar Re    | former        |                      | Preheated BFW         |
| Liquid         0         313,900           Steam         0         313,900           Noncondensable         0         313,900           Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         ib/ft*         0.000/0.000         46,162/45,419           Liquid Vaporized or Condensed         0         0.091         0.091           Liquid Vaporized or Condensed         0         0.091         1644           Liquid Vaporized or Conductivity         Btu/hz-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18,86/18,86         0.0/18.02         0.320           Vapor Mol. Weight (In/Out)         18,86/18,86         0.0/18.02         0.774           Vapor Molemal Conductivity         Btu/hz-F         0.492         0.774           Vapor Thermal Conductivity         Btu/hz-F         0.492         0.774           Vapor Thermal Conductivity         Btu/hz-F         0.067         0.025           Temperature (In/Out)         *F         1,576.0/624.0         5.600/575.0           Operating Pressure         psi(Abs)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Fouling resistance                                                                                                                      | Total Fluid Entering   | lb/hr                          | 435,000             |               |                      | 313,900               |
| Steam         Noncondensable           Noncondensable         0           Fluid Vaporized or Condensed         0           Liquid Density (In/Out)         Ib/ft <sup>®</sup> Liquid Density (In/Out)         Ib/ft <sup>®</sup> Liquid Specific Heat         Btu/hr-F           Liquid Specific Heat         Btu/hr-F           Liquid Thermal Conductivity         Btu/hr-F           Vapor Mol. Weight (In/Out)         18.66/18.66           Vapor Specific Heat         Btu/hr-F           Vapor Specific Heat         Btu/hr-F           Vapor Specific Heat         Btu/hr-F           O.0285         0.0200           Vapor Thermal Conductivity         Btu/hr-F           Outhor F         0.0267           Temperature (In/Out)         °F           Operating Pressure         psi(Abs)           Operating Pressure         psi(Abs)           Velocity         ft/sec           Velocity         ft/sec           Pressure Drop (Allow/Calc)         psi           Pressure Drop (Allow/Calc)         psi           Pressure Construction OF ONE SHELL         CONSTRUCTION OF ONE SHELL           Construction OF ONE SHELL         Sketch           Design/Test Pres. psi         500/                                                                                                                                                                    | Vapor                  |                                | 435,000             |               |                      | 0                     |
| Steam         Noncondensable           Noncondensable         0         313,900           Liquid Density (In/Out)         Ib/ft <sup>0</sup> 0.000/0.000         46.162/45.419           Liquid Density (In/Out)         Ib/ft <sup>0</sup> 0.000         0.091           Liquid Specific Heat         Btu/hr-FF         0.000         1.644           Liquid Thermal Conductivity         Btu/hr-FF         0.000         0.320           Vapor Viscosity         CP         0.0285         0.0200           Vapor Viscosity         CP         0.0285         0.0200           Vapor Viscosity         CP         0.0285         0.0200           Vapor Viscosity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/675.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft <sup>2</sup> -F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr-ft         F           Transfer Rate, Service                                                                                                                | Liquid                 |                                | 0                   |               |                      | 313,900               |
| Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         Ib/ft <sup>®</sup> 0.000/0.000         46.162/45.419           Liquid Viscosity         cP         0.000         0.091           Liquid Specific Heat         Btu/lb-F         0.000         1.644           Liquid Thermal Conductivity         Btu/hr-ft-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200           Vapor Viscosity         cP         0.0285         0.0200           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure Drop (Allow/Calc)         psi         5.000/1.33         5.000/1.133           Fouling resistance         hr.ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         Shelliside         Tubeside         Sketch           Design/Test Pres.                                                                                    |                        |                                |                     |               |                      |                       |
| Fluid Vaporized or Condensed         0         313,900           Liquid Density (In/Out)         Ib/ft <sup>®</sup> 0.000/0.000         46.162/45.419           Liquid Viscosity         cP         0.000         0.091           Liquid Specific Heat         Btu/lb-F         0.000         1.644           Liquid Thermal Conductivity         Btu/hr-ft-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200           Vapor Viscosity         cP         0.0285         0.0200           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure Drop (Allow/Calc)         psi         5.000/1.33         5.000/1.133           Fouling resistance         hr.ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         Shelliside         Tubeside         Sketch           Design/Test Pres.                                                                                    |                        |                                |                     |               |                      |                       |
| Liquid Density (In/Out)         Ib/ft <sup>3</sup> 0.000/0.000         46.162/45.419           Liquid Viscosity         CP         0.000         0.091           Liquid Specific Heat         Btu/lb-F         0.000         1.644           Liquid Thermal Conductivity         Btu/lb-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft <sup>2</sup> /F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr           De                                                                                          |                        | densed                         | 0                   |               | 1                    | 313.900               |
| Liquid Viscosity         CP         0.000         0.091           Liquid Specific Heat         Btu/lb-F         0.000         1.644           Liquid Thermal Conductivity         Btu/lb-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/74           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Mol. Weight (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft <sup>2</sup> -F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft <sup>2</sup> -F           Consections         In         1-19.0         6.0         0           Design Temp.                                                                                             |                        |                                | -                   | )             |                      |                       |
| Liquid Specific Heat         Btu/lb-F         0.000         1.644           Liquid Thermal Conductivity         Btu/hr-ft-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200           Vapor Viscosity         cP         0.0285         0.0200           Vapor Viscosity         cP         0.0492         0.774           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           Constructions         In         1-19.0         6.0         6.0           Size &         <                                                                                                                     |                        |                                |                     | ,             | l                    |                       |
| Liquid Thermal Conductivity         Btu/hr-ft-F         0.000         0.320           Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200           Vapor Specific Heat         Btu/hr-Ft         0.492         0.774           Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203.700,000 Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2 Btu/hr-ft²-F           Construction of Nor Dor SHELL         Shellside         Tubeside         Sketch           Design/Test Pres. psi         500/         1,360/         500         500           No. Passes per Shell         1         6         6         6         6                                                                                                                |                        |                                |                     |               | l                    |                       |
| Vapor Mol. Weight (In/Out)         18.66/18.66         0.0/18.02           Vapor Viscosity         cP         0.0285         0.0200           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Thermal Conductivity         Btu/lb-F         0.067         0.025           Temperature (In/Out)         °F         1.576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1.285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr.ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1.360/         1.360/           Design Temp.         °F         1675         6000         No. Passes per Shell         1         6           Connections         In         1-17.0         12.0         1.17.0         12.0         1.17.0<                                                                                                                    |                        |                                |                     |               |                      | -                     |
| Vapor Viscosity         CP         0.0285         0.0200           Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Thermal Conductivity         Btu/lb-F         0.492         0.774           Vapor Thermal Conductivity         Btu/lb-F         0.026         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/lb-r         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/lb-rft²-F            500/         1,360/         Design Temp. °F         1675         600           No. Passes per Shell         1         6         600         600         600         600           No. Passes per Shell         1         1.10         6         600         70         70                                                                                                                                                          |                        |                                |                     | 2             |                      |                       |
| Vapor Specific Heat         Btu/lb-F         0.492         0.774           Vapor Thermal Conductivity         Btu/lb-F         0.067         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft <sup>2</sup> -F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft <sup>2</sup> -F           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6         6           Cornosion Allow.         in         1-19.0         6.0         6           Size & Out         1-17.0         12.0         1         1           Rating         Intermediate         0         0         0                                                                                                                                 |                        |                                |                     | )             | l                    |                       |
| Vapor Thermal Conductivity         Btu/hr-ft-F         0.067         0.025           Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6         6           Corrosion Allow. in         0.0625         0.0625         0.0625           Connections         In         1-17.0         12.0         1           Rating         Intermediate         0         0         0         1           Tube No         1912         OD 1.000 in         Thk 0.065 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                      |                        |                                |                     |               |                      |                       |
| Temperature (In/Out)         °F         1,576.0/624.0         556.0/575.0           Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6         6           Corrosion Allow. in         0.0625         0.0625         0.0625           Connections         In         1-17.0         12.0         1           Rating         Intermediate         0         0         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 3                                                                                                                                                 |                        |                                |                     |               |                      |                       |
| Operating Pressure         psi(Abs)         457.000         1,285.000           Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1,360/           Design/Test Pres. psi         500/         1,360/           No. Passes per Shell         1         6           Corrosion Allow. in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover                                                                                                                                          |                        |                                |                     |               |                      |                       |
| Velocity         ft/sec         43.504         8.337           Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Design/Test Pres. psi         500/         1,360/         Sketch           Design Temp.         °F         1675         600         Sketch           No. Passes per Shell         1         6         Connections         In         1-19.0         6.0           Size &         Out         117.0         12.0         Rating         Nternediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         Shell         Shell           Shell         I.D 67.00 OD in         Shell Cover         INT         Channel Cover         INT                                                                                                                                                                                   |                        |                                |                     | .0            |                      |                       |
| Pressure Drop (Allow/Calc)         psi         5.000/3.245         5.000/1.133           Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Design/Test Pres.         psi         500/         1,360/           Design Temp.         °F         1675         600         Sketch           No. Passes per Shell         1         6         Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0         12.0         12.0         12.0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         1.0         6.0         10         10.           Shell         1.D 67.00 OD in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.                                                                                                                                                                                                                                                               |                        | ,                              |                     |               |                      |                       |
| Fouling resistance         hr-ft²-F/Btu         0.001000         0.005000           Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Shellside         Tubeside         Sketch           Design/Test Pres. psi         500/         1,360/         Sketch           Design Temp.         °F         1675         600         Sketch           No. Passes per Shell         1         6         Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                  |                        |                                |                     |               |                      |                       |
| Heat Exchanged         203,700,000         Btu/hr         mtd (corr)         307.674 °F           Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Construction of one shead         Sketch           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6           Corrosion Allow. in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                                                      |                        |                                |                     | 5             |                      | 5.000/1.133           |
| Transfer Rate, Service         63.6         Clean         128.2         Btu/hr-ft²-F           CONSTRUCTION OF ONE SHELL           Construction of one shell         Sketch           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6         6           Corrosion Allow. in         0.0625         0.0625         6.0           Size &         Out         1-17.0         12.0         12.0           Rating         Intermediate         0         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         ID 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                | 0.001000            |               |                      | 0.005000              |
| CONSTRUCTION OF ONE SHELL         Shellside       Tubeside       Sketch         Design/Test Pres. psi       500/       1,360/         Design Temp.       °F       1675       600         No. Passes per Shell       1       6         Corrosion Allow. in       0.0625       0.0625         Connections       In       1-19.0       6.0         Size &       Out       1-17.0       12.0         Rating       Intermediate       0       0         Tube No       1912       OD 1.000 in       Thk 0.065       Length 12.00 ft       Pitch 1.25000 / 30.         Tube Type       PLAIN       Material       Shell       I.D 67.00 OD in       Shell Cover       INT         Channel or Bonnet       Channel Cover       INT       Channel Cover       INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heat Exchanged 203     | ,700,000 Btu/hr                | mtd (corr)          |               |                      |                       |
| Shellside         Tubeside         Sketch           Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6           Corrosion Allow. in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transfer Rate, Service | 63.6                           | Clean               | 128.2 Btu/hr- | ft²-F                |                       |
| Design/Test Pres. psi         500/         1,360/           Design Temp.         °F         1675         600           No. Passes per Shell         1         6           Corrosion Allow. in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                | CONSTRUCTION OF ON  | SHELL         |                      |                       |
| Design Temp.         °F         1675         600           No. Passes per Shell         1         6           Corrosion Allow.         in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length         12.00 ft         Pitch         1.25000 / 30.           Tube Type         PLAIN         Material         Internal         Interna                                                                                                |                        | She                            | llside Tube         | side          |                      | Sketch                |
| Design Temp.         °F         1675         600           No. Passes per Shell         1         6           Corrosion Allow.         in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length         12.00 ft         Pitch         1.25000 / 30.           Tube Type         PLAIN         Material         Internal         Interna                                                                                                | Design/Test Pres. psi  | 500/                           | 1,36                | 0/            |                      |                       |
| No. Passes per Shell         1         6           Corrosion Allow.         in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912           OD         1.000 in         Thk 0.065         Length         12.00 ft           Tube Type         PLAIN         Material         Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 1675                           | 60                  | 00            |                      |                       |
| Corrosion Allow.         in         0.0625         0.0625           Connections         In         1-19.0         6.0           Size &         Out         1-17.0         12.0           Rating         Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         Material         INT           Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 1                              |                     | 6             |                      |                       |
| Connections<br>Size &<br>Rating         In         1-19.0         6.0           Dut         1-17.0         12.0           Intermediate         0         0           Tube No         1912         OD 1.000 in         Thk 0.065         Length 12.00 ft         Pitch 1.25000 / 30.           Tube Type         PLAIN         Material         INT           Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 0.0625                         | 0.062               | 25            |                      |                       |
| Size & Out 1-17.0 12.0<br>Rating Intermediate 0 0<br>Tube No 1912 OD 1.000 in Thk 0.065 Length 12.00 ft Pitch 1.25000 / 30.<br>Tube Type PLAIN Material<br>Shell I.D 67.00 OD in Shell Cover INT<br>Channel or Bonnet Channel Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                |                     |               |                      |                       |
| Rating     Intermediate     0     0       Tube No     1912     OD 1.000 in     Thk 0.065     Length 12.00 ft     Pitch 1.25000 / 30.       Tube Type     PLAIN     Material       Shell     I.D 67.00 OD in     Shell Cover     INT       Channel or Bonnet     Channel Cover     INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                |                     |               | -                    |                       |
| Tube No       1912       OD 1.000 in       Thk 0.065       Length 12.00 ft       Pitch 1.25000 / 30.         Tube Type       PLAIN       Material         Shell       I.D 67.00 OD in       Shell Cover       INT         Channel or Bonnet       Channel Cover       INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                |                     |               |                      |                       |
| Tube Type         PLAIN         Material           Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ittaing                | 0                              |                     |               |                      |                       |
| Tube Type         PLAIN         Material           Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tube No 191            | 2 OD 1 000 in                  | Thk 0.065           | Length 12.00  | ft                   | Pitch 1 25000 / 30 0° |
| Shell         I.D 67.00 OD in         Shell Cover         INT           Channel or Bonnet         Channel Cover         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                |                     | 2011901 12.00 |                      |                       |
| Channel or Bonnet Channel Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                     |                                |                     |               | INIT                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 1.0 07.00 01                   |                     | or.           | IINI                 |                       |
| Tubaabaat Statianany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                |                     |               |                      |                       |
| Tubesheet-Stationary Tubesheet-Floating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                |                     |               | VEC                  |                       |
| Floating Head Cover Impingement Protection YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                |                     |               |                      | 20.1                  |
| Baffles Cross Type VERT- SEG %Cut 19.1 (Area) Spacing-cc 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | iype vERI-                     |                     | Alea)         | Spacing-cc           | 29.1                  |
| Baffles-Long Seal Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barries-Long           |                                | ,<br>,              | <b>T</b>      |                      |                       |
| Supports-Tube U-Bend Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                |                     |               |                      |                       |
| Bypass Seal Arrangement Tube-Tubesheet Joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ent                            |                     | neet Joint    |                      |                       |
| Expansion Joint Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                |                     |               |                      |                       |
| Rho-V2 Inlet Nozzle2,412Bundle Entrance1,266Bundle Exit2,915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 2,412                          | Bundle Entrance     | 1,266         |                      | 1                     |
| Gasket-Shellside Tubeside Floating Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                |                     |               | Floating Head        |                       |
| Code Requirement ASME Section 8, Divsion 1 TEMA Class R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Code Requirement       | ASME Section                   | on 8, Divsion 1     |               | TEMA Class           | R                     |
| Weight/Shell Filled with Water Bundle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                |                     |               |                      |                       |

|                          |                       | Н                         | eat Exchar        | nger Specif    | ication shee                | t                     |                       |
|--------------------------|-----------------------|---------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------------------|
|                          |                       |                           |                   |                | Job No.                     |                       |                       |
| Customer                 | NREL                  |                           |                   |                | Ref No.                     | HP Syngas Ca          | ase                   |
| Address                  |                       |                           |                   |                | Proposal No.                |                       |                       |
| Plant Location           |                       |                           |                   |                | Date                        |                       | Rev. 0                |
| Service of Unit          | Tar Reformer S        | G Cooler/BF               | W Preheater       |                | Item No                     | H-101                 |                       |
| Size 90x 240             |                       | Туре                      | <b>BEM - HORZ</b> | Connected in   | 1 Parallel                  |                       | 1 Series              |
| Surf/Unit (Eff)          | 23969 ft <sup>2</sup> | Shells/Unit               | 1                 | Surface/Shell  |                             | 23969 ft <sup>2</sup> |                       |
|                          | 20000 11              |                           | -                 | NCE OF ONE     |                             | 20000                 |                       |
| -luid Allocation         |                       |                           |                   | Shellside      |                             |                       | Tubeside              |
| Fluid Name               |                       |                           | Svn               | gas fr Tar Ref | ormor                       |                       | BFW                   |
| Total Fluid Enterin      | ~                     | lb/br                     | Syn               |                | JIIIEI                      |                       | 208,600               |
|                          | y                     | lb/hr                     |                   | 435,000        |                             |                       | ,                     |
| Vapor                    |                       |                           |                   | 435,000        |                             |                       | 0                     |
| Liquid                   |                       |                           |                   | 0              |                             |                       | 208,600               |
| Steam                    |                       |                           |                   |                |                             |                       |                       |
| Noncondensa              |                       |                           |                   |                |                             |                       |                       |
| Iuid Vaporized or        |                       |                           |                   | 0              |                             |                       | 0                     |
| iquid Density (In/       | Out)                  | lb/ft³                    |                   | 0.000/0.000    |                             |                       | 55.214/46.316         |
| iquid Viscosity          |                       | cP                        |                   | 0.000          |                             |                       | 0.116                 |
| iquid Specific Hea       | at                    | Btu/lb-F                  |                   | 0.000          |                             |                       | 1.368                 |
| iquid Thermal Co         |                       | Btu/hr-ft-F               |                   | 0.000          |                             |                       | 0.358                 |
| apor Mol. Weight         |                       |                           |                   | 18.66/18.66    |                             |                       | 0.0/0.0               |
| /apor Viscosity          | (                     | сP                        |                   | 0.0199         |                             |                       | 0.0000                |
| apor Specific Heat       | at                    | Btu/lb-F                  |                   | 0.461          |                             |                       | 0.000                 |
| apor Thermal Co          |                       | Btu/hr-ft-F               |                   | 0.044          |                             |                       | 0.000                 |
|                          |                       | °F                        |                   | 624.0/370.0    |                             |                       | 349.0/551.0           |
| emperature (In/O         |                       |                           |                   |                |                             |                       |                       |
| Operating Pressur        | e                     | psi(Abs)                  |                   | 452.000        |                             |                       | 1,285.000             |
| /elocity                 |                       | ft/sec                    |                   | 33.096         |                             |                       | -                     |
| Pressure Drop (All       | ,                     | psi                       |                   | 10.000/8.600   |                             |                       | 5.000/0.359           |
| Fouling resistance       |                       | hr-ft <sup>2</sup> -F/Btu |                   | 0.001000       |                             |                       | 0.005000              |
| Heat Exchanged           | 50,840,000 Bt         | u/hr                      |                   | mtd (corr)     | 41.736 °F                   |                       |                       |
| Fransfer Rate, Ser       | vice                  | 50.8                      |                   | Clean          | 86.9 Btu/hr-ft <sup>2</sup> | -F                    |                       |
|                          |                       |                           | CONSTRUCT         | TION OF ONE    | SHELL                       |                       |                       |
|                          |                       | Shel                      | lside             | Tubes          | ide                         |                       | Sketch                |
| Design/Test Pres.        | psi                   | 500/                      |                   | 1,350          | /                           |                       |                       |
| Design Temp.             | °F                    | 675                       |                   | 600            |                             |                       |                       |
| No. Passes per Sh        |                       | 1                         |                   |                | <u>,</u>                    |                       |                       |
| Corrosion Allow.         | in                    | 0.0625                    |                   | 0.062          |                             |                       |                       |
| Connections              | In                    | 1-19.0                    | n                 | 6.0            | ,                           |                       |                       |
|                          |                       | 1-19.0                    | -                 |                |                             |                       |                       |
| Size &                   | Out                   |                           | 0                 | 6.0            |                             |                       |                       |
| Rating                   | Intermediate          | 0                         |                   | 0              |                             |                       |                       |
|                          |                       | <u> </u>                  |                   |                |                             | <i>.</i>              |                       |
| Tube No                  | 6830                  | OD 0.750 in               |                   | Thk 0.065      | Length 20.00                | tt                    | Pitch 1.00000 / 30.0° |
| Tube Type                | F                     | PLAIN                     |                   | Material       |                             |                       |                       |
| Shell                    |                       | I.D 90.00 OE              | ) in              | Shell Cover    |                             | INT                   |                       |
| Channel or Bonnet        |                       |                           |                   | Channel Cove   |                             |                       |                       |
| <b>Subesheet-Station</b> | ary                   |                           |                   | Tubesheet-Fl   |                             |                       |                       |
| Floating Head Cov        | er                    |                           |                   | Impingement    | Protection                  | YES                   |                       |
| Baffles Cross            |                       | Type VERT-                | SEG               | %Ċut 13.8 (A   | vrea)                       | Spacing-cc            | 24.1                  |
| Baffles-Long             |                       | 21                        |                   | Seal Type      | ,                           |                       |                       |
| Supports-Tube            |                       |                           | U-Bend            |                | Туре                        |                       |                       |
| Sypass Seal Arran        | aement                |                           |                   | Tube-Tubesh    |                             |                       |                       |
| 71                       | gement                |                           |                   |                |                             |                       |                       |
| Expansion Joint          | 2                     | E 104                     | Dundle Cater      | Туре           | 1 4 4 0                     | Dundla Euit           | 4 007                 |
| Rho-V2 Inlet Nozz        | e                     | 5,194                     | Bundle Entrar     | ice            | 1,440                       | Bundle Exit           | 4,997                 |
| Gasket-Shellside         |                       |                           | Tubeside          |                |                             | Floating Head         |                       |
| odo Hoguiromon           | t                     | ASME Sectio               | n 8, Divsion 1    |                |                             | TEMA Class            | к                     |
| Code Requiremen          |                       |                           |                   |                |                             |                       |                       |
| Veight/Shell<br>Remarks: |                       |                           | Filled with Wa    | ater           |                             | Bundle                |                       |

| Address<br>Plant Location<br>Service of Unit F<br>Size 100x 168                                          | IREL                |                    |                   |                 | Job No.<br>Ref No. |                      | 200                   |
|----------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------------------|-----------------|--------------------|----------------------|-----------------------|
| Address<br>Plant Location<br>Service of Unit F<br>Size 100x 168<br>Surf/Unit (Eff) 8<br>Fluid Allocation |                     |                    |                   |                 | Ref No             |                      | 200                   |
| Plant Location<br>Service of Unit F<br>Size 100x 168<br>Surf/Unit (Eff) 8<br>Fluid Allocation            |                     |                    |                   |                 |                    | HP Syngas Ca         | ise                   |
| Service of Unit F<br>Size 100x 168<br>Surf/Unit (Eff) 8<br>Fluid Allocation                              |                     |                    |                   |                 | Proposal No.       |                      |                       |
| Size 100x 168<br>Surf/Unit (Eff) 8<br>Fluid Allocation                                                   |                     |                    |                   |                 | Date               |                      | Rev. 0                |
| Surf/Unit (Eff) 8<br>Fluid Allocation                                                                    | lue Gas Cool        | er/Steam Sup       | erheater          |                 | Item No            | H-102                |                       |
| Fluid Allocation                                                                                         |                     | Туре               | <b>BEM - HORZ</b> | Connected in    | 1 Parallel         |                      | 1 Series              |
| Fluid Allocation                                                                                         | 915 ft <sup>2</sup> | Shells/Unit        | 1                 | Surface/Shell   | (Effective)        | 8915 ft <sup>2</sup> |                       |
|                                                                                                          |                     |                    | PERFORMAN         |                 |                    |                      |                       |
|                                                                                                          |                     |                    |                   | Shellside       |                    |                      | Tubeside              |
|                                                                                                          |                     |                    | Flue              | e Gas fr. Tar R | leaen              | Su                   | perheated Steam       |
| Total Fluid Entering                                                                                     |                     | lb/hr              |                   | 280.200         |                    |                      | 313,900               |
| Vapor                                                                                                    |                     |                    |                   | 280,200         |                    | 1                    | 313,900               |
| Liquid                                                                                                   |                     |                    |                   | 0               |                    |                      | 0                     |
| Steam                                                                                                    |                     |                    |                   | 0               |                    |                      | 0                     |
| Noncondensab                                                                                             | 0                   |                    |                   |                 |                    |                      |                       |
|                                                                                                          | -                   |                    |                   | 0               |                    | ───                  | 0                     |
| Fluid Vaporized or C                                                                                     |                     | IL /443            |                   |                 |                    | ┥────                | -                     |
| Liquid Density (In/Ou                                                                                    | utj                 | lb/ft <sup>3</sup> |                   | 0.000/0.000     |                    | ───                  | 0.000/0.000           |
| Liquid Viscosity                                                                                         |                     | cP                 |                   | 0.000           |                    | ───                  | 0.000                 |
| Liquid Specific Heat                                                                                     |                     | Btu/lb-F           |                   | 0.000           |                    | <u> </u>             | 0.000                 |
| Liquid Thermal Cond                                                                                      |                     | Btu/hr-ft-F        |                   | 0.000           |                    | L                    | 0.000                 |
| Vapor Mol. Weight (                                                                                      | In/Out)             |                    |                   | 27.56/27.56     |                    |                      | 18.02/18.02           |
| Vapor Viscosity                                                                                          |                     | cP                 |                   | 0.0399          |                    |                      | 0.0254                |
| Vapor Specific Heat                                                                                      |                     | Btu/lb-F           |                   | 0.314           |                    |                      | 0.676                 |
| Vapor Thermal Cond                                                                                       |                     | Btu/hr-ft-F        |                   | 0.039           |                    |                      | 0.036                 |
| Temperature (In/Out                                                                                      | t)                  | °F                 |                   | 1,798.0/839.0   | )                  |                      | 575.0/1,000.0         |
| Operating Pressure                                                                                       |                     | psi(Abs)           |                   | 14.700          |                    |                      | 1,270.000             |
| Velocity                                                                                                 |                     | ft/sec             |                   | 211.463         |                    |                      | 4.576                 |
| Pressure Drop (Allow                                                                                     | w/Calc)             | psi                |                   | 2.000/1.798     |                    |                      | 5.000/0.484           |
| Fouling resistance                                                                                       | ,                   | hr-ft²-F/Btu       |                   | 0.001000        |                    |                      | 0.005000              |
| Heat Exchanged 8                                                                                         | 3 650 000 Bt        |                    |                   | mtd (corr)      | 482.751 °F         | 4                    |                       |
| Transfer Rate, Servi                                                                                     |                     | 19.4               |                   | Clean           | 22.7 Btu/hr-ft     | 2_F                  |                       |
|                                                                                                          | 00                  | 10.4               | CONSTRUCT         |                 |                    | <u> </u>             |                       |
|                                                                                                          |                     | Shel               |                   | Tubes           |                    | π                    | Sketch                |
| Design/Test Pres. p                                                                                      | vei                 | 30/                | 13100             | 1,350           |                    | -                    | OKeten                |
|                                                                                                          | F                   | 1900               |                   | 1,000           |                    | -                    |                       |
|                                                                                                          | -                   | 1900               |                   |                 | 1                  | -                    |                       |
| No. Passes per She                                                                                       |                     | •                  |                   |                 | -                  | -                    |                       |
| Corrosion Allow. in                                                                                      |                     | 0.0625             | <u>`</u>          | 0.062           | )                  | -                    |                       |
|                                                                                                          | n                   | 1-61.0             | -                 | 15.0            |                    | _                    |                       |
|                                                                                                          | Dut                 | 1-55.0             | )                 | 15.0            |                    | -                    |                       |
| Rating                                                                                                   | ntermediate         | 0                  |                   | 0               |                    |                      |                       |
|                                                                                                          |                     |                    |                   |                 |                    |                      |                       |
|                                                                                                          | 900                 | OD 0.750 in        |                   | Thk 0.065       | Length 14.00       | tt                   | Pitch 1.25000 / 45.0° |
| Tube Type                                                                                                | F                   | PLAIN              |                   | Material        |                    |                      |                       |
| Shell                                                                                                    |                     | I.D 100.00 O       | D in              | Shell Cover     |                    | INT                  |                       |
| Channel or Bonnet                                                                                        |                     |                    |                   | Channel Cove    | er                 |                      |                       |
| Tubesheet-Stationar                                                                                      |                     |                    |                   | Tubesheet-Flo   |                    |                      |                       |
| Floating Head Cover                                                                                      | r                   |                    |                   | Impingement     |                    | YES                  |                       |
| Baffles Cross                                                                                            |                     | Type VERT-         | SEG               | %Cut 40.7 (A    | vrea)              | Spacing-cc           | 69.9                  |
| Baffles-Long                                                                                             |                     |                    |                   | Seal Type       |                    |                      |                       |
| Supports-Tube                                                                                            |                     |                    | U-Bend            | ••              | Туре               |                      |                       |
| Bypass Seal Arrange                                                                                      | ement               |                    |                   | Tube-Tubesh     |                    |                      |                       |
| Expansion Joint                                                                                          |                     |                    |                   | Туре            |                    |                      |                       |
| Rho-V2 Inlet Nozzle                                                                                      |                     | 880                | Bundle Entrar     |                 | 3,144              | Bundle Exit          | 1,037                 |
|                                                                                                          |                     |                    | Tubeside          |                 | - ,                | Floating Head        | ,                     |
| Gaskel-Snellsine                                                                                         |                     | ASME Sectio        | n 8, Divsion 1    |                 |                    | TEMA Class           | R                     |
| Gasket-Shellside                                                                                         |                     |                    |                   |                 |                    |                      | ••                    |
| Code Requirement<br>Weight/Shell                                                                         |                     |                    | Filled with Wa    | ter             |                    | Bundle               |                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | Н                                                           | leat Exchar                                | nger Specif                                                                                                                                                    | ication shee                                             | et                                                       |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                             |                                            |                                                                                                                                                                | Job No.                                                  |                                                          |                               |
| Customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NREL                                          |                                                             |                                            |                                                                                                                                                                | Ref No.                                                  | HP Syngas Cs                                             | ae                            |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                             |                                            |                                                                                                                                                                | Proposal No.                                             |                                                          |                               |
| Plant Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                             |                                            |                                                                                                                                                                | Date                                                     |                                                          | Rev. 0                        |
| Service of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quench Water                                  | Recirculation                                               |                                            |                                                                                                                                                                | Item No                                                  | H-200                                                    |                               |
| Size 42x 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | Туре                                                        | <b>BEM - HORZ</b>                          | Connected in                                                                                                                                                   |                                                          |                                                          | 1 Series                      |
| Surf/Unit (Eff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2867 ft <sup>2</sup>                          | Shells/Unit                                                 | 1                                          | Surface/Shell                                                                                                                                                  |                                                          | 2867 ft <sup>2</sup>                                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2007 10                                       |                                                             |                                            | NCE OF ONE                                                                                                                                                     |                                                          | 2007 10                                                  |                               |
| -luid Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                             |                                            | Shellside                                                                                                                                                      |                                                          | 1                                                        | Tubeside                      |
| Fluid Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                             |                                            | Cooling Wate                                                                                                                                                   | r                                                        | -                                                        | Quench Water                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                             | lh/hr                                                       |                                            | 1,117,000                                                                                                                                                      | I                                                        |                                                          |                               |
| Fotal Fluid Enterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ig                                            | lb/hr                                                       |                                            | 0                                                                                                                                                              |                                                          |                                                          | 105,700<br>0                  |
| Vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                             |                                            | -                                                                                                                                                              |                                                          |                                                          | -                             |
| Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                             |                                            | 1,117,000                                                                                                                                                      |                                                          |                                                          | 105,700                       |
| Steam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                             |                                            |                                                                                                                                                                |                                                          |                                                          |                               |
| Noncondensa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                                             |                                            |                                                                                                                                                                |                                                          |                                                          |                               |
| Iuid Vaporized or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                             |                                            | 0                                                                                                                                                              |                                                          |                                                          | 0                             |
| iquid Density (In/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Out)                                          | lb/ft³                                                      |                                            | 61.436/61.06                                                                                                                                                   | )                                                        |                                                          | 57.041/61.765                 |
| iquid Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | cP                                                          |                                            | 0.510                                                                                                                                                          |                                                          |                                                          | 0.301                         |
| iquid Specific He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at                                            | Btu/lb-F                                                    |                                            | 1.005                                                                                                                                                          |                                                          |                                                          | 1.017                         |
| iquid Thermal Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Btu/hr-ft-F                                                 |                                            | 1.122                                                                                                                                                          |                                                          | 1                                                        | 0.381                         |
| /apor Mol. Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                             |                                            | 0.0/0.0                                                                                                                                                        |                                                          | 1                                                        | 0.0/0.0                       |
| apor Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | cP                                                          |                                            | 0.0000                                                                                                                                                         |                                                          |                                                          | 0.0000                        |
| /apor Specific He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at                                            | Btu/lb-F                                                    |                                            | 0.000                                                                                                                                                          |                                                          |                                                          | 0.000                         |
| apor Specific fie<br>apor Thermal Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | Btu/hr-ft-F                                                 |                                            | 0.000                                                                                                                                                          |                                                          |                                                          | 0.000                         |
| Temperature (In/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | °F                                                          |                                            | 80.0/100.0                                                                                                                                                     |                                                          |                                                          | 311.0/110.0                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                             |                                            |                                                                                                                                                                |                                                          |                                                          |                               |
| Operating Pressur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re                                            | psi(Abs)                                                    |                                            | 20.000                                                                                                                                                         |                                                          |                                                          | 456.000                       |
| /elocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | ft/sec                                                      |                                            | 3.475                                                                                                                                                          |                                                          |                                                          | -                             |
| Pressure Drop (Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                             | psi                                                         |                                            | 5.000/3.632                                                                                                                                                    |                                                          |                                                          | 5.000/0.424                   |
| Fouling resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | hr-ft²-F/Btu                                                |                                            | 0.002000                                                                                                                                                       |                                                          |                                                          | 0.001000                      |
| Heat Exchanged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22,340,000 Bt                                 | u/hr                                                        |                                            | mtd (corr)                                                                                                                                                     | 92.789 °F                                                |                                                          |                               |
| Fransfer Rate, Sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rvice                                         | 84.0                                                        |                                            | Clean                                                                                                                                                          | 115.0 Btu/hr-                                            | ft²-F                                                    |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                             | CONSTRUCT                                  | TION OF ONE                                                                                                                                                    | SHELL                                                    |                                                          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | Shel                                                        | lside                                      | Tubes                                                                                                                                                          | ide                                                      |                                                          | Sketch                        |
| Design/Test Pres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | psi                                           | 35/                                                         |                                            | 500                                                                                                                                                            | 1                                                        |                                                          |                               |
| Design Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °F                                            | 150                                                         |                                            | 41                                                                                                                                                             | 5                                                        |                                                          |                               |
| No. Passes per SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1                                                           |                                            |                                                                                                                                                                | 1                                                        |                                                          |                               |
| Corrosion Allow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in                                            | 0.0625                                                      |                                            | 0.062                                                                                                                                                          |                                                          |                                                          |                               |
| Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In                                            | 1-12.                                                       | 0                                          | 4.0                                                                                                                                                            |                                                          |                                                          |                               |
| Size &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Out                                           | 1-12.                                                       | -                                          | 4.0                                                                                                                                                            |                                                          | -                                                        |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                             | 0                                          | 4.0                                                                                                                                                            |                                                          |                                                          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | 0                                                           |                                            |                                                                                                                                                                |                                                          |                                                          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Intermediate                                  | 0                                                           |                                            | 0                                                                                                                                                              |                                                          |                                                          |                               |
| Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intermediate                                  |                                                             |                                            |                                                                                                                                                                |                                                          | 0                                                        | Ditate 0.00750 / 00.00        |
| Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intermediate                                  | OD 0.750 in                                                 |                                            | Thk 0.065                                                                                                                                                      | Length 10.00                                             | ft                                                       | Pitch 0.93750 / 30.0°         |
| Rating<br>Fube No<br>Fube Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intermediate                                  | OD 0.750 in<br>PLAIN                                        |                                            | Thk 0.065<br>Material                                                                                                                                          | Length 10.00                                             |                                                          | Pitch 0.93750 / 30.0°         |
| Rating<br>Tube No<br>Tube Type<br>Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intermediate<br>1558<br>F                     | OD 0.750 in                                                 | D in                                       | Thk 0.065<br>Material<br>Shell Cover                                                                                                                           |                                                          | ft                                                       | Pitch 0.93750 / 30.0°         |
| Rating<br>Fube No<br>Fube Type<br>Shell<br>Channel or Bonne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intermediate<br>1558<br>F                     | OD 0.750 in<br>PLAIN                                        | Din                                        | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove                                                                                                           | er                                                       |                                                          | Pitch 0.93750 / 30.0°         |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intermediate<br>1558<br>F<br>t<br>ary         | OD 0.750 in<br>PLAIN                                        | ) in                                       | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl                                                                                          | er<br>pating                                             | INT                                                      | Pitch 0.93750 / 30.0°         |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Toating Head Cov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intermediate<br>1558<br>F<br>t<br>ary         | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        |                                            | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl<br>Impingement                                                                           | er<br>pating<br>Protection                               | INT                                                      |                               |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Toating Head Cov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intermediate<br>1558<br>F<br>t<br>ary         | OD 0.750 in<br>PLAIN                                        |                                            | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl                                                                                          | er<br>pating<br>Protection                               | INT                                                      | Pitch 0.93750 / 30.0°<br>24.0 |
| Rating<br>ube No<br>ube Type<br>Shell<br>Channel or Bonne<br>ubesheet-Statior<br>Toating Head Cov<br>Baffles Cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intermediate<br>1558<br>F<br>t<br>ary         | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        |                                            | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl<br>Impingement                                                                           | er<br>pating<br>Protection                               | INT                                                      |                               |
| Rating<br>ube No<br>ube Type<br>Shell<br>Channel or Bonne<br>ubesheet-Statior<br>Toating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intermediate<br>1558<br>F<br>t<br>ary         | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        |                                            | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 (Å                                                           | er<br>pating<br>Protection<br>wrea)                      | INT                                                      |                               |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Toating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        | SEG                                        | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 ( <i>P</i><br>Seal Type                                      | er<br>pating<br>Protection<br>area)<br>Type              | INT                                                      |                               |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Toating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        | SEG                                        | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 ( <i>P</i><br>Seal Type<br>Tube-Tubesh                       | er<br>pating<br>Protection<br>area)<br>Type              | INT                                                      |                               |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Toating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE<br>Type VERT-          | SEG<br>U-Bend                              | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 (A<br>Seal Type<br>Tube-Tubesh<br>Type                       | er<br>pating<br>Protection<br>wrea)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc                                 | 24.0                          |
| Rating<br>Fube No<br>Fube Type<br>Shell<br>Channel or Bonne<br>Fubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE                        | SEG<br>U-Bend<br>Bundle Entrar             | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 (A<br>Seal Type<br>Tube-Tubesh<br>Type                       | er<br>pating<br>Protection<br>area)<br>Type              | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 24.0                          |
| Rating<br>Fube No<br>Fube Type<br>Shell<br>Channel or Bonne<br>Fubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles Cross<br>Baffles Cross<br>Baffles Cross<br>Baffles Cons<br>Baffles | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE<br>Type VERT-<br>2,540 | SEG<br>U-Bend<br>Bundle Entrar<br>Tubeside | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fli<br>Impingement<br>%Cut 22.8 (A<br>Seal Type<br>Tube-Tubesh<br>Type                       | er<br>pating<br>Protection<br>wrea)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head | 24.0<br>3,750                 |
| Rating<br>Fube No<br>Fube Type<br>Shell<br>Channel or Bonne<br>Fubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside<br>Code Requiremen<br>Weight/Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intermediate<br>1558<br>F<br>t<br>hary<br>ver | OD 0.750 in<br>PLAIN<br>1.D 42.00 OE<br>Type VERT-<br>2,540 | SEG<br>U-Bend<br>Bundle Entrar             | Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fl<br>Impingement<br>%Cut 22.8 ( <i>P</i><br>Seal Type<br>Tube-Tubesh<br>Type<br>Tube-Tubesh | er<br>pating<br>Protection<br>wrea)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 24.0<br>3,750                 |

|                                 |               | Н                         | eat Exchar                       | iger Specif   | fication shee  | et                   |                       |
|---------------------------------|---------------|---------------------------|----------------------------------|---------------|----------------|----------------------|-----------------------|
|                                 |               |                           |                                  |               | Job No.        |                      |                       |
| Customer                        | NREL          |                           |                                  |               | Ref No.        | HP Syngas Ca         | ase                   |
| Address                         |               |                           |                                  |               | Proposal No.   |                      |                       |
| Plant Location                  |               |                           |                                  |               | Date           |                      | Rev.                  |
| Service of Unit                 | Amine Precool | er/BFW Prehe              | eat                              |               | Item No        | H-201                |                       |
| Size 56x 168                    |               | Туре                      | <b>BEM - HORZ</b>                | Connected in  | 1 Parallel     |                      | 1 Series              |
| Surf/Unit (Eff)                 | 7511 ft²      | Shells/Unit               |                                  | Surface/Shell |                | 7511 ft²             |                       |
|                                 |               |                           | PERFORMAN                        |               |                |                      |                       |
| Fluid Allocation                |               |                           |                                  | Shellside     | •••••          |                      | Tubeside              |
| Fluid Name                      |               |                           |                                  | BFW           |                | Synge                | is to Amine Absorber  |
| Total Fluid Enterin             | a             | lb/hr                     |                                  | 320,300       |                | Cynge                | 414,200               |
| Vapor                           | 'Y            | 10/11                     |                                  | 020,000       |                |                      | 414,200               |
| Liquid                          |               |                           |                                  | 320,300       |                |                      | 0                     |
|                                 |               |                           |                                  | 520,500       |                |                      | 0                     |
| Steam                           |               |                           |                                  |               |                |                      |                       |
| Noncondens                      |               |                           |                                  |               |                |                      | 40.000                |
| Fluid Vaporized or              |               | 11 16:0                   |                                  | 0             | 4              |                      | 40,260                |
| Liquid Density (In/             | Out)          | lb/ft <sup>3</sup>        |                                  | 58.527/55.20  | 1              |                      | 0.000/56.407          |
| Liquid Viscosity                |               | cP                        |                                  | 0.188         |                |                      | 0.150                 |
| Liquid Specific He              | at            | Btu/lb-F                  |                                  | 1.086         |                |                      | 1.037                 |
| Liquid Thermal Co               |               | Btu/hr-ft-F               |                                  | 0.393         |                |                      | 0.404                 |
| Vapor Mol. Weigh                | t (In/Out)    |                           |                                  | 0.0/0.0       |                |                      | 18.69/18.69           |
| Vapor Viscosity                 |               | cP                        |                                  | 0.0000        |                |                      | 0.0176                |
| Vapor Specific He               | at            | Btu/lb-F                  |                                  | 0.000         |                |                      | 0.467                 |
| Vapor Thermal Co                |               | Btu/hr-ft-F               |                                  | 0.000         |                |                      | 0.040                 |
| Temperature (In/C               |               | °F                        |                                  | 242.0/349.0   |                |                      | 356.0/338.0           |
| Operating Pressu                | <u>е</u>      | psi(Abs)                  |                                  | 1.295.000     |                |                      | 442.000               |
| Velocity                        | 0             | ft/sec                    |                                  | 0.893         |                |                      | 18.179                |
| Pressure Drop (Al               | low/Calc)     | psi                       |                                  | 5.000/0.697   |                |                      | 5.000/0.635           |
| Fouling resistance              |               | hr-ft <sup>2</sup> -F/Btu |                                  | 0.002000      |                |                      | 0.001000              |
| Heat Exchanged                  |               |                           |                                  | mtd (corr)    | 34.052 °F      |                      | 0.001000              |
|                                 |               |                           |                                  | ( )           | 300.2 Btu/hr-1 | u2 F                 |                       |
| Transfer Rate, Se               | vice          | 144.6                     | CONSTRUCT                        | Clean         |                | IF                   |                       |
|                                 |               | Ohal                      |                                  |               |                | 1                    | Ohatah                |
|                                 |               |                           | lside                            | Tubes         |                |                      | Sketch                |
| Design/Test Pres.               |               | 1,425/                    |                                  | 1,360         |                |                      |                       |
| Design Temp.                    | °F            | 410                       |                                  | 40            | 0              |                      |                       |
| No. Passes per Sl               |               | 1                         |                                  |               | 1              |                      |                       |
| Corrosion Allow.                | in            | 0.0625                    |                                  | 0.062         | 5              |                      |                       |
| Connections                     | In            | 1-8.0                     | )                                | 23.0          |                |                      |                       |
| Size &                          | Out           | 1-8.0                     | )                                | 23.0          |                |                      |                       |
| Rating                          | Intermediate  | 0                         |                                  | 0             |                |                      |                       |
|                                 |               |                           |                                  |               |                |                      |                       |
| Tube No                         | 3030          | OD 0.750 in               |                                  | Thk 0.065     | Length 14.00   | ft                   | Pitch 0.93750 / 30.0° |
| Tube Type                       | F             | PLAIN                     |                                  | Material      | -              |                      |                       |
| Shell                           |               | I.D 56.00 OE              | ) in                             | Shell Cover   |                | INT                  |                       |
| Channel or Bonne                | t             |                           |                                  | Channel Cove  | er             |                      |                       |
| Tubesheet-Station               |               |                           |                                  | Tubesheet-Fl  |                |                      |                       |
| Floating Head Cov               |               |                           |                                  | Impingement   |                | YES                  |                       |
| Baffles Cross                   | ~ ~ ·         | Type VERT-                | SEG                              | %Cut 10.0 (A  |                | Spacing-cc           | 11.1                  |
| Baffles-Long                    |               | · )po / Litt-             | 020                              | Seal Type     |                | Spacing-00           |                       |
| Supports-Tube                   |               |                           | U-Bend                           | ocar iype     | Туре           |                      |                       |
|                                 | acmont        |                           | 0-Denu                           | Tube-Tubesh   | Type           |                      |                       |
| Bypass Seal Arran               | igement       |                           |                                  |               |                |                      |                       |
| Expansion Joint                 | 1             | 4.440                     | Dunalla Est                      | Туре          | 407            | Dunella Eritt        | 4 505                 |
| Rho-V2 Inlet Nozz               | le            | 1,110                     | Bundle Entrar                    | ice           | 167            | Bundle Exit          | 1,585                 |
| Gasket-Shellside                |               |                           | Tubeside                         |               |                | Floating Head        |                       |
|                                 |               |                           |                                  |               |                |                      |                       |
| Code Requiremen<br>Weight/Shell | t             | ASME Section              | n 8, Divsion 1<br>Filled with Wa |               |                | TEMA Class<br>Bundle | R                     |

|                     |               | Н            | leat Exchan     | iger Speci    | fication shee | et            |                       |
|---------------------|---------------|--------------|-----------------|---------------|---------------|---------------|-----------------------|
|                     |               |              |                 |               | Job No.       |               |                       |
| Customer            | NREL          |              |                 |               | Ref No.       | HP Syngas C   | ase                   |
| Address             |               |              |                 |               | Proposal No.  |               |                       |
| Plant Location      |               |              |                 |               | Date          |               | Rev. 0                |
| Service of Unit     | Amine Precool | er/Deaerator | FW Preheat      |               | Item No       | H-202         |                       |
| Size 40x 72         |               | Туре         | BEM - HORZ      | Connected in  | 1 Parallel    |               | 1 Series              |
| Surf/Unit (Eff)     | 585 ft²       | Shells/Unit  | 1               | Surface/Shel  | I (Effective) | 585 ft²       |                       |
|                     |               |              | PERFORMAN       | ICE OF ONE    | ÛNIT          |               |                       |
| Fluid Allocation    |               |              |                 | Shellside     |               |               | Tubeside              |
| Fluid Name          |               |              | Synga           | as to Amine A | bsorber       | Dea           | aerator Feed Water    |
| Total Fluid Enterin | a             | lb/hr        | , , ,           | 414,200       |               |               | 320,000               |
| Vapor               | 0             |              |                 | 373,940       |               |               | 0                     |
| Liquid              |               |              |                 | 40.260        |               |               | 320,000               |
| Steam               |               |              |                 | -,            |               |               | /                     |
| Noncondensa         | able          |              |                 |               |               |               |                       |
| Fluid Vaporized or  |               |              |                 | 9,444         |               |               | 0                     |
| Liquid Density (In/ |               | lb/ft³       |                 | 55.290/55.49  | 2             |               | 59.180/58.595         |
| Liquid Viscosity    | Call          | cP           |                 | 0.092         | -             | ł             | 0.262                 |
| Liquid Specific He  | at            | Btu/lb-F     |                 | 1.111         |               | <del> </del>  | 1.020                 |
| Liquid Thermal Co   |               | Btu/hr-ft-F  |                 | 0.395         |               | ł             | 0.385                 |
| Vapor Mol. Weight   |               | Dtu/III-It-F |                 | 18.96/18.943  | 6             | <del> </del>  | 0.0/0.0               |
| Vapor Viscosity     |               | сР           |                 | 0.0179        |               |               | 0.0000                |
| Vapor Specific He   | at            | Btu/lb-F     |                 | 0.0179        |               |               | 0.000                 |
| Vapor Thermal Co    |               | Btu/hr-ft-F  |                 | 0.445         |               |               | 0.000                 |
|                     |               | °F           |                 | 338.0/332.0   | 1             |               | 212.0/239.4           |
| Temperature (In/C   |               | psi(Abs)     |                 | 437.000       |               |               |                       |
| Operating Pressur   | e             | ,            |                 | 25.051        |               |               | 30.000                |
| Velocity            |               | ft/sec       |                 |               |               |               | -                     |
| Pressure Drop (All  |               | psi          |                 | 5.000/1.075   | )             |               | 5.000/0.287           |
| Fouling resistance  |               | hr-ft²-F/Btu |                 | 0.001000      |               |               | 0.002000              |
| Heat Exchanged      |               |              |                 | mtd (corr)    | 108.950 °F    |               |                       |
| Transfer Rate, Ser  | vice          | 145.0        | CONSTRUCT       | Clean         | 322.3 Btu/hr- | ft²-F         |                       |
|                     |               | Shal         | Iside           |               |               | 1             | Sketch                |
| Dealan/Test Dres    | noi           | 480/         |                 | 45            |               | -             | Skelch                |
| Design/Test Pres.   | °F            | 480/         |                 | 30            |               | 4             |                       |
| Design Temp.        |               | 400          |                 |               | -             | 4             |                       |
| No. Passes per Sh   |               |              |                 |               | 1             |               |                       |
| Corrosion Allow.    | in            | 0.0625       |                 | 0.062         | ວ             | 4             |                       |
| Connections         | ln<br>Out     | 1-23.        | -               | 8.0           |               | 4             |                       |
| Size &              | Out           | 1-19.        | U               | 8.0           |               | 4             |                       |
| Rating              | Intermediate  | 0            |                 | 0             |               |               |                       |
| Tube No             | 550           | OD 0.750 in  |                 | Thk 0.065     | Length 6.00 f | ł             | Pitch 1.25000 / 45.0° |
|                     |               | PLAIN        |                 | Material      |               | L             | Filon 1.20000 / 40.0  |
| Tube Type<br>Shell  | F             | 1.D 40.00 OE | ) in            | Shell Cover   |               | INT           | •                     |
| Channel or Bonne    | ł             | 1.D 40.00 OL | ווו כ           | Channel Cover | or            | IINI          |                       |
|                     | -             |              |                 |               |               |               |                       |
| Tubesheet-Station   |               |              |                 | Tubesheet-Fl  |               | YES           |                       |
| Floating Head Cov   |               |              | 850             | Impingement   |               |               | 20.0                  |
| Baffles Cross       |               | Type VERT-   | 326             | %Cut 49.0 (/  |               | Spacing-cc    | 38.9                  |
| Baffles-Long        |               |              | II Dond         | Seal Type     | Tuno          |               |                       |
| Supports-Tube       |               |              | U-Bend          | Tube Tube 1   | Type          |               |                       |
| Bypass Seal Arran   | igement       |              |                 | Tube-Tubesh   | ieet Joint    |               |                       |
| Expansion Joint     |               | 4 400        | <u> </u>        | Туре          | 0.400         | <u> </u>      | 0.500                 |
| Rho-V2 Inlet Nozz   | le            | 1,486        | Bundle Entrar   | ice           | 2,490         | Bundle Exit   | 2,529                 |
| Gasket-Shellside    |               |              | Tubeside        |               |               | Floating Head |                       |
| Code Requiremen     | t             | ASME Section | on 8, Divsion 1 |               |               | TEMA Class    | R                     |
| Weight/Shell        |               |              | Filled with Wa  | iter          |               | Bundle        |                       |

