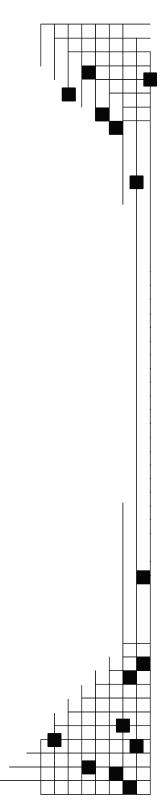


Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools—30% Energy Savings

S. Pless, P. Torcellini, and N. Long

Technical Report NREL/TP-550-42114 September 2007



Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools—30% Energy Savings

S. Pless, P. Torcellini, and N. Long

Prepared under Task No. BEC71011

Technical Report NREL/TP-550-42114 September 2007

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

Acknowledgments

The authors would like to thank the U.S. Department of Energy's (DOE) Office of Building Technologies and Drury Crawley, Technology Development Manager for Commercial Buildings. This document was prepared by NREL's Center for Buildings and Thermal Systems as FY 2007 Deliverable 1.1.2 under Task 1.1 in the Commercial Building's Statement of Work.

The authors would like to thank all the members of the project committee for their valuable input and willingness to share their expertise. Much work went into producing the lighting and daylighting recommendations, many types of HVAC systems, and envelope considerations. Without the committee's expertise and differing views and the support of the Project Committee's employers, this document would not have been possible.

Additional thanks to those who helped to edit and review the document: Stefanie Woodward, Michael Deru, Dan Macumber, Brent Griffith, Chad Lobato (all of NREL), and Lilas Pratt (ASHRAE). And finally, the authors greatly appreciate the assistance of Brent Griffith and NREL's EnergyPlus analysis and modeling team. Their simulation development and support allowed us to evaluate the many variations of energy efficiency technologies.

Executive Summary

Background

This Technical Support Document (TSD) describes the process and methodology for the development of the *Advanced Energy Design Guide for K-12 School Buildings* (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% whole-building energy savings in K-12 Schools over levels achieved by following the *ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings*. The K-12 AEDG was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

The 30% energy savings target is the first step toward achieving *net-zero energy schools*; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources. Previous guides in this series include the *Advanced Energy Design Guide for Small Office Buildings*, the *Advanced Energy Design Guide for Small Office Buildings*, the *Advanced Energy Design Guide for Small Retail Buildings*, and the *Advanced Energy Design Guide for Small Warehouses and Self Storage Buildings*. Each guide in the AEDG series provides user-friendly design assistance and recommendations to design, architectural and engineering firms to achieve energy savings. Included in the K-12 AEDG are prescriptive recommendations by climate zone for the design of the building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating. Additional savings recommendations are also included, but not necessary for 30% savings. Additional savings the building as a teaching tool. The K-12 AEDG contains recommendations only and is not a code or standard.

Our task in developing the 30% K-12 AEDG included:

- Document the process and schedule used for developing the Guide.
- Develop prototypical, baseline, and low-energy EnergyPlus K-12 school models.
- Document the EnergyPlus modeling assumptions needed to verify 30% energy savings.
- Present the recommendations for 30% savings over ASHRAE 90.1-1999 for use in the K-12 AEDG.
- Present the recommendations for 30% savings over ASHRAE 90.1-2004.
- Demonstrate that the recommendations result in 30% or greater energy savings by climate zone.

Development Process

The K-12 AEDG was developed by a project committee (PC) that represents a diverse group of professionals. Guidance and support was provided through a collaboration of ASHRAE, AIA, IESNA, USGBC, and DOE. Members of the PC came from these partner organizations, the ASHRAE Standing Standards Project Committee 90.1 (SSPC 90.1), the ASHRAE Technical Committee on Educational Facilities (TC 9.7), the Sustainable Building Industry Council, the Collaborative for High Performance Schools Project (CHPS), and the National Clearinghouse for Educational Facilities at the National Institute of Building Sciences. A steering committee (SC) made up of representatives of ASHRAE, AIA, IESNA, USGBC, and DOE issued a charge to the PC to develop the Guide. The charge included a timeline for the task, an energy savings goal, an intended target audience, space types to include, and desired design assistance characteristics.

Following the guidance from the SC, the PC developed a one-year plan for completing the document. Key milestones in the development schedule were determined based on a final publication date such that it would be ready for the Winter ASHRAE Meeting in January 2008. The PC used a similar schedule to the one developed for the previous guides to plan for two peer review periods that corresponded with a

65% completion draft (technical refinement review) and a 90% completion draft (final review for errors). A focus group reviewed the conceptual 35% draft. Six PC meetings were held at ASHRAE Headquarters or at the National Renewable Energy Laboratory (NREL). Five conference calls with the full PC were also held.

Evaluation Approach and Results

The purpose of the building energy simulation analysis presented in this TSD is to assess and quantify the energy savings potential of the Guide's recommendations. The AEDGs contain a set of energy efficiency recommendations for eight climate zones across the country. To provide prescriptive 30% recommendations, a specific quantitative energy savings goal must be measured against a specific version of Standard 90.1, that is, 90.1-1999, the "turn of the Millennium" standard for each climate zone. The energy savings of the prescriptive recommendations are also determined against ASHRAE 90.1-2004. The following steps were used to determine 30% savings:

1) Develop "typical" K-12 school prototype characteristics

For building characteristics that are not specified by ASHRAE 90.1-1999, ASHRAE 90.1-2004, or ASHRAE 62, but that are needed to develop code-compliant baseline models, we surveyed the available data sets in order to develop "typical" school characteristics. Data sets evaluated include:

- The 2003 Commercial Building Energy Consumption Survey (CBECS).
- The School Planning and Management (SPM) and American School and University (ASU) annual construction survey and report.
- Additional data sets from the PC, including plug load surveys, actual floor plates, and space programming requirements.

From the survey of "typical" school characteristics, we developed prototype elementary, middle, and high school models as documented in Table ES-1.

School Characteristic	K-12 AEDG Prototype	Source
School types	Elementary, middle, and high school	ASU, SPM, AEDG PC
Size	73,930 ft^2 elementary, 116,080 ft^2 middle, 210,810 ft^2 high	ASU, SPM, CBECS 2003, AEDG PC
Number of floors	1 for elementary, 1 for middle, 2 for high schools	CBECS 2003
Number of students	Elementary: 650, middle: 800, high: 1200	SPM, ASU,
Space types	See Table 3-4	SPM
Constructions	Mass walls, insulation entirely above deck	CBECS 2003, AEDG PC
Floor plan	North- and South-facing classrooms similar to example floor plans in Section 3.2.3.2	AEDG PC
Window area	35% fenestration to gross wall area	CBECS 2003, AEDG PC
Occupancy	Fully occupied during school hours, partially occupied year round and into the evening	CBECS 2003, AEDG PC
Peak plug loads	1.1 w/ft ² for elementary, 1.0 W/ft ² for middle and high	AEDG PC
Percent conditioned	Fully heated and cooled	CBECS 2003
HVAC system types	Baseline: PSZ Low-energy: PSZ, PVAV, and VAV	2003 CBECS AEDG PC

Table ES-1	K-12 AEDG Prototype	Characteristics and Data Sources

2) Create baseline models from the prototypes that are minimally code compliant for both ASHRAE 90.1-1999 and ASHRAE 90.1-2004.

We documented the baseline elementary, middle, and high school energy modeling assumptions and methods, including the building form and floor plate, envelope characteristics, building internal loads and operating schedules, ventilation rates and schedules, HVAC equipment efficiency, operation, control and sizing, fan power assumptions, and service water heating. The baseline models for the elementary, middle, and high schools were developed by applying the criteria in ASHRAE 90.1 and ASHRAE 62 to the prototype characteristics. We used the criteria in ASHRAE 90.1-1999 and ASHRAE 62-2001 as the baselines to calculate energy savings for the K-12 AEDG recommendations. For the baselines needed to verify 30% savings for our DOE analysis, we updated the K-12 AEDG baselines to be minimally code compliant with ASHRAE 90.1-2004.

3) Create the low-energy models based on the recommended energy efficiency technologies in the Guide.

The final recommendations included in the Guide were determined based on an iterative process using the PC's expertise and results from modeling the recommendations. To quantify the potential energy savings from the final recommended energy efficiency measures in the Guide, we simulated the low-energy building models by implementing the energy efficiency technologies listed below. We documented the EnergyPlus modeling assumptions and methods needed to model the final recommended energy-efficiency measures included in the energy saving calculation are:

- Enhanced building opaque envelope insulation
- Enhanced window glazings with overhangs
- Reduced lighting power density and occupancy controls
- Classroom and gym daylighting
- Demand-controlled ventilation with automatic motorized outdoor air damper control
- Energy recovery ventilation
- Economizers
- Lower pressure ductwork design
- Higher efficiency heating, ventilation, and air-conditioning (HVAC) equipment
- High-efficiency service water heating.

Any possible plug loads reductions are not credited to the calculated 30% energy savings, as these energy efficiency opportunities are not part of the prescriptive recommendations. However, they form a prominent part of the additional savings section in the Guide.

4) Verify 30% energy savings across the various HVAC system types and daylighting options over the 15 climate zones and sub-zones in the country.

Energy savings from the final recommendations in the Guide are documented, along with the recommendations for 30% savings over ASHRAE 90.1-1999 and ASHRAE 90.1-2004. Recommendations are provided based on the availability of daylighting for the school and by the type of HVAC system. To verify savings over this range of design options, we modeled low-energy versions of the elementary, middle, and high schools, each with the daylit option and the non-daylit option. For each daylit and non-daylit option, we modeled three HVAC types. The low-energy HVAC system types included a constant volume package rooftop DX system, a package variable-air volume direct expansion system with a central boiler, and a VAV air cooled chiller and central boiler. The recommendations in the K-12 AEDG result in more than 30% savings in all climate zones, for each daylit and non-daylit elementary, middle, and high school, with a range of HVAC system types. For 30% savings over ASHRAE 90.1-2004, the recommendations are almost the same as those that are in the K-12 AEDG. The non-daylit option presented in the K-12 AEDG is not available for 30% savings over ASHRAE 90.1-2004, as 30% savings were not possible over all climate zones for the non-daylit recommendations.

To inform the future development of more stringent K-12 AEDGs, we performed a scoping study to understand which energy efficiency technologies would be needed to achieve 50% energy savings. Recommendations included in the 50% scoping analysis include the most stringent of each recommendation included in the 30% guide, combined with plug load reductions brought about by highefficiency distribution transformers and Energy Star® equipment, daylighting in all zones, infiltration reduction, and water-cooled chillers. We modeled these recommendations in a daylit middle school to determine energy savings over ASHRAE 90.1-2004 in each of the 15 climate zones. Based on this initial scoping study, 50% savings should be possible in all climates. For the most temperate climates such as 3C and 4C, energy savings are just above 50%. Findings from this scoping study suggest that 50% savings are possible, but that nontraditional efficiency measures such as plug load reductions and infiltration reduction are required. Additional focus on "typical" plug load schedules in K-12 schools and the expected energy savings from Energy Star equipment will be needed to accurately predict the plug load savings. Baseline infiltration inputs will also need to be further researched. In addition, only certain types of HVAC systems, such as water cooled chillers, high efficiency condensing boilers, or ground source heat pumps, may be available for a 50% low-energy school. Standard systems such as package single zone equipment or unit ventilators may not be able that meet the high efficiency needs for a 50% savings school without additional lighting, plug load, or envelope measures.

Contents

ACKNOWLEDGMENTS	
EXECUTIVE SUMMARY	IV
BACKGROUND	IV
DEVELOPMENT PROCESS	IV
EVALUATION APPROACH AND RESULTS	V
CONTENTS	IX
FIGURES, TABLES, AND EQUATIONS .	XII
FIGURES	
TABLES	
EQUATIONS	
NOMENCLATURE	XVI
1. INTRODUCTION	
1.1 Objectives	
1.2 LITERATURE REVIEW	
1.3 SCOPE OF THE K-12 AEDG AND TE	CHNICAL SUPPORT DOCUMENT
1.3.1 Report Organization	
2. DEVELOPMENT PROCESS	4
2.1 CHARGE TO THE PROJECT COMMIT	TEE4
2.1.1 Inclusion of Economics and Co	<i>551</i>
2.2 APPROVAL AUTHORITY	
2.3 PROJECT COMMITTEE ORGANIZATI	ON AND MEMBERSHIP5
2.4 DEVELOPMENT SCHEDULE AND PRO	OCESS
2.4.1 Focus Group	
3. EVALUATION APPROACH	
3.1 Determining 30% Savings	
3.1.1 Site Energy Use	
3.1.2 Whole-Building Energy Saving	-s
3.1.3 ASHRAE Baseline	
3.1.4 Modeling Methods	
3.2 PROTOTYPE MODEL DEVELOPMENT	AND ASSUMPTIONS
3.2.1 2003 CBECS	

3.2.2	K-12 Construction Industry Publications	
3.2.3	Additional School Characteristics	
3.2.4	Prototype Model Summary	
3.3 E	ASELINE MODEL DEVELOPMENT AND ASSUMPTIONS	
3.3.1	Form and Floor Plate	
3.3.2	Envelope	
3.3.3	Internal Loads	
3.3.4	HVAC Systems and Components	
3.3.5	Service Water Heating	
3.3.6	Schedules	
3.4 L	OW-ENERGY MODEL DEVELOPMENT AND ASSUMPTIONS	
3.4.1	Developing the Recommendations	
3.4.2	Form and Floor Plate	
3.4.3	Envelope	
3.4.4	Lower Lighting Power Density	
3.4.5	HVAC Systems and Components	
3.4.6	Service Water Heating	
3.4.7	Schedules	
4. EVAL	UATION RESULTS	
4.1 R	ECOMMENDATION TABLES FOR 30% SAVINGS	
4.2 D	DISCUSSION OF RECOMMENDATIONS	
4.3 E	NERGY SAVINGS RESULTS	
4.3.1	End Uses for 30% Savings over ASHRAE 90.1-1999	
4.3.2	End uses for 30% Savings over ASHRAE 90.1-2004	
5. BEYC	ND 30% ENERGY SAVINGS	
	0% Energy Savings Model Inputs and Assumptions	
	0% Energy Savings Results	
	RENCES	
0. KEFE		
APPENDE	X A. PROJECT COMMITTEE MEETING AGENDAS	
	IEETING #1 AGENDA	
	CONFERENCE CALL #1 AGENDA	
	OCUS GROUP AGENDA AND QUESTIONS	
	IEETING #2 AGENDA	
A.5 C	CONFERENCE CALL #2 AGENDA	
A.6 N	1eeting #3 Agenda	

A.7	MEETIN	G #4 Agenda	
A.8	CONFER	ENCE CALL #3 AGENDA	
A.9	MEETIN	G #5 AGENDA	
A.10	CONFER	ENCE CALL #4 AGENDA	
A.11	CONFER	ENCE CALL #5 AGENDA	
A.12	MEETIN	G #6 Agenda	117
APPENI	DIX B.	RESPONSES TO 65% DRAFT REVIEW REMARKS	119
APPENI	DIX C.	ELEMENTARY SCHOOL BASELINE SCORECARDS	
APPENI	DIX D.	MIDDLE SCHOOL BASELINE SCORECARD	
APPENI	DIX E.	HIGH SCHOOL BASELINE SCORECARD	
	DIX E. DIX F.		
	DIX F.		141
APPENI	DIX F. Insulat	ENVELOPE OPTIMIZATIONS	141 142
APPENI F.1	DIX F. Insulat Mass W	ENVELOPE OPTIMIZATIONS	141 142 146

Figures, Tables, and Equations

Fi	ia	u	res
•	·S	-	

Figure 3-1 DOE Climate Zones and Representative Cities	
Figure 3-2 Area Weighted Average Daylit Floor Area	
Figure 3-3 Area Weighted Average Cooled Floor Area	
Figure 3-4 Area Weighted Average Heated Floor Area	
Figure 3-5 Area Weighted Average Months per Year of Use	
Figure 3-6 Area Weighted Average Weekly Operating Hours	
Figure 3-7 Area Weighted Average Number of Computers	
Figure 3-8 Area Weighted Average Wall and Roof Construction Type	
Figure 3-9 Area Weighted Average Primary Heating and Cooling System Types	
Figure 3-10 Area Weighted Average Window to Wall Ratio	
Figure 3-11 Area Weighted Average Number of Floors	
Figure 3-12 Area Weighted Average Elementary/Middle School Size	
Figure 3-13 Area Weighted Average High School Size	
Figure 3-14 2003 CBECS Site EUI by Climate Zone	
Figure 3-15 Middle School Floor Plan Example	
Figure 3-16 Elementary School Floor Plan Example	
Figure 3-17 High School Floor Plan Example—East or West Entry	
Figure 3-18 High School Floor Plan Example—North Entry	
Figure 3-19 High School Floor Plan Example—South Entry	
Figure 3-20 Elementary School Prototype Floor Plan	
Figure 3-21 Middle School Prototype Floor Plan	
Figure 3-22 High School Prototype First Floor Plan	
Figure 3-23 High School Prototype Second Floor Plan	
Figure 3-24 Elementary School Baseline Model Rendering: View from Southwest	
Figure 3-25 Middle School Baseline Model Rendering: View from Southwest	
Figure 3-26 High School Baseline Model Rendering: View from Southwest	
Figure 3-27 Elementary School Low-Energy Model Rendering: No Daylighting	
Figure 3-28 Middle School Low-Energy Model Rendering: No Daylighting	
Figure 3-29 High School Low-Energy Model Rendering: No Daylighting	
Figure 3-30 Classroom Sidelit Pattern	
Figure 3-31 Elementary School Low-Energy Model Rendering: Daylit	
Figure 3-32 Middle School Low-Energy Model Rendering: Daylit	
Figure 3-33 High School Low-Energy Model Rendering: Daylit	

Figure 4-1 Elementary School End Uses: Daylit	
Figure 4-2 Elementary School End Uses: No Daylighting	
Figure 4-3 Middle School End Uses: Daylit	
Figure 4-4 Middle School End Uses: No Daylighting	
Figure 4-5 High School End Uses: Daylit	
Figure 4-6 High School End Uses: No Daylighting	
Figure 4-7 Elementary School End Uses: Daylit, ASHRAE 90.1-2004 Baseline	e95
Figure 4-8 Middle School End Uses: Daylit, ASHRAE 90.1-2004 Baseline	
Figure 4-9 High School End Uses: Daylit, ASHRAE 90.1-2004 Baseline	
Figure 5-1 50% Savings Fully Daylit Middle School Model Rendering	
Figure 5-2 Middle School End Uses: 50% Savings	
Tables	
Table 2-1 K-12 AEDG PC Organization Chart	
Table 2-2 K-12 AEDG Project Committee Development Schedule	
Table 2-3 K-12 AEDG Focus Group Participants	9
Table 3-1 2003 CBECS Floor Area: Weighted Mean	
Table 3-2 Area Weighted Average Site EUI by ASHRAE Climate Zone	
Table 3-3 National Average Schools Sizes, Costs, and Number of Students (AS Report, SPM Construction Report)	
Table 3-4 Space Types Included in Schools: 2006 SPM National Average, Wa the AEDG Prototype.	
Table 3-5 Roanoke District High School Plug Load Density Survey	
Table 3-6 Roanoke District Middle School Plug Load Density Survey	
Table 3-7 Roanoke District Elementary School Plug Load Density Survey	
Table 3-8 Plug Load Items Included in Survey	
Table 3-9 North Carolina Elementary School Typical Space Profiles	
Table 3-10 North Carolina Middle School Typical Space Profiles	
Table 3-11 North Carolina Middle School Typical Space Profiles (Cont.)	
Table 3-12 North Carolina High School Typical Space Profiles	
Table 3-13 North Carolina High School Typical Space Profiles (Cont.)	
Table 3-14 North Carolina High School Typical Space Profiles (Cont.)	40
Table 3-15 Elementary/Middle School National Average Schools Sizes: ASU, 3	SPM, AEDG, CBECS41
Table 3-16 High School National Average Schools Sizes: ASU, SPM, AEDG,	CBECS41
Table 3-17 K-12 AEDG Prototype Characteristics and Data Sources	
Table 3-18 Total Space Sizes Included in the AEDG Prototypes	
Table 3-19 Selected Baseline Modeling Assumptions	

Table 3-20 Elementary School Baseline Internal Loads by Space Type	50
Table 3-21 Middle School Baseline Internal Loads by Space Type	50
Table 3-22 High School Baseline Internal Loads by Space Type	51
Table 3-23 Baseline OA Rates by Space Type	52
Table 3-24 Baseline Fan System Total Pressure Drops	53
Table 3-25 Baseline HVAC Models Summary	55
Table 3-26 Building Lighting Schedule	56
Table 3-27 Building Heating and Cooling Set Point Schedules	57
Table 3-28 Building Equipment Schedule	58
Table 3-29 General and Extended Occupancy Schedule	59
Table 3-30 Offices and Gym Occupancy Schedules	60
Table 3-31 Auditorium and Cafeteria Occupancy Schedules	61
Table 3-32 Service Water Heating Schedules	62
Table 3-33 Infiltration and HVAC Operation Schedules	63
Table 3-34 Fenestration by Space Type for Daylit Models	68
Table 3-35 Roof Insulation Options and Costs	71
Table 3-36 Mass Wall Insulation Options and Costs	72
Table 3-37 Baseline and Low-Energy LPDs	74
Table 3-38 Low Energy Fan System Total Pressure Drops	77
Table 3-39 Low-Energy HVAC Models Summary	78
Table 3-40 Building Lighting Schedule with Occupancy Sensors	79
Table 3-41 General and Extended Occupancy Schedules for Demand Controlled Ventilation	80
Table 4-1 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate	
Zones 1-4	
Table 4-2 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 1-4 (Cont.)	
Table 4-3 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 5-8	85
Table 4-4 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 5-8 (Cont.)	86
Table 4-5 Energy Savings: ASHRAE 90.1-1999 Baseline	90
Table 4-6 Energy Savings: ASHRAE 90.1-2004 Baseline	91
Table 5-1 50% Savings Building Equipment Schedule	99
Table 5-2 Recommendations for 50% Savings over ASHRAE 90.1-2004: Climate Zones 1-4	101
Table 5-3 Recommendations for 50% Savings over ASHRAE 90.1-2004: Climate Zones 5-8	102
Table C-1 Elementary Baseline Scorecard: Climate Zones 1-3	123
Table C-2 Elementary Baseline Scorecard: Climate Zones 1-3 (Cont.)	124

Table C-3	Elementary Baseline Scorecard: Climate Zones 3-5	. 125
Table C-4	Elementary Baseline Scorecard: Climate Zones 3-5 (Cont.)	. 126
Table C-5	Elementary Baseline Scorecard: Climate Zones 5-8	. 127
Table C-6	Elementary Baseline Scorecard: Climate Zones 5-8 (Cont.)	. 128
Table D-1	Middle Baseline Scorecard: Climate Zones 1-3	. 129
Table D-2	Middle Baseline Scorecard: Climate Zones 1-3 (Cont.)	. 130
Table D-3	Middle Baseline Scorecard: Climate Zones 3-5	. 131
Table D-4	Middle Baseline Scorecard: Climate Zones 3-5 (Cont.)	. 132
Table D-5	Middle Baseline Scorecard: Climate Zones 5-8	. 133
Table D-6	Middle Baseline Scorecard: Climate Zones 5-8 (Cont.)	. 134
Table E-1	High Baseline Scorecard: Climate Zones 1-3	. 135
Table E-2	High Baseline Scorecard: Climate Zones 1-3 (Cont.)	. 136
Table E-3	High Baseline Scorecard: Climate Zones 3-5	.137
Table E-4	High Baseline Scorecard: Climate Zones 3-5 (Cont.)	. 138
Table E-5	High Baseline Scorecard: Climate Zones 5-8	. 139
Table E-6	High Baseline Scorecard: Climate Zones 5-8 (Cont.)	. 140
Table G-1	Elementary End Uses: Climate Zones 1-4	. 150
Table G-2	Elementary School End Uses: Climate Zones 4-8	. 151
Table G-3	Middle School End Uses: Climate Zones 1-4	. 152
Table G-4	Middle School End Uses: Climate Zones 4-8	. 153
Table G-5	High School End Uses: Climate Zones 1-4	. 154
Table G-6	High School End Uses: Climate Zones 4-8	. 155
Table H-1	Elementary School End Uses: Climate Zones 1-8	. 156
Table H-2	Middle School End Uses: Climate Zones 1-8	. 157
Table H-3	High School End Uses: Climate Zones 1-8	. 158

Equations

Equation 3-1	Calculation of EER from SEER	4
Equation 3-2	Calculation of Annual Cash Flows7	0
Equation 3-3	Calculation of TLCC7	0

Nomenclature

ACH	air changes per hour
AEDG	Advanced Energy Design Guide
AIA	American Institute of Architects
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
CBECS	Commercial Buildings Energy Consumption Survey
CDD	cooling degree day
CFR	Code of Federal Regulations
CHPS	Collaborative for High Performance Schools
ci	continuous insulation
CO ₂	carbon dioxide
COP	coefficient of performance
DOE	U.S. Department of Energy
DX	direct expansion
EER	energy efficiency ratio
ERV	energy recovery ventilator
EUI	energy use intensity
HDD	heating degree day
HVAC	heating, ventilation, and air conditioning
IECC	International Energy Conservation Code
IESNA	Illuminating Engineering Society of North America
IPLV	integrated part load value
LPD	lighting power density
NCEF	National Clearinghouse for Educational Facilities
NIBS	National Institute of Building Sciences
NREL	National Renewable Energy Laboratory
OA	outside air
O&M	operations and maintenance
PC	project committee
PSZ	A package single zone DX rooftop unit
PVAV	A package multi-zone DX rooftop with a VAV
RMS	root mean square
SBIC	Sustainable Building Industry Council
SC	steering committee

SEER	seasonal energy efficiency ratio
SHGC	solar heat gain coefficient
SO AEDG	Small Office Advanced Energy Design Guide
SPM	School Planning and Management
SR AEDG	Small Retail Advanced Energy Design Guide
SRI	Solar Reflective Index
TLCC	total life cycle cost
TSD	Technical Support Document
USGBC	U.S. Green Building Council
VAV	variable air volume
VLT	visible light transmittance
WD	Weekday
W.C.	water column
XML	extensible markup language

1. Introduction

The *Advanced Energy Design Guide for K-12 School Buildings* (K-12 AEDG) (referred to as the Guide in this report) was written to help owners and designers of elementary, middle, and high schools achieve whole-building energy savings of at least 30% compared to the minimum requirements of the ANSI/ASHRAE/IESNA Standard 90.1-1999, which serves as a baseline (ASHRAE 1999). "K-12" refers to kindergarten through twelfth grade schools. Depending on the school districts, these grades are divided roughly into elementary schools with grades K through 5, middle schools with grades 6 through 8, and high schools with grades 9 through 12. Included in the Guide are prescriptive recommendations by climate zone for the design of the building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air (OA) treatment, and service water heating. Additional savings recommendations are also included, but not necessary for 30% savings. Additional savings the building as a teaching tool. The Guide contains recommendations only and is not a code or standard.

The Guide is intended to show that achieving the 30% target is not only possible, but easily achievable. Case studies in the Guide show schools around the country that have achieved and surpassed the 30% energy savings target. Best practices and cautions are also provided to demonstrate how to implement the recommendations. The recommendation tables do not include all the components listed in ASHRAE 90.1-1999. Though this Guide focuses only on the primary energy systems in a building, the underlying energy analysis presumes that all the other components are built to the criteria in ASHRAE 90.1 and ASHRAE 62.1 (ASHRAE 2001, ASHRAE 2004b).

By specifying a target goal and identifying paths for each climate zone to achieve the goal, the Guide provides *some ways, but not the only way*, to meet the 30% target and build energy-efficient K-12 schools that use substantially less energy than those built to minimum energy code requirements. There may be other means of achieving the target goal, and we hope the Guide generates ideas for innovation as well.

The Guide was developed by a project committee (PC) representing a diverse group of professionals. Guidance and support was provided through a collaboration of the ASHRAE, the American Institute of Architects (AIA), the IESNA, the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE). Members of the PC came from these partner organizations, the ASHRAE Standing Standards Project Committee 90.1 (SSPC 90.1), the ASHRAE Technical Committee on Educational Facilities (TC 9.7), the Sustainable Building Industry Council (SBIC), the Collaborative for High Performance Schools Project (CHPS), and the National Clearinghouse for Educational Facilities (NCEF) at the National Institute of Building Sciences (NIBS).

The 30% energy savings target is the first step toward achieving *net zero-energy schools*; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources. Other guides in this series include the *Advanced Energy Design Guide for Small Office Buildings(SO AEDG)* (AEDG-SO 2004), the *Advanced Energy Design Guide for Small Retail Buildings (SR AEDG)* (AEDG-SR 2006), and the *Advanced Energy Design Guide for Small Warehouses and Self Storage Buildings* (www.ashrae.org/aedg).

1.1 Objectives

Our task in developing of the 30% K-12 AEDG was to provide the analysis and modeling support to:

• Verify energy savings – The specific prescriptive recommendations that must, in aggregate, yield 30% savings beyond a benchmark building built to the Standard 90.1-1999 for each climate region contained in the guide. The 30% is measured based on the total energy consumption, not just the regulated loads. It is not an average of the national energy savings. Cities used for testing in the SO AEDG were also used for the K-12 schools guide (Jarnagin 2006).

- Develop recommendations that meet a numeric goal value The energy savings goal is a hard value as opposed to an approximate target. The 30% energy savings value was set to be as consistent as feasible with LEED criteria (USGBC 2006), given that LEED works from a *cost* basis and this document is based on *energy savings*. As in past AEDGs, we intend for this Guide to be used for obtaining LEED Energy and Atmosphere credits.
- Identify methods to achieve the goal The goal of the guide is to save energy by identifying packages of design measures and strategies combined with selecting state-of-the shelf building systems and design concepts (multiple suppliers of a given technology or system) which result in efficient and high-quality spaces.

Separate from the Guide itself, this Technical Support Document (TSD) has been developed to document the process used to develop the 30% K-12 AEDG and the analysis and modeling done to support that development. The specific objectives for this TSD include:

- Document the process and schedule used for developing the Guide.
- Develop prototypical K-12 school characteristics.
- Document the EnergyPlus modeling assumptions needed to verify 30% energy savings.
- Develop the baseline and low-energy EnergyPlus K-12 school models.
- Present the recommendations for 30% savings over ASHRAE 90.1-1999 for use in the K-12 AEDG.
- Present the recommendations for 30% savings over ASHRAE 90.1-2004 (ASHRAE 2004a).
- Demonstrate that the recommendations result in 30% or greater energy savings by climate zone.

1.2 Literature Review

The first step in developing the 30% K-12 AEDG was a literature review and summary of highperformance K-12 school guidelines. To ensure that the K-12 AEDG did not duplicate previous work in the relatively mature field of high-performance schools, we performed a literature review of the available design guides and rating systems for high-performance K-12 schools. Efforts focused on compiling a summary of the available high-performance school guides available throughout the country. Based on our review of many such guidelines and rating systems, we concluded that the K-12 AEDG will be a unique guideline. None of the guides reviewed include prescriptive design guidance for targeted levels of energy savings based on climate. The K-12 AEDG should provide a needed resource and complement many of the available guides and criteria. Another intent is for the K-12 AEDG to provide an alternative energy efficiency compliance path for the high-performance schools rating and criteria systems such as LEED for Schools and CHPS for California, New York, and Massachusetts. There is a need in these systems for an alternative energy efficiency compliance path that does not require significant simulation analysis.

In addition to the vast selection of school design guides, there are many sets of physical school characteristics and performance data. The currently available data sources represent existing school stock as well as annual updates for new school construction. We surveyed these data sets to develop "typical" school characteristics and energy performance. Typical school characteristics helped to inform our development of realistic prototypical models for the 30% AEDG analysis, as documented in Section 3.2 of this TSD. Data sets that we evaluated include:

- The 2003 Commercial Building Energy Consumption Survey (CBECS)
- The School Planning and Management (SPM) and American School and University (ASU) annual construction survey and report
- Additional data sets from the PC, including plug load surveys, actual floor plates, and space programming requirements from North Carolina

- The DOE High Performance Buildings Database
- The Energy Star® Target Finder and Energy Star labeled building database
- DOE Commercial Buildings Benchmark project

1.3 Scope of the K-12 AEDG and Technical Support Document

Each guide in the AEDG series provides recommendations and user-friendly design assistance to designers, developers and owners of commercial buildings that will encourage steady progress toward net-zero energy buildings. The K-12 AEDG provides prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient K-12 schools.

The Guide applies to all sizes of K-12 school buildings (classified as elementary, middle, and high schools) with administrative and office areas, classrooms, hallways, restrooms, gymnasiums, assembly spaces, food preparation spaces, and dedicated spaces such as media centers and science labs. This Guide does not consider atypical specialty spaces such as indoor pools, wet labs such as chemistry, "dirty" dry labs such as woodworking and auto shops, or other unique spaces with extraordinary heat or pollution generation. It is primarily intended for new construction, but it may be equally applicable to many school renovation, remodeling, and modernization projects.

Certain aspects of energy-efficient school design, including steam heat, modular classrooms, vehicles and other maintenance areas, domestic water well piping, kitchen process loads (e.g., ovens, coolers, freezers), and sewage disposal, are excluded from this Guide. They were too complex to include given the scope of the project. Significant energy efficiency opportunities may be available with these aspects. Guide users are encouraged to take advantage of these opportunities and treat them as "bonuses" beyond the 30% target.

In addition, the Guide is not intended to substitute for rating systems or references that address the full range of sustainable issues in schools, such as acoustics, productivity, indoor air quality, water efficiency, landscaping, and transportation, except as they relate to operational energy consumption. Nor is this Guide a design text – we assume good design skills as well as expertise in school design.

The guides in the AEDG series do not provide a detailed documentation for the development of the recommendations or the actual energy savings. This TSD describes the process and methodology for the development of the *Advanced Energy Design Guide for K-12 School Buildings* and provides the technical details for determining 30% energy savings, including model inputs and assumptions, the development of the 30% recommendations, and the energy savings.

1.3.1 Report Organization

This report is presented in four sections: Section 1 introduces the K-12 AEDG and the supporting background information; Section 2 describes the charge given to the PC for developing of the Guide and outlines the process and development schedule; Section 3 provides the evaluation approach, including baseline and low-energy modeling methods and assumptions; Section 4 documents the final recommendations and energy savings; Section 5 describes an additional scoping analysis for beyond 30% savings.

Additional information on the PC development process is included in Appendix A. Appendix B includes the summary responses to the remarks received on the 65% review draft. Appendixes C, D, and E summarize baseline model inputs. Appendix F provides the results of determining optimal envelope insulation levels. Appendixes G and Appendix H provide EUIs for the primary end uses for both the recommendations for 30% savings over ASHRAE 90.1-1999 and for 30% saving over ASHRAE 90.1-2004.

2. Development Process

The Guide was developed by a PC that represents a diverse group of professionals. Guidance and support was provided through a collaboration of ASHRAE, AIA, IESNA, USGBC, and DOE. PC members came from these partner organizations, the ASHRAE Standing Standards Project Committee 90.1 (SSPC 90.1), the ASHRAE Technical Committee on Educational Facilities (TC 9.7), the SBIC, CHPS, and the NCEF at NIBS.

2.1 Charge to the Project Committee

A steering committee (SC) made up of representatives of the partner organizations issued a charge to the PC to develop the Guide. The charge included a timeline for the task, an energy savings goal, an intended target audience, and desired design assistance characteristics. These elements of the charge to the committee are contained below:

- To develop and document a process to achieve a savings of 30% progress toward a net zeroenergy building for K-12 schools.
- To produce recommendations in a technically sound Advanced Energy Design Guide for K-12 schools.
- To publish the Guide within a year.
- To constrain the scope and duration of the analysis effort so that the schedule is maintained. The PC should rely on current knowledge of energy-efficient building design, supplemented with energy design analysis that can be completed while maintaining the schedule.
- To produce a document that is to the point and not voluminous. Use the SO AEDG as guide for size and technical depth, with an expected overall size limit of 100 to 200 published pages.

Additional guidance from the SC to the PC was provided in a Scope Document. Elements of the Scope Document are contained below:

- 1. The baseline for energy usage evaluation is annual site energy consumption.
- 2. Address the practical how-to, user-friendly information needs of its intended users who are designers in medium to large firms, design/build contractors, and construction firms.
- 3. The interaction of building components and systems will likely need to be considered rather than having all the savings come from individual parts (savings from integration of systems is encouraged). Accommodate, to the extent practical, some level of design flexibility through use of packages of efficiency measures that users may choose from.
- 4. Adopt a prescriptive recommendation approach with packages of measures. This will include envelope, mechanical, lighting, and water heating measures. The document will be formatted for easy use, provide specific procedures, convey best practices, and avoid code language. The apparent complexity of the typical standard/guideline layout and format should be avoided to ease usability by the target audience.
- 5. In addition to prescriptive energy efficiency measures, the guide should contain "how to" guidance that will help the designer construct an energy-efficient school facility. In recognition of the constrained design fees available, the document should be presented in a very user-friendly manner to reduce design time. By focusing on user-friendly layouts and presentation as well as prescriptive design recommendations, the guide should ease the burden for the designers and give school decision-makers an overview of specific, easy-to-follow recommendations.
- 6. The prescriptive recommendations presented should be sufficient to allow innovative firms to extend the information when designing facilities that might be evaluated on performance-based

criteria. That is, some additional allowance or flexibility should be provided for those accustomed to performance-based documents.

7. Several case studies should be included to illustrate the energy efficiency components identified. These case studies can focus on the geographic regions (as in the SO AEDG) or to illustrate particular items or techniques recommended.

2.1.1 Inclusion of Economics and Cost

The purpose of the guidance provided in the K-12 AEDG is to assist designers in the design of energyefficient schools. The goal of 30% energy savings is to be considered the primary focus of the Guide, i.e. the focus is on high performance buildings and the energy savings related thereto, not on installations that have a payback less than some given number of years. Cost and payback are factors, but they are secondary to achieving buildings that use 30% less energy.

Therefore, energy use is to be considered the independent variable that is specified, and cost effectiveness (as measured by, for example, simple payback period) is the dependent (or resulting) variable. Although some of the products or recommendations may be considered premium, products of similar performance must be available from multiple manufacturers.

2.2 Approval Authority

The final approval for the Guide is the responsibility of the SC. SC members represent various interested parties and are responsible for reflecting the opinions of the group represented. This includes consulting with the groups and getting buy-in from them during the entire process and providing the peer review. Efforts should be made to agree on the content, like the *ASHRAE Handbook: Fundamentals* (ASHRAE 2005); however, it is not a consensus document.

2.3 Project Committee Organization and Membership

The Guide was developed by a PC administered under ASHRAE's Special Project procedures. The K-12 AEDG PC was designated as ASHRAE Special Project 111 (SP-111), and included membership from each partner organization. Table 2-1 lists the project committee members and the organizations that they represent.

Member	Organization
Paul Torcellini	Chairman
Merle McBride	Vice-Chairman
Don Colliver	SC Liaison
Jyoti Sharma	USGBC Representative
Larry Schoff	USGBC Representative
John Murphy	SBIC Representative
Bill Brenner	NIBS/NCEF Representative
Jim Benya	IESNA Representative
Leslie Davis	IESNA Representative
Charles Eley	CHPS Representative
Mike Nicklas	AIA Representative
Kathleen O'Brien	AIA Representative
Carol Marriott	ASHRAE SSPC 90.1 Representative
Milton S. Goldman, M.D.	ASHRAE TC 9.7 Representative
Lilas Pratt	ASHRAE Staff Liaison
Bruce Hunn	ASHRAE Staff Liaison

Table 2-1 K-12 AEDG PC Organization Chart

The SC selected PC members with energy efficiency experience in K-12 schools. Each representative organization was given the chance to provide peer review input on the various review drafts produced by the PC. In effect, these representatives were intended to be the interfaces to their respective organizations to ensure a large body of input into the development of the document.

2.4 Development Schedule and Process

Following the guidance from the SC, the SP-111 committee developed a one-year plan for completing the document. Key milestones in the development schedule were determined based on a final publication date in December, 2007 (ready for the Winter ASHRAE Meeting in January 2008). With this final publication date, the PC determined the time needed for the publication process and then determined the dates of review periods for the various completion stages for the draft document. The PC used a similar schedule to the one developed for the previous guides to plan for two peer review periods that corresponded with a 65% completion draft (technical refinement review) and a 90% completion draft (final review for errors). A focus group reviewed the conceptual 35% draft. Six PC meetings were held at ASHRAE Headquarters or at NREL. Five conference calls were also held. The following schedule shown in Table 2-2 outlines key dates in the development of the K-12 AEDG.

The development of the prototype, baseline, and low-energy models was an iterative process, with discussion of the model inputs and the current model results at every meeting and conference call. Results from the modeling, combined with input from the PC, led to the development of the final recommendations. The following steps show the modeling process used, from the initial prototype development to the final recommendations:

- 1. Determine prototype models inputs from the PC, ASHRAE 90.1-1999, ASHRAE 62.
- 2. Present preliminary baseline results for the prototype elementary school.
- 3. Develop a consensus from the PC on the prototype model inputs.

- 4. Extend elementary baseline inputs to the middle and high school prototypes.
- 5. Develop initial recommendations and the corresponding low-energy models, including daylighting types, HVAC systems, and envelope recommendations.
- 6. Present the low-energy modeling results and identify recommendations that do not result in 30% energy savings.
- 7. Fine tune the recommendations to achieve at least 30% whole-building energy savings in all climate zones for the various daylighting and HVAC options and school types.
- 8. Determine final recommendations for the K-12 AEDG that achieve 30% savings.

The following sections of this TSD present the prototype development results from Step 3, the baseline model results from Step 4, and the final recommendations and energy savings results as determined in Step 8.

Because the document was developed under the ASHRAE special project procedures, and not the standards development procedures, the peer reviews were not considered true "public" reviews. However, review copies were made available to all partner organizations, as well as the various bodies within ASHRAE represented by the PC membership. In addition, interested members could download review copies from the ASHRAE Web site. The responses to the remarks and suggestions received from the 65% review draft are summarized in Appendix B.

Further information about each meeting and conference call are included in the meeting agendas and conference call agendas in Appendix A. For future reference, these agendas were updated after each meeting or call to reflect the actual discussions and length of time spent on each item. After each conference call and meeting, we compiled the meeting notes, agenda, action items, future schedules, and other related documents into a meeting report. These meeting reports were very useful for reference and organizational purposes during the development of the Guide.

Date	Event	Description
12/8/06-12/9/06	Kickoff/PC meeting #1	Kickoff introduction meeting, first PC meeting
1/8/07	Concept draft complete	Draft 35% concept draft for PC and Focus group review
1/12/07	Conference call #1	Conference call to discuss concept draft
1/18/07	Focus Group Meeting	Solicit input from industry on concept
1/19/07-1/20/07	PC meeting #2	Discuss results of focus group and baseline modeling assumptions
2/9/07	Conference Call #2	Discuss progress of 65% draft
2/23/07-2/24/07	PC meeting #3	Discuss progress of 65% draft and fill missing pieces
3/9/07	65% Draft complete	65% Draft complete
3/12/07-3/23/07	65% Draft review	65% Draft review
4/12/07-4/13/07	PC meeting #4	Review simulation results, address 65% review remarks
5/18/07	Conference Call #3	Discuss progress to 90% draft
6/4/07-6/5/07	PC meeting #5	Further develop 90% draft, finalize responses for 65% review remarks
6/16/07	Draft Technical Support Document	Draft Technical Support Document
6/19/07	Conference Call #4	Review simulation results
7/2/2007	Conference Call #5	Identify missing pieces in 90% draft
7/6/07	90% Draft complete	90% Draft complete
7/9/07-7/20/07	90% Draft review	90% Draft review
8/2/07-8/3/07	PC meeting #6	Address 90% review remarks, finalize draft for 100%
8/10/07	Final 100% document	Final 100% document
week of 8/12/07	Steering Committee approval	Steering Committee approval
week of 9/10/07	Final 100% document to Publications	Final 100% document to Publications
9/15/07	Final Technical Support Document to DOE	Final Technical Support Document to DOE
10/12/07	Proof review complete	Proof review complete
10/15/07	Document to printers	Document to printers
December, 2007	Printed document complete	Printed document complete

Table 2-2 K-12 AEDG Project Committee Development Schedule

2.4.1 Focus Group

To evaluate the concept of the K-12 AEDG, ASHRAE convened a focus group of school administrators, school designers, and school energy management staff to review the 35% completion draft. The focus group was brought to ASHRAE headquarters to discuss the concept of the K-12 AEDG. Members of the Focus Group are shown in Table 2-3. Before the focus group meeting, the participants reviewed the 35% concept draft, the SC Scope Document, and examples of the recommendation tables and case studies from

the previous guides. The questions asked of the Focus Group to stimulate discussion and solicit feedback are shown in Appendix A.3. The highlights of the Focus Group discussion are shown below:

- **Keep it simple:** Need to keep the energy recommendations simple and avoid complex systems preference within the focus group for passive types of controls. "Avoid complications wherever possible." There was a general perception that high-performance schools are too complicated and cost too much.
- **Capital rich, maintenance poor:** Operations and maintenance (O&M) are a big concern. Capital for construction is plentiful, but general funds for O&M are much harder to come by. Maintenance staff training needs to be addressed. They felt that "green" schools would cost 5% to 25% more than standard schools, and be achievable for wealthy districts while not possible for poorer districts.
- Effective in multiple elements: Green schools must be effective on several levels: operation, cost, learning opportunities for students, community partnerships. Often, new green schools are not just schools but community resources that require extended hours of use.
- Owner and designer audience: The involvement of school boards in supporting energy efficiency and having buy-in is important. The target audience differs from the SO AEDG and SR AEDG (i.e., mainly architects and engineers) (Liu 2006 and Jarnagin 2006). School districts, as decision makers, should be strongly inclined to provide this guide to their designers. School districts typically rely on the advice of facilities, so the audience comprises owners and designers. In addition, the school architectural and engineering firms that design schools are typically medium to large firms. The K-12 AEDG should be a common reference point for all these audiences.
- They are not risk takers: Therefore, the guide should be at least "on the edge of mainstream." There is a need for verified, credible, monitored data in the case studies to prove performance. They also want persistence, track record, and cost data in the case studies.
- **Recommendations too limiting:** The focus group was worried that the K-12 AEDG recommendations might limit the architecture, site, or programming. There is a need to assure the group that energy-efficient equipment specifications apply to all items, including appliances and other packaged HVAC items.