|                                                                                                                                                                                                                                              |                          | Н                         | eat Exchar                          | nger Specif                                                                             | fication shee                                      | et                                         |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------|
|                                                                                                                                                                                                                                              |                          |                           |                                     |                                                                                         | Job No.                                            |                                            |                        |
| Customer                                                                                                                                                                                                                                     | NREL                     |                           |                                     |                                                                                         | Ref No.                                            | HP Syngas Ca                               | ase                    |
| Address                                                                                                                                                                                                                                      |                          |                           |                                     |                                                                                         | Proposal No.                                       |                                            |                        |
| Plant Location                                                                                                                                                                                                                               |                          |                           |                                     |                                                                                         | Date                                               |                                            | Rev. 0                 |
| Service of Unit                                                                                                                                                                                                                              | Amine Precool            | er                        |                                     |                                                                                         | Item No                                            | H-203                                      |                        |
| Size 96x 96                                                                                                                                                                                                                                  |                          | Туре                      | <b>BEM - HORZ</b>                   | Connected in                                                                            | 1 Parallel                                         |                                            | 1 Series               |
| Surf/Unit (Eff)                                                                                                                                                                                                                              | 11541 ft <sup>2</sup>    | Shells/Unit               | 1                                   | Surface/Shell                                                                           |                                                    | 11541 ft <sup>2</sup>                      |                        |
| 0011/0111 (L11)                                                                                                                                                                                                                              |                          |                           | •                                   | NCE OF ONE                                                                              |                                                    |                                            |                        |
| Fluid Allocation                                                                                                                                                                                                                             |                          |                           |                                     | Shellside                                                                               | •••••                                              | 1                                          | Tubeside               |
| Fluid Name                                                                                                                                                                                                                                   |                          |                           | Syna                                | as to Amine Al                                                                          | hsorber                                            |                                            | Cooling Water          |
| Total Fluid Entering                                                                                                                                                                                                                         | 2                        | lb/hr                     | Synga                               | 414,200                                                                                 | 0301061                                            |                                            | 6,965,000              |
| Vapor                                                                                                                                                                                                                                        | 9                        |                           |                                     | 364,537                                                                                 |                                                    |                                            | 0,903,000              |
|                                                                                                                                                                                                                                              |                          |                           |                                     | ,                                                                                       |                                                    |                                            | -                      |
| Liquid                                                                                                                                                                                                                                       |                          |                           |                                     | 49,663                                                                                  |                                                    |                                            | 6,965,000              |
| Steam                                                                                                                                                                                                                                        |                          |                           |                                     |                                                                                         |                                                    |                                            |                        |
| Noncondensa                                                                                                                                                                                                                                  |                          |                           |                                     |                                                                                         |                                                    |                                            |                        |
| Fluid Vaporized or                                                                                                                                                                                                                           |                          |                           |                                     | 97,296                                                                                  |                                                    | ļ                                          | 0                      |
| Liquid Density (In/0                                                                                                                                                                                                                         | Out)                     | lb/ft³                    |                                     | 55.608/62.12                                                                            | 0                                                  |                                            | 62.000/61.573          |
| Liquid Viscosity                                                                                                                                                                                                                             |                          | cP                        |                                     | 0.211                                                                                   |                                                    |                                            | 0.627                  |
| Liquid Specific Hea                                                                                                                                                                                                                          |                          | Btu/lb-F                  |                                     | 1.063                                                                                   |                                                    |                                            | 1.001                  |
| Liquid Thermal Co                                                                                                                                                                                                                            |                          | Btu/hr-ft-F               |                                     | 0.384                                                                                   |                                                    |                                            | 0.365                  |
| Vapor Mol. Weight                                                                                                                                                                                                                            |                          |                           |                                     | 18.8591/18.9                                                                            | 6                                                  |                                            | 0.0/0.0                |
| Vapor Viscosity                                                                                                                                                                                                                              | · /                      | cP                        |                                     | 0.0168                                                                                  |                                                    |                                            | 0.0000                 |
| Vapor Specific Hea                                                                                                                                                                                                                           | at                       | Btu/lb-F                  |                                     | 0.424                                                                                   |                                                    |                                            | 0.000                  |
| Vapor Thermal Co                                                                                                                                                                                                                             |                          | Btu/hr-ft-F               |                                     | 0.041                                                                                   |                                                    |                                            | 0.000                  |
| Temperature (In/O                                                                                                                                                                                                                            |                          | °F                        |                                     | 332.0/110.0                                                                             |                                                    | 1                                          | 80.0/100.0             |
| Operating Pressure                                                                                                                                                                                                                           |                          | psi(Abs)                  |                                     | 432.000                                                                                 |                                                    |                                            | 65.000                 |
| Velocity                                                                                                                                                                                                                                     | 5                        | ft/sec                    |                                     | 13.546                                                                                  |                                                    |                                            | -                      |
| Pressure Drop (All                                                                                                                                                                                                                           |                          |                           |                                     | 5.000/1.874                                                                             |                                                    |                                            | 5.000/0.592            |
| <b>.</b>                                                                                                                                                                                                                                     | ow/Calc)                 | psi                       |                                     |                                                                                         |                                                    |                                            |                        |
| Fouling resistance                                                                                                                                                                                                                           |                          | hr-ft <sup>2</sup> -F/Btu |                                     | 0.001000                                                                                |                                                    |                                            | 0.002000               |
| Heat Exchanged                                                                                                                                                                                                                               |                          |                           |                                     | mtd (corr)                                                                              | 98.751 °F                                          |                                            |                        |
| Transfer Rate, Ser                                                                                                                                                                                                                           | vice                     | 122.2                     |                                     | Clean                                                                                   | 210.0 Btu/hr-                                      | ft²-F                                      |                        |
|                                                                                                                                                                                                                                              |                          |                           | CONSTRUCT                           |                                                                                         |                                                    |                                            |                        |
|                                                                                                                                                                                                                                              |                          | Shel                      | lside                               | Tubes                                                                                   | ide                                                |                                            | Sketch                 |
| Design/Test Pres.                                                                                                                                                                                                                            | psi                      | 475/                      |                                     | 80                                                                                      | /                                                  |                                            |                        |
| Design Temp.                                                                                                                                                                                                                                 | °F                       | 350                       |                                     | 150                                                                                     | 0                                                  | 1                                          |                        |
| No. Passes per Sh                                                                                                                                                                                                                            | ell                      | 1                         |                                     |                                                                                         | 1                                                  | 1                                          |                        |
| Corrosion Allow.                                                                                                                                                                                                                             | in                       | 0.0625                    |                                     | 0.062                                                                                   | 5                                                  | 1                                          |                        |
| Connections                                                                                                                                                                                                                                  | In                       | 1-23.                     | 0                                   | 31.0                                                                                    |                                                    | 1                                          |                        |
| Size &                                                                                                                                                                                                                                       | Out                      | 1-17.                     | -                                   | 31.0                                                                                    |                                                    | 4                                          |                        |
| Rating                                                                                                                                                                                                                                       | Intermediate             | 0                         | •                                   | 0                                                                                       |                                                    | 4                                          |                        |
| lating                                                                                                                                                                                                                                       | Internediate             | Ű                         |                                     | Ű                                                                                       |                                                    |                                            |                        |
| Tube No                                                                                                                                                                                                                                      | 8842                     | OD 0.750 in               |                                     | Thk 0.065                                                                               | Length 8.00 f                                      | t                                          | Pitch 0.93750 / 30.0°  |
| Tube Type                                                                                                                                                                                                                                    |                          | PLAIN                     |                                     | Material                                                                                | Length 0.001                                       | ι                                          | 1 1101 0.007 00 7 00.0 |
|                                                                                                                                                                                                                                              | Г                        | I.D 96.00 OE              | ) in                                | Shell Cover                                                                             |                                                    | INT                                        |                        |
|                                                                                                                                                                                                                                              |                          | 1.0 90.00 OL              | 7 11 1                              |                                                                                         |                                                    | IINT                                       |                        |
| Shell                                                                                                                                                                                                                                        |                          |                           |                                     |                                                                                         |                                                    |                                            |                        |
| Shell<br>Channel or Bonnet                                                                                                                                                                                                                   |                          |                           |                                     | Channel Cove                                                                            |                                                    |                                            |                        |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station                                                                                                                                                                                              | ary                      |                           |                                     | Tubesheet-Fl                                                                            | oating                                             |                                            |                        |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov                                                                                                                                                                         | ary                      | _                         |                                     | Tubesheet-Fl<br>Impingement                                                             | oating<br>Protection                               | YES                                        |                        |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                                                        | ary                      | Type VERT-                | SEG                                 | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A                                             | oating<br>Protection                               | YES<br>Spacing-cc                          | 39.8                   |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                                                        | ary                      | Type VERT-                |                                     | Tubesheet-Fl<br>Impingement                                                             | oating<br>Protection<br>Area)                      |                                            | 39.8                   |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                                                       | ary<br>er                | Type VERT-                | SEG<br>U-Bend                       | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A<br>Seal Type                                | oating<br>Protection<br>Area)<br>Type              |                                            | 39.8                   |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                                                       | ary<br>er                | Type VERT-                |                                     | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A                                             | oating<br>Protection<br>Area)<br>Type              |                                            | 39.8                   |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran                                                                                                  | ary<br>er                | Type VERT-                |                                     | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A<br>Seal Type                                | oating<br>Protection<br>Area)<br>Type              |                                            | 39.8                   |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint                                                                               | ary<br>er<br>gement      | Type VERT-                |                                     | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 ( <i>F</i><br>Seal Type<br>Tube-Tubesh<br>Type | oating<br>Protection<br>Area)<br>Type              |                                            | 39.8<br>3,610          |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl                                                         | ary<br>er<br>gement      |                           | U-Bend<br>Bundle Entrar             | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 ( <i>F</i><br>Seal Type<br>Tube-Tubesh<br>Type | oating<br>Protection<br>Area)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit                  | 3,610                  |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl<br>Gasket-Shellside                                     | ary<br>er<br>gement<br>e | 1,463                     | U-Bend<br>Bundle Entrar<br>Tubeside | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 ( <i>F</i><br>Seal Type<br>Tube-Tubesh<br>Type | oating<br>Protection<br>Area)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit<br>Floating Head | 3,610                  |
| Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl<br>Gasket-Shellside<br>Code Requirement<br>Weight/Shell | ary<br>er<br>gement<br>e | 1,463                     | U-Bend<br>Bundle Entrar             | Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A<br>Seal Type<br>Tube-Tubesh<br>Type<br>nce  | oating<br>Protection<br>Area)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit                  | 3,610                  |

| 1                                                                                                                                                                                                                                                   |                                                                  | н                                                                                | eat Exchanger                                                                                                                                     | Specification a                                                                                                                                               | sheet                                                    |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                     |                                                                  |                                                                                  |                                                                                                                                                   | Job No.                                                                                                                                                       |                                                          |                               |
| Customer                                                                                                                                                                                                                                            | NREL                                                             |                                                                                  |                                                                                                                                                   | Ref No.                                                                                                                                                       | HP Syngas C                                              | ase                           |
| Address                                                                                                                                                                                                                                             |                                                                  |                                                                                  |                                                                                                                                                   | Proposal                                                                                                                                                      | No.                                                      |                               |
| Plant Location                                                                                                                                                                                                                                      |                                                                  |                                                                                  |                                                                                                                                                   | Date                                                                                                                                                          |                                                          | Rev. 0                        |
| Service of Unit                                                                                                                                                                                                                                     | ZnO Preheater                                                    | r                                                                                |                                                                                                                                                   | Item No                                                                                                                                                       | H-320                                                    |                               |
| Size 96x 96                                                                                                                                                                                                                                         |                                                                  | Туре                                                                             | BEM - HORZ Conne                                                                                                                                  | ected in 1 Pa                                                                                                                                                 | arallel                                                  | 1 Series                      |
| Surf/Unit (Eff)                                                                                                                                                                                                                                     | 19400 ft <sup>2</sup>                                            | Shells/Unit                                                                      | 1 Surfa                                                                                                                                           | ce/Shell (Effective)                                                                                                                                          | ) 19400 ft <sup>2</sup>                                  |                               |
|                                                                                                                                                                                                                                                     |                                                                  |                                                                                  | PERFORMANCE O                                                                                                                                     | F ONE ÙNIT                                                                                                                                                    |                                                          |                               |
| Fluid Allocation                                                                                                                                                                                                                                    | ,                                                                |                                                                                  | Sh                                                                                                                                                | ellside                                                                                                                                                       |                                                          | Tubeside                      |
| Fluid Name                                                                                                                                                                                                                                          |                                                                  |                                                                                  | Flue Gas                                                                                                                                          | fr. Tar Regen                                                                                                                                                 |                                                          | Sweet Syngas                  |
| Total Fluid Enterin                                                                                                                                                                                                                                 | a                                                                | lb/hr                                                                            |                                                                                                                                                   | 30.200                                                                                                                                                        |                                                          | 118,500                       |
| Vapor                                                                                                                                                                                                                                               | 5                                                                |                                                                                  |                                                                                                                                                   | 30,200                                                                                                                                                        |                                                          | 118,500                       |
| Liquid                                                                                                                                                                                                                                              |                                                                  |                                                                                  |                                                                                                                                                   | 0                                                                                                                                                             |                                                          | 0                             |
| Steam                                                                                                                                                                                                                                               |                                                                  |                                                                                  |                                                                                                                                                   | 0                                                                                                                                                             |                                                          | 0                             |
| Noncondensa                                                                                                                                                                                                                                         | able                                                             |                                                                                  |                                                                                                                                                   |                                                                                                                                                               |                                                          |                               |
| Fluid Vaporized or                                                                                                                                                                                                                                  |                                                                  |                                                                                  |                                                                                                                                                   | 0                                                                                                                                                             |                                                          | 0                             |
| Liquid Density (In/                                                                                                                                                                                                                                 |                                                                  | lb/ft <sup>3</sup>                                                               | 0.00                                                                                                                                              | 0/0.000                                                                                                                                                       |                                                          | 0.000/0.000                   |
| 1 2 1                                                                                                                                                                                                                                               | July                                                             | cP                                                                               |                                                                                                                                                   |                                                                                                                                                               |                                                          |                               |
| Liquid Viscosity                                                                                                                                                                                                                                    | ot                                                               | -                                                                                |                                                                                                                                                   | 0.000                                                                                                                                                         |                                                          | 0.000                         |
| Liquid Specific Hea                                                                                                                                                                                                                                 |                                                                  | Btu/lb-F                                                                         |                                                                                                                                                   | 0.000                                                                                                                                                         |                                                          | 0.000                         |
| Liquid Thermal Co                                                                                                                                                                                                                                   |                                                                  | Btu/hr-ft-F                                                                      |                                                                                                                                                   | 0.000                                                                                                                                                         |                                                          | 0.000                         |
| Vapor Mol. Weight                                                                                                                                                                                                                                   | t (In/Out)                                                       |                                                                                  |                                                                                                                                                   | 56/27.56                                                                                                                                                      |                                                          | 10.99/10.99                   |
| Vapor Viscosity                                                                                                                                                                                                                                     |                                                                  | cP                                                                               |                                                                                                                                                   | .0157                                                                                                                                                         |                                                          | 0.0182                        |
| Vapor Specific Hea                                                                                                                                                                                                                                  |                                                                  | Btu/lb-F                                                                         |                                                                                                                                                   | ).312                                                                                                                                                         |                                                          | 0.659                         |
| Vapor Thermal Co                                                                                                                                                                                                                                    |                                                                  | Btu/hr-ft-F                                                                      |                                                                                                                                                   | 0.012                                                                                                                                                         |                                                          | 0.076                         |
| Temperature (In/O                                                                                                                                                                                                                                   |                                                                  | °F                                                                               | 839.                                                                                                                                              | .0/214.0                                                                                                                                                      |                                                          | 100.0/750.0                   |
| Operating Pressur                                                                                                                                                                                                                                   | e                                                                | psi(Abs)                                                                         | 14                                                                                                                                                | 4.500                                                                                                                                                         |                                                          | 422.000                       |
| Velocity                                                                                                                                                                                                                                            |                                                                  | ft/sec                                                                           | 64                                                                                                                                                | 4.628                                                                                                                                                         |                                                          | 2.701                         |
| Pressure Drop (All                                                                                                                                                                                                                                  | ow/Calc)                                                         | psi                                                                              | 2.00                                                                                                                                              | 0/1.675                                                                                                                                                       |                                                          | 5.000/0.488                   |
| Fouling resistance                                                                                                                                                                                                                                  | ,                                                                | hr-ft <sup>2</sup> -F/Btu                                                        | 0.0                                                                                                                                               | 02000                                                                                                                                                         |                                                          | 0.002000                      |
| Heat Exchanged                                                                                                                                                                                                                                      | 49,960,000 Bt                                                    | tu/hr                                                                            | mtd (d                                                                                                                                            | corr) 96.31 °F                                                                                                                                                |                                                          |                               |
| Transfer Rate, Ser                                                                                                                                                                                                                                  |                                                                  | 26.55                                                                            | Clean                                                                                                                                             | ,                                                                                                                                                             |                                                          |                               |
|                                                                                                                                                                                                                                                     |                                                                  |                                                                                  | CONSTRUCTION C                                                                                                                                    |                                                                                                                                                               | • •                                                      |                               |
|                                                                                                                                                                                                                                                     |                                                                  | She                                                                              | Iside                                                                                                                                             | Tubeside                                                                                                                                                      |                                                          | Sketch                        |
| Design/Test Pres.                                                                                                                                                                                                                                   | psi                                                              | 30/                                                                              |                                                                                                                                                   | 465/                                                                                                                                                          |                                                          |                               |
| Design Temp.                                                                                                                                                                                                                                        | °F                                                               | 910                                                                              |                                                                                                                                                   | 800                                                                                                                                                           |                                                          |                               |
| No. Passes per Sh                                                                                                                                                                                                                                   |                                                                  | 1                                                                                |                                                                                                                                                   | 1                                                                                                                                                             |                                                          |                               |
| Corrosion Allow.                                                                                                                                                                                                                                    | in                                                               | 0.0625                                                                           |                                                                                                                                                   | 0.0625                                                                                                                                                        |                                                          |                               |
| CONDSION ANOW.                                                                                                                                                                                                                                      |                                                                  |                                                                                  |                                                                                                                                                   |                                                                                                                                                               |                                                          |                               |
| Connections                                                                                                                                                                                                                                         |                                                                  |                                                                                  | 1                                                                                                                                                 |                                                                                                                                                               |                                                          |                               |
|                                                                                                                                                                                                                                                     | In                                                               | 1-53.                                                                            | -                                                                                                                                                 | 12.0                                                                                                                                                          |                                                          |                               |
| Size &                                                                                                                                                                                                                                              | In<br>Out                                                        | 1-53.<br>1-47.                                                                   | -                                                                                                                                                 | 12.0<br>15.0                                                                                                                                                  |                                                          |                               |
| Size &                                                                                                                                                                                                                                              | In                                                               | 1-53.                                                                            | -                                                                                                                                                 | 12.0                                                                                                                                                          |                                                          |                               |
| Size &<br>Rating                                                                                                                                                                                                                                    | In<br>Out<br>Intermediate                                        | 1-53.<br>1-47.<br>0                                                              | D                                                                                                                                                 | 12.0<br>15.0<br>0                                                                                                                                             | 2 00 #                                                   |                               |
| Size &<br>Rating<br>Tube No                                                                                                                                                                                                                         | In<br>Out<br>Intermediate<br>14190                               | 1-53.<br>1-47.<br>0<br>OD 0.750 in                                               | D Thk (                                                                                                                                           | 12.0<br>15.0<br>0<br>0.065 Length 8                                                                                                                           | 3.00 ft                                                  | Pitch 1.25000 / 45.0°         |
| Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type                                                                                                                                                                                             | In<br>Out<br>Intermediate<br>14190                               | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN                                      | D<br>Thk (<br>Mater                                                                                                                               | 12.0<br>15.0<br>0<br>0.065 Length 8                                                                                                                           |                                                          | Pitch 1.25000 / 45.0°         |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell                                                                                                                                                                                                   | In<br>Out<br>Intermediate<br>14190<br>F                          | 1-53.<br>1-47.<br>0<br>OD 0.750 in                                               | D Thk (<br>Mater<br>D in Shell                                                                                                                    | 12.0<br>15.0<br>0<br>0.065 Length 8<br>rial<br>Cover                                                                                                          | 3.00 ft                                                  | Pitch 1.25000 / 45.0°         |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet                                                                                                                                                                              | In<br>Out<br>Intermediate<br>14190<br>F                          | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN                                      | D Thk (<br>Mater<br>D in Shell<br>Chan                                                                                                            | 12.0<br>15.0<br>0<br>0.065 Length 8<br>rial<br>Cover<br>nel Cover                                                                                             |                                                          | Pitch 1.25000 / 45.0°         |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station                                                                                                                                                         | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary             | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN                                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes                                                                                                   | 12.0<br>15.0<br>0<br>0.065 Length 8<br>rial<br>Cover<br>nel Cover<br>sheet-Floating                                                                           | INT                                                      | Pitch 1.25000 / 45.0°         |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov                                                                                                                                    | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary             | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin                                                                                          | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>gement Protection                                                      | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                   | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary             | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN                                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut                                                                              | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)                                    | INT                                                      | Pitch 1.25000 / 45.0°<br>65.0 |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary             | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal                                                                      | 12.0<br>15.0<br>0<br>0.065 Length 8<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)<br>Type                            | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>t<br>hary<br>/er | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut                                                                              | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)                                    | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>t<br>hary<br>/er | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal                                                                      | 12.0<br>15.0<br>0<br>0.065 Length 8<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)<br>Type                            | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran                                                             | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>t<br>hary<br>/er | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal                                                                      | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>gement Protection<br>36.0 (Area)<br>Type<br>Type                       | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint                         | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary<br>ver      | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal<br>U-Bend<br>Tube-                                                   | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>gement Protection<br>36.0 (Area)<br>Type<br>Type                       | INT                                                      |                               |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>tary<br>ver      | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>I.D 163.00 C                      | D Thk (<br>Mater<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal <sup>7</sup><br>U-Bend<br>Tube-<br>Type                     | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)<br>Type<br>Type<br>Tubesheet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 65.0                          |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>hary<br>/er      | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>1.D 163.00 C<br>Type VERT-<br>900 | D Thk (<br>Mater<br>D in Shell<br>Chanı<br>Tubes<br>Impin<br>SEG %Cut<br>Seal<br>U-Bend<br>U-Bend<br>Tube-<br>Type<br>Bundle Entrance<br>Tubeside | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)<br>Type<br>Type<br>Tubesheet Joint | INT<br>YES<br>Spacing-cc                                 | 65.0                          |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnel<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | In<br>Out<br>Intermediate<br>14190<br>F<br>t<br>hary<br>/er      | 1-53.<br>1-47.<br>0<br>OD 0.750 in<br>PLAIN<br>1.D 163.00 C<br>Type VERT-<br>900 | D Thk (<br>Mater<br>Mater<br>D in Shell<br>Chan<br>Tubes<br>Impin<br>SEG %Cut<br>Seal<br>U-Bend<br>U-Bend<br>Tube-<br>Type<br>Bundle Entrance     | 12.0<br>15.0<br>0<br>0.065 Length &<br>rial<br>Cover<br>nel Cover<br>sheet-Floating<br>igement Protection<br>: 36.0 (Area)<br>Type<br>Type<br>Tubesheet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head | 65.0                          |

|                                                                                |                      | Н                  | leat Exchar               | iger Specif   | ication shee   | et                           |                       |
|--------------------------------------------------------------------------------|----------------------|--------------------|---------------------------|---------------|----------------|------------------------------|-----------------------|
|                                                                                |                      |                    |                           |               | Job No.        |                              |                       |
| Customer                                                                       | NREL                 |                    |                           |               | Ref No.        | HP Syngas Ca                 | ise                   |
| Address                                                                        |                      |                    |                           |               | Proposal No.   |                              |                       |
| Plant Location                                                                 |                      |                    |                           |               | Date           |                              | Rev. 0                |
| Service of Unit                                                                | ZnO SG Coole         | r/BFW Prehea       | ater                      |               | Item No        | H-321                        |                       |
| Size 60x 192                                                                   |                      | Туре               | <b>BEM - HORZ</b>         | Connected in  | 1 Paralle      |                              | 1 Series              |
| Surf/Unit (Eff)                                                                | 5440 ft <sup>2</sup> | Shells/Unit        | 1                         | Surface/Shell | (Effective)    | 5440 ft <sup>2</sup>         |                       |
|                                                                                |                      |                    | PERFORMA                  | ICE OF ONE    | <u>ÙNIT</u>    |                              |                       |
| Fluid Allocation                                                               |                      |                    |                           | Shellside     |                |                              | Tubeside              |
| Fluid Name                                                                     | -                    |                    | Sv                        | ngas fr ZnO B | eds            |                              | BFW                   |
| Total Fluid Entering                                                           | a                    | lb/hr              | - ,                       | 118,500       |                |                              | 111,600               |
| Vapor                                                                          | 5                    | 10/11              |                           | 118,500       |                |                              | 0                     |
| Liquid                                                                         |                      |                    |                           | 0             |                |                              | 111,600               |
| Steam                                                                          |                      |                    |                           | 0             |                |                              | 111,000               |
| Noncondensa                                                                    | blo                  |                    |                           |               |                |                              |                       |
|                                                                                |                      |                    |                           | 0             |                |                              | 0                     |
| Fluid Vaporized or                                                             |                      | IL /443            |                           | -             |                |                              | •                     |
| Liquid Density (In/                                                            | Jul)                 | lb/ft <sup>3</sup> |                           | 0.000/0.000   |                |                              | 54.688/45.460         |
| Liquid Viscosity                                                               | - 1                  | cP                 |                           | 0.000         |                |                              | 0.115                 |
| Liquid Specific Hea                                                            |                      | Btu/lb-F           |                           | 0.000         |                |                              | 1.429                 |
| Liquid Thermal Co                                                              |                      | Btu/hr-ft-F        |                           | 0.000         |                | ļ                            | 0.352                 |
| Vapor Mol. Weight                                                              | (In/Out)             |                    |                           | 10.99/10.99   |                | L                            | 0.0/0.0               |
| Vapor Viscosity                                                                |                      | cP                 |                           | 0.0203        |                |                              | 0.0000                |
| Vapor Specific Hea                                                             |                      | Btu/lb-F           |                           | 0.663         |                |                              | 0.000                 |
| Vapor Thermal Co                                                               | nductivity           | Btu/hr-ft-F        |                           | 0.086         |                |                              | 0.000                 |
| Temperature (In/O                                                              | ut)                  | °F                 |                           | 750.0/370.0   |                |                              | 349.0/565.0           |
| Operating Pressure                                                             | е                    | psi(Abs)           |                           | 412.000       |                |                              | 1,285.000             |
| Velocity                                                                       |                      | ft/sec             |                           | 30.448        |                |                              | -                     |
| Pressure Drop (All                                                             | ow/Calc)             | psi                |                           | 5.000/3.935   |                |                              | 5.000/0.407           |
| Fouling resistance                                                             |                      | hr-ft²-F/Btu       |                           | 0.001000      |                |                              | 0.002000              |
| Heat Exchanged                                                                 |                      |                    |                           | mtd (corr)    | 75.373 °F      |                              |                       |
| Transfer Rate, Ser                                                             |                      | 72.8               |                           | Clean         | 99.1 Btu/hr-ft | <sup>2</sup> -F              |                       |
|                                                                                | 100                  | 12.0               | CONSTRUCT                 | TON OF ONE    |                | •                            |                       |
|                                                                                |                      | Shal               | Iside                     | Tubes         |                |                              | Sketch                |
| Design/Test Pres.                                                              | nei                  | 455/               | 13106                     | 1,350         |                |                              | OREICH                |
| Design Temp.                                                                   | °F                   | 800                |                           | 615           |                | -                            |                       |
|                                                                                |                      | 1                  |                           |               |                | -                            |                       |
| No. Passes per Sh<br>Corrosion Allow.                                          |                      |                    |                           |               | •              |                              |                       |
|                                                                                | in                   | 0.0625             | 0                         | 0.0625        | )              |                              |                       |
| Connections                                                                    | In                   | 1-15.              | -                         | 4.0           |                |                              |                       |
| Size &                                                                         | Out                  | 1-13.              | 0                         | 6.0           |                |                              |                       |
| Rating                                                                         | Intermediate         | 0                  |                           | 0             |                |                              |                       |
|                                                                                |                      |                    |                           |               |                | -                            |                       |
| Tube No                                                                        | 1902                 | OD 0.750 in        |                           | Thk 0.065     | Length 16.00   | tt                           | Pitch 1.25000 / 30.0° |
| Tube Type                                                                      | F                    | PLAIN              |                           | Material      |                |                              |                       |
| Shell                                                                          |                      | I.D 60.00 OE       | ) in                      | Shell Cover   |                | INT                          |                       |
| Channel or Bonnet                                                              |                      |                    |                           | Channel Cove  | er             |                              |                       |
| Tubesheet-Station                                                              |                      |                    |                           | Tubesheet-Flo |                |                              |                       |
| Floating Head Cov                                                              | er                   |                    |                           | Impingement   |                | YES                          |                       |
| Baffles Cross                                                                  |                      | Type VERT-         | SEG                       | %Cut 14.0 (A  | vrea)          | Spacing-cc                   | 14.5                  |
| Baffles-Long                                                                   |                      |                    |                           | Seal Type     |                |                              |                       |
|                                                                                |                      |                    | U-Bend                    |               | Туре           |                              |                       |
| Supports-Tube                                                                  | aement               |                    |                           | Tube-Tubesh   |                |                              |                       |
| Supports-Tube<br>Bypass Seal Arran                                             | gement               |                    |                           | Туре          |                |                              |                       |
|                                                                                | igement              |                    |                           |               |                |                              |                       |
| Bypass Seal Arran<br>Expansion Joint                                           | 0                    | 2.063              | Bundle Entrar             |               | 272            | Bundle Fxit                  | 2.203                 |
| Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl                     | 0                    | 2,063              | Bundle Entrar<br>Tubeside |               | 272            | Bundle Exit<br>Floating Head | 2,203                 |
| Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl<br>Gasket-Shellside | le                   |                    | Tubeside                  |               | 272            | Floating Head                | ,<br>,                |
| Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl                     | le                   |                    |                           | nce           | 272            |                              |                       |

|                          |                      | Н                  | leat Exchai     | nger Specif                 | fication shee | et                   |                         |
|--------------------------|----------------------|--------------------|-----------------|-----------------------------|---------------|----------------------|-------------------------|
|                          |                      |                    |                 |                             | Job No.       |                      |                         |
| Customer                 | NREL                 |                    |                 |                             | Ref No.       | HP Syngas Ca         | ase                     |
| Address                  |                      |                    |                 |                             | Proposal No.  |                      |                         |
| Plant Location           |                      |                    |                 |                             | Date          |                      | Rev. 0                  |
| Service of Unit          | Post ZnO Syng        | gas Cooler         |                 |                             | Item No       | H-322                |                         |
| Size 36x 96              |                      | Туре               | BEM - HORZ      | Connected in                | 1 Parallel    |                      | 1 Series                |
| Surf/Unit (Eff)          | 1620 ft <sup>2</sup> | Shells/Unit        | 1               | Surface/Shell               | (Effective)   | 1620 ft <sup>2</sup> |                         |
|                          |                      |                    | PERFORMA        | NCE OF ONE                  |               |                      |                         |
| Fluid Allocation         |                      |                    |                 | Shellside                   |               |                      | Tubeside                |
| Fluid Name               |                      |                    | Sv              | ngas fr. ZnO E              | Beds          |                      | Cooling Water           |
| Total Fluid Enterin      | a                    | lb/hr              |                 | 118,500                     |               |                      | 995,500                 |
| Vapor                    | 5                    |                    |                 | 118,500                     |               |                      | 0                       |
| Liquid                   |                      |                    |                 | 0                           |               |                      | 995,500                 |
| Steam                    |                      |                    |                 | •                           |               |                      | 000,000                 |
| Noncondens               | ahla                 |                    |                 |                             |               |                      |                         |
| Fluid Vaporized or       |                      |                    |                 | 0                           |               | ļ                    | 0                       |
| Liquid Density (In/      |                      | lb/ft <sup>3</sup> |                 | 0.000/0.000                 |               |                      | 62.000/62.000           |
|                          | ourj                 | cP                 |                 |                             |               |                      |                         |
| Liquid Viscosity         | ot                   | Etu/lb-F           |                 | 0.000                       |               | <b> </b>             | 0.762                   |
| Liquid Specific He       |                      |                    |                 | 0.000                       |               |                      | 1.000                   |
| Liquid Thermal Co        |                      | Btu/hr-ft-F        |                 | 0.000                       |               | ļ                    | 0.363                   |
| Vapor Mol. Weigh         | t (in/Out)           |                    |                 | 10.99/10.99                 |               | ļ                    | 0.0/0.0                 |
| Vapor Viscosity          |                      | cP                 |                 | 0.0148                      |               |                      | 0.0000                  |
| Vapor Specific He        |                      | Btu/lb-F           |                 | 0.647                       |               |                      | 0.000                   |
| Vapor Thermal Co         |                      | Btu/hr-ft-F        |                 | 0.065                       |               |                      | 0.000                   |
| Temperature (In/C        |                      | °F                 |                 | 370.0/110.0                 |               |                      | 80.0/100.0              |
| Operating Pressur        | e                    | psi(Abs)           |                 | 407.000                     |               |                      | 65.000                  |
| Velocity                 |                      | ft/sec             |                 | 47.403                      |               |                      | -                       |
| Pressure Drop (Al        |                      | psi                |                 | 5.000/3.747                 |               |                      | 5.000/0.585             |
| Fouling resistance       |                      | hr-ft²-F/Btu       |                 | 0.001000                    |               |                      | 0.002000                |
| Heat Exchanged           | 19,910,000 Bt        | u/hr               |                 | mtd (corr)                  | 109.229 °F    |                      |                         |
| Transfer Rate, Se        | vice                 | 112.6              |                 | Clean                       | 183.2 Btu/hr- | ft²-F                |                         |
|                          |                      |                    | CONSTRUC        | TION OF ONE                 | SHELL         |                      |                         |
|                          |                      | She                | lside           | Tubes                       | ide           |                      | Sketch                  |
| Design/Test Pres.        | psi                  | 450/               |                 | 80                          | )/            |                      |                         |
| Design Temp.             | °F                   | 420                |                 | 15                          | 0             |                      |                         |
| No. Passes per SI        | nell                 | 1                  |                 |                             | 1             |                      |                         |
| Corrosion Allow.         | in                   | 0.0625             |                 | 0.062                       | 5             |                      |                         |
| Connections              | In                   | 1-13.              | 0               | 12.0                        | -             |                      |                         |
| Size &                   | Out                  | 1-12.              |                 | 12.0                        |               |                      |                         |
| Rating                   | Intermediate         | 0                  | •               | 0                           |               |                      |                         |
| rtating                  | intorniouluto        | Ű                  |                 | Ű                           |               |                      |                         |
| Tube No                  | 1102                 | OD 0.750 in        |                 | Thk 0.065                   | Length 8.00 f | t                    | Pitch 0.93750 / 30.0°   |
| Tube Type                | -                    | PLAIN              |                 | Material                    | Longth 0.001  |                      | 1.1.511 0.007 00 7 00.0 |
| Shell                    | F                    | I.D 36.00 OE       | ) in            | Shell Cover                 |               | INT                  |                         |
| Channel or Bonne         | +                    | 1.D 00.00 OL       |                 | Channel Cove                | ar            | 1111                 |                         |
| Tubesheet-Station        | -                    |                    |                 |                             |               |                      |                         |
| Floating Head Cov        |                      |                    |                 | Tubesheet-FI<br>Impingement |               | YES                  |                         |
| 0                        |                      | Type VERT-         | SEC             |                             |               |                      | 24.0                    |
| Baffles Cross            |                      | Type VERT-         | 320             | %Cut 24.3 (A<br>Seal Type   | nica)         | Spacing-cc           | 2 <del>4</del> .U       |
| Baffles-Long             |                      |                    | II Dond         | Sear Type                   | Tuno          |                      |                         |
| Supports-Tube            | romont               |                    | U-Bend          | Tubo Tubo -                 | Type          |                      |                         |
| Bypass Seal Arrar        | igement              |                    |                 | Tube-Tubesh                 | eet Joint     |                      |                         |
| Expansion Joint          | 1                    | 0.500              |                 | Туре                        | 1.001         | <u> </u>             | 0.075                   |
| Rho-V2 Inlet Nozz        | le                   | 2,539              | Bundle Entra    | nce                         | 1,981         | Bundle Exit          | 3,675                   |
| Gasket-Shellside         |                      |                    | Tubeside        |                             |               | Floating Head        |                         |
| Code Description         | t                    | ASME Section       | on 8, Divsion 1 |                             |               | TEMA Class           | R                       |
| Code Requiremen          | -                    |                    |                 |                             |               |                      |                         |
| Weight/Shell<br>Remarks: | -<br>                |                    | Filled with Wa  | ater                        |               | Bundle               |                         |

|                                                                                                                                                                                                                                          |                                                                 | Н                                                                | eat Exchar                                         | nger Specif                                                                                                                                                  | fication shee                                            | et                                                       |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                          |                                                                 |                                                                  |                                                    |                                                                                                                                                              | Job No.                                                  |                                                          |                       |
| Customer                                                                                                                                                                                                                                 | NREL                                                            |                                                                  |                                                    |                                                                                                                                                              | Ref No.                                                  | HP Syngas Ca                                             | ase                   |
| Address                                                                                                                                                                                                                                  |                                                                 |                                                                  |                                                    |                                                                                                                                                              | Proposal No.                                             |                                                          |                       |
| Plant Location                                                                                                                                                                                                                           |                                                                 |                                                                  |                                                    |                                                                                                                                                              | Date                                                     |                                                          | Rev. 0                |
| Service of Unit                                                                                                                                                                                                                          | MeOH Compre                                                     | essor Interstag                                                  | je Cooler                                          |                                                                                                                                                              | Item No                                                  | H-400A                                                   |                       |
| Size 23x 72                                                                                                                                                                                                                              |                                                                 | Туре                                                             | <b>BEM - HORZ</b>                                  | Connected in                                                                                                                                                 | 1 Paralle                                                |                                                          | 1 Series              |
| Surf/Unit (Eff)                                                                                                                                                                                                                          | 476 ft <sup>2</sup>                                             | Shells/Unit                                                      | 1                                                  | Surface/Shell                                                                                                                                                | (Effective)                                              | 476 ft <sup>2</sup>                                      |                       |
|                                                                                                                                                                                                                                          |                                                                 |                                                                  | PERFORMA                                           | NCE OF ONE                                                                                                                                                   |                                                          |                                                          |                       |
| Fluid Allocation                                                                                                                                                                                                                         |                                                                 |                                                                  |                                                    | Shellside                                                                                                                                                    |                                                          |                                                          | Tubeside              |
| Fluid Name                                                                                                                                                                                                                               |                                                                 |                                                                  |                                                    | Cooling wate                                                                                                                                                 | r                                                        |                                                          | Syngas                |
| Total Fluid Enterin                                                                                                                                                                                                                      | ומ                                                              | lb/hr                                                            |                                                    | 537,000                                                                                                                                                      |                                                          |                                                          | 118,500               |
| Vapor                                                                                                                                                                                                                                    | .9                                                              |                                                                  |                                                    | 0                                                                                                                                                            |                                                          |                                                          | 118,500               |
| Liquid                                                                                                                                                                                                                                   |                                                                 |                                                                  |                                                    | 537,000                                                                                                                                                      |                                                          |                                                          | 0                     |
| Steam                                                                                                                                                                                                                                    |                                                                 |                                                                  |                                                    | 337,000                                                                                                                                                      |                                                          |                                                          | 0                     |
| Noncondens                                                                                                                                                                                                                               | ablo                                                            |                                                                  |                                                    |                                                                                                                                                              |                                                          |                                                          |                       |
|                                                                                                                                                                                                                                          |                                                                 |                                                                  | <b> </b>                                           | 0                                                                                                                                                            |                                                          |                                                          | 0                     |
| Fluid Vaporized or                                                                                                                                                                                                                       |                                                                 | 11, 1613                                                         | l                                                  | 0                                                                                                                                                            | 0                                                        |                                                          | 0                     |
| Liquid Density (In/                                                                                                                                                                                                                      | Out)                                                            | lb/ft <sup>3</sup>                                               |                                                    | 62.000/62.00                                                                                                                                                 | U                                                        | ļ                                                        | 0.000/0.000           |
| Liquid Viscosity                                                                                                                                                                                                                         |                                                                 | cP                                                               | <b> </b>                                           | 0.762                                                                                                                                                        |                                                          |                                                          | 0.000                 |
| Liquid Specific He                                                                                                                                                                                                                       |                                                                 | Btu/lb-F                                                         | L                                                  | 1.000                                                                                                                                                        |                                                          |                                                          | 0.000                 |
| Liquid Thermal Co                                                                                                                                                                                                                        |                                                                 | Btu/hr-ft-F                                                      | L                                                  | 0.363                                                                                                                                                        |                                                          |                                                          | 0.000                 |
| Vapor Mol. Weigh                                                                                                                                                                                                                         | t (In/Out)                                                      |                                                                  |                                                    | 0.0/0.0                                                                                                                                                      |                                                          |                                                          | 10.99/10.99           |
| Vapor Viscosity                                                                                                                                                                                                                          |                                                                 | cP                                                               |                                                    | 0.0000                                                                                                                                                       |                                                          |                                                          | 0.0155                |
| Vapor Specific He                                                                                                                                                                                                                        |                                                                 | Btu/lb-F                                                         |                                                    | 0.000                                                                                                                                                        |                                                          |                                                          | 0.655                 |
| Vapor Thermal Co                                                                                                                                                                                                                         |                                                                 | Btu/hr-ft-F                                                      |                                                    | 0.000                                                                                                                                                        |                                                          |                                                          | 0.068                 |
| Temperature (In/C                                                                                                                                                                                                                        |                                                                 | °F                                                               |                                                    | 80.0/100.0                                                                                                                                                   |                                                          |                                                          | 338.0/200.0           |
| Operating Pressur                                                                                                                                                                                                                        | re                                                              | psi(Abs)                                                         |                                                    | 65.000                                                                                                                                                       |                                                          |                                                          | 1,000.000             |
| Velocity                                                                                                                                                                                                                                 |                                                                 | ft/sec                                                           |                                                    | 4.236                                                                                                                                                        |                                                          |                                                          | 25.340                |
| Pressure Drop (Al                                                                                                                                                                                                                        | low/Calc)                                                       | psi                                                              |                                                    | 5.000/2.578                                                                                                                                                  |                                                          |                                                          | 5.000/0.675           |
| Fouling resistance                                                                                                                                                                                                                       | ,                                                               | hr-ft²-F/Btu                                                     |                                                    | 0.002000                                                                                                                                                     |                                                          |                                                          | 0.001000              |
| Heat Exchanged                                                                                                                                                                                                                           | 10 470 000 Bt                                                   |                                                                  |                                                    | mtd (corr)                                                                                                                                                   | 172.318 °F                                               |                                                          |                       |
| Transfer Rate, Se                                                                                                                                                                                                                        | rvice                                                           | 127.7                                                            |                                                    | Clean                                                                                                                                                        | 216.4 Btu/hr-                                            | ft²_F                                                    |                       |
|                                                                                                                                                                                                                                          | 11100                                                           | 121.1                                                            | CONSTRUCT                                          | TION OF ONE                                                                                                                                                  |                                                          |                                                          |                       |
|                                                                                                                                                                                                                                          |                                                                 | Shol                                                             | Iside                                              | Tubes                                                                                                                                                        |                                                          | 1                                                        | Sketch                |
| Design/Test Pres.                                                                                                                                                                                                                        | nci                                                             | 80/                                                              |                                                    |                                                                                                                                                              |                                                          |                                                          | Sketch                |
|                                                                                                                                                                                                                                          | °F                                                              | 150                                                              | •••                                                |                                                                                                                                                              | 1,050/<br>390                                            |                                                          |                       |
| Design Temp.                                                                                                                                                                                                                             |                                                                 |                                                                  |                                                    |                                                                                                                                                              | -                                                        | -                                                        |                       |
| No. Passes per Sl                                                                                                                                                                                                                        |                                                                 | 0.0625                                                           |                                                    | 1                                                                                                                                                            |                                                          | -                                                        |                       |
| Corrosion Allow.                                                                                                                                                                                                                         | inections In 1                                                  |                                                                  |                                                    | 0.0625                                                                                                                                                       |                                                          |                                                          |                       |
| Connections                                                                                                                                                                                                                              |                                                                 |                                                                  | 1-10.0                                             |                                                                                                                                                              | 12.0                                                     |                                                          |                       |
|                                                                                                                                                                                                                                          |                                                                 |                                                                  |                                                    |                                                                                                                                                              |                                                          |                                                          |                       |
|                                                                                                                                                                                                                                          | Out                                                             | 1-10.                                                            | 0                                                  | 10.0                                                                                                                                                         |                                                          |                                                          |                       |
|                                                                                                                                                                                                                                          | Out<br>Intermediate                                             | 1-10.0<br>0                                                      | 0                                                  | 10.0<br>0                                                                                                                                                    |                                                          |                                                          |                       |
| Rating                                                                                                                                                                                                                                   | Intermediate                                                    | 0                                                                |                                                    | 0                                                                                                                                                            |                                                          |                                                          |                       |
| Rating<br>Tube No                                                                                                                                                                                                                        | Intermediate<br>442                                             | 0<br>OD 0.750 in                                                 |                                                    | 0<br>Thk 0.065                                                                                                                                               | Length 6.00 f                                            | t                                                        | Pitch 0.93750 / 30.0° |
| Size &<br>Rating<br>Tube No<br>Tube Type                                                                                                                                                                                                 | Intermediate<br>442                                             | 0<br>OD 0.750 in<br>PLAIN                                        |                                                    | 0<br>Thk 0.065<br>Material                                                                                                                                   | Length 6.00 f                                            |                                                          | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell                                                                                                                                                                                                  | Intermediate<br>442<br>F                                        | 0<br>OD 0.750 in                                                 |                                                    | 0<br>Thk 0.065<br>Material<br>Shell Cover                                                                                                                    |                                                          | t<br>INT                                                 | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne                                                                                                                                                                              | Intermediate<br>442<br>F                                        | 0<br>OD 0.750 in<br>PLAIN                                        |                                                    | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover                                                                                                   | er                                                       |                                                          | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior                                                                                                                                                         | Intermediate<br>442<br>F<br>at<br>nary                          | 0<br>OD 0.750 in<br>PLAIN                                        |                                                    | 0<br>Thk 0.065<br>Material<br>Shell Cover                                                                                                                    | er                                                       | INT                                                      | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior                                                                                                                                                         | Intermediate<br>442<br>F<br>at<br>nary                          | 0<br>OD 0.750 in<br>PLAIN                                        |                                                    | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement                                                                    | er<br>oating<br>Protection                               |                                                          | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov                                                                                                                                    | Intermediate<br>442<br>F<br>at<br>nary                          | 0<br>OD 0.750 in<br>PLAIN                                        | Din                                                | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl                                                                                   | er<br>oating<br>Protection                               | INT                                                      | Pitch 0.93750 / 30.0° |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross                                                                                                                   | Intermediate<br>442<br>F<br>at<br>nary                          | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE                        | Din                                                | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement                                                                    | er<br>oating<br>Protection                               | INT                                                      |                       |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   | Intermediate<br>442<br>F<br>at<br>nary                          | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE                        | Din                                                | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>P</i>                                             | er<br>oating<br>Protection<br>Area)                      | INT                                                      |                       |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | Intermediate<br>442<br>F<br>et<br>nary<br>ver                   | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE                        | ) in<br>SEG                                        | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>P</i>                                             | er<br>oating<br>Protection<br>Area)<br>Type              | INT                                                      |                       |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles -Long<br>Supports-Tube<br>Bypass Seal Arrar                                                            | Intermediate<br>442<br>F<br>et<br>nary<br>ver                   | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE                        | ) in<br>SEG                                        | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>I</i><br>Seal Type<br>Tube-Tubesh                 | er<br>oating<br>Protection<br>Area)<br>Type              | INT                                                      |                       |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint                                          | Intermediate<br>442<br>F<br>et<br>nary<br>ver                   | 0<br>OD 0.750 in<br>PLAIN<br>T.D 23.25 OE<br>Type VERT-          | D in<br>SEG<br>U-Bend                              | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>F</i><br>Seal Type<br>Tube-Tubesh<br>Type        | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc                                 | 16.3                  |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | Intermediate<br>442<br>F<br>et<br>nary<br>ver                   | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE                        | D in<br>SEG<br>U-Bend<br>Bundle Entrar             | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>F</i><br>Seal Type<br>Tube-Tubesh<br>Type        | er<br>oating<br>Protection<br>Area)<br>Type              | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 16.3                  |
| Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside | Intermediate<br>442<br>F<br>et<br>nary<br>ver<br>ngement<br>zle | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE<br>Type VERT-<br>1,206 | D in<br>SEG<br>U-Bend<br>Bundle Entrar<br>Tubeside | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>I</i><br>Seal Type<br>Tube-Tubesh<br>Type<br>nce | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head | 16.3                  |
| Rating<br>Tube No                                                                                                                                                                                                                        | Intermediate<br>442<br>F<br>et<br>nary<br>ver<br>ngement<br>zle | 0<br>OD 0.750 in<br>PLAIN<br>I.D 23.25 OE<br>Type VERT-<br>1,206 | D in<br>SEG<br>U-Bend<br>Bundle Entrar             | 0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 23.5 ( <i>I</i><br>Seal Type<br>Tube-Tubesh<br>Type<br>nce | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 16.3                  |