Member	Organization
Kevin Chisholm	Energy Manager: Arlington Public Schools
Susan Cook	School Superintendent, Kenton County Schools
Rick Dames	Director of Buildings & Grounds: Boone County Schools
Chad Loomis	Cornell University, Planning Design and Construction
Forrest Miller	Director of Facilities and Planning: Lake Washington School District
Karen Reager	National Energy Education Development (NEED) Project
Ervin Ritter	Ritter Consulting Engineers
Bryan Welsh	Welsh Commissioning Group

Table 2-3 K-12 AEDG Focus Group Participants

In developing the K-12 AEDG, the PC attempted to include the results from the focus group by:

- Including discussion for the decision makers, such as the superintendents and school boards.
- Covering administrative policy issues for items such as administration policy on no plug in mini fridges or assigning a dollar figure to discourage use of inefficient plug loads.
- Focusing on simple(r) systems.
- Emphasizing O&M.
- Addressing plug loads.
- Addressing specialty spaces.
- Providing a wider range of daylighting and HVAC recommendations.
- Providing case studies with at least two years of measured energy performance as well as examples of cost-effective implementation of the Guide's recommendations.

3. Evaluation Approach

This chapter describes the analysis methods used to support development of the K-12 AEDG. It presents how we quantified the 30% energy savings, developed prototype models, baseline models and the low-energy models.

3.1 Determining 30% Savings

The purpose of the building energy simulation analysis presented in this TSD is to assess and quantify the energy savings potential of the Guide's final recommendations. The AEDGs contain a set of energy efficiency recommendations for eight climate zones across the country. To provide prescriptive 30% recommendations, a specific quantitative energy savings goal must be measured against a specific version of Standard 90.1. For the K-12 AEDG, this is 90.1-1999, the "turn of the Millennium" standard (ASHRAE 1999). The energy savings of the prescriptive recommendations were also examined relative to ASHRAE 90.1-2004 (ASHRAE 2004).

The following steps were used to determine 30% savings:

- 1. Develop "typical" K-12 school prototype characteristics.
- 2. Create baseline models from the prototypes that are minimally code compliant for both ASHRAE 90.1-1999 and ASHRAE 90.1-2004.
- 3. Create the low-energy models based on the recommended energy-efficient technologies in the Guide.
- 4. Verify 30% energy savings across the various HVAC system types and daylighting options over the 15 climate zones and sub-zones in the country.

These steps are presented in a linear fashion, but there is some iteration among the steps. For example, certain baseline model inputs were determined by features included in the low-energy models, such as glass and skylight areas. In addition,

3.1.1 Site Energy Use

The 30% energy savings goal of the AEDG series is based on site energy savings between a minimally code compliant school and a low-energy school that uses the recommendations in the Guide. Other metrics, such as energy cost savings, source energy savings, or carbon savings, could be used to determine energy savings (Torcellini et al. 2006). Each metric has advantages and disadvantages from an implementation and calculation perspective, and each can favor different technologies and fuel types. The K-12 AEDG uses site energy savings, as directed by the SC, to retain consistency from the previous AEDGs.

3.1.2 Whole-Building Energy Savings

Historically, energy savings have been expressed in two ways: Energy savings of regulated loads and energy savings of the whole building. The "regulated loads" energy savings indicates the savings when the loads that are not code regulated are not included in the total loads of the building. These unregulated loads typically include plug and some process loads. The "whole-building" energy savings indicate the savings when all the loads (regulated and unregulated) are included in the energy savings calculations. In general, for the same level of percent savings, whole-building savings is more challenging than regulated loads savings. In LEED 2.1, plug loads are included in the simulation (to capture proper heat loads), but not in the denominator of the energy savings calculation. In the case of Appendix G in ASHRAE 90.1-2004 and in LEED 2.2, plug loads are included in the denominator, i.e., the whole-building method, which includes the unregulated loads for calculating energy savings. The K-12 AEDG uses the "whole-building" energy savings method for determining 30% energy savings. See Section 3.2.3.1 for additional information about determining the plug loads for schools.

3.1.3 ASHRAE Baseline

The K-12 AEDG was written to help owners and designers of elementary, middle, and high schools achieve energy savings of at least 30% compared to the minimum requirements of ANSI/ASHRAE/ IESNA Standard 90.1-1999, which serves as a baseline. The baseline level energy use was set for buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999 (ASHRAE 1999), *Energy Standard for Buildings except Low-Rise Residential Buildings*. The selection of ASHRAE 90.1-1999 for the baseline was also based on the fact that the standard was the most recent for which DOE had issued a formal determination of energy savings at the time of preparation of the first AEDG.

The use of ASHRAE 90.1-1999 for the baseline for determining 30% energy saving for the K-12 AEDG is also consistent with other AEDGs in the series (Jarnagin 2006, Liu 2006). There has been considerable discussion between the SC and the K-12 AEDG PC about having the energy savings based on a percentage below a specific version of 90.1 (1999, 2001, 2004, 2007, etc). The SC realized that this would always provide for a moving baseline if the most current version of the standard was used. It would cause considerable confusion in the marketplace because the recommendations would always be changing based on which version of 90.1 was being used as the baseline for determining savings. Two very similar buildings could have different recommendations, solely because a different baseline was being used. Therefore, the SC decided to look at the other end of the scale, and describe the energy savings as the progress toward a net zero-energy building. The top end of the scale, or 0% progress, would be set as the energy used by a structure built to the energy standards at the turn of the millennium (i.e., 90.1-1999). The bottom end of the scale, or 100%, is the net zero-energy building.

For our analysis for DOE, we have also determined the recommendations needed to achieve 30% savings over ASHRAE 90.1-2004. Recommendation tables and energy savings are provided for 30% savings over both 90.1-1999 and 90.1-2004.

3.1.4 Modeling Methods

3.1.4.1 EnergyPlus

EnergyPlus version 2.0 (DOE 2007) was used to complete the energy simulations. All simulations were completed with the NREL analysis platform (currently called OptEPlus) that manages inputs and outputs of the EnergyPlus simulations. The core functionality of the analysis platform is the user's ability to pass high-level parameters of the building (building area, internal gains per zone, HVAC system configuration, etc.) to generate a fully parameterized input file for EnergyPlus. Such files are generated rapidly and can be easily changed to incorporate changes during the evolution of the model. The high-level parameter file is an eXtensible Markup Language (XML) file, which is basically a structured text file. Modifying the high-level parameters is preferred over modifying the EnergyPlus input file because it greatly simplifies the modeling input development process. Modifying EnergyPlus input files can be time intensive when the high-level parameters have a one-to-many relationship with the input objects in the low-level input file.

We selected EnergyPlus because it is the contemporary DOE tool that accounts for the complicated interactions between climate, internal gains, building form and fabric, HVAC systems, and renewable energy systems. The simulations are run with EnergyPlus Version 2.0 compiled to run on a 64-bit cluster computer at NREL. EnergyPlus is a heavily tested program with formal BESTEST validation efforts repeated for every release (Judkoff and Neymark 1995).

3.1.4.2 Climate Zones

The AEDGs contain a unique set of energy efficiency recommendations for a range of climate zones across the country. The three AEDGs developed to date have standardized climate zones that the International Energy Conservation Code (IECC) and ASHRAE have adopted for residential and commercial applications. The common set of climate zones includes eight zones covering the entire United States and is shown in Figure 3-1. Climate zones are categorized by heating degree days (HDDs)

and cooling degree days (CDDs), and range from the very hot zone 1 to the very cold zone 8. In addition, some of the climate zones are divided into sub-zones based on humidity levels. Humid sub-zones are A zones, dry sub-zones are B zones, and marine sub-zones are C zones. These climate zones may be mapped to other climate locations for international use (ASHRAE 2004a).

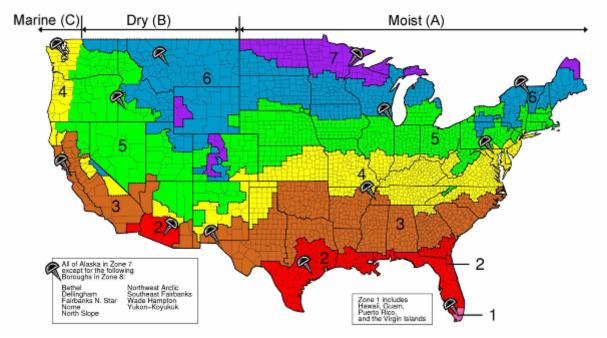


Figure 3-1 DOE Climate Zones and Representative Cities

When the climate zones were being developed, 15 specific climate locations (cities) were selected as being most representative of each zone, as shown in Figure 3-1 and in the list below. To determine energy savings, we used weather files for each of the 15 climate zones to simulate the baseline and low-energy models.

- Zone 1: Miami, Florida (hot, humid)
- **Zone 2A:** Houston, Texas (hot, humid)
- **Zone 2B:** Phoenix, Arizona (hot, dry)
- Zone 3A: Memphis, Tennessee (hot, humid)
- **Zone 3B:** El Paso, Texas (hot, dry)
- Zone 3C: San Francisco, California (marine)
- Zone 4A: Baltimore, Maryland (mild, humid)
- **Zone 4B:** Albuquerque, New Mexico (mild, dry)
- **Zone 4C:** Seattle, Washington (marine)
- Zone 5A: Chicago, Illinois (cold, humid)
- Zone 5B: Boise, Idaho (cold, dry)
- Zone 6A: Burlington, Vermont (cold, humid)
- Zone 6B: Helena, Montana (cold, dry)
- Zone 7: Duluth, Minnesota (very cold)
- Zone 8: Fairbanks, Alaska (extremely cold)

3.2 Prototype Model Development and Assumptions

Unlike some of the other principal commercial building types, there are many data sets of K-12 school characteristics and performance data. The currently available data sources represent existing K-12 school stock as well as annual updates for new school construction. We surveyed these data sets to develop "typical" school characteristics and energy performance. Typical school characteristics helped to inform our development of realistic models for the 30% AEDG analysis. Data sets that we evaluated include:

- The 2003 CBECS (EIA 2005)
- The SPM (2007) and ASU (2006) annual construction survey and report
- Additional data sets from the project committee, including plug load surveys, actual floor plates, and space programming requirements from North Carolina.

Section 3.2.4 summarizes the inputs from each of these data sources and how we used them as inputs in the K-12 AEDG model development.

3.2.1 2003 CBECS

This section summarizes the data available in the 2003 CBECS for elementary/middle schools and high schools (EIA 2005). The CBECS is a survey of U.S. buildings that the EIA conducts every four years. The 2003 CBECS includes data from 5,215 commercial buildings and provides weighting factors to indicate how many buildings are represented by each building type in the survey. For each building, the CBECS presents data about numerous characteristics and performance data, including floor area, number of floors, census division, basic climatic design criteria, principal building activity, number of employees, energy use, and energy expenditures.

The 2003 CBECS includes 126 high schools and 330 elementary/middle schools. The high school more specific principal building activity and elementary/middle school more specific principal building activity are part of the Educational Buildings principal building activity. Each school has a weighting factor that indicates how many buildings are represented in CBECS. When the weighting factor is combined with the area of each school, we can determine area weighted multipliers for each school in CBECS. Our results used area weighted multipliers for each characteristic and performance data histogram. Section 3.2.4 shows how we used this CBECS analysis as inputs to our K-12 AEDG model development.

We used the CBECS Analysis capabilities in the OptEPlus platform (V0.1.0.93) to analyze 2003 CBECS for an understanding of "typical" parameters for schools. Floor-area-weighted histograms of CBECS public use data were generated for HVAC system type, percent cooled, operational characteristics such as percent daylit, total weekly operating hours, number of computers, and number of months of use. Area weighted average form and fabric characteristics such as percent exterior glass, number of floors, area, building shape, and wall and roof constructions are also graphed and shown. All of these analyses were done based on a floor area weighting rather than a number of buildings weighting.

We also calculated the national area weighted average site EUI for high schools and for elementary/middle schools. To investigate the regional variation in EUI, we mapped each school in CBECS to the approximate ASHRAE climate zone based on the available CBECS information related to location. The CBECS region, HDDs, and CDDs were used to determine the AEDG climate zone for each school in CBECS. Understanding the "typical" energy use characteristics increases our confidence in our energy use predictions for our prototype models.

3.2.1.1 2003 CBECS K-12 Trends

By analyzing trends of the 456 schools and their weighting factors in the 2003 CBECS, we can help to inform the model development of "typical" schools. This section provides histograms to show the most typical characteristics and how we used this information to develop model input for the K-12 AEDG analysis.

The area weighted percent of all the K-12 schools floor area that is daylit in CBECS is shown in Figure 3-2. This trend suggests that schools are not typically daylit. According to ASHRAE 90.1, daylighting is not required, and our K-12 AEDG baseline models do not use daylighting. Some of our low-energy models used daylighting in the classrooms and gyms.

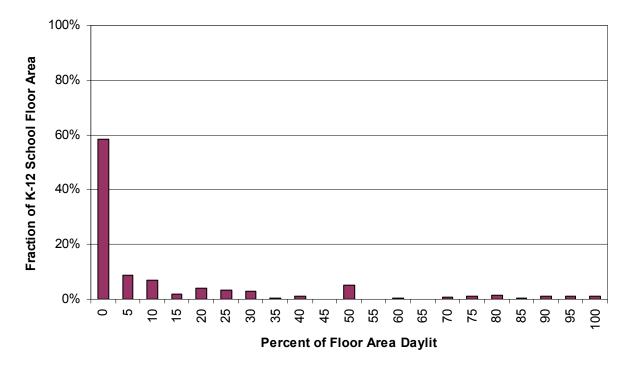
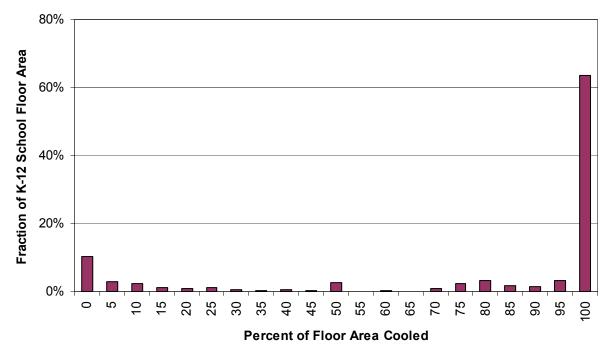



Figure 3-2 Area Weighted Average Daylit Floor Area

The area weighted percent of all the K-12 schools floor area that is cooled in CBECS is shown in Figure 3-3. This trend suggests that schools are typically fully cooled, but some (10% of the total floor area) do not have cooling. The K-12 AEDG prototype models are mostly cooled, with some setup only cooling in the mechanical and bathrooms.

The area weighted percent of all the K-12 schools floor area that is heated in CBECS is shown in Figure 3-4. This trend suggests that schools are typically fully heated (90% of all K-12 school floor area is fully heated), but some area is not. The K-12 AEDG prototype models are mostly heated, with some setback only heating in the bathrooms and mechanical spaces.

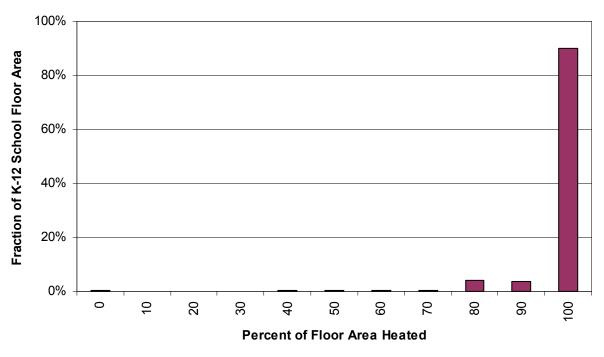


Figure 3-4 Area Weighted Average Heated Floor Area

The number of months per year of use for all the K-12 schools is shown in Figure 3-5. More than 40% of K-12 school floor area is used year round, 26% of K-12 school floor area is used 10 months per year, and 18% is used 9 months per year. The K-12 AEDG prototypes have some year round use in the gym and community use areas, and the classrooms are used 9 months per year.

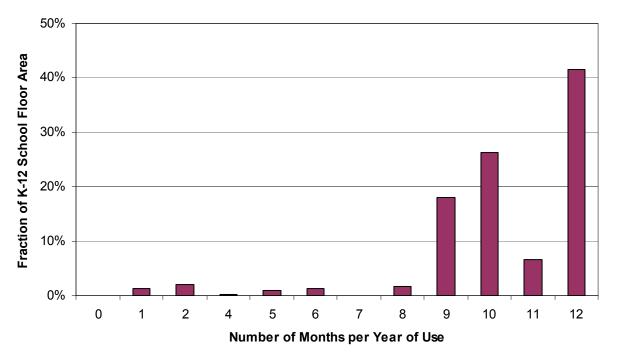


Figure 3-5 Area Weighted Average Months per Year of Use

The number of operating hours per week for all the K-12 schools is shown in Figure 3-6. More than 25% of school floor area is operated 42 hours per week. However, 13% of schools are operated 48, 54, or 60 hours per week. The weighted average operating hours is 50 hours per week. Therefore, our K-12 AEDG prototype models are operated 50 hours per week during the school year. Operational schedules for spaces such as the gyms and auditoriums include after hours use.

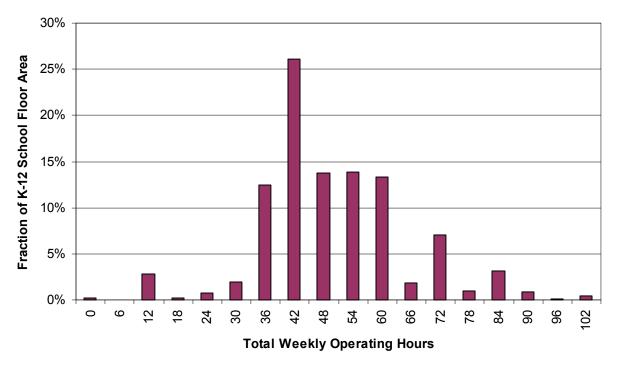
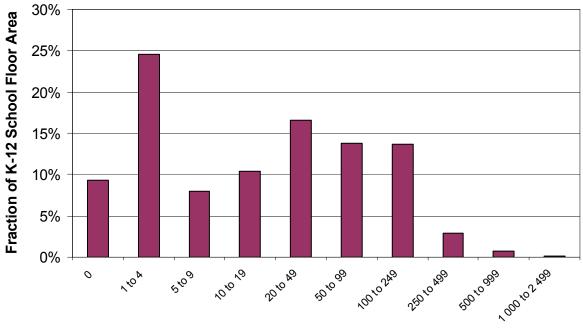



Figure 3-6 Area Weighted Average Weekly Operating Hours

The total number of computers over all the K-12 schools is shown in Figure 3-7. There is a wide range in numbers of computers in K-12 schools; many schools have only one to four computers. Many schools have 100 to 249 computers; some have 20 to 49 and others have 50 to 99. Because of this wide range, additional data were needed to determine plug load density for our K-12 AEDG models. See Section 3.2.3.1 for additional information used to determine plug loads in K-12 schools.

Number of Computers

Figure 3-7 Area Weighted Average Number of Computers

The types of wall and roof constructions over all the K-12 schools are shown in Figure 3-8. Walls with brick, stone, or stucco exteriors are the most common construction type, and built-up insulation above deck roofs is the most common roof type. Mass walls and insulation above deck roofs were used in the K-12 AEDG models. The construction materials are only the outer surface of the construction.

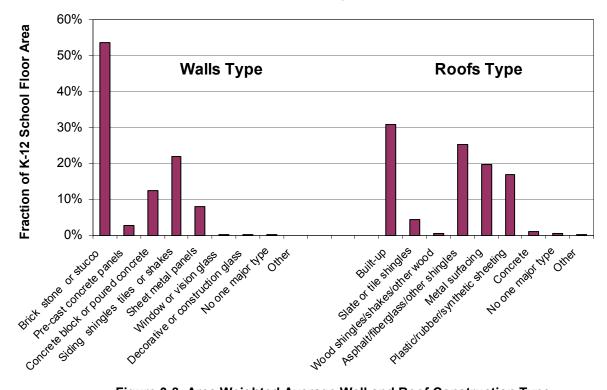


Figure 3-8 Area Weighted Average Wall and Roof Construction Type

The different types of heating and cooling systems for the 2003 CBECS schools are shown in Figure 3-9. The most common heating systems are furnaces, boilers, and package heating units. The most common cooling systems are package rooftop units, individual room air-conditioning units, heat pumps, and central chillers. The K-12 AEDG models use the most common of these heating and cooling units. The AEDG baseline models use package rooftop air-conditioning units with package heating units. The lowenergy models also include a package variable air volume (VAV) system with direct exchange (DX) cooling coils and a boiler, as well as a VAV with central air-cooled chillers and boilers. See Section 3.3.4.1 for further discussion on selecting the HVAC systems in the baseline and low-energy models.

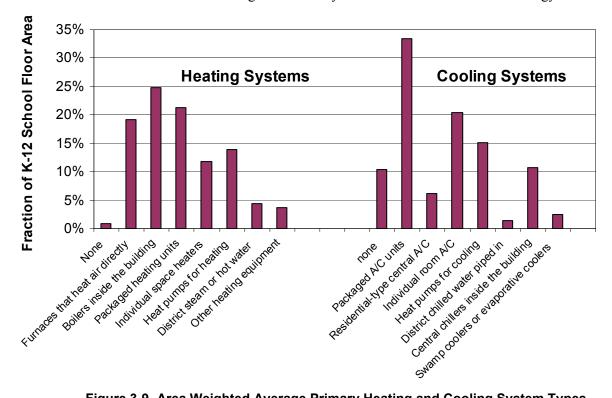


Figure 3-9 Area Weighted Average Primary Heating and Cooling System Types

The range of fenestration to gross wall area for all of the 2003 CBECS schools is shown in Figure 3-10. The most common range of fenestration area is 11% to 25%. For the K-12 AEDG baseline models, we used the fenestration to gross wall area ratio that was specified to provide the required daylighting in the low-energy models. Based on input from the AEDG project committee, this area was set at 35%. This is on the higher end for typical fenestration area, but is still within a reasonable range.

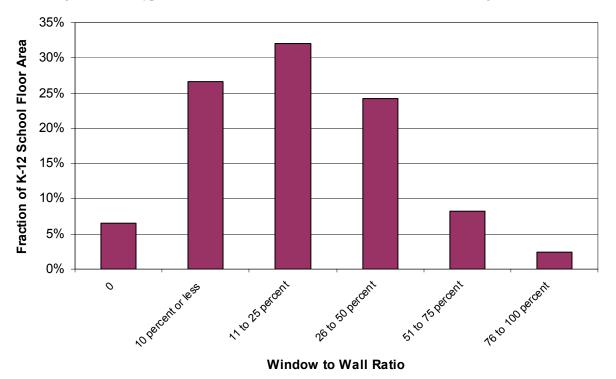
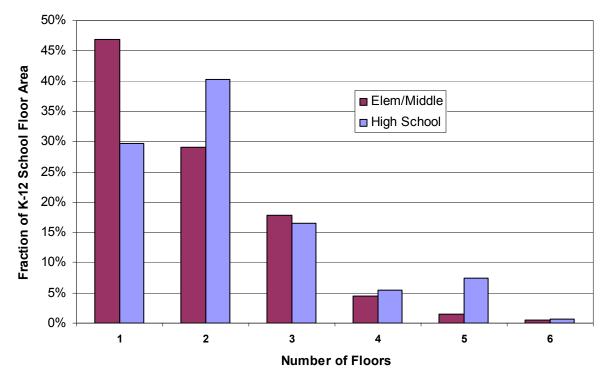
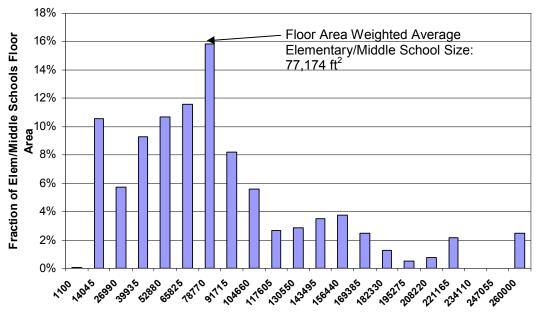



Figure 3-10 Area Weighted Average Window to Wall Ratio

The number of floors for elementary/middle and high schools in the 2003 CBECS is shown in Figure 3-11. The K-12 AEDG elementary and middle school prototypes have one floor, and the high schools have two floors.



The range of floor area for the elementary/middle schools in the 2003 CBECS is shown in Figure 3-12. The range of floor area for the high schools in the 2003 CBECS is shown in Figure 3-13. The area weighted average floor area over all the elementary/middle schools and high schools is shown in Table 3-1. The average CBECS school sizes were not used explicitly in our K-12 AEDG models; rather, the CBECS average school sizes were used in combination with additional data sources that provide further and more current schools size details.

National Averages	Elementary/ Middle School	High School
Size (ft ²)	77,174	223,964

Table 3-1 2003 CBECS Floor Area: Weighted Mean

Square Footage (ft²)

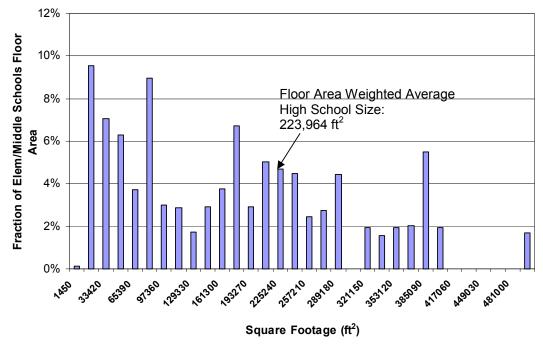
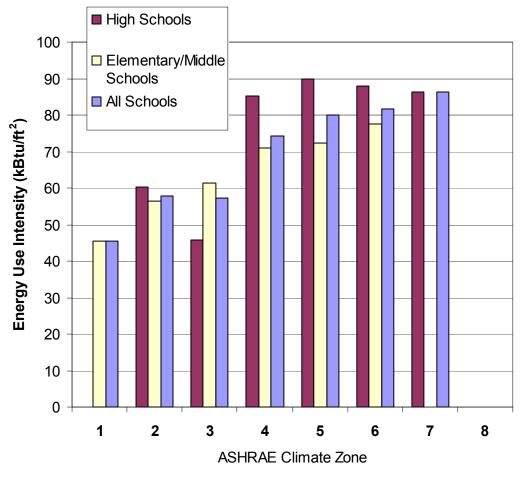


Figure 3-13 Area Weighted Average High School Size

3.2.1.2 CBECS K-12 Energy Use Trends

In addition to the physical and operational characteristics of the schools in the 2003 CBECS, we investigated the area weighted average site EUI. The average K-12 schools site EUI by ASHRAE climate zone is shown in Table 3-2.

To analyze the schools in the 2003 CBECS by ASHRAE climate zone, we used the climate zone to show CBECS assignment results as discussed in Griffith et al. (2007). This assignment selects an ASHRAE climate zone to assign each building in the 2003 CBECS data set. The location of the building determines several aspects, including simulation weather file, utility tariffs, emissions factors, site-to-source


conversion factor, latitude, longitude, and elevation, that are important to the modeling. CBECS masks the actual locations of buildings for anonymity but does provide data for the census division and values for HDDs and CDDs. An assignment algorithm is used to select the location in the following manner. An initial set of candidate locations was assembled that was formed by a set of 232 EnergyPlus weather files that are based on TMY2 or TMY weather data locations. HDD and CDD data (base 65°F) from the weather data were also used in the location assignments. For each CBECS building, we then selected a subset of these candidate locations that lie within the CBECS census division. This subset of candidate locations is subsequently searched to find the location that most closely matches the reported HDDs and CDDs. A "brute force" search algorithm was used where, for each possible assignment, we calculated the root mean square (RMS) of the combined deviations for HDDs and CDDs. The resulting array of RMS error values was then searched for the minimum and the location with the lowest error selected for the assignment.

Also shown in Table 3-2 is the number of K-12 schools in the 2003 CBECS in each climate zone. There are no CBECS elementary/middle or high schools in climate zone 8, only a few elementary schools in climate zone 1, and none in zone 7. There are a few high schools in climate zone 7, and none in zone 1. Some restraint is needed in using the energy use data from climate zones that are not well represented by the survey, such as in climate zones 1, 7, and 8.

ASHRAE Climate Zone	Number of K-12 Schools in CBECS	Area Weighted Average Site EUI (kBtu/ft ²)
1	2	46
2	67	58
3	78	57
4	91	74
5	152	80
6	63	82
7	3	86
8	0	No data
All	456	72

Table 3-2 Area Weighted Average Site EUI by ASHRAE Climate Zone

The national area weighted average site EUI for all the K-12 2003 CBECS schools is 72 kBtu/ft² (818 MJ/m²). The national area weighted average site EUI for high schools is 80 kBtu/ft² (909 MJ/m²) and is 68 kBtu/ft² (773 MJ/m²) for elementary schools. The site EUI by climate zone for all K-12, elementary/middle, and high schools is shown in Figure 3-14. The climatic variation in energy use is evident in Figure 3-14; the highest EUI is in the coldest climates.

3.2.2 K-12 Construction Industry Publications

In addition to analyzing schools in the 2003 CBECS, we surveyed multiple sources of "typical" new school characteristics data to determine appropriate characteristics for our AEDG baseline and lowenergy models. Based on input from the K-12 AEDG PC, ASU (www.ASUmag.com) and SPM (http://www.peterli.com/spm/) provide accurate and up-to-date school construction data. Table 3-3 shows results from the most recent surveys from both ASU and SPM that document average size, cost, and number of students for elementary, middle, and high schools (ASU 2006, SPM 2007). Average elementary schools range from 73,000 ft² to 80,000 ft² (6,782 m² to 7,432 m²), with 700 to 725 students. This is similar to the average 2003 CBECS elementary school at 77,174 ft² (7,170 m²). Average middle schools are 104,880 ft² to 119,000 ft² (9,744 m² to 11,055 m²), with 750 to 825 students. Average high schools are between 148,569 ft² and 224,000 ft² (13,803 m² to 20,810 m²), with 1,055 to 1,200 students. The higher side of the high school size range from ASU and SPM is similar to the 2003 CBECS average high school. Based on the results from the 2006 ASU and the 2007 SPM survey combined with 2003 CBECS size data, we identified up-to-date "typical" school size ranges for use in the K-12 AEDG prototype model development. The actual sizes of the K-12 AEDG models were determined based on the number of students and the space planning profiles, as documented later in Section 3.2.3.3 and summarized in Section 3.2.4.

National	Elementar	Elementary Schools		chools	High Sc	hools
Averages	ASU	SPM	ASU	SPM	ASU	SPM
	73,000	80,000	104,880	119,000	148,569	224,000
Size (ft ²)	77,174 national area weighted average 2003 CBECS 223,964 national are CBECS CBECS					
Cost/ft ²	\$141	\$148	\$195	\$150	\$180	\$152
Number of pupils	725	700	750	825	1055	1200
Size ft²/pupil	100.7	122.2	139.8	143.8	140.8	166.7

Table 3-3 National Average Schools Sizes, Costs, and Number of Students (ASU Construction Report, SPM Construction Report)

The SPM survey also documents the types of spaces that are in new elementary, middle, and high schools across the country. As shown in Table 3-4, the percent of new schools with each space type was determined. Space types that are included in more than 50% of new schools are included in our "typical" baseline and low-energy models. Similar data provided by the K-12 AEDG PC from Wake County, North Carolina, are also shown. Differences in space types over the three types of K-12 schools include:

- Science laboratories are standard in new middle and high schools, but are included in only 6.3% of elementary schools.
- New high schools typically include an auditorium; middle and elementary schools do not.
- High schools typically have a second auxiliary gym; elementary and middle schools do not.
- Elementary schools typically have a multipurpose room, but not a full gym with spectator seating.

Elementary School Middle School High School												
Space Type		Wake	AEDG		ddle Sci Wake	AEDG	High School Nation Wake AEDG					
	Nation	Co.	Prototype	Nation Co. Prototype			Nation	Co.	Prototype			
Core Facilities	S								_			
Classrooms	100.0%	Х	Х	100.0%	Х	Х	100.0%	Х	Х			
Library	91.3%		х	94.4%		Х	92.6%		Х			
Media center	66.3%	х	х	100.0%	х	х	92.6%	х	х			
Computer lab	74.5%	х	х	96.3%	х	х	98.1%	х	х			
Science lab	6.3%			98.1%	Х	Х	100.0%	Х	Х			
Music	94.2%	Х	Х	96.3%	Х	Х	92.6%	Х	Х			
Arts/crafts	99.0%	Х	Х	98.1%	Х	Х	88.9%	Х	Х			
Gymnasium/ multipurpose room	92.3%	х	х	100.0%	х	х	100.0%	x	x			
Stage	17.3%	Х		40.7%	Х		72.2%	Х	Х			
Auditorium/ theater	6.3%			35.2%	х		63.5%	х	х			
Special ED/ Resource	72.1%	Х	х	74.1%	х	х	64.8%	х	х			
Home arts	0.0%			7.4%	х		33.3%	Х				
Industrial tech.	0.0%			1.9%	х		13.0%	х				
Vocational shops	0.0%			3.7%	х		14.8%	х				
Photo lab	0.0%			0.0%			3.7%					
TV/radio studio	0.0%			0.0%			7.4%					
Support Facilit	ies											
Offices	100.0%	Х	Х	100.0%	Х	Х	100.0%	х	Х			
Infirmary/ clinic	100.0%	Х	х	100.0%	Х	х	100.0%	х	х			
Cafeteria	98.1%	Х	Х	100.0%	Х	Х	98.1%	Х	Х			
Kitchen	97.6%	х	х	98.1%	х	х	96.3%	х	х			
Hall lockers	4.3%			92.6%	Х	Х	100.0%	Х	Х			

Table 3-4 Space Types Included in Schools:2006 SPM National Average, Wake County, NC, and in the AEDG Prototype

3.2.3 Additional School Characteristics

3.2.3.1 Plug Load Audits

Historically, the energy use and installed capacity of plug loads in commercial buildings have been a significant uncertainty. A project committee member, Larry Schoff from Energy Efficient Solutions, has attempted to quantify plug loads in schools. We obtained data from Schoff through personal communication on plug loads and the savings that could result if actions are taken to control the plug and resulting phantom loads. As part of a survey for Roanoke, Virginia, County Schools, he compiled detailed plug load information for five high schools, five middle schools, and 17 elementary schools in the Roanoke school district. For each school, a detailed plug load/phantom load survey was conducted to identify the plug and phantom loads in the schools. (See Table 3-8 for a list of plug loads identified, and the peak wattage for the plug load item.) A plug load is any electrical device that is plugged into a 120or 208-volt outlet in the school and is used continuously or periodically during the school year. The plug loads identified in these audits do not include electrical or gas process loads such as elevators, transformers, cooking appliances, kitchen walk-in refrigerators, or other loads that are not associated with HVAC, lighting, service water heating, or plug loads. A phantom load is defined as an electrical device that still draws electrical energy when it is turned off. Examples of plug loads in a school are TVs, VCRs, computers, copiers, and any devices that have or need a wall cubic (transformer) to operate. Computers represented the largest single plug load type in these schools; the total number for each school is also shown in Table 3-5 through Table 3-7.

From this plug load survey, we calculated the noncoincident peak plug load intensity for each school. Based on the size of each school, we then calculated the weighted average plug load intensity for the high, middle, and elementary schools. These results are shown in Table 3-5 through Table 3-7. The average peak plug load density in the high schools and middle schools was 1.0 W/ft^2 (10.8 W/m^2), and 1.1 W/ft^2 (11.8 W/m^2) in the elementary schools. The PC felt these peak plug load densities were reasonable for the prototype models; these were used in the K-12 AEDG baseline and low-energy energy models. The plug load schedules were based on PC input and modified standard educational building schedule sets available in ASHRAE 90.1-1989 (ASHRAE 1989). Schedules are documented in Section 3.3.6.

School Name	Size (ft ²)	Number of Computers	Plug Load Density (W/ft ²)
Northside High	138,871	231	1.25
Cave Spring High	162,100	235	0.95
Glenvar High	120,914	129	0.80
Hidden Valley High	191,575	188	0.70
William Byrd High	154,166	274	1.33
Area Weig	1.0		

 Table 3-5
 Roanoke District High School Plug Load Density Survey

School Name	Size (ft ²)	Number of Computers	Plug Load Density (W/ft ²)
Northside Middle	109,889	134	1.00
Glenvar Middle	101,595	129	0.72
William Byrd Middle	145,624	174	0.77
Hidden Valley Middle	119,824	249	1.07
Cave Spring Middle	85,130	173	1.52
Area Weig	1.0		

r

 Table 3-6 Roanoke District Middle School Plug Load Density Survey

Table 3-7 Roanoke District Elementa	y School Plug	Load Density	y Survey
-------------------------------------	---------------	--------------	----------

School Name	Size (ft ²)	Number of Computers	Plug Load Density (W/ft ²)			
Bonsack Elementary	57,472	167	1.49			
Fort Lewis Elementary	33,913	80	1.28			
Burlington Elementary	65,649	114	0.94			
Glenvar Elementary	52,325	108	1.01			
Glen Cove Elementary	60,010	115	0.78			
Mason Cove Elementary	38,253	77	0.94			
Herman Horn Elementary	65,145	103	1.10			
WE Cundiff Elementary	60,010	97	1.00			
Oak Grove Elementary	65,057	104	0.96			
Mt. View Elementary	63,778	112	0.91			
Clearbrook Elementary	44,020	98	1.23			
Mt. Pleasant Elementary	43,991	81	0.98			
Back Creek Elementary	48,631	83	1.16			
Bent Mt. Elementary	14,251	41	1.62			
Penn Forest Elementary	65,047	73	0.81			
Green Valley Elementary	42,111	114	1.66			
Cave Spring Elementary	48,675	118	1.23			
Area Weighte	d Average	I	1.1			

Table 3-8	Plug Load Items	Included in Survey
-----------	-----------------	--------------------

Plug Load Item	Peak Wattage (W)	Plug Load Item	Peak Wattage (W)
Personal Items		Computer/Equipment	
Microwaves	800	Computers	200
Toaster ovens	1000	Printers	50
1.5 ft ³ refrigerator	96	Scanner	100
Portable heaters	900	Laser printer	250
Coffee Pots	750	PC docking station	25
2.0 ft ³ refrigerators	150	Other	
Dehumidifier	900	TV distribution	600
Electronic Items		Freezer	1000
Televisions	110	Battery charge for portables	300
Laser disc player	100	Aquarium	100
VCRs	25	LCD projectors	350
DVD player/keyboards	30	File server	1500
Boom box radio/tape	30	Humidifier	150
Kitchen refrigerator	750	Network hub	1800
Beverage machine	600	Ice cream box	900
Snack machine	110	Typewriter/sewing machine	100
Instructional Equipment		Stove	4000
Overhead projectors	600	Router	1200
Film strip projectors	500	Washer and dryer	5000
Audio tape	30	Water cooler	300
Sound system	500	Window AC	1500
Electronic piano	110	Office Equipment	
Fans		Copiers – large	1500
Wall	200	Laminators	2400
Ceiling	100	Fax	200
Box	100	Copier – small	600
Lamps	60		

3.2.3.2 Example Floor Plans

To aid in the development of the K-12 AEDG prototype models, we requested actual school plans from the PC members. We received floor plans and sections for a daylit elementary school and a middle school, as well as some orientation specific floor plan options for a daylit high school from Mike Nicklas at Innovative Design. The daylit middle school floor plan is shown in Figure 3-15, the daylit elementary school floor plan is shown in Figure 3-16. Orientation-specific high school floor plans are shown in Figure 3-17 to Figure 3-19 for different street configurations. These plans provide options for a daylit school with the entryway always facing the street.

Each example floor plan has most of the classrooms on an exterior wall oriented either to the south or to the north. Double loaded classroom wings are typically used to allow for this classroom orientation. This type of floor plan allows for each classroom to have a north or south window, but the exterior wall surface area is greater than that of a rectangular building. The exterior wall to total envelope area (all gross wall and roof area) is approximately 25% for the single floor schools, and 37% for the two floor schools. A square single floor school is approximately 18% wall to total envelope, and a two floor square school is

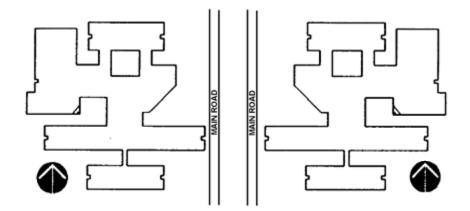

approximately 21% wall to total envelope. The K-12 AEDG models use floor plates similar to these examples, with most of the classrooms in wings that allow for north- or south-facing classrooms.

Figure 3-15 Middle School Floor Plan Example

Figure 3-16 Elementary School Floor Plan Example

Note: Entry faces the main road

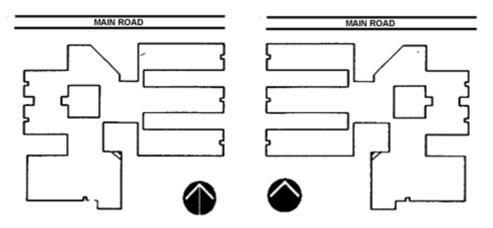


Figure 3-18 High School Floor Plan Example—North Entry

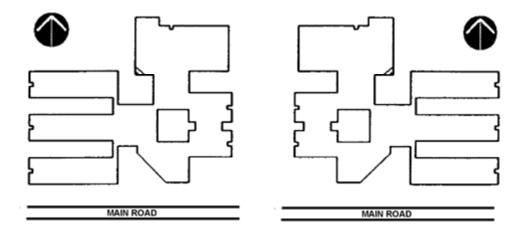


Figure 3-19 High School Floor Plan Example—South Entry

3.2.3.3 Space Programming Profiles

The SPM report documented the typical school space types (Table 3-4), but did not provide the space profile information needed to fully develop the K-12 AEDG models. We reviewed various K-12 school programming profiles to obtain typical space profiles, including area by space type. The North Carolina Schools area profiles were typical and the most detailed and complete (North Carolina 2007). They include specific space types and the size of the spaces based on the number of students and on the school type (elementary, middle, or high school). The North Carolina-suggested space profiles for elementary, middle, and high schools are shown in Table 3-9 to Table 3-14.

These data help to define the area for each space type included in the K-12 AEDG elementary, middle, and high school models. For the K-12 AEDG elementary school model, the number of students is 650, which corresponds to the third column in Table 3-9. For the K-12 AEDG middle school model, the number of students is 800, which corresponds to the third column in Table 3-10 and Table 3-11. For the K-12 AEDG high school model, the number of students is 1,200, which corresponds to the third column in Table 3-12 through Table 3-14. Each has significant space requirements for corridors, restrooms, and mechanical rooms; for elementary schools, 27% of the total floor area is for these spaces. For middle and high schools, 28% of the total floor area is for corridors, restrooms, and mechanical rooms.

Table 3-9 North Carolina Elementary School Typical Space Profiles

(Extracted from North Carolina 2007)

ELEMENTARY SCHOOL	. PK-5	5					TYPIC	CAL SPA	CE PF	ROFILE
										10/6/2004
Number of students*		300		150		500		700		300
Core capacity		300		500	7	700		800	ç	920
Special Education (S/C)		1		1		1		2		2
Dance/Drama classrooms								-		1
Pre-kindergarten clrms.		1		1		2		2		3
Core Classrooms (K-5)		14		20		27		31		34
Other Teaching Stations		3		4		4		4		5
	No.	sq.ft.	No.	sq.ft.	No.	sq.ft.	No.	sq.ft.	No.	sq.ft.
Elementary (PK-5) Classrooms		4 000		4 000	_	0.400	~	0.400		
Pre-K Classrooms @ 1200s.f.	1	1,200	1	1,200	2	2,400	2	2,400	3	3,600
Kindergarten Clrms @ 1200s.f. Grade 1 Clrms @ 1000s.f.	3	3,600	4	4,800 3,000	5 5	6,000 5,000	6 5	7,200 5,000	6	7,200
Grade 2-3 Clrms @ 1000s.f.	5	2,000	7	7,000	9	9,000	5 11	5,000	12	12,000
Grade 2-5 Clims @ 1000s.i. Grade 4-5 Clims @ 850s.f.	4	3,400	6	5,100	8	6,800	9	7,650	12	8,500
Resource roomss @ 450s.f.	2	3,400 900	4	1,800	5	2,250	6	2,700	7	3,150
Exceptional S/C @ 1200s.f.	2	1.200	4	1,000	5	1,200	2	2,700	2	2,400
Arts/Computer Classrooms	- 1	1,200		1,200		1,200	~	2,400	~	2,400
Art (w/150 sf stor/kiln)			1	1,350	1	1,350	1	1,350	1	1,350
Music			1	1,000	1	1,000	1	1,000	1	1,000
Dance/Drama				,*		,*	-	,	1	1,800
Computer Clrms @ 850s.f.	1	850	1	850	1	850	1	850	1	850
Art/Project room	1	1,000								
classrooms total area		19,150		27,300		35,850		41,550		47,850
Media Center										
Media RLV (sf/student & total sf)	6.00	1,800	4.86	2,914	4.48	3,133	4.10	3,276	4.00	3,680
Support spaces		1,200		1,200		1,200		1,500		1,500
sub-total		3,000		4,114		4,333		4,776		5,180
Food Service										
Dining (no. of servings)	2.3	1,800	3	2,800	3	3,267	3	3,733	3	4,293
Kitchen		1,261		1,518		1,938		1,938		2,208
Serving (serving lines)	1	400	2	620	2	620	2	620	2	620
sub-total		3,461		4,938		5,825		6,291		7,121
Physical Education										
Multipurpose	1	3,600	1	3,600	1	4,000	1	4,400	1	4,880
Stage		600		600		600		600		850
Storage/Office		450		450		450		450		600
sub-total		4,650		4,650		5,050		5,450		6,330
Administration,Misc.										
Principal		200		200		200		200		200
Assistant Principal @150			1	150	1	150	2	300	2	300
Secretary/reception		300		400		400		400		400
Secretary	1	150	1	150	1	150	2	300	2	300
Sims Health		120		120		120 200		120		120
		120 190		200				200 250		200
Office work room		200		230 200		240 200		250		270 250
Conference Records		200		130		200		250		250
Office storage		90		130		140		150		170
Guidance room		300		300		300		300		300
Office/testing @ 150	1	150	2	300	2	300	3	450	3	450
Other student services	- 1	150	-	150	~	150	5	200	5	200
Teacher workroom		300		450		450		600		600
Teacher lounge(s)		300		450		450		600		600
Itinerant teacher offices	2	200	3	300	4	400	4	400	5	500
Book storage		650	-	800		850		900	-	960
General storage & receiving		750		900		950		1,000		1,060
sub-total		4,260		5,560		5,790		6,770		7,050
Total Net Sq. Ft.		34,521		46,562		56,848		64,837		73,531
Circulation, toilets & Mech. @ 37.0%		12,773		17,228		21,034		23,990		27,206
GRAND TOTAL (sq.ft.)		47,294		63,790		77,882		88,827		100,737
Total Capacity (K-5+Pre-K+S/C)		47, 2 94 342		478		653		752		838
Sq.Ft./Student (incl. Pre-K+S/C)		138		133		119		118		120
Sq.r t./Student (inci. Fle-K+S/C)		100		155		119		110		120

Table 3-10 North Carolina Middle School Typical Space Profiles

(Extracted from North Carolina 2007)

										7/31/200
Number of students		475	6	550		800		950	1	120
Core capacity		650	8	300		950	1	1120	1	120
Exceptional Children (S/C)		1		2		2		3		3
Dance/Drama classrooms						1		1		2
Auditorium (Y/N)		N		N		N		Y		Y
Number of seats								448	4	448
	No.	sq. ft.	No.	sq. ft.	No.	sq. ft.	No.	sq. ft.	No.	sq. f
Classrooms:										
Sixth grade										
Math/Sci Clrms @ 1000s.f.	1	1,000			1	1,000			1	1,000
LA/SS/Math Cirms @ 850s.f.	4	3,400	6	5,100	7	5,950	9	7,650	10	8,500
Science Clrms @ 1100s.f.	1	1,100	2	2,200	2	2,200	3	3,300	3	3,300
Science Prep/Stor @ 200s.f.	1	200	1	200	1	200	2	400	2	400
Seventh grade										
Math/Sci Clrms @ 1000s.f.	1	1,000			1	1,000			1	1,000
LA/SS/Math Cirms @ 850s.f.	4	3,400	6	5,100	7	5,950	9	7,650	10	8,500
Science Clrms @ 1100s.f.	1	1,100	2	2.200	2	2.200	3	3,300	3	3.300
Science Prep/Stor @ 200s.f.	1	200	1	200	1	200	2	400	2	400
Eighth grade	-	200		200		200			~	
Math/Sci Clrms @ 1000s.f.	1	1.000			1	1.000			1	1.00
LA/SS/Math Cirms @ 850s.f.	4	3,400	6	5,100	7	5,950	9	7,650	10	8,500
Science Clrms @ 1100s.f.	1	1,100	2	2,200	2	2,200	3	3,300	3	3.30
Science Prep/Stor @ 200s.f.	1	200	1	2,200	1	2,200	2	400	2	40
Small Group/Exceptional		200		200	- '	200		400		40
Resource rooms @ 450 s.f.	4	1.800	5	2.250	6	2,700	7	3,150	8	2.00
			2	2,250	2		3		3	3,60
Exceptional S/C @ 1200 s.f.	1	1,200	2	2,400	- 2	2,400	3	3,600	3	3,60
Arts/Computer	4	1.400	4	1 400	4	1.400	4	1.400	-	0.00
Art (w/200sf stor)	1	1,400	1	1,400	1	1,400	1	1,400	2	2,80
Instrumental music (w/stor)			1	1,600	1	1,750	1	1,920	1	1,92
Vocal Music			1	1,200	1	1,200	1	1,200	1	1,20
Dance/Drama					1	1,800	1	1,800	2	3,60
Computer Cirms @ 1000 s.f.	1	1,000	1	1,000	2	2,000	2	2,000	2	2,00
Music @ 1200 (w/stor)	1	1,400								
Vocational										
Keyboarding lab	1	1,000	1	1,000	1	1,000	1	1,000	1	1,00
Exploratory labs	2	2,800	2	2,800	2	2,800	3	4,200	3	4,200
classrooms total area		27,700		36,150		45,100		54,320		63,52
Media Center										
Media RLV (sf/stu & sf)	5.33	3,467	4.83	3,868	4.34	4,118	4.00	4,480	4.00	4,48
Support spaces		1,800		1,800		1,800		2,000		2,000
sub-total		5,267		5,668		5,918		6,480		6,480
Food Service										
Dining (# servings & sf)	3	3,033	3	3,733	3	4,433	3	5,227	3	5,22
Kitchen		1,938		1,938		2,208		2,208		2,20
Serving (# serv. lines &sf)	2	620	2	620	2	620	2	620	2	620
sub-total		5,591		6,291		7,261		8,055		8,05
Physical Education		.,								
Gym (incl lockers)	1	10,000	1	10,000	1	12,000	1	12,000	1	12.00
Auxiliary Gym	-		- +		,			.2,000	1	5,00
Health/PE Cirms @ 750 s.f.	1	750	2	1,500	2	1,500	3	2.250	3	2.25
sub-total		10,750	-	11,500	2	13,500	5	14,250	~	19,25
		10,750		11,000		10,000		14,200		10,20
Auditorium			\vdash				440	1.000	449	4.00
Seating			\vdash				448	4,032	448	4,03
Stage/dress./stor			$ \rightarrow $					2,500		2,50
Lobby								1,000		1,00
sub-total			I					7,532		7,53

Number of students		475		650		800		950		1120
Core capacity		650		800		950		1120		1120
Administration.Misc.										
Principal		200		200		200		200		200
Asst Principal @150	1	150	1	150	2	300	2	300	2	300
Reception		400		400		400		500		500
Secretary	1	150	2	300	2	300	2	300	2	300
Sims		150		150		150		150		150
Health		200		200		200		200		200
Office work room		230		250		270		290		290
Conference		200		250		250		250		250
Records		130		150		170		190		190
Office storage		130		150		170		190		190
Guidance room		300		300		300		300		30
Office/testing @ 150	2	300	3	450	3	450	4	600	4	60
Other student services		150		200		200		200		200
Team office/workrooms	3	1,350	3	1,350	3	1,350	3	1,350	3	1,350
Teacher lounge(s)		450		600		600		600		60
Book storage		825		900		975		1,060		1,060
General storage		925		1,000		1,075		1,160		1,16
Commons		1,490		1,600		1,710		1,840		1,840
sub-total		7,730		8,600		9,070		9,680		9,680
Total Net Sq. Ft.		57,038		68,209		80,849		100,317		114,517
Circulation, toilets & Mech. @ 39.0%		22,245		26,602		31,531		39,124		44,662
GRAND TOTAL SQ.FT.		79,283		94,811		112,380		139,441		159,179
Sq.Ft/Student		167		146		140		147		142
Optimal capacity		478		644		800		966		1,12
Classrooms/grade		6		8		10		12		1.
Teaching Stations (core)		18		24		30		36		42

Table 3-11 North Carolina Middle School Typical Space Profiles (Cont.)

"Typical Space Profiles" are examples of possible school space programs that apply the NC Public Schools Facilities Guidelines. Profiles are not standards or mandates.

Auditoriums are not usually included in middle schools, but have been provided at some larger schools.

Table 3-12 North Carolina High School Typical Space Profiles

(Extracted from North Carolina 2007)

										31-Jul-03
Number of students		600 800 1,200			,600		000			
Core capacity		500	1.	,000	1.	,400	1	,850	2,	000
Exceptional Children (S/C)		1			2	3 Y		3 Y		
Video Production fac.		N	N		Y					
Dance/Drama		1			2		2	2		
Gymnasium # seats		300	1,000		1	,400	1	,850	2,000	
Wrestling (Y/N)		N		N		Y		Y		Y
Auditorium (Y/N)		N		Y		Y		Y	Y	
Auditorium seats			4	400		560		740		300
	No.	sq. ft.	No.	sq. ft.	No.	sq. ft.	No.	sq. ft.	No.	sq. ft
Classrooms:										
Academic										
English @ 750 s.f.	5	3,750	7	5,250	10	7,500	13	9,750	16	12,000
Foreign Language @ 750 s.f.	2	1,500	2	1,500	3	2,250	5	3,750	6	4,500
Social Studies @ 750 s.f.	4	3,000	5	3,750	8	6,000	10	7,500	13	9,750
Math @ 750 s.f.	4	3,000	6	4,500	9	6,750	11	8,250	14	10,500
Science:										
Physical Science @ 1200 s.f.	1	1,200	1	1,200	2	2,400	3	3,600	3	3,600
Biology @ 1200 s.f.	1	1,200	2	2,400	3	3,600	4	4,800	5	6,000
Chemistry @ 1500 s.f.	1	1,500	1	1,500	2	3,000	2	3,000	3	4,500
Physics @ 1200 s.f.			1	1,200	1	1,200	1	1,200	2	2,400
Other Science @ 1200 s.f.							1	1,200	1	1,200
Prep rooms @ 250	1	250	2	500	4	1,000	5	1,250	7	1,750
M/SCI Computer Lab					1	850	1	850	1	850
sub-total	18	15,400	25	21,800	39	34,550	51	45,150	64	57,050
Resource/Exceptional										
Resource rooms @ 450 s.f.	2	900	3	1.350	5	2.250	6	2,700	8	3.600
Exceptional S/C @ 1200 s.f.			1	1,200	2	2,400	3	3,600	3	3,600
Inst. kitchen/tlts.				200		400		600		600
In-School susp.		450		600		750		750		750
sub-total		1,350		3,350		5,800		7,650		8,550
Arts Education		.,						,		-,
Visual art @ 1400 s.f.	1	1.400	1	1,400	2	2,800	2	2,800	3	4,200
Art stor/kiln		200		200		400		400	-	600
Instrumental music			1	1,800	1	2.000	1	2,450	1	2.600
Ensemble/practice				150		300		300		300
Band uniforms				300		400		400		400
Instrument stor				300		400		400		400
String inst stor				150		150		150		150
Band/choral off/wkrm				250		250		250		250
Band stor/library				150		150		150		150
Vocal Music			1	1,200	1	1,400	1	1,850	1	2,000
Vocal music stor			,	200		300		300		300
Dance/ Drama classrooms			1	1,800	2	3,600	2	3,600	2	3,600
Props/costume/gen stor			,	250	~	500	~	500	-	500
Band/chorus	1	1.600		200		500				500
Instrument stor		300								
Uniform/gen stor		400								
Office/workroom		250								
sub-total	2	4,150	4	8,150	6	12,650	6	13,550	7	15,450
Auditorium/Theatre	~	-,100	-1	5,100		12,000		10,000		10,400
Seating			400	3.600	560	5,040	740	6,660	800	7,200
Stage/dress/stor.			400	2,500	550	4,000	140	4,000	000	4,000
Lobby				1,000		1,200		1,200		1,200
sub-total				7,100		10,240		11,200		12,400
Business/Off Education				7,100		10,240		11,000		12,400
Typing/Keyboarding	1	1,200	1	1,200	2	2,400	2	2,400	3	3,600
Computer/applications	1	1,200	1	1,200	2	1,200	- 2	1,200	2	2,400
Business/office ed.	1	1,200	1	1,200	1	1,200	1	1,200	2	2,400
Faculty off./stor.	-	500	-	500	-	500		500	-	750
raculty 01./stor.	3	500	3	3,900		500	4	500	6	7,750

Number of students	600		1	300	1	1,200		1,600		2,000	
Core capacity	6	300	1	000		.400		.850	2.	000	
Service/Marketing Education											
Cons/Occ Home Economics	1	1.400	1	1.400	1	1,400	2	2,800	2	2,800	
Marketing		1,100		1,100	1	1,200	1	1,200	1	1,200	
Health Occupations					1	1,400	1	1,400	1	1,400	
sub-total	1	1.400	1	1,400	3	4,000	4	5,400	4	5,400	
Workforce Development Labs		.,		.,		.,					
(Incl Lab. Off & Storage)											
Agri/Trade & Ind. @ 3000 s.f.	1	3.000	1	3,000	1	3.000	2	6.000	2	6.000	
Trade & Ind. @ 2500 s.f.	1	2,500	1	2,500	2	5,000	2	5,000	2	5,000	
Technology. @ 2000 s.f.		2,500		2,000	1	2.000	1	2.000	1	2.000	
Communications/Misc. @ 1500 s.f.	1	1,500	1	1,500	2	3,000	2	3,000	2	3,000	
Vocational clrms. @ 750 s.f.	1	750	1	750	2	1,500	2	1,500	2	1,500	
	3	7.750	3	7.750	6	14,500	7	17,500	7	17,500	
sub-total Media Center	3	1,100	3	7,750	0	14,000	/	17,800	- /	17,800	
	0	2 200	E	5.000	4	E 200	4	e 200		7 000	
Media/RLV (sf/stu & total sf)	6	3,600 230	5	5,000 280	4	5,600 330	4	6,280 380	4	7,880	
Admin/planning		230		280		200		200			
Conference/sm.group Equipment stor/dist.		230		200		330		200		200	
Equipment stor./dist. Multi-media distribution/Periodical stor.		230		280		210		240		400	
				190 380							
Production		330 580				430		480		500	
Workroom		580		630		680		240		750 250	
Professional area		160		190	4	210	4	80.145	4		
Video Production	4	050		1 700	2	1,000	2	1,000	1	1,000	
Computer Rooms @ 850 s.f.	1	850	2	1,700	2	1,700	2	1,700	2	1,700	
sub-total		6,290		8,850		10,690		11,630		13,330	
Food Service		2.000		1.007		0.500		0.000		0.000	
Dining (# of servings/sf)	3	2,800	3	4,667	3	6,533	3	8,633	3	9,333	
Kitchen		1,518	2	2,208	3	2,880	4	3,180		3,180	
Serving (serv. lines)	2	620	2	620	3	940	4	1,260	4	1,260	
sub-total		4,938		7,495		10,353		13,073		13,773	
Physical Education		40.500		40.500	0	40.500	0	45.000		47.500	
Main Gym (2 Tch Sta)	2	10,500	2	10,500	2	12,500	2	15,000	2	17,500	
B/G locker rms. 4@	800	3,200	800	3,200	1000	4,000	1000	4,000	1000	4,000	
B/G shwrs./tits. 2@	500	1,000	500	1,000	600	1,200	600	1,200	600	1,200	
Coach off./tlt/shwr. 2@	300	600	300	600	400	800	500	1,000	500	1,000	
Training		300		300		400		500		500	
Laundry		150		150		200		200		200	
Equipment stor.		1,200		1,200		1,500		1,500		1,500	
Officials shwr/lkr.		4.500		4.500		200		200		200	
Lobby/cons./commons		1,500		1,500	4	2,000	4	2,500	4	2,500	
Auxiliary gym		4 000		4 000	1	6,500	1	6,500	1	6,500	
Weight room		1,600		1,600		1,600		1,600		1,600	
Wrestling room		750	_	4 500	1	2,000	1	2,000	1	2,000	
Health/P.E clrms. @ 750 s.f.	1	750	2	1,500	3	2,250	3	2,250	3	2,250	
sub-total		20,800		21,550		35,150		38,450		40,950	
Administration											
Principal		250		250	-	250		250		250	
Asst Principal @150	1	150	2	300	3	450	4	600	4	600	
Reception		400		500	6	500	6	500	-	500	
Secretary	1	150	2	300	2	300	2	300	2	300	
Sims		200		200		200		200		200	
Attendance		120		120		120		120		120	
Health		200		200		200		200		200	
Office work room		230		280		330		380		400	
Conference		200		250		250		250		250	
Records		130		180		230		280		300	
Office storage		100		150		150		150		150	
Bookkeeping		120		120		120		120		120	
sub-total		2,250		2,850		3,100		3,350		3,390	

Table 3-13 North Carolina High School Typical Space Profiles (Cont.)

Number of students		600		800		1,200		1,600		2,000	
Core capacity	600		1,000		1,400		1,850		2,000		
Guidance											
Sect'y./Info center		600		800		1,000		1,000		1,000	
Conference/testing		200		250		250		250		250	
Counselor offices @ 150	2	300	3	450	4	600	5	750	5	750	
Vocational counselor		150		150		150		150		150	
Other student services		200		200		200		200		200	
Student offices (yearbook, etc.)		500		700		800		1,000		1,000	
sub-total		1,950		2,550		3,000		3,350		3,350	
Staff Support											
Teacher office/wkrms		600		900		1,350		1,350		1,350	
Teacher lounge(s)		600		900		900		900		900	
Floating/itin. offices	4	400	7	700	9	900	12	1,200	13	1,300	
sub-total		1,600		2,500		3,150		3,450		3,550	
Storage											
Book storage		800		1,000		1,200		1,430		1,500	
General storage/Receiving		900		1,100		1,300		1,530		1,600	
sub-total		1,700		2,100		2,500		2,960		3,100	
Total Net Sq. Ft.		73,478		101,345		154,783		182,473		205,543	
Walls, toilets, circ., mech @ 39.0%		28,656		39,525		60,365		71,164		80,162	
GRAND TOTAL SQ,FT.		102,134		140,870		215,148		253,637		285,705	
Sq.Ft./Student		170		176		179		159		143	
Optimal capacity		632		856		1,334		1,638		1,988	
Total teaching stations		30		40		64		78		94	
Students/teaching station		20		20		19		21		21	

Table 3-14 North Carolina High School Typical Space Profiles (Cont.)

"Typical Space Profiles" are examples of possible school space programs that apply the NC Public Schools Facilities Guidelines. Profiles are not standards or mandates.

3.2.4 Prototype Model Summary

This section summarizes how we used the results of the schools characteristics data to formulate the prototype models for the AEDG for K-12 Schools. For school characteristics not specified by ASHRAE 90.1-1999, ASHRAE 90.1-2004, or ASHRAE 62.1-2001 but needed to develop code compliant baseline and low-energy models, we attempted to document "typical" K-12 practices, characteristics, and features. We used CBECS 2003, the SPM Annual Construction Review, the ASU Annual Construction Review, and input from the K-12 AEDG PC to document the following "typical" K-12 school characteristics to formulate the prototype K-12 AEDG models.

The first characteristic to determine was the K-12 school type. Based on input from the project committee, industry standard K-12 school type classifications, and the typical space types included in the different "typical" K-12 school types, we determined that there was enough physical and operational variation over elementary, middle, and high schools to develop different prototypes for each. To determine the approximate size of each K-12 school type, we combined average sizes from ASU, SPM, and 2003 CBECS. The final size used in our K-12 AEDG models was determined by applying the space type recommendations from Section 3.2.3, the typical space types from SPM (Table 3-4), and the number of students (from ASU and SPM). The actual K-12 AEDG model sizes are shown in relation to average school sizes from ASU, SPM, and 2003 CBECS in Table 3-15 and Table 3-16. Additional inputs, K-12 AEDG characteristic, and sources that we reviewed are shown in Table 3-17.

National	I	Elementa	ry School	Middle School			
Averages	ASU	SPM	AEDG Prototype	ASU	SPM	AEDG Prototype	
Size (ft ²)	73,000	80,000	73,930	104,880	119,000	116,080	
	77,174 national area weighted average 2003 CBECS						

Table 3-15 Elementary/Middle School National Average Schools Sizes: ASU, SPM, AEDG, CBECS

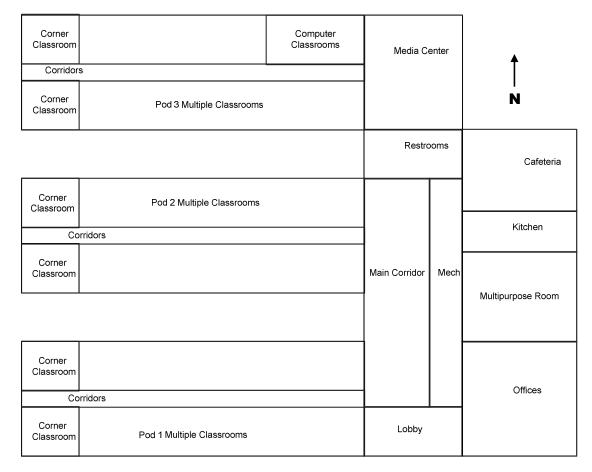
Table 3-16	High School National Average Schools Sizes:
	ASU, SPM, AEDG, CBECS

National	High School					
Averages	ASU SPM AEDG Prototype					
Size (ft ²)	148,569	224,000	210,810			
Size (it)	ea weighted average 2003 CBECS					

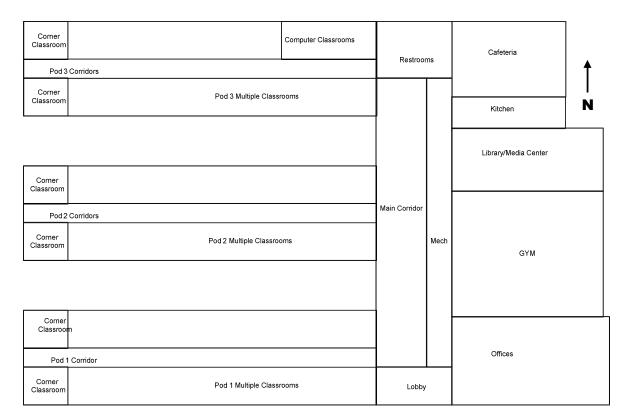
School Characteristic	K-12 AEDG Prototype	Source
School Types	Elementary, middle, and high school	ASU, SPM, AEDG PC
Form and Fabric		
Size	73,930 ft ² elementary, 116,080 ft ² middle, 210,810 ft ² high	ASU, SPM, CBECS 2003, AEDG PC
Number of floors	1 for elementary, 1 for middle, 2 for high	CBECS 2003
Number of students	Elementary: 650, middle: 800, high: 1200	SPM, ASU,
Space types	See Table 3-4	SPM
Constructions	Mass walls, insulation entirely above deck	CBECS 2003, AEDG PC
Floor plan	North- and south-facing classrooms similar to example floor plans in Section 3.2.3.2	AEDG PC
Window Area	35% fenestration to gross wall area	CBECS 2003, AEDG PC
Operations		
Occupancy	Fully occupied during school hours, partially occupied year round and into the evening	CBECS 2003, AEDG PC
Peak plug loads	1.1 w/ft ² for elementary, 1.0 W/ft ² for middle and high	AEDG PC
Percent conditioned	Fully heated and cooled	CBECS 2003
HVAC		
System types	Baseline: PSZ Low-energy: PSZ, PVAV, and VAV	2003 CBECS, AEDG PC

Table 3-17 K-12 AEDG Prototype Characteristics and Data Sources

3.2.4.1 Space Type Sizes and Layout


We used the average sizes of elementary, middle, and high schools, and the "typical" space types as documented in Section 3.2.2, combined with the North Carolina Schools area profiles from Section 3.2.3.3 and the sample floor plans from Section 3.2.3.2, to develop our prototypical floor plans and space layouts. In general, $30 \text{ ft} \times 32 \text{ ft} (9.1 \text{ m} \times 9.8 \text{ m})$ double loaded classrooms, 10 ft (3.0 m) wide corridors in the elementary schools and 15 ft (4.6 m) wide corridors and lockers in the middle and high schools were used to construct the prototype models. Classrooms at the end of a wing are modeled as individual thermal zones, and classrooms with similar configurations are modeled as a lumped thermal zone. Classrooms that are expected to have significantly different use or internal gain schedules, such as the computer classrooms or extended use/community use classrooms, are modeled as separate zones. The classrooms were located in a configuration similar to the example school layouts as shown in Section 3.2.3.2. A main corridor and lobby separate the classroom wing from the support spaces, located on the east side of the prototype model configurations. The overall dimensions are:

- Elementary school: 270 ft by 340 ft (82 m by 104 m)
- Middle school: 450 ft by 300 ft (137 m by 91 m)
- High school: 465 ft by 340 ft (142 m by 104 m)


Total space sizes of the prototype models are shown in Table 3-18. The floor plans for the elementary, middle, and high school prototypes are shown in Figure 3-16 through Figure 3-23.

	Elementary	School	Middle So	hool	High Sc	hool
Space Type	Total Size (ft ²)	% of total	Total Size (ft ²)	% of total	Total Size (ft ²)	% of total
Classrooms (all types except computer classrooms)	35,443	47.9%	47,161	40.6%	64,108	30.4%
Offices	4,745	6.4%	8,586	7.4%	11,449	5.4%
Multipurpose room/gym	3,841	5.2%	12,008	10.3%	34,690	16.5%
Computer classrooms	1,743	2.4%	2,227	1.9%	10,265	4.9%
Kitchen	1,808	2.4%	2,324	2.0%	2,324	1.1%
Cafeteria	3,389	4.6%	5,229	4.5%	6,714	3.2%
Media center	4,293	5.8%	5,810	5.0%	9,038	4.3%
Corridors/lobby	13,913	18.8%	25,351	21.8%	49,711	23.6%
Mechanical/restrooms	4,756	6.4%	7,381	6.4%	11,879	5.6%
Auditorium	0	0.0%	0	0.0%	10,631	5.0%
Total	73,932		116,079		210,810	

Table 3-18 Total Space Sizes Included in the AEDG Prototypes

Figure 3-20 Elementary School Prototype Floor Plan

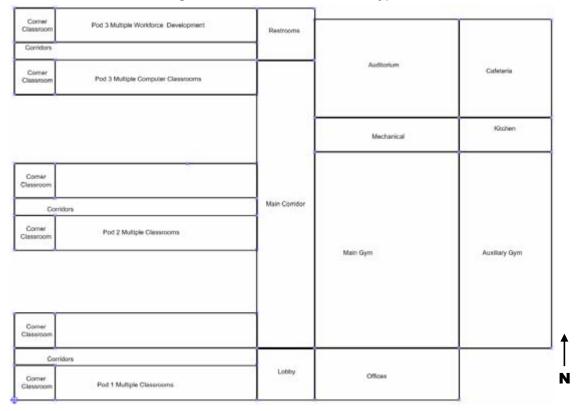


Figure 3-22 High School Prototype First Floor Plan

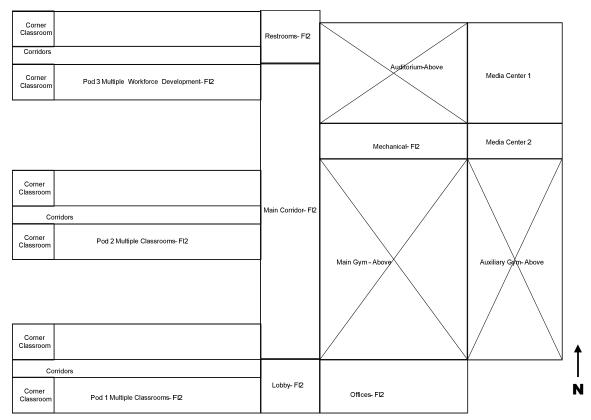


Figure 3-23 High School Prototype Second Floor Plan

3.3 Baseline Model Development and Assumptions

This section contains a topic-by-topic description of the baseline building models EnergyPlus model inputs, including the building form and floor plate, envelope characteristics, building internal loads and operating schedules, ventilation rates and schedules, HVAC equipment efficiency, operation, control and sizing, fan power assumptions, and service water heating. The baseline models for the elementary, middle, and high schools were developed by applying the criteria in ASHRAE 90.1 and ASHRAE 62 to the prototype characteristics. We used the criteria in ASHRAE 90.1-1999 and ASHRAE 62-2001 for the baselines to calculate 30% savings for the K-12 AEDG recommendations. For the baselines needed to verify 30% savings for our DOE analysis, we updated the K-12 AEDG baselines to be minimally code compliant with ASHRAE 90.1-2004. The ASHRAE 90.1-1999 elementary school baseline inputs are summarized in a table format in Appendix C. The middle school ASHRAE 90.1-1999 baseline input tables are summarized in Appendix D, and the high school tables in Appendix E.

3.3.1 Form and Floor Plate

The prototype characteristics as documented in the previous section, combined with modeling assumptions, were used to generate the baseline models form and floor plate. The following form and floor plate modeling assumptions, as shown in Table 3-19, were scrutinized by the PC to verify they were typical characteristics for K-12 schools. The baseline fenestration to gross wall area and skylight area in the gym were determined based on the expected window and skylight area needed to provide full daylighting to the classrooms and gym. The fenestration was equally applied over all of the exterior walls. Per ASHRAE 90.1, Appendix G and LEED 2.2 modeling rules, the baseline fenestration and skylight area should be the same as the low-energy model. No overhangs were included. No plenums were modeled.

Model Parameters	Value
Ceiling height	13.1 ft
Fraction of fenestration to gross wall area	35%
Fraction of gym skylight to roof area	4%
Glazing sill height	3.6 ft

Table 3-19 Selected Baseline Modeling Assumptions

Renderings of the elementary, middle, and high school baseline models are shown in Figure 3-24, Figure 3-25, and Figure 3-26, respectively. Each rendering shows an isometric view from the southwest.

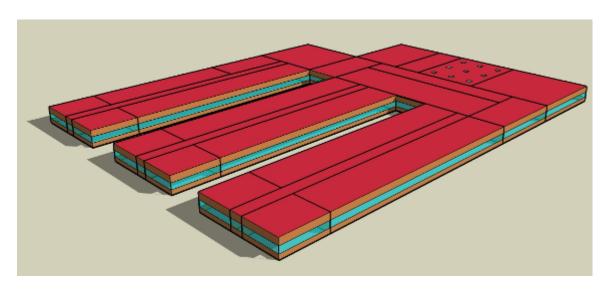


Figure 3-24 Elementary School Baseline Model Rendering: View from Southwest

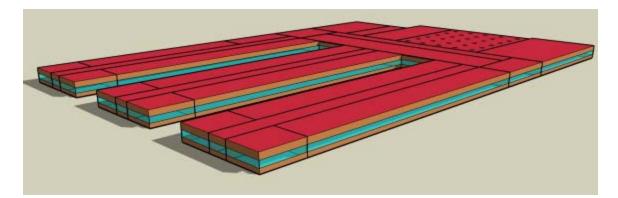


Figure 3-25 Middle School Baseline Model Rendering: View from Southwest

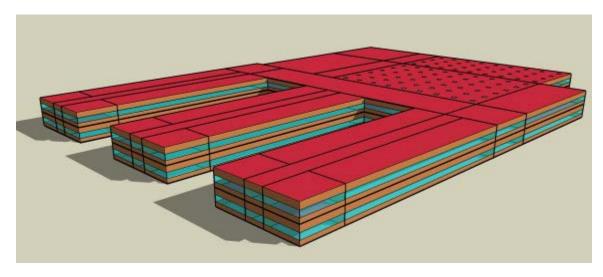


Figure 3-26 High School Baseline Model Rendering: View from Southwest

3.3.2 Envelope

The PC assumed, based on experience of those in the K-12 school construction industry, that schools are typically constructed with mass exterior walls, built-up roofs, and slab-on-grade floors. These envelope constructions represent common construction practices for K-12 schools. There is some regional variation in construction techniques, but the PC felt that mass walls and built-up roofs were the most common due to their durability. This assumption is confirmed by the CBECS analysis of construction types, as shown in Figure 3-8.

The baseline school envelope characteristics were developed to meet the prescriptive design option requirements in accordance with ASHRAE 90.1-1999 Section 5.3. For the ASHRAE 90.1-2004 baselines, we used the prescriptive building envelope option in Section 5.5 of the Standard. Layer-by-layer descriptions of the constructions of exterior surfaces were used to model the building thermal envelope in EnergyPlus.

3.3.2.1 Exterior Walls

The baseline schools are modeled with mass wall constructions. The layers consisted of stucco, concrete block, rigid insulation, and gypsum board. The U-values of the insulation varied based on the respective standard and were adjusted to account for the standard film coefficients. R-values for most of the layers were derived from Appendix A of ASHRAE 90.1-1999. Insulation R-values for continuous insulations were selected to meet the insulation minimum R-values required in Appendix B (*Building Envelope Requirements*) of ASHRAE 90.1-1999, as defined by climate range. The baseline exterior wall U-values are in Appendix C through Appendix E. Similar wall insulation values were modeled in the ASHRAE 90.1-2004 baselines, as the mass wall requirements did not change significantly from ASHRAE 90.1-1999 to ASHRAE 90.1-2004. The mass wall was assembled assuming 8-in. medium weight concrete blocks with a density of 115 lb/ft³ and solid grouted cores. The mass wall includes the following layers:

- Exterior air film (calculated by EnergyPlus)
- 1-in exterior Stucco
- 8-in. concrete block, 115 lb/ft³
- 1-in. metal clips with rigid insulation (R-value various by climate)
- 0.5-in. thick gypsum board

• Interior air film (calculated by EnergyPlus).

To calculate the thermal performance of the interior and exterior air films, we used the "Detailed" algorithm in EnergyPlus for surface heat transfer film coefficients, which is based on linearized radiation coefficients that are separate from the convection coefficients as determined by surface roughness, wind speed, and terrain of the building's location. However, standardized combined film coefficients are used when targeting assembly U-factors.

3.3.2.2 Roofs

Built-up, rigid insulation above a structural metal deck roof was used in the elementary, middle, and high school baseline models. The layers consisted of the roof membrane, roof insulations, and metal decking. The U-values varied based on the respective standard and were adjusted to account for the standard film coefficients. Added insulation is continuous and uninterrupted by framing. Roof insulation R-values were also set to match the minimum roof insulation requirements in Appendix B (*Building Envelope Requirements*) in ASHRAE 90.1-1999, by climate. The baseline roof U-values are in Appendix C through Appendix E. Similar roof insulation values were modeled in the ASHRAE 90.1-2004 baselines, as the insulation above deck roof requirements did not change significantly from ASHRAE 90.1-1999 to ASHRAE 90.1-2004.

The Standard does not specify either absorptance or other surface assumptions. The roof exterior finish was assumed to be a single-ply roof membrane with gray ethylene propylene diene terpolymer membrane (EPDM) in the baseline models. Therefore, we assumed a solar reflectance of 0.3, a thermal absorption of 0.9, and a visible absorption of 0.7.

3.3.2.3 Slab on Grade Floors

The baseline buildings were modeled with slab-on-grade floors. The layers consist of carpet pad over 8 in. (0.2 m) of heavyweight concrete. A separate program called *slab.exe*, which determines the temperature of the ground under the slab based on the area of the slab, the location of the building, and the type of insulation under or around the slab, was used to model the ground coupling (DOE 2007). For the baseline models, *slab.exe* was used to run a simple building in each location with the slab insulations requirements in ASHRAE 90.1-1999. *Slab.exe* reports the perimeter ground monthly temperatures, the core ground monthly temperatures, and average monthly temperatures. For this analysis, the average monthly temperatures were used as the input for the ground temperatures under the floor slab in the EnergyPlus input files.

3.3.2.4 Fenestration

Fenestration systems in the baseline schools were modeled as single banded windows with one band per floor per façade, at 35% fenestration to gross wall area. Windows are collected into a single object and frames are neglected to reduce complexity in the EnergyPlus models and make the simulations run faster. The window performance is modeled as for the entire glazed area. U-factor and solar heat gain coefficient (SHGC) values were treated as whole-assembly. Window U-factor and SHGC were set to match the fenestration performance criteria outlined in Appendix B of ASHRAE 90.1-1999, by climate zone. If the SHGC had no recommendation in ASHRAE 90.1 (1999 or 2004), the SHGC was set to the previous table's value of SHGC. Similar window U-factors and SHGCs were modeled in the ASHRAE 90.1-2004 baselines, as the window requirements did not change significantly from ASHRAE 90.1-1999 to ASHRAE 90.1-2004.

Window fenestration U-factors are listed in Appendix C through Appendix E. These are the target U-factors used in an iterative process to refine the material properties in the layer-by-layer descriptions to just match the assembly performance level. Window SHGC values are listed in Appendix C through Appendix E. These target SHGC are values used in an iterative process to refine the material properties in the layer-by-layer descriptions to just match the assembly performance level. The multipliers from the visible light transmittance (VLT) tables in ASHRAE 90.1-2004 Appendix C, Table C3.5 (ASHRAE 2004b) were used to calculate baseline VLT values for the windows.

The K-12 AEDG recommends daylighting in the gyms. One of the gym daylighting options includes skylights with an area of 4% of the floor area. The baseline models also include the skylights, but without daylighting controls, as recommended in Appendix G of ASHRAE 90.1-2004. The skylights are 4 ft \times 4 ft (1.22 m \times 1.22 m) and spaced equally throughout the gym and multipurpose spaces. Window U-factor and SHGCs are set to match the fenestration performance criteria outlined in Appendix B of ASHRAE 90.1-1999, by climate zone.

3.3.2.5 Infiltration

Building air infiltration is addressed indirectly in the Standard through the requirements in building envelope sealing, fenestration and door air leakage, etc. ASHRAE 90.1 does not specify the air infiltration rate. For this analysis, the infiltration rate was assumed to be a peak of 0.5 air changes per hour (ACH). In addition, the infiltration schedule was also incorporated into the modeling by assuming 0.25 ACH of infiltration when the HVAC system is enabled and the building is pressurized and 0.5 ACH of infiltration when the HVAC system is disabled at night and on weekends.

3.3.3 Internal Loads

Internal loads include heat generated from occupants, lights, and appliances (plug loads such as computers, printers, small beverage machines, etc.). For the occupancy loads, the load intensity refers to the maximum occupancy at the peak time of a typical day. Lighting and plug loads are represented by peak power density in watts per square foot. The equipment load intensities for the classrooms are assumed based on the results of the plug load audits as documented in Section 3.2.3.1. The equipment loads include all loads not associated with HVAC, service water heating, and lighting. In addition to all loads that are plugged in, equipment loads include items such as elevators, distribution transformer losses, cooking appliances, and kitchen walk-in refrigerators.

The occupancy loads are based on default occupant density from ASHRAE 62.1-2004 (ASHRAE 2004b). The baseline interior lighting power density (LPD) for each specific area is derived using the space-by-space method described in Standard 90.1-1999. The baseline ASHRAE 90.1-1999 and ASHRAE 90.1-2004 LPDs, peak occupancy, and peak plug loads are shown in Table 3-20 through Table 3-22. Plug load schedules, occupancy schedules, and lighting schedules are documented in Section 3.3.6. The location of each space type is shown in Figure 3-20 through Figure 3-23.

Space Type	ASHRAE 90.1-1999 LPD (W/ft ²)	ASHRAE 90.1-2004 LPD (W/ft ²)	Peak Equipment Load (W/ft ²)	Maximum Occupants (#/1000 ft ²)
Classrooms	1.6	1.4	1.4	25
Offices	1.5	1.1	1.0	5
Multipurpose room	1.9	1.4	0.5	30
Computer classrooms	1.6	1.4	1.9	30
Kitchen	2.2	1.2	1.9	15
Cafeteria	1.4	0.9	1.0	100
Media center	1.8	1.2	1.4	25
Lobby	1.8	1.3	0.4	10
Corridors	0.7	0.5	0.4	1
Restrooms	1.0	0.9	0.4	10
Mechanical	1.3	1.5	0.9	1
Elementary school weighted average	1.53	1.25	1.1	20

 Table 3-20
 Elementary School Baseline Internal Loads by Space Type

 Table 3-21 Middle School Baseline Internal Loads by Space Type

Space Type	ASHRAE 90.1-1999 LPD (W/ft ²)	ASHRAE 90.1-2004 LPD (W/ft ²)	Peak Plug Load (W/ft ²)	Number of Occupants (#/1000 ft ²)
Classrooms	1.6	1.4	0.9	25
Offices	1.5	1.1	1.0	5
Gym	1.9	1.4	0.5	100
Computer classrooms	1.6	1.4	1.9	30
Kitchen	2.2	1.2	1.9	15
Cafeteria	1.4	0.9	1.0	100
Media center	1.8	1.2	1.4	25
Lobby	1.8	1.3	0.4	10
Corridors	0.7	0.5	0.4	1
Restrooms	1.0	0.9	0.4	10
Mechanical	1.3	1.5	0.9	1
Middle school weighted average	1.52	1.22	0.82	27

Space Type	ASHRAE 90.1-1999 LPD (W/ft ²)	ASHRAE 90.1-2004 LPD (W/ft ²)	Peak Plug Load (W/ft ²)	Number of Occupants (#/1000 ft ²)
Classrooms	1.6	1.4	0.9	25
Offices	1.5	1.1	1.0	5
Main gym	1.9	1.4	0.5	100
Auxiliary gym	1.9	1.4	0.5	30
Computer classrooms	1.6	1.4	1.9	30
Kitchen	2.2	1.2	1.9	15
Cafeteria	1.4	0.9	1.0	100
Media center	1.8	1.2	1.4	25
Lobby	1.8	1.3	0.4	10
Corridors	0.7	0.5	0.4	1
Restrooms	1.0	0.9	0.4	10
Mechanical	1.3	1.5	0.4	1
Auditorium	1.6	1.4	0.5	100
High school weighted average	1.57	1.25	0.74	30

Table 3-22 High School Baseline Internal Loads by Space Type

3.3.3.1 Exterior Lighting

The baseline schools were modeled with 5.0 W/linear foot (16.4 W/linear m) of exterior façade lighting, per ASHRAE 90.1-2004 Table 9.4.5 (ASHRAE 2004a).

3.3.4 HVAC Systems and Components

3.3.4.1 System Type and Sizing

The scope of this Guide covers all sizes of K-12 schools that use multiple HVAC system types. To meet the minimum energy-efficiency requirements of ASHRAE 90.1-1999 and ASHRAE 90.1-2004 for the baseline models, the PC agreed on using single-zone packaged unitary heating and cooling equipment. The types of HVAC systems in K-12 schools are highly variable across the country. The PC felt that package rooftops were an acceptable baseline system based on industry experience and on the CBECS analysis, which showed that package rooftop units are one of the more common system types. To model this system type, we modeled each thermal zone with an auto-sized package single-zone system with a constant volume fan, DX cooling, and gas-fired furnace. To apply ASHRAE 90.1-1999 and ASHRAE 90.1-2004, we assumed the baseline rooftop units would be an individual classroom rooftop in the range of 5 tons and 2,000 cfm (0.94 m³/s). For larger spaces, multiple 5-ton units would be used.

We used the design-day method to autosize the cooling capacity of the DX cooling coil and the heating capacity of the furnace in the packaged rooftop units. The design-day data for all 15 climate locations were developed based on the "Weather Data" contained in the *ASHRAE Handbook: Fundamentals* (ASHRAE 2005). In this data set, we used the annual heating design condition based on annual percentiles of 99.6% and the annual cooling design condition based on annual percentiles of 0.4%. The internal loads (occupancy, lights, and plug loads) were scheduled as zero on the heating design day, and at a maximum level on the cooling design day. A 1.2 sizing factor was applied to all autosized heating and cooling capacities and air flow rates.

3.3.4.2 Outside Air

Ventilation rates by space type were determined based on ASHRAE 62-2001 (ASHRAE 2001), as shown in Table 3-23. Demand controlled ventilation is required by ASHRAE 90.1-1999 in densely occupied spaces such as the auditoriums and cafeterias. The ASHRAE 90.1-2004 baselines used these same outdoor air rates. To model demand controlled ventilation in these spaces, we modified the OA rates to match the baseline occupancy schedules.

For the spaces without demand controlled ventilation, OA was scheduled based on the HVAC system availability schedule. Code allows OA to be controlled with a gravity damper, which opens whenever the fans operate. However, we modeled an OA motorized damper based on HVAC system availability schedules in the baseline models. The motorized damper is closed during unoccupied hours, resulting in no OA when the system night cycles. Using gravity dampers in colder climates that have significant night cycling can result in significant heating energy use, which would inflate the baseline energy use in these climates. Therefore, all the baseline models include motorized OA dampers. The PC also felt that gravity dampers were not a common configuration for OA control.

Space Type	Number of Occupants (#/1000 ft ²)	OA Rate (cfm/occupant)	OA Rate (cfm/ft ²)	Demand Controlled Ventilation in Baseline?
Classrooms	25	15		
Offices	5	20		
Multipurpose room	30	20		
Main gym	100	20		Yes
Auxiliary gym	30	20		
Computer classrooms	30	15		
Kitchen	15	20		
Cafeteria	100	20		Yes
Media center	25	15		
Lobby	10	15		
Corridors	1		0.05	
Restrooms	10		0.15	
Mechanical	1		0.15	
Auditorium	100	15		Yes

Table 3-23 Baseline OA Rates by Space Type

3.3.4.3 Economizers

In accordance with ASHRAE 90.1-1999 and ASHRAE 90.1-2004, an economizer is not required if the system is smaller than 65,000 Btu/h (19 kW) in cooling capacity, regardless of climate location. Therefore, the 5-ton rooftops do not include economizers in the baseline models.

3.3.4.4 Fan Power Assumptions

The constant volume fan energy use is determined from two primary input parameters: total supply fan static pressure drops and fan/motor efficiency. We have assumed that the package rooftop system contains only a supply fan, and there is no return fan or central exhaust fan in the system.

The total supply fan static pressure drops were based PC members' input on standard HVAC ductwork design for representative duct runs served by the packaged unitary equipment. Table 3-24 summarizes the breakdown of the fan total static pressure for the baseline rooftop system. A total fan static pressure of 2.50 in. water column (w.c.) (625 Pa) was used for the 5-ton unit.

Component	Package Rooftop, Constant Volume, 5-ton, 2000 cfm in. w.c.		
2-in. plated filters ¹	0.30		
Heat coil/section	0.25		
Cooling coil	0.60		
Fan outlet transition	0.10		
Diffuser	0.10		
Supply ductwork ²	0.80		
Return ductwork	0.30		
Grille	0.05		
Total static pressure drop	2.50		

Table 3-24 Baseline Fan System Total Pressure Drops

- 1. Used average difference between clean and dirty filters
- 2. Used standard practice of 0.1 in. w.c./100 ft (25 Pa/30 m) friction rate for the baseline duct pressure drop combined with typical effective duct runs.

The total fan efficiency is a combination of the supply fan, motor, and drive efficiency. To calculate the total fan efficiency, the power delivered to the airflow by the fan is divided by the maximum allowable motor power. For a 5-ton, 2,000-cfm ($0.94 \text{ m}^3/\text{s}$) rooftop, the allowable fan motor nameplate power is determined by the fan power limitation from Table 6.3.3.1 in ASHRAE 90.1-1999. For a 2,000-cfm ($0.94 \text{ m}^3/\text{s}$), constant volume system, ASHRAE 90.1-1999 and ASHRAE 90.1-2004 limits the fan motor to 1.2 hp/1000 cfm ($1.9 \text{ W}/1000 \text{ m}^3/\text{s}$) of supply air. This translates to a 2.4 hp (1.8 kW) maximum allowable fan power for the baseline rooftops. To calculate the power delivered to the supply air, the flow and pressure drop are needed. The product of the airflow at 2,000 cfm ($0.94 \text{ m}^3/\text{s}$) and the pressure drop of 2.5 in w.c. (625 Pa) results in the power delivered to the airflow of 590 W. This equates to a 33% efficient fan/motor/drive combination, which was used as the baseline model input for the EnergyPlus package rooftop total fan efficiency.

3.3.4.5 Minimum Efficiency

The code minimum efficiency for cooling equipment is determined based on cooling system type and size. To apply ASHRAE 90.1-1999 and ASHRAE 90.1-2004, we assume the baseline rooftop units would be individual classroom rooftop units in the range of 5 tons and 2,000 cfm (0.94 m³/s). ASHRAE 90.1-1999 and ASHRAE 90.1-2004 require that the energy efficiency of single packaged unitary air conditioners at this level (less than 65,000 Btu/h (19 kW)) should be rated by the seasonal energy efficiency ratio (SEER). Therefore, for the elementary, middle, and high school ASHRAE 90.1-1999 baseline models, the minimum efficiency of 9.7 SEER was used for each rooftop. For the ASHRAE 90.1-2004 baseline models, the minimum efficiency requirements were increased to a 12 SEER for this sized package rooftop unit. The gas-fired furnace efficiency levels were incorporated as 80% efficient gas furnaces in the package rooftops, to match the minimum efficiency requirements for both ASHRAE 90.1-1999 and ASHRAE 90.1-2004.