|                                                            |                        | н                  | eat Exchai     | nger Speci    | fication shee  | et                    |                       |
|------------------------------------------------------------|------------------------|--------------------|----------------|---------------|----------------|-----------------------|-----------------------|
|                                                            |                        |                    |                | -             | Job No.        |                       |                       |
| Customer                                                   | NREL                   |                    |                |               | Ref No.        | HP Syngas Ca          | ase                   |
| Address                                                    |                        |                    |                |               | Proposal No.   |                       |                       |
| Plant Location                                             |                        |                    |                |               | Date           |                       | Rev. 0                |
| Service of Unit                                            | MeOH Syngas            | Preheat            |                |               | Item No        | H-401                 |                       |
| Size 72x 216                                               |                        | Туре               | BEM - HORZ     | Connected in  |                | -                     | 1 Series              |
|                                                            | 16212 ft <sup>2</sup>  | Shells/Unit        | 1              | Surface/Shel  |                | 16212 ft <sup>2</sup> |                       |
|                                                            |                        | oriologi orint     | -              | NCE OF ONE    |                |                       |                       |
| Fluid Allocation                                           |                        |                    |                | Shellside     | •••••          | 1                     | Tubeside              |
| Fluid Name                                                 |                        |                    |                | Steam         |                | Svr                   | igas to MeOH Rxn      |
| Total Fluid Entering                                       | N                      | lb/hr              |                | 17,610        |                | Oyi                   | 118,500               |
| Vapor                                                      | 1                      | 10/11              |                | 17,610        |                |                       | 118,500               |
|                                                            |                        |                    |                | 0             |                |                       | 0                     |
| Liquid                                                     |                        |                    |                | 0             |                |                       | 0                     |
| Steam                                                      | <b>b</b> . <b>1</b> -  |                    |                |               |                |                       |                       |
| Noncondensa                                                |                        |                    |                | 47.040        |                |                       |                       |
| Iuid Vaporized or                                          |                        |                    |                | 17,610        | 2              |                       | 0                     |
| _iquid Density (In/C                                       | Dut)                   | lb/ft <sup>3</sup> |                | 0.000/54.780  | J              | ļ                     | 0.000/0.000           |
| Liquid Viscosity                                           |                        | cP                 |                | 0.128         |                |                       | 0.000                 |
| _iquid Specific Hea                                        |                        | Btu/lb-F           |                | 1.157         |                |                       | 0.000                 |
| _iquid Thermal Cor                                         |                        | Btu/hr-ft-F        |                | 0.393         |                |                       | 0.000                 |
| Vapor Mol. Weight                                          | (In/Out)               |                    |                | 18.02/18.02   |                |                       | 10.99/10.99           |
| Vapor Viscosity                                            |                        | cP                 |                | 0.0161        |                |                       | 0.0170                |
| Vapor Specific Hea                                         | ıt                     | Btu/lb-F           |                | 0.483         |                |                       | 0.660                 |
| /apor Thermal Cor                                          |                        | Btu/hr-ft-F        |                | 0.020         |                |                       | 0.074                 |
| Temperature (In/O                                          |                        | °F                 |                | 471.7/324.0   | )              |                       | 240.0/460.0           |
| Operating Pressure                                         |                        | psi(Abs)           |                | 100.000       |                |                       | 1,165.000             |
| Velocity                                                   | ,                      | ft/sec             |                | 4.482         |                |                       | 2.118                 |
| Pressure Drop (Allo                                        |                        | psi                |                | 5.000/0.586   |                |                       | 5.000/0.430           |
| Fouling resistance                                         | Jw/Calc)               | hr-ft²-F/Btu       |                | 0.005000      |                |                       | 0.001000              |
| <u>v</u>                                                   | 17 4 40 000 D          |                    |                |               |                |                       | 0.001000              |
| Heat Exchanged                                             |                        |                    |                | mtd (corr)    | 45.146 °F      | ~ _                   |                       |
| Transfer Rate, Serv                                        | /ice                   | 23.4               |                | Clean         | 27.4 Btu/hr-ft | <b>-</b> ⊢            |                       |
|                                                            |                        |                    |                | TION OF ONE   |                | -                     |                       |
|                                                            |                        |                    | lside          | Tubes         |                |                       | Sketch                |
| Design/Test Pres.                                          |                        | 130/               |                | 1,225         |                |                       |                       |
| Design Temp.                                               | °F                     | 545                |                | 51            | 5              |                       |                       |
| No. Passes per Sh                                          | ell                    | 1                  |                |               | 1              |                       |                       |
| Corrosion Allow.                                           | osion Allow. in 0.0625 |                    | 0.0625         |               |                |                       |                       |
| Connections                                                | ections In 1-8.0       |                    | 10.0           |               | 1              |                       |                       |
| Size &                                                     | Out                    | 1-2.0              | )              | 12.0          |                |                       |                       |
| Rating                                                     | Intermediate           | 0                  |                | 0             |                |                       |                       |
| <b>J</b>                                                   |                        |                    |                |               |                |                       |                       |
| Fube No                                                    | 5044                   | OD 0.750 in        |                | Thk 0.065     | Length 18.00   | ft                    | Pitch 0.93750 / 30.0° |
| Tube Type                                                  |                        | PLAIN              |                | Material      | Longar 10.00   | it i                  |                       |
| Shell                                                      | •                      | I.D 72.00 OE       | ) in           | Shell Cover   |                | INT                   |                       |
| Channel or Bonnet                                          |                        | 1.D 72.00 OL       |                | Channel Cover | or             |                       |                       |
|                                                            |                        |                    |                |               | ÷.             |                       |                       |
| Tubesheet-Stationa                                         |                        |                    |                | Tubesheet-F   | 0              | NO                    |                       |
| Floating Head Cove                                         | 31                     |                    | 050            | Impingement   |                | NO<br>Secondaria      | 11.0                  |
| Baffles Cross                                              |                        | Type VERT-         | SEG            | %Cut_10.2 (/  | Area)          | Spacing-cc            | 14.3                  |
| Baffles-Long                                               |                        |                    |                | Seal Type     | <del>.</del>   |                       |                       |
| Supports-Tube                                              |                        |                    | U-Bend         |               | Туре           |                       |                       |
| Bypass Seal Arran                                          | gement                 |                    |                | Tube-Tubesh   | eet Joint      |                       |                       |
| Expansion Joint                                            |                        |                    |                | Туре          |                |                       |                       |
|                                                            | e                      | 1,057              | Bundle Entra   | nce           | 1,398          | Bundle Exit           | 1,158                 |
| Rho-V2 Inlet Nozzle                                        |                        |                    | Tulsasida      |               |                | Floating Head         |                       |
|                                                            |                        |                    | Tubeside       |               |                | i louding i loud      |                       |
| Rho-V2 Inlet Nozzl<br>Gasket-Shellside<br>Code Requirement |                        | ASME Sectio        | n 8, Divsion 1 |               |                | TEMA Class            | R                     |
| Gasket-Shellside                                           |                        | ASME Sectio        |                |               |                |                       |                       |

|                                                                                                                                                                           |                     | Н            | eat Exchar                          | nger Specif                                             | ication she              | et                           |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-------------------------------------|---------------------------------------------------------|--------------------------|------------------------------|------------------------|
|                                                                                                                                                                           |                     |              |                                     |                                                         | Job No.                  |                              |                        |
| Customer                                                                                                                                                                  | NREL                |              |                                     |                                                         | Ref No.                  | HP Syngas Ca                 | ase                    |
| Address                                                                                                                                                                   |                     |              |                                     |                                                         | Proposal No.             |                              |                        |
| Plant Location                                                                                                                                                            |                     |              |                                     |                                                         | Date                     |                              | Rev. 0                 |
| Service of Unit                                                                                                                                                           | Blowdown Coo        | oler         |                                     |                                                         | Item No                  | H-501                        |                        |
| Size 15x 48                                                                                                                                                               |                     | Туре         | BEM - HORZ                          | Connected in                                            |                          |                              | 1 Series               |
| Surf/Unit (Eff)                                                                                                                                                           | 130 ft <sup>2</sup> | Shells/Unit  | 1                                   | Surface/Shell                                           |                          | 130 ft <sup>2</sup>          |                        |
| 040(2)                                                                                                                                                                    |                     |              | PERFORMA                            | NCE OF ONE                                              |                          | 100 10                       |                        |
| Fluid Allocation                                                                                                                                                          |                     |              |                                     | Shellside                                               | •                        | 1                            | Tubeside               |
| Fluid Name                                                                                                                                                                |                     |              |                                     | Blowdown                                                |                          |                              | Cooling water          |
| Total Fluid Enterin                                                                                                                                                       | ~                   | lb/hr        |                                     | 3,987                                                   |                          |                              | 41,985                 |
| Vapor                                                                                                                                                                     | y                   | ID/III       |                                     | 0                                                       |                          |                              | 0                      |
|                                                                                                                                                                           |                     |              |                                     | -                                                       |                          |                              |                        |
| Liquid                                                                                                                                                                    |                     |              |                                     | 3,987                                                   |                          |                              | 41,985                 |
| Steam                                                                                                                                                                     |                     |              |                                     |                                                         |                          |                              |                        |
| Noncondensa                                                                                                                                                               |                     |              |                                     |                                                         |                          |                              |                        |
| Fluid Vaporized or                                                                                                                                                        |                     |              |                                     | 0                                                       |                          |                              | 0                      |
| Liquid Density (In/                                                                                                                                                       | Out)                | lb/ft³       |                                     | 56.607/62.00                                            | 0                        |                              | 62.000/62.000          |
| Liquid Viscosity                                                                                                                                                          |                     | cP           |                                     | 0.311                                                   |                          |                              | 0.762                  |
| Liquid Specific He                                                                                                                                                        |                     | Btu/lb-F     |                                     | 1.059                                                   |                          |                              | 1.000                  |
| Liquid Thermal Co                                                                                                                                                         |                     | Btu/hr-ft-F  |                                     | 0.382                                                   |                          |                              | 0.363                  |
| Vapor Mol. Weight                                                                                                                                                         |                     |              |                                     | 0.0/0.0                                                 |                          |                              | 0.0/0.0                |
| Vapor Viscosity                                                                                                                                                           | ( )                 | сP           |                                     | 0.0000                                                  |                          |                              | 0.0000                 |
| Vapor Specific He                                                                                                                                                         | at                  | Btu/lb-F     |                                     | 0.000                                                   |                          |                              | 0.000                  |
| Vapor Thermal Co                                                                                                                                                          |                     | Btu/hr-ft-F  |                                     | 0.000                                                   |                          |                              | 0.000                  |
| Temperature (In/C                                                                                                                                                         |                     | °F           |                                     | 298.0/110.0                                             |                          |                              | 80.0/100.0             |
| Operating Pressur                                                                                                                                                         |                     | psi(Abs)     |                                     | 65.000                                                  |                          |                              | 65.000                 |
| Velocity                                                                                                                                                                  | e                   | ft/sec       |                                     | 0.143                                                   |                          |                              | 0.528                  |
|                                                                                                                                                                           |                     |              |                                     |                                                         |                          |                              |                        |
| Pressure Drop (All                                                                                                                                                        |                     | psi          |                                     | 5.000/0.154                                             |                          |                              | 5.000/0.206            |
| Fouling resistance                                                                                                                                                        |                     | hr-ft²-F/Btu |                                     | 0.001000                                                |                          |                              | 0.002000               |
| Heat Exchanged                                                                                                                                                            |                     |              |                                     | mtd (corr)                                              | 89.027 °F                |                              |                        |
| Transfer Rate, Sei                                                                                                                                                        | vice                | 72.7         |                                     | Clean                                                   | 97.5 Btu/hr-ft           | .²-F                         |                        |
|                                                                                                                                                                           |                     |              |                                     | TION OF ONE                                             | SHELL                    |                              |                        |
|                                                                                                                                                                           |                     | Shel         | lside                               | Tubes                                                   | ide                      |                              | Sketch                 |
| Design/Test Pres.                                                                                                                                                         | psi                 | 80/          |                                     | 80                                                      | /                        |                              |                        |
| Design Temp.                                                                                                                                                              | °F                  | 350          |                                     | 150                                                     | )                        |                              |                        |
| No. Passes per Sh                                                                                                                                                         | nell                | 1            |                                     |                                                         | 1                        |                              |                        |
| Corrosion Allow.                                                                                                                                                          | in                  | 0.0625       |                                     | 0.0625                                                  |                          |                              |                        |
| Connections                                                                                                                                                               | In                  | 1-1.0        | )                                   | 3.0                                                     | m                        |                              |                        |
| Size &                                                                                                                                                                    | Out                 | 1-1.0        |                                     | 3.0                                                     |                          |                              |                        |
| Rating                                                                                                                                                                    | Intermediate        | 0            | •                                   | 0.0                                                     |                          | -                            |                        |
| rading                                                                                                                                                                    | intermediate        | Ŭ            |                                     | Ŭ                                                       |                          |                              |                        |
| Tube No                                                                                                                                                                   | 170                 | OD 0.750 in  |                                     | Thk 0.065                                               | Length 4.00 f            | 4                            | Pitch 0.93750 / 30.0°  |
| Tube Type                                                                                                                                                                 | -                   | PLAIN        |                                     | Material                                                | Length 4.001             | ι                            | T II.01 0.33730 / 30.0 |
| Shell                                                                                                                                                                     | F                   | I.D 15.25 OE | ) in                                |                                                         |                          | INT                          |                        |
|                                                                                                                                                                           | 4                   | 1.0 13.25 UL | וויל                                | Shell Cover<br>Channel Cove                             | or .                     | INT                          |                        |
|                                                                                                                                                                           |                     |              |                                     |                                                         |                          |                              |                        |
| Channel or Bonne                                                                                                                                                          |                     |              |                                     | Tubesheet-Fl                                            |                          |                              |                        |
| Tubesheet-Station                                                                                                                                                         |                     |              |                                     | Impingement                                             | Protection               | YES                          |                        |
| Tubesheet-Station<br>Floating Head Cov                                                                                                                                    |                     | _            |                                     | 1 0                                                     |                          | <b>.</b> .                   |                        |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                   |                     | Type VERT-   | SEG                                 | %Cut 8.6 (Ar                                            |                          | Spacing-cc                   | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   |                     | Type VERT-   |                                     | 1 0                                                     | ea)                      | Spacing-cc                   | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                   |                     | Type VERT-   | SEG<br>U-Bend                       | %Cut 8.6 (Ar                                            |                          | Spacing-cc                   | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   | ver                 | Type VERT-   |                                     | %Cut 8.6 (Ar                                            | ea)<br>Type              | Spacing-cc                   | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | ver                 | Type VERT-   |                                     | %Cut 8.6 (Ar<br>Seal Type                               | ea)<br>Type              | Spacing-cc                   | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint                                          | igement             |              | U-Bend                              | %Cut 8.6 (Ar<br>Seal Type<br>Tube-Tubesh<br>Type        | ea)<br>Type              |                              | 3.0                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | igement             | Type VERT-   | U-Bend<br>Bundle Entrar             | %Cut 8.6 (Ar<br>Seal Type<br>Tube-Tubesh<br>Type        | ea)<br>Type<br>eet Joint | Bundle Exit                  | 423                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside | ngement             | 728          | U-Bend<br>Bundle Entrar<br>Tubeside | %Cut 8.6 (Ar<br>Seal Type<br>Tube-Tubesh<br>Type        | ea)<br>Type<br>eet Joint | Bundle Exit<br>Floating Head | 423                    |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | ngement             | 728          | U-Bend<br>Bundle Entrar             | %Cut 8.6 (Ar<br>Seal Type<br>Tube-Tubesh<br>Type<br>nce | ea)<br>Type<br>eet Joint | Bundle Exit                  | 423                    |

| COMPRESSO                                                                              |                                               |                                                                                             |                                                     | K-100                                                                       |          |        |                |                  |            |
|----------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|----------|--------|----------------|------------------|------------|
|                                                                                        |                                               |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
| SERVICE                                                                                |                                               |                                                                                             |                                                     | Combustion Air                                                              |          |        |                |                  |            |
| GAS HANDLE                                                                             | D                                             |                                                                                             |                                                     | Air                                                                         |          |        |                |                  |            |
| NORMAL FLO                                                                             | w                                             | SCFM                                                                                        |                                                     | 58,597                                                                      |          |        |                |                  |            |
| NORMAL FLO                                                                             | w                                             | LB/HR                                                                                       |                                                     | 265,200                                                                     |          |        |                |                  |            |
| DESIGN FLOW                                                                            | v                                             | SCFM                                                                                        |                                                     |                                                                             |          |        |                |                  |            |
| MOL WT.                                                                                |                                               |                                                                                             |                                                     | 28.63                                                                       |          |        |                |                  |            |
| C_/C_                                                                                  |                                               | Value                                                                                       |                                                     | 1.4                                                                         |          |        |                |                  |            |
|                                                                                        |                                               | @ F / P                                                                                     | SIA                                                 | 90 / 14.7                                                                   |          |        |                |                  |            |
| SUCTION CON                                                                            |                                               |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
|                                                                                        | PRESSURE                                      | PSIA                                                                                        |                                                     | 14.7                                                                        |          |        |                |                  |            |
|                                                                                        | FACTOR @ SUCTION                              | ACFM                                                                                        |                                                     | 0.999 61,910                                                                |          |        |                |                  |            |
| ORIGIN                                                                                 | SUCTION                                       | PSIA                                                                                        |                                                     | 01,910                                                                      |          |        |                |                  |            |
| TEMPERA                                                                                | ATURE                                         | F                                                                                           |                                                     | 90                                                                          |          |        |                |                  |            |
| LINE LOS                                                                               |                                               | PSI                                                                                         | (2)                                                 |                                                                             |          |        |                |                  |            |
| OTHER L                                                                                |                                               | PSI                                                                                         | (1, 2)                                              |                                                                             | 1        |        |                |                  |            |
| CONTING                                                                                |                                               | PSI                                                                                         |                                                     |                                                                             |          |        |                |                  |            |
|                                                                                        |                                               |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
| DISCHARGE C                                                                            | CONDITIONS                                    |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
| DISCH. P                                                                               | RESSURE                                       | PSIA                                                                                        |                                                     | 20                                                                          |          |        |                |                  |            |
|                                                                                        | EMPERATURE                                    | F                                                                                           | (2)                                                 | 157                                                                         |          |        |                |                  |            |
|                                                                                        | FACTOR @ DISCH.                               |                                                                                             |                                                     | 0.999                                                                       |          |        |                |                  |            |
| DELIVER                                                                                |                                               | PSIA                                                                                        |                                                     |                                                                             |          |        |                | -                |            |
| LINE LOS                                                                               |                                               | PSI                                                                                         | (2)                                                 |                                                                             |          |        |                |                  |            |
|                                                                                        | GER LOSS                                      | PSI                                                                                         | (2)                                                 |                                                                             |          |        |                |                  |            |
| HEATER                                                                                 |                                               | PSI                                                                                         | (2)                                                 |                                                                             |          |        |                |                  |            |
| OTHER L                                                                                | L VALVE LOSS                                  | PSI                                                                                         | (2)                                                 |                                                                             |          |        |                |                  |            |
|                                                                                        |                                               | PSI<br>PSI                                                                                  | (2)                                                 |                                                                             |          |        |                |                  |            |
|                                                                                        |                                               |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
|                                                                                        |                                               |                                                                                             |                                                     |                                                                             |          |        |                |                  |            |
| TOTAL LO                                                                               | OSSES                                         | PSI                                                                                         | (2)                                                 | 1.36                                                                        |          |        |                |                  |            |
| TOTAL LO                                                                               | OSSES                                         |                                                                                             | (2)                                                 | 1.36                                                                        |          |        |                |                  |            |
| TOTAL LO                                                                               | OSSES                                         |                                                                                             |                                                     | 1.36<br>0.75<br>1800                                                        |          |        |                |                  |            |
| TOTAL LO<br>COMPRESSIO<br>EFFICIENCY                                                   | OSSES<br>ON RATIO                             |                                                                                             | (2)                                                 | 0.75                                                                        |          |        |                |                  |            |
| TOTAL LO<br>COMPRESSIO<br>EFFICIENCY<br>BHP                                            | OSSES<br>IN RATIO<br>R TYPE                   |                                                                                             | (2)                                                 | 0.75                                                                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI                                                                                         | (2)                                                 | 0.75 1800                                                                   |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O                                                                     | (2)                                                 | 0.75 1800 3.1                                                               |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub>                                                   | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3                                                 |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub>                                                   | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3                                                 |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE               | OSSES<br>IN RATIO<br>R TYPE                   | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar                                             | (2)                                                 | 0.75<br>1800<br>3.1<br>20.3<br>0.9                                          |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOR<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>ON RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub>                           | (2)<br>(2)<br>(2)                                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7                                  |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7                                  |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        | L DESIGN |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI                   | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR<br>ED AND MU | (2)<br>(2)<br>(2)<br>DISCHARGE SI<br>JST BE VERIFIE | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>UBBER<br>D BY FINAL MECHANICA |          |        |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO<br>R TYPE<br>SITION: Vol. % | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR              | (2)<br>(2)<br>(2)<br>DISCHARGE SI<br>JST BE VERIFIE | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>NUBBER                        | L DESIGN | CLIENT |                |                  |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO                             | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR<br>ED AND MU | (2)<br>(2)<br>(2)<br>DISCHARGE SI<br>JST BE VERIFIE | 0.75 1800 3.1 20.3 0.9 75.7 UBBER D BY FINAL MECHANICA                      | PROJ.    |        |                | ntract ACO-5-440 |            |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO                             | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR<br>ED AND MU | (2)<br>(2)<br>(2)<br>DISCHARGE SI<br>JST BE VERIFIE | 0.75<br>1800<br>3.1<br>20.3<br>0.9<br>75.7<br>UBBER<br>D BY FINAL MECHANICA | PROJ.    |        | JOB NO NREL Co |                  | 227<br>REV |
| TOTAL LC<br>COMPRESSIO<br>EFFICIENCY<br>BHP<br>COMPRESSOF<br>DRIVER TYPE<br>GAS COMPOS | OSSES<br>IN RATIO                             | PSI<br>H <sub>2</sub> O<br>O <sub>2</sub><br>Ar<br>N <sub>2</sub><br>JCTION OR<br>ED AND MU | (2)<br>(2)<br>(2)<br>DISCHARGE SI<br>JST BE VERIFIE | 0.75 1800 3.1 20.3 0.9 75.7 UBBER D BY FINAL MECHANICA                      | PROJ.    |        |                |                  |            |

| COM                            | IPRESSOR         |                             |                 |        | K-320                         |          |        |                      |             |
|--------------------------------|------------------|-----------------------------|-----------------|--------|-------------------------------|----------|--------|----------------------|-------------|
|                                |                  |                             |                 |        |                               |          |        |                      |             |
| SER                            | VICE             |                             |                 |        | Flue Gas Blower               |          |        |                      |             |
| GAS                            | HANDLED          | )                           |                 |        | Flue Gas                      |          |        |                      |             |
| NOF                            | RMAL FLOW        | v                           | SCFM            |        | 64,194                        |          |        |                      |             |
| NOF                            | RMAL FLOW        | v                           | LB/HR           |        | 279,800                       |          |        |                      |             |
|                                | GN FLOW          |                             | SCFM            |        |                               |          |        |                      |             |
| MOL                            | <u>wt</u> .      |                             |                 |        | 27.58                         |          |        |                      |             |
| C <sub>p</sub> /C <sub>v</sub> |                  |                             | Value           |        | 1.365                         |          |        |                      |             |
|                                |                  |                             | @ F / P\$       | SIA    | 202.5 / 14.3                  |          |        |                      |             |
| 500                            | TION CONI        | PRESSURE                    | PSIA            |        | 14.3                          |          |        |                      |             |
|                                |                  | ACTOR @ SUCTION             | FUA             |        | 0.9985                        |          |        |                      |             |
|                                | FLOW AT          |                             | ACFM            |        | 85,400                        |          |        |                      |             |
|                                | ORIGIN           |                             | PSIA            |        |                               |          |        |                      |             |
|                                | TEMPERA          | TURE                        | F               |        | 214                           |          |        |                      |             |
|                                | LINE LOSS        | S                           | PSI             | (2)    |                               |          |        |                      |             |
|                                | OTHER LC         | DSSES                       | PSI             | (1, 2) |                               |          |        |                      |             |
|                                | CONTING          | ENCY                        | PSI             |        |                               |          |        |                      |             |
|                                |                  |                             |                 |        |                               |          |        | +                    |             |
| DISC                           |                  | ONDITIONS                   |                 |        | 417                           |          |        | ├                    |             |
|                                | DISCH. PR        |                             | PSIA<br>F       | (2)    | 14.7<br>221                   |          |        | ╂────┤─              |             |
|                                |                  | MPERATURE<br>ACTOR @ DISCH. | _ F             | (2)    | 0.9985                        |          |        |                      |             |
|                                | DELIVERY         |                             | PSIA            |        | 0.8900                        |          |        | <u> </u>             |             |
|                                | LINE LOSS        |                             | PSI             | (2)    |                               |          |        |                      |             |
|                                | EXCHANG          |                             | PSI             | (2)    |                               |          |        |                      |             |
|                                | HEATER L         |                             | PSI             | (2)    |                               |          |        |                      |             |
|                                | CONTROL          | VALVE LOSS                  | PSI             | (2)    |                               |          |        |                      |             |
|                                | OTHER LC         | DSSES                       | PSI             | (2)    |                               |          |        |                      |             |
|                                | CONTING          |                             | PSI             | (2)    |                               |          |        |                      |             |
|                                | TOTAL LO         |                             | PSI             | (2)    |                               |          |        |                      |             |
|                                | <b>IPRESSION</b> | N RATIO                     |                 |        | 1.03                          |          |        |                      |             |
|                                |                  |                             |                 | (2)    | 0.75                          |          |        |                      |             |
| BHP                            | ,<br>IPRESSOR    | TVDE                        |                 | (2)    | 207                           |          |        |                      |             |
|                                | VER TYPE         |                             |                 |        |                               |          |        |                      |             |
|                                |                  | TION: Vol. %                |                 |        |                               |          |        |                      |             |
|                                |                  |                             | CO <sub>2</sub> |        | 14.33                         |          |        |                      |             |
|                                |                  |                             | H₂O             |        | 10.93                         |          |        |                      |             |
|                                |                  |                             | O <sub>2</sub>  |        | 1.03                          |          |        |                      |             |
|                                |                  |                             | Ar              |        | 0.73                          |          |        |                      |             |
|                                |                  |                             | N <sub>2</sub>  |        | 72.98                         |          |        |                      |             |
|                                |                  |                             | _               |        |                               |          |        |                      |             |
|                                |                  |                             |                 |        |                               |          |        | ┟────┤               |             |
|                                |                  |                             |                 |        |                               |          |        | ╂────┤               |             |
|                                |                  |                             |                 |        |                               |          |        | ╂────┤─              |             |
|                                |                  | ALLOWANCE FOR SU            |                 |        | BBER<br>Y FINAL MECHANICAL    | _ DESIGN |        |                      |             |
|                                |                  |                             |                 |        |                               |          |        | -                    |             |
|                                |                  |                             |                 |        |                               |          |        |                      |             |
|                                | DATE             |                             | REVIS           | IONS   | PROC                          | PROJ.    | CLIENT | -                    |             |
| NO                             | DATE             |                             | REVIS           | IONS   | PROC                          | PROJ.    | CLIENT | JOB NO NREL Contract | ACO-5-44027 |
| NO                             | DATE             |                             |                 |        |                               |          |        | JOB NO NREL Contract | ACO-5-44027 |
| NO                             | DATE             | NREL BIO                    |                 |        | PROC<br>essure Syngas Case (G |          |        |                      |             |

|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %<br>ALLOWANCE FOR SL<br>ULATED IS ESTIMATIO | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | IST BE VERIFIED BY                                                 |                                                                                                                                                                                        | PROJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 | JOB NO NREL<br>DRAWING NO | Contract ACO | 5-44027<br>REV |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|--------------|----------------|
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005<br>0.000001<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER<br>FINAL MECHANICAL | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>655<br>1.<br>30,<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000      | 17<br>75<br>86<br>5<br>08<br>27<br>7<br>92<br>003<br>005<br>0001<br>002<br>18      | JOB NO NREL               |              | 5-44027        |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005<br>0.000001<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER<br>FINAL MECHANICAL | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>655<br>1.<br>30,<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000      | 17<br>75<br>86<br>5<br>08<br>27<br>7<br>92<br>003<br>005<br>0001<br>002<br>18      |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH                                             | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH                                             | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00000000 | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH                                             | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                         | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH<br>COMH                                             | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LOS<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI            | ACTOR @ DISCH.<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                                          | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08<br>ER                                 | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>655<br>1.1<br>300<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                         | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| COMH<br>COMH<br>COMH<br>COMH<br>COMH                                                                     | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>CONTROL<br>CONTING<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE<br>COMPOSI   | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>SSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE<br>TION: Vol. %                                                     | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005<br>0.000001<br>0.00002<br>0.08                                                  | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005<br>0.00005<br>0.00001<br>0.00002                                                | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005<br>0.00005<br>0.00001<br>0.00002                                                | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005<br>0001<br>002 |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.002<br>0.00003<br>0.00005<br>0.000001                                                            | 1.0<br>1.0<br>1.1<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>22<br>003<br>005<br>0001        |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.00003<br>0.00005                                                                                 | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>02<br>003<br>005                |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02<br>0.002<br>0.00003                                                                                   | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>75<br>86<br>.1<br>5<br>08<br>27<br>7<br>7<br>22<br>003                       |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                            | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70<br>0.02                                                                                                       | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>75<br>86<br>.1<br>.5<br>.08<br>.27<br>.7<br>.22                              |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27<br>2.70                                                                                                               | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>75<br>86<br>5<br>08<br>27<br>7                                               |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27                                                                                                                       | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>75<br>86<br>.1<br>5<br>08<br>27                                              |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08<br>0.27                                                                                                                       | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>75<br>86<br>.1<br>5<br>08<br>27                                              |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50<br>30.08                                                                                                                               | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.<br>30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>75<br>86<br>.1<br>5<br>08                                                    |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10<br>1.50                                                                                                                                        | 1.0<br>1.0<br>1.1<br>0.7<br>1.2<br>65<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>75<br>86<br>.1<br>5                                                          |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102<br>65.10                                                                                                                                                | 1.0<br>1.0<br>1.1<br>0.7<br>1,2<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>75<br>86                                                                     |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75<br>7,102                                                                                                                                                         | 1.0<br>1.1<br>1.1<br>0.7<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>75<br>86                                                                     |                           |              |                |
| DISCI<br>DISCI<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION<br>CIENCY<br>PRESSOR<br>ER TYPE            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY<br>SSES<br>I RATIO<br>TYPE                                                                    | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75                                                                                                                                                                  | 1.0<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>75                                                                           |                           |              |                |
| DISCI<br>DISCI<br>COMP<br>COMP<br>COMP                                                                   | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LO<br>CONTINGE<br>TOTAL LO<br>PRESSION                                            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>VALVE LOSS<br>SSES<br>SSES<br>SSES<br>I RATIO                                                               | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75                                                                                                                                                                  | 1.0<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>75                                                                           |                           |              |                |
| DISCI<br>DISCI<br>COMP<br>COMP<br>EFFIC<br>BHP                                                           | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LO<br>OTHER LO<br>OTHER LO<br>PRESSION<br>CIENCY                                  | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>VALVE LOSS<br>SSES<br>SSES<br>SSES<br>I RATIO                                                               | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | 1.022<br>2.49<br>0.75                                                                                                                                                                  | 1.0<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>75                                                                           |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO<br>PRESSION                                            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DISSES<br>ENCY<br>SSES                                                                                      | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)        | 1.022<br>2.49                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE<br>TOTAL LO                                                        | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DISSES<br>ENCY<br>SSES                                                                                      | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)               | 1.022                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC<br>CONTINGE                                                                    | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES<br>ENCY                                                                                               | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI               | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)               |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL<br>OTHER LC                                                                                | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS<br>DSSES                                                                                                       | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI<br>PSI                      | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L<br>CONTROL                                                                                            | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS<br>VALVE LOSS                                                                                                                | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                             | (2)<br>(2)<br>(2)<br>(2)<br>(2)                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG<br>HEATER L                                                                                                       | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS<br>OSS                                                                                                                              | F<br>PSIA<br>PSI<br>PSI<br>PSI                                    | (2)<br>(2)<br>(2)                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS<br>EXCHANG                                                                                                                   | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.<br>S<br>ER LOSS                                                                                                                                     | F<br>PSIA<br>PSI<br>PSI                                           | (2)<br>(2)                                                         |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F<br>DELIVERY<br>LINE LOSS                                                                                                                              | EESSURE<br>MPERATURE<br>ACTOR @ DISCH.                                                                                                                                                    | F<br>PSIA<br>PSI                                                  | (2)                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
|                                                                                                          | DISCH. TE<br>COMPR. F.<br>DELIVERY                                                                                                                                          | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.                                                                                                                                                     | F<br>PSIA                                                         |                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
| DISCI                                                                                                    | DISCH. TE<br>COMPR. F                                                                                                                                                       | ESSURE<br>MPERATURE<br>ACTOR @ DISCH.                                                                                                                                                     | F                                                                 | (2)                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
| DISCI                                                                                                    | DISCH. TE                                                                                                                                                                   | ESSURE<br>MPERATURE                                                                                                                                                                       |                                                                   | (2)                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                 |                           |              |                |
| DISCI                                                                                                    |                                                                                                                                                                             | ESSURE                                                                                                                                                                                    |                                                                   | (2)                                                                | 334.8                                                                                                                                                                                  | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    | 1                         |              |                |
| DISCI                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                           |                                                                   |                                                                    | .,                                                                                                                                                                                     | ,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                           |              |                |
| (                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                           | PSIA                                                              |                                                                    | 1,000                                                                                                                                                                                  | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65                                                                                 |                           |              |                |
|                                                                                                          | HARGE CO                                                                                                                                                                    | ONDITIONS                                                                                                                                                                                 |                                                                   |                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | İ                         |              |                |
|                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                           |                                                                   |                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | 1                         |              |                |
| (                                                                                                        | CONTINGE                                                                                                                                                                    |                                                                                                                                                                                           | PSI                                                               | (., -)                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                           |              |                |
|                                                                                                          | OTHER LC                                                                                                                                                                    |                                                                                                                                                                                           | PSI                                                               | (1, 2)                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | 1                         |              |                |
|                                                                                                          | LINE LOSS                                                                                                                                                                   |                                                                                                                                                                                           | PSI                                                               | (2)                                                                | 110                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                           |              |                |
|                                                                                                          | TEMPERA                                                                                                                                                                     | TURE                                                                                                                                                                                      | F                                                                 |                                                                    | 110                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                  | 1                         |              |                |
|                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                           | PSIA                                                              |                                                                    | 1,007                                                                                                                                                                                  | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                 |                           |              |                |
|                                                                                                          | COMPR. F.                                                                                                                                                                   | ACTOR @ SUCTION                                                                                                                                                                           | ACFM                                                              |                                                                    | 1.006                                                                                                                                                                                  | 1.0<br>1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |              |                |
|                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                           | PSIA                                                              |                                                                    | 402                                                                                                                                                                                    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                           |              |                |
|                                                                                                          | TION CONI                                                                                                                                                                   |                                                                                                                                                                                           |                                                                   |                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                           |              |                |
| -                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                           | @ F / PS                                                          | SIA                                                                | 110 / 402                                                                                                                                                                              | 200 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 995                                                                                |                           |              |                |
| C <sub>p</sub> /C <sub>v</sub>                                                                           |                                                                                                                                                                             |                                                                                                                                                                                           | Value                                                             |                                                                    | 1.418                                                                                                                                                                                  | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |                           |              |                |
| MOL                                                                                                      | WT.                                                                                                                                                                         |                                                                                                                                                                                           |                                                                   |                                                                    | 10.99                                                                                                                                                                                  | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |                           |              |                |
| DESI                                                                                                     | GN FLOW                                                                                                                                                                     |                                                                                                                                                                                           | SCFM                                                              |                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                           |              |                |
| NOR                                                                                                      | MAL FLOW                                                                                                                                                                    | V                                                                                                                                                                                         | LB/HR                                                             |                                                                    | 118,500                                                                                                                                                                                | 118,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                                                                |                           |              |                |
|                                                                                                          | MAL FLOW                                                                                                                                                                    |                                                                                                                                                                                           | SCFM                                                              |                                                                    | 68,247                                                                                                                                                                                 | 68,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                           |              |                |
| GAS                                                                                                      | HANDLED                                                                                                                                                                     | 1                                                                                                                                                                                         |                                                                   |                                                                    | Treated Syngas                                                                                                                                                                         | Treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                           |              |                |
| SERV                                                                                                     | /ICE                                                                                                                                                                        |                                                                                                                                                                                           |                                                                   |                                                                    | MeOH Comp-1                                                                                                                                                                            | MeOH 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comp-2                                                                             |                           |              |                |
|                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                           |                                                                   |                                                                    | K-400A                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                           |              |                |
| сом                                                                                                      | PRESSOR                                                                                                                                                                     | NUMBER                                                                                                                                                                                    |                                                                   |                                                                    |                                                                                                                                                                                        | K-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                           |              |                |

| SERVIC<br>GAS H/<br>NORM/<br>DESIGI<br>MOL W<br>C <sub>p</sub> /C <sub>v</sub><br>SUCTIC<br>SUCTIC<br>SUCTIC<br>CCC<br>CCC<br>DISCH/<br>DISCH/<br>DISCH/<br>DISCH/<br>CCC<br>CCC<br>DISCH/<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANDLED<br>AL FLOW<br>AL FLOW<br>AL FLOW<br>SN FLOW<br>NT.<br>ION CONDITIONS<br>SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SUCTION PRESSURE<br>SUCTION<br>SUCTION PRESSURE<br>SUCTION<br>SUCTION PRESSURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUSCH. TEMPERATURE<br>SUSCHANGER LOSS<br>SUSCHANGER LOSS<br>SUSTROL VALVE LOSS<br>SUSTROL VALVE LOSS<br>SUSCHANGER LOSS<br>SUSCH | SCFM<br>LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F  | SIA<br>(2)<br>(1, 2)<br>(2)              | M-501A<br>Steam Turbine -<br>Extraction Stage 1<br>Steam<br>110,138<br>313,600<br>18.02<br>1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>1000<br>460<br>758     | M-501<br>Steam Tu<br>Extraction 5<br>Stear<br>51,97<br>148,11<br>18,02<br>1,35:<br>758 / 4<br>460<br>0.952<br>3,702<br>758<br>       | rbine -<br>Stage 2<br>m<br>79<br>00<br>2<br>3<br>3<br>460<br>21<br>9<br>9 |             |              |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|--------------|----------------|
| GAS H/<br>NORM/<br>DESIGI<br>MOL W<br>C <sub>p</sub> /C <sub>v</sub><br>SUCTIC<br>SUCTIC<br>SUCTIC<br>SUCTIC<br>OF<br>TE<br>CCC<br>DISCH/<br>DI<br>DISCH/<br>DI<br>CCC<br>CC<br>DISCH/<br>CCC<br>CCC<br>TC<br>CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANDLED<br>AL FLOW<br>AL FLOW<br>AL FLOW<br>SN FLOW<br>NT.<br>ION CONDITIONS<br>SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SUCTION PRESSURE<br>SUCTION<br>SUCTION PRESSURE<br>SUCTION<br>SUCTION PRESSURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUCH. TEMPERATURE<br>SUSCH. TEMPERATURE<br>SUSCHANGER LOSS<br>SUSCHANGER LOSS<br>SUSTROL VALVE LOSS<br>SUSTROL VALVE LOSS<br>SUSCHANGER LOSS<br>SUSCH | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F     | (2)<br>(1, 2)                            | Extraction Stage 1<br>Steam<br>110,138<br>313,600<br>18.02<br>1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>1000<br>460                                         | Extraction 3<br>Stear<br>51,97<br>148,11<br>18.0:<br>1.35:<br>758 / 4<br>460<br>0.952<br>3,70:<br>758                                | Stage 2<br>n<br>'9<br>00<br>2<br>2<br>3<br>3<br>460<br>21<br>9<br>9       |             |              |                |
| NORM/           NORM/           DESIGI           MOL           DESIGI           MOL           SUCTION           SUCTION           SUCTION           SUCTION           SUCTION           SUCTION           SUCTION           DISCH/           DIS | IAL FLOW<br>IAL FLOW<br>IAL FLOW<br>SN FLOW<br>NT.<br>ION CONDITIONS<br>UUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>INE LOSS<br>INTHER LOSSES<br>CONTINGENCY<br>INE LOSS<br>INE LOSS<br>INE LOSS<br>INE LOSS<br>INE LOSS<br>INTROL VALVE LOSS                   | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F     | (2)<br>(1, 2)                            | Steam           110,138           313,600           18.02           1.384           1000 / 1260           1260           0.9334           3,369           1000           460 | Stear           51,97           148,11           1.35:           758 / 4           460           0.952           3,70*           758 | n                                                                         |             |              |                |
| NORM/<br>DESIGI<br>MOL W<br>C <sub>p</sub> /C <sub>v</sub><br>SUCTIC<br>CC<br>CC<br>FL<br>CC<br>CC<br>FL<br>CC<br>CC<br>DISCH/<br>DISCH/<br>DISCH/<br>DISCH/<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IAL FLOW<br>SN FLOW<br>NT.<br>ION CONDITIONS<br>UCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SLOW AT SUCTION<br>COMPR. FACTOR @ SUCTION<br>STOP AT SUCTION<br>DRIGIN<br>EMPERATURE<br>INE LOSS<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>SIXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F     | (2)<br>(1, 2)                            | 313,600<br>18.02<br>1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>460                                                                                           | 148,11<br>18.0:<br>1.35:<br>758 / 4<br>460<br>0.952<br>3,70:<br>758                                                                  | 00<br>2<br>3<br>460<br>21<br>9<br>9                                       |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IN FLOW<br>NT.<br>ION CONDITIONS<br>IUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>INE LOSS<br>DITHER LOSSES<br>CONTINGENCY<br>IARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>INE LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DITHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCFM<br>Value<br>@ F / PS<br>PSIA<br>ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>F | (2)<br>(1, 2)                            | 313,600<br>18.02<br>1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>460                                                                                           | 148,11<br>18.0:<br>1.35:<br>758 / 4<br>460<br>0.952<br>3,70:<br>758                                                                  | 00<br>2<br>3<br>460<br>21<br>9<br>9                                       |             |              |                |
| MOL W           Cp/Cv           SUCTIC           SUCTIC           SUCTIC           FL           OI           DISCH/           DISCH/           DI           DISCH/           DI           DI           DI           CC           DI           CC           OT           CC           OT           CC           OT           CC           OT           CC           OT           CC           OT           CC                                                                                                                                                                                                                                                                                                                                                                                                                      | NT.<br>ION CONDITIONS<br>IUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>COMPR. FACTOR @ SUCTION<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>JINE LOSS<br>INE LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>SIA<br>PSIA      | (2)<br>(1, 2)                            | 1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>460                                                                                                               | 1.35:<br>758 / 4<br>460<br>0.952<br>3,70:<br>758                                                                                     | 3<br>460<br>21<br>9<br>3                                                  |             |              |                |
| C <sub>p</sub> /C <sub>v</sub><br>SUCTIC<br>SUCTIC<br>SUC<br>CC<br>OF<br>CC<br>DISCH/<br>DI<br>CC<br>CC<br>DISCH/<br>DI<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ION CONDITIONS<br>UCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>SLOW AT SUCTION<br>PRIGIN<br>TEMPERATURE<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>INE LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | @ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>F                          | (2)<br>(1, 2)                            | 1.384<br>1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>460                                                                                                               | 1.35:<br>758 / 4<br>460<br>0.952<br>3,70:<br>758                                                                                     | 3<br>460<br>21<br>9<br>3                                                  |             |              |                |
| SUCTIC<br>SUCTIC<br>SL<br>CC<br>FL<br>OF<br>TE<br>LII<br>OT<br>CC<br>CC<br>DISCH/<br>DI<br>DISCH/<br>DI<br>CC<br>CC<br>CC<br>CC<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>FLOW AT SUCTION<br>PRIGIN<br>REMPERATURE<br>INE LOSS<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | @ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>F                          | (2)<br>(1, 2)                            | 1000 / 1260<br>1260<br>0.9334<br>3,369<br>1000<br>460                                                                                                                        | 758 / 4<br>460<br>0.952<br>3,70<br>758                                                                                               | 9<br>9                                                                    |             |              |                |
| SUCTIC<br>SUCTIC<br>SL<br>CC<br>FL<br>OF<br>TE<br>LII<br>OT<br>CC<br>CC<br>DISCH/<br>DI<br>DISCH/<br>DI<br>CC<br>CC<br>CC<br>CC<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>FLOW AT SUCTION<br>PRIGIN<br>REMPERATURE<br>INE LOSS<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSIA<br>ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                       | (2)<br>(1, 2)                            | 1260<br>0.9334<br>3,369<br>1000<br>460                                                                                                                                       | 460<br>0.952<br>3,70<br>758                                                                                                          | )<br>21<br>9                                                              |             |              |                |
| SL<br>CC<br>FL<br>OF<br>TE<br>CC<br>DISCH/<br>DI<br>DI<br>CC<br>DISCH/<br>DI<br>DI<br>CC<br>CC<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SUCTION PRESSURE<br>COMPR. FACTOR @ SUCTION<br>FLOW AT SUCTION<br>PRIGIN<br>REMPERATURE<br>INE LOSS<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                               | (1, 2)                                   | 0.9334<br>3,369<br>1000<br>460                                                                                                                                               | 0.952<br>3,70:<br>758                                                                                                                | 21                                                                        |             |              |                |
| CCC<br>FL<br>OF<br>CCC<br>DISCH/J<br>DI<br>DISCH/J<br>DI<br>DI<br>CCC<br>CCC<br>CCMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMPR. FACTOR @ SUCTION<br>LOW AT SUCTION<br>PRIGIN<br>EMPERATURE<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>MARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                               | (1, 2)                                   | 0.9334<br>3,369<br>1000<br>460                                                                                                                                               | 0.952<br>3,70:<br>758                                                                                                                | 21                                                                        |             |              |                |
| FLU<br>OF<br>TE<br>LII<br>OT<br>OT<br>OT<br>DISCHJ<br>DI<br>DISCHJ<br>DI<br>DI<br>CC<br>CC<br>OT<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ELOW AT SUCTION<br>DRIGIN<br>EMPERATURE<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                                       | (1, 2)                                   | 3,369<br>1000<br>460                                                                                                                                                         | 3,70                                                                                                                                 | 9                                                                         |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DRIGIN<br>EMPERATURE<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                                       | (1, 2)                                   | 1000<br>460                                                                                                                                                                  | 758                                                                                                                                  | 5                                                                         |             |              |                |
| TE<br>LII<br>OT<br>CC<br>DISCH/<br>DI<br>DI<br>CC<br>CC<br>OT<br>CC<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EMPERATURE<br>INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA                                                               | (1, 2)                                   | 460                                                                                                                                                                          |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INE LOSS<br>DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>HEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI                                                             | (1, 2)                                   | 460                                                                                                                                                                          |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DTHER LOSSES<br>CONTINGENCY<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>JINE LOSS<br>CONTROL VALVE LOSS<br>DOTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PSI<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI                                                                    | (1, 2)                                   |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AARGE CONDITIONS<br>HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>JINE LOSS<br>EXCHANGER LOSS<br>HEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSIA<br>PSIA<br>F<br>PSIA<br>PSIA                                                                          |                                          |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HARGE CONDITIONS<br>DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>XCHANGER LOSS<br>HEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSIA<br>F<br>PSIA<br>PSI                                                                                   | (2)                                      |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             |              |                |
| DI<br>DI<br>CC<br>DE<br>LII<br>ED<br>HE<br>CC<br>CC<br>OT<br>CC<br>COMPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>HEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F<br>PSIA<br>PSI                                                                                           | (2)                                      |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             |              |                |
| DI<br>DI<br>CC<br>DE<br>LII<br>ED<br>HE<br>CC<br>CC<br>OT<br>CC<br>COMPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISCH. PRESSURE<br>DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>HEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F<br>PSIA<br>PSI                                                                                           | (2)                                      |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             |              |                |
| DI<br>CC<br>DE<br>E)<br>HE<br>CC<br>CO<br>TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DISCH. TEMPERATURE<br>COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F<br>PSIA<br>PSI                                                                                           | (2)                                      |                                                                                                                                                                              | 100                                                                                                                                  |                                                                           |             | 1            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMPR. FACTOR @ DISCH.<br>DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSIA<br>PSI                                                                                                | (2)                                      | /58                                                                                                                                                                          |                                                                                                                                      |                                                                           |             |              |                |
| DE<br>LII<br>E><br>HE<br>CO<br>OT<br>COMPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DELIVERY<br>INE LOSS<br>EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSI                                                                                                        |                                          | 0.0501                                                                                                                                                                       | 472                                                                                                                                  |                                                                           |             |              |                |
| LII<br>EX<br>HE<br>CC<br>OT<br>CC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INE LOSS<br>EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSI                                                                                                        |                                          | 0.9521                                                                                                                                                                       | 0.974                                                                                                                                | 4                                                                         |             |              |                |
| E)<br>HE<br>C(<br>O)<br>C(<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXCHANGER LOSS<br>IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            | (2)                                      | <u> </u>                                                                                                                                                                     |                                                                                                                                      |                                                                           |             |              |                |
| HE<br>CC<br>OT<br>CC<br>TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IEATER LOSS<br>CONTROL VALVE LOSS<br>DTHER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCI                                                                                                        | (2)                                      | ł                                                                                                                                                                            |                                                                                                                                      |                                                                           |             |              |                |
| CC<br>OT<br>CC<br>TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSI                                                                                                        | (2)                                      |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
| OT<br>CC<br>TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSI<br>PSI                                                                                                 | (2)                                      |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
| CC<br>TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | (2)                                      |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
| TC<br>COMPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ONTINCENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSI<br>PSI                                                                                                 | (2)                                      |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
| COMPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ONTINGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSI                                                                                                        | (2)                                      |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRESSION RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101                                                                                                        | (2)                                      | -                                                                                                                                                                            | -                                                                                                                                    |                                                                           |             |              |                |
| LIIIOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | (2)                                      | 0.75                                                                                                                                                                         | 0.75                                                                                                                                 | 5                                                                         |             |              |                |
| kW Gei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | enerated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            | (2)                                      | 9,341                                                                                                                                                                        | 5,37                                                                                                                                 |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            | (2)                                      | Steam                                                                                                                                                                        | Stear                                                                                                                                |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ER TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                          | Otcum                                                                                                                                                                        | oteu                                                                                                                                 |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMPOSITION: Vol. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                                          |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | H <sub>2</sub>                           |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              | -              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | CO <sub>2</sub>                          |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | CO                                       |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | H <sub>2</sub> 0                         | 100%                                                                                                                                                                         | 100%                                                                                                                                 | 6                                                                         |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | CH <sub>4</sub>                          |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | C <sub>2</sub> H <sub>2</sub>            |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | $C_2H_4$                                 |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | C <sub>2</sub> H <sub>6</sub>            |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | Benzene (C <sub>6</sub> H <sub>6</sub> ) |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | Tar (C <sub>10</sub> H <sub>8</sub> )    |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | $NH_3$                                   |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | N <sub>2</sub>                           |                                                                                                                                                                              |                                                                                                                                      |                                                                           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLUDES ALLOWANCE FOR SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                          |                                                                                                                                                                              | DESIGN                                                                                                                               |                                                                           | I           |              |                |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REVISI                                                                                                     | ONS                                      | PROC                                                                                                                                                                         | PROJ.                                                                                                                                | CLIENT                                                                    |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                          |                                                                                                                                                                              | 11.00.                                                                                                                               |                                                                           | JOB NO NREL | Contract ACO | 5-44027        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                          |                                                                                                                                                                              |                                                                                                                                      |                                                                           | DRAWING NO  | SUMMACE ACO- | 8-44027<br>REV |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NREL BIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MASS GAS                                                                                                   | IFICATION: High Pre                      | essure Syngas Case (G                                                                                                                                                        | TI Gasifier)                                                                                                                         |                                                                           |             |              |                |