The minimum efficiency requirements for the baseline ASHRAE 90.1-1999 and ASHRAE 90.1-2004 package rooftops includes fan power, compressors, and condenser power. To model the code minimum

package rooftop units, the efficiency (coefficient of performance [COP]) of the compressor/condenser is input separately from the fan power. The following method is used to calculate the rooftop compressor/condenser COP from the ASHRAE 90.1-1999 and ASHRAE 90.1-2004 minimum efficiency requirements:

1. Determine EER from ASHRAE 90.1 minimum SEER:

For a 5-ton rooftop unit, the minimum efficiency in ASHRAE 90.1-1999 is 9.7 SEER. From Equation 3-1, we estimated this baseline unit to have an 8.8 energy efficiency ratio (EER), which can also be expressed as 1.36 kW/ton.

$EER = SEER \times 0.697 + 2.04$

Equation 3-1 Calculation of EER from SEER¹

2. Determine the portion of this EER that is for the supply fan:

For the 5-ton, 2,000-cfm rooftop, the allowable fan motor nameplate power is determined by the fan power limitation Table 6.3.3.1 in ASHRAE 90.1-1999, which equates to a 2.4-hp (1.8 kW) fan, or 0.36 kW/ton.

3. Determine the COP of the compressor/condenser:

The compressor/condenser efficiency is the difference between the unit efficiency (expressed in kW/ton) and the fan power (expressed in kW/ton). For the ASHRAE 90.1-1999 baseline package rooftop with SEER of 9.7, the compressor/condenser efficiency was estimated to be 1.0 kW/ton, or a COP of 3.5. For the 5-ton ASHRAE 90.1-2004 baseline package rooftop with a SEER of 12, a compressor/condenser COP of 4.4 was modeled in EnergyPlus. These COP values were used for EnergyPlus input and correspond to nominal values for the rated point of operation; see EnergyPlus input documentation for more detail (DOE 2007).

Table 3-25 summarizes the primary HVAC performance characteristics for both the ASHRAE 90.1-1999 baseline and the ASHRAE 90.1-2004 baseline.

¹ The conversion from SEER to EER is an approximation based on published data from the Carrier Corporation, as referenced in "Deemed Savings, Installation & Efficiency Standards: Commercial and Industrial Cooling Equipment," prepared for the Public Utility Commission of Texas by Nexant, Inc., May 2003, page 3.

HVAC Input	ASHRAE 90.1-1999 Baseline PSZ DX, Furnace	ASHRAE 90.1-2004 Baseline PSZ DX, Furnace
COP of compressor/condenser	3.5 COP (9.7 SEER)	4.4 COP (12 SEER)
Heating efficiency	80%	80%
Fan efficiency	33%	33%
Fan power limitation	1.2 hp/1000 cfm	1.2 hp/1000 cfm
Fan static pressure	2.5 in. w.c.	2.5 in. w.c.
Economizers	None	None
Energy recovery ventilator	None	None
OA control	HVAC operational schedule, CO_2 demand controlled in cafeteria, gym, auditorium	HVAC operational schedule, CO ₂ demand controlled in cafeteria, gym, auditorium

Table 3-25 Baseline HVAC Models Summary

3.3.5 Service Water Heating

The PC defined the baseline service hot water system for the K-12 schools as a gas-fired storage water heater that meets the minimum Standards requirement for medium-sized water heaters (with rated input power greater than 75,000 Btu/h (22 kW) and less than 155,000 Btu/h (45 kW)) under Standard 90.1-1999. Gas water heaters were chosen for the baseline to be consistent with the use of gas for heating in the baseline prototype schools. The thermal efficiency of the baseline water heaters is 80% for both ASHRAE 90.1-1999 and ASHRAE 90.1-2004.

The consumption rates of hot water were determined as documented in the *ASHRAE Handbook: HVAC Applications* (ASHRAE 2007). For the baseline schools, the hot water consumption rate was modeled at 0.8 gal/student/day (3 L/student/day), with the draw profile as shown in Section 3.3.6. The hot water was assumed to be used at 104°F (40°C). The set point of the water heater was 140°F (60°C). For reporting purposes in Section 4, the gas use for service hot water is stated as "Water Systems."

3.3.6 Schedules

The schedules were developed by modifying the standard educational building schedule sets available in ASHRAE 90.1-1989 (ASHRAE 1989) based on input from each PC member and from the typical operating characteristics from CBECS. Schedules are presented as fractions of peak, unless otherwise noted. The following schedules were used in the baseline models.

Each zone in the baseline models used the lighting schedule, based on the typical school schedule, as shown in Table 3-26.

Hour	Weekday through 6/30	Weekday through 9/01	Weekday through 12/31	Weekends, Holidays		
1	0.18	0.18	0.18	0.18		
2	0.18	0.18	0.18	0.18		
3	0.18	0.18	0.18	0.18		
4	0.18	0.18	0.18	0.18		
5	0.18	0.18	0.18	0.18		
6	0.18	0.18	0.18	0.18		
7	0.18	0.18	0.18	0.18		
8	0.90	0.18	0.90	0.18		
9	0.90	0.50	0.90	0.18		
10	0.90	0.50	0.90	0.18		
11	0.90	0.50	0.90	0.18		
12	0.90	0.50	0.90	0.18		
13	0.90	0.50	0.90	0.18		
14	0.90	0.50	0.90	0.18		
15	0.90	0.50	0.90	0.18		
16	0.90	0.50	0.90	0.18		
17	0.90	0.50	0.90	0.18		
18	0.90	0.50	0.90	0.18		
19	0.90	0.50	0.90	0.18		
20	0.90	0.50	0.90	0.18		
21	0.90	0.18	0.90	0.18		
22	0.18	0.18	0.18	0.18		
23	0.18	0.18	0.18	0.18		
24	0.18	0.18	0.18	0.18		

Table 3-26 Building Lighting Schedule

Each zone in the baseline models used the heating and cooling set point schedules as shown in Table 3-27, except for the restrooms, corridors, and mechanical spaces, which used the heating setback and the cooling setup schedule. The HVAC systems are controlled with dual thermostatic control based on dry bulb temperature in the zones. Zone thermostat set points are generally 70°F (21°C) for heating and 77°F (25°C) for cooling. Thermostat setup to 91°F (33°C) and setback to 61°F (16°C) were included in the models. Humidity is addressed indirectly by controlling supply air temperature. Set points for the supply air temperature in the baseline and low-energy models are set by using a outdoor air reset schedule with cold deck temperatures of 55°F (13°C) when outdoor air temperatures are above 70 °F (21°C) and 60°F (16°C) when OA temperatures are below 60°F (16°C).

Hour	Weekday through 12/31, Heating	Weekday through 12/31, Heating Setback	Weekends, Holidays, Heating	Weekday through 12/31, Cooling	Weekday through 12/31, Cooling Setup	Weekends, Holidays, Cooling
1	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
2	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
3	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
4	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
5	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
6	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
7	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
8	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
9	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
10	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
11	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
12	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
13	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
14	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
15	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
16	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
17	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
18	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
19	70 (21)	61 (16)	61 (16)	77 (25)	91 (33)	91 (33)
20	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
21	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
22	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
23	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)
24	61 (16)	61 (16)	61 (16)	91 (33)	91 (33)	91 (33)

Table 3-27 Building Heating and Cooling Set Point Schedules

Each zone in the baseline models used the equipment schedules as shown in Table 3-28.

Hour	Weekday through 6/30	Weekday through 9/01	Weekday through 12/31	Weekends, Holidays	Weekends, Holidays, Summer
1	0.35	0.25	0.35	0.35	0.25
2	0.35	0.25	0.35	0.35	0.25
3	0.35	0.25	0.35	0.35	0.25
4	0.35	0.25	0.35	0.35	0.25
5	0.35	0.25	0.35	0.35	0.25
6	0.35	0.25	0.35	0.35	0.25
7	0.35	0.25	0.35	0.35	0.25
8	0.35	0.25	0.35	0.35	0.25
9	0.95	0.5	0.95	0.35	0.25
10	0.95	0.5	0.95	0.35	0.25
11	0.95	0.5	0.95	0.35	0.25
12	0.95	0.5	0.95	0.35	0.25
13	0.95	0.5	0.95	0.35	0.25
14	0.95	0.5	0.95	0.35	0.25
15	0.95	0.5	0.95	0.35	0.25
16	0.95	0.5	0.95	0.35	0.25
17	0.95	0.5	0.95	0.35	0.25
18	0.35	0.25	0.35	0.35	0.25
19	0.35	0.25	0.35	0.35	0.25
20	0.35	0.25	0.35	0.35	0.25
21	0.35	0.25	0.35	0.35	0.25
22	0.35	0.25	0.35	0.35	0.25
23	0.35	0.25	0.35	0.35	0.25
24	0.35	0.25	0.35	0.35	0.25

Table 3-28 Building Equipment Schedule

The classrooms, lobby, mechanical, corridors, and bathrooms in the baseline models used the occupancy schedules as shown in Table 3-29. The computer classrooms and a single classroom wing used the extended occupancy schedules to account for after hours use.

Hour	Weekday through 6/30	Weekday through 6/30 Extended	Weekday through 9/01	Weekday through 9/01 Extended	Weekday through 12/31	Weekday through 12/31 Extended	Weekends, Holidays
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0.15	0.15	0.15	0.15	0.15	0.15	0
8	0.95	0.95	0.15	0.5	0.95	0.95	0
9	0.95	0.95	0.15	0.5	0.95	0.95	0
10	0.95	0.95	0.15	0.5	0.95	0.95	0
11	0.95	0.95	0.15	0.5	0.95	0.95	0
12	0.95	0.95	0.15	0.5	0.95	0.95	0
13	0.95	0.95	0.15	0.5	0.95	0.95	0
14	0.95	0.95	0.15	0.5	0.95	0.95	0
15	0.95	0.95	0.15	0.5	0.95	0.95	0
16	0.95	0.95	0.15	0.5	0.95	0.95	0
17	0.15	0.95	0.15	0.5	0.15	0.95	0
18	0.15	0.95	0.15	0.5	0.15	0.95	0
19	0.15	0.95	0.15	0.5	0.15	0.95	0
20	0.15	0.95	0.15	0.5	0.15	0.95	0
21	0.15	0.95	0.15	0.5	0.15	0.95	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0

Table 3-29 General and Extended Occupancy Schedule

The offices and media center use the same occupancy schedules as shown in Table 3-30. The multipurpose room in the elementary school and the gym in the middle and high schools use the gym occupancy schedules as shown in Table 3-30.

Hour	Weekday through 6/30 Offices/Media	Weekday through 6/30 Gym	Weekday through 9/01 Offices/Media	Weekday through 9/01 Gym	Weekday through 12/31 Offices/Media	Weekday through 12/31 Gym	Weekends, Holidays
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0.15	0	0.15	0	0.15	0	0
9	0.95	0.35	0.5	0.35	0.95	0.35	0
10	0.95	0.35	0.5	0.35	0.95	0.35	0
11	0.95	0.35	0.5	0.35	0.95	0.35	0
12	0.95	0.35	0.5	0.35	0.95	0.35	0
13	0.95	0.35	0.5	0.35	0.95	0.35	0
14	0.95	0.35	0.5	0.35	0.95	0.35	0
15	0.95	0.35	0.5	0.35	0.95	0.35	0
16	0.95	0.35	0.5	0.35	0.95	0.35	0
17	0.95	0.95	0.5	0.35	0.95	0.95	0
18	0.15	0.95	0.15	0.35	0.15	0.95	0
19	0.15	0.95	0.15	0.35	0.15	0.95	0
20	0.15	0.95	0.15	0.35	0.15	0.95	0
21	0.15	0.95	0.15	0.35	0.15	0.95	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0

Table 3-30 Offices and Gym Occupancy Schedules

The auditorium and cafeteria occupancy schedules are shown in Table 3-31.

Hour	Weekday through 6/30 Auditorium	Weekday through 6/30 Cafeteria	Weekday through 9/01 Auditorium	Weekday through 9/01 Cafeteria	Weekday through 12/31 Auditorium	Weekday through 12/31 Cafeteria	Weekends, Holidays
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0.25	0	0.15	0	0.25	0	0
10	0.25	0.95	0.15	0.15	0.25	0.95	0
11	0.25	0.95	0.15	0.15	0.25	0.95	0
12	0.25	0.95	0.15	0.15	0.25	0.95	0
13	0.25	0.95	0.15	0.15	0.25	0.95	0
14	0.25	0.95	0.15	0.15	0.25	0.95	0
15	0.25	0.95	0.15	0.15	0.25	0.95	0
16	0.95	0.35	0.15	0.15	0.95	0.35	0
17	0.95	0.35	0.15	0.15	0.95	0.35	0
18	0.95	0.35	0.35	0.35	0.95	0.35	0
19	0.95	0.35	0.35	0.35	0.95	0.35	0
20	0.95	0.35	0	0	0.95	0.35	0
21	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0

 Table 3-31 Auditorium and Cafeteria Occupancy Schedules

The service water heating schedules are shown in Table 3-32.

Hour	Weekday through 6/30 SWH	Weekday through 9/01 SWH	Weekday through 12/31 SWH	Weekends, Holidays SWH
1	0.05	0.05	0.05	0.03
2	0.05	0.05	0.05	0.03
3	0.05	0.05	0.05	0.03
4	0.05	0.05	0.05	0.03
5	0.05	0.05	0.05	0.03
6	0.05	0.05	0.05	0.03
7	0.05	0.05	0.05	0.03
8	0.10	0.10	0.10	0.03
9	0.34	0.10	0.34	0.03
10	0.60	0.10	0.60	0.05
11	0.63	0.10	0.63	0.05
12	0.72	0.10	0.72	0.05
13	0.79	0.10	0.79	0.05
14	0.83	0.10	0.83	0.03
15	0.61	0.10	0.61	0.03
16	0.65	0.10	0.65	0.03
17	0.10	0.10	0.10	0.03
18	0.10	0.10	0.10	0.03
19	0.19	0.19	0.19	0.03
20	0.25	0.25	0.25	0.03
21	0.22	0.22	0.22	0.03
22	0.22	0.22	0.22	0.03
23	0.12	0.12	0.12	0.03
24	0.09	0.09	0.09	0.03

Table 3-32 Service Water Heating Schedules

The infiltration schedules and HVAC operational schedules are shown in Table 3-33. The OA and fan schedules are the same as the HVAC operational schedules. During off hours, the HVAC system is shut off and only cycles "on" when the setback thermostat control calls for heating or cooling to maintain the setback temperature. During unoccupied hours, the outdoor air is "turned off" with motorized dampers. Therefore, no OA is be available when the system night cycles. A gravity damper OA system would bring in OA whenever the fans operate, including the night cycle operation.

Hour	Weekday through 12/31 Infiltration	Weekend/Holiday through 12/31 Infiltration	Weekday through 12/31 HVAC Operation	Weekend/Holiday through 12/31 HVAC Operation
1	1	1	0	0
2	1	1	0	0
3	1	1	0	0
4	1	1	0	0
5	1	1	0	0
6	1	1	0	0
7	1	1	0	0
8	0.5	1	1	0
9	0.5	1	1	0
10	0.5	1	1	0
11	0.5	1	1	0
12	0.5	1	1	0
13	0.5	1	1	0
14	0.5	1	1	0
15	0.5	1	1	0
16	0.5	1	1	0
17	0.5	1	1	0
18	0.5	1	1	0
19	0.5	1	1	0
20	0.5	1	1	0
21	0.5	1	1	0
22	1	1	0	0
23	1	1	0	0
24	1	1	0	0

Table 3-33 Infiltration and HVAC Operation Schedules

3.4 Low-Energy Model Development and Assumptions

The final recommendations included in the Guide were determined based on an iterative process using the PC's expertise and results from modeling the recommendations. To quantify the potential energy savings from the final recommended energy efficiency measures in the Guide, we implemented the energy efficiency technologies listed below to simulate the low-energy building models. This section contains a topic-by-topic description of the low-energy building models and how the recommended energy efficiency measures were implemented into the low-energy modeling. The energy efficiency measures included in the 30% saving calculation are:

- Enhanced building opaque envelope insulation
- High-performance window glazing with overhangs
- Reduced LPD and occupancy controls
- Classroom and gym daylighting

- Demand controlled ventilation with automatic motorized damper control for (OA) intake
- Energy recovery ventilator (ERV)
- Economizers
- Lower pressure ductwork design and higher efficiency fans
- Higher efficiency HVAC equipment
- High-efficiency service water heating

Plug loads reductions are not credited to the calculated 30% energy savings, as these energy efficiency opportunities are not part of the prescriptive recommendations. However, they form a prominent part of the additional savings section in the Guide.

3.4.1 Developing the Recommendations

The PC used the following guiding principles to develop the final recommendation for the K-12 AEDG:

- Provide recommendations that represent responsible, but not necessarily the best K-12 school design practices. If a recommendation, in general, represents good design practice, it is recommended for all climate zones, even if the resulting savings exceed 30%.
- Use off-the shelf technologies that are available from multiple sources. The PC did not recommend technologies or techniques that are one of a kind or available from a single manufacturer.
- Provide recommendations that are at least as stringent as those in the forthcoming ASHRAE 90.1-2007, including Addenda AS and AT (ASHRAE 2004a). We did not want our recommendations to be less stringent than the most recent version of ASHRAE 90.1.
- Use the recommendations from the previous SO AEDG as a starting point for fine tuning the K-12 AEDG recommendations. Develop recommendations to address the focus group's concerns on usability, O&M, simplicity, and flexibility.
- Verify 30% energy savings for the recommendations that represent the most typical K-12 school components, or for the components that are the least likely to result in 30% savings.

3.4.1.1 Daylighting Recommendations

The PC considered daylighting as the most important of the recommendations in the K-12 AEDG. This was because daylighting has many benefits, both real and perceived, in the K-12 school industry. One measurable benefit from daylighting in schools is energy savings. Electrical lighting is one of the largest energy users in schools. Depending on climate, lighting energy use can be as high as about 35% of the total energy use of a basic, energy code-compliant school (see Figure 4-1 through Figure 4-6). Because lighting-related improvements can be inexpensive and offer rapid payback, these are at the top of the list of recommendations for meeting an overall target of 30% energy savings or greater. There are two distinctly different approaches to reducing electric lighting power: through daylighting or with high-efficiency electrical lighting systems. Either can be used to meet the recommendations in this Guide:

- **Designing a daylit school.** For the daylighting options, recommendations are given for classrooms and gyms/multipurpose rooms. There are three classroom daylighting patterns: a toplit pattern, a sidelit pattern, and a combined toplit and sidelit pattern. For the gym/multipurpose rooms, there are two toplit daylighting patterns: a roof monitor pattern and a skylight pattern. Recommendations for north- and south-facing versions for each pattern are provided in the Guide. East- and west-facing daylighting systems are not recommended. Recommended patterns are also provided by climate zone.
- Using efficient and state-of-the-art products and techniques to design electric lighting. Site constraints or program requirements may preclude daylighting solutions. Therefore, a non-daylit

path is provided to meet the recommendations in this Guide. These recommendations include lighting systems that use the most current, energy-efficient lamps, ballasts, and integrated controls.

3.4.1.2 HVAC Recommendations

Recommendations were developed based on the availability of daylighting for the school and by the type of HVAC system. The types of HVAC systems in K-12 schools are highly variable across the country. Therefore, recommendations for multiple HVAC types are provided. To verify savings over this range of design options, we modeled low-energy versions of the elementary, middle, and high schools, each with the daylit option and the non-daylit option. For each daylit and non-daylit option, we modeled three HVAC types. The low-energy HVAC system types included a constant volume package rooftop DX system, a package VAV DX system with a central boiler, and a VAV air-cooled chiller and central boiler. These HVAC system types were chosen based on the PC input as to the systems that were the least stringent as well as the most common.

3.4.2 Form and Floor Plate

The low-energy building models had identical conditioned floor area and identical exterior dimensions and orientations as the baseline buildings, except the following components.

3.4.2.1 Overhangs

The Guide recommends overhangs with a projection factor of 0.5 on south-, east-, and west-facing windows in all climate zones. Therefore, both the daylit and non-daylit low-energy models included fixed shading by assuming that the overhang starts 1.5 ft (0.5 m) above the window and extends out from the façade to provide the projection factor of 0.5.

3.4.2.2 Form: No Daylighting

For the non-daylighting option, the low-energy orientation, form, and floor plate are identical to the baseline models. The location and amount of fenestration are also the same between the non-daylit low-energy models and the baseline models. The model rendering of the low-energy non-daylit elementary, middle, and high schools are shown in Figure 3-27, Figure 3-28, and Figure 3-29, respectively.

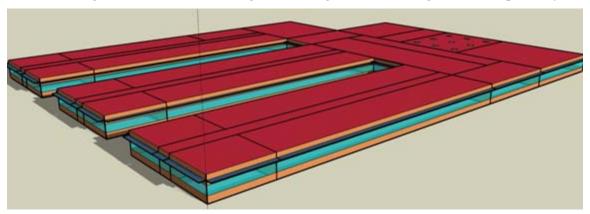


Figure 3-27 Elementary School Low-Energy Model Rendering: No Daylighting

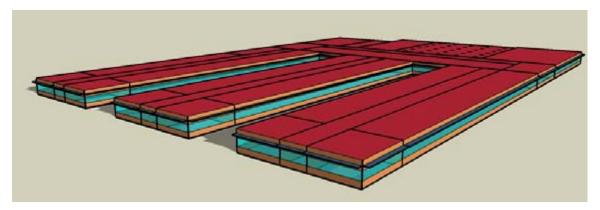


Figure 3-28 Middle School Low-Energy Model Rendering: No Daylighting

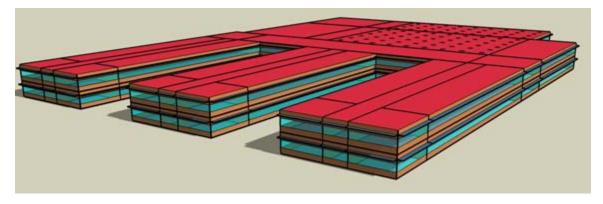


Figure 3-29 High School Low-Energy Model Rendering: No Daylighting

3.4.2.3 Form: Daylighting

For this Guide, four daylighting strategies are presented; three for classrooms and one for gymnasiums. Daylighting the classroom is most critical, since that is where the teachers and the students spend most of their time. In addition, the potential for savings is the greatest in the classrooms. Guidelines are also provided for the gymnasium/multipurpose room because this space is typically used for more hours. For each strategy, there are several options and variations depending on climate and orientation. These daylighting strategies are designed to provide the recommended illuminances for the classrooms and gym over most occupied daytime hours.

These strategies are based on all classroom spaces being oriented so the windows face either north or south. Daylighting can be achieved for other orientations, but the recommendations in the Guide do not apply to those orientations. The four patterns are summarized below:

- *Classrooms with Sidelighting Only.* Two variations of this are provided, one for north-facing and one for south-facing classrooms. South facing classrooms are assumed to have overhangs and light shelves to bounce the daylighting deeper into the space.
- *Classrooms with Toplighting Only.* Two variations are provided for toplighting, one for north-facing roof monitors, and one for south-facing roof monitors. Both are positioned in the center of the space and coupled with light baffles to bounce and filter light.
- *Classrooms with a combination of Sidelighting and Toplighting*. This daylighting pattern combines the south- or north-facing classrooms described in the first bullet with toplighting at the back walls of the classrooms. The toplighting may be provided by either skylights or roof monitors, depending on climate and other design constraints.

• *Gyms with Toplighting*. Two variations of this daylighting pattern are provided, one with roof monitors and one with skylights.

The classroom sidelit only option with the skylights in the gym were included in the low-energy models because the PC felt these daylighting patterns would be the least effective daylighting strategies of those recommended. If we could verify 30% energy savings with the least effective of our recommended daylighting strategies, the PC was confident that the more effective daylighting patterns would also achieve 30% savings.

To model the classroom sidelit option, we used the recommended fenestration area as shown in Table 3-34. These areas assume the fenestration visible transmittance (VLT) is higher than 65%. Daylighting fenestration with lower VLT would result in more fenestration area to provide a similar amount of daylighting. The sidelit daylighting option in the classrooms has view glass below 7 ft (2 m) and daylighting glass above 7 ft (2 m) for north- and south-facing exterior walls. More daylighting glass is recommended for the north classrooms as all of the daylighting, which requires less daylighting glass for similar daylighting penetration. The corner classrooms do not have west-facing glass. Fenestration to wall area ratios of 20% were used in the offices, lobby, corridor, cafeteria, media center, and restrooms. No fenestration is included in the gyms, kitchen, or auditorium. The gym/multipurpose room is daylit with skylights, at 4% skylight area to floor area. These fenestration fractions are based on the PC's best practices and experience designing daylighting systems for K-12 schools. The total fenestration for the daylit elementary, middle, and high school models have the same amount of fenestration as the baseline models (35% fenestration to gross wall area), but the daylit models have more fenestration allocated to the classrooms and less to the non-daylit spaces.

The sidelighting concept is shown in Figure 3-30. The daylit elementary, middle, and high school EnergyPlus model renderings are shown in Figure 3-31 through Figure 3-33.

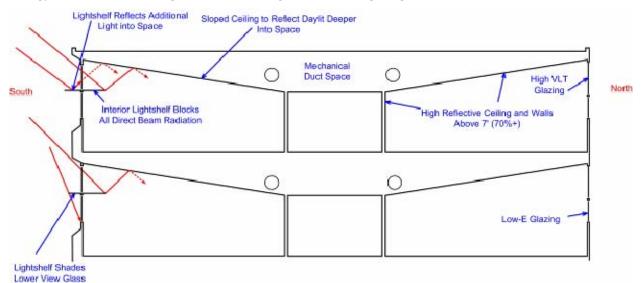


Figure 3-30 Classroom Sidelit Pattern

Daylighting Strategy	Fenestration to Zone Exterior Wall Area Ratio	Gymnasium/Multipurpose Room Skylight to Floor Area Ratio
Classroom south sidelighting	25%	
Classroom south view	25%	
Classroom north sidelighting	38%	
Classroom north view	12%	
Skylights		4%
Gyms, auditorium, kitchen	No vertical fenestration	
All other zones	20%	
Total School	35%	<1%

Table 3-34 Fenestration by Space Type for Daylit Models

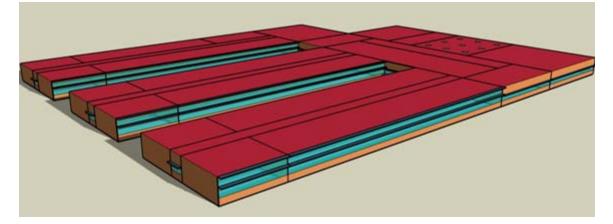


Figure 3-31 Elementary School Low-Energy Model Rendering: Daylit

Figure 3-32 Middle School Low-Energy Model Rendering: Daylit

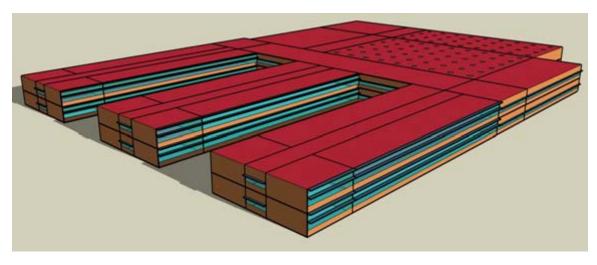


Figure 3-33 High School Low-Energy Model Rendering: Daylit

3.4.3 Envelope

The low-energy K-12 school models had identical conditioned floor areas and identical exterior dimensions and orientations as the baseline buildings, except the following components:

3.4.3.1 Exterior Walls and Roof

To determine optimal envelope insulation levels specific to the K-12 schools, we determined the total life cycle costs for various roof and wall insulations levels. The most cost effective roof and wall insulation levels were then used for the recommendations in the Guide. The PC felt that the SO AEDG (AEDG 2004) envelope recommendations would apply sufficiently to K-12 schools, but that fine tuning of the mass wall insulation and insulation above deck recommendations was needed. The recommendations in the K-12 AEDG are all at least as stringent as the most recent version of ASHRAE 90.1 (ASHRAE 90.1-2007, including addenda AS and AT). Therefore, if the most cost-effective level of insulation was below ASHRAE 90.1-2007, the code minimum was used. All the other envelope recommendations were determined based on the more stringent of the recommendations from the SO AEDG, or ASHRAE 90.1-2007, including ASHRAE 90.1-2004 addenda AS and AT.

We used an internal NREL building energy and cost optimization research tool titled "Opt-E-Plus" to determine the optimal levels of roof and wall insulation for the K-12 AEDG. Opt-E-Plus is an internal NREL program that allows the user to sift through a database of design options and cost parameters, manages the parametric EnergyPlus simulations, and presents the results to determine the optimal combination of energy-efficient options. For our analysis, the optimal level of insulation results in the lowest total life cycle cost (TLCC). The TLCC is the total expected cost of the whole building (capital and energy costs) over the analysis period. The TLCC accounts for inflation of energy and O&M, and therefore, the discount rate is used as a nominal discount rate. The typical output of the optimization is an x-y graph; the independent axis is site energy savings and the dependent axis is TLCC. The TLCC of the reference model to determine the percent change in TLCC.

To calculate the TLCC, the annual cash flow is summed over the analysis period. The annual energy use is assumed to be constant over the whole analysis period, but the energy costs vary based on the inflation rate. The equation to calculate the annual cash flows are shown in Equation 3-2.

$$C_{n} = \left(\sum_{j=0}^{J} (1+i_{d})^{n} (MC_{n} + IC_{n} - SC_{n}) + (1+i_{om})^{n} (FOM_{n} + VOM_{n})\right)$$
$$+ (1+i_{g})^{n} C_{g} + (1+i_{e})^{n} C_{e}$$

Equation 3-2 Calculation of Annual Cash Flows

Where:

 $C_n = \cos t in year n$

J = total number of unique energy efficiency measures

 i_d = inflation rate (default)

i_g = gas cost inflation rate

 i_e = electricity cost inflation rate

 $i_{om} = O\&M \text{ cost inflation rate}$

 MC_n = material cost

 IC_n = installation cost

 $SC_n = salvage cost$

 $FOM_n = fixed O\&M costs$

 VOM_n = variable O&M costs

 C_g = annual cost of gas consumption

 C_e = annual cost of electricity consumption

The TLCC is determined in Equation 3-3.

$$TLCC = \sum_{n=0}^{N} \frac{C_n}{\left(1+d\right)^n}$$

Equation 3-3 Calculation of TLCC

Where:

TLCC = present value of the TLCC

 $C_n = \cos t in year n$

N = analysis period

d = annual discount rate

We used our non-daylit low-energy elementary school as a reference for determining the optimal envelope. This reference model included all the recommendations in the Guide for low LPD for the non-daylit option, the HVAC recommendation for the package rooftop units, and started with the SO AEDG recommendations for the envelope. We then modeled a full range of mass walls and insulation above deck roofs to determine energy savings and TLCC.

To calculate the TLCC of the roof and wall recommendations, we used the opaque wall and roof capital costs used in the ASHRAE 90.1 development construction cost database combined with our default HVAC system costs. The mass walls and roofs considered are shown in Table 3-35 and Table 3-36, along with the material and installation costs.

Insulation above Deck Description	Material Cost	Installation Cost
R-95.0 ci	\$6.35/ft ²	\$2.74/ft ²
R-85.0 ci	\$6.08/ft ²	\$2.62/ft ²
R-75.0 ci	\$5.81/ft ²	\$2.51/ft ²
R-65.0 ci	\$5.55/ft ²	\$2.39/ft ²
R-60.0 ci	\$5.29/ft ²	\$2.28/ft ²
R-55.0 ci	\$5.04/ft ²	\$2.17/ft ²
R-50.0 ci	\$4.77/ft ²	\$2.06/ft ²
R-40.0 ci	\$4.52/ft ²	\$1.95/ft ²
R-30.0 ci	\$3.91/ft ²	\$1.68/ft ²
R-25.0 ci	\$3.67/ft ²	\$1.58/ft ²
R-20.0 ci	\$3.43/ft ²	\$1.48/ft ²
R-15.0 ci	\$3.19/ft ²	\$1.37/ft ²
R-10.0 ci	\$2.95/ft ²	\$1.27/ft ²
R-7.6 ci	\$2.83/ft ²	\$1.22/ft ²
R-5.0 ci	\$2.62/ft ²	\$1.13/ft ²
R-3.8 ci	\$2.55/ft ²	\$1.10/ft ²
NR	\$2.45/ft ²	\$1.06/ft ²

Table 3-35 Roof Insulation Options and Costs

Mass Wall Description	Material Cost	Installation Cost
R-62.5 ci	\$7.98/ft ²	\$3.44/ft ²
R-56.3 ci	\$7.54/ft ²	\$3.25/ft ²
R-50.0 ci	\$7.08/ft ²	\$3.05/ft ²
R-43.8 ci	\$6.65/ft ²	\$2.87/ft ²
R-37.5 ci	\$6.20/ft ²	\$2.67/ft ²
R-31.3 ci	\$5.76/ft ²	\$2.48/ft ²
R-25.0 ci	\$5.32/ft ²	\$2.29/ft ²
R-15.2 ci	\$4.55/ft ²	\$1.96/ft ²
R-13.3 ci	\$4.41/ft ²	\$1.90/ft ²
R-11.4 ci	\$4.27/ft ²	\$1.84/ft ²
R-9.5 ci	\$4.12/ft ²	\$1.78/ft ²
R-7.6 ci	\$4.00/ft ²	\$1.72/ft ²
R-5.7 ci	\$3.84/ft ²	\$1.65/ft ²
NR	\$2.70/ft ²	\$1.16/ft ²

 Table 3-36 Mass Wall Insulation Options and Costs

To account for any HVAC downsizing opportunities that result from increased roof or wall insulation, the absolute cost of the HVAC system was also considered in the building's TLCC. As the HVAC is autosized based on peak loads, there are significant capital cost savings associated with the smaller HVAC systems that can be used as the envelope insulation is increased. The following package rooftop, single-zone system costs were used:

- Units are \$/kW of cooling capacity
- Expected life is 15 years
- Material cost is \$450/kW
- Installation cost is \$47/kW
- Fixed annual O&M is \$4/kW
- One time O&M is \$33/kW
- Salvage cost is \$1/kW

Opt-E-Plus has several economic measures that are used to calculate real building economics. To calculate the building economics, several economic variables need to be set. The basic economics we included in the calculation of TLCC are:

- 8% nominal discount rate
- 2.47% electric and gas escalation rate
- 30-year analysis period
- 5% interest rate
- No income taxes were included (assuming public school districts)

- Local utility rates for each city to determine energy cost savings
- Regional capital cost modifier to convert national averages to regional values. The modifiers are available from the RS Means data sets.

For each climate zone, we determined the roof and wall insulation levels with the lowest TLCC. If the insulation levels with the lowest TLCC were less than ASHRAE 90.1-2007 code requirements, we used the code values. The results and graphs for each climate zone are shown in Appendix F. The lowest TLCC insulation levels are highlighted, and the 90.1-2007, 90.1-1999, and SO AEDG insulation levels are noted for each climate zone. For the roof insulation, R-25 continuous insulation (ci) was the most cost effective in all climate zones, and was recommended level of insulation in the Guide. For the mass wall insulation, ASHRAE 90.1-2007 insulation values were the most cost effective for all climate zones, except for 1 and 2, where slightly more stringent insulation levels were cost effective. The insulation levels of the opaque envelope components are included in the low-energy models.

3.4.3.2 High Albedo Roofs

The K-12 AEDG recommends the use of high albedo roofs with a Solar Reflective Index (SRI) of 0.78 in climate zones 1 through 3. To model the high albedo roofs, we assumed the outer layer of the roof has a thermal absorption of 0.9, a solar reflectivity of 0.7, and a visible absorption of 0.3.

3.4.3.3 Fenestration

The vertical fenestration and skylight U-factors were modeled to meet the minimum requirements for the climate, as shown in the recommendations tables in Section 4. The fenestration and skylight thermal characteristics recommendations were developed based on the more stringent of the SO AEDG recommendations or those in ASHRAE 90.1-2004, Addendum AT (ASHRAE 2004a). See Table 4-1 and Table 4-2 for the low-energy fenestration thermal characteristics.

To meet the SHGC recommendations for vertical fenestration in the K-12 AEDG, we used the SHGC multipliers for permanent projections, as provided in Table 5.5.4.4.1 in ASHRAE 90.1-2004 (ASHRAE 2004a). These multipliers allow for a higher SHGC for vertical fenestration with overhangs. For an overhang with a projection factor greater than 0.5, the recommended SHGC can be increased by 64%. For example, the recommended SHGC in climate zone 1 is 0.25. However, using the SHGC multipliers for an overhang with a projection factor of 0.5, a SHGC of 0.41 is allowed. We used these SHGC multipliers in the low-energy fenestration model inputs, as a higher SHGC makes it easier to meet the high visible transmittance recommendations needed for daylighting. The fenestration in the low-energy models includes SHGCs that are 64% higher than the K-12 AEDG recommendations. For the daylighting fenestration, a visible transmittance of at least 65% is recommended, and is included in the low-energy fenestration inputs.

3.4.4 Lower Lighting Power Density

The K-12 AEDG provides recommendations for LPD for the daylit options and the non-daylit option. The recommended LPDs represent an average LPD for the entire building, and are modeled as such. Individual spaces may have higher power densities if they are offset by lower power densities in other areas. The baseline and K-12 AEDG LPD recommendations are shown in Table 3-37.

The recommended LPD for the non-daylit options in climate zones 1, 2, and 5 through 8 is 1.1 W/ft^2 (11.8 W/m²). In climate zones 3 and 4, the recommended LPD is 0.9 W/ft² (9.7 W/m²). In these zones, the lighting load is a higher percentage of total energy use because of smaller heating and cooling loads. Therefore, more aggressive LPDs that use the most current, energy efficient lamps, ballasts, and integrated controls are recommended to meet the savings target of 30%. The daylit options recommend a slightly higher LPD of 1.2 W/ft² (12.9 W/m²). The higher LPD is recommended for the daylit options because significant lighting savings are expected from the lights dimming or turning off from the daylight rather than an aggressive lighting power reduction. Also, dimming can result in slightly lower efficacies of the lamp and ballast combination.

Climate Zone	Baseline LPD ASHRAE 90.1-1999 (W/ft ²)	Baseline LPD ASHRAE 90.1-2004 (W/ft ²)	No Daylighting Option LPD (W/ft ²)	Daylighting Option LPD (W/ft ²)
1	1.53	1.25	1.10	1.20
2	1.53	1.25	1.10	1.20
3	1.53	1.25	0.90	1.20
4	1.53	1.25	0.90	1.20
5	1.53	1.25	1.10	1.20
6	1.53	1.25	1.10	1.20
7	1.53	1.25	1.10	1.20
8	1.53	1.25	1.10	1.20

Table 3-37 Baseline and Low-Energy LPDs

3.4.4.1 Lighting Controls

The K-12 AEDG daylighting option recommends daylighting controls in the daylit classrooms and gyms. For the low-energy daylit models, we modeled continuous dimming daylighting controls that turn off when daylighting can meet the entire lighting load. Each classroom was modeled with two daylighting reference points, each controlling half of the lights in the classroom. The first daylighting reference point was located 3 ft (0.9 m) off the floor and 10 ft (3 m) from the daylighting glass. The second daylighting reference point was located 3 ft (0.9 m) off the floor and 20 ft (6 m) from the daylighting glass. The lights were controlled based on a daylighting set point of 40 ft-candles (400 lux). In the daylighting with skylights, the daylighting control point was placed in between four skylights to represent the lowest lighting level in the zone. Daylighting controls were not modeled in the non-daylit low-energy option.

For both the daylit and non-daylit low-energy options, manual on, auto off occupancy sensors for all zones are recommended. This was modeled by adjusting the lighting schedule. See Section 3.4.7 for the schedules used in the low-energy models.

3.4.5 HVAC Systems and Components

3.4.5.1 Low-Energy System Types and Sizes

Many types of HVAC systems could be used in K-12 schools; however, the K-12 AEDG assumes that one of the following six system types is to be used.

- Single-zone, packaged rooftop DX units (or split DX systems) with indirect gas-fired heaters, electric resistance heat, or heat pumps. This was used for the baseline models, and is referred to in this report as the PSZ system.
- Water source (or ground source) heat pumps with a dedicated outdoor air ventilation system.
- Unit ventilators with a water chiller and a water boiler or electric resistance heat.
- Fan coils with a water chiller and a water boiler or electric resistance heat and a dedicated OA ventilation system.
- Multiple-zone, VAV packaged DX rooftop units with a hot water coil, indirect gas furnace, or electric resistance in the rooftop unit and a hot water coil or electric resistance in the VAV terminals. This is referred to in this report as the PVAV system.

• Multiple-zone, VAV air handlers with a water chiller and a hot water coil, indirect gas furnace, or electric resistance in the air handler and a hot water coil or electric resistance in the VAV terminals. This is referred to in this report as the VAV system.

The K-12 AEDG does not cover purchased chilled water for cooling, or solar, steam, or purchased steam for heating.

Unique recommendations are included for each HVAC system type in the climate-specific recommendation tables in Section 4. To verify savings over this range of design options, we modeled three HVAC types. The low-energy HVAC system types included a constant volume package rooftop DX system, a package VAV DX system with a central boiler, and a VAV air cooled chiller and central boiler. These system types were chosen based on the PC input as to the systems that were the least stringent as well as the most common.

The three low-energy HVAC systems were modeled with the following assumptions:

- **PSZ:** The similar system as the baseline rooftop units, with single-zone, constant volume classroom rooftops in the range of 5 tons and 2,000 cfm. For larger spaces, multiple 5 ton units would be used.
- **PVAV:** A multiple-zone package DX rooftop with a central hot water boiler and a VAV supply fan and hot water reheat. We assumed multiple PVAV units would be used, each in the range of 50 tons and 20,000 cfm. The zone minimum VAV air flow fraction is set to 20%.
- VAV: A multiple-zone VAV air handler with hot water reheat and an air-cooled chiller and water boiler. Typically, multiple air handlers would be used, but we assumed a single VAV air handler for modeling purposes. The zone minimum VAV air flow fraction is set to 20%.

3.4.5.2 Outside Air

Because conditioning OA for ventilation is such a big contributor to the energy use in a K-12 school building, either exhaust-air energy recovery or demand controlled ventilation is recommended. The K-12 AEDG provides multiple options beyond code minimum for reducing OA loads, including scheduled OA control for all zones, carbon dioxide (CO₂) demand controlled ventilation in all zones, and energy recovery from exhaust air. The PC felt that the use of CO₂ demand controlled ventilation and ERVs was not a practical technology combination and unneeded for 30% savings. Either demand controlled ventilation or ERVs can significantly reduce OA loads. However, when one of these technologies is applied, the energy savings potential for the other is limited. Therefore, for the PSZ, PVAV, and VAV HVAC system types, either CO₂ demand controlled ventilation or an ERV is recommended. For all HVAC types, recommendations are provided for controlling the OA based on a schedule of the expected occupancy.

To model these recommendations, we modeled the CO_2 demand controlled ventilation in the low-energy PSZ system, and ERVs in the low-energy PVAV and VAV systems. The PC felt that the application of CO_2 demand control ventilation matched the PSZ configuration better because CO_2 sensors located in each zone could control OA for each individual zone. Likewise, the application of ERVs matched the single OA intake configuration of the PVAV and VAV systems.

3.4.5.3 Demand Controlled Ventilation

The baseline models required CO_2 demand controlled ventilation in the densely occupied zones, such as the cafeteria, gyms, and auditorium. The recommendation of CO_2 demand controlled ventilation in all the other all zones was modeled in the low-energy PSZ models by matching the outdoor air schedules to the occupancy schedules. The classrooms, lobby, mechanical, corridors, and restrooms in the low-energy models used the occupancy schedules as shown in Table 3-41, Section 3.4.7. The computer classrooms and the community-use high school classroom wing used the extended occupancy schedules to account for after hours use. These occupancy schedules were slightly refined to approximate the actual occupancy in these zones for use in controlling OA in the demand controlled ventilation recommendation. For the PVAV and VAV low-energy models that include the ERV and scheduled OA recommendation, but not the CO_2 demand controlled ventilation recommendation, the OA rates match the occupancy schedules used in the baseline schedules. The occupancy schedules for both CO_2 demand controlled and scheduled OA ventilation for the offices, media center, gym, auditorium, and cafeteria are the same as the baseline occupancy schedules.

A motorized OA damper should be used instead of a gravity damper to prevent unwanted OA from entering during the unoccupied periods when the unit may recirculate air to maintain setback or setup temperatures. The motorized OA damper for all climate zones should be closed during the entire unoccupied period, except when it may open in conjunction with an unoccupied economizer or pre-occupancy purge cycle.

3.4.5.4 Energy Recovery Ventilators

The K-12 AEDG recommends either demand controlled ventilation or exhaust-air ERVs for each HVAC system type. For the PVAV and VAV system types, an ERV is included in the low-energy models, as specified in the Section 4 recommendation tables. OA rates are modeled based on expected occupancy. Additional CO₂ demand controlled ventilation beyond the code minimum requirements is not modeled for the PVAV and VAV. As detailed in the K-12 AEDG, the ERV should have a total effectiveness of 50% for A climate zones (humid), and a sensible effectiveness of 50% for B climate zones (dry). There is no recommendation for energy recovery for C climate zones (marine). This is because the PC felt that ERVs would be the least effective in these temperate climate zones because of the slight temperature differences in exhaust and OA. For the low-energy HVAC systems that were modeled with the ERVs, an additional 0.5 in. w.c. (125 Pa) of static pressure was added to the supply fans to account for the additional pressure drop over the ERV.

3.4.5.5 Economizers

The K-12 AEDG recommends that the non-dedicated OA systems should be able to modulate the OA, return air, and relief air dampers to provide up to 100% of the design supply air quantity as OA for cooling, when OA conditions allow for free cooling. For units larger than 54,000 Btu/h (16 kW), economizers are recommended for all systems that do not have a dedicated OA supply in all climate zones except 1 and 2A. Economizers were not included the ASHRAE 90.1-1999 or ASHRAE 90.1-2004 baseline models. The PSZ, PVAV, and VAV system types are all larger than 54,000 Btu/h (16 kW), and therefore all include economizers in the low-energy models for all climate zones except 1 and 2A. Economizers are controlled with a mix of dry bulb temperature (OA between 36°F and 66°F (2°C and 19°C), and enthalpy limits (OA less than 14 Btu/lb [32,000 J/kg]).

The HVAC systems in the K-12 AEDG with dedicated OA systems (such as the fan-coil and heat pump system) recommend either energy recovery or CO_2 demand controlled ventilation, but do not extend the use of economizers to smaller HVAC systems or to additional climate zones. This was because dedicated OA systems are typically sized to provide OA only, and not to meet the full cooling load with economizers.