| Site Location                             |                               |                              |                                     |                                 | e Specification            |                      | Date                          | Date                                      |                        |                       |
|-------------------------------------------|-------------------------------|------------------------------|-------------------------------------|---------------------------------|----------------------------|----------------------|-------------------------------|-------------------------------------------|------------------------|-----------------------|
|                                           |                               |                              |                                     | SERVICE OF H                    | IGH PRESSUR                | E UNIT S-100         |                               |                                           |                        |                       |
| Inlet Condition                           | IS                            |                              |                                     | Flow                            | Viscosity                  | Density              | Molecular<br>Weight<br>(Ave.) | Particle<br>Size (mm)<br>(Stokes'<br>MMD) | Volumetric<br>Flowrate | Temperature           |
|                                           |                               |                              |                                     | lb/h                            | lb/ft-sec                  | lb/ft3               | lb/mole                       |                                           | acfm                   | ۴                     |
| Gas<br>Particulate                        |                               |                              |                                     | 418,416.00<br>9,440.00          | 2.54E-05                   | 0.47800 62.40        | 21.5                          | 60                                        | 14,589.00              | 1,57                  |
| Particulate                               |                               |                              |                                     | 9,440.00                        |                            | 02.40                |                               | 00                                        |                        |                       |
| Gas Inlet Pressure                        |                               |                              |                                     | 460.00                          |                            |                      |                               |                                           |                        |                       |
| Gas Discharge Pres<br>Pressure Drop, Max  |                               |                              |                                     | 455.57                          |                            |                      |                               |                                           |                        |                       |
| Design/Test Pressu                        |                               | 1                            |                                     | 460.00                          |                            |                      |                               |                                           |                        |                       |
| Design Particulate                        |                               | 4                            |                                     | 50                              |                            |                      |                               |                                           |                        |                       |
| Design Separation                         | Efficiency at Cu              | itpoint (%)                  |                                     | 98                              |                            |                      |                               |                                           |                        |                       |
| Emery Design Calc                         | ulations Summa                | ary for S-10                 |                                     | e Only)                         |                            |                      |                               |                                           |                        |                       |
| Mechanical Sizing                         |                               | Inside<br>Diam (in)          | Uninsulated<br>Outside Diam<br>(in) |                                 | ID (in)                    | OD (in)              | Thickness (in)                |                                           |                        | Overall Heigl<br>(ft) |
|                                           | In<br>Out                     | 32<br>24                     |                                     | Upper Shell<br>Inner Tube       | 58<br>24                   | 60<br>26             |                               | ASME VIII                                 |                        | 2                     |
| -                                         | Bottom                        | 24                           | 34                                  | Cone                            | 24                         | 20                   |                               | ASME VIII                                 |                        |                       |
|                                           | <u>A-</u>                     |                              |                                     | Refractory                      | 50                         |                      | 4                             |                                           |                        |                       |
|                                           |                               | onent Dat<br>Solids          | a<br>Differential                   |                                 |                            | Cyclo                | ne Body Mate                  | rials of Cons                             | struction              |                       |
|                                           | Design<br>Temperature<br>(°F) | Removal<br>Flowrate<br>(CFM) | Design<br>Pressure<br>(psig)        | Туре                            | Upper S                    |                      | Lower Coni                    |                                           |                        | zzles                 |
| Rotary Air Lock<br>Level Indicator        | 1598<br>1598                  |                              |                                     |                                 | Inner Wall<br>Cercast™     | Outer Shell<br>MS    | Inner Wall<br>Cercast™        | Outer Shell<br>MS                         | Inner Wall<br>Cercast™ | Outer Shell<br>MS     |
| Level Indicator                           | 1590                          |                              |                                     |                                 | Inner Tube                 | MO                   | Cercasi                       | WI3                                       | Cercasi                | MG                    |
|                                           |                               |                              |                                     |                                 | MS                         |                      |                               |                                           |                        |                       |
| Vendor/Supplier S                         | Specifications                | and Price                    | Ouote                               |                                 |                            |                      |                               |                                           |                        |                       |
| Fisher-Klosterma                          |                               |                              | QUOLE                               |                                 |                            | (Refer to Ver        | I<br>Idor Communie            | cations and D                             | ata Sheets)            |                       |
| Ryan Bruner, Sale                         | es Manager                    |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| P.O. Box 11190<br>Lousville, KY           |                               |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| Ph: 502-572-4000                          |                               |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| Email: rab@fkinc.                         | .com                          |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| Recommendation:                           | Replace S-10                  | 0 and S-10                   | 1 with one (1)                      | cyclone only:                   |                            |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| One (1) cyclone (2<br>Design, fabricated, |                               |                              |                                     |                                 | Interior surface           | s to be lined v      | with 4" of Vesus              | ius Cercast                               | 3300 castable          | refractory            |
| 1-1/4" plate carbor                       |                               |                              | IT AONIE VC33                       |                                 | All welding per            |                      |                               |                                           |                        | Ciraciory             |
| Dust receiver secti                       |                               |                              |                                     |                                 | Exterior to be s           |                      |                               | high tempera                              | ature aluminun         | n paint               |
| Inlet transition to 2                     |                               | lange                        |                                     |                                 | Design pressur             |                      | 460                           |                                           |                        |                       |
| 30"Ø verticle gas<br>Approximate Overa    | Ŭ                             |                              | <mark>5 ft∅ x 25 ft</mark>          | tall                            | Design Tempe               | rature (F)           | 650                           |                                           |                        |                       |
|                                           |                               |                              |                                     |                                 |                            |                      |                               |                                           |                        |                       |
| Gas Conditions a                          |                               |                              |                                     |                                 | nditions at Inl            |                      |                               |                                           |                        |                       |
| Volume per cylon<br>Density (Ibm/ft3)     | e (acfm)                      | 14,589<br>0,478              |                                     | Specific Grav<br>Dust Loading   |                            | <u>1.000</u><br>31.3 |                               |                                           |                        |                       |
| Viscosity (lbm/ft-                        | sec)                          | 2.54E-05                     |                                     |                                 |                            | 01.0                 |                               |                                           |                        |                       |
|                                           |                               | 00.05                        |                                     |                                 | analasi Ci I               | - Faulty of Et       |                               |                                           |                        |                       |
| Inlet Velocity (ft/s<br>No load pres. dro |                               | 68.39<br>106.35              |                                     | Fraction Effic<br>Dia.(microns) | iencies: Stoke<br>Weight % |                      | nciency                       |                                           |                        |                       |
| Full load pres. Dr                        |                               | 85.46                        |                                     | 2.5                             | 6.11                       |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 3                               | 15.75                      |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | <u>3.5</u><br>4                 | <u>21.47</u><br>27.4       |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 4.5                             | 33.3                       |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 5                               |                            |                      |                               |                                           |                        | ļ                     |
|                                           |                               |                              |                                     | 6.5                             | 44.49                      |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 7.5                             | 58.71                      |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | <u>8.5</u><br>9.5               | 66.32<br>72.57             |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 9.5                             | 83.53                      |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 16                              | 89.99                      |                      |                               |                                           |                        |                       |
|                                           |                               |                              |                                     | 23<br>33                        | 95.08<br>97.84             |                      |                               |                                           |                        |                       |
| Price (200                                | 5 U.S.\$)                     | \$ 3                         | 355,000.00                          |                                 | 57.84                      |                      |                               |                                           |                        |                       |
| Remarks: Inlet an                         |                               |                              |                                     | her-Klostermar                  | quote for these            | four cylones.        | Estimated co                  | st of splitter a                          | and collection is      | \$ \$25,000.          |
| Refer to supplier d                       |                               |                              |                                     |                                 |                            |                      |                               |                                           |                        | ,                     |

| Site Location                            |                                      |                                                      |                                                   |                                 | e Specification                     |               | Date                          |                                           |                        | Rev.        |
|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------|-------------------------------------|---------------|-------------------------------|-------------------------------------------|------------------------|-------------|
|                                          |                                      |                                                      |                                                   | SERVICE OF H                    | IIGH PRESSUR                        | E UNIT S-102  |                               |                                           |                        |             |
| nlet Conditior                           | าร                                   |                                                      |                                                   | Flow                            | Viscosity                           | Density       | Molecular<br>Weight<br>(Ave.) | Particle<br>Size (mm)<br>(Stokes'<br>MMD) | Volumetric<br>Flowrate | Temperatur  |
|                                          |                                      |                                                      |                                                   | lb/h                            | lb/ft-sec                           | lb/ft3        | lb/mole                       |                                           | acfm                   | ۴           |
| Gas<br>Particulate                       |                                      |                                                      |                                                   | 434,982.00<br>9,440.00          |                                     | 0.38390 62.40 | 27.6                          | 60                                        | 18,883.00              | 1,5         |
| uniculate                                |                                      |                                                      |                                                   | 0,440.00                        |                                     | 02.40         |                               |                                           |                        |             |
| Bas Inlet Pressure<br>Bas Discharge Pre  |                                      |                                                      |                                                   | 460.00<br>455.57                |                                     |               |                               |                                           |                        |             |
| Pressure Drop, Ma                        |                                      | )                                                    |                                                   | 120.00                          |                                     |               |                               |                                           |                        |             |
| Design/Test Pressu<br>Design Particulate |                                      |                                                      |                                                   | 460.00                          |                                     |               |                               |                                           |                        |             |
| Design Separation                        |                                      | utpoint (%)                                          |                                                   | 98                              |                                     |               |                               |                                           |                        |             |
| Emery Design Calc                        | ulations Summ                        | any for S 10'                                        | ) (for Doforono                                   | o Only)                         |                                     |               |                               |                                           |                        |             |
| Mechanical Sizing                        |                                      | Inside<br>Diam (in)                                  | Uninsulated<br>Outside Diam<br>(in)               |                                 | ID (in)                             | OD (in)       | Thickness (in)                | Designation                               | Height (In)            | Height (ft) |
| Connections Size                         | In                                   | 32.0769                                              |                                                   | Upper Shell                     |                                     |               | 1                             | ASME VIII                                 | 160                    | 1:          |
| & Rating                                 | Out<br>Bottom                        |                                                      |                                                   | Inner Tube<br>Cone              | 32.10                               |               | 4                             | ASME VIII                                 |                        |             |
|                                          |                                      |                                                      |                                                   | Refractory                      |                                     |               | 4                             |                                           |                        |             |
|                                          | Com<br>Design<br>Temperature<br>(°F) | ponent Dat<br>Solids<br>Removal<br>Flowrate<br>(CFM) | a<br>Differential<br>Design<br>Pressure<br>(psig) | Туре                            | Upper S                             |               | ne Body Mate<br>Lower Coni    |                                           |                        | ozzles      |
| Rotary Air Lock                          | 1598                                 | 20.4                                                 | 15                                                |                                 | Inner Wall                          | Outer Shell   | Inner Wall                    | Outer Shell                               |                        | Outer Shell |
| evel Indicator                           | 1598                                 |                                                      |                                                   |                                 | Cercast™<br>Inner Tube              | MS            | Cercast™                      | MS                                        | Cercast™               | MS          |
|                                          |                                      |                                                      |                                                   |                                 | MS                                  |               |                               |                                           |                        |             |
| /endor/Supplier                          | Specifications                       | and Price                                            | Quote                                             |                                 |                                     |               |                               |                                           |                        |             |
| isher-Klosterma                          | in, Inc                              |                                                      |                                                   |                                 |                                     | (Refer to Ven | dor Communi                   | cations and D                             | ata Sheets)            |             |
| Ryan Bruner, Sal<br>P.O. Box 11190       | es Manager                           |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| _ousville, KY                            |                                      |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| Ph: 502-572-4000<br>Email: rab@fkinc     |                                      |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| Recommendation:                          | [                                    |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| One (1) cyclone (                        |                                      |                                                      |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| Design, fabricated                       |                                      |                                                      | n ASME vesse                                      |                                 | Interior surface<br>All welding per |               |                               |                                           |                        | refractory  |
| Dust receiver sect                       | ion with flanged                     | d discharge                                          |                                                   |                                 | Exterior to be s                    | andblasted an | nd painted with               |                                           |                        | n paint     |
| nlet transition to 2                     | -                                    | flange                                               |                                                   |                                 | Design pressur<br>Design Temper     |               | 460<br>650                    |                                           |                        |             |
| 30"Ø verticle gas<br>Approximate Over    |                                      |                                                      | <mark>5-1/2 ft∅ x 2</mark>                        | 7 1/2 ft tall                   | Design Temper                       | ature (F)     | 000                           |                                           |                        |             |
|                                          |                                      |                                                      |                                                   |                                 | l                                   |               |                               |                                           |                        |             |
| Gas Conditions a<br>/olume per cylor     |                                      | 18,883                                               |                                                   | Particulate Co<br>Specific Grav | onditions at Inle                   | et:<br>1.000  |                               |                                           |                        |             |
| Density (lbm/ft3)                        |                                      | 0.3839                                               |                                                   | Dust Loading                    |                                     | 6.97          |                               |                                           |                        |             |
| Viscosity (Ibm/ft-                       | sec)                                 | 2.78E-05                                             |                                                   |                                 |                                     |               |                               |                                           |                        |             |
| nlet Velocity (ft/s                      |                                      | 69.94                                                |                                                   |                                 | iencies: Stoke                      |               | ficiency                      |                                           |                        |             |
| No load pres. dro<br>Full load pres. Dr  |                                      | 83.63<br>72.52                                       |                                                   | Dia.(microns)<br>3              | Weight %<br>7.64                    |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 4                               | 16.37                               |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | <u>4.5</u><br>5                 |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 5.5                             | 31.53                               |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | <u>6</u><br>7                   |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 8                               | 54.2                                |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 9<br>10                         |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 11                              | 72.7                                |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 14<br>18                        |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 25                              | 94.31                               |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 35                              |                                     |               |                               |                                           |                        |             |
|                                          |                                      |                                                      |                                                   | 80                              | 99.72                               |               |                               |                                           |                        |             |
| Price (200<br>Remarks: Inlet an          |                                      |                                                      | 10,000.00                                         |                                 |                                     |               |                               |                                           |                        |             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        | e Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | Date                                             |                                           |                           | Rev.        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | SERVICE OF H                                                                                                                                                                                                                                                           | IIGH PRESSUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E UNIT S-103                                                                            |                                                  |                                           |                           |             |
| nlet Conditior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | าร                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Flow                                                                                                                                                                                                                                                                   | Specific Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Density                                                                                 | Molecular<br>Weight<br>(Ave.)                    | Particle<br>Size (mm)<br>(Stokes'<br>MMD) | Volumetric<br>Flowrate    | Temperatur  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | lb/h                                                                                                                                                                                                                                                                   | BTU/lb°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lb/ft3                                                                                  | lb/mole                                          |                                           | acfm                      | ۴F          |
| Bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 434,982.00                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.41421                                                                                 | 20.14507                                         |                                           | 16,835.82                 | 1576        |
| Particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 9,440.00                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.00                                                                                   |                                                  | 60                                        |                           |             |
| as Inlet Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (noio)                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 460.00                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| as Discharge Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 455.57                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| ressure Drop, Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | 120.00                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| esign/Test Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | 460.00                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| esign Particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 50                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| Design Separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Efficiency at Cu                                                                                                                                                                                           | utpoint (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | 98                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| mery Design Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ulations Summ                                                                                                                                                                                              | ary for S-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 (for Reference<br>Uninsulated              | e Only)                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| Mechanical Sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            | Inside<br>Diam (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outside Diam                                 |                                                                                                                                                                                                                                                                        | ID (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OD (in)                                                                                 | Thickness (in)                                   | Designation                               | Height (In)               | Height (ft) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (in)                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                                                                       | ļ                                                |                                           | 100                       |             |
| Connections Size<br>& Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In<br>Out                                                                                                                                                                                                  | 32.0769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.10                                        | Upper Shell<br>Inner Tube                                                                                                                                                                                                                                              | 32.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 1                                                | ASME VIII                                 | 160                       | 1:          |
| a naung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bottom                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Cone                                                                                                                                                                                                                                                                   | 32.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                  | ASME VIII                                 |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            | Refractory                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | 4                                                |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Com                                                                                                                                                                                                        | ponent Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cyclor                                                                                  | ne Body Mate                                     | rials of Cons                             | struction                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Design<br>Temperature<br>(°F)                                                                                                                                                                              | Solids<br>Removal<br>Flowrate<br>(CFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Differential<br>Design<br>Pressure<br>(psig) | Туре                                                                                                                                                                                                                                                                   | Upper S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ection                                                                                  | Lower Coni                                       | cal section                               | No                        | zzles       |
| Rotary Air Lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1598                                                                                                                                                                                                       | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                           |                                                                                                                                                                                                                                                                        | Inner Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Outer Shell                                                                             | Inner Wall                                       | Outer Shell                               | Inner Wall                | Outer Shell |
| evel Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1598                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        | Cercast™<br>Inner Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS                                                                                      | Cercast™                                         | MS                                        | Cercast™                  | MS          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        | MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                  |                                           |                           |             |
| /endor/Supplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specifications                                                                                                                                                                                             | and Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quote                                        |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| isher-Klosterma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in, Inc                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Refer to Ven                                                                           | dor Communio                                     | cations and D                             | ata Sheets)               |             |
| Ryan Bruner, Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es Manager                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| P.O. Box 11190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| ousville, KY<br>h: 502-572-4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aut 242                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| Email: rab@fkinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
| Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | e.                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                  |                                           |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a ta la a lla a dua                                                                     |                                                  |                                           |                           | etractory   |
| Design, fabricated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , tested, and st                                                                                                                                                                                           | amped as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                        | Interior surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                  |                                           |                           |             |
| Design, fabricated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , tested, and st                                                                                                                                                                                           | amped as a<br>ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                        | All welding per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FKI Class 3 p                                                                           | reocedures wit                                   | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , tested, and st<br>n steel construction with flanged                                                                                                                                                      | amped as a<br>ction<br>d discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                                                                                                                                                                                                        | All welding per<br>Exterior to be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FKI Class 3 p<br>andblasted ar                                                          | reocedures wit<br>nd painted with                | h 100% pene                               | etration                  |             |
| Design, fabricated<br>I-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , tested, and st<br>n steel construction with flanged<br>4"Ø gas inlet t                                                                                                                                   | amped as a<br>ction<br>d discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                                                                                                                                                                                                        | All welding per<br>Exterior to be s<br>Design pressur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FKI Class 3 p<br>andblasted ar<br>e (psig)                                              | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Design, fabricated<br>I-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>80"Ø verticle gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , tested, and st<br>n steel construction with flanged<br>4"∅ gas inlet t<br>outlet flange                                                                                                                  | amped as a<br>ction<br>d discharge<br>flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 |                                                                                                                                                                                                                                                                        | All welding per<br>Exterior to be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FKI Class 3 p<br>andblasted ar<br>e (psig)                                              | reocedures wit<br>nd painted with                | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00"Ø verticle gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , tested, and st<br>n steel construction with flanged<br>4"∅ gas inlet t<br>outlet flange                                                                                                                  | amped as a<br>ction<br>d discharge<br>flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                                                                                                                                                                                                                                        | All welding per<br>Exterior to be s<br>Design pressur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FKI Class 3 p<br>andblasted ar<br>e (psig)                                              | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Design, fabricated<br>1-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>800"Ø verticle gas<br>Approximate Over<br>Bas Conditions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , tested, and st<br>in steel construc-<br>ion with flanged<br>4"∅ gas inlet f<br>outlet flange<br>all Dimensions<br>t Inlet:                                                                               | amped as a<br>ction<br>d discharge<br>flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | el<br>tall                                                                                                                                                                                                                                                             | All welding per<br>Exterior to be s<br>Design pressur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)                                | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Just receiver sect<br>nlet transition to 2<br>80" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>/olume per cylor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , tested, and st<br>n steel construc-<br>ion with flange<br>4"Ø gas inlet f<br>outlet flange<br>all Dimensions<br>t Inlet:<br>ne (acfm)                                                                    | amped as a<br>ction<br>d discharge<br>flange<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n ASME vesse                                 | el<br>tall<br>Particulate Co<br>Specific Grav                                                                                                                                                                                                                          | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Design Temper<br>onditions at Inle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000                | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Dne (1) cyclone (<br>Design, fabricated<br>1-1/4" plate carbor<br>Dust receiver sect<br>inlet transition to 2<br>30 <sup>™</sup> Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Volume per cylor<br>Density (lbm/14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , tested, and st<br>a steel construc-<br>ion with flanged<br>4"∅ gas inlet flange<br>all Dimensions<br>it Inlet:<br>he (acfm)                                                                              | amped as a<br>ction<br>d discharge<br>flange<br>8,223<br>0.5679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n ASME vesse                                 | el<br>tall<br>Particulate Co                                                                                                                                                                                                                                           | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Design Temper<br>onditions at Inle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)                                | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>folume per cylor<br>Density (Ibm/ft3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , tested, and st<br>a steel construc-<br>ion with flanged<br>4"∅ gas inlet flange<br>all Dimensions<br>it Inlet:<br>he (acfm)                                                                              | amped as a<br>ction<br>d discharge<br>flange<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n ASME vesse                                 | el<br>tall<br>Particulate Co<br>Specific Grav                                                                                                                                                                                                                          | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Design Temper<br>onditions at Inle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000                | reocedures wit<br>ad painted with<br>460         | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>80" Ø verticle gas<br>Approximate Over<br>Sas Conditions a<br>/olume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , tested, and st<br>s steel construc-<br>ion with flanged<br>4" Ø gas inlet f<br>outlet flange<br>all Dimensions<br>it Inlet:<br>te (acfm)<br>sec)                                                         | amped as a<br>stion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2,87E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n ASME vesse                                 | al<br>tall<br>Particulate Co<br>Specific Grav<br>Dust Loading                                                                                                                                                                                                          | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nelet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Bas Conditions a<br>folume per cylor<br>Density (Ibm/ft3)<br>fiscosity (Ibm/ft3)<br>nelet Velocity (ft/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , tested, and st<br>s steel construc-<br>ion with flanged<br>all Dimensions<br>t I Inlet:<br>te (acfm)<br>sec)<br>sec)                                                                                     | amped as a<br>ction<br>d discharge<br>flange<br>8,223<br>0.5679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n ASME vesse                                 | al<br>tall<br>Particulate Co<br>Specific Grav<br>Dust Loading                                                                                                                                                                                                          | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>flange<br>8,223<br>0.5679<br>2.87E-05<br>68.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n ASME vesse                                 | al<br>Particulate Co<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5                                                                                                                                                                        | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Infe<br>ity<br>(Grains/acf)<br>iencies: Stoke:<br>Weight %<br>6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5                                                                                                                                                                | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>inditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Just receiver sect<br>nlet transition to 2<br>80" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>/olume per cylor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>tall<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4                                                                                                                                                    | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Co<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4.5                                                                                                                                                    | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Inditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4<br>4.5<br>5<br>5<br>5<br>5<br>5                                                                                                                      | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Co<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4.5                                                                                                                                                    | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4.5<br>5.5<br>5.5                                                                                                                                       | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Craction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4.5<br>5.5<br>5.5<br>6<br>6<br>7<br>8                                                                                                                  | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | all<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4<br>4.5<br>5.5<br>6<br>7<br>8<br>9<br>9                                                                                                               | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96<br>65.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4.4<br>5.5<br>5.5<br>6<br>6<br>7<br>8<br>9<br>9<br>10                                                                                                        | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Design Temper<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96<br>65.59<br>71.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4<br>4.5<br>5<br>5.5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>13                                                                                     | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96<br>65.59<br>71.14<br>82.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>all<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4<br>5.5<br>5.5<br>6<br>7<br>8<br>9<br>10<br>13<br>17                                                                                            | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>onditions at Inle<br>ity<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96<br>65.59<br>71.14<br>82.8<br>89.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Approximate Over<br>Gas Conditions a<br>Colume per cylor<br>Density (Ibm/ft3)<br>/iscosity (Ibm/ft3)<br>No load pres. dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4<br>4.5<br>5<br>5.5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>13                                                                                     | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Inditions at Inle<br>ity<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf) | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>nlet transition to 2<br>00" Ø verticle gas<br>Approximate Over<br>Gas Conditions a<br>Golume per cylor<br>Density (Ibm/ft3)<br>Viscosity (Ibm/ft3)<br>Niscosity (Ibm/ft4)<br>Niscosity (Ibm/ft4)<br>Niscosity (Ibm/ft4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , tested, and st<br>s steel construc-<br>ion with flangee<br>all Dimensions<br>tt Inlet:<br>te (acfm)<br>sec)<br>sec)<br>p (in.W.C.)                                                                       | amped as a<br>tion<br>d discharge<br>lange<br>8,223<br>0,5679<br>2.87E-05<br>68.53<br>103.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n ASME vesse                                 | al<br>Particulate Co<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>5<br>5.5<br>4<br>4.5<br>5<br>5.5<br>6<br>7<br>8<br>9<br>10<br>13<br>17<br>24                                                                                 | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Inditions at Inle<br>ity<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf) | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Design, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>het transition to 2<br>0"∅ verticle gas<br>pproximate Over<br>Gas Conditions a<br>folume per cylor<br>Density (Ibm/fta)<br>fiscosity (Ibm/fta)<br>fisco | , tested, and st<br>steel construc-<br>ion with flanged<br>and the stress of the stress<br>outlet flange<br>all Dimensions<br>t Inlet:<br>te (acfm)<br>sec)<br>p (in.W.C.)<br>op (in.W.C.)<br>op (in.W.C.) | amped as a stition distribution of the second secon | A SME vessi<br>4 ft⊘ x 18 ft                 | el<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4.4<br>4.5<br>5.5<br>6<br>7<br>8<br>9<br>9<br>100<br>133<br>17<br>24<br>34                                                                                   | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Inditions at Inle<br>ity<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf) | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>rature (F)<br>et:<br>1.000<br>16          | reocedures with<br>ad painted with<br>460<br>650 | h 100% pene                               | etration                  |             |
| Pesign, fabricated<br>-1/4" plate carbor<br>Dust receiver sect<br>net transition to 2<br>0"∅ verticle gas<br>spproximate Over<br>Gas Conditions a<br>folume per cylor<br>Pensity (Ibm/fta)<br>fiscosity (Ibm/fta)<br>fol load pres. Dr<br>iuli load pres. Dr<br>Price (200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , tested, and st<br>steel construction<br>ion with flangeed<br>4"∅ gas inlet 1<br>outlet flange<br>all Dimensions<br>t Inlet:<br>te (acfm)<br>sec)<br>pp (in.W.C.)<br>op (in. W.C.)<br>5 U.S.\$)           | amped as a attion discharge discharg | n ASME vesso<br>4 ft⊘ x 18 ft<br>            | el<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4.4<br>5.5<br>5.5<br>4.4<br>4.5<br>5.5<br>6.6<br>7<br>8<br>9<br>10<br>13<br>17<br>24<br>34<br>89<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>Design Temper<br>(Grains/acf)<br>iencies: Stoke<br>Weight %<br>6.71<br>15.89<br>21.16<br>26.55<br>31.91<br>37.11<br>42.08<br>51.14<br>58.96<br>65.59<br>71.14<br>88.89.12<br>94.37<br>97.41<br>99.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>ature (F)<br>1.000<br>16<br>s Equiv. % Ef | reocedures with 460 460 650 ficiency             | h 100% pene<br>high tempera<br>           | tration<br>ature aluminum |             |
| lesign, fabricated<br>-1/4" plate carbor<br>Just receiver sect<br>let transition to 2<br>0"∅ verticle gas<br>pproximate Over<br>Gas Conditions a<br>folume per cylor<br>pensity (Ibm/fta)<br>fiscosity (Ibm/fta)<br>niet Velocity (ft/s<br>to load pres. Dr<br>ull load pres. Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tested, and st<br>steel construc-<br>ion with flanged<br>all Dimensions<br>tit niet:<br>ne (acfm)<br>sec)<br>p (in.W.C.)<br>op (in.W.C.)<br>5 U.S.\$)<br>d outlet manifo                                   | amped as a attion discharge lange discharge lange discharge lange discharge lange discharge lange discharge discharg | n ASME vessi<br>4 ft∅ x 18 ft<br>            | el<br>rail<br>Particulate Cc<br>Specific Grav<br>Dust Loading<br>Fraction Effic<br>Dia.(microns)<br>2.5<br>3.5<br>4<br>4.55<br>55<br>55<br>66<br>77<br>8<br>9<br>9<br>10<br>13<br>177<br>24<br>4<br>89<br>her-Klostermar                                               | All welding per<br>Exterior to be s<br>Design pressur<br>Design Temper<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/acf)<br>(Grains/ | FKI Class 3 p<br>andblasted ar<br>e (psig)<br>ature (F)<br>1.000<br>16<br>s Equiv. % Ef | reocedures with 460 460 650 ficiency             | h 100% pene<br>high tempera<br>           | tration<br>ature aluminum |             |

## DATA SHEETS, LOW PRESSURE DESIGN

|                                                                                                                                                                                                                                                                                                                               |                                                                               | Н                                                                                                                                 | eat Exchar                                         | nger Speci                                                                                                                                                                                         | fication shee                                                                             | et                                                       |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                                                                   |                                                    |                                                                                                                                                                                                    | Job No.                                                                                   |                                                          |                               |
| Customer                                                                                                                                                                                                                                                                                                                      | NREL                                                                          |                                                                                                                                   |                                                    |                                                                                                                                                                                                    | Ref No.                                                                                   | LP Syngas Ca                                             | se                            |
| Address                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                                                                                   |                                                    |                                                                                                                                                                                                    | Proposal No.                                                                              |                                                          |                               |
| Plant Location                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                   |                                                    |                                                                                                                                                                                                    | Date                                                                                      |                                                          | Rev. 0                        |
| Service of Unit                                                                                                                                                                                                                                                                                                               | Tar Reformer S                                                                | SG Cooling/St                                                                                                                     | eam Generato                                       | r                                                                                                                                                                                                  | Item No                                                                                   | H-100 Tar Ref                                            | Cooler                        |
| Size 72x 168                                                                                                                                                                                                                                                                                                                  |                                                                               | Туре                                                                                                                              | <b>BEM - HORZ</b>                                  | Connected in                                                                                                                                                                                       | 2 Parallel                                                                                |                                                          | 1 Series                      |
| Surf/Unit (Eff)                                                                                                                                                                                                                                                                                                               | 10708 ft <sup>2</sup>                                                         | Shells/Unit                                                                                                                       | 2                                                  | Surface/Shel                                                                                                                                                                                       | I (Effective)                                                                             | 5354 ft <sup>2</sup>                                     |                               |
|                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                                                                   | PERFORMAN                                          | NCE OF ONE                                                                                                                                                                                         | <u>ÙNIT</u>                                                                               |                                                          |                               |
| Fluid Allocation                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                   |                                                    | Shellside                                                                                                                                                                                          |                                                                                           |                                                          | Tubeside                      |
| Fluid Name                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                                                   | Syn                                                | gas fr Tar Ref                                                                                                                                                                                     | ormer                                                                                     | F                                                        | Preheated BFW                 |
| Total Fluid Entering                                                                                                                                                                                                                                                                                                          | q                                                                             | lb/hr                                                                                                                             | ,                                                  | 329,000                                                                                                                                                                                            |                                                                                           |                                                          | 251,800                       |
| Vapor                                                                                                                                                                                                                                                                                                                         | <u></u>                                                                       |                                                                                                                                   |                                                    | 329,000                                                                                                                                                                                            |                                                                                           |                                                          | 0                             |
| Liquid                                                                                                                                                                                                                                                                                                                        |                                                                               |                                                                                                                                   |                                                    | 0                                                                                                                                                                                                  |                                                                                           |                                                          | 251,800                       |
| Steam                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                                                                                                   |                                                    | -                                                                                                                                                                                                  |                                                                                           |                                                          |                               |
| Noncondensa                                                                                                                                                                                                                                                                                                                   | ble                                                                           |                                                                                                                                   |                                                    |                                                                                                                                                                                                    |                                                                                           |                                                          |                               |
| Fluid Vaporized or                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                                   |                                                    | 0                                                                                                                                                                                                  |                                                                                           |                                                          | 251.800                       |
| Liquid Density (In/                                                                                                                                                                                                                                                                                                           |                                                                               | lb/ft <sup>3</sup>                                                                                                                |                                                    | 0.000/0.000                                                                                                                                                                                        | )                                                                                         | 1                                                        | 46.533/45.419                 |
| Liquid Viscosity                                                                                                                                                                                                                                                                                                              |                                                                               | cP                                                                                                                                |                                                    | 0.000                                                                                                                                                                                              |                                                                                           | <u> </u>                                                 | 0.092                         |
| Liquid Specific Hea                                                                                                                                                                                                                                                                                                           | at                                                                            | Btu/lb-F                                                                                                                          |                                                    | 0.000                                                                                                                                                                                              |                                                                                           | <del> </del>                                             | 1.636                         |
| Liquid Thermal Co                                                                                                                                                                                                                                                                                                             | nductivity                                                                    | Btu/hr-ft-F                                                                                                                       |                                                    | 0.000                                                                                                                                                                                              |                                                                                           | <u> </u>                                                 | 0.321                         |
| Vapor Mol. Weight                                                                                                                                                                                                                                                                                                             |                                                                               | Dtu/III-It-F                                                                                                                      |                                                    | 16.74/16.74                                                                                                                                                                                        |                                                                                           |                                                          | 0.0/18.02                     |
| Vapor Viscosity                                                                                                                                                                                                                                                                                                               | (III/Out)                                                                     | cP                                                                                                                                |                                                    | 0.0280                                                                                                                                                                                             | •                                                                                         |                                                          | 0.0200                        |
| Vapor Specific Hea                                                                                                                                                                                                                                                                                                            | <u>_</u>                                                                      | Btu/lb-F                                                                                                                          |                                                    | 0.0280                                                                                                                                                                                             |                                                                                           |                                                          | 0.0200                        |
|                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                                                                   |                                                    |                                                                                                                                                                                                    |                                                                                           |                                                          |                               |
| Vapor Thermal Co                                                                                                                                                                                                                                                                                                              | ,                                                                             | Btu/hr-ft-F                                                                                                                       |                                                    | 0.078                                                                                                                                                                                              | 0                                                                                         |                                                          | 0.025                         |
| Temperature (In/O                                                                                                                                                                                                                                                                                                             |                                                                               | °F                                                                                                                                |                                                    | 1,598.0/624.                                                                                                                                                                                       | 0                                                                                         |                                                          | 546.5/575.0                   |
| Operating Pressure                                                                                                                                                                                                                                                                                                            | <u>e</u>                                                                      | psi(Abs)                                                                                                                          |                                                    | 29.900                                                                                                                                                                                             |                                                                                           |                                                          | 1,285.000                     |
| Velocity                                                                                                                                                                                                                                                                                                                      |                                                                               | ft/sec                                                                                                                            |                                                    | 280.241                                                                                                                                                                                            |                                                                                           |                                                          | 7.682                         |
| Pressure Drop (All                                                                                                                                                                                                                                                                                                            |                                                                               | psi                                                                                                                               |                                                    | 5.000/3.920                                                                                                                                                                                        |                                                                                           |                                                          | 5.000/0.977                   |
| Fouling resistance                                                                                                                                                                                                                                                                                                            |                                                                               | hr-ft <sup>2</sup> -F/Btu                                                                                                         |                                                    | 0.001000                                                                                                                                                                                           |                                                                                           |                                                          | 0.005000                      |
| Heat Exchanged                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                   |                                                    | mtd (corr)                                                                                                                                                                                         | 318.656 °F                                                                                |                                                          |                               |
| Transfer Rate, Ser                                                                                                                                                                                                                                                                                                            | vice                                                                          | 48.9                                                                                                                              |                                                    | Clean                                                                                                                                                                                              | 80.8 Btu/hr-ft                                                                            | ²-F                                                      |                               |
|                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                                                                   | CONSTRUCT                                          |                                                                                                                                                                                                    |                                                                                           |                                                          |                               |
|                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                                                                   | lside                                              | Tubes                                                                                                                                                                                              |                                                                                           |                                                          | Sketch                        |
| Docian/Toot Droc                                                                                                                                                                                                                                                                                                              |                                                                               | 45/                                                                                                                               |                                                    | 1 250                                                                                                                                                                                              | <u>ر</u>                                                                                  |                                                          |                               |
|                                                                                                                                                                                                                                                                                                                               |                                                                               | 45/                                                                                                                               |                                                    | 1,350                                                                                                                                                                                              |                                                                                           |                                                          |                               |
| Design Temp.                                                                                                                                                                                                                                                                                                                  | °F                                                                            | 45/<br>1700                                                                                                                       |                                                    | 62                                                                                                                                                                                                 |                                                                                           |                                                          |                               |
| Design Temp.<br>No. Passes per Sh                                                                                                                                                                                                                                                                                             | °F                                                                            | 1700<br>1                                                                                                                         |                                                    | 62                                                                                                                                                                                                 | 5<br>6                                                                                    | -                                                        |                               |
| Design Temp.<br>No. Passes per Sh                                                                                                                                                                                                                                                                                             | °F                                                                            | 1700<br>1<br>0.0625                                                                                                               |                                                    | 62                                                                                                                                                                                                 | 5<br>6                                                                                    |                                                          |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.                                                                                                                                                                                                                                                                         | °F<br>nell                                                                    | 1700<br>1                                                                                                                         | 0                                                  | 62                                                                                                                                                                                                 | 5<br>6                                                                                    | •                                                        |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections                                                                                                                                                                                                                                                          | °F<br>nell<br>in                                                              | 1700<br>1<br>0.0625                                                                                                               |                                                    | 62<br>0.062                                                                                                                                                                                        | 5<br>6                                                                                    |                                                          |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &                                                                                                                                                                                                                                                | °F<br>nell<br>in<br>In                                                        | 1700<br>1<br>0.0625<br>1-33.0                                                                                                     |                                                    | 62<br>0.062<br>6.0                                                                                                                                                                                 | 5<br>6                                                                                    |                                                          |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &                                                                                                                                                                                                                                                | °F<br>iell<br>in<br>In<br>Out                                                 | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0                                                                                           |                                                    | 62<br>0.062<br>6.0<br>10.0                                                                                                                                                                         | 5<br>6                                                                                    |                                                          |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating                                                                                                                                                                                                                                      | °F<br>iell<br>in<br>In<br>Out                                                 | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0                                                                                           |                                                    | 62<br>0.062<br>6.0<br>10.0                                                                                                                                                                         | 5<br>6                                                                                    | ft                                                       | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No                                                                                                                                                                                                                           | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664                               | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                                                  | 62<br>0.062<br>6.0<br>10.0<br>0                                                                                                                                                                    | 5<br>6<br>5                                                                               | ft                                                       | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube No<br>Tube Type                                                                                                                                                                                                   | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664                               | 1700<br>1<br>0.0625<br>1-33.<br>1-29.<br>0<br>OD 1.000 in                                                                         | 0                                                  | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065                                                                                                                                                       | 5<br>6<br>5                                                                               | ft                                                       | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube No<br>Tube Type<br>Shell                                                                                                                                                                                          | °F<br>nell<br>In<br>Out<br>Intermediate<br>1664                               | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                                                  | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material                                                                                                                                           | 5<br>6<br>5<br>Length 14.00                                                               |                                                          | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet                                                                                                                                                                     | °F<br>nell<br>In<br>Out<br>Intermediate<br>1664<br>F                          | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                                                  | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover                                                                                                                            | 5<br>6<br>5<br>Length 14.00<br>er                                                         |                                                          | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationa                                                                                                                                                          | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary                  | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                                                  | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov                                                                                                             | 5<br>6<br>5<br>Length 14.00<br>er<br>loating                                              |                                                          | Pitch 1.25000 / 30.0°         |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov                                                                                                                                      | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary                  | 1700<br>1<br>0.0625<br>1-33.0<br>1-29.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | D in                                               | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov<br>Tubesheet-Fl                                                                                             | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection                                | INT                                                      | Pitch 1.25000 / 30.0°<br>73.7 |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                     | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary                  | 1700<br>1<br>0.0625<br>1-33.<br>1-29.0<br>0<br>0<br>0<br>0<br>1.000 in<br>2<br>LAIN<br>1.D 72.00 OE                               | D in                                               | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov<br>Tubesheet-Fl<br>Impingement<br>%Cut 34.7 (/                                                              | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection                                | INT                                                      |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station.<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                    | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary                  | 1700<br>1<br>0.0625<br>1-33.<br>1-29.0<br>0<br>0<br>0<br>0<br>1.000 in<br>2<br>LAIN<br>1.D 72.00 OE                               | D in<br>SEG                                        | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov<br>Tubesheet-Fl<br>Impingement                                                                              | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)                       | INT                                                      |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station:<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                   | °F<br>nell<br>In<br>Out<br>Intermediate<br>1664<br>F<br>t<br>ary<br>er        | 1700<br>1<br>0.0625<br>1-33.<br>1-29.0<br>0<br>0<br>0<br>0<br>1.000 in<br>2<br>LAIN<br>1.D 72.00 OE                               | D in                                               | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 ( <i>i</i><br>Seal Type                                         | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type               | INT                                                      |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran                                                                                    | °F<br>nell<br>In<br>Out<br>Intermediate<br>1664<br>F<br>t<br>ary<br>er        | 1700<br>1<br>0.0625<br>1-33.<br>1-29.0<br>0<br>0<br>0<br>0<br>1.000 in<br>2<br>LAIN<br>1.D 72.00 OE                               | D in<br>SEG                                        | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cov<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 ( <i>i</i><br>Seal Type<br>Tube-Tubesh                          | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type               | INT                                                      |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stations<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint                                           | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary<br>rer           | 1700<br>1<br>0.0625<br>1-33.<br>1-29.<br>0<br>OD 1.000 in<br>PLAIN<br>1.D 72.00 OE<br>Type VERT-                                  | D in<br>SEG<br>U-Bend                              | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 (/<br>Seal Type<br>Tube-Tubesh<br>Type                        | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type<br>neet Joint | INT<br>YES<br>Spacing-cc                                 | 73.7                          |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationa<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl                     | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary<br>rer           | 1700<br>1<br>0.0625<br>1-33.<br>1-29.0<br>0<br>0<br>0<br>0<br>1.000 in<br>2<br>LAIN<br>1.D 72.00 OE                               | D in<br>SEG<br>U-Bend<br>Bundle Entrar             | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 (/<br>Seal Type<br>Tube-Tubesh<br>Type                        | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type               | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  |                               |
| Design Temp.<br>No. Passes per Sh<br>Corrosion Allow.<br>Connections<br>Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationä<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl<br>Gasket-Shellside | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary<br>rer<br>gement | 1700<br>1<br>0.0625<br>1-33.<br>1-29.<br>0<br>OD 1.000 in<br>PLAIN<br>1.D 72.00 OE<br>Type VERT-<br>2,611                         | D in<br>SEG<br>U-Bend<br>Bundle Entrar<br>Tubeside | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 (/<br>Seal Type<br>Tube-Tubesh<br>Type                        | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type<br>neet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head | 73.7<br>4,375                 |
| Size &<br>Rating<br>Tube No<br>Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles-Coss<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arran<br>Expansion Joint<br>Rho-V2 Inlet Nozzl                                                                                               | °F<br>nell<br>in<br>Out<br>Intermediate<br>1664<br>F<br>tary<br>rer<br>gement | 1700<br>1<br>0.0625<br>1-33.<br>1-29.<br>0<br>OD 1.000 in<br>PLAIN<br>1.D 72.00 OE<br>Type VERT-<br>2,611                         | D in<br>SEG<br>U-Bend<br>Bundle Entrar             | 62<br>0.062<br>6.0<br>10.0<br>0<br>Thk 0.065<br>Material<br>Shell Cover<br>Channel Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 34.7 (/<br>Seal Type<br>Tube-Tubesh<br>Type<br>ce | 5<br>6<br>5<br>Length 14.00<br>er<br>loating<br>Protection<br>Area)<br>Type<br>neet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit                  | 73.7                          |

|                                                                                                                                                                           |                       | Н                   | eat Exchang                                                | er Specif                                     | ication shee              | et                                         |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|------------------------------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------------|-----------------------|
|                                                                                                                                                                           |                       |                     |                                                            |                                               | Job No.                   |                                            |                       |
| Customer                                                                                                                                                                  | NREL                  |                     |                                                            |                                               | Ref No.                   | LP Syngas Ca                               | se                    |
| Address                                                                                                                                                                   |                       |                     |                                                            |                                               | Proposal No.              |                                            |                       |
| Plant Location                                                                                                                                                            |                       |                     |                                                            |                                               | Date                      |                                            | Rev. 0                |
| Service of Unit                                                                                                                                                           | Tar Reformer          | SG Cooling/BF       | W Preheat                                                  |                                               | Item No                   | H-101 Tar Ref                              | Cooler                |
| Size 57x 168                                                                                                                                                              |                       | Туре                | BEM - HORZ CO                                              | onnected in                                   | 2 Parallel                |                                            | 1 Series              |
| Surf/Unit (Eff)                                                                                                                                                           | 13334 ft <sup>2</sup> | Shells/Unit         | 2 St                                                       | urface/Shell                                  | (Effective)               | 6667 ft <sup>2</sup>                       |                       |
|                                                                                                                                                                           |                       |                     | PERFORMANC                                                 |                                               |                           |                                            |                       |
| Fluid Allocation                                                                                                                                                          |                       |                     |                                                            | Shellside                                     |                           |                                            | Tubeside              |
| Fluid Name                                                                                                                                                                |                       |                     | Synga                                                      | s fr Tar Refo                                 | rmer                      |                                            | BFW                   |
| Total Fluid Enterin                                                                                                                                                       | a                     | lb/hr               | Oyligu                                                     | 329,000                                       |                           |                                            | 142,594               |
| Vapor                                                                                                                                                                     | 9                     | 10/11               |                                                            | 329,000                                       |                           |                                            | 0                     |
| Liquid                                                                                                                                                                    |                       |                     |                                                            | 0                                             |                           |                                            | 142.594               |
| Steam                                                                                                                                                                     |                       |                     |                                                            | 0                                             |                           |                                            | 142,594               |
|                                                                                                                                                                           | - h l e               |                     |                                                            |                                               |                           |                                            |                       |
| Noncondensa                                                                                                                                                               |                       |                     |                                                            |                                               |                           |                                            | 0                     |
| Fluid Vaporized or                                                                                                                                                        |                       |                     |                                                            | 0                                             |                           |                                            | 0                     |
| Liquid Density (In/                                                                                                                                                       | Out)                  | lb/ft <sup>3</sup>  | (                                                          | 0.000/0.000                                   |                           |                                            | 58.509/46.533         |
| Liquid Viscosity                                                                                                                                                          |                       | cP                  |                                                            | 0.000                                         |                           |                                            | 0.139                 |
| Liquid Specific He                                                                                                                                                        |                       | Btu/lb-F            |                                                            | 0.000                                         |                           |                                            | 1.340                 |
| Liquid Thermal Co                                                                                                                                                         | ,                     | Btu/hr-ft-F         |                                                            | 0.000                                         |                           |                                            | 0.359                 |
| Vapor Mol. Weigh                                                                                                                                                          | t (In/Out)            |                     |                                                            | 16.74/16.74                                   |                           |                                            | 0.0/0.0               |
| Vapor Viscosity                                                                                                                                                           | · · ·                 | cP                  |                                                            | 0.0189                                        |                           |                                            | 0.0000                |
| Vapor Specific He                                                                                                                                                         | at                    | Btu/lb-F            |                                                            | 0.475                                         |                           |                                            | 0.000                 |
| Vapor Thermal Co                                                                                                                                                          |                       | Btu/hr-ft-F         |                                                            | 0.049                                         |                           |                                            | 0.000                 |
| Temperature (In/C                                                                                                                                                         |                       | °F                  | F                                                          | 524.0/300.0                                   |                           |                                            | 240.0/546.5           |
| Operating Pressur                                                                                                                                                         |                       | psi(Abs)            |                                                            | 26.900                                        |                           |                                            | 1,295.000             |
| Velocity                                                                                                                                                                  | 0                     | ft/sec              |                                                            | 234.572                                       |                           |                                            | 1,200.000             |
| Pressure Drop (All                                                                                                                                                        | ow/Colo)              | psi                 |                                                            | 5.000/4.568                                   |                           |                                            | 5.000/0.513           |
|                                                                                                                                                                           |                       | hr-ft²-F/Btu        |                                                            | 0.001000                                      |                           |                                            | 0.002000              |
| Fouling resistance                                                                                                                                                        |                       |                     |                                                            |                                               | 00 077 °F                 |                                            | 0.002000              |
| Heat Exchanged                                                                                                                                                            |                       |                     |                                                            | td (corr)                                     | 68.377 °F                 | -                                          |                       |
| Transfer Rate, Sei                                                                                                                                                        | vice                  | 55.5                |                                                            | ean                                           | 68.5 Btu/hr-ft            | <b>-</b> F                                 |                       |
|                                                                                                                                                                           |                       | <u> </u>            | CONSTRUCTIO                                                |                                               |                           | -                                          |                       |
|                                                                                                                                                                           |                       |                     | lside                                                      | Tubesi                                        |                           |                                            | Sketch                |
| Design/Test Pres.                                                                                                                                                         |                       | 35/                 |                                                            | 1,360/                                        |                           |                                            |                       |
| Design Temp.                                                                                                                                                              | °F                    | 675                 |                                                            | 600                                           |                           |                                            |                       |
| No. Passes per Sl                                                                                                                                                         | nell                  | 1                   |                                                            | 1                                             |                           |                                            |                       |
| Corrosion Allow.                                                                                                                                                          | in                    | 0.0625              |                                                            | 0.0625                                        |                           |                                            |                       |
| Connections                                                                                                                                                               | In                    | 1-29.               | C                                                          | 3.0                                           |                           |                                            |                       |
| Size &                                                                                                                                                                    | Out                   | 1-29.               | )                                                          | 4.0                                           |                           |                                            |                       |
| Rating                                                                                                                                                                    | Intermediate          | 0                   | -                                                          | 0                                             |                           |                                            |                       |
|                                                                                                                                                                           |                       | Ţ                   |                                                            |                                               |                           |                                            |                       |
| Tube No                                                                                                                                                                   | 2688                  | OD 0.750 in         | Tł                                                         | nk 0.065                                      | Length 14.00              | ft                                         | Pitch 0.93750 / 30.0° |
| Tube Type                                                                                                                                                                 |                       | PLAIN               |                                                            | aterial                                       | _011gt1 14.00             | ••                                         |                       |
| Shell                                                                                                                                                                     | 1                     | I.D 57.00 OE        |                                                            | nell Cover                                    |                           | INT                                        |                       |
|                                                                                                                                                                           | ł                     | 1.0 JI.00 OL        |                                                            | hannel Cover                                  | r                         | IINT                                       |                       |
| Channel or Ponno                                                                                                                                                          | ι                     |                     | -                                                          |                                               |                           |                                            |                       |
| Channel or Bonne                                                                                                                                                          | 0.00                  |                     | 11                                                         | ubesheet-Flo                                  | <u> </u>                  | YES                                        |                       |
| Tubesheet-Station                                                                                                                                                         |                       |                     | 1                                                          |                                               |                           | TES .                                      |                       |
| Tubesheet-Station<br>Floating Head Cov                                                                                                                                    |                       | T                   |                                                            | npingement                                    |                           |                                            | 75 5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                   |                       | Type VERT-          | SEG %                                                      | Cut 37.1 (A                                   |                           | Spacing-cc                                 | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   |                       | Type VERT-          | SEG %<br>Se                                                |                                               | rea)                      |                                            | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | ver                   | Type VERT-          | SEG %<br>Se<br>U-Bend                                      | Cut 37.1 (A<br>eal Type                       | rea)<br>Type              |                                            | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar                                                             | ver                   | Type VERT-          | SEG %<br>Se<br>U-Bend                                      | Cut 37.1 (A                                   | rea)<br>Type              |                                            | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | ver                   |                     | SEG %<br>Se<br>U-Bend<br>Tu<br>Ty                          | Cut 37.1 (A<br>eal Type<br>ube-Tubeshe<br>/pe | rea)<br>Type<br>eet Joint |                                            | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar                                                             | ngement               | Type VERT-<br>2,563 | SEG %<br>Se<br>U-Bend<br>Tu                                | Cut 37.1 (A<br>eal Type<br>ube-Tubeshe<br>/pe | rea)<br>Type              |                                            | 75.5                  |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint                                          | ngement               |                     | SEG %<br>Se<br>U-Bend<br>Tu<br>Ty                          | Cut 37.1 (A<br>eal Type<br>ube-Tubeshe<br>/pe | rea)<br>Type<br>eet Joint | Spacing-cc                                 | 3,741                 |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside | ngement<br>le         | 2,563               | SEG %<br>Se<br>U-Bend<br>Tu<br>Ty<br>Bundle Entrance       | Cut 37.1 (A<br>eal Type<br>ube-Tubeshe<br>/pe | rea)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit                  | 3,741                 |
| Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | ngement               | 2,563               | SEG %<br>St<br>U-Bend<br>Tu<br>Bundle Entrance<br>Tubeside | Cut 37.1 (A<br>eal Type<br>ube-Tubeshe<br>/pe | rea)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit<br>Floating Head | 3,741                 |

|                                   |                | Н                  | eat Exchar     | nger Specif    | ication shee   | et             |                       |
|-----------------------------------|----------------|--------------------|----------------|----------------|----------------|----------------|-----------------------|
|                                   |                |                    |                |                | Job No.        |                |                       |
| Customer                          | NREL           |                    |                |                | Ref No.        | LP Syngas Ca   | ISE                   |
| Address                           |                |                    |                |                | Proposal No.   |                |                       |
| Plant Location                    |                |                    |                |                | Date           |                | Rev. 0                |
| Service of Unit                   | Tar Reformer S | G Cooler/Dea       | aerator FW Pre | eheat          | Item No        | H-102 Tar Ref  | Cooler                |
| Size 75x 168                      |                | Туре               | BEM - HORZ     |                |                |                | 1 Series              |
| Surf/Unit (Eff)                   | 5621 ft²       |                    |                | Surface/Shell  |                | 5621 ft²       |                       |
|                                   |                |                    | PERFORMAN      | ICE OF ONE     | UNIT           |                |                       |
| -luid Allocation                  |                |                    |                | Shellside      |                |                | Tubeside              |
| Iuid Name                         |                |                    |                | Syngas fr H-10 | )1             | Dea            | erator Feed Water     |
| Fotal Fluid Enterin               | g              | lb/hr              |                | 329,000        |                |                | 257,000               |
| Vapor                             | •              |                    |                | 329,000        |                |                | 0                     |
| Liquid                            |                |                    |                | 0              |                |                | 257,000               |
| Steam                             |                |                    |                |                |                |                |                       |
| Noncondensa                       | able           |                    |                |                |                |                |                       |
| luid Vaporized or                 |                |                    |                | 0              |                | İ              | 0                     |
| iquid Density (In/                |                | lb/ft <sup>3</sup> |                | 0.000/0.000    |                | 1              | 59.592/58.402         |
| iquid Viscosity                   | -7             | cP                 |                | 0.000          |                | 1              | 0.273                 |
| Liquid Specific He                | at             | Btu/lb-F           |                | 0.000          |                | 1              | 1.054                 |
| iquid Thermal Co                  |                | Btu/hr-ft-F        |                | 0.000          |                |                | 0.392                 |
| Vapor Mol. Weight                 |                |                    |                | 16.74/16.74    |                |                | 0.0/0.0               |
| Vapor Viscosity                   | (III Out)      | сP                 |                | 0.0156         |                |                | 0.0000                |
| Vapor Specific He                 | at             | Btu/lb-F           |                | 0.461          |                |                | 0.000                 |
| Vapor Thermal Co                  |                | Btu/hr-ft-F        |                | 0.040          |                |                | 0.000                 |
| Temperature (In/C                 |                | °F                 |                | 300.0/225.0    |                |                | 195.0/237.0           |
| Operating Pressur                 |                | psi(Abs)           |                | 23.880         |                |                | 30.000                |
| elocity                           | 6              | ft/sec             |                | 168.427        |                |                | 30.000                |
| Pressure Drop (All                | ow/Calc)       | psi                |                | 5.000/2.790    |                |                | 5.000/0.489           |
| Fouling resistance                |                | hr-ft²-F/Btu       |                | 0.001000       |                |                | 0.002000              |
| Heat Exchanged                    |                |                    |                | mtd (corr)     | 44.478 °F      |                | 0.002000              |
| Transfer Rate, Ser                |                | 45.4               |                | Clean          | 58.8 Btu/hr-ft | 2 🗆            |                       |
| Transier Rate, Sei                | VICE           | 40.4               | CONSTRUCT      |                |                | -F             |                       |
|                                   |                | Shel               |                | Tubes          | -              | 1              | Sketch                |
| Design/Test Pres.                 | nei            | 35/                | ISIUE          | 45             |                | 4              | Sketch                |
| Design/Test Ples.<br>Design Temp. | °F             | 350                |                | 280            |                | 4              |                       |
| No. Passes per Sh                 |                | 350                |                |                | J<br>1         | 4              |                       |
| Corrosion Allow.                  | in             | 0.0625             |                | 0.0625         |                |                |                       |
| Connections                       | In             | 1-41.0             | <u> </u>       | 6.0            | )              | 4              |                       |
| Size &                            |                | 1-41.0             | -              |                |                | 4              |                       |
|                                   | Out            | 0                  | J              | 6.0<br>0       |                | 4              |                       |
| Rating                            | Intermediate   | 0                  |                | 0              |                |                |                       |
| Tube No                           | 2096           | OD 0.750 in        |                | Thk 0.065      | Longth 11.00   | 4              | Pitch 1.25000 / 30.0° |
| Tube No                           |                | PLAIN              |                | Material       | Length 14.00   | π              | FIGH 1.20000 / 30.0   |
| Shell                             | F              | I.D 75.00 OD       | lin            | Shell Cover    |                | INT            |                       |
|                                   | ł              | 1.0 13.00 UL       | / 111          | Channel Cover  | or .           | INT            |                       |
| Channel or Bonne                  |                |                    |                |                |                |                |                       |
| Tubesheet-Station                 |                |                    |                | Tubesheet-Fle  |                | YES            |                       |
| Floating Head Cov                 |                |                    |                | Impingement    |                |                | 91.0                  |
| Baffles Cross                     |                | Type VERT-         | 369            | %Cut 41.0 (A   | (ied)          | Spacing-cc     | 81.9                  |
| Baffles-Long                      |                |                    | II Bond        | Seal Type      | Turno          |                |                       |
| Supports-Tube                     |                |                    | U-Bend         | Tube Tube 1    | Type           |                |                       |
| Bypass Seal Arran                 | igement        |                    |                | Tube-Tubesh    | eet Joint      |                |                       |
| Expansion Joint                   | 1-             | 0.001              |                | Туре           | 4.074          | Descaller 5 11 | 0.455                 |
| Rho-V2 Inlet Nozz                 | le             | 2,021              | Bundle Entrar  | nce            | 1,271          | Bundle Exit    | 2,155                 |
| Gasket-Shellside                  |                |                    | Tubeside       |                |                | Floating Head  |                       |
| Code Requiremen                   | t              | ASME Sectio        |                |                |                |                | R                     |
| Weight/Shell                      |                |                    | Filled with Wa | ter            |                | Bundle         |                       |
| Remarks:                          |                |                    |                | -              |                |                |                       |

|                          |                     | Н                         | eat Exchai     | nger Speci      | fication shee  | et                   |                       |
|--------------------------|---------------------|---------------------------|----------------|-----------------|----------------|----------------------|-----------------------|
|                          |                     |                           |                |                 | Job No.        |                      |                       |
| Customer N               | IREL                |                           |                |                 | Ref No.        | LP Syngas Ca         | ise                   |
| Address                  |                     |                           |                |                 | Proposal No.   |                      |                       |
| Plant Location           |                     |                           |                |                 | Date           |                      | Rev. 0                |
| Service of Unit F        | lue Gas Cool        | er/Steam Sup              | erheater       |                 | Item No        | H-103                |                       |
| Size 90x 168             |                     |                           |                | Connected in    | 1 Paralle      |                      | 1 Series              |
|                          | 770 ft <sup>2</sup> | 71                        | 1              | Surface/Shell   |                | 5770 ft <sup>2</sup> |                       |
|                          |                     |                           | PERFORMA       | NCE OF ONE      | UNIT           |                      |                       |
| Fluid Allocation         |                     | I                         |                | Shellside       |                |                      | Tubeside              |
| Fluid Name               |                     |                           | Flu            | e Gas fr. Tar F | ?eaen          | Su                   | perheated Steam       |
| Total Fluid Entering     |                     | lb/hr                     | 110            | 248,400         | logen          | 00                   | 251,800               |
| Vapor                    |                     | 10/111                    |                | 248,400         |                |                      | 251,800               |
| Liquid                   |                     |                           |                | 0               |                |                      | 0                     |
| Steam                    |                     |                           |                | 0               |                |                      | 0                     |
|                          |                     |                           |                |                 |                |                      |                       |
| Noncondensab             | -                   |                           | l              | 0               |                | ł                    | 0                     |
| Fluid Vaporized or C     |                     | 11- 1612                  | l              | 0               |                | 1                    | 0                     |
| Liquid Density (In/Ou    | it)                 | lb/ft <sup>3</sup>        | <b> </b>       | 0.000/0.000     |                |                      | 0.000/0.000           |
| Liquid Viscosity         |                     | cP                        | <b></b>        | 0.000           |                |                      | 0.000                 |
| Liquid Specific Heat     |                     | Btu/lb-F                  | L              | 0.000           |                |                      | 0.000                 |
| _iquid Thermal Conc      | ,                   | Btu/hr-ft-F               |                | 0.000           |                |                      | 0.000                 |
| √apor Mol. Weight (I     | n/Out)              |                           |                | 27.57/27.57     |                |                      | 18.02/18.02           |
| Vapor Viscosity          |                     | cP                        |                | 0.0405          |                |                      | 0.0254                |
| Vapor Specific Heat      |                     | Btu/lb-F                  |                | 0.313           |                |                      | 0.678                 |
| Vapor Thermal Conc       | luctivity           | Btu/hr-ft-F               |                | 0.040           |                |                      | 0.036                 |
| Temperature (In/Out      |                     | °F                        |                | 1,798.0/935.    | 0              |                      | 575.0/1,000.0         |
| Operating Pressure       | /                   | psi(Abs)                  |                | 14.700          |                |                      | 1,275.000             |
| Velocity                 |                     | ft/sec                    |                | 215.255         |                |                      | 5.762                 |
| Pressure Drop (Allow     | v/Calc)             | psi                       |                | 2.000/1.727     |                |                      | 5.000/0.629           |
| Fouling resistance       |                     | hr-ft <sup>2</sup> -F/Btu |                | 0.001000        |                |                      | 0.005000              |
| Heat Exchanged 6         | 7 260 000 Bt        |                           | <u> </u>       | mtd (corr)      | 550.248 °F     |                      | 0.000000              |
| Transfer Rate, Servi     |                     | 21.2                      |                | Clean           | 25.0 Btu/hr-ft | 2 ⊑                  |                       |
|                          |                     | 21.2                      | CONSTRUC       | TION OF ONE     |                | 1                    |                       |
|                          |                     | Shal                      | lside          | Tubes           |                | 1                    | Sketch                |
| Design/Test Dress        | oi                  | 30/                       | Isiue          | 1,350           |                |                      | Skelch                |
| Design/Test Pres. p      |                     | ÷ •.                      |                |                 |                |                      |                       |
| Design Temp. °           |                     | 1900                      |                | 110             | -              |                      |                       |
| No. Passes per Shel      |                     | 1                         |                |                 | 1              |                      |                       |
| Corrosion Allow. ir      |                     | 0.0625                    |                | 0.062           | 5              |                      |                       |
| Connections Ir           |                     | 1-57.0                    |                | 12.0            |                |                      |                       |
|                          | Dut                 | 1-53.0                    | <u>)</u>       | 15.0            |                |                      |                       |
| Rating Ir                | ntermediate         | 0                         |                | 0               |                |                      |                       |
|                          |                     |                           |                |                 |                |                      |                       |
| Tube No 2                | 475                 | OD 0.750 in               |                | Thk 0.065       | Length 14.00   | ft                   | Pitch 1.25000 / 45.0° |
| Tube Type                | F                   | PLAIN                     |                | Material        |                |                      |                       |
| Shell                    |                     | I.D 90.00 OD              | ) in           | Shell Cover     |                | INT                  |                       |
| Channel or Bonnet        |                     |                           |                | Channel Cov     | er             |                      |                       |
| Fubesheet-Stationar      | V                   |                           |                | Tubesheet-Fl    | oating         |                      |                       |
| -loating Head Cover      |                     |                           |                | Impingement     | 0              | YES                  |                       |
| Baffles Cross            |                     | Type VERT-                | SEG            | %Cut 38.4 (A    |                | Spacing-cc           | 71.2                  |
| Baffles-Long             |                     |                           |                | Seal Type       |                |                      |                       |
| Supports-Tube            |                     |                           | U-Bend         |                 | Туре           |                      |                       |
| Bypass Seal Arrange      | ement               |                           | C Dona         | Tube-Tubesh     |                |                      |                       |
| Expansion Joint          | Shight              |                           |                |                 |                |                      |                       |
| Rho-V2 Inlet Nozzle      |                     | 006                       | Bundle Entrai  | Туре            | 2 220          | Pundle Evit          | 1 020                 |
|                          |                     | 906                       |                | nce             | 2,230          | Bundle Exit          | 1,030                 |
| Gasket-Shellside         |                     | A ON 45 O                 | Tubeside       |                 |                | Floating Head        |                       |
| Code Requirement         |                     | ASME Sectio               | n 8, Divsion 1 |                 |                | TEMA Class           | R                     |
|                          |                     |                           |                |                 |                |                      |                       |
| Veight/Shell<br>Remarks: |                     |                           | Filled with Wa | ater            |                | Bundle               |                       |

|                     |                      | Н                         | leat Exchai    | nger Specif   | ication shee  | et            |                       |
|---------------------|----------------------|---------------------------|----------------|---------------|---------------|---------------|-----------------------|
|                     |                      |                           |                |               | Job No.       |               |                       |
| Customer            | NREL                 |                           |                |               | Ref No.       | LP Syngas Ca  | ise                   |
| Address             |                      |                           |                |               | Proposal No.  |               |                       |
| Plant Location      |                      |                           |                |               | Date          |               | Rev. 0                |
| Service of Unit     | NREL Biomass         | 6                         |                |               | Item No       | H-200 Quech   | Water Cooler          |
| Size 71x 120        |                      | Туре                      | BEM - HORZ     | Connected in  |               |               | 1 Series              |
| Surf/Unit (Eff)     | 9232 ft <sup>2</sup> | Shells/Unit               | 1              | Surface/Shell | (Effective)   | 9232 ft²      |                       |
|                     |                      |                           | PERFORMA       | NCE OF ONE    | UNIT          |               |                       |
| Fluid Allocation    |                      |                           |                | Shellside     |               |               | Tubeside              |
| Fluid Name          |                      |                           |                | Quench Wate   | er            |               | Cooling Water         |
| Total Fluid Enterin | g                    | lb/hr                     |                | 1,189,000     |               |               | 1,107,500             |
| Vapor               |                      |                           |                | 0             |               |               | 0                     |
| Liquid              |                      |                           |                | 1,189,000     |               |               | 1,107,500             |
| Steam               |                      |                           |                |               |               |               |                       |
| Noncondensa         | able                 |                           |                |               |               |               |                       |
| Fluid Vaporized or  | Condensed            |                           |                | 0             |               |               | 0                     |
| Liquid Density (In/ |                      | lb/ft <sup>3</sup>        |                | 61.342/61.76  | 5             |               | 62.470/62.000         |
| Liquid Viscosity    |                      | cP                        |                | 0.578         |               |               | 0.744                 |
| Liquid Specific Hea | at                   | Btu/lb-F                  |                | 1.003         |               |               | 0.998                 |
| Liquid Thermal Co   |                      | Btu/hr-ft-F               |                | 0.366         |               |               | 0.361                 |
| Vapor Mol. Weight   | (In/Out)             |                           |                | 0.0/0.0       |               | 1             | 0.0/0.0               |
| Vapor Viscosity     |                      | cP                        |                | 0.0000        |               |               | 0.0000                |
| Vapor Specific Hea  | at                   | Btu/lb-F                  |                | 0.000         |               |               | 0.000                 |
| Vapor Thermal Co    | nductivity           | Btu/hr-ft-F               |                | 0.000         |               |               | 0.000                 |
| Temperature (In/O   | ut)                  | °F                        |                | 128.0/110.0   |               |               | 80.0/100.0            |
| Operating Pressur   | e                    | psi(Abs)                  |                | 26.000        |               |               | 20.000                |
| Velocity            |                      | ft/sec                    |                | 1.924         |               |               | -                     |
| Pressure Drop (All  | ow/Calc)             | psi                       |                | 5.000/1.722   |               |               | 5.000/0.549           |
| Fouling resistance  | ,                    | hr-ft <sup>2</sup> -F/Btu |                | 0.001000      |               |               | 0.002000              |
| Heat Exchanged      | 22,150,000 Bt        |                           |                | mtd (corr)    | 28.989 °F     |               |                       |
| Transfer Rate, Ser  | vice                 | 82.8                      |                | Clean         | 115.4 Btu/hr- | ft²-F         |                       |
| ,                   |                      |                           | CONSTRUCT      | TION OF ONE   | SHELL         |               |                       |
|                     |                      | She                       | lside          | Tubes         | ide           |               | Sketch                |
| Design/Test Pres.   | psi                  | 45/                       |                | 45            | 5/            | 1             |                       |
| Design Temp.        | °F                   | 215                       |                | 15            | 0             | 1             |                       |
| No. Passes per Sh   | nell                 | 1                         |                |               | 1             |               |                       |
| Corrosion Allow.    | in                   | 0.0625                    |                | 0.062         | 5             |               |                       |
| Connections         | In                   | 1-13.                     | 0              | 12.0          |               | 1             |                       |
| Size &              | Out                  | 1-13.                     | 0              | 12.0          |               |               |                       |
| Rating              | Intermediate         | 0                         |                | 0             |               |               |                       |
| 0                   | •                    |                           |                |               |               |               |                       |
| Tube No             | 4860                 | OD 0.750 in               |                | Thk 0.065     | Length 10.00  | ft            | Pitch 0.93750 / 30.0° |
| Tube Type           | F                    | PLAIN                     |                | Material      | Ţ             |               |                       |
| Shell               |                      | I.D 71.00 OE              | ) in           | Shell Cover   |               | INT           |                       |
| Channel or Bonnel   | t                    |                           |                | Channel Cove  | er            |               |                       |
| Tubesheet-Station   | ary                  |                           |                | Tubesheet-Fl  | oating        |               |                       |
| Floating Head Cov   |                      |                           |                | Impingement   |               | YES           |                       |
| Baffles Cross       |                      | Type VERT-                | SEG            | %Cut 9.2 (Ar  |               | Spacing-cc    | 14.1                  |
| Baffles-Long        |                      | 2.                        |                | Seal Type     | ,             |               |                       |
| Supports-Tube       |                      |                           | U-Bend         | <i></i>       | Туре          |               |                       |
| Bypass Seal Arran   | gement               |                           | -              | Tube-Tubesh   |               |               |                       |
| Expansion Joint     | U                    |                           |                | Туре          | · · · ·       |               |                       |
| Rho-V2 Inlet Nozz   | e                    | 2,093                     | Bundle Entra   |               | 913           | Bundle Exit   | 2,867                 |
| Gasket-Shellside    | -                    | _,                        | Tubeside       |               | 5.0           | Floating Head |                       |
| Code Requirement    | t                    | ASME Section              | n 8, Divsion 1 |               |               | TEMA Class    |                       |
| Weight/Shell        |                      |                           | Filled with Wa | ater          |               | Bundle        |                       |
| Remarks:            |                      |                           |                |               |               |               |                       |
| tomanto.            |                      |                           |                |               |               |               |                       |

|                                      |               | Н                  | eat Exchar                       | nger Specif   | ication shee   | et                    |                       |
|--------------------------------------|---------------|--------------------|----------------------------------|---------------|----------------|-----------------------|-----------------------|
| -                                    |               |                    |                                  |               | Job No.        |                       |                       |
|                                      | NREL          |                    |                                  |               | Ref No.        | LP Syngas Ca          | se                    |
| Address                              |               |                    |                                  |               | Proposal No.   |                       |                       |
| Plant Location                       |               |                    |                                  |               | Date           |                       | Rev. 0                |
|                                      | Compressor In |                    |                                  |               | Item No        | H-300A                |                       |
| Size 82x 144                         |               | Туре               |                                  | Connected in  | 2 Parallel     |                       | 1 Series              |
| Surf/Unit (Eff)                      | 28471 ft²     | Shells/Unit        | 2                                | Surface/Shell | (Effective)    | 14235 ft <sup>2</sup> |                       |
|                                      |               |                    | PERFORMA                         | NCE OF ONE    | UNIT           |                       |                       |
| luid Allocation                      |               |                    |                                  | Shellside     |                |                       | Tubeside              |
| luid Name                            |               |                    |                                  | Cooling wate  | •              | 1:                    | st Stage Syngas       |
| otal Fluid Entering                  | j             | lb/hr              |                                  | 6,100,000     |                |                       | 317,400               |
| Vapor                                |               |                    |                                  | 0             |                |                       | 317,400               |
| Liquid                               |               |                    |                                  | 6,100,000     |                |                       | 0                     |
| Steam                                |               |                    |                                  |               |                |                       |                       |
| Noncondensa                          | ble           |                    |                                  |               |                |                       |                       |
| luid Vaporized or                    | Condensed     |                    |                                  | 0             |                | 1                     | 85,698                |
| iquid Density (In/C                  |               | lb/ft <sup>3</sup> |                                  | 62.000/62.000 | )              | Ì                     | 0.000/62.020          |
| iquid Viscosity                      |               | cP                 |                                  | 0.762         |                | İ                     | 0.432                 |
| iquid Specific Hea                   | t             | Btu/lb-F           |                                  | 1.000         |                | 1                     | 1.035                 |
| iquid Thermal Cor                    |               | Btu/hr-ft-F        |                                  | 0.363         |                | 1                     | 0.380                 |
| apor Mol. Weight                     |               |                    |                                  | 0.0/0.0       |                | 1                     | 16.7/16.7             |
| apor Viscosity                       | (             | сP                 |                                  | 0.0000        |                |                       | 0.0157                |
| apor Specific Hea                    | t             | Btu/lb-F           |                                  | 0.000         |                | ł                     | 0.460                 |
| apor Thermal Cor                     |               | Btu/hr-ft-F        |                                  | 0.000         |                |                       | 0.043                 |
| emperature (In/Ou                    |               | °F                 |                                  | 80.0/100.0    |                |                       | 344.0/110.0           |
| perating Pressure                    |               | psi(Abs)           |                                  | 65.000        |                |                       | 35.000                |
| elocity                              |               | ft/sec             |                                  | 3.977         |                | ł                     | 39.521                |
| Pressure Drop (Allo                  | w/Cala)       | psi                |                                  | 5.000/4.889   |                | ł                     | 5.000/0.642           |
| ouling resistance                    | w/Calc)       | hr-ft²-F/Btu       |                                  | 0.002000      |                |                       | 0.001000              |
| leat Exchanged                       | 100 000 F     |                    |                                  |               | 80.189 °F      |                       | 0.001000              |
|                                      |               |                    |                                  | mtd (corr)    | 64.5 Btu/hr-ft | 2 -                   |                       |
| ransfer Rate, Serv                   | lice          | 53.4               | CONCTRUCT                        | Clean         |                | F                     |                       |
|                                      |               | Chal               | Iside                            |               | -              | ı –                   | Cleater               |
|                                      |               |                    | Isiae                            | Tubes         |                | 4                     | Sketch                |
| Design/Test Pres.                    |               | 80/                |                                  | 50            |                | 4                     |                       |
| Design Temp.                         | °F            | 150                |                                  | 400           |                | 4                     |                       |
| lo. Passes per She                   |               | 1                  |                                  | ,             |                | 4                     |                       |
|                                      | in            | 0.0625             |                                  | 0.0625        | )              |                       |                       |
|                                      | In            | 1-23.0             |                                  | 25.0          |                |                       |                       |
|                                      | Out           | 1-23.0             | 0                                | 23.0          |                |                       |                       |
| lating                               | Intermediate  | 0                  |                                  | 0             |                |                       |                       |
|                                      |               |                    |                                  |               |                | -                     |                       |
|                                      | 6298          | OD 0.750 in        |                                  | Thk 0.065     | Length 12.00   | ft                    | Pitch 0.93750 / 30.0° |
| ube Type                             | F             |                    |                                  | Material      |                |                       |                       |
| shell                                |               | I.D 82.00 OE       | ) in                             | Shell Cover   |                | INT                   |                       |
| hannel or Bonnet                     |               |                    |                                  | Channel Cove  |                |                       |                       |
| ubesheet-Stationa                    |               |                    |                                  | Tubesheet-Flo |                |                       |                       |
| loating Head Cove                    | er 🗌          |                    |                                  | Impingement   |                | YES                   |                       |
| affles Cross                         |               | Type VERT-         | SEG                              | %Cut 12.4 (A  | rea)           | Spacing-cc            | 24.0                  |
| affles-Long                          |               |                    |                                  | Seal Type     |                |                       |                       |
| upports-Tube                         |               |                    | U-Bend                           |               | Туре           |                       |                       |
| ypass Seal Arrang                    | jement        |                    |                                  | Tube-Tubesh   | eet Joint      |                       |                       |
| xpansion Joint                       |               |                    |                                  | Туре          |                |                       |                       |
| ho-V2 Inlet Nozzle                   | è             | 1,391              | Bundle Entrai                    |               | 1,525          | Bundle Exit           | 2,034                 |
|                                      |               |                    | Tubeside                         |               |                | Floating Head         |                       |
|                                      |               |                    |                                  |               |                |                       |                       |
| Gasket-Shellside<br>Code Requirement |               | ASME Section       | n 8, Divsion 1                   |               |                | TEMA Class            | R                     |
| Basket-Shellside                     |               | ASME Sectio        | n 8, Divsion 1<br>Filled with Wa | ater          |                | TEMA Class<br>Bundle  | R                     |

|                                            |                      | Н                  | leat Exchar     | nger Speci                  | fication she  | et                   |                        |
|--------------------------------------------|----------------------|--------------------|-----------------|-----------------------------|---------------|----------------------|------------------------|
|                                            |                      |                    |                 |                             | Job No.       |                      |                        |
| Customer                                   | NREL                 |                    |                 |                             | Ref No.       | LP Syngas Ca         | se                     |
| Address                                    |                      |                    |                 |                             | Proposal No.  |                      |                        |
| Plant Location                             |                      |                    |                 |                             | Date          |                      | Rev. 0                 |
| Service of Unit                            | Compressor In        | terstage Cool      | ing             |                             | Item No       | H-300B               |                        |
| Size 47x 120                               | •                    | Туре               | BEM - HORZ      | Connected in                |               |                      | 1 Series               |
| Surf/Unit (Eff)                            | 3435 ft <sup>2</sup> | Shells/Unit        | 1               | Surface/Shell               |               | 3435 ft <sup>2</sup> |                        |
| ()                                         |                      |                    | PERFORMA        |                             |               |                      |                        |
| Fluid Allocation                           |                      |                    |                 | Shellside                   | -             | T                    | Tubeside               |
| Fluid Name                                 |                      |                    | 2               | nd Stage Syng               | nas           |                      | Cooling water          |
| Total Fluid Entering                       | a                    | lb/hr              |                 | 232,600                     | 500           |                      | 1,639,500              |
| Vapor                                      | 9                    |                    |                 | 232.600                     |               |                      | 0                      |
| Liquid                                     |                      |                    |                 | 0                           |               |                      | 1,639,500              |
| Steam                                      |                      |                    |                 | 0                           |               |                      | 1,000,000              |
| Noncondensa                                | blo                  |                    |                 |                             |               |                      |                        |
|                                            |                      |                    |                 | 0                           |               | +                    | 0                      |
| Fluid Vaporized or<br>Liquid Density (In/0 |                      | lb/ft <sup>3</sup> |                 | 0.000/0.000                 |               |                      | 62.000/62.000          |
|                                            | Julj                 | cP                 |                 |                             |               | +                    |                        |
| Liquid Viscosity                           | <b>.</b> +           | Etu/lb-F           |                 | 0.000                       |               | +                    | 0.762                  |
| Liquid Specific Hea                        |                      |                    |                 |                             |               | +                    |                        |
| Liquid Thermal Co                          |                      | Btu/hr-ft-F        |                 | 0.000                       |               | <b> </b>             | 0.363                  |
| Vapor Mol. Weight                          | (In/Out)             |                    |                 | 16.26/16.26                 |               |                      | 0.0/0.0                |
| Vapor Viscosity                            |                      | cP                 |                 | 0.0162                      |               |                      | 0.0000                 |
| Vapor Specific Hea                         |                      | Btu/lb-F           |                 | 0.470                       |               |                      | 0.000                  |
| Vapor Thermal Co                           |                      | Btu/hr-ft-F        |                 | 0.050                       |               |                      | 0.000                  |
| Temperature (In/O                          | ut)                  | °F                 |                 | 350.0/110.0                 |               |                      | 80.0/100.0             |
| Operating Pressure                         | e                    | psi(Abs)           |                 | 84.000                      |               |                      | 65.000                 |
| Velocity                                   |                      | ft/sec             |                 | 119.731                     |               |                      | 1.938                  |
| Pressure Drop (All                         |                      | psi                |                 | 5.000/3.994                 |               |                      | 5.000/0.664            |
| Fouling resistance                         |                      | hr-ft²-F/Btu       |                 | 0.001000                    |               |                      | 0.002000               |
| Heat Exchanged                             | 32,790,000 Bt        | u/hr               |                 | mtd (corr)                  | 103.761 °F    |                      |                        |
| Transfer Rate, Ser                         | vice                 | 92.0               |                 | Clean                       | 134.2 Btu/hr- | -ft²-F               |                        |
|                                            |                      |                    | CONSTRUCT       | TION OF ONE                 | SHELL         |                      |                        |
|                                            |                      | She                | Iside           | Tubes                       | side          | T                    | Sketch                 |
| Design/Test Pres.                          | psi                  | 100/               |                 | 80                          | )/            | 1                    |                        |
| Design Temp.                               | °F                   | 400                |                 | 15                          | 0             | 1                    |                        |
| No. Passes per Sh                          | ell                  | 1                  |                 |                             | 1             | 1                    |                        |
| Corrosion Allow.                           | in                   | 0.0625             |                 | 0.062                       | 5             | 1                    |                        |
| Connections                                | In                   | 1-25.              | 0               | 15.0                        | -             | -                    |                        |
| Size &                                     | Out                  | 1-23.              | -               | 15.0                        |               | -                    |                        |
| Rating                                     | Intermediate         | 0                  | •               | 0                           |               | -                    |                        |
| rating                                     | Internediate         | 0                  |                 | Ū                           |               |                      |                        |
| Tube No                                    | 1808                 | OD 0.750 in        |                 | Thk 0.065                   | Length 10.00  | ) ft                 | Pitch 0.93750 / 30.0°  |
| Tube Type                                  |                      | PLAIN              |                 | Material                    | Longin 10.00  |                      | 1 1101 0.007 00 7 00.0 |
| Shell                                      | 1                    | I.D 47.00 OE       | ) in            | Shell Cover                 |               | INT                  |                        |
| Channel or Bonnet                          |                      | 1.00 UL            |                 | Channel Cover               | or            | IINT                 |                        |
|                                            |                      |                    |                 |                             |               |                      |                        |
| Tubesheet-Station                          |                      |                    |                 | Tubesheet-FI<br>Impingement |               | YES                  |                        |
| Floating Head Cov                          | ei                   |                    |                 |                             |               |                      | <b>FQ O</b>            |
| Baffles Cross                              |                      | Type VERT-         | 356             | %Cut 37.2 (A                | nea)          | Spacing-cc           | 58.0                   |
| Baffles-Long                               |                      |                    | LI Den i        | Seal Type                   | Turne         |                      |                        |
| Supports-Tube                              |                      |                    | U-Bend          | <b>T T</b>                  | Туре          |                      |                        |
| Bypass Seal Arran                          | gement               |                    |                 | Tube-Tubesh                 | eet Joint     |                      |                        |
| Expansion Joint                            |                      |                    |                 | Туре                        |               |                      |                        |
| Rho-V2 Inlet Nozz                          | е                    | 2,286              | Bundle Entrar   | nce                         | 3,535         | Bundle Exit          | 3,995                  |
| Gasket-Shellside                           |                      |                    | Tubeside        |                             |               | Floating Head        |                        |
| Code Requirement                           |                      | ASME Section       | on 8, Divsion 1 |                             |               | TEMA Class           | R                      |
| Weight/Shell                               |                      |                    | Filled with Wa  | ater                        |               | Bundle               |                        |
| 0                                          |                      |                    |                 |                             |               |                      |                        |

|                      |                      | Н              | eat Exchar     | nger Specif   | ication shee   | et                   |                       |
|----------------------|----------------------|----------------|----------------|---------------|----------------|----------------------|-----------------------|
|                      |                      |                |                |               | Job No.        |                      |                       |
| Customer             | NREL                 |                |                |               | Ref No.        | LP Syngas Ca         | ase                   |
| Address              |                      |                |                |               | Proposal No.   |                      |                       |
| Plant Location       |                      |                |                |               | Date           |                      | Rev. 0                |
| Service of Unit      | Compressor In        | terstage Cooli |                |               | Item No        | H-300C               |                       |
| Size 51x 120         |                      | Туре           | BEM - HORZ     | Connected in  | 1 Parallel     |                      | 1 Series              |
| Surf/Unit (Eff)      | 4368 ft <sup>2</sup> | Shells/Unit    | 1              | Surface/Shell |                | 4368 ft <sup>2</sup> |                       |
|                      |                      |                | PERFORMA       | NCE OF ONE    | UNIT           |                      |                       |
| Fluid Allocation     |                      |                |                | Shellside     |                |                      | Tubeside              |
| Fluid Name           |                      |                |                | Cooling water | •              | 3                    | rd Stage Syngas       |
| Total Fluid Entering | ]                    | lb/hr          |                | 1,384,500     |                |                      | 225,800               |
| Vapor                |                      |                |                | 0             |                |                      | 225,800               |
| Liquid               |                      |                |                | 1,384,500     |                |                      | 0                     |
| Steam                |                      |                |                |               |                |                      |                       |
| Noncondensa          |                      |                |                |               |                |                      |                       |
| Fluid Vaporized or   |                      |                |                | 0             |                |                      | 2,710                 |
| Liquid Density (In/C |                      | lb/ft³         |                | 62.000/62.000 | )              |                      | 0.000/62.250          |
| Liquid Viscosity     |                      | cP             |                | 0.762         |                |                      | 0.558                 |
| Liquid Specific Hea  |                      | Btu/lb-F       |                | 1.000         |                |                      | 1.038                 |
| Liquid Thermal Cor   |                      | Btu/hr-ft-F    |                | 0.363         |                |                      | 0.368                 |
| Vapor Mol. Weight    | (In/Out)             |                |                | 0.0/0.0       |                |                      | 16.21/16.21           |
| Vapor Viscosity      |                      | cP             |                | 0.0000        |                |                      | 0.0164                |
| Vapor Specific Hea   |                      | Btu/lb-F       |                | 0.000         |                |                      | 0.468                 |
| Vapor Thermal Cor    | nductivity           | Btu/hr-ft-F    |                | 0.000         |                |                      | 0.051                 |
| Temperature (In/O    | ut)                  | °F             |                | 80.0/100.0    |                |                      | 349.0/110.0           |
| Operating Pressure   | ;                    | psi(Abs)       |                | 65.000        |                |                      | 220.000               |
| Velocity             |                      | ft/sec         |                | 3.395         |                |                      | 26.531                |
| Pressure Drop (Allo  | ow/Calc)             | psi            |                | 5.000/3.694   |                |                      | 5.000/0.747           |
| Fouling resistance   |                      | hr-ft²-F/Btu   |                | 0.002000      |                |                      | 0.001000              |
| Heat Exchanged       | 27,690,000 Bt        | u/hr           |                | mtd (corr)    | 92.157 °F      |                      |                       |
| Transfer Rate, Serv  | /ice                 | 68.8           |                | Clean         | 88.3 Btu/hr-ft | ²-F                  |                       |
|                      |                      |                | CONSTRUCT      | TION OF ONE   | SHELL          |                      |                       |
|                      |                      | Shel           | lside          | Tubesi        | ide            |                      | Sketch                |
| Design/Test Pres.    | psi                  | 80/            |                | 245/          | /              | 1                    |                       |
| Design Temp.         | °F                   | 150            |                | 400           | )              | 1                    |                       |
| No. Passes per Sh    | ell                  | 1              |                | 1             |                | 1                    |                       |
|                      | in                   | 0.0625         |                | 0.0625        | 5              | 1                    |                       |
| Connections          | In                   | 1-15.0         | 0              | 19.0          |                | 1                    |                       |
| Size &               | Out                  | 1-15.0         | C              | 17.0          |                | 1                    |                       |
| Rating               | Intermediate         | 0              |                | 0             |                | 1                    |                       |
|                      |                      |                |                |               |                | •                    |                       |
| Tube No              | 2350                 | OD 0.750 in    |                | Thk 0.065     | Length 10.00   | ft                   | Pitch 0.93750 / 30.0° |
| Tube Type            | F                    | PLAIN          |                | Material      |                |                      |                       |
| Shell                |                      | I.D 51.00 OD   | ) in           | Shell Cover   |                | INT                  |                       |
| Channel or Bonnet    |                      |                |                | Channel Cove  | r              |                      |                       |
| Tubesheet-Stationa   | ary                  |                |                | Tubesheet-Flo | pating         |                      |                       |
| Floating Head Cove   |                      |                |                | Impingement   |                | YES                  |                       |
| Baffles Cross        |                      | Type VERT-     | SEG            | %Cut 18.9 (A  |                | Spacing-cc           | 24.0                  |
| Baffles-Long         |                      | <i>.</i>       |                | Seal Type     | ,              | 1 0                  |                       |
| Supports-Tube        |                      |                | U-Bend         | 21            | Туре           |                      |                       |
| Bypass Seal Arran    | gement               |                | -              | Tube-Tubeshe  | 21             |                      |                       |
| Expansion Joint      | 2                    |                |                | Туре          | -              |                      |                       |
| Rho-V2 Inlet Nozzl   | e                    | 1,584          | Bundle Entra   | 71            | 1,413          | Bundle Exit          | 2,336                 |
| Gasket-Shellside     |                      | -              | Tubeside       |               |                | Floating Head        | -                     |
| Code Requirement     |                      | ASME Section   | n 8, Divsion 1 |               |                | TEMA Class           |                       |
| Weight/Shell         |                      |                | Filled with Wa | ater          |                | Bundle               |                       |
|                      |                      |                |                |               |                |                      |                       |

|                                       |                      | h                         | leat Exchar                                   | nger Specif   | fication shee     | et                   |                        |
|---------------------------------------|----------------------|---------------------------|-----------------------------------------------|---------------|-------------------|----------------------|------------------------|
|                                       |                      |                           |                                               |               | Job No.           |                      |                        |
| Customer                              | NREL                 |                           |                                               |               | Ref No.           | LP Syngas Ca         | se                     |
| Address                               |                      |                           |                                               |               | Proposal No.      |                      |                        |
| Plant Location                        |                      |                           |                                               |               | Date              |                      | Rev. 0                 |
| Service of Unit                       | Compressor In        | terstage Cool             | ing                                           |               | Item No           | H-300D               |                        |
| Size 42x 120                          |                      | Туре                      | BEM - HORZ                                    | Connected in  | 1 Paralle         |                      | 1 Series               |
| Surf/Unit (Eff)                       | 2934 ft <sup>2</sup> | Shells/Unit               | 1                                             | Surface/Shell | (Effective)       | 2934 ft <sup>2</sup> |                        |
|                                       |                      |                           | PERFORMA                                      | NCE OF ONE    | ÙNIT <sup>(</sup> |                      |                        |
| Iuid Allocation                       |                      |                           | _                                             | Shellside     | -                 |                      | Tubeside               |
| luid Name                             |                      |                           |                                               | Cooling wate  | r                 | 4                    | th Stage Syngas        |
| otal Fluid Enterin                    | a                    | lb/hr                     |                                               | 910,500       | •                 |                      | 223,200                |
| Vapor                                 | 3                    |                           |                                               | 0             |                   |                      | 223,200                |
| Liquid                                |                      |                           |                                               | 910,500       |                   |                      | 0                      |
| Steam                                 |                      |                           |                                               | 510,500       |                   |                      | 0                      |
| Noncondensa                           | hlo                  |                           |                                               |               |                   |                      |                        |
|                                       |                      |                           |                                               | 0             |                   |                      | 670                    |
| Iuid Vaporized or                     |                      | ال <i>ہ \1</i> 43         |                                               | 0             | 0                 |                      | 670                    |
| iquid Density (In/                    | Jul)                 | lb/ft <sup>3</sup>        |                                               | 62.000/62.00  | 0                 | ł                    | 0.000/62.210           |
| iquid Viscosity                       | - 1                  | cP                        |                                               | 0.762         |                   |                      | 0.580                  |
| iquid Specific Hea                    |                      | Btu/lb-F                  |                                               | 1.000         |                   |                      | 1.036                  |
| iquid Thermal Co                      |                      | Btu/hr-ft-F               |                                               | 0.363         |                   |                      | 0.367                  |
| apor Mol. Weight                      | : (In/Out)           |                           |                                               | 0.0/0.0       |                   | ļ                    | 16.2/16.2              |
| /apor Viscosity                       |                      | cP                        |                                               | 0.0000        |                   |                      | 0.0160                 |
| apor Specific Hea                     |                      | Btu/lb-F                  |                                               | 0.000         |                   |                      | 0.470                  |
| /apor Thermal Co                      |                      | Btu/hr-ft-F               |                                               | 0.000         |                   |                      | 0.049                  |
| emperature (In/O                      |                      | °F                        |                                               | 80.0/100.0    |                   |                      | 277.0/110.0            |
| <b>Dperating Pressur</b>              | e                    | psi(Abs)                  |                                               | 65.000        |                   |                      | 450.000                |
| /elocity                              |                      | ft/sec                    |                                               | 3.281         |                   |                      | 17.909                 |
| Pressure Drop (All                    | ow/Calc)             | psi                       |                                               | 5.000/3.891   |                   |                      | 5.000/0.750            |
| ouling resistance                     |                      | hr-ft <sup>2</sup> -F/Btu |                                               | 0.002000      |                   |                      | 0.001000               |
| Heat Exchanged                        | 18.210.000 Bt        |                           | •                                             | mtd (corr)    | 79.340 °F         | •                    |                        |
| Fransfer Rate, Ser                    |                      | 78.2                      |                                               | Clean         | 104.5 Btu/hr-     | ft²-F                |                        |
| ,                                     |                      |                           | CONSTRUCT                                     | TION OF ONE   | SHELL             |                      |                        |
|                                       |                      | She                       | Iside                                         | Tubes         | ide               |                      | Sketch                 |
| Design/Test Pres.                     | psi                  | 80/                       |                                               | 500           |                   |                      |                        |
| Design Temp.                          | °F                   | 150                       |                                               | 33            |                   |                      |                        |
| lo. Passes per Sh                     |                      | 1                         |                                               |               | 1                 | -                    |                        |
| Corrosion Allow.                      | in                   | 0.0625                    |                                               | 0.062         |                   | -                    |                        |
| Connections                           | In                   | 1-12.                     | 0                                             | 15.0          | 5                 |                      |                        |
| Size &                                | Out                  | 1-12.                     |                                               | 15.0          |                   | -                    |                        |
|                                       | Intermediate         | 0                         | 0                                             | 0             |                   | _                    |                        |
| Rating                                | Internetiate         | 0                         |                                               | 0             |                   |                      |                        |
| when Nie                              | 4504                 | 00.0750                   |                                               | The 0.005     | Length 10.00      | ti i                 | Ditate 0.00750 / 00.08 |
| ube No                                | 1594                 | OD 0.750 in               |                                               | Thk 0.065     | Length 10.00      | π                    | Pitch 0.93750 / 30.0°  |
| Tube Type                             | F                    |                           | <b>)</b> :=                                   | Material      |                   |                      |                        |
| Shell                                 |                      | I.D 42.00 OI              | חו <b>כ</b>                                   | Shell Cover   |                   | INT                  |                        |
| Channel or Bonnel                     |                      |                           |                                               | Channel Cove  |                   |                      |                        |
| ubesheet-Station                      |                      |                           |                                               | Tubesheet-FI  |                   |                      |                        |
| loating Head Cov                      | er                   | _                         |                                               | Impingement   |                   | YES                  |                        |
| Baffles Cross                         |                      | Type VERT-                | SEG                                           | %Cut 19.2 (A  | Area)             | Spacing-cc           | 19.2                   |
| Baffles-Long                          |                      |                           |                                               | Seal Type     |                   |                      |                        |
| Supports-Tube                         |                      |                           | U-Bend                                        |               | Туре              |                      |                        |
| Bypass Seal Arran                     | gement               |                           |                                               | Tube-Tubesh   | eet Joint         |                      |                        |
| xpansion Joint                        |                      |                           |                                               | Туре          |                   |                      |                        |
| xpansion Joint                        | le                   | 1,673                     | Bundle Entrai                                 |               | 1,289             | Bundle Exit          | 2,454                  |
|                                       |                      |                           |                                               |               | -                 | Floating Head        |                        |
| Rho-V2 Inlet Nozz                     |                      |                           | lubeside                                      |               |                   |                      |                        |
| Rho-V2 Inlet Nozz<br>Gasket-Shellside | ł                    | ASME Section              | Tubeside<br>on 8. Divsion 1                   |               |                   |                      |                        |
| Rho-V2 Inlet Nozz                     | t                    | ASME Section              | Tubeside<br>on 8, Divsion 1<br>Filled with Wa | ater          |                   | TEMA Class<br>Bundle | R                      |

| Customer NREL                         |                    |               |                  |                           |                             |                      |
|---------------------------------------|--------------------|---------------|------------------|---------------------------|-----------------------------|----------------------|
| Customer NIDEI                        |                    |               |                  | Job No.                   |                             |                      |
| Oustomer NREL                         |                    |               |                  | Ref No.                   | LP Syngas Ca                | se                   |
| Address                               |                    |               |                  | Proposal No.              |                             |                      |
| Plant Location                        |                    |               |                  | Date                      |                             | Rev. 0               |
| Service of Unit ZnO Prehe             | ater               |               |                  | Item No                   | H-420 ZnO Pr                | eheater              |
| Size 90x 96                           | Туре               | BEM - HORZ    | Connected in     | 1 Paralle                 |                             | 1 Series             |
| Surf/Unit (Eff) 14480 ft <sup>2</sup> | Shells/Unit        | 1             | Surface/Shell    | (Effective)               | 14480 ft <sup>2</sup>       |                      |
|                                       |                    | PERFORMA      | NCE OF ONE       | ÛNIT                      |                             |                      |
| Fluid Allocation                      |                    |               | Shellside        |                           |                             | Tubeside             |
| Fluid Name                            |                    | Flu           | ie Gas fr. Tar F | Regen                     |                             | Sweet Syngas         |
| Total Fluid Entering                  | lb/hr              |               | 248,400          | 0                         |                             | 127,000              |
| Vapor                                 |                    |               | 248,400          |                           |                             | 127,000              |
| Liquid                                |                    |               | 0                |                           |                             | 0                    |
| Steam                                 |                    |               | -                |                           |                             |                      |
| Noncondensable                        |                    |               |                  |                           |                             |                      |
| Fluid Vaporized or Condensed          |                    |               | 0                |                           | 1                           | 0                    |
| Liquid Density (In/Out)               | lb/ft <sup>3</sup> |               | 0.000/0.000      |                           |                             | 0.000/0.000          |
| Liquid Viscosity                      | cP                 |               | 0.000            |                           | <del> </del>                | 0.000                |
| Liquid Specific Heat                  | Btu/lb-F           |               | 0.000            |                           | <del> </del>                | 0.000                |
| Liquid Specific Heat                  | Btu/hr-ft-F        |               | 0.000            |                           | ł                           | 0.000                |
| Vapor Mol. Weight (In/Out)            | Dtu/III-IL-F       |               | 27.57/27.57      |                           |                             | 10.99/10.99          |
| Vapor Viscosity                       | cP                 |               | 0.0256           |                           |                             | 0.0182               |
|                                       | -                  |               | 0.0256           |                           |                             |                      |
| Vapor Specific Heat                   | Btu/lb-F           |               |                  |                           |                             | 0.659                |
| Vapor Thermal Conductivity            | Btu/hr-ft-F        |               | 0.024            |                           |                             | 0.076                |
| Temperature (In/Out)                  | °F                 |               | 935.0/190.0      |                           |                             | 114.0/750.0          |
| Operating Pressure                    | psi(Abs)           |               | 14.500           |                           |                             | 440.000              |
| Velocity                              | ft/sec             |               | -                |                           |                             | -                    |
| Pressure Drop (Allow/Calc)            | psi                |               | 1.000/-          |                           |                             | 5.000/0.287          |
| Fouling resistance                    | hr-ft²-F/Btu       |               | 0.001000         |                           |                             | 0.001000             |
| Heat Exchanged 52,900,000             |                    |               | mtd (corr)       | 122.52.15 °F              |                             |                      |
| Transfer Rate, Service                | 29.82              |               | Clean            | Btu/hr-ft <sup>2</sup> -F |                             |                      |
|                                       |                    |               | TION OF ONE      |                           |                             |                      |
|                                       | Shel               | lside         | Tubes            | side                      |                             | Sketch               |
| Design/Test Pres. psi                 | 30/                |               | 480              |                           |                             |                      |
| Design Temp. °F                       | 990                |               | 80               | 0                         |                             |                      |
| No. Passes per Shell                  | 1                  |               |                  | 1                         |                             |                      |
| Corrosion Allow. in                   | 0.0625             |               | 0.062            | 5                         |                             |                      |
| Connections In                        | 1-35.              | 0             | 10.0             |                           |                             |                      |
| Size & Out                            | 1-31.              | 0             | 12.0             |                           |                             |                      |
| Rating Intermediat                    | e 0                | -             | 0                |                           |                             |                      |
|                                       | -                  |               |                  |                           |                             |                      |
| Tube No 12160                         | OD 0.750 in        |               | Thk 0.065        | Length 8.00 f             | ť                           | Pitch 0.9375 / 30.0° |
| Tube Type                             | PLAIN              |               | Material         |                           | -                           |                      |
| Shell                                 | I.D 96.00 OE       | ) in          | Shell Cover      |                           | INT                         |                      |
| Channel or Bonnet                     | 1.2 00.00 01       |               | Channel Cover    | er                        |                             |                      |
| Tubesheet-Stationary                  |                    |               | Tubesheet-Fl     | -                         |                             |                      |
| Floating Head Cover                   |                    |               | Impingement      |                           | YES                         |                      |
| Baffles Cross                         | Type VERT-         | SEG           | %Cut 49.0 (A     |                           | Spacing-cc                  | 50                   |
| Baffles-Long                          | 1,90 10111         |               | Seal Type        |                           | epacing of                  |                      |
| Supports-Tube                         |                    | U-Bend        | Sour Type        | Туре                      |                             |                      |
| Bypass Seal Arrangement               |                    | C Dona        | Tube-Tubesh      |                           |                             |                      |
| Expansion Joint                       |                    |               |                  |                           |                             |                      |
| Rho-V2 Inlet Nozzle                   |                    | Bundle Entra  | Туре             |                           | Bundle Exit                 |                      |
| Gasket-Shellside                      |                    |               |                  |                           |                             |                      |
| Gaskel-Shellside                      |                    | Tubeside      |                  |                           | Floating Head<br>TEMA Class |                      |
|                                       |                    |               |                  |                           |                             | R                    |
| Code Requirement                      | ASME Section       |               |                  |                           |                             | IX                   |
|                                       | ASME Section       | Filled with W |                  |                           | Bundle                      |                      |