3.4.5.6 Higher Efficiency Fans

The K-12 AEDG provides recommendations for constant volume and VAV fan power limitations, as well as recommendations for pressure drop for the ductwork design. To model the recommended improved ductwork design, the supply fan total static pressure drops were recalculated based on a maximum ductwork friction rate no greater than 0.08 in. w.c. per 100 linear ft (20 Pa per of 30 linear m) duct run, as recommended by the K-12 AEDG. As shown in Table 3-38, the low-energy PSZ total static pressure drop was modeled at 2.3 in. w.c. (575 Pa), and the low-energy PVAV and VAV total static pressure drop was modeled at 3.6 in. w.c. (900 Pa). For the climate zones without ERVs, the total static pressure drop was modeled at 3.1 in. w.c. (775 PA).

Component	Baseline PSZ (in. w.c.)	Low-Energy PSZ (in. w.c.)	Low-Energy PVAV and VAV (in. w.c.)
2-in. plated filters ¹	0.30	0.30	0.30
Heating coil/section	0.25	0.25	0.25
Cooling coil	0.60	0.60	0.60
Fan outlet transition	0.10	0.10	0.10
Diffuser	0.10	0.10	0.10
Supply ductwork ²	0.80	0.64	1.20
Return ductwork	0.30	0.30	0.50
Grille	0.05	0.05	0.05
ERV ³	0.00	0.00	0.50
Total static pressure drop ³	2.50	2.34	3.60 (3.10)

 Table 3-38
 Low Energy Fan System Total Pressure Drops

1. Used average difference between clean and dirty filters.

2. Used recommendation of 0.08 in. w.c./100 ft (20 Pa /30 m) friction rate for the low-energy model duct pressure drop combined with typical effective duct runs.

3. ERVs not recommended in marine climate zones (C zones). Total static without ERVs shown in italics.

For the constant volume fans in the low-energy PSZ, the fan limitation was reduced from the baseline of 1.2 hp/1000 cfm to 1.0 hp/1000 cfm (1.9 W/1000 m³/s to 1.6 W/1000 m³/s). The fan power recommendation for the VAV fans in the VAV and PVAV systems is 1.3 hp/1000 cfm (2.1 W/1000 m³/s). Using the method for calculating fan efficiency from the fan power, flow, and total static pressure drop outlined in Section 3.3.4.4, we determined the fan efficiency inputs for both the low-energy PSZ fans and the low-energy PVAV and VAV fans. With the lowered fan power limitation and reduced total static pressure drop recommendations, we modeled a low-energy PSZ fan efficiency of 36% and a low-energy PVAV and VAV fan efficiency of 44%.

3.4.5.7 Higher HVAC System Efficiency

The K-12 AEDG provides recommendations for higher efficiency HVAC systems based on system type and size. For a 5 ton PSZ system, the K-12 AEDG recommends a 13 SEER rooftop unit for all climate zones. We used the method for determining the compressor/condenser COP as shown in Section 3.3.4.5, combined with the reduced fan power limitations and total static pressure to model the COP of the low-energy PSZ compressor/condenser at 4.5. The furnace efficiency for the PSZ was not increased, as this type of unit is typically located outside. Additional heating efficiency recommendations would result in flue gas condensation, which could cause freezing problems.

The K-12 AEDG recommends increased efficiency for the low-energy PVAV system type of 10.6 EER in climate zones 1 to 4, and 10.0 EER in climate zones 5 to 8. For the 50-ton, 20,000 cfm (9.4 m^3 /s) PVAV system, we modeled the compressor/condenser with a COP of 4.7 in climate zones 1 to 4 and a COP of 4.3 in climate zones 5 to 8. An 85% efficient boiler is also recommended and modeled for this system type in climate zones 5 to 8.

The K-12 AEDG recommends an air-cooled chiller efficiency for the low-energy VAV system of 2.93 COP for climate zones 1-4. A COP of 2.8 is recommended in climate zones 5 to 8. The low-energy VAV chillers are modeled with these COPs. An 85% efficient boiler is also recommended and modeled for this system type in climate zones 5 to 8.

The efficiency recommendations in the K-12 AEDG for the boiler, chiller, and package systems for the fan coil, unit ventilator, and heat pump system types are similar, if not more stringent, than the efficiency recommendations for the PSZ, PVAV, and VAV systems.

The HVAC baseline and low-energy modeling inputs are summarized in Table 3-39.

HVAC Input	Baseline PSZ	Low-Energy PSZ	Low-Energy PVAV	Low-Energy VAV		
COP of compressor/ condenser	3.5 COP ASHRAE 90.1- 1999 (SEER 9.7)	4.5 COP (SEER 13)	CZ 1-4: 4.7 COP CZ 5-8: 4.3 COP	CZ 1-4: 2.93 COP CZ 5-8: 2.80 COP		
COP of compressor/ condenser	4.4 COP ASHRAE 90.1- 2004 (SEER 12)	4.5 COP (SEER 13)	CZ 1-4: 4.7 COP CZ 5-8: 4.3 COP	CZ 1-4: 2.93 COP CZ 5-8: 2.80 COP		
Heating efficiency	80%	80%	CZ 1-2: 80% CZ 3-8: 85%	CZ 1-2: 80% CZ 3-8: 85%		
Fan efficiency	33%	36%	44%	44%		
Fan power limitation	1.2 hp/1000 cfm	1 hp/1000 cfm	1.3 hp/1000 cfm	1.3 HP/1000 cfm		
Total fan static pressure	2.5 in. w.c.	2.3 in. w.c.	A and B zones: 3.6 in. w.c. C zones: 3.1 in. w.c.	A and B zones: 3.6 in. w.c. C zones: 3.1 in. w.c.		
Economizers	None	CZ 1, 2A: None CZ 2B, 3-8: Yes	CZ 1, 2A: none CZ 2B, 3-8: yes	CZ 1, 2A: none CZ 2B, 3-8: yes		
ERV	None	None	A zones: 50% total effectiveness B zones: 50% sensible effectiveness C zones: none	A zones: 50% total effectiveness B zones: 50% sensible effectiveness C zones: none		
Outdoor air control	HVAC operational schedule, CO ₂ demand controlled in cafeteria, gym, auditorium	CO ₂ demand controlled in all zones	Expected occupancy schedule, CO ₂ demand controlled in cafeteria, gym, auditorium	Expected occupancy schedule, CO ₂ demand controlled in cafeteria, gym, auditorium		

Table 3-39	Low-Energy	HVAC	Models	Summary
------------	------------	------	--------	---------

3.4.6 Service Water Heating

The K-12 AEDG provides recommendations for gas storage and electric instantaneous and storage service water heaters. The recommendations were based on the SO AEDG and SR AEDG service water heating recommendations. For our analysis to verify 30% savings, the low-energy models included 90% efficient gas storage service water heaters.

3.4.7 Schedules

The schedules used in the low-energy models were the same as the baseline schedules, except when the schedules were modified to model a specific recommendation. The following schedules were modified for use in the low-energy models.

Each zone in the low-energy models used the lighting schedule as shown in Table 3-40. The K-12 AEDG recommends manual on, automatic off occupancy sensor control on all lights. To model the expected reduction in lighting energy use caused by these occupancy sensors, the daytime lighting energy use was reduced by 13%, as recommended in Appendix G of ASHRAE 90.1-2004 (ASHRAE 2004a). This was modeled by reducing the daytime lighting energy use by 13%, as reflected in the schedules in Table 3-40.

	•			
Hour	Weekday through 6/30	Weekday through 9/01	Weekday through 12/31	Weekends, Holidays
1	0.18	0.18	0.18	0.18
2	0.18	0.18	0.18	0.18
3	0.18	0.18	0.18	0.18
4	0.18	0.18	0.18	0.18
5	0.18	0.18	0.18	0.18
6	0.18	0.18	0.18	0.18
7	0.18	0.18	0.18	0.18
8	0.77	0.18	0.77	0.18
9	0.77	0.43	0.77	0.18
10	0.77	0.43	0.77	0.18
11	0.77	0.43	0.77	0.18
12	0.77	0.43	0.77	0.18
13	0.77	0.43	0.77	0.18
14	0.77	0.43	0.77	0.18
15	0.77	0.43	0.77	0.18
16	0.77	0.43	0.77	0.18
17	0.77	0.43	0.77	0.18
18	0.77	0.43	0.77	0.18
19	0.77	0.43	0.77	0.18
20	0.77	0.43	0.77	0.18
21	0.77	0.18	0.77	0.18
22	0.18	0.18	0.18	0.18
23	0.18	0.18	0.18	0.18
24	0.18	0.18	0.18	0.18

Table 3-40 Building Lighting Schedule with Occupancy Sensors

The classrooms, lobby, mechanical, corridors, and restrooms in the low-energy models used the occupancy schedules, based on typical school schedules, as shown in Table 3-41. The computer classrooms and the community-use high school classroom wing used the extended occupancy schedules to account for after hours use. These schedules were slightly refined to approximate the actual occupancy in these zones for use in controlling OA in the demand controlled ventilation recommendation.

Hour	Weekday through 6/30	Weekday through 6/30 Extended	Weekday through 9/01	Weekday through 9/01 Extended	Weekday through 12/31	Weekday through 12/31 Extended	Weekends, Holidays
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0.80	0.80	0.05	0.15	0.80	0.80	0
10	0.80	0.80	0.05	0.15	0.80	0.80	0
11	0.80	0.80	0.05	0.15	0.80	0.80	0
12	0.30	0.30	0.05	0.15	0.30	0.30	0
13	0.75	0.75	0.05	0.15	0.75	0.75	0
14	0.75	0.75	0.05	0.15	0.75	0.75	0
15	0.75	0.75	0.05	0.15	0.75	0.75	0
16	0.75	0.75	0.05	0.15	0.75	0.75	0
17	0.05	0.15	0.05	0.15	0.05	0.15	0
18	0.05	0.15	0.05	0.15	0.05	0.15	0
19	0.05	0.75	0.05	0.15	0.05	0.75	0
20	0.05	0.75	0.05	0.15	0.05	0.75	0
21	0.05	0.75	0.05	0.15	0.05	0.75	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0

Table 3-41 General and Extended Occupancy Schedules for Demand Controlled Ventilation

4. Evaluation Results

This section contains the recommendations for 30% savings approved by the PC for the K-12 AEDG. In addition, the recommendations for 30% savings over ASHRAE 90.1-2004 are discussed. The energy savings results that are achieved as a result of applying these recommendations are presented. Figures of the end use comparisons are provided; the end use data are presented in tabular format in Appendix G and Appendix H. This section concludes with a scoping analysis for 50% energy savings.

The recommendations are applicable for all K-12 schools within the scope of the Guide as a means of demonstrating the 30% energy savings. The Guide recognizes that there are other ways of achieving the 30% energy savings, and offers these recommendations as "some *ways, but not the only way*" of meeting the energy savings target. When a recommendation contains the designation "Comply with Standard 90.1," the Guide is providing no recommendation for this component or system. In these cases, the user must meet the more stringent of either the applicable version of Standard 90.1 or the local code requirements. When a recommendation contains the designation "System type not recommended," the Guide is recommending that this specific system type is not be used for a given climate zone.

4.1 Recommendation Tables for 30% Savings

This section provides the recommendation tables that are presented in the K-12 AEDG as well as the recommendations for 30% savings over ASHRAE 90.1-2004. The opaque envelope recommendations are presented for different climate zones by roof type, wall type, floor type, slab type, and door type. Recommendations for the thermal characteristics of the vertical fenestration and interior reflectances are provided. For this Guide, four daylighting strategies are presented: three for classrooms and one for gymnasiums. Daylighting the classroom is most critical, since that is where the teachers and the students spend most of their time. In addition, the potential for savings is the greatest in the classrooms. Guidelines are also provided for the gymnasium/multipurpose room because this space is typically used for more hours. For each strategy, there are several options and variations depending on climate and orientation. These daylighting strategies are designed to provide the recommended illuminances for the classrooms and gym over most occupied daytime hours.

Site constraints or program requirements may preclude daylighting solutions. Therefore, a non-daylit path is provided to meet the energy savings requirements of the K-12 AEDG. The non-daylit recommendations provided in this Guide include lighting systems that use the most current energy-efficient lamps, ballasts, and integrated controls.

Many types of HVAC systems could be used in K-12 schools, but this Guide provides recommendations for one of the following six system types:

- Single-zone, packaged DX units (or split DX systems) with indirect gas-fired heaters, electric resistance heat, or heat pump
- Water source (or ground source) heat pumps with a dedicated OA ventilation system
- Unit ventilators with a water chiller and a water boiler or electric resistance heat
- Fan-coils with a water chiller and a water boiler or electric resistance heat and a dedicated OA ventilation system
- Multiple-zone, VAV packaged DX rooftop units with a hot water coil, indirect gas furnace, or electric resistance in the rooftop unit and a hot water coil or electric resistance in the VAV terminals.
- Multiple-zone, VAV air handlers with a water chiller and a hot water coil, indirect gas furnace, or electric resistance in the air handler and a hot water coil or electric resistance in the VAV terminals.

Unique recommendations for cooling, heating, and fan efficiencies are included for each HVAC system type in the climate-specific recommendations. In addition, either demand controlled ventilation or ERVs are recommended, along with economizer use recommendations for each HVAC system type. Some

system types, however, are not recommended for certain climate zones, because of the impact of humidity on energy use.

Service water heating efficiency recommendations are provided based on electric or gas water heaters, as well as instantaneous or gas storage units.

The recommendation tables for the K-12 AEDG are shown in Table 4-1 through Table 4-4.

The recommendations for 30% energy savings over ASHRAE 90.1-2004 are almost the same as the K-12 AEDG recommendations. The only difference in the recommendations for 30% savings over ASHRAE 90.1-2004 is there are no non-daylit option recommendations. The non-daylit option presented in the K-12 AEDG recommendations is not available for 30% savings over ASHRAE 90.1-2004, as 30% savings were not possible for all climate zones for the non-daylit recommendations.

Interfor Finishes Interfor Your Surface average retrectance on wails below 7: South Facing Root Montons: 12:: South Facing Root Montons: 5: South Facing Root	ltem	Component	Climate Zone 1 Recommendations	Climate Zone 2 Recommendations	Climate Zone 3 Recommendations	Climate Zone 4 Recommendations
Nome Result Busing Result Re		Insulation Entirely Above Deck	R-25 ci	R-25 ci	R-25 ci	R-25 ci
Mail Biologing FX ///						
Base fib > 7 a G mm R > 7 a G mm R > 7 a G mm R > 8 a G mm Wait Base fib > 7 a G mm R > 7 a G mm R > 7 a G mm R > 8 a G mm Base fib > 7 a G mm R > 7 a G mm Prove Max M						
Bits Sector Scing R-13 K-13 R-13 K-13 R-13 K-13 R-13 K-13		SRI				
Wate Res Priority Priory Priory Priority		Mass (HC > 7 Btu/ft ²)	R-5.7 ci	R-7.6 ci	R-7.6 ci	R-9.5 ci
Intel Building 1:-10			R-13		R-13 + R-3.8 ci	R-13 + R-7.5 ci
Betwore Unset Walk Comply with Standard 90.1* Comply						
Mass Red Red <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Find Bits Framed and Ohran Fi.19 Fi.19 Fi.19 Fi.10 Fi.20 Stabe Arrand and Ohran A.10 A.10 A.20 All Address of All Addres of All Address of All Address		Below Grade Walls	Comply with Standard 90.1*	Comply with Standard 90.1*	$\begin{array}{c} -25 \text{ ci} \\ -38 \\ -13.0 + R-13.0 \\ .78 \\ .76 \text{ ci} \\ .13 + R-3.8 \text{ ci} \\ .13 + R-3.8 \text{ ci} \\ .13 \\ .13 + R-3.8 \text{ ci} \\ .13 \\ .13 \\ .14 \\ .14 \\ .15 \\ .15 \\ .16 \\ .15 \\ .16 \\ .$	Comply with Standard 90.1*
Wood Framed and Other R-10 R-10 R-30 R-30 Suba Mestadd Comply with Standard 00 11 R-30		Mass	R-4.2 ci	R-6.3 ci	R-8.3 ci	R-8.3 ci
Statu Universe Comply with Standard 9.11	Floors	Steel Framed	R-19			R-30
State Heated Ry 75 for 12 m. Ry 75 for 12 m. <thr 12="" 75="" for="" m.<="" th=""> <thr 12="" 75="" for="" m.<="" th=""> <thr< td=""><td></td><td>Wood Framed and Other</td><td>R-19</td><td>R-19</td><td>R-25 ci R-38 R-38 R-38 R-13.0 + R-13.0 I 0.78 R R-7.6 ci R R-13 + R-3.8 ci R R-13 R R-14 R R-3.0 I R-10 R R-10 R R-10 for 24 in. U U-0.45 S SHGC-0.25 I Projection Factor> 0.5 70% ton ceilings and walls above 7', 50%+ on walls below 7' Toplit South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15% Sidelit South Facing Sidelit: 6%-8%, Toplit: 2%-3% South Facing Roof Monitors: 7% to 10% C Zones Onth Stracing Roof Monitors: 7% to 10% C Zones</td><td>R-30</td></thr<></thr></thr>		Wood Framed and Other	R-19	R-19	R-25 ci R-38 R-38 R-38 R-13.0 + R-13.0 I 0.78 R R-7.6 ci R R-13 + R-3.8 ci R R-13 R R-14 R R-3.0 I R-10 R R-10 R R-10 for 24 in. U U-0.45 S SHGC-0.25 I Projection Factor> 0.5 70% ton ceilings and walls above 7', 50%+ on walls below 7' Toplit South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15% Sidelit South Facing Sidelit: 6%-8%, Toplit: 2%-3% South Facing Roof Monitors: 7% to 10% C Zones Onth Stracing Roof Monitors: 7% to 10% C Zones	R-30
Tested op First of V (X Proj BY (X) Proj BY (X) <td>Olaha</td> <td>Unheated</td> <td>Comply with Standard 90.1*</td> <td>Comply with Standard 90.1*</td> <td>R-38 R-33 R-13.0 + R-13.0 R-13 0.78 Con R-7.6 ci R-9 R-13 + R-3.8 ci R-1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-10 R-3.3 R-30 R-30 R-31 R-30 R-10 R-3.3 Comply with Standard 90.1* Con R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3 R-30 R-30 R-30 R-30 R-10 R-3 Sold R-30 R-10 R-3 R-30 R-30 R-30</td> <td>Comply with Standard 90.1*</td>	Olaha	Unheated	Comply with Standard 90.1*	Comply with Standard 90.1*	R-38 R-33 R-13.0 + R-13.0 R-13 0.78 Con R-7.6 ci R-9 R-13 + R-3.8 ci R-1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-13 R-1.1 R-10 R-3.3 R-30 R-30 R-31 R-30 R-10 R-3.3 Comply with Standard 90.1* Con R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3.3 R-30 R-30 R-10 R-3 R-30 R-30 R-30 R-30 R-10 R-3 Sold R-30 R-10 R-3 R-30 R-30 R-30	Comply with Standard 90.1*
Door Non-Sanging 0.1.480 0.1.480 0.1.480 0.1.480 0.1.480 Vertical Thermal transmittance. all types and orientations 0.0.55 0.0.42 0.0.42 0.0.42 Prestration Exterior Sun Editor Sun Control (S, E, W onit) Firstenion Institutions 0.0.42 0.0.42 0.0.42 0.0.42 Interior Finishes Firstenion Institutions 0.0.42 0.0.42 0.0.42 0.0.42 0.0.42 Interior Finishes Firstenion Institutions on Unitations 0.0.42 0.0.42 0.0.42 0.0.42 Interior Finishes Firstenion Institution Control (S, E, W onit) Firstenion Instenion Control (S, E, W onit) Firsten	Slabs	Heated	R-7.5 for 12 in.	R-7.5 for 12 in.	R-10 for 24 in.	R-15 for 24 in.
Dust Non-Swinging U-1480 U-1	_	Swinging	U-0.700	U-0.700	U-0.700	U-0.700
Intel Function to Gross Wall Yeas And roots 35% Max 35% Max 35% Max 35% Max Fenestiant Star hast gain coefficient (SHGC) all types and orientations 0.405 0.404 0.404 Interior Finites Interior room surface average reflectance 70% on celling and walls above 7, 50% 70% on celling a			U-1.450	U-1.450	U-1.450	U50
Vertex Thermal transmittance all types and orientations U.0.56 U.0.45 U.0.45 U.0.45 Forestrints State has gain confine (ISBOC) all types and orientations StiCC 0.25 StiCC 0.25 StiCC 0.25 StiCC 0.25 StiCC 0.25 Projection Factor 0.5 Projection Fac			35% Max	35% Max	35% Max	35% Max
Fensterior Solar heat gain coefficient (BHCC): all types and orientations SHCC 0.25 SHCC 0.25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Exteror Sun Control (S, E, W orly) Projection Pactor 0.5 Projection Pactor 0.6 Projection Pactor 0.5 Projection Pactor 0.5 Interior Finishes Interior room surface average reflectance 70% + on cellings and wells above 7.50%						
Interior Finishes Interior room surface average reflectance 70% + on ceilings and valles above 7, 50% - 70% + on ceilings and valles above 7, 50% + 70% + on ceilings and valles above 7,						
http:// print.ce.wires/interview: method room sufface average remeetance on walls below? in one		Exterior Sun Control (S, E, W only)				
Part Pacing Real Monitors 29, 11% Super Pacing Real Monitors 29, 11% North Facing Real Monitors 20, 12% North Facing R	nterior Finishes	Interior room surface average reflectance				70%+ on ceilings and walls above 7', 50%+
key South Facing Roof Monitors: 19:-11% South Facing Roof Monitors: 12%-15% North Facing Roof Monitors: 12%-15%		•				
Part North Facing Roof Monitors: 12%-15% North Facing Roof Monitors: 12%-15% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Figure 1 Scient -						
Alg Classroom Daylighting (Daylighting Fenestration to Floor Area Ratio) South Facing: 15% - 20% Noth Facing 15% Noth 25% Noth 25% Noth Facing 15%						
North Facing: 15% - 20% North Facing:		Classroom Daylighting (Daylighting Fenestration to Floor Area Ratio)				
Image: control Lighting Combined Topit and Sidelit. South Facing Sidelit 6%-8%, Topit 2%-5%, South Facing Sidelit 6%-8%, Topit 2%-5%, South Facing Sidelit 6%-8%, Topit 2%-5%, South Facing Rod Monitors. South Facing Sidelit 6%-8%, Topit 2%-5%, South Facing Rod Monitors. South Facing Sidelit 6%-8%, Topit 2%-5%, South Facing Rod Monitors. South						
south Facing Sidellit 5%+5%, Toplit 2%+5% South Facing Roof Monitors: 5% + 6%, North Facing Sidellit 5%+5%, Toplit 2%+5% South Facing Roof Monitors: 5% + 6%, North Facing Sidellit 5%+5%, Toplit 2%+5% South Facing Roof Monitors: 5% + 6%, North Facing Sidellit 5%+5%, Toplit 2%+5% South Facing Roof Monitors: 5% + 6%, North Facing Sidellit 5%+5%, Toplit 2%+5% South Facing Roof Monitors: 5% + 6%, North F			North Facing: 15% - 20%			North Facing: 15% - 20%
memory lighting Option Option memory lighting (Daylighting Fenestration to Floor Area Ratio) North Facing Gold Monitors: 5% + 6% South Facing Roof Monitors: 5% + 6% North Facing Roof Monito			Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-
Interior Lighting Option Option Gym Topisting (Daylighting (Daylighting Renestration to Floor Area Ratio) South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 7% to 10% South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 7% to 10% South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 7% to 10% South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 7% to 10% South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 7% to 10% South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors: 5% - 8% Lighting Power Density (LPD) 12 W/l ² maximum 13 W/l ² maximum 14 W/l ² maximum 14 W/l ² maximum 14 W/l ² maximum 14 W/l ² maximum 15 W/l ² W/l				South Facing Sidelit: 6%-8%, Toplit: 2%-3%	South Facing Sidelit: 6%-8%, Toplit: 2%-3%	South Facing Sidelit: 6%-8%, Toplit: 2%-3%
Baylighted Option Symt Facing Roof Monitors 7% to 10% North Facing Roof Monitors 7			North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5
Gym Cym Description North Facing Roof Monitors 7% to 10% North Facing Roof Monitors 7% to 10% Package Coll Lighting Power Density (LPD) 1.2 W/t ² maximum 1.2 W/t ² maximum <td>nterior Lighting-</td> <td></td> <td>Cauth Fasing Deaf Manitana, 5% 0%</td> <td>Couth Facing Deef Manitana, 5% 0%</td> <td>South Facing Roof Monitors: 5% - 8% North</td> <td>South Facing Roof Monitors: 5% - 8% Nor</td>	nterior Lighting-		Cauth Fasing Deaf Manitana, 5% 0%	Couth Facing Deef Manitana, 5% 0%	South Facing Roof Monitors: 5% - 8% North	South Facing Roof Monitors: 5% - 8% Nor
Option Lother Section 2010 Noth Pacify Root Motinities 7% to 10% Noth Pacify Root Motinities 7% to 10% Only, Skylights: 29.4 % Zones Only, Skylights, Zones Manual on, Auto-off all Zones Manual on, Au	Daylighted	Gym Toplighting (Daylighting Fenestration to Floor Area Ratio)			Facing Roof Monitors 7% to 10% C Zones	Facing Roof Monitors 7% to 10% C
Light Source system efficacy (linear fluorescent and HID) 75 mean lumens/ watt minimum 50 me			North Facing Roof Monitors 7% to 10%	North Facing Roof Monitors 7% to 10%		Zones Only: Skylights: 3% -4%
Light Source system efficacy (linear fluorescent and HID) 75 mean lumens/ watt minimum 50 me	-	Lighting Power Density (LPD)	1.2 W/ft ² maximum	1.2 W/ft ² maximum	1.2 W/ft ² maximum	1.2 W/ft ² maximum
Light source system efficacy (all other sources) 50 mean lumens/watt minimum 50 mean lumens/watt m						
Lighting Controls - general Manual on, Auto-off all zones Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim all fixtures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim xitures within 15 ft of sidelighting edge, and within 10 ft of bolighting edge Dim fixtures within 15 ft of sidelighting edge Dim fixtures within 15 ft of sidelighting edge Manual on, Auto-off all zones Manual on, Auto-o						50 mean lumens/watt minimum
Dimming Controls Daylight Harvesting Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge, and within 10 ft of sidelighting edge. Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of sidelighting edge. Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge. Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim all fixtures within 15 ft of sidelighting edge Dim fixtures within 15 ft of sidelighting edge Dim fixtures within 15 ft of sidelighting edge Dim fixtures within 15 ft of sidelighting edge						
Dimming Controls Daylight Harvesting other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge other fixtures within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge		Lighting Controls - general	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones
Dimming Controls Daylight Harvesting other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge other fixtures within 15 ft of sidelighting edge other fixtures within 10 ft of toplighting edge other fixtures within 15 ft of sidelighting edge other fixtures within 15 ft of sideligh			Dim all fixtures in classrooms and gym, and	Dim all fixtures in classrooms and gym, and	Dim all fixtures in classrooms and ovm. and	Dim all fixtures in classrooms and gym, and
Image: system officac edge, and within 10 ft of toplighting edge and within 10 ft of to		Dimming Controls Daylight Harvesting				other fixtures within 15 ft of sidelighting
Lighting Power Density (LPD) 1.1 W/ft ² maximum 1.1 W/ft ² maximum 0.9 W/ft ² maximum 0.9 W/ft ² maximum Interior Lighting Light Source system efficac (linear fluorescent) 85 mean lumens/watt minimum 80 mean lumens/watt minimum		5				edge, and within 10 ft of toplighting edge
Interior Lighting Light Source system efficac (linear fluorescent) 85 mean lumens/watt minimum 85 mean lumens/watt mininum 85 mean lumens/watt minimu						
Non- Daylighted Option Light source system efficacy (all other sources) 50 mean lumens/watt minimum 50 mean lumens/watt minimum 50 mean lumens/watt minimum 50 mean lumens/watt minimum Dyighted Option Light source system efficacy (all other sources) Manual on, Auto-off all zones Manual on, Auto-off a						
Daylighted Option Lighting Controls - general Manual on, Auto-off all zones Dim fixtures within 15 ft of sidelighting edge, and within 10 ft ot polighting edge, and within 10 ft ot polighting edge Dim fixtures within 15 ft of sidelighting edge <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Option Dimming Controls Daylight Harvesting Dim fixtures within 15 ft of sidelighting edge and within 10 ft of toplighting edge and within						
Dimming Controls Daylight Harvesting and within 10 ft of toplighting edge Air Conditioner >=65 kBtu/h 113 EER 113 EER 114 EER 114 EER 114 EER 116 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/32.2 COP 10.1 EER/11.0 IPLV/3.1 COP		Lighting Controls - general				
Packaged DX Air Conditioner < 65 kBtu/h 13 SER 13 SE	Option	Dimming Controls Daylight Harvesting				Dim fixtures within 15 ft of sidelighting edge
Air Conditioner >=65 and <135 kBtu/h 11.3 EER 11.3 EER 11.3 EER 11.3 EER Air Conditioner >=135 and <240 kBtu/h						and within 10 ft of toplighting edge
Air Conditioner >=135 and <240 kBtu/h 11 EER 11 EER 11 EER 11 EER Air Conditioner >=240 kBtu/h 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV Heat Pump < 65 kBtu/h		Air Conditioner < 65 kBtu/h				
Air Conditioner >=240 kBtu/h 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV 10.6 EER/11.2 IPLV Packaged DR Rooftops (or DX Split System) Air Conditioner >=240 kBtu/h 10.0 EER/1.7 IPSF 13.0 SEER/7.7 IPSF						
Packaged DX Rooftops (or DX Split Systems) Heat Pump < 65 kBtu/h 13.0 SEER/7.7 HPSF 13.0 SEER/7.7 HPSF 13.0 SEER/7.7 HPSF No E = 000 See (Not point of the standard of the stan						
Packaged DX Rooftops (or DX Spite Heat Pump >=65 and <135 kBtu/h 10.6 EER/3.2 COP 10.6 EER/3.2 COP 10.6 EER/3.2 COP Systems Heat Pump >=135 kBtu/h 10.1 EER/11.5 IPLV/3.1 COP 10.1 EER/11.0 IPLV/3.1 COP 10.1 EER/11.0 IPLV/3.1 COP Systems Gas Furnace <225 kBtu/h		Air Conditioner >=240 kBtu/h	10.6 EER/11.2 IPLV	10.6 EER/11.2 IPLV	10.6 EER/11.2 IPLV	10.6 EER/11.2 IPLV
Rooftops (or DX split System) Heat Pump >=135 kBtu/h 10.5 EER/3.2 COP 10.5 EER/3.2 COP <t< td=""><td>Dealers 1 DY</td><td></td><td></td><td></td><td>13.0 SEER/7.7 HPSF</td><td></td></t<>	Dealers 1 DY				13.0 SEER/7.7 HPSF	
Rootops Heat Pump >=135 kBtu/h 10.1 EER/11.5 IPLV/3.1 COP 10.1 EER/11.5 IPLV/3.1 COP 10.1 EER/11.0 IPLV/3.1 COP 10.1 EER/11.0 IPLV/3.1 COP DX Split Systems Sea Furnace <225 kBtu/h	•	Heat Pump >=65 and <135 kBtu/h				
DX Split Systems) Gas Furnace <225 kBtu/h 80% AFUE or E ₁ 80% AFUE or E ₁ 80% AFUE or E ₁ Gas Furnace >225 kBtu/h 80% E _c Economizer Comply with Standard 90.1* Comply with Standard 90.1* >54 kBtu/h >54 kBtu/h						
Systems) Gas Furnace >= 225 kBtu/h 80% E _c 80% E _c 80% E _c 80% E _c Comply with Standard 90.1* Comply with Standard 90.1* Comply with Standard 90.1* >54 kBtu/h >54 kBtu/h						
Economizer Comply with Standard 90.1* Comply with Standard 90.1* >54 kBtu/h >54 kBtu/h	Svetome)		l l	-	l.	
			0	5	0	
		Ventilation				Energy recovery or Demand control
		Fans				constant volume: 1 hp/1000 cfm
variable volume: 1.3 hp/1000 cfm			variable volume: 1.3 hp/1000 cfm	variable volume: 1.3 hp/1000 cfm	variable volume: 1.3 hp/1000 cfm	variable volume: 1.3 hp/1000 cfm

Table 4-2 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 1-4 (Cont.)

Recommendatior
6F; Heating: 4.2 COP
77F and 17 EER at P at 32F and 4.0 CO
7F and 16 EER at 59 32F and 3.5 COP at
d 90.1*
ergy recovery or
d 90.1*
emand control
d 90.1*
d 90.1*
ergy recovery or
emand control
d 90.1*
emand control
blume
_

Table 4-3 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 5-8

ltem	Component	Climate Zone 5 Recommendations	Climate Zone 6 Recommendations	Climate Zone 7 Recommendations	Climate Zone 8 Recommendations
	Insulation Entirely Above Deck	R-25 ci	R-25 ci	R-25 ci	R-25 ci
Roofs	Attic and Other	R-38	R-38		R-60
	Metal Building	R-13.0 + R-19.0	R-13.0 + R-19.0		R-19.0 + R-19.0
	SRI	Comply with Standard 90.1*	Comply with Standard 90.1*		Comply with Standard 90.1*
	Mass (HC > 7 Btu/ft ²)	R-11.4 ci	R-13.3 ci		R-15.2 ci
	Steel Framed	R-13 + R-7.5 ci	R-13 + R-7.5 ci		R-13 + R-21.6 ci
Walls	Wood Framed and Other	R-13 + R-3.8 ci	R-13 + R-7.5 ci		R-13 + R-10 ci
	Metal Building	R-13 + R-13	R-13 + R-13		R-13 + R-16
	Below Grade Walls	R-7.5 ci	R-7.5 ci		R-15 ci
-	Mass	R-10.4 ci	R-13.3 ci	R-25 ci F R-60 F R-60 F Comply with Standard 90.1* C Comply with Standard 90.1* C R-15.2 ci F R-13 + R-7.5 ci F R-15 co F R-15 for full slab F U-0.50 U U Watth Scondonitors:	R-16.7 ci
Floors	Steel Framed	R-30	R-30		R-38
	Wood Framed and Other	R-30	R-30		R-30
Slabs	Unheated	Comply with Standard 90.1*	R-10 for 24 in. R-15 for 24 in.		R-20 for 24 in. R-15 for full slab
	Heated	R-15 for 24 in.	U-0.700		U-0.50
Doors	Swinging	U-0.700			U-0.50 U-0.50
	Non-Swinging	U50	U50		
	Total Fenestration to Gross Wall Area Ratio	35% Max	35% Max		35% Max
Vertical	Thermal transmittance- all types and orientations	U-0.42	U-0.42		U-0.33
Fenestration	Solar heat gain coefficient (SHGC)- all types and orientations	SHGC-0.40	SHGC-0.40		SHGC-0.45
	Exterior Sun Control (S, E, W only)	Projection Factor> 0.5	Projection Factor> 0.5		Projection Factor> 0.5
Interior Finishes	Interior room surface average reflectance	70%+ on ceilings and walls above 7', 50%+ on walls below 7'	70%+ on ceilings and walls above 7', 50%+ on walls below 7'		70%+ on ceilings and walls above 7', 50%+ on walls below 7'
		Toplit -	Toplit -		Toplit -
		South Facing Roof Monitors: 8%-11%	South Facing Roof Monitors: 8%-11%		South Facing Roof Monitors: 8%-11%
		North Facing Roof Monitors: 12%-15%	North Facing Roof Monitors: 12%-15%		North Facing Roof Monitors: 12%-15%
		Sidelit-	Sidelit-		Sidelit-
	Classroom Daylighting (Daylighting Fenestration to Floor Area Ratio)	South Facing: 8%-11%	South Facing: 8%-11%		South Facing: 8%-11%
		North Facing: 15% - 20%	North Facing: 15% - 20%		North Facing: 15% - 20%
		Combined Toplit and Sidelit-	Combined Toplit and Sidelit-		Combined Toplit and Sidelit-
		South Facing Sidelit: 6%-8%, Toplit: 2%-3% North Facing Sidelit: 9%-13%, Toplit: 3%-5%	South Facing Sidelit: 6%-8%, Toplit: 2%-3% North Facing Sidelit: 9%-13%, Toplit: 3%-5%		South Facing Sidelit: 6%-8%, Toplit: 2%-3% North Facing Sidelit: 9%-13%, Toplit: 3%-5%
Interior Lighting Daylighted Option	Gym Toplighting (Daylighting Fenestration to Floor Area Ratio)	South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors 7% to 10%	South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors 7% to 10%		South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors 7% to 10%
•	Lighting Power Density (LPD)	1.2 W/ft ² maximum	1.2 W/ft ² maximum	1.2 W/ft ² maximum	1.2 W/ft ² maximum
	Light Source system efficacy (linear fluorescent and HID)	75 mean lumens/ watt minimum	75 mean lumens/ watt minimum		75 mean lumens/ watt minimum
	Light source system efficacy (all other sources)	50 mean lumens/watt minimum	50 mean lumens/watt minimum		50 mean lumens/watt minimum
	Lighting Controls - general	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones
	Dimming Controls Daylight Harvesting	Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge	Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge	other fixtures within 15 ft of sidelighting	Dim all fixtures in classrooms and gym, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge
	Lighting Power Density (LPD)	1.1 W/ft ² maximum	1.1 W/ft ² maximum	1.1 W/ft ² maximum	1.1 W/ft ² maximum
Interior Lighting	Light Source system efficac (linear fluorescent)	85 mean lumens/watt minimum	85 mean lumens/watt minimum		85 mean lumens/watt minimum
- Non-	Light source system efficacy (all other sources)	50 mean lumens/watt minimum	50 mean lumens/watt minimum		50 mean lumens/watt minimum
Daylighted	Lighting Controls - general	Manual on, Auto-off all zones	Manual on, Auto-off all zones		Manual on, Auto-off all zones
Ontion	Dimming Controls Daylight Harvesting	Dim fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge	Dim fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge	Dim fixtures within 15 ft of sidelighting edge,	Dim fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge
	Air Conditioner < 65 kBtu/h	13 SEER	13 SEER		13 SEER
	Air Conditioner >=65 and <135 kBtu/h	11.0 EER	Comply with Standard 90.1*		Comply with Standard 90.1*
	Air Conditioner >=135 and <240 kBtu/h	10.8 EER	Comply with Standard 90.1*		Comply with Standard 90.1*
	Air Conditioner >=240 kBtu/h	10.0 EER/10.4 IPLV	Comply with Standard 90.1*		Comply with Standard 90.1*
Decksond DY	Heat Pump < 65 kBtu/h	13.0 SEER/7.7 HPSF	13.0 SEER/7.7 HPSF		13.0 SEER/7.7 HPSF
Packaged DX	Heat Pump >=65 and <135 kBtu/h	10.6 EER/3.2 COP	Comply with Standard 90.1*		Comply with Standard 90.1*
	Heat Pump >=135 kBtu/h	10.1 EER/11.0 IPLV/3.1 COP	Comply with Standard 90.1*		Comply with Standard 90.1*
Rooftops (or				80% AFUE or E	80% AFUE or E
DX Split	Gas Furnace <225 kBtuh	80% AFUE or Et	80% AFUE or Et		
	Gas Furnace <225 kBtuh		80% AFDE of E _t 80% E _c		80% E _c
DX Split	Gas Furnace <225 kBtuh Gas Furnace >=225 kBtu/h	80% AFUE or E _t 80% E _c	80% E _c	80% E _c	80% E _c
DX Split	Gas Furnace <225 kBtuh Gas Furnace >=225 kBtu/h Economizer	80% AFUE or E _t 80% E _c >54 kBtu/h	80% E _c >54 kBtu/h	80% E _c >54 kBtu/h	80% E _c >54 kBtu/h
DX Split	Gas Furnace <225 kBtuh Gas Furnace >=225 kBtu/h	80% AFUE or E _t 80% E _c	80% E _c	80% E _c >54 kBtu/h Energy recovery or Demand control	80% E _c

Table 4-4 K-12 AEDG Recommendations for 30% Savings over ASHRAE 90.1-1999: Climate Zones 5-8 (Cont.)

ltem	Component	Climate Zone 5 Recommendations	Climate Zone 6 Recommendations	Climate Zone 7 Recommendations	Climate Zone 8 Recommendations
	Water-Source Heat Pump >= 65 kBtu/h	Cooling: 12 EER at 86F; Heating: 4.2 COP at 68F	Cooling: 12 EER at 86F; Heating: 4.2 COP at 68F	Cooling: 12 EER at 86F; Heating: 4.2 COP at 68F	Cooling: 12 EER at 86F; Heating: 4.2 COP at 68F
	Ground-Source Heat Pump < 65 kBtu/h	Cooling: 14.1 EER at 77F and 17 EER at 59F; Heating: 3.5 COP at 32F and 4.0 COP at 50F	at 50F	at 50F	Cooling: 14.1 EER at 77F and 17 EER at 59F; Heating: 3.5 COP at 32F and 4.0 COP at 50F
WSHP System	Ground-Source Heat Pump >= 65 kBtu/h	Cooling: 13 EER at 77F and 16 EER at 59F; Heating: 3.1 COP at 32F and 3.5 COP at 50F	Cooling: 13 EER at 77F and 16 EER at 59F; Heating: 3.1 COP at 32F and 3.5 COP at 50F	Cooling: 13 EER at 77F and 16 EER at 59F; Heating: 3.1 COP at 32F and 3.5 COP at 50F	Cooling: 13 EER at 77F and 16 EER at 59F; Heating: 3.1 COP at 32F and 3.5 COP at 50F
	Gas Boiler	85% E _c	85% E _c	85% E _c	85% E _c
	Economizer	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*
	Ventilation	DOAS with either energy recovery or Demand control	DOAS with either energy recovery or Demand control	DOAS with either energy recovery or Demand control	DOAS with either energy recovery or Demand control
	WSHP Duct Pressure Drop	Total ESP < 0.2"	Total ESP < 0.2"	Total ESP < 0.2"	Total ESP < 0.2"
	Air-Cooled Chiller Efficiency	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV
	Water-Cooled Chiller Efficiency	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*
Unit Ventilator	Gas Boiler	85% E _c	85% E _c	85% E _c	85% E _c
and Chiller System	Economizer	>54 kBtu/h	>54 kBtu/h	>54 kBtu/h	>54 kBtu/h
-	Ventilation	Energy recovery or Demand control	Energy recovery or Demand control	Energy recovery or Demand control	Energy recovery or Demand control
	Pressure Drop	Total ESP < 0.2"	Total ESP < 0.2"	Total ESP < 0.2"	Total ESP < 0.2"
	Air Cooled Chiller Efficiency	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV	9.6 EER 11.5 IPLV
	Water-Cooled Chiller Efficiency	Comply with Standard 90.1*			Comply with Standard 90.1*
Fancoil and	Gas Boiler	85% E _c			85% E _c
Chiller System	Economizer	Comply with Standard 90.1*			Comply with Standard 90.1*
	Ventilation	DOAS with either energy recovery or Demand control	Demand control	Demand control	DOAS with either energy recovery or Demand control
	Pressure Drop	Total ESP < 0.2"		at 68F1 EER at 77F and 17 EER at (S 3.5 COP at 32F and 4.0 COP (S 3.5 COP at 32F and 3.5 COP at (S 3.5 COP)5 IPLV9.6 EER 11.5 IPLV9.7 Comply with Standard 90.1*85% E_c15 IPLV9.6 EER 11.5 IPLV9.6 EER 11.5 IPLV9.6 EER 11.5 IPLV9.6 EER 11.5 IPLV9.7 Comply with Standard 90.1*85% E_c254 KBtu/hvery or Demand control1.3 hp/1000 cfm<	Total ESP < 0.2"
	Rooftop Air Conditioner >=240 kBtu/h	10.0 EER/10.4 IPLV			Comply with Standard 90.1*
Packaged	Gas Furnace >=225 kBtu/h	80% E _c	5		80% E _c
Rooftop VAV	Gas Boiler	85% E _c	5	0	85% E _c
System	Economizer	>54 kBtu/h	• • • • • • • • • • • • • • • • • • • •		>54 kBtu/h
	Ventilation	Energy recovery or Demand control	at 686"End 177 End 17 EER at5 COP at 32F and 4.0 COPat 50FColling: 14.1 EER at 77F and 16 EER at 77F and 16 EER at 59F;Colling: 14.1 EER at 59F;Colling: 14.1 EER at 59F;Colling: 13.1 COP at 32F and 3.5 COP atSoFP at 32F and 3.5 COP atSoFB5% E_cB5% E_cB5% E_cB5% E_cB6%Comply with Standard 90.1*Comply wi	Energy recovery or Demand control	
	Fans	1.3 hp/1000 cfm			1.3 hp/1000 cfm
	Air Cooled Chiller Efficiency	9.6 EER 11.5 IPLV			9.6 EER 11.5 IPLV
	Water-Cooled Chiller Efficiency	Comply with Standard 90.1*			Comply with Standard 90.1*
	Gas Boiler	85% E _c	-	· · · · · · · · · · · · · · · · · · ·	85% E _c
System			S54 kBtu/b	>54 kBtu/h	>54 kBtu/h
-	Economizer	>54 kBtu/h			
-	Ventilation	Energy recovery or Demand control	Energy recovery or Demand control	Energy recovery or Demand control	Energy recovery or Demand control
	Ventilation Fans	Energy recovery or Demand control 1.3 hp/1000 cfm	Energy recovery or Demand control 1.3 hp/1000 cfm	Energy recovery or Demand control 1.3 hp/1000 cfm	1.3 hp/1000 cfm
Ducts and	Ventilation Fans Outdoor air damper	Energy recovery or Demand control 1.3 hp/1000 cfm motorized	Energy recovery or Demand control 1.3 hp/1000 cfm motorized	Energy recovery or Demand control 1.3 hp/1000 cfm motorized	1.3 hp/1000 cfm motorized
Ducts and Dampers	Ventilation Fans Outdoor air damper Friction rate	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft
	Ventilation Fans Outdoor air damper Friction rate Sealing	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B
	Ventilation Fans Outdoor air damper Friction rate Sealing Location	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only
Dampers	Ventilation Fans Outdoor air damper Friction rate Sealing Location Insulation level	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-8
Dampers Service Water	Ventilation Fans Outdoor air damper Friction rate Sealing Location Insulation level Gas storage (>75 kBtu/h)	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6 90%E ₁	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.06 in w.c./100ft Seal Class B interior only R-6 90%Et	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6 90%Et	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-8 90%Et
Dampers	Ventilation Fans Outdoor air damper Friction rate Sealing Location Insulation level	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.06 in w.c./100ft Seal Class B interior only R-6 90%Et	Energy recovery or Demand control 1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-6 90%E ₁ 0.81 EF or 81% Et	1.3 hp/1000 cfm motorized 0.08 in w.c./100ft Seal Class B interior only R-8

4.2 Discussion of Recommendations

4.2.1.1 Envelope Recommendations

The envelope recommendations cover the range of assemblies for the opaque and fenestration portions of the building. Opaque elements include the roof, walls, floors and slabs, as well as opaque doors. Fenestration elements include the vertical glazing (including doors). The Guide presents recommendations for a number of components of each building element. In general, the insulation recommendations increase as the climate becomes colder. An exception to this is the roof insulation entirely above deck recommendations. The R-value recommendation is constant across all climate zones. This recommendation was determined based on the TLCC analysis, which identified the optimal level of roof insulation specific to our prototype schools. Control of solar loads is more critical in the hotter, sunnier climates, and thus the SHGC tends to be more stringent (lower) in zone 1 and higher in zone 8.