|                                                                                                                                                                                                                                                    |                     | Н                                            | eat Exchai                                                  | nger Specif                                                                                                                                | fication shee                                            | et                                                                     |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                    |                     |                                              |                                                             |                                                                                                                                            | Job No.                                                  |                                                                        |                       |
| Customer NF                                                                                                                                                                                                                                        | REL                 |                                              |                                                             |                                                                                                                                            | Ref No.                                                  | LP Syngas Ca                                                           | se                    |
| Address                                                                                                                                                                                                                                            |                     |                                              |                                                             |                                                                                                                                            | Proposal No.                                             |                                                                        |                       |
| Plant Location                                                                                                                                                                                                                                     |                     |                                              |                                                             |                                                                                                                                            | Date                                                     |                                                                        | Rev. 0                |
| Service of Unit Zr                                                                                                                                                                                                                                 | nO Syndas C         | ooler/BFW Pr                                 | eheat                                                       |                                                                                                                                            | Item No                                                  | H-421                                                                  |                       |
| Size 64x 144                                                                                                                                                                                                                                       |                     | Туре                                         |                                                             | Connected in                                                                                                                               |                                                          |                                                                        | 1 Series              |
| Surf/Unit (Eff) 69                                                                                                                                                                                                                                 | 915 ft <sup>2</sup> | Shells/Unit                                  | 1                                                           | Surface/Shell                                                                                                                              |                                                          | 6915 ft <sup>2</sup>                                                   |                       |
|                                                                                                                                                                                                                                                    |                     |                                              |                                                             | NCE OF ONE                                                                                                                                 |                                                          | 001010                                                                 |                       |
| Fluid Allocation                                                                                                                                                                                                                                   |                     |                                              |                                                             | Shellside                                                                                                                                  | 0                                                        |                                                                        | Tubeside              |
| Fluid Name                                                                                                                                                                                                                                         |                     |                                              | S                                                           | yngas fr ZnO I                                                                                                                             | Sed                                                      |                                                                        | BFW                   |
| Total Fluid Entering                                                                                                                                                                                                                               |                     | lb/hr                                        | 0                                                           | 127,000                                                                                                                                    | 500                                                      |                                                                        | 114,306               |
| Vapor                                                                                                                                                                                                                                              |                     | 10/11                                        |                                                             | 127,000                                                                                                                                    |                                                          |                                                                        | 0                     |
| Liquid                                                                                                                                                                                                                                             |                     |                                              |                                                             | 0                                                                                                                                          |                                                          |                                                                        | 114,306               |
| Steam                                                                                                                                                                                                                                              |                     |                                              |                                                             | 0                                                                                                                                          |                                                          |                                                                        | 114,300               |
|                                                                                                                                                                                                                                                    | -                   |                                              |                                                             |                                                                                                                                            |                                                          |                                                                        |                       |
| Noncondensable                                                                                                                                                                                                                                     | -                   |                                              |                                                             |                                                                                                                                            |                                                          |                                                                        |                       |
| Fluid Vaporized or Co                                                                                                                                                                                                                              |                     | 11 16:0                                      |                                                             | 0                                                                                                                                          |                                                          | <b> </b>                                                               | 0                     |
| Liquid Density (In/Out                                                                                                                                                                                                                             | t)                  | lb/ft <sup>3</sup>                           |                                                             | 0.000/0.000                                                                                                                                |                                                          |                                                                        | 58.509/46.533         |
| Liquid Viscosity                                                                                                                                                                                                                                   |                     | cP                                           |                                                             | 0.000                                                                                                                                      |                                                          |                                                                        | 0.139                 |
| Liquid Specific Heat                                                                                                                                                                                                                               |                     | Btu/lb-F                                     |                                                             | 0.000                                                                                                                                      |                                                          |                                                                        | 1.340                 |
| Liquid Thermal Condu                                                                                                                                                                                                                               |                     | Btu/hr-ft-F                                  |                                                             | 0.000                                                                                                                                      |                                                          |                                                                        | 0.359                 |
| Vapor Mol. Weight (Ir                                                                                                                                                                                                                              | n/Out)              |                                              |                                                             | 10.99/10.99                                                                                                                                |                                                          |                                                                        | 0.0/0.0               |
| Vapor Viscosity                                                                                                                                                                                                                                    |                     | cP                                           |                                                             | 0.0196                                                                                                                                     |                                                          |                                                                        | 0.0000                |
| Vapor Specific Heat                                                                                                                                                                                                                                |                     | Btu/lb-F                                     |                                                             | 0.660                                                                                                                                      |                                                          |                                                                        | 0.000                 |
| Vapor Thermal Condu                                                                                                                                                                                                                                | uctivitv            | Btu/hr-ft-F                                  |                                                             | 0.082                                                                                                                                      |                                                          | 1                                                                      | 0.000                 |
| Temperature (In/Out)                                                                                                                                                                                                                               |                     | °F                                           |                                                             | 750.0/265.0                                                                                                                                |                                                          |                                                                        | 240.0/546.5           |
| Operating Pressure                                                                                                                                                                                                                                 |                     | psi(Abs)                                     |                                                             | 425.000                                                                                                                                    |                                                          |                                                                        | 1,295.000             |
| Velocity                                                                                                                                                                                                                                           |                     | ft/sec                                       |                                                             | 27.606                                                                                                                                     |                                                          |                                                                        | 1,200.000             |
| Pressure Drop (Allow                                                                                                                                                                                                                               |                     | psi                                          |                                                             | 5.000/2.034                                                                                                                                |                                                          |                                                                        | 5.000/0.399           |
| Fouling resistance                                                                                                                                                                                                                                 | /Calc)              | hr-ft <sup>2</sup> -F/Btu                    |                                                             | 0.001000                                                                                                                                   |                                                          |                                                                        | 0.002000              |
|                                                                                                                                                                                                                                                    |                     |                                              |                                                             |                                                                                                                                            | 05 400 °F                                                |                                                                        | 0.002000              |
| Heat Exchanged 40                                                                                                                                                                                                                                  |                     |                                              |                                                             | mtd (corr)                                                                                                                                 | 85.130 °F                                                | ° –                                                                    |                       |
| Transfer Rate, Servic                                                                                                                                                                                                                              | e                   | 68.9                                         | <u>AANATRUA</u>                                             | Clean                                                                                                                                      | 90.2 Btu/hr-ft                                           | <u>-</u> -                                                             |                       |
|                                                                                                                                                                                                                                                    |                     | 0                                            |                                                             | TION OF ONE                                                                                                                                |                                                          | 1                                                                      | Olas fals             |
|                                                                                                                                                                                                                                                    |                     |                                              | lside                                                       | Tubes                                                                                                                                      |                                                          | 4                                                                      | Sketch                |
| Design/Test Pres. ps                                                                                                                                                                                                                               |                     | 470/                                         |                                                             | 1,360                                                                                                                                      |                                                          |                                                                        |                       |
| Design Temp. °F                                                                                                                                                                                                                                    |                     | 800                                          |                                                             | 60                                                                                                                                         | -                                                        |                                                                        |                       |
| No. Passes per Shell                                                                                                                                                                                                                               |                     | 1                                            |                                                             |                                                                                                                                            | 1                                                        |                                                                        |                       |
| Corrosion Allow. in                                                                                                                                                                                                                                |                     | 0.0625                                       |                                                             | 0.062                                                                                                                                      | 5                                                        |                                                                        |                       |
| Connections In                                                                                                                                                                                                                                     |                     | 1-15.                                        |                                                             | 4.0                                                                                                                                        |                                                          |                                                                        |                       |
| Size & Ou                                                                                                                                                                                                                                          | ut                  | 1-13.                                        | C                                                           | 6.0                                                                                                                                        |                                                          |                                                                        |                       |
| Rating Int                                                                                                                                                                                                                                         | termediate          | 0                                            |                                                             | 0                                                                                                                                          |                                                          | 1                                                                      |                       |
|                                                                                                                                                                                                                                                    |                     |                                              |                                                             |                                                                                                                                            |                                                          | •                                                                      |                       |
|                                                                                                                                                                                                                                                    |                     | 00 0 750 in                                  |                                                             |                                                                                                                                            | Lanath 10.00                                             | ft                                                                     | Pitch 1.00000 / 30.0° |
| Tube No 33                                                                                                                                                                                                                                         | 364                 | OD 0.750 in                                  |                                                             | Thk 0.065                                                                                                                                  | Length 12.00                                             |                                                                        |                       |
|                                                                                                                                                                                                                                                    | -                   | PLAIN                                        |                                                             |                                                                                                                                            | Length 12.00                                             |                                                                        |                       |
| Tube Type                                                                                                                                                                                                                                          | -                   | PLAIN                                        | ) in                                                        | Material                                                                                                                                   | Length 12.00                                             |                                                                        |                       |
| Tube Type<br>Shell                                                                                                                                                                                                                                 | -                   |                                              | ) in                                                        | Material<br>Shell Cover                                                                                                                    |                                                          | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet                                                                                                                                                                                                            | F                   | PLAIN                                        | ) in                                                        | Material<br>Shell Cover<br>Channel Cover                                                                                                   | er                                                       |                                                                        |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary                                                                                                                                                                                    | F                   | PLAIN                                        | ) in                                                        | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl                                                                                   | er<br>oating                                             | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover                                                                                                                                                             | F                   | Plain<br>I.d. 64.00 of                       |                                                             | Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fl<br>Impingement                                                                     | er<br>oating<br>Protection                               | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross                                                                                                                                            | F                   | PLAIN                                        |                                                             | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fl<br>Impingement<br>%Cut 18.6 (A                                                    | er<br>oating<br>Protection                               | INT                                                                    | 24.0                  |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long                                                                                                                            | F                   | Plain<br>I.d. 64.00 of                       | SEG                                                         | Material<br>Shell Cover<br>Channel Cove<br>Tubesheet-Fl<br>Impingement                                                                     | er<br>oating<br>Protection<br>Area)                      | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                                           | ,                   | Plain<br>I.d. 64.00 of                       |                                                             | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fil<br>Impingement<br>%Cut 18.6 (A<br>Seal Type                                      | er<br>oating<br>Protection<br>Area)<br>Type              | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrange                                                                                    | ,                   | Plain<br>I.d. 64.00 of                       | SEG                                                         | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fil<br>Impingement<br>%Cut 18.6 (/<br>Seal Type<br>Tube-Tubesh                       | er<br>oating<br>Protection<br>Area)<br>Type              | INT                                                                    |                       |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrange<br>Expansion Joint                                                                 | ,                   | PLAIN<br>I.D 64.00 OI<br>Type VERT-          | SEG<br>U-Bend                                               | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fil<br>Impingement<br>%Cut 18.6 (A<br>Seal Type<br>Tube-Tubesh<br>Type               | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc                                               | 24.0                  |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrange<br>Expansion Joint<br>Rho-V2 Inlet Nozzle                                          | ,                   | Plain<br>I.d. 64.00 of                       | SEG<br>U-Bend<br>Bundle Entra                               | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fil<br>Impingement<br>%Cut 18.6 (A<br>Seal Type<br>Tube-Tubesh<br>Type               | er<br>oating<br>Protection<br>Area)<br>Type              | INT<br>YES<br>Spacing-cc<br>Bundle Exit                                | 24.0                  |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arranger<br>Expansion Joint<br>Rho-V2 Inlet Nozzle<br>Gasket-Shellside                     | ,                   | 2LAIN<br>1.D 64.00 OI<br>Type VERT-<br>2,297 | SEG<br>U-Bend<br>Bundle Entra<br>Tubeside                   | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-Fil<br>Impingement<br>%Cut 18.6 (A<br>Seal Type<br>Tube-Tubesh<br>Type               | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head               | 24.0<br>3,020         |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arranger<br>Expansion Joint<br>Rho-V2 Inlet Nozzle<br>Gasket-Shellside<br>Code Requirement | ,                   | 2LAIN<br>1.D 64.00 OI<br>Type VERT-<br>2,297 | SEG<br>U-Bend<br>Bundle Entra<br>Tubeside<br>n 8, Divsion 1 | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 18.6 (/<br>Seal Type<br>Tube-Tubesh<br>Type<br>Tube-Tubesh | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head<br>TEMA Class | 24.0                  |
| Tube Type<br>Shell<br>Channel or Bonnet<br>Tubesheet-Stationary<br>Floating Head Cover<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arranger<br>Expansion Joint<br>Rho-V2 Inlet Nozzle<br>Gasket-Shellside                     | ,                   | 2LAIN<br>1.D 64.00 OI<br>Type VERT-<br>2,297 | SEG<br>U-Bend<br>Bundle Entra<br>Tubeside                   | Material<br>Shell Cover<br>Channel Cover<br>Tubesheet-FI<br>Impingement<br>%Cut 18.6 (/<br>Seal Type<br>Tube-Tubesh<br>Type<br>Tube-Tubesh | er<br>oating<br>Protection<br>Area)<br>Type<br>eet Joint | INT<br>YES<br>Spacing-cc<br>Bundle Exit<br>Floating Head               | 24.0<br>3,020         |

|                          |                      | Н                         | eat Exchar     | nger Specif    | fication shee | ət                   |                       |
|--------------------------|----------------------|---------------------------|----------------|----------------|---------------|----------------------|-----------------------|
|                          |                      |                           |                |                | Job No.       |                      |                       |
| Customer                 | NREL                 |                           |                |                | Ref No.       | LP Syngas Ca         | ise                   |
| Address                  |                      |                           |                |                | Proposal No.  |                      |                       |
| Plant Location           |                      |                           |                |                | Date          |                      | Rev. 0                |
| Service of Unit          | ZnO Syngas C         | ooler                     |                |                | Item No       | H-422                |                       |
| Size 30x 96              |                      | Туре                      | BEM - HORZ     | Connected in   |               |                      | 1 Series              |
|                          | 1190 ft <sup>2</sup> | Shells/Unit               | 1              | Surface/Shell  |               | 1190 ft <sup>2</sup> |                       |
| 000(2)                   |                      |                           | PERFORMA       |                |               |                      |                       |
| Fluid Allocation         |                      |                           |                | Shellside      |               | 1                    | Tubeside              |
| Fluid Name               |                      |                           |                | Syngas fr H-42 | 21            |                      | Cooling Water         |
| Total Fluid Entering     |                      | lb/hr                     |                | 127,000        |               | ────                 | 593,000               |
| Vapor                    |                      | 10/11                     |                | 127,000        |               | ┢─────               | 0                     |
| Liquid                   |                      |                           |                | 0              |               |                      | 593,000               |
|                          |                      |                           |                | 0              |               |                      | 593,000               |
| Steam                    | 1.                   |                           |                |                |               |                      |                       |
| Noncondensat             | -                    |                           |                |                |               |                      |                       |
| Fluid Vaporized or (     |                      | 11 /6/01                  |                | 0              |               | <u> </u>             | 0                     |
| Liquid Density (In/O     | ut)                  | lb/ft <sup>3</sup>        |                | 0.000/0.000    |               | <b></b>              | 62.850/62.283         |
| Liquid Viscosity         |                      | cP                        |                | 0.000          |               | <u> </u>             | 0.734                 |
| Liquid Specific Heat     |                      | Btu/lb-F                  |                | 0.000          |               |                      | 1.027                 |
| Liquid Thermal Con       |                      | Btu/hr-ft-F               |                | 0.000          |               |                      | 0.363                 |
| Vapor Mol. Weight        | [In/Out)             |                           |                | 10.99/10.99    |               |                      | 0.0/0.0               |
| Vapor Viscosity          |                      | cP                        |                | 0.0140         |               |                      | 0.0000                |
| Vapor Specific Heat      |                      | Btu/lb-F                  |                | 0.645          |               |                      | 0.000                 |
| Vapor Thermal Con        |                      | Btu/hr-ft-F               |                | 0.062          |               | 1                    | 0.000                 |
| Temperature (In/Ou       |                      | °F                        |                | 265.0/120.0    |               |                      | 80.0/100.0            |
| Operating Pressure       | -/                   | psi(Abs)                  |                | 420.000        |               |                      | 65.000                |
| Velocity                 |                      | ft/sec                    |                | 54,190         |               |                      | 1.566                 |
| Pressure Drop (Allo      | w/Calc)              | psi                       |                | 5.000/4.440    |               |                      | 5.000/0.420           |
| Fouling resistance       | Wicald)              | hr-ft <sup>2</sup> -F/Btu |                | 0.001000       |               | <u> </u>             | 0.002000              |
| Heat Exchanged           | 11 960 000 Dt        |                           |                | mtd (corr)     | 88.210 °F     | <u> </u>             | 0.002000              |
| Transfer Rate, Serv      |                      | 113.0                     |                | Clean          | 184.6 Btu/hr- | <del>4</del> 2 F     |                       |
| Transier Rate, Serv      | ice                  | 113.0                     | CONSTRUCT      |                |               | 1( <sup>-</sup> -F   |                       |
|                          |                      | Chal                      | Iside          | Tubes          |               |                      | Sketch                |
| Design (Test Dress       | :                    |                           | Isiae          |                |               | -                    | Sketch                |
| Design/Test Pres.        |                      | 465/                      |                | 80             |               | -                    |                       |
|                          | Ϋ́F                  | 315                       |                | 15             |               | _                    |                       |
| No. Passes per She       |                      | 1                         |                |                | 1             |                      |                       |
|                          | n                    | 0.0625                    |                | 0.062          | ō             |                      |                       |
|                          | n                    | 1-13.0                    | -              | 10.0           |               |                      |                       |
|                          | Out                  | 1-12.0                    | 0              | 10.0           |               |                      |                       |
| Rating                   | ntermediate          | 0                         |                | 0              |               |                      |                       |
|                          |                      |                           |                |                |               | -                    |                       |
| Tube No 8                | 302                  | OD 0.750 in               |                | Thk 0.065      | Length 8.00 f | t                    | Pitch 0.93750 / 30.0° |
| Tube Type                | F                    | PLAIN                     |                | Material       |               |                      |                       |
| Shell                    |                      | I.D 30.00 OE              | ) in           | Shell Cover    |               | INT                  |                       |
| Channel or Bonnet        |                      |                           |                | Channel Cove   | er            |                      |                       |
| Tubesheet-Stationa       | rv                   |                           |                | Tubesheet-FI   |               |                      |                       |
| Floating Head Cove       |                      |                           |                | Impingement    | -             | NO                   |                       |
| Baffles Cross            | •                    | Type VERT-                | SEG            | %Cut 32.3 (A   |               | Spacing-cc           | 24.0                  |
| Baffles-Long             |                      |                           | 020            | Seal Type      | u cu j        | opaonig-oc           | 27.0                  |
| Supports-Tube            |                      |                           | U-Bend         | oca Type       | Туре          |                      |                       |
| Bypass Seal Arrang       | omont                |                           | U-Denu         | Tubo Tuboob    |               |                      |                       |
|                          | ement                |                           |                | Tube-Tubesh    | eet Juint     |                      |                       |
| Expansion Joint          |                      | 0.400                     |                | Туре           | 0.070         | Durally 5 11         |                       |
| Rho-V2 Inlet Nozzle      |                      | 2,469                     | Bundle Entrai  | nce            | 3,979         | Bundle Exit          | 4,341                 |
| Gasket-Shellside         |                      |                           | Tubeside       |                |               | Floating Head        |                       |
| Code Requirement         |                      | ASME Sectio               | n 8, Divsion 1 |                |               | TEMA Class           | R                     |
|                          |                      |                           |                |                |               |                      |                       |
| Weight/Shell<br>Remarks: |                      |                           | Filled with Wa | ater           | ······        | Bundle               |                       |

|                        |              | Н                         | eat Exchai     | nger Specif          | ication shee  | et                  |                       |
|------------------------|--------------|---------------------------|----------------|----------------------|---------------|---------------------|-----------------------|
|                        |              |                           |                |                      | Job No.       |                     |                       |
| Customer NF            | EL           |                           |                |                      | Ref No.       | LP Syngas Ca        | ise                   |
| Address                |              |                           |                |                      | Proposal No.  |                     |                       |
| Plant Location         |              |                           |                |                      | Date          |                     | Rev. 0                |
| Service of Unit Me     | OH Compres   | sor Interstag             | e Cooling      |                      | Item No       | H-500A              |                       |
| Size 24x 72            |              | уре                       | BEM - HORZ     | Connected in         | 1 Parallel    |                     | 1 Series              |
| Surf/Unit (Eff) 51     |              | Shells/Unit               | 1              | Surface/Shell        | (Effective)   | 511 ft <sup>2</sup> |                       |
|                        |              |                           | PERFORMA       | NCE OF ONE           |               |                     |                       |
| Fluid Allocation       |              |                           |                | Shellside            |               | 1                   | Tubeside              |
| Fluid Name             |              |                           |                | Cooling water        | r             |                     | Syngas                |
| Total Fluid Entering   |              | lb/hr                     |                | 553.000              |               |                     | 127.000               |
| Vapor                  |              | 10/111                    |                | 0                    |               |                     | 127,000               |
| Liquid                 |              |                           |                | 553.000              |               |                     | 0                     |
| Steam                  |              |                           |                | 555,000              |               |                     | 0                     |
|                        |              |                           |                |                      |               |                     |                       |
| Noncondensable         |              |                           |                |                      |               |                     | 0                     |
| Fluid Vaporized or Co  |              | 11 16:0                   |                | 0                    |               | ļ                   | 0                     |
| Liquid Density (In/Out |              | lb/ft <sup>3</sup>        |                | 62.000/62.000        | J             |                     | 0.000/0.000           |
| Liquid Viscosity       |              | cP                        |                | 0.762                |               |                     | 0.000                 |
| Liquid Specific Heat   |              | Btu/lb-F                  |                | 1.000                |               | L                   | 0.000                 |
| Liquid Thermal Condu   |              | Btu/hr-ft-F               |                | 0.363                |               |                     | 0.000                 |
| Vapor Mol. Weight (In  | /Out)        |                           |                | 0.0/0.0              |               |                     | 10.99/10.99           |
| Vapor Viscosity        |              | cP                        |                | 0.0000               |               |                     | 0.0155                |
| Vapor Specific Heat    |              | Btu/lb-F                  |                | 0.000                |               |                     | 0.655                 |
| Vapor Thermal Condu    | ctivity      | Btu/hr-ft-F               |                | 0.000                |               | 1                   | 0.068                 |
| Temperature (In/Out)   | ··· <b>·</b> | °F                        |                | 80.0/100.0           |               |                     | 333.0/200.0           |
| Operating Pressure     |              | psi(Abs)                  |                | 65.000               |               |                     | 1,000.000             |
| Velocity               |              | ft/sec                    |                | 4.182                |               |                     | 25.131                |
| Pressure Drop (Allow/  | Calc)        | psi                       |                | 5.000/2.552          |               |                     | 5.000/0.721           |
| Fouling resistance     | Calc)        | hr-ft <sup>2</sup> -F/Btu |                | 0.002000             |               | -                   | 0.001000              |
| Heat Exchanged 11      | 000 000 Dt.  |                           |                |                      | 170.297 °F    |                     | 0.001000              |
|                        |              |                           |                | mtd (corr)           |               | 612 F               |                       |
| Transfer Rate, Service | ;<br>1       | 27.1                      | 00107010       | Clean<br>TION OF ONE | 215.4 Btu/hr- | I(*-F               |                       |
|                        |              | 011                       |                |                      |               | r                   | Obstal                |
| <u> </u>               |              |                           | lside          | Tubes                |               |                     | Sketch                |
| Design/Test Pres. psi  |              | 80/                       |                | 1,050                |               |                     |                       |
| Design Temp. °F        |              | 150                       |                | 385                  | 5             |                     |                       |
| No. Passes per Shell   |              | 1                         |                | 1                    |               |                     |                       |
| Corrosion Allow. in    |              | 0.0625                    |                | 0.0625               | 5             |                     |                       |
| Connections In         |              | 1-10.0                    | 0              | 12.0                 |               |                     |                       |
| Size & Ou              | t            | 1-10.0                    | 0              | 10.0                 |               | 1                   |                       |
| Rating Int             | ermediate    | 0                         |                | 0                    |               | 1                   |                       |
| -                      |              |                           |                |                      |               |                     |                       |
| Tube No 47             | <u> </u>     | DD 0.750 in               |                | Thk 0.065            | Length 6.00 f | t                   | Pitch 0.93750 / 30.0° |
| Tube Type              |              | AIN                       |                | Material             | <b>U</b>      |                     |                       |
| Shell                  |              | D 24.00 OE                | ) in           | Shell Cover          |               | INT                 |                       |
| Channel or Bonnet      | 1            |                           |                | Channel Cove         | ٩٢            |                     |                       |
| Tubesheet-Stationary   |              |                           |                | Tubesheet-Flo        |               |                     |                       |
| Floating Head Cover    |              |                           |                | Impingement          |               | YES                 |                       |
| Baffles Cross          | -            |                           | <u> </u>       |                      |               |                     | 16.2                  |
|                        |              | ype VERT-                 | 326            | %Cut 23.4 (A         | ned)          | Spacing-cc          | 16.3                  |
| Baffles-Long           |              |                           |                | Seal Type            | <b>T</b>      |                     |                       |
| Supports-Tube          |              |                           | U-Bend         | <del></del>          | Туре          |                     |                       |
| Bypass Seal Arranger   | nent         |                           |                | Tube-Tubeshe         | eet Joint     |                     |                       |
| Expansion Joint        |              |                           |                | Туре                 |               |                     |                       |
| Rho-V2 Inlet Nozzle    | 1            | ,279                      | Bundle Entra   | nce                  | 1,349         | Bundle Exit         | 2,039                 |
| Gasket-Shellside       |              |                           | Tubeside       |                      |               | Floating Head       |                       |
|                        | F            | SME Sectio                | n 8, Divsion 1 |                      |               | TEMA Class          | R                     |
| Code Requirement       |              |                           |                |                      |               |                     |                       |
| Weight/Shell           |              |                           | Filled with Wa |                      |               | Bundle              |                       |

|                                                                                                                                                                                                        |                            | h                         | leat Exchar                         | iger Specif                                                                             | ication shee                                       | et                                         |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------|
|                                                                                                                                                                                                        |                            |                           |                                     |                                                                                         | Job No.                                            |                                            |                        |
| Customer                                                                                                                                                                                               | NREL                       |                           |                                     |                                                                                         | Ref No.                                            | LP Syngas Ca                               | se                     |
| Address                                                                                                                                                                                                |                            |                           |                                     |                                                                                         | Proposal No.                                       |                                            |                        |
| Plant Location                                                                                                                                                                                         |                            |                           |                                     |                                                                                         | Date                                               |                                            | Rev. 0                 |
| Service of Unit                                                                                                                                                                                        | MeOH Syngas                | Preheat                   |                                     |                                                                                         | Item No                                            | H-501                                      |                        |
| Size 73x 168                                                                                                                                                                                           |                            | Туре                      | BEM - HORZ                          | Connected in                                                                            | 1 Parallel                                         |                                            | 1 Series               |
| Surf/Unit (Eff)                                                                                                                                                                                        | 12712 ft <sup>2</sup>      | Shells/Unit               | 1                                   | Surface/Shell                                                                           | (Effective)                                        | 12712 ft <sup>2</sup>                      |                        |
|                                                                                                                                                                                                        |                            |                           | PERFORMA                            |                                                                                         |                                                    |                                            |                        |
| Fluid Allocation                                                                                                                                                                                       |                            |                           |                                     | Shellside                                                                               |                                                    |                                            | Tubeside               |
| Fluid Name                                                                                                                                                                                             |                            |                           |                                     | Steam                                                                                   |                                                    | Svn                                        | gas to MeOH Rxn        |
| Total Fluid Enterin                                                                                                                                                                                    | α                          | lb/hr                     |                                     | 18,830                                                                                  |                                                    |                                            | 127,000                |
| Vapor                                                                                                                                                                                                  | 9                          |                           |                                     | 18,830                                                                                  |                                                    |                                            | 127,000                |
| Liquid                                                                                                                                                                                                 |                            |                           |                                     | 0                                                                                       |                                                    |                                            | 0                      |
| Steam                                                                                                                                                                                                  |                            |                           |                                     | 0                                                                                       |                                                    |                                            | 8                      |
| Noncondensa                                                                                                                                                                                            | ahla                       |                           |                                     |                                                                                         |                                                    |                                            |                        |
|                                                                                                                                                                                                        |                            |                           |                                     | 10 020                                                                                  |                                                    |                                            | 0                      |
| Fluid Vaporized or                                                                                                                                                                                     |                            | lb/ft <sup>3</sup>        |                                     | 18,830                                                                                  |                                                    |                                            | 0.000/0.000            |
| Liquid Density (In/                                                                                                                                                                                    | Outj                       |                           |                                     |                                                                                         |                                                    |                                            |                        |
| Liquid Viscosity                                                                                                                                                                                       | -                          | cP                        |                                     | 0.148                                                                                   |                                                    |                                            | 0.000                  |
| Liquid Specific He                                                                                                                                                                                     |                            | Btu/lb-F                  |                                     | 1.120                                                                                   |                                                    |                                            | 0.000                  |
| Liquid Thermal Co                                                                                                                                                                                      |                            | Btu/hr-ft-F               |                                     | 0.404                                                                                   |                                                    |                                            | 0.000                  |
| Vapor Mol. Weigh                                                                                                                                                                                       | t (In/Out)                 |                           |                                     | 18.02/18.02                                                                             |                                                    |                                            | 10.99/10.99            |
| Vapor Viscosity                                                                                                                                                                                        |                            | cP                        |                                     | 0.0161                                                                                  |                                                    |                                            | 0.0170                 |
| Vapor Specific He                                                                                                                                                                                      |                            | Btu/lb-F                  |                                     | 0.492                                                                                   |                                                    |                                            | 0.659                  |
| Vapor Thermal Co                                                                                                                                                                                       |                            | Btu/hr-ft-F               |                                     | 0.020                                                                                   |                                                    |                                            | 0.074                  |
| Temperature (In/C                                                                                                                                                                                      |                            | °F                        |                                     | 487.0/324.0                                                                             |                                                    |                                            | 239.0/460.0            |
| Operating Pressur                                                                                                                                                                                      | e                          | psi(Abs)                  |                                     | 100.000                                                                                 |                                                    |                                            | 1,160.000              |
| Velocity                                                                                                                                                                                               |                            | ft/sec                    |                                     | 4.726                                                                                   |                                                    |                                            | 2.192                  |
| Pressure Drop (Al                                                                                                                                                                                      | low/Calc)                  | psi                       |                                     | 5.000/0.548                                                                             |                                                    |                                            | 5.000/0.492            |
| Fouling resistance                                                                                                                                                                                     | }                          | hr-ft <sup>2</sup> -F/Btu |                                     | 0.005000                                                                                |                                                    |                                            | 0.001000               |
| Heat Exchanged                                                                                                                                                                                         | 18,450,000 Bt              |                           | •                                   | mtd (corr)                                                                              | 60.365 °F                                          |                                            |                        |
| Transfer Rate, Ser                                                                                                                                                                                     | vice                       | 24.0                      |                                     | Clean                                                                                   | 28.3 Btu/hr-ft                                     | ²-F                                        |                        |
|                                                                                                                                                                                                        |                            |                           | CONSTRUCT                           | TON OF ONE                                                                              |                                                    | •                                          |                        |
|                                                                                                                                                                                                        |                            | She                       | Iside                               | Tubes                                                                                   |                                                    |                                            | Sketch                 |
| Design/Test Pres.                                                                                                                                                                                      | nsi                        | 100/                      |                                     | 1,220                                                                                   |                                                    |                                            |                        |
| Design Temp.                                                                                                                                                                                           | °F                         | 540                       |                                     | 515                                                                                     |                                                    |                                            |                        |
| No. Passes per St                                                                                                                                                                                      |                            | 040<br>1                  |                                     | 510                                                                                     |                                                    |                                            |                        |
| Corrosion Allow.                                                                                                                                                                                       |                            | 0.0625                    |                                     | 0.062                                                                                   |                                                    |                                            |                        |
| Connections                                                                                                                                                                                            | in<br>In                   | 0.0625                    | )                                   | 10.0                                                                                    | )                                                  |                                            |                        |
|                                                                                                                                                                                                        |                            |                           |                                     |                                                                                         |                                                    |                                            |                        |
| Size &                                                                                                                                                                                                 | Out                        | 1-2.0                     | )                                   | 12.0                                                                                    |                                                    |                                            |                        |
| Rating                                                                                                                                                                                                 | Intermediate               | 0                         |                                     | 0                                                                                       |                                                    |                                            |                        |
| Taka Ma                                                                                                                                                                                                | 5040                       | 00 0 750 :                |                                     | The 0.005                                                                               | 1                                                  | 0                                          | Ditate 0.00750 / 00.00 |
| Tube No                                                                                                                                                                                                | 5242                       | OD 0.750 in               |                                     | Thk 0.065                                                                               | Length 14.00                                       | π                                          | Pitch 0.93750 / 30.0°  |
| <b>-</b> - <b>-</b>                                                                                                                                                                                    |                            | PLAIN                     | <u>_</u> ·                          | Material                                                                                |                                                    |                                            |                        |
| Tube Type                                                                                                                                                                                              | Г                          |                           | Jin                                 | Shell Cover                                                                             |                                                    | INT                                        |                        |
| Shell                                                                                                                                                                                                  |                            | I.D 73.00 OI              |                                     |                                                                                         |                                                    |                                            |                        |
| Shell<br>Channel or Bonne                                                                                                                                                                              | t                          | 1.D 73.00 OL              |                                     | Channel Cove                                                                            |                                                    |                                            |                        |
| Shell<br>Channel or Bonne<br>Tubesheet-Station                                                                                                                                                         | t<br>ary                   | 1.D 73.00 OL              |                                     | Tubesheet-Flo                                                                           | oating                                             |                                            |                        |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov                                                                                                                                    | t<br>ary                   |                           |                                     | Tubesheet-Fle<br>Impingement                                                            | oating<br>Protection                               | NO                                         |                        |
| Shell<br>Channel or Bonne<br>Tubesheet-Station<br>Floating Head Cov<br>Baffles Cross                                                                                                                   | t<br>ary                   | Type VERT-                | SEG                                 | Tubesheet-Flo<br>Impingement<br>%Cut 10.4 (A                                            | oating<br>Protection                               | NO<br>Spacing-cc                           | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   | t<br>ary                   |                           |                                     | Tubesheet-Fle<br>Impingement                                                            | oating<br>Protection                               |                                            | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long                                                                                                   | t<br>ary                   |                           | SEG<br>U-Bend                       | Tubesheet-Flo<br>Impingement<br>%Cut 10.4 (A                                            | oating<br>Protection                               |                                            | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube                                                                                  | t<br>ary<br>/er            |                           |                                     | Tubesheet-Flo<br>Impingement<br>%Cut 10.4 (A                                            | oating<br>Protection<br>vrea)<br>Type              |                                            | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar                                                             | t<br>ary<br>/er            |                           |                                     | Tubesheet-Fle<br>Impingement<br>%Cut 10.4 (A<br>Seal Type<br>Tube-Tubesh                | oating<br>Protection<br>vrea)<br>Type              |                                            | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cox<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint                                          | t<br>ary<br>/er            | Type VERT-                | U-Bend                              | Tubesheet-Fle<br>Impingement<br>%Cut 10.4 (A<br>Seal Type<br>Tube-Tubeshe<br>Type       | oating<br>Protection<br>vrea)<br>Type<br>eet Joint | Spacing-cc                                 | 14.5                   |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cox<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | t<br>ary<br>/er            |                           | U-Bend<br>Bundle Entrar             | Tubesheet-Fle<br>Impingement<br>%Cut 10.4 (A<br>Seal Type<br>Tube-Tubeshe<br>Type       | oating<br>Protection<br>vrea)<br>Type              | Spacing-cc<br>Bundle Exit                  |                        |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cox<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz<br>Gasket-Shellside | t<br>ary<br>/er<br>ngement | Type VERT-<br>1,228       | U-Bend<br>Bundle Entrar<br>Tubeside | Tubesheet-Fle<br>Impingement<br>%Cut 10.4 (A<br>Seal Type<br>Tube-Tubeshe<br>Type       | oating<br>Protection<br>vrea)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit<br>Floating Head | 1,384                  |
| Shell<br>Channel or Bonne<br>Tubesheet-Statior<br>Floating Head Cov<br>Baffles Cross<br>Baffles-Long<br>Supports-Tube<br>Bypass Seal Arrar<br>Expansion Joint<br>Rho-V2 Inlet Nozz                     | t<br>ary<br>/er<br>ngement | Type VERT-<br>1,228       | U-Bend<br>Bundle Entrar             | Tubesheet-Fli<br>Impingement<br>%Cut 10.4 (A<br>Seal Type<br>Tube-Tubesh<br>Type<br>nce | oating<br>Protection<br>vrea)<br>Type<br>eet Joint | Spacing-cc<br>Bundle Exit                  | 1,384                  |

|                      |              | Н                         | leat Excha     | nger Specif   | ication shee  | et            |                       |
|----------------------|--------------|---------------------------|----------------|---------------|---------------|---------------|-----------------------|
|                      |              |                           |                |               | Job No.       |               |                       |
| Customer             | NREL         |                           |                |               | Ref No.       | LP Syngas Ca  | ise                   |
| Address              |              |                           |                |               | Proposal No.  |               |                       |
| Plant Location       |              |                           |                |               | Date          |               | Rev. 0                |
| Service of Unit      | Blowdown Coo | ler                       |                |               | Item No       | H-601         |                       |
| Size 12x 48          |              | Туре                      | BEM - HORZ     | Connected in  | 1 Parallel    |               | 1 Series              |
| Surf/Unit (Eff)      | 89 ft²       | Shells/Unit               | 1              | Surface/Shell |               | 89 ft²        |                       |
|                      |              |                           | PERFORMA       | NCE OF ONE    | UNIT          |               |                       |
| Fluid Allocation     |              |                           |                | Shellside     |               |               | Tubeside              |
| Fluid Name           |              |                           |                | Blowdown      |               |               | Cooling water         |
| Total Fluid Entering | g            | lb/hr                     |                | 3,164         |               |               | 30,465                |
| Vapor                |              |                           |                | 0             |               |               | 0                     |
| Liquid               |              |                           |                | 3,164         |               |               | 30,465                |
| Steam                |              |                           |                |               |               |               |                       |
| Noncondensa          | able         |                           |                |               |               |               |                       |
| Fluid Vaporized or   | Condensed    |                           |                | 0             |               |               | 0                     |
| Liquid Density (In/0 |              | lb/ft <sup>3</sup>        |                | 56.607/62.00  | 0             |               | 62.000/62.000         |
| Liquid Viscosity     |              | cP                        |                | 0.311         |               |               | 0.762                 |
| Liquid Specific Hea  | at           | Btu/lb-F                  |                | 1.059         |               | 1             | 1.000                 |
| Liquid Thermal Co    |              | Btu/hr-ft-F               |                | 0.382         |               |               | 0.363                 |
| Vapor Mol. Weight    | (In/Out)     |                           |                | 0.0/0.0       |               |               | 0.0/0.0               |
| Vapor Viscosity      | · /          | cP                        |                | 0.0000        |               |               | 0.0000                |
| Vapor Specific Hea   | at           | Btu/lb-F                  |                | 0.000         |               |               | 0.000                 |
| Vapor Thermal Co     |              | Btu/hr-ft-F               |                | 0.000         |               |               | 0.000                 |
| Temperature (In/O    |              | °F                        |                | 298.0/110.0   |               |               | 80.0/100.0            |
| Operating Pressure   | e            | psi(Abs)                  |                | 65.000        |               |               | 65.000                |
| Velocity             |              | ft/sec                    |                | 0.170         |               |               | 0.561                 |
| Pressure Drop (All   | ow/Calc)     | psi                       |                | 5.000/0.111   |               |               | 5.000/0.536           |
| Fouling resistance   |              | hr-ft <sup>2</sup> -F/Btu |                | 0.001000      |               |               | 0.002000              |
| Heat Exchanged       |              |                           | •              | mtd (corr)    | 89.027 °F     | •             |                       |
| Transfer Rate, Ser   |              | 76.9                      |                | Clean         | 104.4 Btu/hr- | ft²-F         |                       |
|                      |              |                           | CONSTRUC       | TION OF ONE   | SHELL         |               |                       |
|                      |              | Shel                      | Iside          | Tubes         |               |               | Sketch                |
| Design/Test Pres.    | psi          | 80/                       |                | 80            |               |               |                       |
| Design Temp.         | °F           | 350                       |                | 150           |               |               |                       |
| No. Passes per Sh    |              | 1                         |                |               | -             |               |                       |
| Corrosion Allow.     | in           | 0.0625                    |                | 0.062         | 5             |               |                       |
| Connections          | In           | 1-1.0                     | )              | 2.0           | •             |               |                       |
| Size &               | Out          | 1-1.0                     |                | 2.0           |               |               |                       |
| Rating               | Intermediate | 0                         | ,<br>          | 0             |               |               |                       |
| . wainig             | internetate  | , v                       |                | Ű             |               |               |                       |
| Tube No              | 116          | OD 0.750 in               |                | Thk 0.065     | Length 4.00 f | t             | Pitch 0.93750 / 30.0° |
| Tube Type            | -            | PLAIN                     |                | Material      | _og.:         | •             |                       |
| Shell                | •            | I.D 12.00 OE              | ) in           | Shell Cover   |               | INT           |                       |
| Channel or Bonnet    | ł            | 1.0 12.00 01              |                | Channel Cove  | er            |               |                       |
| Tubesheet-Station    |              |                           |                | Tubesheet-Fl  |               |               |                       |
| Floating Head Cov    |              |                           |                | Impingement   |               | YES           |                       |
| Baffles Cross        |              | Type VERT-                | SEG            | %Cut 10.1 (A  |               | Spacing-cc    | 2.3                   |
| Baffles-Long         |              |                           |                | Seal Type     |               |               |                       |
| Supports-Tube        |              |                           | U-Bend         | 2001 1990     | Туре          |               |                       |
| Bypass Seal Arran    | gement       |                           | e bond         | Tube-Tubesh   |               |               |                       |
| Expansion Joint      | gement       |                           |                | Type          | Coroonit      |               |                       |
| Rho-V2 Inlet Nozzl   | ٥            | 459                       | Bundle Entra   |               | 10            | Bundle Exit   | 268                   |
| Gasket-Shellside     |              | -53                       | Tubeside       |               | 10            | Floating Head |                       |
| Code Requirement     | +            | ASME Section              | n 8, Divsion 1 |               |               | TEMA Class    |                       |
| Weight/Shell         | L            |                           | Filled with Wa | ator          |               | Bundle        | IX                    |
| Remarks:             |              |                           |                |               |               | Dunule        |                       |
| NEIIIdiks.           |              |                           |                |               |               |               |                       |

|                                     |                     |          |                | DRAWING NO               | REV            |
|-------------------------------------|---------------------|----------|----------------|--------------------------|----------------|
|                                     |                     |          |                | JOB NO NREL Contract ACC | -5-44027       |
| REVISIONS                           | PROC                | PROJ.    | CLIENT         |                          |                |
|                                     |                     |          |                |                          |                |
|                                     |                     | <u> </u> |                | 4                        |                |
|                                     |                     | r —      | 1              | 1                        |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
| D IS ESTIMATED AND MUST BE VERIFIED | BY FINAL MECHANICAL | DESIGN   |                |                          |                |
| ANCE FOR SUCTION OR DISCHARGE SN    |                     | I        |                | 1 1                      |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
| N <sub>2</sub>                      | 75.7                | <u> </u> |                |                          |                |
| Ar                                  | 0.9                 |          |                |                          |                |
| O <sub>2</sub>                      | 20.3                |          |                | <u>├</u> ───             |                |
| Vol. %<br>H <sub>2</sub> O          | 3.1                 |          |                | <u>├</u> ───             |                |
|                                     |                     |          |                |                          |                |
|                                     |                     |          |                |                          |                |
| (2)                                 | 0.75                | <u> </u> |                |                          |                |
| <b>)</b>                            | 1.36                |          |                |                          |                |
| PSI (2)                             |                     |          |                |                          |                |
| PSI (2)                             |                     |          |                |                          |                |
| E LOSS PSI (2)<br>PSI (2)           |                     |          |                |                          |                |
| PSI (2)                             |                     | <b> </b> |                |                          |                |
| <b>SS</b> PSI (2)                   |                     |          |                |                          |                |
| PSIA (2)                            |                     |          |                |                          |                |
| PSIA                                | 0.999               | <u> </u> |                |                          |                |
| ATURE F (2)                         | 157                 |          |                |                          |                |
| RE PSIA                             | 20                  |          |                |                          |                |
| ONS                                 |                     |          |                |                          |                |
| PSI                                 |                     |          |                |                          |                |
| PSI (1, 2)                          |                     | <b> </b> |                |                          |                |
| PSI (2)                             |                     |          |                |                          |                |
| F                                   | 90                  |          |                |                          |                |
| DN ACFM<br>PSIA                     | 54,910              |          |                |                          |                |
|                                     | 0.999               |          |                |                          |                |
| URE PSIA                            | 14.7                |          |                |                          |                |
| s                                   |                     |          |                |                          |                |
| Walue<br>@ F / PSIA                 | <u> </u>            |          |                |                          |                |
|                                     | 28.63               |          |                |                          |                |
| SCFM                                |                     |          |                |                          |                |
| SCFM<br>LB/HR                       | 51,965<br>235,200   |          |                |                          |                |
|                                     | Air                 |          |                |                          |                |
|                                     | Combustion Air      |          |                |                          |                |
|                                     |                     |          |                |                          |                |
| ER                                  |                     |          | Combustion Air | Combustion Air           | Combustion Air |

| SCFM<br>LB/HR<br>SCFM<br>Value<br>@ F / PSIA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>Syngas<br>120,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Syngas Compressor<br>Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Syng<br>Compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LB/HR<br>SCFM<br>Value                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LB/HR<br>SCFM<br>Value                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Syngas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Syngas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Syng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SCFM<br>Value                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90,448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88,044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Value                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 317,371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 232,617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 225,773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 223,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WF/FSIA                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.36<br>157 / 15.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.374<br>110 / 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.379<br>110 / 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3<br>110 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1377 13.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1107 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PSIA                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ACFM                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 131,756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48,531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17,936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PSIA                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | (1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PSI                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PSIA                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PSI (                                        | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PSI (                                        | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -31 (                                        | <u>,                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | PSIA         PSI         (PSI         (PSI         (PSI         (PSI         (PSIA         PSIA         PSIA <t< th=""><th>PSIA         PSI       (2)         PSI       (1, 2)         PSI       (1, 2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSI (2)       (2)</th><th>ACFM         131,756           PSIA         157.1           PSI         (2)           PSI         (1, 2)           PSI         0           PSI         0.9982           PSIA         35           (2)         344.2           0.9982         0.9982           PSI         (2)           PSI         (2)</th><th>ACFM         131,756         48,531           PSIA         157.1         110           PSI         (2)         110           PSI         (1, 2)         110           PSI         110         110           PSI         21         110           PSI         22         344.2         349.6           PSI         (2)         1001         1001           PSI         (2)         1001         1001           PSI         (2)         110         110           PSI         (2)         110         110           PSI         (2)         110         110           PSI         (2)         1110         110           PSI         (2)         111248         100251           PSI         (2)         112.36         16.42           PSI         CO         18.42         24.48           H2O         27.97         4.28</th><th>ACFM         131,756         48,531         17,936           SIA         157.1         110         110           SI         (2)         157.1         110         110           PSI         (1, 2)         100         110         110           PSI         (1, 2)         100         100         110           PSI         35         84         220         100         1003           PSIA         35         84         220         1001         1.003           PSIA         0.9982         1.001         1.003         1003           PSIA         100         1003         1003         1003           PSI         (2)         1001         1.003         1003           PSI         (2)         1003         1003         1003           PSI         (2)         1003         1003         1003           PSI         (2)         0.75         0.75         0.75</th><th>ACFM         131,756         48,531         17,936         6,5           SIA         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (1, 2)         100         100         111         110         110           PSI         0.9982         1.001         1.003         1.00         1.003         1.00           PSI         0.9982         1.001         1.003         1.00         1.003         1.00           PSI         (2)         100         1003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.01</th></t<> | PSIA         PSI       (2)         PSI       (1, 2)         PSI       (1, 2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSIA       (2)         PSI (2)       (2) | ACFM         131,756           PSIA         157.1           PSI         (2)           PSI         (1, 2)           PSI         0           PSI         0.9982           PSIA         35           (2)         344.2           0.9982         0.9982           PSI         (2)           PSI         (2) | ACFM         131,756         48,531           PSIA         157.1         110           PSI         (2)         110           PSI         (1, 2)         110           PSI         110         110           PSI         21         110           PSI         22         344.2         349.6           PSI         (2)         1001         1001           PSI         (2)         1001         1001           PSI         (2)         110         110           PSI         (2)         110         110           PSI         (2)         110         110           PSI         (2)         1110         110           PSI         (2)         111248         100251           PSI         (2)         112.36         16.42           PSI         CO         18.42         24.48           H2O         27.97         4.28 | ACFM         131,756         48,531         17,936           SIA         157.1         110         110           SI         (2)         157.1         110         110           PSI         (1, 2)         100         110         110           PSI         (1, 2)         100         100         110           PSI         35         84         220         100         1003           PSIA         35         84         220         1001         1.003           PSIA         0.9982         1.001         1.003         1003           PSIA         100         1003         1003         1003           PSI         (2)         1001         1.003         1003           PSI         (2)         1003         1003         1003           PSI         (2)         1003         1003         1003           PSI         (2)         0.75         0.75         0.75 | ACFM         131,756         48,531         17,936         6,5           SIA         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (2)         157.1         110         110         111           PSI         (1, 2)         100         100         111         110         110           PSI         0.9982         1.001         1.003         1.00         1.003         1.00           PSI         0.9982         1.001         1.003         1.00         1.003         1.00           PSI         (2)         100         1003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.003         1.00         1.01 |