4.2.1.2 Lighting and Daylighting Recommendations

The lighting and daylighting recommendations cover a range of performance characteristics, including LPD, lighting controls, and daylighting fenestration areas. The recommended LPD for the non-daylit option in climate zones 1, 2, and 5 through 8 is 1.1 W/ft^2 (11.8 W/m^2). In climate zones 3 and 4, the recommended LPD is 0.9 W/ft^2 (9.7 W/m^2). In these zones, the lighting load is a higher percentage of total energy use that results from smaller heating and cooling loads. Therefore, more aggressive LPDs that use the most current, energy-efficient lamps, ballasts, and integrated controls are recommended to meet the savings target of 30%. The daylit options recommend a slightly higher LPD of 1.2 W/ft^2 (12.9 W/m^2). The higher LPD is recommended for the daylit options because significant lighting savings are expected from the lights dimming or turning off from the daylight rather than an aggressive lighting power reduction.

An additional rationale the PC considered for allowing higher LPDs in the daylit options was that if a school designer put a limited amount of money into a good daylighting system, one would not need to spend a lot of money on a high-efficiency electric lighting system. This rationale works only if the energy savings goal is 30%, and the school designer is trying to achieve that cost effectively. The PC felt that the most stringent LPDs combined with a classroom daylighting design would result in substantially more savings than needed, in a less cost-effective combination of technologies. Simulation results confirmed this thought, as 30% savings were obtainable with both the high efficiency electrical lighting option without daylighting and the standard lighting option with daylit classrooms and gym.

A primary difference between ASHRAE 90.1-1999 and ASHRAE 90.1-2004 is the more aggressive limits on LPD. For example, classroom LPD was reduced from 1.6 W/ft² to 1.4 W/ft² (17.2 W/m² to 15.1 W/m²). In comparing the results of the low-energy non-daylit option to the ASHRAE 90.1-2004 baselines, we determined that the non-daylit option recommendations would not reach 30% savings in all climate zones. The climate zones that did not reach 30% savings were the temperate marine zones 3C and 4C, as well as the hot and humid zones 1 and 2A. All of the daylit versions were still at 30% savings or above for the ASHRAE 90.1-2004 baseline, as the daylighting system energy savings were greater than the energy savings from the reduced LPD system. Therefore, the non-daylit option that is available for 30% savings over ASHRAE 90.1-2004.

The fenestration areas for the daylighting recommendations are provided as a range in the ratio of the daylighting fenestration area to floor area. The PC provided a range in the daylighting fenestration ratios as they felt that some level of detailed daylighting designs was necessary to fine tune the daylighting fenestration area for a specific school. The recommendations are constant across the climate zones, except for the use of skylights in the gym daylighting option. The K-12 AEDG recommends gym skylights in the temperate climate zones of 3C and 4C only. One benefit of a well-designed daylighting system is that the cooling equipment can be downsized. Often, this downsizing can pay for a significant portion of the daylighting system. Therefore, the PC focused on daylighting methods other than skylights

that provided good daylighting and could result in downsizing of the cooling systems in warm climates. In addition, the PC felt that direct beam radiation in gyms should be avoided. This resulted in skylight recommendations for only the temperate climates, which have more overcast and diffuse sky conditions.

4.2.1.3 HVAC Systems

Unique recommendations are included for each HVAC system type in the climate-specific recommendation tables. The recommendations are provided based on how ASHRAE 90.1 specifies performance. The package rooftop cooling equipment efficiencies for small units are expressed in SEERs and EERs for larger rooftop products. Additionally, commercial cooling products have integrated part load values (IPLV) that express their performance during part load operation. Heating equipment efficiencies for rooftop products are expressed as annual fuel utilization efficiencies for gas furnaces and heating season performance factors for heat pumps. Heating efficiencies for larger commercial products are expressed as thermal efficiencies and combustion efficiencies or furnaces and COPs for heat pumps.

Cooling equipment efficiencies generally are higher in the hotter climates and lower in the colder climates for the larger commercial products. For the smaller rooftop units, the cooling efficiencies are constant across the climate zones. These levels have been adopted by federal law as the minimum mandatory manufacturing standards. For package rooftop unitary equipment, the heating efficiencies are constant across climates because higher efficiency equipment is not available from multiple manufacturers. Boiler efficiencies generally are higher in colder climates, where higher equipment efficiencies are available from multiple manufacturers.

Unique recommendations are included for each HVAC system type based on practicality of implementation and the goal to achieve 30% energy savings. For example, airside economizers are recommended for packaged DX rooftops units larger than 54,000 Btu/h (16 kW) for all climate zones except 1 and 2A. This is because they are easy to add to the system and they help achieve the desired energy savings. However, higher chiller and boiler efficiencies are recommended for fan-coil systems and economizers are not. This is because airside economizers are less practical for dedicated outdoor air systems.

Because conditioning OA for ventilation is such a big contributor to the energy use in a K-12 school building, either exhaust-air energy recovery or demand controlled ventilation is recommended. The K-12 AEDG provides multiple options beyond code minimum for reducing OA loads, including scheduled OA control for all zones, CO₂ demand controlled ventilation in all zones, and energy recovery from exhaust air. The PC felt that both CO₂ demand controlled ventilation and ERVs was not practical technology combination and unneeded for 30% savings. Therefore, for all HVAC system types, either CO₂ demand controlled ventilation or an ERV is recommended.

Some system types are not recommended for certain climate zones. For example, unit ventilators are not recommended in warm humid climates in climate zones 1, 2A, and 3A. This was due to concern from the PC and from peer reviewers that unit ventilators cannot efficiently condition OA in humid climates. In addition, ERVs are not recommended in the coastal climate zones 3C and 4C, because of their limited energy recovery potential.

SWH measures include recommendations for the use of instantaneous water heaters for fuel-fired applications and enhanced efficiencies for storage applications. In addition, recommendations are provided for enhanced pipe insulation values.

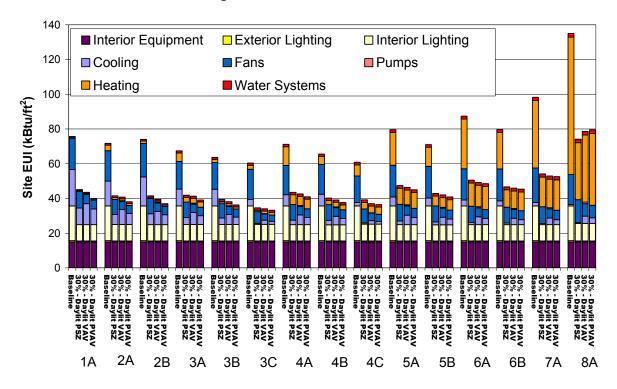
4.3 Energy Savings Results

The whole building energy savings results for the recommendations in the K-12 AEDG are shown in Table 4-5. Energy savings are relative to the ASHRAE 90.1-1999 baseline energy use, and include plug loads in the energy use of the baseline and low-energy models. The analysis shows that the recommendations in the K-12 AEDG succeeded in meeting the goal of 30% or greater energy savings and that this goal can be met for daylit and non-daylit options with a range of HVAC system types. Energy

savings are also shown for each elementary, middle, and high school prototype. In general, all the nondaylit models had less energy savings than the daylit equivalent. Note that the daylit models do not have a reduced LPD, but used less lighting energy than the non-daylit models. The non-daylit low-energy PSZ models were just above 30% savings, and the PVAV daylit low-energy models were significantly above 30% energy savings. The PVAV system types performed the best, because of a combination of the higher VAV fan efficiency, higher compressor COP, and higher boiler efficiency. Energy savings by school type did not vary significantly for a given climate zone.

The energy savings results for the recommendations in the K-12 AEDG, relative to ASHRAE 90.1-2004 are shown in Table 4-6. The recommendations in the K-12 AEDG result in 30% or greater energy savings over ASHRAE 90.1-2004 for just the daylit options with a range of HVAC system types. Energy savings are also shown for each elementary, middle, and high school prototype.

The end uses for each ASHRAE 90.1-1999 baseline and low-energy model are shown in Figure 4-1 through Figure 4-6. The end uses for each ASHRAE 90.1-2204 baseline and low-energy model are shown in Figure 4-7 through Figure 4-9.


The end use data and percent savings for the ASHRAE 90.1-1999 baseline and low-energy models are shown in tabular format in Appendix G. The ASHRAE 90.1-2004 baseline and low-energy model end uses and savings are shown in tabular format in Appendix H.

Climate	School Type	30% – No Daylight PSZ	30% – No Daylight VAV	30% – No Daylight PVAV	30% – Daylit PSZ	30% – Daylit VAV	30% – Daylit PVAV
4.0	Elementary	34%	36%	41%	40%	43%	47%
1A	Middle	35%	36%	42%	41%	42%	48%
	High	36%	35%	42%	43%	42%	47%
	Elementary	36%	37%	41%	42%	43%	47%
2A	Middle	36%	37%	41%	42%	43%	47%
2A	High	37%	37%	42%	44%	43%	47%
	Elementary	37%	40%	44%	44%	47%	50%
2B	Middle	38%	40%	44%	44%	46%	50%
20	High	39%	39%	44%	46%	46%	50%
	Elementary	36%	36%	40%	38%	39%	42%
3A	Middle	36%	37%	40%	38%	39%	42%
	High	36%	36%	40%	39%	39%	42%
	Elementary	36%	38%	41%	38%	40%	43%
3B	Middle	36%	38%	42%	39%	41%	44%
	High	37%	37%	41%	40%	40%	44%
	Elementary	40%	43%	44%	43%	44%	45%
3C	Middle	41%	43%	44%	43%	45%	46%
	High	42%	44%	45%	44%	46%	47%
	Elementary	36%	37%	40%	39%	40%	43%
4A	Middle	35%	38%	40%	38%	41%	43%
	High	35%	35%	38%	38%	40%	42%
	Elementary	35%	37%	40%	39%	40%	43%
4B	Middle	35%	38%	40%	38%	41%	43%
	High	36%	36%	39%	40%	40%	43%
	Elementary	33%	37%	38%	36%	39%	40%
4C	Middle	32%	39%	40%	34%	41%	42%
40	High	33%	38%	39%	36%	42%	43%
	Elementary	35%	36%	38%	40%	42%	43%
5A	Middle	33%	36%	39%	38%	42%	44%
	High	33%	34%	36%	39%	40%	42%
	Elementary	33%	35%	36%	40%	41%	43%
5B	Middle	32%	35%	37%	38%	41%	43%
	High	32%	33%	35%	39%	40%	42%
	Elementary	37%	38%	39%	42%	44%	44%
6A	Middle	34%	38%	40%	39%	43%	44%
	High	34%	36%	37%	39%	42%	42%
	Elementary	36%	36%	37%	41%	42%	43%
6B	Middle	33%	37%	38%	39%	42%	43%
	High	33%	34%	35%	40%	41%	41%
	Elementary	40%	41%	42%	40 %	41%	41%
7A	Middle	36%	41%	42%	41%	40 %	46%
	High	36%	38%	39%	41%	43%	40%
	Elementary	42%	38%	39%	41%	43%	44%
8A							
.	Middle	37%	38%	37%	40%	40%	39%
	High	37%	35%	34%	42%	38%	37%

Table 4-5 Energy Savings: ASHRAE 90.1-1999 Baseline

Climate	School Type	30% – Daylit PSZ	30% – Daylit VAV	30% – Daylit PVAV
	Elementary	32%	34%	40%
1A	Middle	32%	33%	39%
	High	33%	31%	38%
	Elementary	35%	36%	41%
2A	Middle	35%	35%	40%
	High	36%	35%	40%
	Elementary	37%	40%	43%
2B	Middle	36%	39%	43%
	High	38%	37%	42%
	Elementary	32%	33%	36%
3A	Middle	31%	32%	36%
	High	32%	32%	36%
	Elementary	31%	33%	37%
3B	Middle	31%	33%	37%
	High	32%	32%	36%
	Elementary	32%	33%	34%
3C	Middle	31%	33%	35%
	High	33%	35%	37%
	Elementary	35%	36%	39%
4A	Middle	33%	36%	39%
	High	33%	35%	37%
	Elementary	33%	35%	38%
4B	Middle	32%	35%	38%
	High	33%	34%	37%
	Elementary	31%	35%	36%
4C	Middle	30%	37%	38%
	High	31%	37%	38%
	Elementary	37%	39%	41%
5A	Middle	34%	38%	40%
	High	35%	37%	39%
	Elementary	36%	37%	39%
5B	Middle	33%	37%	39%
	High	34%	36%	38%
	Elementary	40%	41%	42%
6A	Middle	36%	41%	42%
	High	37%	39%	40%
	Elementary	39%	40%	41%
6B	Middle	36%	39%	40%
	High	36%	37%	38%
	Elementary	44%	45%	45%
7A	Middle	39%	44%	44%
	High	39%	41%	42%
	Elementary	44%	41%	40%
8A	Middle	39%	39%	38%
	High	40%	37%	36%

 Table 4-6 Energy Savings: ASHRAE 90.1-2004 Baseline

4.3.1 End Uses for 30% Savings over ASHRAE 90.1-1999

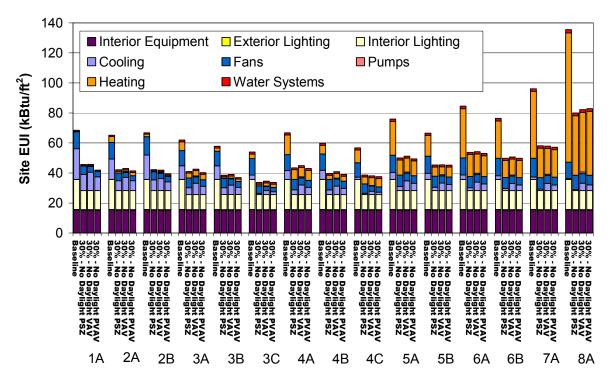


Figure 4-2 Elementary School End Uses: No Daylighting

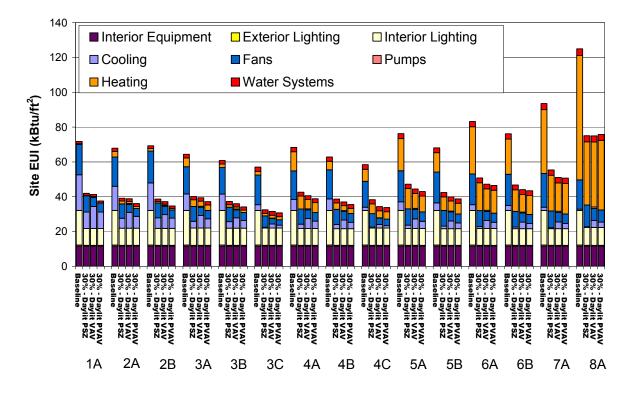


Figure 4-3 Middle School End Uses: Daylit

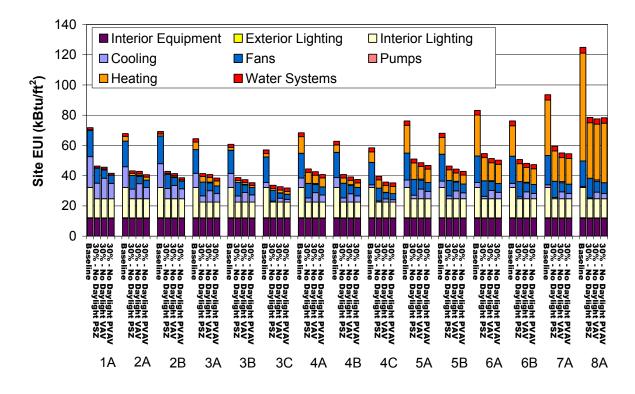


Figure 4-4 Middle School End Uses: No Daylighting

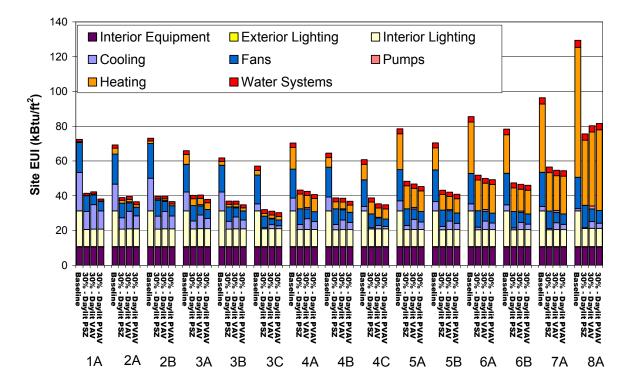


Figure 4-5 High School End Uses: Daylit

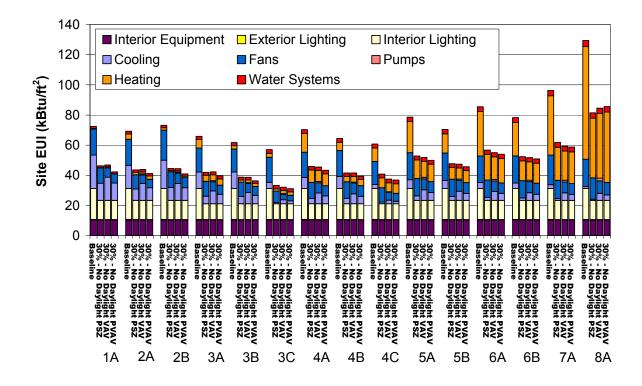
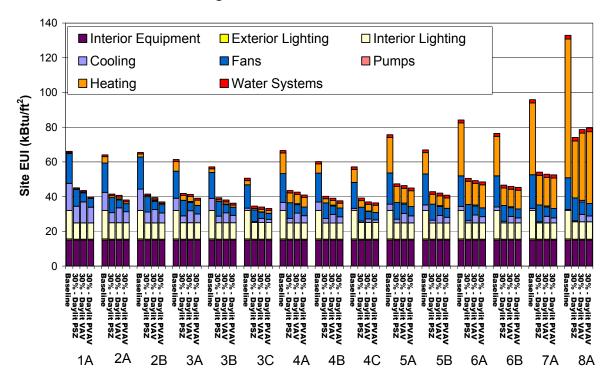
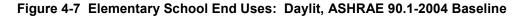




Figure 4-6 High School End Uses: No Daylighting

4.3.2 End uses for 30% Savings over ASHRAE 90.1-2004

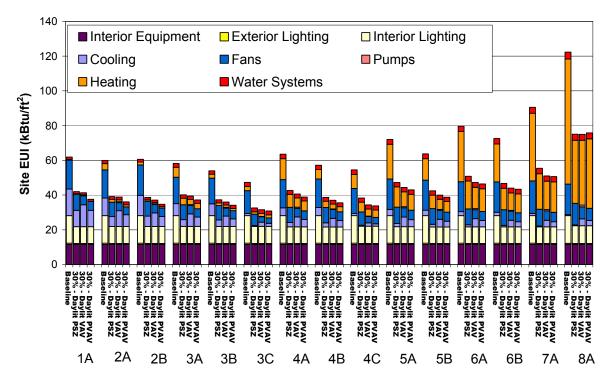


Figure 4-8 Middle School End Uses: Daylit, ASHRAE 90.1-2004 Baseline

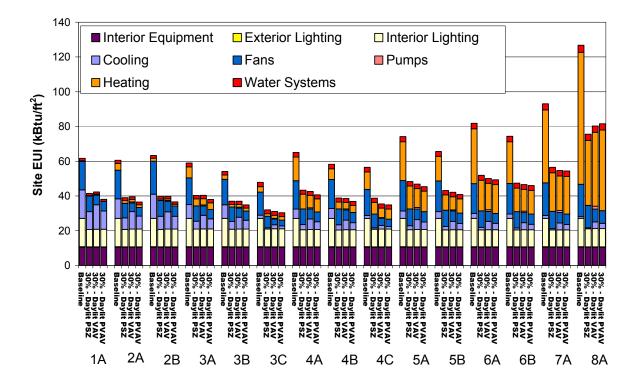


Figure 4-9 High School End Uses: Daylit, ASHRAE 90.1-2004 Baseline

5. Beyond 30% Energy Savings

To inform the future development of more stringent guides, we performed a scoping study to understand which energy efficiency technologies would be needed to achieve 50% energy savings. Recommendations included in the 50% scoping analysis include the most stringent of each recommendation included in the 30% guide, combined with plug load reductions caused by high-efficiency distribution transformers and Energy Star equipment, daylighting in all zones, infiltration reduction, and water cooled chillers. We modeled these recommendations in a daylit middle school with a VAV to determine energy savings over ASHRAE 90.1-2004 in each of the 15 climate zones.

5.1 50% Energy Savings Model Inputs and Assumptions

This section documents our modeling inputs and assumptions for the 50% low-energy VAV middle school. The baseline used to determine 50% energy savings was the same ASHRAE 90.1-2004 baselines used to determine 30% savings. We used the low-energy daylit VAV middle school as a starting point and modified or added the following additional efficiency characteristics:

- Added skylights and daylighting controls to all of the core and exterior zones that did not previously have daylighting. See Figure 5-1 for a model rendering of the fully daylit middle school.
- Reduced the peak infiltration to 0.3 ACH
- Reduced the LPD for all climate zones to $0.9 \text{ W/ft}^2 (9.7 \text{ W/m}^2)$.
- Added CO₂ demand controlled ventilation to all zones.
- Increased the total and sensible ERV effectiveness to 65%.
- Increased the fan efficiency to 65% and the motor efficiency to 90%, resulting in a fan/motor efficiency of 55%.
- Reduced the friction rate of the duct work to 0.06 in. per 100 ft of duct work (15 Pa per 30 m), which reduced the total fan static pressure to 3.0 in. w.c. (750 Pa).
- Used a water cooled centrifugal chiller with a COP of 6.0.
- Added a condensing boiler with an increased boiler efficiency of 95%.
- Added a condensing hot heater with an increased efficiency of 95%.
- Applied the additional savings recommendations in the K-12 AEDG for reducing plug loads. We reduced the peak and nighttime plug loads through EnergyStar equipment and 98% efficiency CSL-3 distribution transformers. CSL-3 distribution transformers not only have higher peak efficiency, the part load efficiencies are significantly better than standard distribution transformers. The equipment schedule was modified to represent these changes as shown in Table 3-28. This schedule represents a daytime plug reduction of 10% over the baseline schedule, and a nighttime plug reduction of 30% during the school year and 40% during the summer over the baseline schedule.

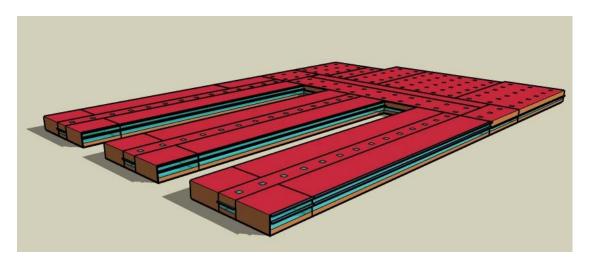


Figure 5-1 50% Savings Fully Daylit Middle School Model Rendering

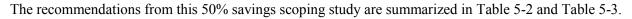

Hour	Weekday through 6/30	Weekday through 9/01	Weekday through 12/31	Weekends, Holidays	Weekends, Holidays, Summer
1	0.25	0.15	0.25	0.25	0.15
2	0.25	0.15	0.25	0.25	0.15
3	0.25	0.15	0.25	0.25	0.15
4	0.25	0.15	0.25	0.25	0.15
5	0.25	0.15	0.25	0.25	0.15
6	0.25	0.15	0.25	0.25	0.15
7	0.25	0.15	0.25	0.25	0.15
8	0.25	0.15	0.25	0.25	0.15
9	0.85	0.45	0.85	0.25	0.15
10	0.85	0.45	0.85	0.25	0.15
11	0.85	0.45	0.85	0.25	0.15
12	0.85	0.45	0.85	0.25	0.15
13	0.85	0.45	0.85	0.25	0.15
14	0.85	0.45	0.85	0.25	0.15
15	0.85	0.45	0.85	0.25	0.15
16	0.85	0.45	0.85	0.25	0.15
17	0.85	0.45	0.85	0.25	0.15
18	0.25	0.15	0.25	0.25	0.15
19	0.25	0.15	0.25	0.25	0.15
20	0.25	0.15	0.25	0.25	0.15
21	0.25	0.15	0.25	0.25	0.15
22	0.25	0.15	0.25	0.25	0.15
23	0.25	0.15	0.25	0.25	0.15
24	0.25	0.15	0.25	0.25	0.15

 Table 5-1
 50% Savings Building Equipment Schedule

5.2 50% Energy Savings Results

Based on this initial scoping study, 50% savings should be possible in all climates. The energy savings and end uses for the ASHRAE 90.1-2004 and 50% low-energy middle school are shown in Figure 5-2. For the most temperate climates such as 3C and 4C, energy savings are just above 50%. Findings from this scoping study suggest that 50% savings are possible, but that nontraditional efficiency measures such as plug load reductions and infiltration reductions are required. Additional focus on "typical" plug load schedules in K-12 schools as well as the expected energy savings from EnergyStar equipment will be needed to accurately predict the plug load savings. Baseline infiltration inputs will also need to be further researched. For 50% energy savings, additional work will be needed to truly optimize daylighting to provide as much savings as possible. The 50% recommendations may limit the types of systems that can be used. For example, only certain types of HVAC systems, such as water cooled chillers, high efficiency condensing boilers, or ground source heat pumps, may be available for a 50% low-energy school. Standard systems such as package single zone equipment or unit ventilators may not be able that meet the

high efficiency needs for a 50% savings school without additional lighting, plug load, or envelope measures.

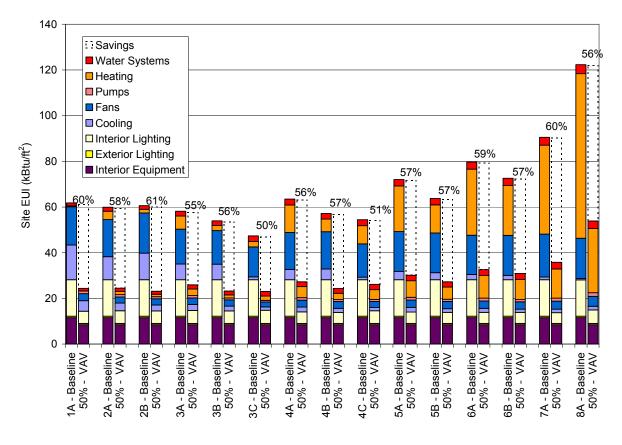


Figure 5-2 Middle School End Uses: 50% Savings

Table 5-2 Recommendations for 50% Savings over ASHRAE 90.1-2004: Climate Zones 1-4

ltem	Component	Climate Zone 1 Recommendations	Climate Zone 2 Recommendations	Climate Zone 3 Recommendations	Climate Zone 4 Recommendations
	Insulation Entirely Above Deck	R-25 ci	R-25 ci	R-25 ci	R-25 ci
Roofs	Attic and Other	R-30	R-38	R-38	R-38
	Metal Building	R-19	R-13.0 + R-13.0	R-13.0 + R-13.0	R-13.0 + R-19.0
	SRI	0.78	0.78	0.78	Comply with Standard 90.1*
Walls	Mass (HC > 7 Btu/ft ²)	R-5.7 ci	R-7.6 ci	R-7.6 ci	R-9.5 ci
	Steel Framed	R-13	R-13	R-13 + R-3.8 ci	R-13 + R-7.5 ci
	Wood Framed and Other	R-13	R-13	R-13	R-13
	Metal Building	R-16	R-16	R-16	R-19
	Below Grade Walls	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*
Slabs	Unheated	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*
	Heated	R-7.5 for 12 in.	R-7.5 for 12 in.	R-10 for 24 in.	R-15 for 24 in.
	Total Fenestration to Gross Wall Area Ratio	35% Max	35% Max	35% Max	35% Max
Vertical	Thermal transmittance- all types and orientations	U-0.56	U-0.45	U-0.45	U-0.42
Fenestration	Solar heat gain coefficient (SHGC)- all types and				
	orientations	SHGC-0.25	SHGC-0.25	SHGC-0.25	SHGC-0.40
	Exterior Sun Control (S, E, W only)	Projection Factor> 0.5	Projection Factor> 0.5	Projection Factor> 0.5	Projection Factor> 0.5
Interior Finishes	Interior room surface average reflectance	70%+ on ceilings and walls above 7', 50%+ on walls below 7'	70%+ on ceilings and walls above 7', 50%+ on walls below 7'	70%+ on ceilings and walls above 7', 50%+ on walls below 7'	70%+ on ceilings and walls above 7', 50%+ on walls below 7'
Infiltration	Peak infiltration air changes/hr	0.3 ACH	0.3 ACH	0.3 ACH	0.3 ACH
		Toplit -	Toplit -	Toplit -	Toplit -
		South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15%	South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15%	South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15%	South Facing Roof Monitors: 8%-11% North Facing Roof Monitors: 12%-15%
		Sidelit-	Sidelit-	Sidelit-	Sidelit-
	Classroom Daylighting (Daylighting Fenestration to	South Facing: 8%-11%	South Facing: 8%-11%	South Facing: 8%-11%	South Facing: 8%-11%
	Floor Area Ratio)	North Facing: 15% - 20%	North Facing: 15% - 20%	North Facing: 15% - 20%	North Facing: 15% - 20%
		Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-
			South Facing Sidelit: 6%-8%, Toplit: 2%-3%		South Facing Sidelit: 6%-8%, Toplit: 2%-3%
		South Facing Sidelit: 6%-8%, Toplit: 2%-3% North Facing Sidelit: 9%-13%, Toplit: 3%-5%		South Facing Sidelit: 6%-8%, Toplit: 2%-3%	
		North Facing Sident. 9%-13%, Topht. 3%-5%	North Facing Sidelit. 9%-13%, Toplit. 3%-5%		North Facing Sidelit: 9%-13%, Toplit: 3%-5
	Gym Toplighting (Daylighting Fenestration to Floor Area	South Facing Roof Monitors: 5% - 8%	South Facing Roof Monitors: 5% - 8%	South Facing Roof Monitors: 5% - 8% North	South Facing Roof Monitors: 5% - 8% Nort
Interior Lighting		North Facing Roof Monitors 7% to 10%	North Facing Roof Monitors 7% to 10%	Facing Roof Monitors 7% to 10% C Zones	Facing Roof Monitors 7% to 10% C
Daylighted	,	······································	······	Only: Skylights: 2% - 4%	Zones Only: Skylights: 3% -4%
Option	Toplighting in Corridors, Offices, Media Center,				
option	Bathrooms, Cafeteria, and Kitchen (Daylighting	Skylights: 3%-4%	Skylights: 3%-4%	Skylights: 3%-4%	Skylights: 3%-4%
	Fenestration to Floor Area Ratio)	-			
	Lighting Power Density (LPD)	0.9 W/ft ² maximum	0.9 W/ft ² maximum	0.9 W/ft ² maximum	0.9 W/ft ² maximum
	Light Source system efficacy (linear fluorescent and HID)	85 mean lumens/watt minimum	85 mean lumens/watt minimum	85 mean lumens/watt minimum	85 mean lumens/watt minimum
	Light source system efficacy (all other sources)	50 mean lumens/watt minimum	50 mean lumens/watt minimum	50 mean lumens/watt minimum	50 mean lumens/watt minimum
	Lighting Controls - general	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones
		Dim all fixtures in daylit spaces, and other	Dim all fixtures in daylit spaces, and other	Dim all fixtures in daylit spaces, and other	Dim all fixtures in daylit spaces, and other
	Dimming Controls Daylight Harvesting		fixtures within 15 ft of sidelighting edge, and	fixtures within 15 ft of sidelighting edge, and	fixtures within 15 ft of sidelighting edge, and
	<i>°</i> ,	within 10 ft of toplighting edge	within 10 ft of toplighting edge	within 10 ft of toplighting edge	within 10 ft of toplighting edge
VAV and Chiller	Water-Cooled Chiller Efficiency	6.0 COP	6.0 COP	6.0 COP	6.0 COP
System	Gas Boiler	80% E _c	80% E _c	95% E _c	95% E _c
		Comply with Standard 90.1*	Comply with Standard 90.1*	>54 kBtu/h	>54 kBtu/h
	Economizer				
	Ventilation	65% effective total energy recovery AND	65% effective total energy recovery AND	65% effective total energy recovery AND	65% effective total energy recovery AND
		demand control	demand control	demand control	demand control
	Fans	65% efficient fan, 90% efficient EC motor	65% efficient fan, 90% efficient EC motor	65% efficient fan, 90% efficient EC motor	65% efficient fan, 90% efficient EC motor
Ducts and	Outdoor air damper	motorized	motorized	motorized	motorized
Dampers	Friction rate	0.06 in w.c./100ft	0.06 in w.c./100ft	0.06 in w.c./100ft	0.06 in w.c./100ft
	Sealing	Seal Class B	Seal Class B	Seal Class B	Seal Class B
	Location	interior only	interior only	interior only	interior only
	Insulation level	R-6	R-6	R-6	R-6
		95% Et	95% Et	95% Et	95% Et
Heating	Gas instantaneous	0.81 EF or 81% Et	0.81 EF or 81% Et	0.81 EF or 81% Et	0.81 EF or 81% Et
	Electric (storage or instantaneous)	EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume
	Pipe insulation ($d < 1.5$ in. / $d >= 1.5$ in.)	1 in./ 1.5 in.	1 in./ 1.5 in.	1 in./ 1.5 in.	1 in./ 1.5 in.
Plug Loads	Office Equipment	EnergyStar equipment, nighttime standby	EnergyStar equipment, nighttime standby	EnergyStar equipment, nighttime standby	EnergyStar equipment, nighttime standby
		mode	mode	mode	mode
	Computers				
		LCD monitors, EnergyStar equipment	LCD monitors, EnergyStar equipment	LCD monitors, EnergyStar equipment	LCD monitors, EnergyStar equipment
	Transformers	98% efficient CL-3 rated transformers	98% efficient CL-3 rated transformers	98% efficient CL-3 rated transformers	98% efficient CL-3 rated transformers

Table 5-3 Recommendations for 50% Savings over ASHRAE 90.1-2004: Climate Zones 5-8

ltem	Component	Climate Zone 5 Recommendations	Climate Zone 6 Recommendations	Climate Zone 7 Recommendations	Climate Zone 8 Recommendations
	Insulation Entirely Above Deck	R-25 ci		R-25 ci	R-25 ci
Roofs	Attic and Other	R-38			R-60
110010	Metal Building	R-13.0 + R-19.0	R-13.0 + R-19.0	R-13.0 + R-19.0	R-19.0 + R-19.0
	SRI	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*	Comply with Standard 90.1*
	Mass (HC > 7 Btu/ft ²)	R-11.4 ci		R-15.2 ci	R-15.2 ci
Walls	Steel Framed	R-13 + R-7.5 ci		R-13 + R-7.5 ci	R-13 + R-21.6 ci
	Wood Framed and Other	R-13 + R-3.8 ci		R-13 + R-7.5 ci	R-13 + R-10 ci
	Metal Building	R-13 + R-13		R-13 + R-13	R-13 + R-16
	Below Grade Walls	R-7.5 ci		R-7.5 ci	R-15 ci
Slabs	Unheated	Comply with Standard 90.1*		R-15 for 24 in.	R-20 for 24 in.
Ulabo	Heated	R-15 for 24 in.		R-15 for full slab	R-15 for full slab
	Total Fenestration to Gross Wall Area Ratio	35% Max	35% Max	35% Max	35% Max
Vertical	Thermal transmittance- all types and orientations	U-0.42	U-0.42	U-0.33	U-0.33
Fenestration	Solar heat gain coefficient (SHGC)- all types and				
reneotration	orientations	SHGC-0.40	SHGC-0.40	SHGC-0.45	SHGC-0.45
	Exterior Sun Control (S, E, W only)	Projection Factor> 0.5	Projection Factor> 0.5	Projection Factor> 0.5	Projection Factor> 0.5
nterior Einichee	Interior room surface average reflectance	70%+ on ceilings and walls above 7', 50%+	70%+ on ceilings and walls above 7', 50%+	70%+ on ceilings and walls above 7', 50%+	70%+ on ceilings and walls above 7', 50%+
Interior Finishes	interior room surface average reflectance	on walls below 7'	on walls below 7'	on walls below 7'	on walls below 7'
Infiltration	Whole Building Infiltration Air Changes/hr	0.3 ACH	0.3 ACH	0.3 ACH	0.3 ACH
		Toplit -	Toplit -	Toplit -	Toplit -
		South Facing Roof Monitors: 8%-11%		South Facing Roof Monitors: 8%-11%	South Facing Roof Monitors: 8%-11%
		North Facing Roof Monitors: 12%-15%	North Facing Roof Monitors: 12%-15%	North Facing Roof Monitors: 12%-15%	North Facing Roof Monitors: 12%-15%
	Olasana an Daulishtisa (Daulishtisa Fanastatisa ta	Sidelit-	Sidelit-	Sidelit-	Sidelit-
	Classroom Daylighting (Daylighting Fenestration to	South Facing: 8%-11%	South Facing: 8%-11%	South Facing: 8%-11%	South Facing: 8%-11%
	Floor Area Ratio)	North Facing: 15% - 20%	North Facing: 15% - 20%	North Facing: 15% - 20%	North Facing: 15% - 20%
		Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-	Combined Toplit and Sidelit-
			South Facing Sidelit: 6%-8%, Toplit: 2%-3%		South Facing Sidelit: 6%-8%, Toplit: 2%-3%
		North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5%	North Facing Sidelit: 9%-13%, Toplit: 3%-5
Interior Lighting	Gym Toplighting (Daylighting Fenestration to Floor Area Ratio)		South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors 7% to 10%	South Facing Roof Monitors: 5% - 8% North Facing Roof Monitors 7% to 10%	South Facing Roof Monitors: 5% - 8% Nor Facing Roof Monitors 7% to 10%
Daylighted Option	Toplighting in Corridors, Offices, Media Center, Bathrooms, Cafeteria, and Kitchen (Daylighting Fenestration to Floor Area Ratio)	Skylights: 3%-4%	Skylights: 3%-4%	Skylights: 3%-4%	Skylights: 3%-4%
	Lighting Power Density (LPD)	0.9 W/ft ² maximum	0.9 W/ft ² maximum	0.9 W/ft ² maximum	0.9 W/ft ² maximum
	Light Source system efficacy (linear fluorescent and HID)	85 mean lumens/ watt minimum	85 mean lumens/ watt minimum	85 mean lumens/ watt minimum	85 mean lumens/ watt minimum
	Light source system efficacy (all other sources)	50 mean lumens/watt minimum	50 mean lumens/watt minimum	50 mean lumens/watt minimum	50 mean lumens/watt minimum
	Lighting Controls - general	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones	Manual on, Auto-off all zones
	Dimming Controls Daylight Harvesting	Dim all fixtures in daylit spaces, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge		Dim all fixtures in daylit spaces, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge	Dim all fixtures in daylit spaces, and other fixtures within 15 ft of sidelighting edge, and within 10 ft of toplighting edge
VAV and Chiller	Water-Cooled Chiller Efficiency				6.0 COP
System	Gas Boiler	95% E _c			95% E _c
-,	Economizer	>54 kBtu/h	>54 kBtu/h	>54 kBtu/h	>54 kBtu/h
	Ventilation	65% effective total energy recovery AND demand control	65% effective total energy recovery AND demand control	65% effective total energy recovery AND demand control	65% effective total energy recovery AND demand control
	Fans	65% efficient fan, 90% efficient EC motor	65% efficient fan, 90% efficient EC motor		65% efficient fan, 90% efficient EC motor
Ducts and	Outdoor air damper	motorized			motorized
Dampers	Friction rate	0.06 in w.c./100ft	0.06 in w.c./100ft	0.06 in w.c./100ft	0.06 in w.c./100ft
Bampera	Sealing	Seal Class B	Seal Class B	Seal Class B	Seal Class B
	Location	interior only	interior only	interior only	interior only
	Insulation level				R-8
Service Water					95% Et
	Gas instantaneous	0.81 EF or 81% Et			0.81 EF or 81% Et
-		EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume	EF>0.99-0.0012 x Volume
	Electric (storage or instantaneous) Pipe insulation (d < 1.5 in. / d >= 1.5 in.)		1 in./ 1.5 in.	1 in./ 1.5 in.	1 in./ 1.5 in.
	Office Equipment	EnergyStar equipment, nighttime standby		EnergyStar equipment, nighttime standby mode	EnergyStar equipment, nighttime standby mode
	0				
	Computers	LCD monitors, EnergyStar equipment		LCD monitors, EnergyStar equipment	LCD monitors, EnergyStar equipment
	Transformers	98% efficient CL-3 rated transformers		98% efficient CL-3 rated transformers	98% efficient CL-3 rated transformers
	Misc. Equipment (Kitchen, Classrooms)	EnergyStar equipment	EnergyStar equipment	EnergyStar equipment	EnergyStar equipment

6. References

AEDG-SO (2004). Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia, 2004.

AEDG-SR (2006). Advanced Energy Design Guide for Small Retail Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia, 2006.

ASHRAE (1989). ANSI/ASHRAE/IESNA Standard 90.1-1989 Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, Georgia, 1989.

ASHRAE (1999). ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, Georgia, 1999.

ASHRAE (2001). ASHRAE Standard 62-2001 Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, Georgia, 2001.

ASHRAE (2004a). ANSI/ASHRAE/IESNA Standard 90.1-2004 Energy Standard for Buildings except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, Georgia, 2004.

ASHRAE (2004b). *ANSI/ASHRAE Standard 62.1-2004 Ventilation for Acceptable Indoor Air Quality*. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, Georgia, 2004.

ASHRAE (2005). *ASHRAE Handbook: Fundamentals*, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia, 2005.

ASHRAE (2007). *ASHRAE Handbook: HVAC Applications*, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia, 2007.

ASU (2006). American School and University 32nd Annual Official Education Construction Report. May, 2006. <u>http://asumag.com/ar/605asu21.pdf</u>.

DOE (2007). EnergyPlus Energy Simulation Software. <u>www.eere.energy.gov/buildings/energyplus/</u>. Washington, D.C. U.S. Department of Energy.

EIA (2005). 2003 Commercial Buildings Energy Consumption Survey. Washington, DC: EIA. Available from www.eia.doe.gov/emeu/cbecs/cbecs2003/introduction.html.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J. (2007). *Methodology for Modeling Building Energy Performance across the Commercial Sector*. September 2007. In Draft. NREL Report No. TP-550-41956. Golden, CO: NREL.

Jarnagin, R.E., et. al. (2006). *Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings*, November, 2006. Pacific Northwest National Laboratory, Report No. PNNL-16250. Richland, Washington.

Judkoff, R.; Neymark, J. (1995). *International Energy Agency Building Energy Simulation Test* (*BESTEST*) and *Diagnostic Method*. NREL Report No. TP-472-6231. Golden, CO: NREL.

Liu, B., et. al. (2006). *Technical Support Document: Development of the Advanced Energy Design Guide for Small Retail Buildings*, September, 2006. Pacific Northwest National Laboratory, Report No. PNNL-16031. Richland, Washington.

North Carolina (2007). North Carolina State Suggested K-12 School Space Profiles, <u>www.schoolclearinghouse.org/</u>. Last Accessed May 2007.

SPM (2007). School Planning and Management 2007 Construction Report. www.peterli.com/global/pdfs/SPMConstruction2007.pdf Last Accessed May 2007.

Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff R. (2006). *Lessons Learned from Case Studies of Six High-Performance Buildings*, National Renewable Energy Laboratory Report No. TP-550-37542. <u>www.nrel.gov/docs/fy06osti/37542.pdf</u>.

USGBC (2006). *New Construction & Major Renovation, Version 2.2.* Leadership in Energy and Environmental Design, U.S. Green Buildings Council, Washington, DC.

Appendix A. Project Committee Meeting Agendas

A.1 Meeting #1 Agenda

Agenda Meeting #1 Advanced Energy Design Guide-K12 Project Committee Meeting ASHRAE Headquarters 1791 Tullie Circle Atlanta, GA 30329 404-636-8400

Friday, December 8, 2006, 8:30 am – 5:30 pm Saturday, December 9, 2006, 8:00 am – 2:00 pm

1.	Welcome – Torcellini	Friday, 8:30 am
2.	Introductions: Give Name/Affiliation	
	and experience in working on design of schools	
3.	Review of Agenda – Torcellini	9:00
4.	AEDG Overview – Colliver	9:10
	a) Organization of AEDG Series	
	b) Committee make-up structure/partnering organization	
	c) Scoping Document formation	
	d) Reference Case Determination	
	e) Definition of Project Committee/Focus Group/Resource Group	
5.	Lessons Learned on the Retail Guide – McBride	9:40
6.	Break	10:00
7.	Future Meeting Schedule (bring your calendars for next spring/summer)	10:15
8.	Review and Questions on Scoping Document – Torcellini	10:30
	a) Context of the other AEDGs	
	b) Goals & Objectives of the Guide	
	c) Target Audience	
	d) Review of Scoping document	
	e) Resolve remaining scope issues:	
	• school size limit	
	• 30% apply to each space type or to entire campus	
	 Energy Savings Methods (plug or not plugs) 	
	f) Peer Review Process	
9.	Lunch	12:30
10.	Outline of AEDG	1:30
	g) Review outline of previous Guides	
	h) Discuss possible modifications/changes	
	i) How will this guide be unique?	
	i) Literature review of existing materials (Pless)	
	ii) What new information will be provided?	
	Analysis Engine – Torcellini/Pless	2:30
	Break	3:00
13.	Benchmark/Reference Building – How is it defined? – Torcellini/Pless	3:15
	j) CBECS background search (Pless)	

	k)	Elementary/High benchmarks	
	1)	Define parameters (or identify where to find them)	
		i) Amenities provided	
		ii) Number/Size of classrooms, offices, gyms,	foodservice, etc.
		iii) Type of HVAC	
14.	Develo	pment of AEDG-Schools	Saturday, 8:00
	m)	Architectural Features	•
	n)	Lighting Criteria	
		Envelope Criteria	
	· · · ·	HVAC/Service water heating	
	q)	Commissioning	
	r)	Case Studies	
	s)	Bonus Savings	
	t)	Other?	
15.	Break		10:15
16.	Develo	pment of AEDG-Schools (cont.)	10:45
	u)	Architectural Features	
	v)	Lighting Criteria	
	w)	Envelope Criteria	
	x)	HVAC/Service water heating	
	y)	Commissioning	
	z)	Case Studies	
	aa)	Bonus Savings	
	bb)	Other?	
17.	Lunch		12:00
18.	Finalize	e Focus Group	1:00
	cc)	Roster confirmation	
	dd)	Review draft questions	
19.	Finalize	e Resource Group	
	ee)	Roster confirmation	
	ff)	Technical Committees to be represented?	
	gg)	Other representatives?	
	hh)	How utilize this expertise?	
20.	Additic	onal Issues	
21.	Review	v of Action Items	1:30
22.	Next M	leeting	
23.	Adjour	n	2:00
	-		

Action Items

1	Darriarre	Comina	Destruct
1.	Review	Scoping	Document

2. Review AEDG-Retail (should have received one in the mail)

A.2 Conference Call #1 Agenda

Conference Call 1/12/2007, 12:30pm to 3:30pm EST.

Items to discuss:

- 1) Review of old Action Items
- Comments on Meeting #1 minutes
 Who is coming to the focus group meeting? PC Meeting #2?

- 4) Comments on updated focus group agenda/questions
 - a) Items to send to focus group
 - i) Agenda/questions
 - ii) Examples from SO and SR guides
 - iii) Scoping document
 - iv) 35% concept draft?
- 5) Review of concept draft input- we need some consistency in terms of detail and format for the 30% draft. All of the content should be in outline form.
- 6) Baseline Determination:
 - a) Campus vs single building? California new schools?
 - b) We had an email discussion about year round vs. no summer operation, and from what I heard, most schools are not operated fully year round, but do have some limited use during the summer. Do any PC members have any survey data on this, at the national level, or at a district level?
 - c) "Typical" HVAC systems- From John Murphy, all of these systems are standard, but vary by region and between high and elem:
 - i) Packaged and split DX systems with: indirect gas-fired heater, electric resistance heat, or heat pump.
 - ii) Water-source (or ground-source) heat pumps
 - iii) Liquid water chillers and boilers with classroom unit ventilators
 - iv) Liquid water chillers and boilers with central air handlers (constant-volume or VAV)
- 7) Review of new Action Items

2. 3.

4. 5.

6. 7.

8) Review of future meeting schedule

A.3 Focus Group Agenda and Questions

1. Fill in the posters on the walls answering the following questions:

a. Much material already exists on building energy efficiency and sustainability in schools. Will the information presented in this guide (as outlined in the scope) be a useful addition? 11:3				
i. What existing guides for schools are you aware of?				
ii. Do you use any of these guides?				
iii. What audience do you think they are intended for?				
iv. What are the gaps in these guides?				
b. What would influence you to do an energy efficiency school?				
Welcome – Torcellini 11:40 ar				
Introductions: Give Name/Affiliation and experience in working on design of schools				
Review of Agenda – Torcellini	11:45 am			
AEDG Overview – Colliver	11:50 am			
a. Organization of AEDG series				
b. Review of scoping document and background				
Group discussions addressing the following questions:				
Discuss poster results 12:00 pm				

8.		schools you are involved with, what is the common practice to the local standard energy standard applied?	12:20 pm
	a.	Energy code compliant?	
	b.	10% better than code?	
	c.	How difficult do you think achieving this guideline's 30% goal might be prescriptive path to do so).	e (given a
	d.	Do you think the 30% goal is achievable?	
9.	What w	yould influence you to do a 30% school?	1:00 pm
	a.	Or to not do it?	
	b.	Would you consider using a different system type than your typical HVA	AC system?
	c.	Would you be willing to spend more money to achieve a sustainable built be used as an educational example?	lding that could
10.	What e	nergy strategies should be addressed in the guide?	1:30 pm
	a.	Brainstorm energy strategies you would use	
	b.	Brainstorm additional energy strategies you would consider (pros and co	ons of each)
	c.	Strategies you would not consider and why	
	d.	Strategies that you would need for a 30% savings school?	
11.		feel recommendations should be individualized to separate types and sizes (elem, middle, high)?	2:30 pm
	a.	Describe what you consider to be a typical school (including size, types of spaces, HVAC system type)	
	b.	Do we need recommendations on specialty uses or space types (swimming pools, sports complexes, hours of operation)?	
	c.	Are there energy use issues related to public vs. private schools?	
	d.	Middle vs. high schools?	
12.		yould an appropriate format look like (show examples and discuss)? yould be most helpful/usable way to present recommendations and results	? 3:00 pm
	a.	Possible options include:	
	•	<u>An entire facility approach</u> with (2) scenarios based on size, where the 3 calculated for the overall facility? (small = elementary and large = high)	
	•	<u>A multiple space approach</u> , where the 30% savings are calculated for each separately? (Spaces to include administrative & office, classrooms/hally gymnasiums, assembly spaces, food preparation, library & "clean" labs,	vays/restrooms,
	•	<u>An integrated systems approach</u> , where envelope & lighting issues are as space type and mechanical systems addressed through overall integration facility?	
13.	What n	nakes a valuable case study?	3:15 pm
	a.	What type of info would you like to see?	

- b. How much detail should be provided?
- c. Are photos helpful?
- d. How many case studies are appropriate?
- e. Do you prefer whole building vs individual technology case studies?
- f. Is the level of detail in our current case study list appropriate? (our current case study list will be provided at meeting)

14. Adjourn

3:30 pm

Other questions to consider:

- Should we consider water-cooled equipment such as water-cooled chillers?
- Is there an issue with maintenance on water-cooled equipment that should stop us from considering it?
- Would it be worthwhile or would you be able to provide absenteeism statistics?
- What is the best way to tie-in all the goals of all the organizations together (AIA, USGBC, IESNA, DOE, ASHRAE)?

A.4 Meeting #2 Agenda

Agenda Meeting #2 Advanced Energy Design Guide-K12 Project Committee Meeting ASHRAE Headquarters 1791 Tullie Circle Atlanta, GA 30329 404-636-8400

Friday, January 19, 2007, 8:30 am – 5:30 pm Saturday, January 20, 2007, 8:00 am – 2:00 pm

Business Casual Attire

1.	Welcome – Torcellini	Friday, 8:30 am
2.	Introductions: Review of Agenda – Torcellini	9:00
3.	Meeting Goals (to be done before we leave):	
f)	Establish benchmark so NREL can start running simulations	
g)	Develop action item list to get to 65% text completion by 2/9/07	
h)	Identify holes in draft-determine appropriate scope and depth to each s	ection
4.	Next meeting 2/23-2/24 in Atlanta.	
i)	There is a conference call scheduled for 2/9? Can we move this to 2/8/0	7? (The chairman is not
	available on 2/9.)	
5.	Old Action Items Review – Torcellini	9:10
6.	Discuss Results from yesterday's Focus Group - Torcellini, Pratt, Hunn	9:20
7.	Break	10:00
8.	Baseline Discussion - Torcellini/Pless	10:15

- 8. Baseline Discussion Torcellini/Pless
 j) Review proposed baseline model characteristics
- k) Elem/middle/high model scorecards

109

- 1) Outstanding baseline model issues:
 - (a) Campus type floor plan vs a single building floor plan? Do most new schools in temperate climates (California) have the corridors outside?
 - (b) Determine typical floor plans for elem, middle, and high schools
 - (c) We had an email discussion about year round vs. no summer operation, and from what I heard, most schools are not operated fully year round, but do have some limited use during the summer. Do any PC members have any survey data on this, at the national level, or at a district level?
 - (d) "Typical" HVAC systems- From John Murphy, all of these systems are standard, but vary by region and between high and elem:
 - (i) Packaged and split DX systems with: indirect gas-fired heater, electric resistance heat, or heat pump.
 - (ii) Water-source (or ground-source) heat pumps
 - (iii) Liquid water chillers and boilers with classroom unit ventilators
 - (iv) Liquid water chillers and boilers with central air handlers (constant-volume or VAV)

12:30

3:00

- 9. Lunch
- 10. Continue discussion on #8
- 11. Begin list of energy efficiency measures (EEMs) to include in 30% advanced energy model and Chapter 3 2:00
- m) Required measures vs. suggested measures
- n) Cost and performance data?
- o) How do we model the measure?
- 12. Break
- 13. Development of AEDG-Schools by subcommittee (Break up into groups) 3:15
 - Introduction Torcellini
 - Chapter 1 (Why, Who, How to use guide) Nicklas, Schoff, O'Brien
 - Chapter 2 (Process for Achieving Savings) Sharma, Brenner
 - Chapter 3 (Recommendation Tables) Pless, Torcellini
 - Chapter 4 (Case Studies) Schoff
 - Chapter 5 (How to recommendations)
 - QAs/Commissioning Sharma, Brenner
 - Envelope Nicklas (lead), McBride, O'Brien, Eley
 - Lighting Davis (lead), Benya, Eley, Nicklas
 - HVAC Murphy (lead), Goldman, Marriott
 - SWH Murphy (lead), Goldman, Marriott
 - Electrical Distribution Schoff (lead), Davis, Benya
 - Bonus Savings all
- 14. Develop agenda for TC 9.7 at ASHRAE Winter meeting (Milton/Shanti) Saturday, 8:00

p)	They can help to answer so	ome of the HVAC issues the focus group was not able	to address.
15.	Continue #13 from Friday		8:30
16.	Reconvene as group and d	iscuss draft	10:30
17.	Discussion of Cover an	nd other format issues	11:45
18.	Lunch		12:00
19.	Additional Issues		1:00
20.	Review of Action Items		1:30
21.	Adjourn		2:00

A.5 Conference Call #2 Agenda

Agenda Conference Call #2 Advanced Energy Design Guide-K12 Thursday, February 8, 2007, 12:30 pm – 3:30 pm

Items to discuss:

- 1) Review of old Action Items (current AI List below)
- 2) Comments on Meeting #2 minutes (will be sent out before conference call)
- 3) Confirm attendance for 2/23-2/24 AEDG-Schools meeting in Atlanta
- 4) Review of TC 9.7 meeting at ASHRAE (meeting notes are below)
- 5) Review status of the current draft
 - a) Status of each section
 - b) Progress towards the 65% draft
- 6) Review of new Action Items
- 7) Review of future meeting schedule

A.6 Meeting #3 Agenda

Agenda Meeting #3 Advanced Energy Design Guide-K12 Project Committee Meeting ASHRAE Headquarters 1791 Tullie Circle Atlanta, GA 30329 404-636-8400

Friday, February 23, 2007, 8:30 am – 5:30 pm Saturday, February 24, 2007, 8:00 am – 2:00 pm

Business Casual Attire

Friday, 8:30 am

- Welcome Torcellini
 Introductions: Review of Agenda Torcellini
- 3) Meeting Goals (to be done before we leave):
 - a) Establish energy efficiency measures to include in the advanced guide tables (Finalize format for the tables.)
 - b) Identify holes in draft-determine appropriate scope and depth to each section
 - c) Develop action item list to get to 65% Draft completed by 3/5/07 to be published on web by 3/9/2007.
- 4) Next meeting 4/12-4/13 in Golden.
 - a) Atlanta or Golden- Golden it is- we will send out info on Marriott Denver West- try to get our rate, transportation, car rental, .

5)	Report on Steering Committee discussion – Colliver	9:00
	a) Plug loads	
	b) Ventilation standard	
	c) 30% and 50%	
6)	Comments on Conference Call #2 minutes	9:30
7)	Old Action Items Review – Torcellini	9:35
8)	Break	
9)	Moved item 13-c here- 10:00 to lunch	10:00
10)	Lunch	12:00

 11) Discuss list of energy efficiency measures (EEMs) advanced energy model and Chapter 3 a) Required measures vs. suggested mea b) Cost and performance data? c) How do we model the measure? 	12	2:45
c) How do we model the measure?d) Bequirements but no energy servings	(nhug loods)	
d) Requirements, but no energy savings		.00
12) Review Status and Comments of each Chapter	2	:00
a) Forward b) Chanten 1 (inter) Chanten 2 (number)	there have been examplified in Dillows	1 17 - 41-1 ? -
b) Chapter 1 (intro), Chapter 2 (process) draft	- they have been combined in Bill and	i Kathleen s
	musture (without data)	
get with the advanced energy Platform	s and results. Show an example of ho measures currently available in the A	
ii) Pages? New fields?		
d) Chapter 4 – Case Studies- review curr	ent list of case studies	
e) Chapter 5 – How To Tips		
i) Site Selection and Orientation	l l	
ii) Envelope		
iii) Lighting/Daylighting		
iv) HVAC		
v) SWH		
vi) Electrical/Plug load vii) Bonus		
vii) Bonus 13) Break	2.	:00
14) Continue discussion on #12		:15
15) Review status of meeting goals		:00 am
16) Subcommittee breakouts		:15 am
a) HVAC	0.	10 uni
b) Lighting		
c) Envelope		
d) Process/Commissioning/integrated de	sign	
e) Plug and Process Loads		
17) Break	10	0:00
18) Case Study Discussion	10	0:15
19) 65% Review process	11	1:00
a) Review notification		
b) Collection of "Review Remarks"		
c) Assembly of "Review Remarks"		
20) Discussion of Cover and other format issues	12	2:00
a) ASHRAE Pubs will have some sort of	f mock-up for review	
21) Lunch		2:00
22) Additional Issues		:00
23) Review of Action Items		:30
24) Adjourn	2:	:00

A.7 Meeting #4 Agenda

Agenda Meeting #4 Advanced Energy Design Guide-K12	
Project Committee Meeting	
National Renewable Energy Laboratory	
Wednesday, April 11, 2007 Afternoon Tours Thursday, April 12, 2007 8:00 am – 5:30 pm Friday, April 13, 2007 8:00 am – 1:30 pm	
Thursday 4/12/2007	
1) Continental Breakfast at NREL	7:30 am
2) Welcome – Torcellini	8:30 am
3) Introductions: Review of Agenda – Torcellini	
4) Meeting Goals (to be done before we leave):	
a) Review simulation results	
b) Address and document responses to remarks.	
c) Identify holes in draft	
d) Develop action item list to get to 90% Draft completed by 7/6/07	
5) Next meeting 6/4-6/5 in Golden.	0.45
6) Update on ASRHAE/IESNA/AIA/USGBC goals – Colliver	8:45
 Comments on Meeting #3 minutes Old Action Items Review and update– Torcellini 	9:00 9:15
 8) Old Action Items Review and update– Torcellini a) See AI list Appendix- this has not been updated from 3/5/2007 version 	9.13
 9) Discuss simulation results – Pless and Torcellini 	9:30
a) Review advanced energy model scorecards	2.50
b) Discuss advanced energy measures currently modeled	
10) Lunch	12:00
11) Review general 65% draft remarks and determine responses	12:30
a) Overall observations	
b) Problems based on first look?	
c) Major holes in 65% draft?	
12) Break	3:00
13) Case study review	
a) Review current list of possible case studies (Schoff lead)	
b) we need to start making decisions on which case studies to include	3:15
14) Depart for Dinner at Table Mountain Inn, Golden	5:30
Friday, 4/13/2007	
15) Continental Breakfast at NREL	7:30 am
16) Meeting Starts	8:00 am
17) Break up into chapter groups to address/draft outstanding TBD sections of the 65% Outstanding TBD sections include:	draft:
• Duct Friction in Chapter 3 Tables	

- SHW Electric Storage and pipe insulation in Chapter 3 Tables
 Chapter 5- EL7: General Lighting Circuiting and Switching
- Sample Electrical Lighting Design for schools (sample designs to get to 0.9 W/ft2)
 - EL8 Classroom Lighting

- EL9 Gym Lighting
- EL10 Corridor Lighting
- EL11 Office Lighting
- EL12 Auditorium Lighting
- DL-32 Skylights sample gym skylight design to achieve the required DSP for gyms
- DL35 Select compatible light fixtures
- AS4 Exterior lighting (field and parking lot lights in additional savings)
- AS5 Water use savings
- AS6 Specialty space types or technologies

• Others?	
18) Break	10:30
19) Discuss possible cover art/photos	10:45
20) Discuss additional work to draft 90% draft	11:15
21) Lunch	12:30
22) Additional Issues	1:00
23) Review of Action Items	1:15
24) Adjourn	1:30

A.8 Conference Call #3 Agenda

AEDG-K12 Conference Call Date: **Friday - May 18, 2007** Time: **12:30pm – 3:30pm EDT** (11:30am CDT, 9:30am PDT)

Preliminary Agenda

- 1. Review Action Item list
- 2. Review overall schedule
- 3. Review status and unresolved items from 65% remarks
- 4. Review simulation results to date.
- 5. Review draft of case study for format
- 6. Discussion on which case studies to include
- 7. Create action items to complete 90% draft. We need to be nearly completed before the June AEDG Meeting in ATL.
 - a. Review each chapter and look at needs for completion

A.9 Meeting #5 Agenda

Agenda Meeting #5 Advanced Energy Design Guide-K12 Project Committee Meeting ASHRAE Headquarters 1791 Tullie Circle Atlanta, GA 30329 404-636-8400

Monday, June 4, 2007, 8:30 am – 5:30 pm Tuesday, June 5, 2007, 8:00 am – 12:30 pm

1) Welcome - Torcellini

Monday, 8:30 am

- 2) Introductions: Review of Agenda Torcellini
- 3) Meeting Goals (to be done before we leave):
 - a) Identify holes in draft-determine missing pieces from each section

 b) Review and complete response letter for 65% remarks. c) Develop action item list to get to 90% Draft completed by 7/9/2007. d) Agree on a path forward for the lighting/daylighting set 4) Next meeting 8/2-8/3 in Golden. 	-	e published on web
a) we will send out info on Marriott Denver West-		
b) non-US citizens		
5) Comments on Conference Call #3 minutes		9:00
 6) Action items review (see Appendix A) – Torcellini 7) Busch 		9:35
7) Break8) Review general responses to 65% Draft remarks		10:00 10:15
9) Review simulation results		10.13
a) Non-daylit, daylit, HVAC variations		
b) Chapter 3 recommendation tables		
10) Lunch		12:30
11) Subcommittee breakout to address outstanding items		1:00
a) Lighting/daylighting (complete tables in Appendix B)		
i) Eley, Benya, Nicklas, Davis, Pratt, Pless		
b) HVAC i) Murphy, Marriott, Goldman, Colliver		
c) Case studies/Front matter/Envelope		
i) Brenner, O'brien, Schoff, Sharma, McBride		
12) Review of subgroup progress		5:00
13) Dinner vote and vote counting		5:30
14) Review status of meeting goals	Tuesday,	8:00 am
15) Additional subcommittee breakouts		8:15 am
a) Lighting/daylighting		
b) HVACc) Envelope		
d) Case studies/Front matter		
i) Review partially completed case studies		
ii) Identify additional case studies?		
16) Break		
10) Dicuk		10:00
17) Continue number 15 from above		10:00 10:15
17) Continue number 15 from above18) 90% Review process		
17) Continue number 15 from above18) 90% Review process a) Review notification		10:15
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" 		10:15
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" c) Assembly of "Review Remarks" 		10:15 12:00
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" c) Assembly of "Review Remarks" 19) Discussion of Cover and other format issues 		10:15
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" c) Assembly of "Review Remarks" 		10:15 12:00 12:00
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" c) Assembly of "Review Remarks" 19) Discussion of Cover and other format issues 20) Lunch 21) Additional Issues 22) Review of Action Items 		10:15 12:00 12:00 12:30 12:35
 17) Continue number 15 from above 18) 90% Review process a) Review notification b) Collection of "Review Remarks" c) Assembly of "Review Remarks" 19) Discussion of Cover and other format issues 20) Lunch 21) Additional Issues 		10:15 12:00 12:00 12:00 12:30

A.10 Conference Call #4 Agenda

AEDG-K12 Conference Call #4

Date: Tuesday- June 19, 2007

Time: 12:30pm – 2:00pm EDT (11:30am CDT, 9:30am PDT)

Agenda:

- 1. Review Action Items (page 36, 6/13 8:13 pm e-mail from Shanti Pless)
- 2. Discuss Cover Design (see Lilas e-mail)
- 3. Review simulation information (from earlier Shanti e-mail)
 - a. Information in spreadsheet (which will get translated to the recommendation tables)
 - b. Questions/comments
 - c. Issues?
- 4. Discuss status of 90% draft (latest draft was e-mailed out this morning)
 - d. Need to identify figures for AIA to recreate
 - e. Gaps in the text
- 5. Next draft (schedule)
- 6. Future conference call schedule (Currently scheduled for 12:30 EDT on 7/2—I will be on an airplane at that time)
- 7. Details on August/Denver Meeting
 - f. Foreign National Data Cards
 - g. August 2 (8:00-5:30 pm), August 3, (8:00-12:30 pm)

A.11 Conference Call #5 Agenda

AEDG-K12 Conference Call #5

Date: Monday, July 2, 2007

Time: **10:30pm – 1:30pm EDT** (9:30am CDT, 8:30am MDT, 7:30am PDT)

Agenda:

- 1. Review Action Items (Conference Call #4 Report, Appendix F, page 21)
- 2. Discuss status of 90% draft
 - a. Gaps in the text
 - b. Case study update
 - c. New lighting/daylighting chapter
- 3. Next draft (schedule)
- 4. Review simulation information (from earlier Shanti e-mail)
 - d. Chapter 3 Recommendation Tables Spreadsheet (which will get translated to the recommendation tables)
 - e. Questions/comments
 - f. Issues?
- 5. Details on August/Denver Meeting
 - g. Foreign National Data Cards
 - h. August 2 (8:00-5:30 pm), August 3, (8:00-12:30 pm)

A.12 Meeting #6 Agenda

Agenda Meeting #6 Advanced Energy Design Guide-K12 **Project Committee Meeting** National Renewable Energy Laboratory Thermal Test Facility (TTF) Conference Room 303-384-7538

Wednesday, August 1, Arrivals Thursday, August 2, 2007 8:00 am – 5:30 pm Friday, August 3, 2007 8:00 am – 1:30 pm

4:45 pm

Wednesday:

Van pick-up at Denver International Airport 1.

Thursday:

8:30 am pendix F for 8:35 8:40 8:45
8:40
tion tables.
ission forms) 10:00 10:15)
1:15
i

Friday:

13.		v status of meeting goals	8:00 am
14.		onal subcommittee breakouts	
	8:15 ai		
	a)	Lighting/daylighting	
	b)	HVAC	
	c)	Envelope	
	d)	Case studies/Front matter	
15.	Break		10:00
16.	Develo	op Action items to address incomplete sections	10:15
	0	Identify sidebar bar case studies- Identify where technology side bar examples couseful	ould be
	0	References	
	0	EL-8: We currently reference CHPS to show how to design the electrical LPD of	f 0.9
	-	W/ft2- Do we want to provide our own schematics and lighting layouts to meet (
		W.ft2?	
	0	Further develop the how to's for the classroom sidelighting plus toplighting strat	egies
	0	Further develop the how to's for the gym skylights	
	0	Drawings- We need a list of graphics needed-make preliminary drawings that w	ve can
		scan for later refinement.	
17.	Review	v simulation results	10:30
	a)	Non-daylit, daylit, HVAC variations	
18.	Case S	tudies ?	11:00
	0	All pics as high res tiffs	
	0	Measured data difficult to collect	
19.	Final A	Approval of Cover and other format issues	11:30
20.	Lunch		12:00
21.	Additi	onal Issues\Additional subcommittee breakouts	12:30
	a)	Lighting/daylighting	
	b)	HVAC	
	c)	Envelope	
	d)	Case studies/Front matter	
22.	Adjou		2:00
	5		

Appendix B. Responses to 65% Draft Review Remarks

SUMMARY RESPONSE TO PEER REVIEW REMARKS AND RECOMMENDATIONS RECEIVED ON 65% TECHNICAL REFINEMENT DRAFT OF

ADVANCED ENERGY DESIGN GUIDE: K-12 SCHOOLS June 20, 2007

On March 12, 2007, the Project Committee for the Advanced Energy Design Guide for K-12 School Buildings issued a 65% Technical Refinement Draft of the document *Advanced Energy Design Guide for K-12 School Buildings*. Following the review period of March 12-23 the AEDG-K12 Project Committee met on April 12-13 and June 4-5 to review the recommendations received.

350 remarks and review recommendations were received from 27 reviewers representing ASHRAE SSPC 90.1, TC 9.7, AIA, IESNA, USGBC and the ASHRAE membership at large. The following documents the Project Committee's summary response to those remarks and recommendations. Although many of the suggestions dealt with details presented in the draft, this summary includes responses only to significant technical recommendations, especially those in which there was disagreement with what had been written or omitted. The specific and detailed suggestions and remarks have been, and will continue to be, reviewed and digested by the Project Committee as it prepares the next draft of the guide. The review remarks received fall into the following six categories.

1) General Comments

- It was suggested that language and terminology used in the guide should be consistent with that in Standard 90.1. This issue applies to dozens of places in the draft. Keeping in mind that the intended audience for this guide includes school administrators as well as engineering and architectural professionals, the committee established that the first priority will be readability; and the second, consistency. Thus specific terminology will in some cases depend on the context and the intent of the discussion; although consistency throughout the guide, with previous guides, and with the standard will be achieved to the extent possible.
- We emphasize that the guide presents *a way, not the only way* to achieve 30% energy savings so not all possible strategies will be included, especially specialty items. A balanced, multi-option approach is recommended.
- Energy use is considered the independent variable with cost effectiveness (i.e. simple payback or life cycle costing) as a dependent (or resulting) variable. While some the products or recommendations may be considered premium; all recommended equipment, systems, and technology specified in the document must be available from multiple manufacturers.
- While it is true that energy efficient construction costs can exceed standard construction costs, this is not a general rule. Thoughtfully designed, energy-efficient schools can actually cost less to build. When energy efficiency measures add to a school's construction cost, the savings in annual operating costs generally ensure a quick payback, often within a few years.
- As to the message to school administrators that advanced designs, especially daylighting, improve student performance, it was noted that some of these claims have been challenged. Wording will be changed to note that these are *reported* improvements, not necessarily established fact.
- Alaska and Hawaii are included in the climate zones and recommendation tables.

- Criteria used in the advanced case will be no less stringent than Standard 90.1-2007 (including addenda *as* and *at* as approved and the proposed metal buildings update for roofs and walls effective for construction in 2007).
- Renewable energy options, such as photovoltaics (PV), solar hot water, and wind, will be addressed in the Additional Savings section of the AEDG, as they are not needed to achieve the 30% target.
- The references will be expanded and will include the Second Edition of the ASHRAE GreenGuide.
- All text that incorrectly references "retailers" or includes recommendations specifically for retail buildings will be removed from the document.
- 2) Introduction (Chapter 1)
 - Discussion of commissioning in the Forward and Introduction is intended only to remind the reader that commissioning is essential to successful implementation of the design. The next draft will include a more comprehensive discussion of the commissioning process and requirements throughout the guide.
 - A note will be added to explain that items not included in the Recommendation Tables must meet code minimum (typically Standard 90.1).
- 3) How to Use an Integrated Design Approach (Chapter 2)
 - In the Pre-design phase discussion, the terms QA and commissioning are both used because commissioning goes from the beginning of design through the operational stage. It has been clarified in the text that commissioning is only one aspect of quality assurance.
 - In the Occupancy phase discussion:
 - Commissioning will be added to the occupancy phase discussion.
 - The proposed development of a school district policy regarding plug loads will be added.
 - The owner and designer will be added to preparation of punch list in Table 2.4.
 - Discussion of a time limit for submission of O&M manuals will be added to Table 2.4.
 - More detail on the integration of building systems will be given in the next draft.
- 4) Recommendations by Climate (Chapter 3)
 - a) Envelope
 - The roof recommendations will change from "Surface reflectance/emittance" to SRI=78, based on initial values listed by the Cool Roof Rating Council.
 - All fenestration properties (U-factor, SHGC, VLT, etc.) will be NFRC rated values for actual products. Recommend fenestration properties will represent actual window and glass
 - Recommendations for the minimum visible light transmittance will be coordinated between envelope and daylighting for consistency.
 - Clear, prescriptive recommendations will be provided to meet the Daylighting Saturation %, providing "a way but not the only way" to incorporate daylighting.
 - The lighting section will provide guidance on view glazing and daylighting glazing properties. The recommendations and properties may be different for these two uses of glazing.
 - The energy analysis by which the recommendations are compared between the base case and the AEDG buildings to assure that the 30% target is reached will follow the Standard 90.1, Appendix G, relating to the wall and fenestration areas.

- Fenestration area exposures by orientation will be considered to achieve recommendations that provide good quality combined thermal and daylighting solutions
- b) Lighting
 - The interior lighting section of the tables will be redesigned for clarity and accuracy.
 - Multiple daylighting strategies will be offered in the recommendation tables.
 - Daylighting options and recommendations will be addressed as a total system package.
- c) HVAC and SWH
 - Most facilities predetermine the type of fuel that is available to the site. As a result, the savings of 30% will be met for both electric and gas heated/hot water facilities. Efficiency values will be provided for gas and electric systems independently to provide a 30% savings allowing users to choose their source of energy.
- 5) Technology Examples and Case Studies (Chapter 4)
 - Additional case studies will be added for the next revision.
- 6) How to Implement Recommendations (Chapter 5)
 - a) Envelope
 - The benefits of thermal mass will be discussed in the additional savings section of the next revision.
 - Metal building roofs will be added to EN1 cool roofs.
 - EN27, EN28, and EN29: How to tips will be defined by climate zone in the next revision.
 - b) Daylighting and Lighting
 - Unfinished areas in the text will be completed and expanded incorporating the input received and clarifying the information as needed.
 - A number of areas were pointed out where the information as presented is misleading or inaccurate. These areas will be rewritten for clarity and accuracy.
 - Concern was raised about information being too general on some of the daylighting options. The daylighting section will be re-organized to provide specific design guidance for each of the daylighting options to be shown in the recommendation tables (see above).
 - Climate specific information and additional technical details will be included as needed for clarity and understanding. Diagrams and tables will be added or modified as needed.
 - Maintenance information will be added to address concerns about reliability and long term operation of controls, sensors, and other automatic lighting technology.
 - Caution information about building expansions, in-class projection systems, and exterior lighting issues will be included.
 - Concern was raised about the negative tone in some areas of the text. These areas will be rewritten to put the information and recommendations into a more positive tone.
 - Additional references will be provided as needed to back-up statements made about the benefits of lighting and/or daylighting options. Text will be modified to remove editorial comments and unsubstantiated statements.
 - c) HVAC and SWH
 - A number of areas will be rewritten to better clarify the information and to appropriately address the intended audience of architectural firms and consulting engineers.
 - Issues were raised regarding the duct work design and construction section; this section will be rewritten for clarity. Acoustic concerns will be addressed in the noise control section.

- Information on ventilation from a number of different sections will be consolidated in to the Ventilation section.
- A section on Dedicated Outdoor Air Systems (DOAS) will be added.
- Unit ventilators will be removed from the document, but fancoils will be added along with a section that specifically addresses associated good design practices.
- Fan power requirements will be verified and will be accounted for properly as determined by the results of the simulation runs.
- The information in the section on Relief versus Return Fans will be rewritten for clarity.
- Cautionary information on well field design will be added to a new Additional Savings section on ground source heat pumps.
- A maintenance section will be added to this chapter along with additional information in the commissioning chapter to address concerns about the calibration, reliability, and long term operation of controls, sensors, and other equipment.
- The sections on commissioning and hot water heating systems will be expanded.
- Information on the sizing and applicability of service hot water heating systems will be rewritten and expanded for clarity.
- Concern was raised about the climate applicability of recommendations for operable windows and humidity sensors. These recommendations will be rewritten to specify the appropriate conditions for use.
- Information on thermal displacement ventilation systems and thermal storage will be added to Additional Savings.
- While information from Codes, Standards, and Handbooks will not be duplicated in the document, additional references will be added and existing references will be clarified for applicability.
- Some questions were raised on recommended values as compared to standards 62.1 and 90.1; these values will be checked and verified.
- Recommendations will remain consistent with the applicable standards as the authors are not ready to adopt design and constructions methods for which consensus has not yet been reached in the industry.
- d) Additional Savings:
 - Due to the importance of the plug loads issue, wording on the need for school policy on the subject will be strengthened.
 - It was pointed out that information on transformers is not always available during the bidding process. The recommendation will be qualified to point this out.

Appendix C. Elementary School Baseline Scorecards

Table C-1 Elementary Baseline Scorecard: Climate Zones 1-3

Program					
Model Number	1	2	3	4	5
Building Name	Elementary School				
Location	Miami, FL	Houston, TX	Phoenix. AZ	Memphis. TN	El Paso. TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43, -112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	2B	3A	3B
Form					
Total Floor Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Number of Floors	1	1	1	1	1
Window Fraction (Window to Wall Ratio)	South: 0.35				
	East: 0.35				
	North: 0.35 West: 0.35				
	Total: 0.35				
Skylight/TDD Percent	0.19	0.19	0.19	0.19	0.19
Overhang Projection Factor	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
2 7 2 2	10.12 [4.00]	10.12 [4.00]	10.12 [4.00]	13.12 [4.00]	13.12 [4.00]
Fabric					
Exterior walls Construction	NB	NB	NB	R-5.7 ci	R-5.7 ci
		1.34 [0.24]			
R-value (ft [^] 2·hr·°F/Btu [m ² ·K/W])	1.34 [0.24]		1.34 [0.24]	5.79 [1.02]	5.79 [1.02]
Gross Dimensions - Total Area (ft ² [m ²])	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]
Net Dimensions - Total Area (ft ² [m ²])	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]
Roof					
Construction	R-15 ci				
R-value (ft^2·h·°F/Btu [m^2·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Net Dimensions - Total Area (ft^2 [m^2])	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]
Window					
Dimensions - Total Area (ft ² [m ²])	South: 3,496.76 [324.86]				
	East: 1,235.70 [114.80]				
	North: 3,496.55 [324.84] West: 1,235.80 [114.81]				
	Total: 9,464.92 [879.32]				
Class type and frame	Hypothetical window meeting U-factor and				
Glass-type and frame	SHGC shown below				
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 0.57 [3.26]	South: 0.57 [3.26]
· · · · · · · · · · · · · · · · · · ·	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 0.57 [3.26]	East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]
SHGC	South: 0.25				
	East: 0.25				
	North: 0.61 West: 0.25	North: 0.61 West: 0.25	North: 0.61 West: 0.25	North: 0.39 West: 0.25	North: 0.39 West: 0.25
Martin I. a foreign and Martin and					
Visible transmittance	South: 0.25 East: 0.25	South: 0.25 East: 0.25	South: 0.25 East: 0.25	South: 0.24 East: 0.24	South: 0.24 East: 0.24
	North: 0.67	North: 0.67	North: 0.67	North: 0.42	North: 0.42
	West: 0.25	West: 0.25	West: 0.25	West: 0.24	West: 0.24
Foundation					
Foundation Type	Mass Floor				
Construction	Carpet over heavy concrete and insulation				
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft^2 [m^2])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Interior Partitions	• • •		• • •		
Construction	2x4 steel-frame with gypsum board				
Dimensions - Total Area (ft ² [m ²])	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]
Internal Mass	,1	,	,1	,	,
Construction	6 inch wood				
Dimensions - Total Area (ft ² [m ²])	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]
Thermal Properties (lb/ft ² [kg/m ²])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Air Barrier System	10.00 [01.00]	10.00 [01.00]	10.00 [01.00]	10.00 [01.00]	10.00 [01.00]

Table C-2 Elementary Baseline Scorecard: Climate Zones 1-3 (C	ont.)	
---	-------	--

ogram					
Model Number	1	2	3	4	5
Building Name	Elementary School	Elementary School	Elementary School	Elementary School	Elementary School
Location	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43, -112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	2B	3A	3B
AC					
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
G3.1.1B System Number	0 F	0.5	0.5	0.5	
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (341.57 [1,201.29])	Autosized (329.58 [1,159.14])	Autosized (351.76 [1,237.16])	Autosized (308.97 [1,086.64])	Autosized (289.42 [1,017.89])
Heating (kBtu/h [kW])	Autosized (180.86 [617.12])	Autosized (207.51 [708.07])	Autosized (200.09 [682.74])	Autosized (212.57 [725.33])	Autosized (177.99 [607.31])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control					
Before Terminal Temperature Schedule	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
(°F [°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])					
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	No	No	Yes	No	Yes
		Yes			Yes
Night Cycle	Yes		Yes	Yes No	
Heat Recovery	No	No	No		No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads					
Fan Schedules	Always available	Always available	Always available	Always available	Always available
Supply Fan Efficiency (%)	55.00	55.00	55.00	55.00	55.00
Supply Fan Volumetric Flow Rate (cfm	150,847.09 [71.19]	144,774.38 [68.33]	157,533.22 [74.35]	131,155.07 [61.90]	130,291.20 [61.49]
[m^3/s])	0.40 [000.00]	0.40.7000.001	0.40.000.001	0.40.000.001	0.40.600.001
Supply Fan Pressure Drop (in H2O [Pa])	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m^3])	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]
rnal Loads & Schedules					
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Cooling	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting					
Average Power Density (W/ft^2 [W/m^2])	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]
Schedule	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]
Schedule	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Occupancy					
Average People (#/1000 ft^2 [#/100 m^2])	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]
Schedule	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG OCC SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH

Table C-3 Elementary Baseline Scorecard: Clin	mate Zones 3-5
---	----------------

ram					
Model Number	6	7	8	9	10
Building Name	Elementary School	Elementary School	Elementary School	Elementary School	Elementary School
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL
(Latitude, Longitude)	(37.62, -122.38)	(39.18, -76.67)	(35.05, -106.62)	(47.45, -122.3)	(41.78, -87.75)
Weather File	USA_CA_San.Francisco_TMY2.epw	USA_MD_Baltimore_TMY2.epw	USA_NM_Albuquerque_TMY2.epw	USA_WA_Seattle-Tacoma_TMY2.epw	USA_IL_Chicago-OHare_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
n				10	0,1
n Total Floor Area (ft^2 [m^2])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
	73,956.63 [0,671.00]	73,956.65 [6,671.00]	73,950.65 [0,071.00]	1	73,956.63 [0,671.00]
Number of Floors	1	1	1	I	1
Window Fraction (Window to Wall Ratio)	South: 0.35	South: 0.35	South: 0.35	South: 0.35	South: 0.35
	East: 0.35	East: 0.35	East: 0.35	East: 0.35	East: 0.35
	North: 0.35	North: 0.35	North: 0.35	North: 0.35	North: 0.35
	West: 0.35 Total: 0.35	West: 0.35 Total: 0.35	West: 0.35 Total: 0.35	West: 0.35 Total: 0.35	West: 0.35 Total: 0.35
Skylight/TDD Percent	0.19	0.19	0.19	0.19	0.19
Shading Geometry	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
ric					
Exterior walls					
Construction	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-7.6 ci
R-value (ft ^{^2·hr·°} F/Btu [m ^{2·K} /W])	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	7.31 [1.29]
Gross Dimensions - Total Area (ft^2 [m^2])	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]
Net Dimensions - Total Area (ft ² [m ²])	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]
Roof					
Construction	R-10 ci	R-15 ci	R-15 ci	R-15 ci	R-15 ci
R-value (ft^2·h·°F/Btu [m^2·K/W])	9.69 (1.71)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft^2	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
[m^2])					
Net Dimensions - Total Area (ft ² [m ²])	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]
Window					
Dimensions - Total Area (ft^2 [m^2])	South: 3,496.76 [324.86]	South: 3,496.76 [324.86]	South: 3,496.76 [324.86]	South: 3,496.76 [324.86]	South: 3,496.76 [324.86]
	East: 1,235.70 [114.80]	East: 1,235.70 [114.80]	East: 1,235.70 [114.80]	East: 1,235.70 [114.80]	East: 1,235.70 [114.80]
	North: 3,496.55 [324.84]	North: 3,496.55 [324.84]	North: 3,496.55 [324.84]	North: 3,496.55 [324.84]	North: 3,496.55 [324.84]
	West: 1,235.80 [114.81]	West: 1,235.80 [114.81]	West: 1,235.80 [114.81]	West: 1,235.80 [114.81]	West: 1,235.80 [114.81]
	Total: 9,464.92 [879.32]	Total: 9,464.92 [879.32]	Total: 9,464.92 [879.32]	Total: 9,464.92 [879.32]	Total: 9,464.92 [879.32]
Glass-type and frame	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor			
31	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 1.21 [6.89]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]
	East: 1.21 [6.89]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]
SHGC	South: 0.61	South: 0.39	South: 0.39	South: 0.39	South: 0.39
	East: 0.61	East: 0.39	East: 0.39	East: 0.39	East: 0.39
	North: 0.61	North: 0.49	North: 0.49	North: 0.49	North: 0.49
	West: 0.61	West: 0.39	West: 0.39	West: 0.39	West: 0.39
Visible transmittance	South: 0.67	South: 0.42	South: 0.42	South: 0.42	South: 0.42
visible transmittance	East: 0.67	East: 0.42	East: 0.42	East: 0.42	East: 0.42
	North: 0.67	North: 0.53	North: 0.53	North: 0.53	North: 0.53
	West: 0.67	West: 0.42	West: 0.42	West: 0.42	West: 0.42
Foundation					
	Mass Floor	Mass Floor	Mass Floor	Mass Floor	Mass Floor
Foundation Type					
Construction	Carpet over heavy concrete and insulation	Carpet over heavy concrete and insula			
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Interior Partitions					1
Construction	2x4 steel-frame with gypsum board	2x4 steel-frame with gypsum board			
Dimensions - Total Area (ft^2 [m^2])	31.559.79 [2.932.00]	31.559.79 [2.932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]
	31,008.78 [2,832.00]	31,009.79 [2,932.00]	31,333.73 [2,932.00]	31,008.78 [2,932.00]	31,009.79 [2,932.00]
Internal Mass					
Construction	6 inch wood	6 inch wood	6 inch wood	6 inch wood	6 inch wood
Dimensions - Total Area (ft ² [m ²])	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]
	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Thermal Properties (lb/ft^2 [kg/m^2])	10.00 [81.00]	10.00 [01.00]			
Thermal Properties (lb/ft ² [kg/m ²]) Air Barrier System	10.00 [81.00]	10.00 [01.00]	10.00 [01.00]		

Table C-4 Elementary Baseline Scorecard: C	Climate Zones 3-5 (Cont.)
--	---------------------------

ogram					
Model Number	6	7	8	9	10
Building Name	Elementary School				
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL
(Latitude, Longitude)	(37.62, -122.38)	(39.18, -76.67)	(35.05, -106.62)	(47.45, -122.3)	(41.78, -87.75)
Weather File	USA_CA_San.Francisco_TMY2.epw	USA_MD_Baltimore_TMY2.epw	USA_NM_Albuquerque_TMY2.epw	USA_WA_Seattle-Tacoma_TMY2.epw	USA_IL_Chicago-OHare_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
AC					
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC				
G3.1.1B System Number					
Heating Type	Gas Furnace				
Cooling Type	Direct Expansion				
Fan Control	Constant Volume				
Distribution and Terminal Units	Single Zone/Direct Air				
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (328.34 [1,154.79])	Autosized (298.39 [1,049.45])	Autosized (307.89 [1,082.86])	Autosized (280.32 [985.88])	Autosized (299.32 [1,052.72])
Heating (kBtu/h [kW])	Autosized (194.34 [663.12])	Autosized (222.42 [758.94])	Autosized (186.07 [634.89])	Autosized (194.08 [662.21])	Autosized (248.39 [847.53])
HVAC Efficiency		· · · · · · · · · · · · · · · · · · ·		x · · · · · · · · · · · · · · · · · · ·	
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control	00.00	00.00	00.00	00.00	66.66
	Jan - Mar: 55.4°F [13°C]				
Before Terminal Temperature Schedule (°F [°C])	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]				
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])	1071				
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
······································					
Economizer	Yes	No	Yes	Yes	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information				
Fan and Pump Loads					
Fan Schedules	Always available				
Supply Fan Efficiency (%)	55.00	55.00	55.00	55.00	55.00
Supply Fan Volumetric Flow Rate (cfm [m^3/s])	147,814.13 [69.76]	131,733.52 [62.17]	138,607.59 [65.42]	126,194.56 [59.56]	132,669.22 [62.61]
Supply Fan Pressure Drop (in H2O [Pa])	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A N/A	N/A	N/A	N/A N/A	N/A
	N/A	N/A	N/A	N/A	N/A
Service Hot Water	Otara na T		Otore T i	Otama T. J	0
SWH Type	Storage Tank				
Fuel	Natural Gas				
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m ³])	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]
ernal Loads & Schedules					
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH				
Cooling	See CLGSETP_SCH				
Lighting					
Average Power Density (W/ft^2 [W/m^2])	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]
	1.50 [10.47]	1.00[10.47]	1.00[10.47]	1.00 [10.47]	1.00 [10.47]
Schedule	See BLDG_LIGHT_SCH				
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]
Average Fower Density (W/It'2 [W/ITI'2])	1.00 [11.30]	1.00[11.30]	1.00[11.30]	1.00 [11.30]	1.00 [11.30]
Schedule	See BLDG_EQUIP_SCH				
Occupancy		000 2200_2001 _0011			200 2220_2401 _0011
Average People (#/1000 ft^2 [#/100 m^2])	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]
Schedule	See BLDG_OCC_SCH				

Table C-5 Elementary Baseline Scorecard: Climate Zones 5-8

)rogrom		-			
Program Model Number	11	12	13	14	15
Building Name	Elementary School				
Location	Boise, ID	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
(Latitude, Longitude)	(43.57, -116.22)	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
Weather File	USA_ID_Boise_TMY2.epw	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	5B	6A	6B	7A	8A
orm					
Total Floor Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Number of Floors	1	1	1	1	1
Window Fraction (Window to Wall Ratio)	South: 0.35				
	East: 0.35				
	North: 0.35				
	West: 0.35 Total: 0.35				
	0.19	0.19	0.19	0.19	0.19
Skylight/TDD Percent					
Shading Geometry	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
abric					
Exterior walls					
Construction	R-7.6 ci	R-7.6 ci	R-7.6 ci	R-11.4 ci	R-13.3 ci
R-value (ft^2·hr·°F/Btu [m^2·K/W])	7.31 [1.29]	8.75 [1.54]	8.75 [1.54]	10.21 [1.80]	11.58 [2.04]
Gross Dimensions - Total Area (ft^2 [m^2])	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]	27,038.94 [2,512.00]
Net Dimensions - Total Area (ft ² [m ²])	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]	17,574.02 [1,632.68]
Roof					
Construction	R-15 ci	R-15 ci	R-15 ci	R-15 ci	R-20 ci
R-value (ft ² ·h·°F/Btu [m ² ·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	19.67 (3.46)
Gross Dimensions - Total Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Net Dimensions - Total Area (ft ² [m ²])	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]	73,814.70 [6,857.61]
Window					
Dimensions - Total Area (ft^2 [m^2])	South: 3,496.76 [324.86]				
	East: 1,235.70 [114.80]				
	North: 3,496.55 [324.84] West: 1,235.80 [114.81]				
	Total: 9,464.92 [879.32]	Total: 9.464.92 [879.32]	Total: 9,464.92 [879.32]	Total: 9.464.92 [879.32]	Total: 9.464.92 [879.32]
Glass-type and frame	Hypothetical window meeting U-factor and				
Class-type and name	SHGC shown below				
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.46 [2.63]
•••••••	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.46 [2.64]
	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.25]	North: 0.46 [2.64]
	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.46 [2.63]
SHGC	South: 0.39	South: 0.39	South: 0.39	South: 0.49	South: 0.36
	East: 0.39	East: 0.39	East: 0.39	East: 0.49	East: 0.46
	North: 0.49 West: 0.39	North: 0.49 West: 0.39	North: 0.49 West: 0.39	North: 0.64 West: 0.49	North: 0.46 West: 0.36
Visible transmittance	South: 0.42	South: 0.42	South: 0.42	South: 0.53	South: 0.38
Visible transmittance	East: 0.42	East: 0.42	East: 0.42	East: 0.53	East: 0.49
	North: 0.53	North: 0.53	North: 0.53	North: 0.71	North: 0.49
	West: 0.42	West: 0.42	West: 0.42	West: 0.53	West: 0.38
Foundation					
Foundation Type	Mass Floor				
Construction	Carpet over heavy concrete and insulation				
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft ² [m ²])	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]	73,958.83 [6,871.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board				
Dimensions - Total Area (ft ² [m ²])	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]	31,559.79 [2,932.00]
Internal Mass					
Construction	6 inch wood				
Dimensions - Total Area (ft^2 [m^2])	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]	147,917.66 [13,742.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Air Barrier System					