| SERVICE<br>GAS HAI<br>NORMAI<br>DESIGN<br>MOL WT<br>Cp/Cv<br>SUCTION<br>SUC<br>COI<br>FLC<br>ORI<br>FLC<br>ORI<br>TEM<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>EFFICIEI<br>BHP<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>COI<br>COI<br>TOT<br>COMPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANDLED<br>AL FLOW<br>AL FLOW<br>N FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                      | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2) | K-420           Flue Gas Blower           Flue Gas           56,988           248,400           27.57           1.367           176 / 14.3           0.9982           71,490           175.8           14.7           182           0.9982 |              |        |            |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|------------|--------------------|
| GAS HAI       NORMAI       NORMAI       DESIGN       MOL       WT       Cp/Cv       SUCTION       SUCTION       SUCTION       DISCHAI       DISCHAI       DISCHAI       DISCHAI       DISCHAI       DISCHAI       EEFFICIE       BHP       COMPRE       BHP       COMPRE       GAS CO       INVER       GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANDLED<br>AL FLOW<br>AL FLOW<br>AL FLOW<br>T.<br>DN CONDITIONS<br>UCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>LOW AT SUCTION<br>COW AND COM AND COM AND COM<br>COM AND COM AND COM<br>COM br>COM AND COM<br>COM<br>COM<br>COM<br>COM<br>COM<br>COM<br>COM<br>COM<br>COM | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>F<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | Flue Gas<br>56,988<br>248,400<br>27.57<br>1.367<br>176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>175.8                                                                                                                                |              |        |            |                    |
| NORMAL           NORMAL           DESIGN           MOL           SUCTION           OTH           CON           DISCHAR           DISCHAR           DISCHAR           DISCHAR           DISCHAR           BIS           COMPRE           BHP           COMPRE           DRIVER           GAS CO           Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State | AL FLOW<br>AL FLOW<br>AL FLOW<br>N FLOW<br>T.<br>ON CONDITIONS<br>UCTION PRESSURE<br>OMPR. FACTOR @ SUCTION<br>OMPR. FACTOR @ SUCTION<br>OMPR. FACTOR @ SUCTION<br>OMPR. FACTOR @ SUCTION<br>SCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>F<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 56,988           248,400           27.57           1.367           176 / 14.3           0.9982           71,490           175.8           14.7           182                                                                               |              |        |            |                    |
| NORMAL<br>DESIGN<br>MOL WT<br>Cp/Cv<br>SUCTION<br>SUC<br>CON<br>FLC<br>ORI<br>ORI<br>ORI<br>ORI<br>ORI<br>ORI<br>ORI<br>ORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL FLOW<br>N FLOW<br>N FLOW<br>T.<br>DN CONDITIONS<br>UCTION PRESSURE<br>OMPR. FACTOR @ SUCTION<br>OWAT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LB/HR<br>SCFM<br>Value<br>@ F / PS<br>PSIA<br>F<br>PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 248,400<br>27.57<br>1.367<br>176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>14.7<br>14.7<br>182                                                                                                                                        |              |        |            |                    |
| DESIGN<br>MOL WT<br>Cp/Cv<br>SUCTO<br>SUC<br>CO<br>CO<br>TEM<br>OR<br>OR<br>OR<br>OR<br>OR<br>OR<br>OR<br>OR<br>OR<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N FLOW<br>AT.<br>DN CONDITIONS<br>UCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>OW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>DMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCFM<br>Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI<br>PSI                             | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 27.57<br>1.367<br>176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>14.7<br>14.7<br>182                                                                                                                                                   |              |        |            |                    |
| MOL WT<br>C <sub>p</sub> /C <sub>v</sub> SUCTOR SUC<br>SUC<br>COR COR TEM COR TEM COR TEM COR TEM COR COR COR COR COR COR COR COR COR COR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T.<br>ON CONDITIONS<br>UCTION PRESSURE<br>OMPR. FACTOR @ SUCTION<br>OW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value<br>@ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                      | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 1.367<br>176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>175.8<br>14.7<br>14.7<br>182                                                                                                                                                   |              |        |            |                    |
| Cop/Cv<br>SUCTION<br>SUC<br>COI<br>FLC<br>ORI<br>TEM<br>LINI<br>OTH<br>COI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>COI<br>DEL<br>LINI<br>COI<br>COI<br>COI<br>COI<br>COI<br>COI<br>COI<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DN CONDITIONS<br>JCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>LOW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>DMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | @ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                       | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 1.367<br>176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>175.8<br>14.7<br>14.7<br>182                                                                                                                                                   |              |        |            |                    |
| SUCTION<br>SUCTION<br>SUC<br>CON<br>FLC<br>ORI<br>TEM<br>DISCHAR<br>DIS<br>DISCHAR<br>DIS<br>DISCHAR<br>DIS<br>CON<br>DEL<br>LINI<br>EXC<br>CON<br>TOT<br>COMPRE<br>EFFICIEN<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>COMPRE<br>COMPRE<br>COMPRE<br>COMPRE<br>COMPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>OW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | @ F / PS<br>PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                       | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 176 / 14.3<br>14.3<br>0.9982<br>71,490<br>175.8<br>14.7<br>14.7<br>182                                                                                                                                                                     |              |        |            |                    |
| SUC<br>COI<br>FLC<br>ORI<br>TEM<br>LINI<br>OTI<br>COI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>OTI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>GAS COI<br>DRIVER<br>GAS COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>OW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSIA<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                           | (2)<br>(1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                      | 14.3<br>0.9982<br>71,490<br>175.8<br>175.8<br>14.7<br>182                                                                                                                                                                                  |              |        |            |                    |
| SUC<br>COI<br>FLC<br>ORI<br>TEM<br>LINI<br>OTI<br>COI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>DISCHAI<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>OTI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>GAS COI<br>DRIVER<br>GAS COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UCTION PRESSURE<br>DMPR. FACTOR @ SUCTION<br>OW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI                                                                                         | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 0.9982<br>71,490<br>175.8<br>175.8<br>14.7<br>182                                                                                                                                                                                          |              |        |            |                    |
| COI<br>FLC<br>ORI<br>TEM<br>LINI<br>OTH<br>COI<br>DISCHAI<br>DIS<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HE/<br>COI<br>TOT<br>COMPRE<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>GAS COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DMPR. FACTOR @ SUCTION<br>LOW AT SUCTION<br>RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>SCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACFM<br>PSIA<br>F<br>PSI<br>PSI<br>PSI<br>F<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI                                                                                         | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 0.9982<br>71,490<br>175.8<br>175.8<br>14.7<br>182                                                                                                                                                                                          |              |        |            |                    |
| ORI<br>TEM<br>LINI<br>OTH<br>COI<br>DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>OTH<br>COMPRE<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>BHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RIGIN<br>EMPERATURE<br>NE LOSS<br>THER LOSSES<br>DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSIA<br>F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                      | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 175.8<br>175.8<br>14.7<br>182                                                                                                                                                                                                              |              |        |            |                    |
| TEM<br>LINI<br>OTH<br>COI<br>DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>COI<br>COMPRE<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>BHP<br>COMPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EMPERATURE<br>NE LOSS<br>THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F<br>PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                              | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 14.7<br>182                                                                                                                                                                                                                                |              |        |            |                    |
| LINI<br>OTH<br>COI<br>DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COMPRE<br>EFFICIE<br>BHP<br>COMPRE<br>BHP<br>COMPRE<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NE LOSS<br>THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>SCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>EATER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSI<br>PSI<br>PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                           | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 14.7<br>182                                                                                                                                                                                                                                |              |        |            |                    |
| OTH<br>COI<br>DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>COI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THER LOSSES<br>ONTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSI<br>PSIA<br>F<br>PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                             | (1, 2)<br>(2)<br>(2)<br>(2)<br>(2)                             | 182                                                                                                                                                                                                                                        |              |        |            |                    |
| COI<br>DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>COI<br>TOT<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNTINGENCY<br>ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>DMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSIA<br>F<br>PSIA<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                         | (2)<br>(2)<br>(2)                                              | 182                                                                                                                                                                                                                                        |              |        |            |                    |
| DISCHAI<br>DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>TOT<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ARGE CONDITIONS<br>ISCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSIA<br>F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                                 | (2)<br>(2)                                                     | 182                                                                                                                                                                                                                                        |              |        |            |                    |
| DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>TOI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                                         | (2)<br>(2)                                                     | 182                                                                                                                                                                                                                                        |              |        |            |                    |
| DIS<br>DIS<br>COI<br>DEL<br>LINI<br>EXC<br>HEA<br>COI<br>TOI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCH. PRESSURE<br>ISCH. TEMPERATURE<br>OMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                                         | (2)<br>(2)                                                     | 182                                                                                                                                                                                                                                        |              |        |            |                    |
| DIS<br>COI<br>DEL<br>LINI<br>EXC<br>COI<br>OTH<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS COI<br>COMPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCH. TEMPERATURE<br>DMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                                         | (2)<br>(2)                                                     | 182                                                                                                                                                                                                                                        |              |        |            | <u> </u>           |
| COI<br>DEL<br>LIN<br>EXC<br>COI<br>OTH<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS COI<br>COMPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DMPR. FACTOR @ DISCH.<br>ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSIA<br>PSI<br>PSI<br>PSI<br>PSI                                                                                                                                              | (2)<br>(2)                                                     |                                                                                                                                                                                                                                            |              |        |            | +                  |
| DEL<br>LIN<br>EXC<br>COI<br>OTH<br>COMPRE<br>EFFICIEL<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELIVERY<br>NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSI<br>PSI<br>PSI<br>PSI                                                                                                                                                      | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            | 1                  |
| LINI<br>EXC<br>OI<br>COI<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NE LOSS<br>KCHANGER LOSS<br>EATER LOSS<br>DNTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSI<br>PSI<br>PSI<br>PSI                                                                                                                                                      | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            | 1                  |
| EXC<br>HEA<br>COI<br>OTH<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KCHANGER LOSS<br>EATER LOSS<br>ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSI<br>PSI<br>PSI                                                                                                                                                             | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| COI<br>OTH<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ONTROL VALVE LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSI                                                                                                                                                                           | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| OTH<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
| COI<br>TOT<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THER LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| TOT<br>COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSI                                                                                                                                                                           | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| COMPRE<br>EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONTINGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSI                                                                                                                                                                           | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| EFFICIEI<br>BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OTAL LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSI                                                                                                                                                                           | (2)                                                            |                                                                                                                                                                                                                                            |              |        |            |                    |
| BHP<br>COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RESSION RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               |                                                                | 1.028                                                                                                                                                                                                                                      |              |        |            |                    |
| COMPRE<br>DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               | (2)                                                            | 0.75                                                                                                                                                                                                                                       |              |        |            |                    |
| DRIVER<br>GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | (2)                                                            | 177                                                                                                                                                                                                                                        |              |        |            |                    |
| GAS CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            | +                  |
| (1) INCLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OMPOSITION: Vol. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO <sub>2</sub>                                                                                                                                                               |                                                                | 0.03                                                                                                                                                                                                                                       |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H₂O                                                                                                                                                                           |                                                                | 3.1                                                                                                                                                                                                                                        |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O <sub>2</sub>                                                                                                                                                                |                                                                | 20.29                                                                                                                                                                                                                                      |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ar                                                                                                                                                                            |                                                                | 0.91                                                                                                                                                                                                                                       |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N <sub>2</sub>                                                                                                                                                                |                                                                | 75.67                                                                                                                                                                                                                                      |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            | <u> </u>     |        |            | <b></b>            |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            | ┼────              |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            | ┥────              |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            | 1            |        | I          | <u> </u>           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LUDES ALLOWANCE FOR SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            | DEGION       |        |            |                    |
| (2) VALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UE TABULATED IS ESTIMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ED AND MU                                                                                                                                                                     | IST BE VERIFIE                                                 | D BY FINAL MECHANICAL                                                                                                                                                                                                                      | LDESIGN      |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              |        | 4          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                            |              | ļ      |            |                    |
| NO D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | IONS                                                           | PROC                                                                                                                                                                                                                                       | PROJ.        | CLIENT |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REVIS                                                                                                                                                                         |                                                                |                                                                                                                                                                                                                                            |              |        |            | ntract ACO-5-44027 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REVIS                                                                                                                                                                         |                                                                |                                                                                                                                                                                                                                            | CL Gasifier) |        | DRAWING NO | REV                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | IFICATION: Low                                                 | Pressure Syngas Case (B                                                                                                                                                                                                                    |              |        |            | I                  |

| CON                            | IPRESSOR     | NUMBER           |                   |                                          | K-500A                    | K-5          | 00B          | 1             |              |          |
|--------------------------------|--------------|------------------|-------------------|------------------------------------------|---------------------------|--------------|--------------|---------------|--------------|----------|
|                                |              | NOMBER           |                   |                                          | MeOH Compressor           | 1            | ompressor    |               |              |          |
| SER                            | VICE         |                  |                   |                                          | Stage 1                   |              | ge 2         |               |              |          |
| GAS                            | HANDLED      |                  |                   |                                          | Treated Syngas            | Treated      | l Syngas     |               |              |          |
|                                | RMAL FLOW    |                  | SCFM              |                                          | 73,055                    | 73,          | 055          |               |              |          |
|                                | RMAL FLOW    | 1                | LB/HR             |                                          | 127,035                   | 127          | ,035         |               |              |          |
|                                | IGN FLOW     |                  | SCFM              |                                          |                           |              |              |               |              |          |
| MOL                            | <u>. wт.</u> |                  |                   |                                          | 10.99                     |              | .99          |               | _            |          |
| C <sub>p</sub> /C <sub>v</sub> |              |                  | Value<br>@ F / PS | 14                                       | 1.418<br>115 / 415        |              | 424<br>/ 995 |               |              |          |
| SUC                            |              | DITIONS          | @1/10             |                                          | 1137413                   | 200          | / 335        |               |              |          |
|                                |              | PRESSURE         | PSIA              |                                          | 415                       | 9            | 95           |               |              |          |
|                                |              | ACTOR @ SUCTION  |                   |                                          | 1.006                     |              | 021          |               |              |          |
|                                | FLOW AT      | SUCTION          | ACFM              |                                          | 2,881                     | 1,4          | 400          |               |              |          |
|                                | ORIGIN       |                  | PSIA              |                                          |                           |              |              |               |              |          |
|                                | TEMPERA      |                  | F                 |                                          | 110                       | 2            | 00           |               | _            |          |
|                                | LINE LOSS    |                  | PSI               | (2)                                      |                           |              |              |               | _            |          |
|                                | OTHER LO     |                  | PSI               | (1, 2)                                   | <u> </u>                  |              |              |               |              |          |
|                                | CONTINGE     |                  | PSI               |                                          | <u> </u>                  | <u> </u>     |              |               |              |          |
| DISC                           | CHARGE CO    | ONDITIONS        |                   |                                          |                           |              |              |               |              |          |
|                                | DISCH. PR    |                  | PSIA              |                                          | 1,000                     | 1.           | 160          |               |              |          |
|                                |              | MPERATURE        | F                 | (2)                                      | 326                       |              | 9.3          |               |              |          |
|                                |              | ACTOR @ DISCH.   |                   |                                          | 1.023                     |              | 026          |               |              |          |
|                                | DELIVERY     |                  | PSIA              |                                          |                           |              |              |               |              |          |
|                                | LINE LOSS    | 3                | PSI               | (2)                                      |                           |              |              |               |              |          |
|                                | EXCHANG      | ER LOSS          | PSI               | (2)                                      |                           |              |              |               |              |          |
|                                | HEATER L     |                  | PSI               | (2)                                      |                           |              |              |               |              |          |
|                                |              | VALVE LOSS       | PSI               | (2)                                      |                           |              |              |               |              |          |
|                                | OTHER LO     |                  | PSI               | (2)                                      |                           |              |              |               |              |          |
|                                | CONTINGE     |                  | PSI<br>PSI        | (2)                                      |                           |              |              |               | -            |          |
|                                | IPRESSION    |                  | 1.01              | (2)                                      | 2.41                      | 1            | .17          |               |              |          |
|                                |              |                  |                   | (2)                                      | 0.75                      |              | .75          |               |              |          |
| BHP                            |              |                  |                   | (2)                                      | 7,377                     |              | 340          |               |              |          |
| CON                            | IPRESSOR     | TYPE             |                   | ••                                       |                           |              |              |               |              |          |
| DRI\                           | /ER TYPE     |                  |                   |                                          |                           |              |              |               |              |          |
| GAS                            | COMPOSI      | TION: Vol. %     |                   |                                          |                           |              |              |               |              |          |
|                                |              |                  |                   | H₂                                       | 65.45                     |              | .45          |               |              |          |
|                                |              |                  |                   | CO <sub>2</sub>                          | 1.63                      |              | .63          |               |              |          |
|                                |              |                  |                   | <u>CO</u><br>H <sub>2</sub> 0            | 30.3<br>0.26              |              | 0.3<br>.26   |               |              |          |
|                                |              |                  |                   | CH <sub>4</sub>                          | 1.96                      |              | .96          |               | _            |          |
|                                |              |                  |                   | C <sub>2</sub> H <sub>2</sub>            | 0.03                      |              | .03          |               | -            |          |
|                                |              |                  |                   | C <sub>2</sub> H <sub>4</sub>            | 0.28                      |              | 28           |               |              |          |
|                                |              |                  |                   | C <sub>2</sub> H <sub>6</sub>            | 0.00002                   | 0.00         | 0002         |               |              |          |
|                                |              |                  |                   | Benzene (C <sub>6</sub> H <sub>6</sub> ) | 0.00008                   | 0.00         | 8000         |               |              |          |
|                                |              |                  |                   | Tar (C <sub>10</sub> H <sub>8</sub> )    | 0.000001                  |              | 0001         |               |              |          |
|                                |              |                  |                   | NH <sub>3</sub>                          | 0.01                      |              | .01          |               |              |          |
|                                |              |                  |                   | N <sub>2</sub>                           | 0.095                     | 0.0          | 095          |               | _            |          |
|                                |              | LLOWANCE FOR SUG |                   |                                          | BER<br>( FINAL MECHANICAL | DESIGN       |              |               |              |          |
| NO                             | DATE         |                  | REVISI            | ONS                                      | PROC                      | PROJ.        | CLIENT       |               |              | - / /007 |
|                                |              |                  |                   |                                          |                           |              |              | JOB NO NREL C | untract ACO- |          |
|                                |              | NREL BION        | MASS GASI         | FICATION: Low Pre                        | ssure Syngas Case (B0     | CL Gasifier) |              | DRAWING NO    |              | REV      |
|                                |              |                  |                   |                                          |                           |              |              |               |              |          |
|                                |              |                  |                   |                                          |                           |              |              |               |              |          |

| M-601A<br>Steam Turbine -<br>Extraction Stage 1<br>Steam<br>88,402<br>251,800<br>18.02<br>1.384<br>1000 / 1265<br>0.9332<br>2,691<br>1000<br>1000<br>487<br>0.977 | M-601B Steam Turbine - Extraction Stage 2 Steam 81,815 232,900 18.02 1.336 564.8 / 165 100 0.977 21,390 487 487 50 50 376 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Extraction Stage 1 Steam 88,402 251,800 18.02 1.384 1000 / 1265 0.9332 2,691 2,691 1000 1000 1000 1000 487                                                        | Extraction Stage 2<br>Steam<br>81,815<br>232,900<br>18.02<br>1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>487 | Image: section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t |                                                  |
| Steam<br>88,402<br>251,800<br>18.02<br>1.384<br>1000 / 1265<br>0.9332<br>2,691<br>1000<br>1000<br>487                                                             | <u>Steam</u><br>81,815<br>232,900<br>18.02<br>1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>50                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 88,402<br>251,800<br>18.02<br>1.384<br>1000 / 1265<br>0.9332<br>2,691<br>1000<br>1000<br>487                                                                      | 81,815<br>232,900<br>18.02<br>1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>487                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 251,800<br>18.02<br>1.384<br>1000 / 1265<br>1265<br>0.9332<br>2,691<br>1000<br>1000<br>487                                                                        | 232,900<br>18.02<br>1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>50                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1.384<br>1000 / 1265<br>0.9332<br>2,691<br>1000<br>100<br>487                                                                                                     | 1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>50                                                               | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 1.384<br>1000 / 1265<br>0.9332<br>2,691<br>1000<br>100<br>487                                                                                                     | 1.336<br>564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>50                                                               | Image: set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of th |                                                  |
| 1000 / 1265<br>1265<br>0.9332<br>2,691<br>1000<br>100<br>487                                                                                                      | 564.8 / 165<br>100<br>0.977<br>21,390<br>487<br>50                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1265<br>0.9332<br>2,691<br>1000<br>1000<br>487                                                                                                                    | 100<br>0.977<br>21,390<br>487<br>50                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 0.9332<br>2,691<br>1000<br>1000<br>100<br>487                                                                                                                     | 0.977<br>21,390<br>487<br>50                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 0.9332<br>2,691<br>1000<br>1000<br>100<br>487                                                                                                                     | 0.977<br>21,390<br>487<br>50                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 2,691<br>1000<br>1000<br>100<br>487                                                                                                                               | 21,390<br>487<br>50                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1000<br>100<br>100<br>487                                                                                                                                         | 487                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 100<br>487                                                                                                                                                        | 50                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 100<br>487                                                                                                                                                        | 50                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 487                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 487                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 487                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 487                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 487                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   | 376                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 0.977                                                                                                                                                             |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   | 0.9833                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           | ┼──┼──                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| -                                                                                                                                                                 | -                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 0.75                                                                                                                                                              | 0.75                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 16,067                                                                                                                                                            | 3,343                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| Steam                                                                                                                                                             | Steam                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           | <b>↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1000/                                                                                                                                                             | 1000/                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 100%                                                                                                                                                              | 100%                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           | <u>├</u> ───                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| ER<br>FINAL MECHANICAL                                                                                                                                            |                                                                                                                           | L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                                                                                                                                                   | 0.75<br>16,067<br>Steam<br>100%                                                                                           | 0.75 0.75<br>16,067 3,343<br>Steam Steam<br>100% 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75     0.75       16,067     3,343       Steam |

| Site Location                            | (Note: Four                          | (4) paral                                            | el cyclones                                       | 5)                              |                            |                      | Date                          |                                           |                        | Rev.                 |
|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------|----------------------------|----------------------|-------------------------------|-------------------------------------------|------------------------|----------------------|
|                                          |                                      |                                                      | SERV                                              | ICE OF LOW F                    | PRESSURE UN                | T S-100 and          | S-101                         |                                           |                        |                      |
| nlet Conditior                           | าร                                   |                                                      |                                                   | Flow                            | Viscosity                  | Density              | Molecular<br>Weight<br>(Ave.) | Particle<br>Size (mm)<br>(Stokes'<br>MMD) | Volumetric<br>Flowrate | Temperature          |
|                                          |                                      |                                                      |                                                   | lb/h                            | lb/ft-sec                  | lb/ft3               | lb/mole                       |                                           | acfm                   | ۴F                   |
| Bas (Split into fou                      | r parallel flows                     | )                                                    |                                                   | 316,369.00                      | 2.35 x 10-5                | 0.03500              | 18.7                          | <u> </u>                                  | 150,652.00             | 1,59                 |
| articulate                               |                                      |                                                      |                                                   | 40,407.00                       |                            | 62.40                |                               | 60                                        |                        |                      |
| as Inlet Pressure                        | (psia)                               |                                                      |                                                   | 33.00                           |                            |                      |                               |                                           |                        |                      |
| as Discharge Pre                         | ssure (psig)                         |                                                      |                                                   | 32.64                           |                            |                      |                               |                                           |                        |                      |
| Pressure Drop, Max<br>Design/Test Pressu |                                      | )                                                    |                                                   | 10.48<br>33.00                  |                            |                      |                               |                                           |                        |                      |
| esign/Test Press                         |                                      |                                                      |                                                   | 50                              |                            |                      |                               |                                           |                        |                      |
| esign Separation                         |                                      | utpoint (%)                                          |                                                   | 98                              |                            |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| mery Design Calc                         | ulations Summ                        |                                                      | Uninsulated                                       | e Only)                         |                            |                      |                               |                                           |                        |                      |
| lechanical Sizing                        |                                      | Inside<br>Diam (in)                                  | Outside Diam<br>(in)                              |                                 | ID (in)                    | OD (in)              | Thickness (in)                |                                           |                        | Overall Heig<br>(ft) |
| Connections Size<br>& Rating             |                                      | 48                                                   |                                                   | Upper Shell                     | 82                         | 84                   | 1                             | ASME VIII                                 |                        |                      |
| a nating                                 | Out<br>Bottom                        | 36<br>TBD                                            | 46                                                | Inner Tube<br>Cone              | 36                         |                      | 1                             | ASME VIII                                 |                        |                      |
|                                          |                                      |                                                      |                                                   | Refractory                      | 74                         |                      | 4                             |                                           |                        |                      |
|                                          | Com<br>Design<br>Temperature<br>(°F) | ponent Dat<br>Solids<br>Removal<br>Flowrate<br>(CFM) | a<br>Differential<br>Design<br>Pressure<br>(psig) | Туре                            | Upper S                    |                      | ne Body Mate                  |                                           |                        | ozzles               |
| Rotary Air Lock                          | 1598                                 |                                                      | (psig)                                            |                                 | Inner Wall                 | Outer Shell          | Inner Wall                    | Outer Shell                               | Inner Wall             | Outer Shell          |
| evel Indicator                           | 1598                                 |                                                      |                                                   |                                 | Cercast™                   | MS                   | Cercast™                      | MS                                        | Cercast™               | MS                   |
|                                          |                                      |                                                      |                                                   |                                 | Inner Tube<br>MS           |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   |                                 | IVI3                       |                      |                               |                                           |                        |                      |
| /endor/Supplier                          | <b>Specifications</b>                | and Price                                            | Quote                                             |                                 |                            |                      |                               |                                           |                        |                      |
| isher-Klosterma                          |                                      |                                                      |                                                   |                                 |                            | (Refer to Ver        | dor Communi                   | cations and D                             | ata Sheets)            |                      |
| yan Bruner, Sal<br>O. Box 11190          | es Manager                           |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| ousville, Ky                             |                                      |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| h: 502-572-4000                          |                                      |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| Email: rab@fkinc                         | .com                                 |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| Recommendation:                          | Replace S-10                         | 0 and S-10                                           | 1 with 4 cvclor                                   | es operated in                  | parallel using sr          | olit air flow:       |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| our (4) XQ120-4<br>Design, fabricated    |                                      |                                                      |                                                   |                                 | ures:<br>Interior surface  | s to be liped y      | with 4" of Vosu               | ius Coreast                               | 2200 opstable i        | rofractory           |
| 8/8" plate carbon s                      |                                      |                                                      | IT AGIVIE VESS                                    |                                 | All welding per            |                      |                               |                                           |                        | renaciony            |
| Oust receiver section                    | ion with flanged                     | d discharge                                          |                                                   |                                 | Exterior to be s           |                      |                               |                                           |                        | n paint              |
| 0"Ø gas inlet flar                       |                                      |                                                      |                                                   |                                 | Design pressur             |                      | 33                            |                                           |                        |                      |
| 8"Ø verticle gas                         |                                      |                                                      |                                                   |                                 | Design Temper              | rature (F)           | 650                           |                                           |                        |                      |
| Approximate Over                         | all Dimensions:                      |                                                      | <mark>7 ft⊘ x 35 ft</mark>                        | tall                            |                            |                      |                               |                                           |                        |                      |
|                                          |                                      | 1                                                    |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| Bas Conditions a                         |                                      |                                                      |                                                   |                                 | onditions at Inle          |                      |                               |                                           |                        |                      |
| /olume per cylon<br>Density (Ibm/ft3)    | ne (acfm)                            | 37,663<br>0.035                                      |                                                   | Specific Grav<br>Dust Loading   |                            | <u>1.000</u><br>31.3 |                               |                                           |                        |                      |
| /iscosity (lbm/ft-                       | sec)                                 | 2.53E-05                                             |                                                   | Base Loading                    |                            | 31.3                 |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   |                                 |                            |                      |                               |                                           |                        |                      |
| nlet Velocity (ft/s<br>lo load pres. dro |                                      | 78.46                                                |                                                   | Fraction Effic<br>Dia.(microns) | iencies: Stoke<br>Weight % |                      | ticiency                      |                                           |                        |                      |
| full load pres. Dr                       | op (in. W.C.)                        | 12.0                                                 |                                                   | Dia.(Inicrons)                  |                            |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 3.5                             | 16.3                       |                      |                               |                                           |                        |                      |
|                                          |                                      | <b> </b>                                             |                                                   | 4.5                             | 21.44<br>26.75             |                      |                               |                                           |                        |                      |
|                                          | L                                    |                                                      |                                                   | 4.5                             |                            |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 5.5                             | 37.27                      |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | <u>6.5</u><br>7.5               | 42.27<br>51.48             |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 8.5                             | 51.48                      |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 9.5                             | 66.29                      |                      |                               |                                           |                        |                      |
|                                          |                                      | <u> </u>                                             |                                                   | 10.5                            | 71.99                      |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | <u>13</u><br>17                 | 82.36<br>89.12             |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 24                              | 94.36                      |                      |                               |                                           |                        |                      |
|                                          |                                      |                                                      |                                                   | 34                              | 97.39                      |                      |                               |                                           |                        |                      |
|                                          |                                      | 1                                                    | 1                                                 | 89                              | 99.83                      |                      |                               |                                           |                        |                      |
| Drice (200                               |                                      | ¢ 44                                                 | 225 000 00                                        |                                 |                            |                      |                               |                                           |                        |                      |
| Price (200)<br>Remarks: Inlet an         |                                      |                                                      | 225,000.00                                        | her-Klostermar                  | a unite for these          | four cylones         | Estimated co                  | st of splitter a                          | and collection is      | \$25,000             |

| Site Location                                          |                               |                               |                                    |                                 |                            |                      | Date                |                                   |                        | Rev.                  |
|--------------------------------------------------------|-------------------------------|-------------------------------|------------------------------------|---------------------------------|----------------------------|----------------------|---------------------|-----------------------------------|------------------------|-----------------------|
|                                                        |                               |                               | 5                                  | SERVICE OF L                    | OW PRESSURE                | E UNIT S-102         |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | Flow                            | Viscosity                  | Density              | Molecular<br>Weight | Particle<br>Size (mm)<br>(Stokes' | Volumetric<br>Flowrate | Temperature           |
| Inlet Condition                                        | າຣ                            |                               |                                    |                                 |                            |                      | (Ave.)              | MMD)                              |                        |                       |
| Gas                                                    |                               |                               |                                    | lb/h<br>328,979.00              | BTU/Ib°F<br>2.78E-05       | lb/ft3<br>0.34470    | lb/mole<br>16.7     |                                   | acfm<br>150,612.01     | •F<br>1,59            |
| Particulate                                            |                               |                               |                                    | 40,407.00                       | 2.702-03                   | 62.40                | 10.7                | 60                                | 130,012.01             | 1,00                  |
|                                                        |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Gas Inlet Pressure                                     |                               |                               |                                    | 33.00                           |                            |                      |                     |                                   |                        |                       |
| Gas Discharge Pres<br>Pressure Drop, Max               |                               | <u> </u>                      |                                    | 32.64<br>10.00                  |                            |                      |                     |                                   |                        |                       |
| Design/Test Pressu                                     |                               | /                             |                                    | 33.00                           |                            |                      |                     |                                   |                        |                       |
| Design Particulate                                     | Cutpoint                      |                               |                                    | 50                              |                            |                      |                     |                                   |                        |                       |
| Design Separation                                      | Efficiency at Cu              | utpoint (%)                   |                                    | 98                              |                            |                      |                     |                                   |                        |                       |
| Emery Design Calc                                      | ulations Summ                 | ary for S-102                 | (for Reference                     | Only)                           |                            |                      |                     |                                   |                        |                       |
| Mechanical Sizing                                      |                               | Inside Diam<br>(in)           | Uninsulated<br>Outside Diam        |                                 | ID (in)                    | OD (in)              | Thickness (in)      | Designation                       |                        | Overall Heigh<br>(ft) |
| Connections Size                                       | In                            | 34                            | (in)<br>44                         | Upper Shell                     | 58                         | 60                   | 1                   | ASME VIII                         |                        | ()                    |
| & Rating                                               | Out                           | 26                            |                                    | Inner Tube                      | 34                         |                      |                     |                                   |                        |                       |
|                                                        | Bottom                        |                               |                                    | Cone                            |                            |                      | 1                   | ASME VIII                         |                        |                       |
|                                                        |                               | ponent Dat                    |                                    | Refractory                      | 50                         | Cuolo                | 4<br>ne Body Mate   | rials of Con                      | truction               |                       |
|                                                        | Design<br>Temperature<br>(°F) | Solids<br>Removal<br>Flowrate | Differential<br>Design<br>Pressure | Туре                            | Upper S                    |                      | Lower Coni          |                                   |                        | ozzles                |
| Rotary Air Lock                                        | 1598                          | (CFM)<br>20.4                 | (psig)<br>15                       |                                 | Inner Wall                 | Outer Shell          | Inner Wall          | Outer Shell                       | Inner Wall             | Outer Shell           |
| Level Indicator                                        | 1598                          | 20.4                          | 13                                 |                                 | Cercast™                   | MS                   | Cercast™            | MS                                | Cercast™               | MS                    |
|                                                        |                               |                               |                                    |                                 | Inner Tube                 |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    |                                 | MS                         |                      |                     |                                   |                        |                       |
| Vendor/Supplier                                        | Spacifications                | and Price (                   |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Fisher-Klosterma                                       |                               |                               |                                    | 1                               |                            | (Refer to Ver        | dor Communi         | cations and D                     | ata Sheets)            |                       |
| Ryan Bruner, Sale                                      |                               |                               |                                    |                                 |                            | (                    |                     |                                   |                        |                       |
| P.O. Box 11190                                         |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Lousville, Ky<br>Ph: 502-572-4000                      | ) oxt 212                     |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Email: rab@fkinc                                       |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Recommendation:                                        | Quote Pendin                  | g                             |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Four (4) XQ120-4                                       | 8M cyclone as                 | semblies ea                   | ch with the f                      | l<br>ollowing Featu             | Ires.                      |                      |                     |                                   |                        |                       |
| Design, fabricated,                                    |                               |                               |                                    |                                 | Interior surface           | s to be lined v      | vith 4" of Vesu     | vius Cercast                      | 3300 castable          | refractory            |
| 3/8" plate carbon s                                    |                               |                               |                                    |                                 | All welding per            |                      |                     |                                   |                        |                       |
| Dust receiver secti                                    |                               | discharge                     |                                    |                                 | Exterior to be s           |                      |                     |                                   | ature aluminum         | n paint               |
| 40"Ø gas inlet flar                                    |                               |                               |                                    |                                 | Design pressur             |                      | 460                 |                                   |                        |                       |
| 48"Ø verticle gas<br>Approximate Overa                 |                               |                               | <mark>5 ft∅ x 25 ft t</mark>       |                                 | Design Temper              | rature (F)           | 650                 | <u> </u>                          |                        |                       |
| pproximate over                                        |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    |                                 |                            |                      |                     |                                   |                        |                       |
| Gas Conditions a                                       |                               | 45.000                        |                                    |                                 | onditions at Inle          |                      |                     |                                   |                        |                       |
| Volume per cylon<br>Density (Ibm/ft3)                  | ie (acim)                     | 15,906<br>0,3447              |                                    | Specific Grav<br>Dust Loading   |                            | <u>1.000</u><br>7.33 |                     |                                   |                        |                       |
| Viscosity (Ibm/ft-                                     | sec)                          | 2.78E-05                      |                                    |                                 |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    |                                 |                            | <b>-</b>             |                     |                                   |                        |                       |
| Inlet Velocity (ft/s<br>No load pres. dro              |                               | 70.11<br>73.64                |                                    | Fraction Effic<br>Dia.(microns) | iencies: Stoke<br>Weight % |                      | liciency            |                                   |                        |                       |
| Full load pres. Dr                                     |                               | 63.69                         |                                    | 2.5                             | 4.91                       |                      | 1                   |                                   |                        |                       |
| •                                                      |                               |                               |                                    | 3.5                             | 12.88                      |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 4.5                             | 22.89                      |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 5.5                             | 28.13<br>33.31             |                      | ł                   |                                   |                        |                       |
|                                                        |                               |                               |                                    | 6                               |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 7                               | 47.7                       |                      |                     |                                   |                        |                       |
|                                                        |                               | <u> </u>                      |                                    | 8                               |                            |                      | ļ                   |                                   |                        |                       |
|                                                        |                               |                               |                                    | 9<br>10                         |                            |                      | <u> </u>            | <u> </u>                          |                        |                       |
|                                                        |                               |                               |                                    | 10                              |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 13                              | 81.64                      |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 17                              |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               | 1                                  | 24                              |                            |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 34                              | 97.56                      |                      |                     |                                   |                        |                       |
|                                                        |                               |                               |                                    | 34<br>74                        |                            |                      |                     |                                   |                        |                       |
| Price (200                                             | 5 U.S.\$)                     | \$ 3                          | 370,000.00                         |                                 |                            |                      |                     |                                   |                        |                       |
| Price (200<br>Remarks: Inlet an<br>Refer to supplier d | d outlet manifo               | lding is not ir               | ncluded in Fish                    | 74<br>ner-Klosterman            | 99.67<br>quote for these   | four cylones.        | Estimated cos       | t of splitter a                   | nd collection is       | \$25,000.             |

| SERVICE OF LOW PRESSURE VMT 5-103           Inite Conditions         Flow         Voscally         Density         Weight<br>Weight<br>(Avs.)         Particle<br>State<br>(Avs.)         Particle<br>(Avs.)         Particle<br>State<br>(Avs.)         Particle<br>(Avs.)         Particle<br>(Avs.) <th< th=""><th>Site Location</th><th></th><th></th><th></th><th></th><th>e Specification</th><th></th><th>Date</th><th></th><th></th><th>Rev.</th></th<>                                                                                                                                                                                                        | Site Location                    |                  |                     |                         |                      | e Specification      |                | Date                |                       |                        | Rev.                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------|-------------------------|----------------------|----------------------|----------------|---------------------|-----------------------|------------------------|----------------------|
| Flow         Voccasity         Density         Molecular<br>Network         Flow<br>(No.9)         Density         Molecular<br>Network         Energy<br>(No.9)         Summaria         Tem<br>Provide           sas         106         107         Bit Marco         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00         7.288.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  | _                   |                         | SERVICE OF L         | OW PRESSUR           | E UNIT S-103   |                     |                       |                        |                      |
| Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio                   | nlet Condition                   | c                |                     |                         |                      |                      |                | Molecular<br>Weight | Size (mm)<br>(Stokes' |                        | Temperatur           |
| as         246.386.00         2.87.00         0.03501         27.6         7.289.00           as load Pressure (pth)         33.00         1.00         60         1.00         60           as load Pressure (pth)         32.00         1.00         60         1.00         60           as load Pressure (pth)         32.00         1.00         1.00         1.00         1.00         1.00           Statistical Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statis Statis Statistics Statistis Statistics Statistics Statis Stat                                                                                                                                                                                                                                                                                                                        | met conultion                    | 5                |                     |                         | lb/h                 | lb/ft-sec            | lb/ft3         | lb/mole             | MMD)                  | acfm                   | °F                   |
| sas intel Pressure (psis)         33.00         1         1         1           as Dichtarge Pressure (psis)         32.64         1         1         1           as Dichtarge Pressure (psis)         32.64         1         1         1           besign Particulate Curpoint         50.64         1         1         1           besign Particulate Curpoint (%)         50         1         1         1         1           besign Particulate Curpoint (%)         0         0         0         0         1         1         1         1           besign Particulate Curpoint (%)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gas                              |                  |                     |                         |                      |                      |                |                     |                       |                        | 1,7                  |
| base Discharge Pressure (prig)         32,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Particulate                      |                  |                     |                         | 40,407.00            |                      | 1.00           |                     | 60                    |                        |                      |
| ase Decharge Pressure (psig)         32,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Description         Max Allow (*, Mc.)         1000         Image: Comparison of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                               |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Design Protective Cupoint         33.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                  | )                   |                         |                      |                      |                |                     |                       |                        |                      |
| Design Paraticulate Cutpoint (%)         60         1         1         1           imary Design Catcutations Summary for 5.102 (br) Reference only)         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  | /                   |                         |                      |                      |                |                     |                       |                        |                      |
| Analysis of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Design Particulate               | Cutpoint         |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Mechanical Stateg         Inside<br>(m)         Uninsulted<br>(m)         D0 (n)         D0 (n)         Thickness (n)         Designation         Over 6<br>(m)           6. Rating<br>0 at 16         201         201         201         201         46         48         1         ASME VIII         1           6. Rating<br>0 at 16         201         10         201         10         1         ASME VIII         1           8. Rating<br>0 at 10         Southall         Refractory         3.8         1         1         ASME VIII         1           0 at 201         Southall States         Southall States         Type         Upper Soction         Lower Conical soctian         Nezzles           201 ary Air Lock         9.38         20.4         15         Inner Wall         Outer Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Design Separation                | Efficiency at Cu | itpoint (%)         |                         | 98                   |                      |                |                     |                       |                        |                      |
| Mechanical Sizing         Inside<br>(m)         Uninsulated<br>(m)         D0 (n)         D0 (n)         D0 (n)         Thickness (n)         Designation         Over 6<br>(m)           6 Reting         0:t         26         26         26         46         48         ASME VIII         46           8 Reting         0:t         16         26         16         4         4         4           Bottom         16         20         16         20         46         4         4           Bottom         16         20         17         Refractory         38         Cyclone Body Matrials of Construction         Nezries           Rolary Air Lock         338         20.4         15         Inner Wait         Outer Shell         Inner Wait         Outer Shell         Inner Wait         Nezries           Rolary Air Lock         338         20.4         15         Inner Wait         Outer Shell         Inner Wait         Nezries         Nezries           WeinderStauppiler         20         MS         Cereast <sup>10</sup> MS         Cereast <sup>10</sup> NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emony Decign Colo                | ulationa Summ    | onu for C 10        | (for Deference          | o Only)              |                      |                |                     |                       |                        |                      |
| Metchanical Sizing         Distriction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                            | mery Design Calc                 | ulations Summa   |                     |                         | e Only)              |                      |                |                     |                       |                        |                      |
| Connections Size         In         28         101         36 (upper Shell)         46         48         1         ASME VIII         ASME VIII           Bottom         Conne         18         18         18         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mechanical Sizing                |                  |                     | Outside Diam            |                      | ID (in)              | OD (in)        | Thickness (in)      | Designation           |                        | Overall Heig<br>(ft) |
| & Rating         Out         18         28 [Inner Tube         18         4         4           Battom         Concount Data         Concount Data         Cyclone Body Materials of Construction         Cyclone Body Materials of Construction         Nozzles           Tensprature         Tensprature         Tensprature         Type         Upper Section         Lower Conical section         Nozzles           Kolary Air Lock         938         Concorasting         Mis         Cercasting         Mis         Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Connections Size                 | In               | 26                  |                         | Linner Shell         | 46                   | 48             | 1                   | ASME VIII             |                        | . ,                  |
| Bottom         Cone         Type         Type         Type         Type         Cyclone Body Materials of Construction           Component Data         Forwards         Provate         Provat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  |                     |                         |                      |                      |                | 4                   |                       |                        |                      |
| Component Data         Cyclone Body Materials of Construction           Design<br>(F)         Solids<br>Removal<br>(F)         Differential<br>Design<br>(F)         Differential<br>Design<br>(F)         Type         Upper Section         Lower Conical section         Nozzles           Solids ALLOK         938         2.0         15         Inner Wall         Outer Shell         Inner Wall         Inner Wall         Inner Wall         Inner Wall         Inner Wall         Outer Shell         Inner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | Bottom           |                     |                         |                      |                      |                | 1                   | ASME VIII             |                        |                      |
| Design<br>Temperature<br>(°F)         Solids<br>Pressure<br>(°F)         Differential<br>Pressure<br>(°F)         Type         Upper Section         Lower Conical section         Nozzles           Rotary Ar Lock         938         20.4         15         Inner Wall         Outer Shell         Inner Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 0                |                     | L                       | Refractory           | 38                   |                | 4 4                 |                       |                        |                      |
| Image: Temperature (FP)         Removal (PP)         Design (PP)         Type         Upper Section         Lower Conical section         Nozzles           Rotary Air Lock         938         20.4         15         Inner Wall         Outer Shell         Inner Wall         Outer Shel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                  |                     |                         |                      |                      | Cyclo          | ne Body Mate        | rials of Cons         | struction              |                      |
| Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optime         Optim <thoptim< th="">         Optim</thoptim<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | Temperature      | Removal<br>Flowrate | Design<br>Pressure      | Туре                 | Upper S              | ection         | Lower Coni          | cal section           | No                     | ozzles               |
| evel Indicator         938         Cercast™         MS         Cercast™         MS         Cercast™         MS           /endor/Supplier Specifications and Price Quote         MS         Imme Tube         MS         Imme Tube         Imme Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rotary Air Lock                  | 938              |                     |                         |                      | Inner Wall           | Outer Shell    | Inner Wall          | Outer Shell           | Inner Wall             | Outer Shell          |
| Vendor/Supplier Specifications and Price Quote       MS       MS         Vendor/Supplier Specifications and Price Quote       (Refer to Vendor Communications and Data Sheets)         Syn Bruner, Sales Manager       0       0         So. Box 11190       0       0         Jones Timer, Sales Manager       0       0         So. Box 11190       0       0         Jones Timer, Sales Manager       0       0         Sole Sort 1190       0       0         Sole Sort 1190       0       0         Sole Sort 2000 ext 213       0       0         Recommendation: Guote Pending       0       0         Second Steel Construction       1       0       0         Design, fabricated, tested, and stamped as an ASME vessel       1       1       0         Jate receiver section with flanged discharge       0       0       0         Design pressure (psig)       460       0       0       0         Sas Conditions at Inter:       0       0       0       0       0         Sas Conditions at Inter:       0       0       0       0       0       0         Sole Sort (Witec)       72.20       Fraction Efficiencies: Stokes Equiv. % Efficiency       0 <t< td=""><td></td><td></td><td>20.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  | 20.1                |                         |                      |                      |                |                     |                       |                        |                      |
| fendor/Suppler         Specifications and Price Quote         Image: Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec                                     |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| isher Klosterman, Inc         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 11190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to Vendor Communications and Data Sheets)           20. Box 21190         (Refer to V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                     |                         |                      | MS                   |                |                     |                       |                        |                      |
| isher Klosterman, Inc.       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. Box 11190       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:       (Refer to Vendor Communications and Data Sheets)         20. State Commendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (and an (Orman line)             |                  | and Dates           |                         |                      |                      |                |                     |                       |                        |                      |
| Syn Bruner, Sales Manager         Image: Sales Manager         Image: Sales Manager         Image: Sales Manager           0.0.sotille, Ky         Image: Sales Manager         Image: Salesalesales Manager         Image: Salesales Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                  | and Price           | Quote                   |                      |                      | (Refer to Ver  | dor Communi         | cations and D         | (ata Sheets)           |                      |
| 20. Box 11190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| ht: 602-672-4000 ext 213       Image: additional state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o                                    |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Enail: rab@(tkinc.com       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)         Recommendation: Quote Pending       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)         Four (4) XO120-45M cyclone assemblies each with the following Features:       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)       Image: rab@(tkinc.com)         Design fabricated, tested, and stamped as an ASME vessel       Interior surfaces to be lined with 4" of Vexuvius Carcasta 3300 castable refracts 3000 castable refracts                                                                                                                                                                                                    |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Recommendation:       Quote Pending       Automation       Quote Pending         Four (4) X0120-45M cyclone assemblies each with the following Features:       Interior surfaces to be lined with 4" of Vesuvius Cercast 3300 castable refracts         Design, fabricated, tested, and stamped as an ASME vessel       Interior surfaces to be lined with 4" of Vesuvius Cercast 3300 castable refracts         Dist receiver section with finged discharge       Extentor to be sandblasted and painted with high temperature aluminum paint         D'C gas inleft flange       Design pressure (pis)       460         Alf Welding per FXL Class 3 precodures with 100% penetration       Design pressure (pis)       460         Approximate Overall Dimensions:       4 ftØ x 17 ft tall       Design Cerains at Inlet:       0000         Outcle effmit       7.288       Specific Gravity       1.000       0000         Density (Ibm/ft3)       0.5679       Dust Loading (Grains/acf)       16       0000         No load pres. drop (in.W.C.)       120.63       Dia.(microns)       Weight %       1.000       0000         Full load pres. drop (in.W.C.)       120.63       Dia.(microns)       Weight %       1.000       0000         Full load pres. drop (in.W.C.)       120.63       Dia.(microns)       Weight %       1.000       0000       0000       0000       0000       00000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Four (4) XQ120-45M cyclone assemblies each with the following Features:         Interior surfaces to be lined with 4" of Vesuvus Cercast 3300 castable refract           20% ign, fabricated, tested, and stamped as an ASME vessel         Interior surfaces to be lined with 4" of Vesuvus Cercast 3300 castable refract           20% ign tested construction         All welding per FKI Class 3 preocedures with 100% penetration           20% receiver section with flanged discharge         Design pressure (psig)         460           10° Ø gas inlet flange         Design pressure (psig)         460           Approximate Overall Dimensions:         4 ftØ x 17 ft tall         Interior surfaces (psig)         460           Sas Conditions at Inlet:         Particulate Conditions at Inlet:         Interior (psig)         460           Volcosity (Ibm/ft3)         0.5679         Dust Loading (Grains/acf)         16         Interior (psig)           Viscosity (Ibm/ft3ec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         Interior (psig)         460           Full load pres. drop (in.W.C.)         120.63         Dia_(microns)         Weight %         Interior (psig)         461           Viscosity (Ibm/ft3ec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         Interior (psig)         Interior (psig)         Interior (psig)           No load pres. drop (in.W.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | com              |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Cour (4) XQ120-45M cyclone assemblies each with the following Features:         Interior surfaces to be lined with 4" of Vesuvus Cercast 3300 castable refracts           20esign, fabricated, tested, and stamped as an ASME vessel         Interior surfaces to be lined with 4" of Vesuvus Cercast 3300 castable refracts           20esign, fabricated, tested, and stamped as an ASME vessel         Interior surfaces to be lined with 4" of Vesuvus Cercast 3300 castable refracts           20es intel flange         Design pressure (psig)         460           20es intel flange         Design pressure (psig)         460           4ft@ x 17 ft tall         Design Temperature (F)         650           20es could that the following Features:         1000         1000           20es could that the following Features:         10000         10000           20es co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Recommendation:                  | Quote Pendin     | q                   |                         |                      |                      |                |                     |                       |                        |                      |
| Design, fabricated, tested, and stamped as an ASME vessel       Interior surfaces to be lined with 4° of Vesuvius Cercast 3300 castable refracts         30° plate carbon steel construction       All velding per FKI Class 3 precedures with 100% penetration         20 store cerver section with flanged discharge       Exterior to be sandblasted and painted with high temperature aluminum paint         10° Ø gas inlet flange       Design pressure (psig)       460         All velding per FKI Class 3 precedures with 100% penetration       Design pressure (psig)       460         All velding per SKI Class 3 precedures with 100% penetration       Design pressure (psig)       460         Approximate Overall Dimensions:       4 ftØ x 17 ft tall       Design Temperature (F)       660         3as Conditions at Inlet:       Particulate Conditions at Inlet:       Image: Conditions at Inlet:       Image: Conditions at Inlet:         Orlow per cylone (acfm)       7.289       Specific Gravity       1.000       Image: Conditions at Inlet:         Interview (ft/sec)       2.87E-05       Image: Conditions at Inlet:       Image: Conditions at Inlet:       Image: Conditions at Inlet:         Interview (ft/sec)       72.29       Fraction Efficiencies: Stokes Equiv. % Efficiency       Image: Conditions at Inlet:         Interview (ft/sec)       72.29       Specific Gravity       Specific Gravity       Image: Conditions at Inlet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| M8" plate carbon steel construction       All welding per FKI Class 3 procedures with 100% penetration         Dust receiver section with flanged discharge       Exterior to be sandblasted and painted with high temperature aluminum paint         0% G as inlet flange       Design pressure (psig)       460         M8" Overrall Dimensions:       4 ftØ x 17 ft tall       Design Temperature (F)       650         Approximate Overall Dimensions:       4 ftØ x 17 ft tall       Image: Construction of the sandblasted and painted with high temperature aluminum paint         Gass Conditions at Inlet:       Particulate Conditions at Inlet:       Image: Construction of the sandblasted and painted with high temperature aluminum paint         Goes Conditions at Inlet:       Particulate Conditions at Inlet:       Image: Construction of the sandblasted and painted with high temperature aluminum paint         Yelocity (ft/sec)       7,289       Specific Gravity       1,000         Osit Loading (Grains/acf)       16       Image: Construction fficiencies: Stokes Equiv. % Efficiency       Image: Construction fficiencies: Stokes Equiv. % Efficiency         Velocity (ft/sec)       72.29       Fraction Efficiencies: Stokes Equiv. % Efficiency       Image: Construction fficiencies: Stokes Equiv. % Efficiency       Image: Construction fficiencies: Stokes Equiv. % Efficiency         Velocity (ft/sec)       72.29       Fraction Efficiencies: Stokes Equiv. % Efficiency       Image: Construction fficiencies: Stokes Equiv. % Ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                  |                     |                         |                      |                      | . to be Reed   |                     |                       |                        |                      |
| Dust receiver section with flanged discharge       Exterior to be sandblasted and painted with high temperature aluminum paint         10° // gas inlet flange       Design pressure (psig)       460         Approximate Overall Dimensions:       4 ft // x 17 ft tall       Design Temperature (F)       650         Approximate Overall Dimensions:       4 ft // x 17 ft tall       Image: Comparison of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second                                                                                                                                                                                  |                                  |                  |                     | n ASIVIE Vess           |                      |                      |                |                     |                       |                        | refractory           |
| 40° @ gas inlet flange         Design pressure (psig)         460           48° @ verticle gas outlet flange         Design Temperature (F)         650           Approximate Overall Dimensions:         4 ft@ x 17 ft tall         Design Temperature (F)         650           Approximate Overall Dimensions:         4 ft@ x 17 ft tall         Design Temperature (F)         650         Design Temperature (F)           Gas Conditions at Inlet:         Particulate Conditions at Inlet:         Design Temperature (F)         650         Design Temperature (F)           Gas Conditions at Inlet:         Particulate Conditions at Inlet:         Design Temperature (F)         660         Design Temperature (F)           Goume per cylone (acfm)         7,289         Specific Gravity         1.000         Design Temperature (F)         66           Opensity (Ibm/ft-sec)         2.87E-05         Image: Temperature (F)         66         Image: Temperature (F)         66           Inlet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         Image: Temperature (F)         Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        | n paint              |
| H8"∅ verticle gas outlet flange       4 ft∅ x 17 ft tall       0esign Temperature (F)       650       0         Approximate Overall Dimensions:       4 ft∅ x 17 ft tall       0       0       0         Gas Conditions at Inlet:       Particulate Conditions at Inlet:       0       0       0         Joint per cylone (acfm)       7.289       Specific Gravity       1.000       0       0         Joint (Ibm/ft-sec)       2.87E-05       0       0       0       0       0         Viscosity (Ibm/ft-sec)       2.87E-05       0       0       0       0       0       0       0       0         Viscosity (Ibm/ft-sec)       7.299       Fraction Efficiencies: Stokes Equiv. % Efficiency       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40" $\varnothing$ gas inlet flar | ige              |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Gas Conditions at Inlet:       Particulate Conditions at Inlet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18"Ø verticle gas                | outlet flange    |                     |                         |                      |                      |                | 650                 |                       |                        |                      |
| /olume per cytone (acfm)         7,289         Specific Gravity         1.000           Density (Ibm/ft3)         0.5679         Dust Loading (Grains/acf)         16         1           /iscosity (Ibm/ft3)         0.287E-05         16         1         1           Intet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         1         1           No load pres. drop (in.W.C.)         120.63         Dia.(microns)         Weight %         1         1           Full load pres. Drop (in. W.C.)         99.82         2.5         8.46         1         1           Image: Strap (in.W.C.)         99.82         3.5         19.29         1         1           Image: Strap (in.W.C.)         97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approximate Overa                | all Dimensions:  |                     | 4 ft∅ x 17 ft           | tall                 |                      |                |                     |                       |                        |                      |
| /olume per cytone (acfm)         7,289         Specific Gravity         1.000           Density (Ibm/ft3)         0.5679         Dust Loading (Grains/acf)         16         1           /iscosity (Ibm/ft3)         0.287E-05         16         1         1           Intet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         1         1           No load pres. drop (in.W.C.)         120.63         Dia.(microns)         Weight %         1         1           Full load pres. Drop (in. W.C.)         99.82         2.5         8.46         1         1           Image: Strap (in.W.C.)         99.82         3.5         19.29         1         1           Image: Strap (in.W.C.)         97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| /olume per cytone (acfm)         7,289         Specific Gravity         1.000           Density (Ibm/ft3)         0.5679         Dust Loading (Grains/acf)         16         1           /iscosity (Ibm/ft3)         0.287E-05         16         1         1           Intet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         1         1           No load pres. drop (in.W.C.)         120.63         Dia.(microns)         Weight %         1         1           Full load pres. Drop (in. W.C.)         99.82         2.5         8.46         1         1           Image: Strap (in.W.C.)         99.82         3.5         19.29         1         1           Image: Strap (in.W.C.)         97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sae Conditions -                 | t Inlet:         |                     |                         | Particulate C        | nditions at late     |                |                     |                       |                        |                      |
| Density (ibm/ft3)         0.5679         Dust Loading (Grains/acf)         16           /iscosity (ibm/ft3)         2.87E-05         1         1           Inlet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         1           Vo load pres. drop (in.W.C.)         120.63         Dia.(microns)         Weight %         1           Full load pres. Drop (in. W.C.)         99.82         2.5         8.46         1           State         3         3.5         19.29         1         1           Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Sta                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                  | 7 280               |                         |                      |                      |                |                     |                       | 1                      |                      |
| /iscosity (lbm/ft-sec)         2.87E-05         Image: Control of the section of the sector cylones. Estimated cost of splitter and collection is \$25,0           Inlet Velocity (ft/sec)         72.29         Fraction Efficiencies: Stokes Equiv. % Efficiency         Image: Control of the sector of the sector cylones. Estimated cost of splitter and collection is \$25,0           No load pres. drop (in. W.C.)         120.63         Dia.(microns)         Weight %         Image: Control of the sector of the sector cylones. Estimated cost of splitter and collection is \$25,0           Value of the antifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0         Image: Control of the sector of the sector cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| No load pres. drop (in. W.C.)         120.63         Dia.(microns)         Weight %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | sec)             |                     |                         |                      |                      |                |                     |                       |                        |                      |
| No load pres. drop (in. W.C.)         120.63         Dia.(microns)         Weight %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                  |                     |                         | Face of the state of |                      |                |                     |                       |                        |                      |
| Full load pres. Drop (in. W.C.)         99.82         2.5         8.46           3         13.57         19.29         1           4         25.27         19.29         1           4         25.27         1         1           5         37.1         1         1           6         47.84         1         1           7         5.5         42.64         1           8         64.8         1         1           1         1         1         1         1           1         1         1         1         1         1           1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                  |                     |                         |                      |                      | s ⊏quiv. % El  | TICIENCY            |                       |                        |                      |
| 3       13.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 4       25.27       1       1         4.5       31.27       1       1         5       37.1       1       1         6       47.84       1       1         7       5.5       42.64       1       1         8       64.8       1       1       1         9       71.14       1       1       1         1       10       76.31       1       1         1       12       83.89       1       1         1       16       90.07       1       1         1       11       1       1       1       1         1       10       75.2       1       1       1         1       11       10       10       10       10       10         1       10       10       99.93       1       1       1       1         1       10       10       99.93       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 4.5       31.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  |                     |                         |                      | 19.29                |                |                     |                       |                        |                      |
| 1       5       37.1       1       1         5.5       42.64       1       1         6       47.84       1       1         7       57.08       1       1         8       64.8       1       1         9       71.14       1       1         10       76.31       1       1         110       76.31       1       1         12       83.89       1       1         111       10       90.07       1       1         111       11       1       1       1         111       11       1       1       1         111       10       10       10       10         111       10       10       10       10         111       10       10       10       10         111       10       10       10       10       10         101       99.93       10       10       10       10         101       99.93       10       10       10       10         101       99.93       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 5.5       42.64       47.84         6       47.84       48         7       57.08       57.08         8       64.8       64.8         9       71.14       64         10       76.31       76.31         110       76.31       16         12       83.89       16         131       97.52       10         10       75.2       10         10       99.93       10         9       10       99.93         Price (2005 U.S.\$)       \$ 250,000.00       10         2       255,000.00       10         2       10       99.93         Price and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                  |                     |                         |                      |                      |                |                     | -                     |                        |                      |
| 6         47.84         6         47.84           7         57.08         1         1           8         64.8         1         1           9         71.14         1         1           10         76.31         1         1           10         76.31         1         1           10         76.31         1         1           10         16         90.07         1           10         21         94.11         1         1           10         31         97.52         1         1           101         99.93         101         99.93         1         1           Price (2005 U.S.\$)         \$ 250,000.00         5         250,000.00         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                  |                     | 1                       |                      |                      |                |                     |                       | 1                      | 1                    |
| 8         64.8           9         71.14           10         76.31           12         83.89           16         90.07           12         83.89           16         90.07           13         97.52           101         99.93           Price (2005 U.S.\$)         \$ 250,000.00           Remarks:         Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                  |                     |                         | 6                    | 47.84                |                |                     |                       |                        |                      |
| 9         71.14         9         71.14           10         76.31         10         76.31         10           12         83.89         12         10         76.31         10           12         83.89         12         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 10         76.31           12         83.89           16         90.07           21         94.11           31         97.52           10         10           99.93         10           Price (2005 U.S.\$)         \$ 250,000.00           Remarks:         Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 12         83.89         16         90.07           16         90.07         16         90.07           21         94.11         16         90.07           31         97.52         10         10           Price (2005 U.S.\$)         \$ 250,000.00         10         99.93           Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| 16         90.07           21         94.11           31         97.52           101         99.93           Price (2005 U.S.\$)         \$ 250,000.00           Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                  |                     | 1                       |                      |                      |                |                     |                       | 1                      | 1                    |
| 31     97.52       01     99.93       Price (2005 U.S.\$)     \$ 250,000.00       Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |                     |                         | 16                   | 90.07                |                |                     |                       |                        |                      |
| Price (2005 U.S.\$)     \$ 250,000.00       Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Price (2005 U.S.\$) \$ 250,000.00 Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |                     |                         |                      |                      |                |                     |                       |                        |                      |
| Remarks: Inlet and outlet manifolding is not included in Fisher-Klosterman quote for these four cylones. Estimated cost of splitter and collection is \$25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Price (200)                      | 5115 \$          | \$                  | 250 000 00              | 101                  | 99.93                |                |                     |                       |                        |                      |
| to market, mile une outer manifolding to not included in residentian quote for these four cytones. Estimated cost of splitter and collection is \$20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks: Inlet on                | d outlet manifo  |                     |                         | her-Klosterman       | l<br>auote for these | four evidence  | Estimated co        | L<br>st of splitter r | I<br>and collection in | \$25,000             |
| Refer to supplier data sheet for Vesuvius CERCAST <sup>™</sup> 3300 Castable refractory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refer to supplier d              | ata sheet for W  |                     | RCAST <sup>TM</sup> 320 | 0 Castable refr      | actory               | .our cylorida. | _ounated CO         | or of oplitted e      |                        | φ <b>ε</b> υ,υυυ.    |

# Appendix D

## D.1 INTRODUCTION

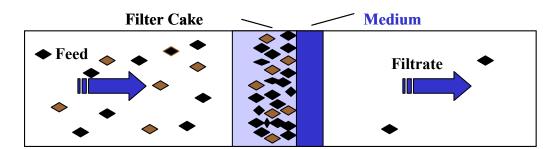
The first task undertaken by the team was to examine commercial technologies that are suitable for synthesis gas cleanup for biomass gasification. Currently, there are various types of technologies available dependent upon the specific cleanup requirements. For example, the clean-up required for syngas that will ultimately be fed to a reciprocating engine is much less than for syngas used in chemical synthesis. This study examined all technologies that could be required for syngas that will be used for Fischer-Tropsch (FT) liquids and alcohol synthesis.

The gas cleanup configuration for a system is generally determined by the composition of the syngas exiting the gasifier, the cleanup requirements for the intended use of the syngas, and economic considerations. Technologies such as cyclone separators, barrier filters, and electrostatic precipitators are routinely used for solid particulate removal. Catalytic tar crackers are employed to destroy tars and nitrogen contaminants. Wet scrubbers are used to remove a number of contaminants such particulates, alkali species, halides, soluble gases, and condensable liquids. Acid gas removal technologies encompass a large selection of processes including amine-based, physical solvent, liquid phase oxidation, and catalytic absorbent. Each section focuses on the operating size ranges and conditions, materials of construction, and cleanup parameters for each technology considered.

## D.2 PARTICULATE REMOVAL TECHNOLOGIES

## D.2.1 INTRODUCTION

During the gasification process, the mineral matter contained in the biomass feedstock will form inorganic ash, and the unconverted biomass will form char. These particulates are entrained in the syngas stream as it exits the gasifier. The concentration of particulates produced is often influenced by the gasifier design. These particulates can present emissions problem and can cause abrasion to downstream equipment. Therefore, the particulates concentration must be reduced using various technologies discussed in the following paragraphs.


## **Cyclone Separators**

Cyclones use centrifugal forces to separate the bulk of large size particulates from a gas stream. In gasification systems, cyclones are normally used as the first step in the gas cleanup process. They are relatively inexpensive to manufacture and easy to operate which translate to low capital and maintenance costs. In general, 90-98% of particulates 10 µm or larger in diameter can be removed, but the removal efficiency decreases significantly for smaller particulates<sup>13</sup>. The removal efficiency also decreases as the operating temperatures increases. Cyclones are capable of handling operating temperatures up to 2000°F and can be designed to operate at pressures normally encountered in gasifiers. Cyclones are usually made from carbon steel and are refractory lined to withstand high temperature environments. A flow range from 300 to 13,000 CFM is typical for cyclones. This flow range is within the parameter of the syngas flow rate specified by NREL for this project.

<sup>&</sup>lt;sup>13</sup> Donaldson Co., Inc. "Cyclone Dust Collectors," July 2003, <<u>http://www.donaldson.com/en/industrialair/literature/000984.pdf</u>

## D.2.2 BARRIER FILTERS

Barrier filters remove particulates by capturing the particulates on the filter surfaces as the gas stream passes through the filter medium. The particulates accumulated on the filter surfaces form a cake, which can be dislodged by initiating a blowback flow. The blowback gas flows in the reverse direction of normal process flow and dislodges the filter cake, which is then removed from the system. The operating principle of barrier filters is illustrated in Figure D-1. Barrier filters include high-temperature filters, such as ceramic and metal candle filters, and low-temperature filters, such as baghouse filters.



#### FIGURE D-1 PRINCIPLE OF BARRIER FILTERS

### **Ceramic Candle Filters**

Ceramic filters are designed to remove particulate matter from gas streams at elevated temperatures. Ceramic filters can be designed for any flow requirement and can remove 90% of particulates larger than  $0.3 \ \mu m^{14}$ . In theory, the ceramic filter elements, normally made of aluminosilicate or silicon carbide powder with a sodium aluminosilicate binder, have exceptional physical and thermal properties, and should be able to withstand high temperature operations of up to 1800°F. However, commercial operations using ceramic filters at this temperature range have not been successful due to the susceptibility of the filter elements to cracking. Advances in composite filter element materials that have resistance to crack propagation at high temperatures are being developed and tested<sup>15</sup>. At temperatures below 850°F, ceramic filters have demonstrated satisfactory operational reliability.

In operations where tars are formed in the gasifier, ceramic filters should be operated at temperatures above the dew point of the tars (usually about 700-750°F) to avoid tar condensation. Condensed tar accumulates on filter surfaces and leads to plugging which will reduce the lifetime of the filter and impact process flowrates.

#### Metal Candle Filters

Metal filters are used in high temperature cleanup systems to remove particulate matter and can achieve filtration level as low as 1  $\mu$ m. They can be designed to meet any flow requirement and can operate over a wide range of temperatures depending on the material of construction. Metal

<sup>&</sup>lt;sup>14</sup> Pall Corp., "Syngas Filter Proposal," 26 January 2005, office communication

<sup>&</sup>lt;sup>15</sup> Jay E. Lane, Jean-Francois LeCostaouec, "Ceramic Composite Hot Gas Filter Development," <<u>http://www.netl.doe.gov/publications/proceedings/98/98ps/pspb-5.pdf</u>

filters made from stainless steel can be used in cleanup systems for temperatures below  $650^{\circ}$ F while Inconel or alloy HR filters are suitable for operating temperatures up to  $1100^{\circ}$ F. At even higher temperatures, Fercalloy can withstand temperatures up to  $1800^{\circ}$ F<sup>16</sup>, although commercial operation at this temperature has not been demonstrated. Commercial operation of metal filters operating at a maximum temperature of  $915^{\circ}$ F has been successful at a few gasification facilities in Europe<sup>17</sup>.

Some operational considerations for metal filters are the corrosion rate and tar deposition on filter elements. Under similar stream compositions and conditions, the corrosion rate of metal filter elements is ten times that of the surrounding piping; thus, a regular maintenance schedule is essential to ensure operational reliability. Additionally, in operations where filter elements are subjected to frequent cleaning cycles due to tar deposition, the lifetime of the filter will be reduced. Therefore, it is recommended that the filter be operated at a temperature above the dew point of the tars in the syngas stream to avoid tar condensation and deposition.

#### **Baghouse Filters**

Baghouse filters are made of a woven fabric or felted (non-woven) material to remove particulate matter from an air or gas stream and can remove particulates down to 2.5  $\mu$ m<sup>18</sup>. For woven fabric filters, the removal efficiency increases as the thickness of filter cake increases; thus, the removal efficiency of these systems is constantly changing. Felted filter systems have a constant removal efficiency that does not depend on the thickness of the filter cake<sup>19</sup>. Baghouse filters are modular in design and thus can accommodate a wide flow range from 1,500 to 150,000 CFM. The air-to-cloth ratio, or ratio of the volumetric flow to cloth area, sets the size of a baghouse unit. The bag fabric can be made from various materials including polyester, acrylic, NOMEX, Teflon, Ryton, and fiberglass<sup>20</sup>. The operating temperature range of an application influences the selection of bag material. For example, materials such as polyester or acrylic are suitable for applications with operating temperatures below 300°F. Due to the temperature limits of the filter fabric, baghouse filters are only used in the low-temperature cleanup systems. They are often used downstream of the cyclones so that the particulate loading on the filters can be reduced.

Disadvantages of baghouse filters include the need for periodic bag replacement that can result in high maintenance costs and the potential for bag fire or explosion. A spark detection and extinguishment system, along with bag grounding strips, are recommended safety measures to mitigate the fire potential. Additionally, the performance of the filter fabrics degrades drastically with tar deposition on the fabric surface, so fabric surface treatments such as Teflon coating and pre-coating with limestone or other compatible filter aids is recommended. Such pre-coats can

<sup>&</sup>lt;sup>16</sup> Mott Corp., "Fiber Metal. The High-Flow, Low-Pressure Drop Alternative," June 2003, http://www.mottcorp.com/resource/pdf/PSFIBERfinal.pdf

<sup>&</sup>lt;sup>17</sup> Mike Wilson, Mott Corp., "Fercalloy Metal Filters," 2 February 2005, Vendor input

<sup>&</sup>lt;sup>18</sup> Donaldson Co., Inc. "Dalamatic Dust Collectors," December 2002, <u>http://www.donaldson.com/en/industrialair/literature/000983.pdf</u>

<sup>&</sup>lt;sup>19</sup> EPA, "Air Pollution Technology Fact Sheet-Fabric Filter – Pulse-Jet Cleaned Type," http://www.macrotek.net/pdf/FS\_Pulse\_Clean\_Dust\_Collector.pdf

<sup>&</sup>lt;sup>20</sup> Ducon, "Baghouse Filter," 2003, <u>http://www.ducon.com/bag-house-filter.php</u>

also be used to adsorb mercury and other contaminants.. Industry experience suggests that either ceramic or metal filters should be used in place of baghouse filters in high temperature operations.

## D.2.3 ELECTROSTATIC PRECIPITATORS (ESPs)

ESPs are commonly used in large power plants to control fly ash emissions. ESPs consist of discharge electrodes centered between positively grounded collection plates. As the gas stream laden with particulates passes through the ESP, the discharge electrodes provide a negative charge to the particulates. The positively grounded collection plates act as a magnet for the negatively charged particulates, which collect on the plates. The collected particulates are transported into the collection hopper by the rapper or vibrator system.

ESPs are classified as either wet or dry processes. In wet ESPs, a water quench is applied either intermittently or continuously to the collection plates. The purpose of the water quench is to prevent possible fires that have occasionally resulted from the use of dry ESPs. The wastewater from wet ESPs must be treated prior to disposal.

For dry ESPs, the removal efficiency decreases for particulates with a high electrical resistivity since these particulates can introduce positive ions into the gas space resulting in reduced attraction of the negatively charged particulates to the collection plates. Particulates with a high resistivity are commonly produced from combustion of low-sulfur coals. Flow ranges of 10,000 – 300,000 CFM are typical for dry ESPs. Dry ESPs operate in the pressure range from vacuum conditions up to 150 psi and can operate at temperatures up to 750°F<sup>21</sup>.

Wet ESPs can achieve 99.9% removal of sub-micron particulates down to 0.01  $\mu$ m. Particulate resistivity does not affect removal efficiency of wet ESPs since the humid operating environment often reduces the resistivity of particulates. These systems are generally designed for gas flow range from 1,000 to 100,000 CFM. Gas streams with particulate sizes larger than 2  $\mu$ m or with an exceptionally high particulate loading should be pretreated to reduce the load on the ESP. Wet ESPs operate in the pressure range from vacuum conditions up to 150 psi, with operating temperatures limited to 170-190°F<sup>22,23</sup>.

The type of ESP selected for an application is largely influenced by the operating parameter and the type of particulates to be removed. However, the use of ESPs is limited in gasification systems due to the significant capital costs compared to other systems. Additionally, the removal efficiency of ESPs is sensitive to fluctuations in process conditions, such as changes in temperatures and pressures, gas compositions, and particulate loading. Therefore, ESPs are not suitable for biomass gasification applications that have highly variable syngas compositions from different feedstocks.

<sup>&</sup>lt;sup>21</sup> Gerry Graham, "Controlling Stack Emissions in the Wood Products Industry," http://www.ppcesp.com/ppcart.html

<sup>&</sup>lt;sup>22</sup> Ducon, "Wet & Dry Electrostatic Precipitators," 2003, <u>http://www.ducon.com/wet-dry-precipitators.php</u> (24 January 2005)

<sup>&</sup>lt;sup>23</sup> EPA, "Air Pollution Technology Fact Sheet-Wet Electrostatic Precipitator (ESP)-Wire-Pipe Type," <u>http://www.p2pays.org/ref/10/09890.pdf</u> (25 January 2005)

## D.3 TAR REMOVAL TECHNOLOGIES

### D.3.1 INTRODUCTION

Following NREL guidelines for the purpose of this project, tar is defined as C10+ hydrocarbons. Tar in syngas products can cause serious operational problems when the syngas stream cools below the dew point of the tars (usually about 700-750°F) and tar deposition occurs on downstream equipment and piping. Thus, tar removal is critical when there is tar present in the syngas. Tar can be removed either by physical or chemical processes. The most common physical process involves cooling the syngas stream to condense the tar into fine droplets and removing these droplets by wet scrubbing. Chemical process involves catalytic steam reforming of tars to lighter gases.

## D.3.2 WET SCRUBBERS

Wet scrubbing is generally used to remove water-soluble contaminants from the syngas by absorption into a solvent. Tar components are water-soluble can be removed by this method. Additionally, wet scrubbing is also often used to remove a number of other contaminants such as particulates, alkali species, halides, soluble gases, and condensable liquids. In wet scrubbing, water is a common solvent choice. Wet scrubbers with the venturi design are frequently used in gas cleanup applications to achieve sub-micron particulate removal requirements. As the gas stream enters the venturi scrubber, the scrubbing liquid is sprayed into the gas stream. The two streams are thoroughly mixed by the turbulence in the venturi throat section where fine particles are impacted and agglomerate into liquid droplets. The liquid droplets are separated from the gas stream in a separator unit consisting of a cyclone separator or a mist eliminator.

Venturi scrubbers can achieve 99.9% removal efficiency of sub-micron particulates. Flow range for a single-throat venturi is 500-100,000 SCFM. Flows above this range require either multiple venturi scrubbers in series or a multiple-throat venturi<sup>24</sup>. Venturi scrubbers with a quench section can accommodate high temperature gas streams up to 450°F, and they can operate over a wide range of pressures<sup>25</sup>.

The standard material of construction for venturi scrubbers is carbon steel. For corrosive or high temperature applications, stainless steel or special alloys such as FRP (fiberglass reinforced plastic) and Inconel are used.

The disadvantages of scrubbers include high pressure drop, the need to treat the wastewater effluent prior to disposal, and the loss of sensible heat of the syngas due to quenching. In power generation applications, the loss of sensible heat reduces the energy content of the gas and thus is undesirable; however, it is less of a concern in biomass refinery applications. Nevertheless, sensible heat loss will result in reduced overall system efficiency.

<sup>&</sup>lt;sup>24</sup> EPA, "Air Pollution Technology Fact Sheet-Venturi Scrubber" <<u>http://www.macrotek.net/pdf/FS\_Venturi\_Scrubber.pdf</u>

<sup>&</sup>lt;sup>25</sup> Envitech, Inc., "Venturi Scrubber," <<u>http://www.envitechinc.com/scrubber.zhtml</u>

## D.3.3 CATALYTIC TAR REFORMING

Catalytic reforming of biomass tars is a developing technology for tar removal from syngas streams. The concept of this technology is to reform tar in a fluidized reactor bed, or tar cracker, into lighter gases using a proprietary catalyst. In addition to tar, light hydrocarbons (C1 to C5), benzene, and ammonia are also removed. A few large-scale biomass gasification facilities, such as Carbona in Denmark and the FERCO gasifier in Vermont, have demonstrated a novel catalyst in their tar crackers since commercial catalysts are too friable for this application<sup>26</sup>. The FERCO tar cracker removed 90% of the tar in the syngas stream using a novel catalyst known as DN34<sup>27</sup>. In both of these processes, a wet scrubber was used downstream of the tar cracker to remove residual tars and impurities.

A tar cracker known as the Reverse Flow Tar Cracking (RFTC) reactor developed by BTG uses the steam reforming process with a commercial nickel catalyst<sup>28</sup>. The nickel catalyst is very sensitive to sulfur impurities; therefore, a syngas stream containing sulfur contaminants has to be desulfurized prior to entering the RFTC reactor. Due to the cooling requirement for the desulfurization process, the syngas is fed to the reactor at a temperature from 660 -1200°F and is heated to the reaction temperature of 1650 -1740°F in the reactor entrance section. The heated gas passes through a bed of nickel catalyst where tar, light hydrocarbons, and ammonia are removed by steam reforming. The main reactions of the RFTC reactor are:

| $C_nH_m + nH_2O \iff nCO + (\frac{1}{2}m+n)H_2$ | Hydrocarbon reforming     |
|-------------------------------------------------|---------------------------|
| $2NH_3 \Leftrightarrow N_2 + 3H_2$              | Reverse ammonia synthesis |
| $CO + H_2O \iff CO_2 + H_2$                     | Water-gas shift           |

A small amount of the syngas is combusted to counterbalance the endothermic tar reforming reactions:

 $H_{2} + \frac{1}{2} O_{2} \rightarrow H_{2}O$   $CO + \frac{1}{2} O_{2} \rightarrow CO_{2}$   $CH_{4} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O$ 

The typical conversion for the RFTC reactor is as follows:

| <b>Components</b> | <b>Conversion</b> |
|-------------------|-------------------|
| Benzene           | 82                |
| Napthalene        | 99                |
| Phenol            | 96                |
| Total Aromatic    | 94                |
| Total Phenols     | 98                |
| Total Tar         | 96                |
| Ammonia           | 99                |
|                   |                   |

<sup>26</sup> Don J. Stevens, "Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems," prepared by Pacific Northwest National Laboratory for NREL, August, 2001

Mark A. Paisley, Mike J. Welch, "Biomass Gasification Combined Cycle Opportunities Using the Future Energy *SilvaGas* Gasifier Coupled to Alstrom's Industrial Gas Turbines," ASME Turbo Expo Land, Sea, and Air, Georgia World Congress Center, June 16-19, 2003
 BTG Biomass Technology Group, "Tar & Tar Bernoval," 22 March 2004, http://www.bioworld.com/technologies/tar-removal.html

BTG Biomass Technology Group, "Tar & Tar Removal," 22 March 2004, http://www.btgworld.com/technologies/tar-removal.html

The partial oxidation reaction (POx) was also investigated as a possible process for tar and hydrocarbons removal. In this process, the syngas enters the POx reactor and mixes with oxygen that is at about 300°F. Partial oxidation and reforming reactions occur in a combustion zone where tar, methane, light hydrocarbons, and benzene are converted to CO and  $H_2$ . The reformed gas exits the reactor at about 2500°F.

The main disadvantage of POx is a reduction of the product gas heating value. In order to achieve destruction of the tars and oils, a high temperature reactor is required. While it is possible to crack the tars and oils at moderate temperatures, it is very difficult to selectively react methane. However at high temperatures oxidation of CO and  $H_2$  also occur. As a result, the gas composition will be shifted toward a lower  $H_2$ :CO ratio.

In order to improve the efficiency of POx, a catalyst can be used to lower the temperature, and hence also the amount of oxidizer required to destroy the tars and oils. A catalytic auto-reformer technology may provide a solution to biomass tar and oil elimination. Such an application would only apply to a particulate-free gas since any particulate in the gas could shortly blind the catalytic reactor. As shown in Table D-1 below, an auto-thermal reformer is essentially a hybrid between POx and steam reforming.

| Gas Reforming Process               | Typical<br>H₂/CO ratio | Comments                                                                                      |
|-------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Tar Cracking/Reforming              | wide range             | Developing technology. Operating information not widely available.                            |
| Steam (Methane) Reforming SR or SMR | 3-4                    | Dominant technology for industrial H <sub>2</sub> production<br>Typically high efficiency     |
| Partial Oxidation (POx)             | 1.7-1.8                | Used in refining to upgrade heavy liquid fuels<br>Low efficiency<br>May generate coke or soot |
| Auto-thermal Reforming (ATR)        | 2.4-4                  | Hybrid of POx and SR                                                                          |

## TABLE D-1 COMPARISON OF SYNGAS REFORMING PROCESS TECHNOLOGY

## D.4 ACID GAS REMOVAL TECHNOLOGIES

## D.4.1 INTRODUCTION

Sulfur contaminants such as H<sub>2</sub>S, COS, CO<sub>2</sub>, mercaptans, and HCN poison catalysts used in liquid fuel synthesis. Therefore, the syntheses of methanol and FT liquids from syngas require that the sulfur be removed from the syngas to a residual level of 0.10 ppm or less. The syngas considered for this study contains approximately 400 ppmv of H<sub>2</sub>S; therefore, acid gas removal is critical in the gas cleanup process. Acid gas removal technologies can be categorized as amine-based, physical solvent, liquid phase oxidation, or catalytic absorbent processes. The type of technology selected is largely influenced by the system operating conditions, the sulfur level in the syngas stream, and the desired purity of the treated syngas. Brief descriptions to explain the overall process for each system are given in the following paragraphs.

## D.4.2 AMINE-BASED SYSTEM

Amine processes are proven technologies for the removal of  $H_2S$  and  $CO_2$  from gas streams by absorption. Amine systems generally consist of an absorber, a stripper column, a flash separator, and heat exchangers. This is a low-temperature process in which the gas to be treated usually enters the absorber at approximately 110°F. In the absorber, acid gases are removed from the gas stream by chemical reactions with the amine solution. The sweet gas stream exits at the top of the absorber. Regeneration of the rich amine is accomplished through the flash separator to remove absorbed hydrocarbons followed by a stripper column to remove the  $H_2S$  and  $CO_2$  from the amine solution. The lean amine solution is cooled and returned to the absorber. The stripped acid gas stream is cooled to recover water and then sent to a sulfur recovery unit. A typical amine system is shown in Figure D-2.

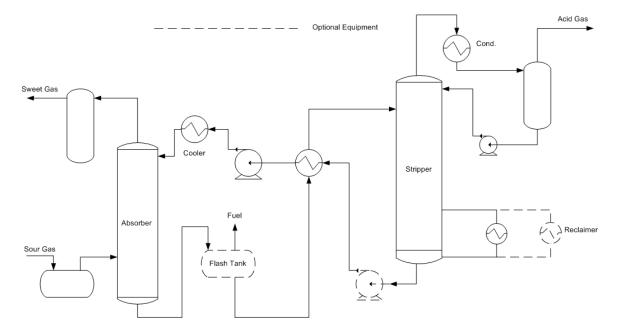



FIGURE D-2 TYPICAL AMINE SYSTEM FLOW DIAGRAM

Amine systems normally operate in the low to medium pressure range of 70-360 psi, although higher pressures can be accommodated with a specific amine solvent. However, in applications where the partial pressure of acid gases is high, the economy of an amine system declines in comparison to other systems. Amine systems can be designed to meet specific flow range and sulfur removal requirements. A sulfur removal level as low as 1 ppm can be achieved but at the expense of operating cost due to the large solvent circulation rate required<sup>29</sup>.

There are a variety of amine solutions available. Each offers distinct advantages based on the specific treating condition. Commercially available amine solutions include<sup>30</sup>:

<sup>30</sup> GPSA

<sup>&</sup>lt;sup>29</sup> Input from GTI, "Gas Cleanup Technologies Discussion," 3 February 2005, office communication

 $MEA - Monoethanolamine removes both H_2S and CO_2$  from gas streams and is generally used in low-pressure systems and in operations requiring stringent sulfur removal.

DGA - Diglycolamine is used when there is a need for COS and mercaptan removal in addition to H<sub>2</sub>S. DGA can hydrolyze COS to H<sub>2</sub>S; thus, a COS hydrolysis unit is not needed in the cleanup system.

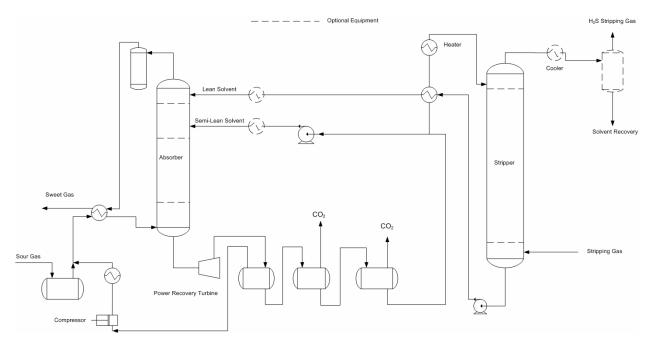
DEA - Diethanolamine is used in medium- to high-pressure systems (above 500 psi) and is suitable for gas stream with a high ratio of  $H_2S$  to  $CO_2$ .

MDEA - Methyldiethanolamine has a higher affinity for H<sub>2</sub>S than CO<sub>2</sub>. MDEA is used when there is a low ratio of H<sub>2</sub>S to CO<sub>2</sub> in the gas stream so that the H<sub>2</sub>S can be concentrated in the acid gas effluent. If a Claus plant is used for sulfur recovery, a relatively high concentration of H<sub>2</sub>S (>15%) in the acid gas effluent is required for optimal Claus operation.

After prolonged use, MEA, DGA, and MDEA solutions accumulate impurities that reduce the  $H_2S$  removal efficiency of the solutions. A reclaim unit is needed to remove the impurities in order to improve system efficiency.

One major operating concern for amine systems is corrosion. In water,  $H_2S$  dissociates to form a weak acid while  $CO_2$  forms carbonic acid. These acids attack and corrode metal. Therefore, equipment in the amine systems may be clad with stainless steel to improve equipment life.

## D.4.3 PHYSICAL SOLVENT SYSTEM


This acid gas removal technology uses an organic solvent to remove acid gases from gas streams by physical absorption without chemical reaction. The driving force of this process is the high solubility of acid gases in the organic solvent. In most cases, solubility increases as the temperature decreases and the pressure increases. Thus, physical absorption is a low-temperature, high-pressure process, with high partial pressure of acid gases required for the economy and efficiency of this process. The temperature of the solvent should be as low as possible while the temperature of the gas to be treated usually enters the absorber at about 100°F. Physical solvent systems normally operate at pressures above 150 psi<sup>31</sup>.

In general, physical solvent systems consist of an absorber, a stripper column, a series of flash separators, and heat exchangers. In the absorber, acid gases in the syngas stream are absorbed into the solvent solution. The sweet syngas stream exits the top of the absorber. Regeneration of the rich solvent stream is accomplished through a series of flash separators at reduced pressures to remove absorbed hydrocarbons followed by the stripper column to remove the acid gases from the solvent. The lean solvent solution is cooled and returned to the absorber. The stripped acid gas stream is cooled to recover water and then sent to a sulfur recovery unit. A typical physical solvent system is shown in Figure D-3.

<sup>&</sup>lt;sup>31</sup> Gerhard Ranke, "Advantages of the Rectisol-Wash Process in Selective H<sub>2</sub>S Removal from Gas Mixtures," 1973, office communication, 30 January 2005

The two common physical systems are Rectisol and Selexol. The Rectisol process, which uses methanol at temperatures  $< 32^{\circ}$ F, can achieve a sulfur removal level as low as 0.1 ppm. The Selexol process, which uses mixtures of dimethyl ethers of polyethylene glycol, can achieve a sulfur removal level of 1ppm<sup>32</sup>.

Selection of material of construction depends on the solvent used. For example, stainless steel is required for much of the Rectisol process equipment, contributing to a significant capital cost. In the Selexol process, carbon steel is the standard material of construction, except for those areas with high severity where stainless steel will be used.



### FIGURE D-3 TYPICAL PHYSICAL SOLVENT SYSTEM FLOW DIAGRAM

## D.4.4 LIQUID PHASE OXIDATION PROCESS -- LO-CAT™

LO-CAT<sup>TM</sup> is an oxidation process that uses iron catalyst held in a chelating agent to oxidize H<sub>2</sub>S to elemental sulfur. H<sub>2</sub>S is the only acid gas being removed in this process but a high CO<sub>2</sub> concentration in the feedgas requires caustic for pH adjustment. A LO-CAT<sup>TM</sup> process consists of 3 sections that include an absorber, an oxidizer for catalyst regeneration, and a sulfur handling unit. Figure D-4 illustrates a typical LO-CAT<sup>TM</sup> unit. When the gas stream comes in contact with the LO-CAT<sup>TM</sup> solution in the absorber, H<sub>2</sub>S in the gas stream is converted to elemental sulfur. The spent catalyst along with the elemental sulfur exit the absorber, then enter the oxidizer where the spent catalyst is regenerated by contact with oxygen in air, and the elemental sulfur is concentrated into a sulfur slurry. The sulfur slurry moves to the sulfur handling unit where it is washed to recover any entrained catalyst. The sulfur recovered from a LO-CAT<sup>TM</sup>

<sup>&</sup>lt;sup>32</sup> D.J. Kubek, E. Polla, F.P. Wilcher, "Purification and Recovery for Gasification," Gasification Technologies Conference, October 1996, San Francisco, CA.

process contains a small amount of entrained residual catalyst and is considered low-value sulfur that is suitable for agricultural purposes but is undesirable as a chemical feedstock.

The LO-CAT<sup>TM</sup> process is suitable for small-scale applications that require less than 20 TPD of sulfur recovery capacity, making the LO-CAT<sup>TM</sup> a candidate process for this study, which has less than 5 TPD of sulfur recovery. This process can achieve 99.9%+ of H<sub>2</sub>S removal efficiency<sup>33</sup>. This process can operate over a wide range of pressures from atmospheric up to 600 psi, but most are low-pressure applications in amine acid gas service. The operating temperature is normally maintained at about 110°F since high temperatures degrade the LO-CAT<sup>TM</sup> solution that can affect removal efficiency. Advantages of this process include the ability to treat a wide range of gas compositions, a significant turndown flexibility, and less capital costs in comparison to the Claus process with the associated tail gas treating unit.

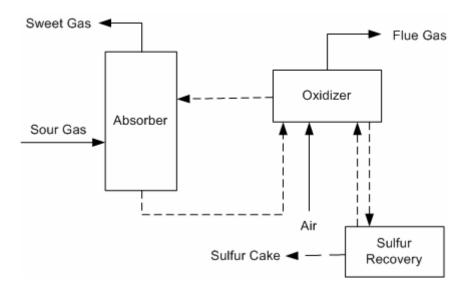



FIGURE D-4 TYPICAL LO-CAT™ SYSTEM FLOW DIAGRAM

Since  $\text{LO-CAT}^{\text{TM}}$  only removes  $\text{H}_2\text{S}$ , a COS hydrolysis unit upstream of the  $\text{LO-CAT}^{\text{TM}}$  is needed to hydrolyze any COS in the gas stream to  $\text{H}_2\text{S}$ . Other acid gases, such as HCN and mercaptans, would have to be removed by wet scrubbing.

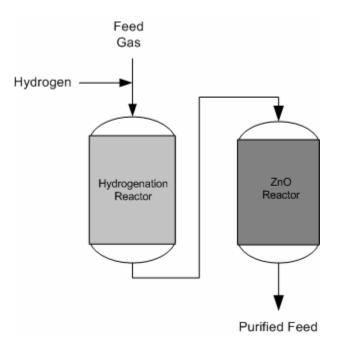
The standard material used for LO-CAT<sup>TM</sup> systems is stainless steel. Under certain conditions where there is build-up of chloride ions from the feed gas, FRP (fiberglass reinforced plastic) material is used to provide added stability for the stainless steel components<sup>34</sup>.

## D.4.5 CATALYTIC ABSORBENT-ZnO

ZnO is often used as a polishing step for sulfur removal in gas streams where the sulfur level is below 20 ppmv. In a traditional purification system, illustrated in Figure D-5, ZnO is used in

<sup>&</sup>lt;sup>33</sup> Douglas L. Heguy, Gary J. Nagl, "The State of Iron Redox Sulfur Plant Technology New Developments to an Established Technology," <<u>http://www.gtpmerichem.com/support/technical\_papers/state\_of\_iron\_redox.html</u>> (25 January 2005)

<sup>&</sup>lt;sup>34</sup> GTP-Merichem, "FAQ's About Sulfur Removal and Recovery Using the LO-CAT System," <<u>http://www.gtp-merichem.com/support/faq.html</u>> (25 January 2005)


conjunction with hydrogenation catalysts based on cobalt, molybdenum and nickel. This system involves the hydrogenation of sulfur compounds such as mercaptans to  $H_2S$ , and halides such as chlorides to HCl. These compounds are then reacted with the ZnO absorbent where  $H_2S$  is converted to zinc sulfide, and HCl forms a stable chloride. Additionally, ZnO also removes COS by hydrolysis to form  $H_2S$  which is then adsorbed to form zinc sulfide. The general reactions are summarized below<sup>35</sup>:

#### Hydrogenation reactions:

 $RSH + H_2 \rightarrow RH + H_2S$  $RC1 + H_2 \rightarrow RH + HC1$ 

#### Reaction with ZnO:

 $\begin{array}{l} ZnO + H_2S \Leftrightarrow ZnS + H_2O \\ ZnO + COS \Leftrightarrow ZnS + H_2O \end{array}$ 



#### FIGURE D-5 TRADITIONAL ZNO PURIFICATION SYSTEM

A sulfur removal below 50 ppb is attainable with  $ZnO^{36}$ . Since the sulfur specifications for alcohols and FT liquids are 0.10 ppm or less, ZnO will be used to achieve these requirements. However, a hydrogenation reactor will not likely be required since the syngas stream given by NREL does not contain halogens or any other sulfur compounds other than H<sub>2</sub>S.

<sup>&</sup>lt;sup>35</sup> Johnson Matthey Group, "Purification Catalysts and Absorbents for Hydrogen Production," available at <u>http://www.jmcatalysts.com</u> (25 January 2005)

<sup>&</sup>lt;sup>36</sup> Johnson Matthey Group, "Absorbent for Sulphur Polishing," available at <u>http://www.jmcatalysts.com</u> (25 January 2005)

ZnO is active over a wide range of temperatures from ambient to 750°F; however, operating temperatures range between 660°F and 750°F are normally used to maximize absorption efficiency. Operating pressure limits are not a concern for the use of ZnO absorbent. The ZnO reactor is normally constructed from carbon steel clad with stainless steel to prevent corrosion caused by acid gases.

One drawback of this process is the significant operating costs contributed by frequent replacement and disposal of ZnO absorbent since it cannot be regenerated.

## D.4.6 COS HYDROLYSIS

COS can be removed simultaneously with  $H_2S$  and other acid gases in some of the acid gas removal processes described above. In chemical absorption processes, the degree of COS removal is dependent upon the reactivity of the solvent solution with COS. For example, DGA can remove virtually all of the COS whereas MDEA has little reactivity with COS. In physical absorption processes, the solubility of COS in the physical solvent and the COS partial pressure determine the level of removal. A COS level of 0.1 ppm is attainable with the Rectisol process while the Selexol process can achieve 10 ppm  $COS^{37}$ . In the ZnO process, approximately 80% of the COS can be removed by hydrolysis.

When COS cannot be effectively removed by the conventional acid gas removal processes, a COS hydrolysis reactor is required and is placed upstream of the acid gas removal unit. COS removal is accomplished by hydrolysis of COS on a catalyst to form H<sub>2</sub>S which is sent to the downstream acid gas removal unit. Activated alumina catalysts are often used in these applications. COS removal to 0.1 ppm or below can be achieved<sup>38</sup>. COS hydrolysis reactors can operate over a wide range of pressures with temperatures in the range of 100°F – 450°F. The COS hydrolysis reactor is normally constructed from carbon steel clad with stainless steel to prevent corrosion caused by acid gases.

## D.4.7 SULFUR RECOVERY UNIT (SRU)

In the sulfur recovery unit, the acid gas stream from the amine or physical solvent unit is recovered to elemental sulfur. In operations where the sulfur recovery is more than 20 TPD, a Claus SRU is generally an economical approach. However, since the amount of sulfur in the syngas for this study is small (< 5 TPD), a Claus operation would not be a cost-effective solution. For a low sulfur recovery capacity, a LO-CAT SRU would be a more suitable process.

## D.5 AMMONIA, ALKALI, AND OTHER CONTAMINANTS

## D.5.1 AMMONIA REMOVAL

Two methods for removing ammonia include catalytic tar reforming and wet scrubbing. Tar cracker catalysts have been demonstrated to be effective at reducing ammonia in the syngas stream by conversion to  $N_2$  and  $H_2$ . A tar cracker can be used to remove ammonia followed by

#### <sup>38</sup> United Catalysts Inc., "UCI COS Hydrolysis Catalysts," 22 June 1992, and office communication, 17 February 2005

<sup>&</sup>lt;sup>37</sup> Robert Chu, Senior Design Engineer, Nexant, "COS Removal," office communication, 17 February 2005

gas cooling and a wet scrubber to remove residual ammonia. This cleanup configuration should achieve complete removal of ammonia.

#### D.5.2 ALKALI REMOVAL

Alkali removal is normally accomplished by cooling the syngas stream below 1100°F to allow condensation of alkali species followed by barrier filtration or wet scrubbing. Corrosion potential should be taken into consideration when using metal or ceramic candle filters due to possible reactions between the alkali and filter materials at high temperatures. Several demonstration facilities had used barrier filters to removal alkali along with other impurities. For example, ceramic filters were used at the Lahti facility in Finland and Varnamo in Sweden<sup>39,40</sup>. The Varnamo facility experienced breakage of the ceramic filter elements and replaced them with sintered metal filters, which operated successfully. Baghouse filters were used in Lahti's low-pressure gasification system and the FERCO facility in Vermont.

Alkali can easily be removed by wet scrubbing, thus it is often the preferred method for alkali removal. Descriptions of operating and cleanup parameters for barrier filters and wet scrubbing are given earlier in this Appendix.

### D.5.3 REMOVAL OF OTHER CONTAMINANTS

Contaminants such as halides or metals (i.e. nickel or iron) are not typical, but may exist in syngas produced from biomass gasification. If present, these impurities can be removed by wet scrubbing or purification by hydrogenation and ZnO absorption.

<sup>&</sup>lt;sup>39</sup> OPET Finland, OPET Report 4 "Review of Finnish Biomass Gasification Technologies," May 2002

<sup>&</sup>lt;sup>40</sup> Krister Stahl, et al. "Biomass IGCC at Varnamo, Sweden-Past and Future," GCEP Energy Workshop, 27 April 2004, Stanford University, CA.

|                                                                           | <b>REPORT DOCUMENTATION PAGE</b> Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |                   |                  |             |                                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|-------------------|------------------|-------------|---------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                           | The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. |                             |                |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATE (DD-MM-Y)               |                | EPORT TYPE        | -                |             | 3. DATES COVERED (From - To)                                                    |  |  |  |  |  |
|                                                                           | May 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                           | S              | ubcontract Repo   | rt               | -           |                                                                                 |  |  |  |  |  |
| 4.                                                                        | TITLE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | Cost Estimat   | ion for Small Mo  | dular Biomass    |             | NTRACT NUMBER<br>-AC36-99-GO10337                                               |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | as Cleanup, a  |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt; Task 2: Ga              |                | esign and Cost E  |                  | 5b. GR      | ANT NUMBER                                                                      |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  | 5c. PR(     | OGRAM ELEMENT NUMBER                                                            |  |  |  |  |  |
| 6.                                                                        | AUTHOR(S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                           |                |                   |                  | 5d. PRO     | OJECT NUMBER                                                                    |  |  |  |  |  |
|                                                                           | Nexant In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С.                          |                |                   |                  | NR          | REL/SR-510-39945                                                                |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | SK NUMBER                                                                       |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  | BB          | 06.3710                                                                         |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  | 5f. WO      | RK UNIT NUMBER                                                                  |  |  |  |  |  |
| 7.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | FION NAME(S) A | ND ADDRESS(ES)    |                  |             | 8. PERFORMING ORGANIZATION                                                      |  |  |  |  |  |
| Nexant Inc.REPORT NUMBER101 Second St., 11 <sup>th</sup> FloorACO-5-44027 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cisco, CA 941               |                |                   |                  |             |                                                                                 |  |  |  |  |  |
| 9.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | 10. SPONSOR/MONITOR'S ACRONYM(S)                                                |  |  |  |  |  |
| э.                                                                        | 9.         SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)         10.         SPONSOR/MONITOR'S ACRONYM(S)           National Renewable Energy Laboratory         NREL           1617 Cole Blvd.         NREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | е війа.<br>CO 80401-339     | 93             |                   |                  |             | 11. SPONSORING/MONITORING                                                       |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | AGENCY REPORT NUMBER<br>NREL/SR-510-39945                                       |  |  |  |  |  |
| 12                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | ITY STATEMEN   | т                 |                  |             | NREL/3R-310-39943                                                               |  |  |  |  |  |
| 12.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | rmation Servi  | -                 |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | artment of Co               | mmerce         |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Royal Road                  |                |                   |                  |             |                                                                                 |  |  |  |  |  |
| 12                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d, VA 22161<br>ENTARY NOTES |                |                   |                  |             |                                                                                 |  |  |  |  |  |
| 13.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | or: Kelly Ibse | n                 |                  |             |                                                                                 |  |  |  |  |  |
| 14.                                                                       | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Maximum 200                | Words)         |                   |                  |             |                                                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | appropriate process scheme for                                                  |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | /o different 2,000 metric tonne per day<br>a high-pressure, direct system using |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | of the gasifiers was provided to the team                                       |  |  |  |  |  |
|                                                                           | by the Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tional Renew                | able Energy L  | aboraoty. Nexa    | nt was the prim  | e contra    | ctor and principal investigator during this                                     |  |  |  |  |  |
| 15                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | nce was provid | led by both GTI   | and Emery Ene    | ergy.       |                                                                                 |  |  |  |  |  |
| 15.                                                                       | SUBJECT 1<br>biomass:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                           | l modular: svr | thesis das: svoc  | as: fluidized ca | atalytic cr | racking; steam methane reforming;                                               |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             | aboratory; NREL                                                                 |  |  |  |  |  |
| 16.                                                                       | SECURITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLASSIFICATIO               | DN OF:         | 17. LIMITATION    |                  | 19a. NAME   | OF RESPONSIBLE PERSON                                                           |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b. ABSTRACT                 | c. THIS PAGE   | OF ABSTRACT<br>UL | OF PAGES         |             |                                                                                 |  |  |  |  |  |
| Ur                                                                        | nclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unclassified                | Unclassified   | 02                |                  | 19b. TELEP  | HONE NUMBER (Include area code)                                                 |  |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |                   |                  |             |                                                                                 |  |  |  |  |  |

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18