Table C-6 Elementary Baseline Scorecard: Climate Zones 5-8 (Cont.)	Table C-6 Elementa	ry Baseline	Scorecard:	Climate Zones 5-8	(Cont.)
--	--------------------	-------------	------------	-------------------	---------

Model Number	11	12	13	14	15
Building Name	Elementary School	Elementary School	Elementary School	Elementary School	Elementary School
Location	Boise, ID	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
(Latitude, Longitude)	(43.57, -116.22)	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
Weather File	USA_ID_Boise_TMY2.epw	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	5B	6A	6B	7A	8A
C		0,1			0,1
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
G3.1.1B System Number	0.1 02710	0.1 02/10	0.1 02710	0.1 02 /10	0.1 02 /10
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing			Ŭ	<u>_</u>	<u>_</u>
Air Conditioning (tons [kW])	Autosized (308.69 [1,085.65])	Autosized (276.47 [972.34])	Autosized (293.83 [1,033.40])	Autosized (289.16 [1,016.99])	Autosized (228.72 [804.39])
Heating (kBtu/h [kW])	Autosized (221.91 [757.19])	Autosized (249.83 [852.45])	Autosized (236.61 [807.36])	Autosized (262.34 [895.13])	Autosized (282.70 [964.60])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control	00.00		00.00		
Before Terminal Temperature Schedule	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
(°F [°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])					
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	Yes	Yes	Yes	Yes	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads					
Fan Schedules	Always available	Always available	Always available	Always available	Always available
Supply Fan Efficiency (%)	55.00	55.00	55.00	55.00	55.00
Supply Fan Volumetric Flow Rate (cfm	138,965.47 [65.58]	123,687.29 [58.37]	132,276.17 [62.43]	130,175.72 [61.44]	102,963.01 [48.59]
[m^3/s])					
Supply Fan Pressure Drop (in H2O [Pa])	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]	2.49 [620.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m ³])	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]	200,361.25 [758.45]
rnal Loads & Schedules					
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Cooling	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting					
Average Power Density (W/ft^2 [W/m^2])	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]	1.53 [16.47]
Schedule	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]	1.06 [11.38]
Cabadula			See BLDG EQUIP SCH		
Schedule	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	SEE DLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Occupancy	00.04 [04.07]	00.04 [04.07]	20.24 [24.07]	20.24 [04.07]	00.04 [04.07]
Average People (#/1000 ft ² [#/100 m ²])	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]	20.31 [21.87]
1		1		1	1

Appendix D. Middle School Baseline Scorecard

Table D-1 Middle Baseline Scorecard: Climate Zones 1-3

ogram					
Model Number	1	2	3	4	5
Building Name	Middle School	Middle School	Middle School	Middle School	Middle School
Location	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	2B	3A	38
rm					
Total Floor Area (ft ² [m ²])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Number of Floors	1	1	1	1	1
Window Fraction (Window to Wall Ratio)	South: 0.35	South: 0.35	South: 0.35	South: 0.35	South: 0.35
	East: 0.33	East: 0.33	East: 0.33	East: 0.33	East: 0.33
	North: 0.35	North: 0.35	North: 0.35	North: 0.35	North: 0.35
	West: 0.35	West: 0.35	West: 0.35	West: 0.35	West: 0.35
	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35
Skylight/TDD Percent	0.41	0.41	0.41	0.41	0.41
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
• (1 #	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
bric					
Exterior walls					
Construction	NR	NR	NR	R-5.7 ci	R-5.7 ci
R-value (ft^2·hr·°F/Btu [m^2·K/W])	1.34 [0.24]	1.34 [0.24]	1.34 [0.24]	5.79 [1.02]	5.79 [1.02]
Gross Dimensions - Total Area (ft ² [m ²])	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]
Net Dimensions - Total Area (ft ² [m ²])	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]
Roof					
Construction	R-15 ci	R-15 ci	R-15 ci	R-15 ci	R-15 ci
R-value (ft^2·h·°F/Btu [m^2·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft ² [m ²])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Net Dimensions - Total Area (ft^2 [m^2])	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]
Window		.,			
Dimensions - Total Area (ft ² [m ²])	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]
	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]
	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]
	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]
	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]
Glass-type and frame	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor a			
	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 0.57 [3.26]	South: 0.57 [3.26]
	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 0.57 [3.26]	East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]
SHGC	South: 0.25	South: 0.25	South: 0.25	South: 0.25	South: 0.25
	East: 0.25	East: 0.25	East: 0.25	East: 0.25	East: 0.25
	North: 0.61	North: 0.61	North: 0.61	North: 0.39	North: 0.39
	West: 0.25	West: 0.25	West: 0.25	West: 0.25	West: 0.25
Visible transmittance	South: 0.25	South: 0.25	South: 0.25	South: 0.24	South: 0.24
	East: 0.25	East: 0.25	East: 0.25	East: 0.24	East: 0.24
	North: 0.67	North: 0.67	North: 0.67	North: 0.42	North: 0.42
-	West: 0.25	West: 0.25	West: 0.25	West: 0.24	West: 0.24
Foundation					
Foundation Type	Mass Floor	Mass Floor	Mass Floor	Mass Floor	Mass Floor
Construction	Carpet over heavy concrete and insulation	Carpet over heavy concrete and insulat			
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft ² [m ²])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board	2x4 steel-frame with gypsum board			
Dimensions - Total Area (ft^2 [m^2])	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]
Internal Mass					
Construction	6 inch wood	6 inch wood	6 inch wood	6 inch wood	6 inch wood
Dimensions - Total Area (ft^2 [m^2])	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]
				16.60 [81.00]	16.60 [81.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16 60 [81 00]	16 60 181 001			
Thermal Properties (lb/ft ² [kg/m ²]) Air Barrier System	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	10.00 [01.00]	10.00 [01.00]

Table D-2 Middle Baseline Scorecard: Climate Zones 1-3 (Cont.)

ogram					
Model Number	1	2	3	4	5
Building Name	Middle School	Middle School	Middle School	Middle School	Middle School
Location	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43, -112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	2B	3A	3B
C					
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
G3.1.1B System Number					
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (511.56 [1,799.17])	Autosized (492.46 [1,731.98])	Autosized (522.62 [1,838.04])	Autosized (466.25 [1,639.79])	Autosized (446.17 [1,569.17])
Heating (kBtu/h [kW])	Autosized (259.21 [884.46])	Autosized (290.41 [990.94])	Autosized (281.31 [959.87])	Autosized (295.01 [1,006.61])	Autosized (249.62 [851.74])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control					
Before Terminal Temperature Schedule	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
(°F [°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])					
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	No	No	Yes	No	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads	See 2016 Level mornation	See Zone Level mormation	See Zone Lever mormation	See 20he Level mornation	See 20he Level montation
	Alwaya ayalahla	Alwaya ayailahla		Alwaya ayailahla	
Fan Schedules	Always available	Always available	Always available	Always available	Always available
Supply Fan Efficiency (%)	65.00	65.00	65.00	65.00	65.00
Supply Fan Volumetric Flow Rate (cfm [m^3/s])	228,030.05 [107.62]	218,167.30 [102.96]	235,273.87 [111.04]	200,179.49 [94.47]	200,855.84 [94.79]
Supply Fan Pressure Drop (in H2O [Pa])	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m^3])	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]
rnal Loads & Schedules					
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Cooling	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting					
Average Power Density (W/ft^2 [W/m^2])	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]
Schedule	See BLDG LIGHT SCH	See BLDG LIGHT SCH	See BLDG LIGHT SCH	See BLDG_LIGHT_SCH	See BLDG LIGHT SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]
Schedule	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG EQUIP SCH	See BLDG_EQUIP_SCH
Occupancy	Gee BLDG_LQUIF_GON	Jee DEDO_EQUIF_SON	066 0EDO_EQUIF_001		Gee DEDG_EQUIF_3CH
Average People (#/1000 ft^2 [#/100 m^2])	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]
Schedule	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH

Table D-3 Middle Baseline Scorecard: Climate Zones 3-5

Program					
Model Number	6	7	8	9	10
Building Name	Middle School				
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL
(Latitude, Longitude)	(37.62, -122.38)	(39.18, -76.67)	(35.05, -106.62)	(47.45, -122.3)	(41.78, -87.75)
Weather File	USA_CA_San.Francisco_TMY2.epw	USA_MD_Baltimore_TMY2.epw	USA_NM_Albuquerque_TMY2.epw	USA_WA_Seattle-Tacoma_TMY2.epw	USA_IL_Chicago-OHare_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
Form					
Total Floor Area (ft ² [m ²])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Number of Floors	1	1	1	1	1
Window Fraction (Window to Wall Ratio)	South: 0.35				
	East: 0.33				
	North: 0.35				
	West: 0.35				
	Total: 0.35				
Skylight/TDD Percent	0.41	0.41	0.41	0.41	0.41
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
Fabric					
Exterior walls					
Construction	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-7.6 ci
R-value (ft ² ·hr·°F/Btu [m ² ·K/W])	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	7.31 [1.29]
Gross Dimensions - Total Area (ft ² [m ²])	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]
Net Dimensions - Total Area (ft^2 [m^2])	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]
Roof	22,110.01 [2,110.10]	22,110.01 [2,110.10]	22,110.01 [2,110.10]	22,770.07 [2,770.10]	22,770.07[2,770.10]
Construction	R-10 ci	R-15 ci	R-15 ci	R-15 ci	R-15 ci
R-value (ft^2⋅h⋅°F/Btu [m^2⋅K/W])	9.69 (1.71)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft ²	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
[m^2]) Net Dimensions - Total Area (ft^2 [m^2])	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]
	115,040.40 [10,745.55]	113,040.40 [10,743.33]	115,040.40 [10,745.55]	115,040.40 [10,745.55]	115,640.40 [10,745.55]
Window					
Dimensions - Total Area (ft ² [m ²])	South: 4,702.00 [436.83]				
	East: 1,337.20 [124.23]				
	North: 4,663.14 [433.22] West: 1,401.78 [130.23]				
	Total: 12,104.12 [1,124.51]				
Olara tura and france					
Glass-type and frame	Hypothetical window meeting U-factor and SHGC shown below				
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 1.21 [6.89]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]
	East: 1.21 [6.89]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]
SHGC	South: 0.61	South: 0.39	South: 0.39	South: 0.39	South: 0.39
	East: 0.61	East: 0.39	East: 0.39	East: 0.39	East: 0.39
	North: 0.61	North: 0.49	North: 0.49	North: 0.49	North: 0.49
	West: 0.61	West: 0.39	West: 0.39	West: 0.39	West: 0.39
Visible transmittance	South: 0.67	South: 0.42	South: 0.42	South: 0.42	South: 0.42
	East: 0.67	East: 0.42	East: 0.42	East: 0.42	East: 0.42
	North: 0.67	North: 0.53	North: 0.53	North: 0.53	North: 0.53
	West: 0.67	West: 0.42	West: 0.42	West: 0.42	West: 0.42
Foundation					
Foundation Type	Mass Floor				
Construction	Carpet over heavy concrete and insulation				
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft^2 [m^2])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board				
Dimensions - Total Area (ft^2 [m^2])	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]
Internal Mass	41,120.02 [0,010.00]	41,120.02 [0,010.00]	-1,120.02 [0,010.00]	41,120.02 [0,010.00]	41,120.02 [0,010.00]
	6 inch wood				
Construction	6 inch wood	6 inch wood	6 inch wood		6 inch wood
Dimensions - Total Area (ft ² [m ²])	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Air Barrier System		1	1		1
Infiltration (ACH)	0.50	0.50	0.50	0.50	0.50

Table D-4 Middle Baseline Scorecard: Climate Zones 3-5 (Cont.)

-				· · ·	
Program	<u>^</u>				10
Model Number	6	7	8	9	10
Building Name	Middle School	Middle School	Middle School	Middle School	Middle School
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL (41.78, -87.75)
(Latitude, Longitude) Weather File	(37.62, -122.38) USA_CA_San.Francisco_TMY2.epw	(39.18, -76.67) USA_MD_Baltimore_TMY2.epw	(35.05, -106.62) USA_NM_Albuquerque_TMY2.epw	(47.45, -122.3) USA_WA_Seattle-Tacoma_TMY2.epw	USA_IL_Chicago-OHare_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
HVAC		א יד	<u> </u>	+0	0/1
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
G3.1.1B System Number	0.1 02 / 0	0.1 02 /10	0.10270	0.1 02 /10	0.10270
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing				5	5
Air Conditioning (tons [kW])	Autosized (497.39 [1,749.32])	Autosized (448.96 [1,579.00])	Autosized (470.10 [1,653.33])	Autosized (425.38 [1,496.06])	Autosized (449.74 [1,581.74])
Heating (kBtu/h [kW])	Autosized (276.32 [942.84])	Autosized (306.32 [1,045.19])	Autosized (258.31 [881.39])	Autosized (270.49 [922.95])	Autosized (337.56 [1,151.80])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control			-5.00		20.00
Before Terminal Temperature Schedule	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
(°F [°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])					
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	Yes	No	Yes	Yes	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads	See 2016 Level Information	See Zone Lever miornation	See Zone Level Information	See Zone Lever Information	See Zone Level Information
	Alwaya ayailahla	Alwaya ayailahla	Always available	Alwaya ayailahla	Alwaya ayailahla
Fan Schedules	Always available 65.00	Always available 65.00	65.00	Always available 65.00	Always available 65.00
Supply Fan Efficiency (%) Supply Fan Volumetric Flow Rate (cfm	223,916.25 [105.68]	199,960.40 [94.37]	211,626.95 [99.88]	191,497.81 [90.38]	201,449.76 [95.07]
[m^3/s])	223,910.25 [105.08]	199,900.40 [94.37]	211,020.95 [99.00]	191,497.01 [90.30]	201,449.70 [95.07]
Supply Fan Pressure Drop (in H2O [Pa])	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m^3])	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]
Internal Loads & Schedules		1			- · · · · · · · · · · · · · · · · · · ·
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Cooling	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting					
Average Power Density (W/ft^2 [W/m^2])	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]
Schedule	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]
Schedule	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Occupancy					
Average People (#/1000 ft^2 [#/100 m^2])	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]

Table D-5 Middle Baseline Scorecard: Climate Zones 5-8

ogram					
Model Number	11	12	13	14	15
Building Name	Middle School	Middle School	Middle School	Middle School	Middle School
Location	Boise, ID	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
(Latitude, Longitude)	(43.57, -116.22)	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
Weather File	USA_ID_Boise_TMY2.epw	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	5B	6A	6B	7A	8A
rm					-
Total Floor Area (ft ² [m ²])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Number of Floors	1	1	1	1	1
	South: 0.35	South: 0.35	South: 0.35	South: 0.35	South: 0.35
Window Fraction (Window to Wall Ratio)	East: 0.33	East: 0.33	East: 0.33	East: 0.33	East: 0.33
	North: 0.35	North: 0.35	North: 0.35	North: 0.35	North: 0.35
	West: 0.35	West: 0.35	West: 0.35	West: 0.35	West: 0.35
	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35
Skylight/TDD Percent	0.41	0.41	0.41	0.41	0.41
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]		13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
0 (1)/	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
oric					
Exterior walls					
Construction	R-7.6 ci	R-7.6 ci	R-7.6 ci	R-11.4 ci	R-13.3 ci
R-value (ft^2·hr·°F/Btu [m^2·K/W])	7.31 [1.29]	8.75 [1.54]	8.75 [1.54]	10.21 [1.80]	11.58 [2.04]
Gross Dimensions - Total Area (ft ² [m ²])	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]	34,875.07 [3,240.00]
Net Dimensions - Total Area (ft^2 [m^2])	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]	22,770.94 [2,115.49]
Roof					
Construction	R-15 ci	R-15 ci	R-15 ci	R-15 ci	R-20 ci
R-value (ft^2·h·°F/Btu [m^2·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	19.67 (3.46)
Gross Dimensions - Total Area (ft^2	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
[m^2])	110,121.07 [10,700.00]	110,121.07 [10,700.00]	110,121.07 [10,700.00]	110,121.07 [10,700.00]	110,121.07 [10,700.00]
Net Dimensions - Total Area (ft^2 [m^2])	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]	115,640.46 [10,743.35]
Window					
Dimensions - Total Area (ft^2 [m^2])	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]	South: 4,702.00 [436.83]
Dimensions - Total Area (it 2 [in 2])	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]	East: 1,337.20 [124.23]
	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]	North: 4,663.14 [433.22]
	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]	West: 1,401.78 [130.23]
	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]	Total: 12,104.12 [1,124.51]
Glass-type and frame	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor a			
Class-type and name	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.46 [2.63]
	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.57 [3.26]	East: 0.46 [2.64]
	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.25]	North: 0.46 [2.64]
	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.46 [2.63]
SHGC	South: 0.39	South: 0.39	South: 0.39	South: 0.49	South: 0.36
	East: 0.39	East: 0.39	East: 0.39	East: 0.49	East: 0.46
	North: 0.49	North: 0.49	North: 0.49	North: 0.64	North: 0.46
	West: 0.39	West: 0.39	West: 0.39	West: 0.49	West: 0.36
Visible transmittance	South: 0.42	South: 0.42	South: 0.42	South: 0.53	South: 0.38
	East: 0.42	East: 0.42	East: 0.42	East: 0.53	East: 0.49
	North: 0.53	North: 0.53	North: 0.53	North: 0.71	North: 0.49
	West: 0.42	West: 0.42	West: 0.42	West: 0.53	West: 0.38
Foundation					
Foundation Type	Mass Floor	Mass Floor	Mass Floor	Mass Floor	Mass Floor
Construction	Carpet over heavy concrete and insulation	Carpet over heavy concrete and insulat			
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft^2 [m^2])	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]	116,121.07 [10,788.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board	2x4 steel-frame with gypsum board			
Dimensions - Total Area (ft^2 [m^2])	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]	41,720.92 [3,876.00]
· · · <i>"</i>	41,120.92 [3,070.00]	41,720.92 [3,070.00]	41,720.92 [3,070.00]	41,720.92 [3,070.00]	41,720.92 [3,670.00]
Internal Mass	<u>.</u>				
Construction	6 inch wood	6 inch wood	6 inch wood	6 inch wood	6 inch wood
Dimensions - Total Area (ft ² [m ²])	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]	232,242.13 [21,576.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Air Barrier System					
Infiltration (ACH)	0.50	0.50	0.50	0.50	0.50

Table D-6 Middle Baseline Scorecard: Climate Zones 5-8 (Cont.)

Program 11 Building Name Middle School Location Boise, ID Latitude, Longitude) (43.57, -116.22) Weather File USA, ID, Boise, TMY2.epw ASHRAE 90.1-2004 Climate Zone 5B HVAC System Type ASHRAE 90.1-2004 Appendix G Table 3: PSZ-AC 3.1.18 System Number Gas Furnace Heating Type Gas Furnace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Autosized (468.15 [1.646.48]) Heating Efficiency (%) Autosized (303.94 [1.037.08]) HVAC Efficiency 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4°F [13°C] (°C) NA P(°C) NA Hot Water Supply Temperatures (°F [°C]) NA Hot Water Supply Temperatures (°F [°C]) NA Economizer Yes Night Cycle Yes Heat Recovery No </th <th></th> <th></th> <th></th> <th></th>				
Location Boise, ID (Latitude, Longitude) (43.57, -116.22) Weather File USA_ID_Boise_TMY2.epw ASHRAE 90.1-2004 Climate Zone 58 HVAC 59 System Type 58 ASHRAE 90.1-2004 Appendix G Table 3: PSZ-AC G3.1.18 System Number Gas Furnace Heating Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sing Air Conditioning (tons [kW]) Autosized (468.15 [1.646.48]) Heating (RBurn [kW]) Autosized (30.394 [1.037.08]) HVAC Control Jan - Mar: 55.47F [13°C] Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Before Terminal Temperature Schedule (°F [°C]) Air Conditioning (COP) 3.30 Heat Recovery N(A CO Chilled Water Supply Temperatures (°F [°C]) N/A [°C]) N/A CO Demand Control Ventilation Yes Supply Fan Efficiency (%) 65.00 Sup	12	13	14	15
Latitude, Longitude) (43.57, -116.22) Weather File USA_ID_Boise_TMY2.epw ASHRAE 90.1-2004 Climate Zone 5B System Type System Type ASHRAE 90.1-2004 Appendix G Table 3: PSZ-AC G3.1.18 System Number Gas Furnace Heating Type Gas Furnace Cooling Type Direct Expansion Fan Control Control Micro Control on and Terminal Units Single ZoneDirect Air HVAC Sizing Air Conditioning (tons [kW]) Autosized (488.15 [1,646.48]) Heating (RBu/n [kW]) Autosized (488.15 [1,646.48]) Heating Efficiency (%) Micro Control Bafore Terminal Temperature Schedule Jan - Mar: 55.4°F [13°C] (°F (°C)) Arc Control Bafore Terminal Temperatures (°F [°C]) N/A Hot Water Supply Temperatures (°F [°C]) N/A Schedule Hot Water Supply Temperatures (°F [°C]) N/A Sec Zone Level Information Fan and Pump Loads Fan and Pump Loads Sec Zone Level Information Fan and Pump Loads Asways available Supply Fan Efficiency (%) 65.00 Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm	Middle School	Middle School	Middle School	Middle School
Weather File USA_D_Boise_TMY2 epw ASHRAE 90.1-2004 Climate Zone 58 VAC System Type ASHRAE 90.1-2004 Appendix G Table 3: PSZ-AC G3.1.18 System Number Gas Furnace Heating Type Gas Furnace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Autosized (468.15 [1.646.48]) Heating (KBu/h [KW]) Autosized (303.94 [1.037.08]) HVAC Control 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4*F [13°C] Before Terminal Temperatures CPF [PC]) N/A Hot Water Supply Temperatures (°F [°C]) N/A [°C]) N/A Economizer Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Pressure Drop (in H20 [Pa])	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
ASHRAE 90.1-2004 Climate Zone 58 VAC	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
VAC System Type SHRAE 00 1-2004 Appendix G Table G3.1.18 System Number 3: PSZ-AC Heating Type Gas Furnace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Air Conditioning (tons [kW]) Autosized (488.15 [1,646.48]) Heating (KBlu/h [kW]) Autosized (488.15 [1,646.48]) Attacn difficiency Air Conditioning (COP) 3.30 Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Distribution and Terminal Temperature Schedule Jan - Mar: 55.4°F [13°C] (°F (°C)) Oct - Dec: 55.4°F [13°C] Oct - Dec: 55.4°F [13°C] Oct - Dec: 55.4°F [13°C] Chilled Water Supply Temperatures (°F [°C]) N/A Demand Control Ventilation Yes Heat Recovery No Demand Control Ventilation Yes See Zone Level Information Fan and Pump Loads Always available Supply Fan Volumetric Flow Rate (cfm [m'3/s]) See Zone Level Information Supply Fan Volumetric Flow Rate (cfm [m'3/s]) Setorice Howater SoO SoO	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
System Type 3: PSZ-AC ASHRAE 90.1-2004 Appendix G Table 3: PSZ-AC G3.1.18 System Number Gas Funace Heating Type Gas Funace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Autosized (468.15 [1,646.48]) Heating (kBu/h [kW]) Autosized (468.15 [1,646.48]) Heating (kBu/h [kW]) Autosized (468.15 [1,646.48]) Heating Efficiency (%) 80.00 HVAC Control Before Terminal Temperature Schedule (°F [°C]) Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Before Terminal Temperature Schedule (°F [°C]) Oct - Dec: 55.4°F [13°C] Hot Water Supply Temperatures (°F [°C]) N/A Econmizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Supply Fan Efficiency (%) 65.00 Supply Fan Efficiency (%) 65.00	6A	6B	7A	8A
ASHRAE 0.1-2004 Appendix G Table 3: PSZ-AC G3.1.1B System Number Gas Furnace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Autosized (468.15 [1,646.48]) Heating (KBLth/ [KW]) Autosized (408.15 [1,626.00] Conditioning (COP) 3.30 Heating (KBLth/ [KW]) N/A [*C]) N/A [*C]) N/A [*C]) N/A [*C]) N/A [*C]) N/A [*C]) N/A <td></td> <td></td> <td></td> <td></td>				
G3.1:B System Number Heating Type Gas Furnace Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Air Conditioning (tons [kW]) Autosized (488.15 [1,646.48]) Heating (kBtu/h [kW]) Autosized (303.94 [1,037.08]) HVAC Efficiency Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4°F [13°C] Before Terminal Temperature Schedule (%F [°C]) Chilled Water Supply Temperatures (°F N/A [°C]) Hot Water Supply Temperatures (°F [°C]) N/A Heat Recovery No Dermand Control Ventilation Yes Night Cycle Yes Heat Recovery No Dermand Control Ventilation Yes Ventilation (cfm [m³/sk]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Swerice Hot Water Sonage Tank Fuel </td <td></td> <td></td> <td></td> <td></td>				
Cooling Type Direct Expansion Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Air Conditioning (tons [kW]) Autosized (468.15 [1.646.48]) Heating (KBu/h [kW]) Autosized (303.94 [1.037.08]) HVAC Efficiency Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Efficiency 3.30 Heating Efficiency (%) 80.00 Before Terminal Temperature Schedule (*F (*C)) Oct - Dec: 55.4°F [13°C] Oct - Dec: 55.4°F [13°C] (*F (*C)) Oct - Dec: 55.4°F [13°C] N/A Hot Water Supply Temperatures (*F [*C)) N/A Economizer Yes NA P(*C) N/A Demand Control Ventilation Yes Ideat Recovery No Demand Control Ventilation Yes Fan and Pump Loads Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Dower (hp [kW]) N/A Pump Power (hp [kW]) N/A	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
Fan Control Constant Volume Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Air Conditioning (tons [kWI) Autosized (468.15 [1,646.48]) Heating (kBtu/h [kWI) Autosized (303.94 [1,037.08]) HVAC Efficiency Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar. 55.4°F [13°C] Before Terminal Temperature Schedule (°F (°C)) Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] N/A (°C)) N/A Person Hot Water Supply Temperatures (°F [°C]) N/A Heating Efficiency (%) Secondition (respective) Demand Control Ventilation Yes Night Cycle Yes Ventilation (cfm [m³/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Pressure Drop (in H20 [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Supply Fan Pressure Drop (in H20 [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump P	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Distribution and Terminal Units Single Zone/Direct Air HVAC Sizing Air Conditioning (tons [kW]) Autosized (468.15 [1,646.48]) Heating (kBtu/h [kW]) Autosized (303.94 [1,037.08]) HVAC Efficiency 3.30 Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Before Terminal Temperature Schedule (°F [°C]) Jan - Mar: 55.4°F [13°C] Oct - Dec: 55.4°F [13°C] Chilled Water Supply Temperatures (°F (°C)) N/A Person Hot Water Supply Temperatures (°F [°C]) N/A Person Hot Water Supply Temperatures (°F [°C]) N/A Person Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan Schedules Always available Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210.752.28 [99.46] [m*3/s]) Supply Fan Pressure Drop (in H20 [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Supply Fan Pressure Drop (in H20 [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A <td>Direct Expansion</td> <td>Direct Expansion</td> <td>Direct Expansion</td> <td>Direct Expansion</td>	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
HVAC Sizing	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Air Conditioning (tons [kW]) Autosized (468.15 [1.646.48]) Heating (kBtu/h [kW]) Autosized (303.94 [1.037.08]) HVAC Efficiency Air Conditioning (COP) Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4°F [13°C] Before Terminal Temperature Schedule Jan - Mar: 55.4°F [13°C] (°F [°C]) Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] N/A [°C]) N/A Economizer Yes Night Cycle Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] [m*3/s]) Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
Air Conditioning (tons [kW]) Autosized (468.15 [1.646.48]) Heating (kBtu/h [kW]) Autosized (303.94 [1.037.08]) HVAC Efficiency Air Conditioning (COP) Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4°F [13°C] Before Terminal Temperature Schedule Jan - Mar: 55.4°F [13°C] (°F [°C]) Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] N/A [°C]) N/A Heat Recovery N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Volumetric Flow Rate (cfm [m*3/s]) Stez Zong Level Information Supply Fan Volumetric Flow Rate (cfm [m*3/s]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Ower (hp [kW]) N/A Pump Power (hp [kW]) N/A Swhy Type Storage Tank	-			
Heating (kBtu/h [kW]) Autosized (303.94 [1,037.08]) HVAC Efficiency 3.30 Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4°F [13°C] Before Terminal Temperature Schedule (°F [°C]) Jan - Mar: 55.4°F [13°C] Chilled Water Supply Temperatures (°F N/A P(°C) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Efficiency (%) 65.00 Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] Eternal Loads & Schedules Heating Heating & Cooling See CLGSETP_SCH Cooling <	Autosized (417.88 [1,469.69])	Autosized (447.04 [1,572.24])	Autosized (439.27 [1,544.92])	Autosized (346.16 [1,217.45])
HVAC Efficiency Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control Before Terminal Temperature Schedule Jan - Mar: 55 4% [13%C] (% F (% C)) Oct - Dec: 55 4% F [13%C] Chilled Water Supply Temperatures (°F N/A (*C)) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan and Pump Loads Fan and Pump Loads Fan and Pump Loads Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Pump Power (hp [kW]) N/A SwH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (%F [°C]) 140.00 [60.00] Water Consumption (gal [m*3]) 610.884.54 [2.312.45] termal Loads & Schedules Heating & See HTGSETP_SCH Heating & See CLGSETP_SCH L	Autosized (338.56 [1,155.21])	Autosized (319.34 [1,089.62])	Autosized (352.81 [1,203.83])	Autosized (374.36 [1,277.37])
Air Conditioning (COP) 3.30 Heating Efficiency (%) 80.00 HVAC Control 90.00 Before Terminal Temperature Schedule Jan - Mar: 55.4°F [13°C] (°F (°C)) Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] N/A (°F (°C)) N/A Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Efficiency (%) 65.00 Supply Fan Nounteric Flow Rate (cfm [m*3/s]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A				
Heating Efficiency (%) 80.00 HVAC Control Jan - Mar: 55.4% [13°C] Before Terminal Temperature Schedule Apr - Sep: 60.8% [16°C] (°F [°C]) Oct - Dec: 55.4% [13°C] Chilled Water Supply Temperatures (°F N/A [°C]) Hot Water Supply Temperatures (°F [°C]) Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan Schedules Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Swipty Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Swipty Fan Volumetric Flow Rate (cfm 210.752.28 [99.46] [m^3/s]) Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.	3.30	3.30	3.30	3.30
HVAC Control Before Terminal Temperature Schedule (°F [°C]) Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] Chilled Water Supply Temperatures (°F (°C)) N/A Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m*3/s]) See Zone Level Information Fan Schedules Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m*3]) 610.884.54 [2.312.45] errnal Loads & Schedules Heating Heating & Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft*2 [W/m*2]) Average Power Density (W/ft*2 [W/m*2]) 0.82 [8.4] Schedule See BLDG	80.00	80.00	80.00	80.00
Before Terminal Temperature Schedule (°F [°C]) Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] Chilled Water Supply Temperatures (°F [°C]) N/A Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Supply Fan Pressure Drop (in H2O [Pa]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] errnal Loads & Schedules E Heating & Cooling See CLOSETP_SCH Cooling See CLOSETP_SCH Cooling See BLDG_LIGHT_SCH Pl	00.00	00.00	60.00	00.00
(°F [°C]) Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C] Chilled Water Supply Temperatures (°F [°C]) N/A Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan Schedules Always available Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] Eternal Loads & Schedules Heating Heating See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Heating See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84]	lon Mor 55 (05 (4000)	lon Mor: 55 405 140001	Ion Mar 55 405 (4000)	
Chilled Water Supply Temperatures (°F N/A [°C]) Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm [m^3/s]) 210.752.28 [99.46] Supply Fan Volumetric Flow Rate (cfm [m^3/s]) 210.752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] ternal Loads & Schedules Heating Heating See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C] Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]
Hot Water Supply Temperatures (°F [°C]) N/A Economizer Yes Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads Always available Fan Schedules Always available Supply Fan Volumetric Flow Rate (cfm [m^3/s]) 210.752.28 [99.46] [m^3/s]) 210.752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] ternal Loads & Schedules Heating Heating & Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/f	N/A	N/A	N/A	N/A
Night Cycle Yes Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads	N/A	N/A	N/A	N/A
Heat Recovery No Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Hinderse Always available Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm [m^3/sl)) 210,752.28 [99.46] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] termal Loads & Schedules Heating & Cooling Betpint Schedule Heating & Coling Setpoint Schedule Heating & Coling Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy Docupancy	Yes	Yes	Yes	Yes
Demand Control Ventilation Yes Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s]) See Zone Level Information Fan and Pump Loads Always available Supply Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm [m^3/s]) 210,752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.4] Schedule See BLDG_EQUIP_SCH Occupancy Occupancy	No	No	No	No
Fan and Pump Loads Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Efficiency (%) 65.00 Supply Fan Pressure Drop (in H2O [Pa]) 210,752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	Yes	Yes	Yes	Yes
Fan and Pump Loads Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Efficiency (%) 65.00 Supply Fan Pressure Drop (in H2O [Pa]) 210,752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	See Zone Level Information			
Fan Schedules Always available Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (%F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] ternal Loads & Schedules Heating Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH				
Supply Fan Efficiency (%) 65.00 Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules Heating Heating See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_LIGHT_SCH Plug loads Average POWER Density (W/ft^2 [W/m^2]) Schedule See BLDG_EQUIP_SCH Occupancy Density Cuir Page	Always available	Always available	Always available	Always available
Supply Fan Volumetric Flow Rate (cfm [m*3/s]) 210,752.28 [99.46] Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules Heating Heating See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Lighting 1.52 [16.40] Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	65.00	65.00	65.00	65.00
[m^3/s]) Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Lighting 1.52 [16.40] Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy Occupancy	188,121.79 [88.78]	201,249.53 [94.98]	197,750.83 [93.33]	155,834.87 [73.55]
Supply Fan Pressure Drop (in H2O [Pa]) 2.51 [625.00] Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (%F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Ketpoint Schedule See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Cooling See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	100,121.10 [00.10]	201,240.00 [04.00]	101,100.00 [00.00]	100,004.07 [70.00]
Cooling Tower Power (hp [kW]) N/A Pump Power (hp [kW]) N/A Service Hot Water N/A SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling Setpoint Schedule Heating See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting 1.52 [16.40] Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Pump Power (hp [kW]) N/A Service Hot Water SWH Type SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Betting See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	N/A	N/A	N/A	N/A
Service Hot Water SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules Heating & Cooling Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_LIGHT_SCH Schedule See BLDG_LIGHT_SCH Plug loads O.82 [8.84] Schedule See BLDG_EQUIP_SCH	N/A	N/A	N/A	N/A
SWH Type Storage Tank Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] ternal Loads & Schedules Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_LIGHT_SCH Schedule See BLDG_LIGHT_SCH Plug loads 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy Occupancy	1071			
Fuel Natural Gas Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules 140.00 [60.00] Heating & Cooling See HTGSETP_SCH Cooling See CLGSETP_SCH Cooling See CLGSETP_SCH Lighting 1.52 [16.40] Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy Occupancy	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Thermal Efficiency (%) 80.00 Temperature Setpoint (°F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610.884.54 [2.312.45] erral Loads & Schedules	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Temperature Setpoint (%F [°C]) 140.00 [60.00] Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ernal Loads & Schedules	80.00	80.00	80.00	80.00
Water Consumption (gal [m^3]) 610,884.54 [2,312.45] ternal Loads & Schedules			140.00 [60.00]	
ternal Loads & Schedules Heating & Cooling Setpoint Schedule Heating & See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy	140.00 [60.00]	140.00 [60.00]		140.00 [60.00]
Heating & Cooling Setpoint Schedule Heating See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_LIGHT_SCH Plug loads 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy See BLDG_EQUIP_SCH	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]	610,884.54 [2,312.45]
Heating See HTGSETP_SCH Cooling See CLGSETP_SCH Lighting				
Cooling See CLGSETP_SCH Lighting Average Power Density (W/ft^2 [W/m^2]) Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads Average Power Density (W/ft^2 [W/m^2]) Schedule See BLDG_EQUIP_SCH Schedule See BLDG_EQUIP_SCH Occupancy Description				
Lighting	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Lighting	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Average Power Density (W/ft^2 [W/m^2]) 1.52 [16.40] Schedule See BLDG_LIGHT_SCH Plug loads				
Plug loads	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]	1.52 [16.40]
Plug loads	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Average Power Density (W/ft^2 [W/m^2]) 0.82 [8.84] Schedule See BLDG_EQUIP_SCH Occupancy				
Occupancy	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]	0.82 [8.84]
	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Average People (#/1000 ft^2 [#/100 m^2]) 27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]	27.05 [29.11]
Schedule See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH

Appendix E. High School Baseline Scorecard

Table E-1 High Baseline Scorecard: Climate Zones 1-3

Program					
Model Number	1	2	3	4	5
Building Name	High School				
Location	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43, -112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	28	3A	38
Form					
Total Floor Area (ft ² [m ²])	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]
Number of Floors	2	2	2	2	2
Window Fraction (Window to Wall Ratio)	South: 0.35				
	East: 0.35				
	North: 0.35				
	West: 0.35				
	Total: 0.35				
Window Locations	See Picture				
Skylight/TDD Percent	1.05	1.05	1.05	1.05	1.05
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
abric					
Exterior walls					
Construction	NR	NR	NR	R-5.7 ci	R-5.7 ci
R-value (ft^2·hr·°F/Btu [m^2·K/W])	1.34 [0.24]	1.34 [0.24]	1.34 [0.24]	5.79 [1.02]	5.79 [1.02]
Gross Dimensions - Total Area (ft ² [m ²])	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]
Net Dimensions - Total Area (ft^2 [m^2])	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]
Roof			· • •		
Construction	R-15 ci				
R-value (ft^2·h·°F/Btu [m^2·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft^2 [m^2])	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]
Net Dimensions - Total Area (ft^2 [m^2])	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]
Window					
Dimensions - Total Area (ft ² [m ²])	South: 8,108.88 [753.34]				
	East: 3,918.06 [364.00]				
	North: 8,108.88 [753.34]				
	West: 3,918.28 [364.02]				
	Total: 24,054.11 [2,234.70]				
Glass-type and frame	Hypothetical window meeting U-factor and SHGC shown below				
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 1.21 [6.89]	South: 0.57 [3.26]	South: 0.57 [3.26]
	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 1.21 [6.89]	East: 0.57 [3.26]	East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]
SHGC	South: 0.25				
	East: 0.25 North: 0.61	East: 0.25 North: 0.61	East: 0.25 North: 0.61	East: 0.25 North: 0.39	East: 0.25 North: 0.39
	West: 0.25				
Visible transmittance	South: 0.25	South: 0.25	South: 0.25	South: 0.24	South: 0.24
	East: 0.25	East: 0.25	East: 0.25	East: 0.24	East: 0.24
	North: 0.67	North: 0.67	North: 0.67	North: 0.42	North: 0.42
	West: 0.25	West: 0.25	West: 0.25	West: 0.24	West: 0.24
Foundation					
Foundation Type	Mass Floor				
Construction	Carpet over heavy concrete and insulation				
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft ² [m ²])	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board				
Dimensions - Total Area (ft ² [m ²])	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]
Internal Mass					
Construction	6 inch wood				
Dimensions - Total Area (ft ² [m ²])	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
	· ·				
Air Barrier System		1 1			

Table E-2 High Baseline Scorecard:	Climate Zones 1-3 (Cont.)
------------------------------------	---------------------------

Program					
Model Number	1	2	3	4	5
Building Name	High School	High School	High School	High School	High School
Location	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX
(Latitude, Longitude)	(25.8, -80.27)	(29.98, -95.37)	(33.43, -112.02)	(35.05, -89.98)	(31.8, -106.4)
Weather File	USA_FL_Miami_TMY2.epw	USA_TX_Houston-Intercontinental_TMY2.epw	USA_AZ_Phoenix_TMY2.epw	USA_TN_Memphis_TMY2.epw	USA_TX_EI.Paso_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	1A	2A	2B	3A	3B
HVAC					
System Type					
ASHRAE 90.1-2004 Appendix G Table	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
G3.1.1B System Number					
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (921.32 [3,240.29])	Autosized (911.48 [3,205.69])	Autosized (977.18 [3,436.75])	Autosized (848.87 [2,985.47])	Autosized (787.27 [2,768.84])
Heating (kBtu/h [kW])	Autosized (455.13 [1,552.97])	Autosized (517.14 [1,764.57])	Autosized (512.13 [1,747.46])	Autosized (517.83 [1,766.92])	Autosized (432.51 [1,475.79])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control					
Before Terminal Temperature Schedule (°F	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
[°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])	N/A	N/A	N/A	N/A	N/A
Hot Water Supply Temperatures (°F [°C]) Economizer	No	No	Yes	No	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads					
Fan Schedules	Always available	Always available	Always available	Always available	Always available
Supply Fan Efficiency (%)	65.00	65.00	65.00	65.00	65.00
Supply Fan Volumetric Flow Rate (cfm [m^3/s])	396,927.67 [187.33]	391,926.78 [184.97]	432,420.16 [204.08]	357,233.59 [168.60]	350,655.46 [165.49]
Supply Fan Pressure Drop (in H2O [Pa])	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m ³])	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]
Internal Loads & Schedules					
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
Cooling	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting					
Average Power Density (W/ft ² [W/m ²])	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]
Schedule	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]
	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Schedule					
Schedule Occupancy Average People (#/1000 ft^2 [#/100 m^2])	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]

Table E-3 High Baseline Scorecard: Climate Zones 3-5

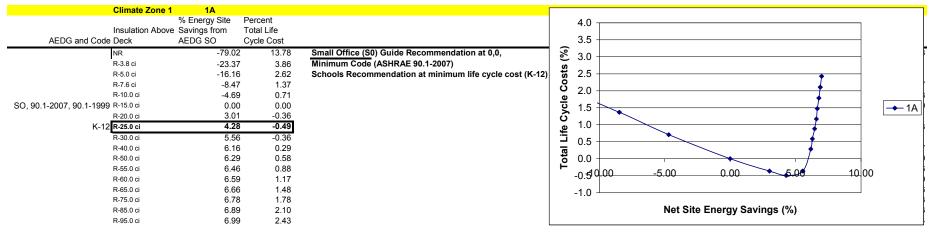
gram					
Model Number	6	7	8	9	10
Building Name	High School	High School	High School	High School	High School
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL
(Latitude, Longitude)	(37.62, -122.38)	(39.18, -76.67)	(35.05, -106.62)	(47.45, -122.3)	(41.78, -87.75)
Weather File	USA_CA_San.Francisco_TMY2.epw	USA_MD_Baltimore_TMY2.epw	USA_NM_Albuquerque_TMY2.epw	USA_WA_Seattle-Tacoma_TMY2.epw	USA_IL_Chicago-OHare_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
n					
Total Floor Area (ft ² [m ²])	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]
Number of Floors	2	2	2	2	2
Window Fraction (Window to Wall Ratio)	South: 0.35	South: 0.35	South: 0.35	South: 0.35	South: 0.35
	East: 0.35	East: 0.35	East: 0.35	East: 0.35	East: 0.35
	North: 0.35	North: 0.35	North: 0.35	North: 0.35	North: 0.35
	West: 0.35	West: 0.35	West: 0.35	West: 0.35	West: 0.35
	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35	Total: 0.35
Window Locations	See Picture	See Picture	See Picture	See Picture	See Picture
Skylight/TDD Percent	1.05	1.05	1.05	1.05	1.05
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
ric					
Exterior walls					
Construction	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-5.7 ci	R-7.6 ci
R-value (ft ² ·hr·°F/Btu [m ² ·K/W])	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	5.79 [1.02]	7.31 [1.29]
Gross Dimensions - Total Area (ft ² [m ²])	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]
	55,1 15155 [0,004.00]	55,1 10,00 [0,004,00]			
Net Dimensions - Total Area (ft^2 [m^2])	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]
Roof					
Construction	R-10 ci	R-15 ci	R-15 ci	R-15 ci	R-15 ci
R-value (ft ² ·h·°F/Btu [m ² ·K/W])	9.69 (1.71)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)
Gross Dimensions - Total Area (ft ² [m ²])	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]
Gloss Dimensions - Total Alea (it 2 [iff 2])	128,112.00[11,902.00]	120, 112.00 [11,902.00]	126,112.00 [11,902.00]	120, 112.00 [11, 902.00]	128,112.00[11,902.00]
Net Dimensions - Total Area (ft^2 [m^2])	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]
Window	120,10111[11,11100]	120,10111 [11,11100]		120,10111 [11,11100]	120,10111 [11,11100]
Dimensions - Total Area (ft ² [m ²])	South: 8,108.88 [753.34]	South: 8,108.88 [753.34]	South: 8,108.88 [753.34]	South: 8,108.88 [753.34]	South: 8,108.88 [753.34]
Dimensions - Total Area (it*2 [m*2])	East: 3,918.06 [364.00]	East: 3,918.06 [364.00]	East: 3,918.06 [364.00]	East: 3,918.06 [364.00]	East: 3,918.06 [364.00]
	North: 8,108.88 [753.34]	North: 8,108.88 [753.34]	North: 8,108.88 [753.34]	North: 8,108.88 [753.34]	North: 8,108.88 [753.34]
		West: 3,918.28 [364.02]	West: 3,918.28 [364.02]	West: 3,918.28 [364.02]	West: 3,918.28 [364.02]
	West: 3,918.28 [364.02]				
	Total: 24,054.11 [2,234.70]	Total: 24,054.11 [2,234.70]	Total: 24,054.11 [2,234.70]	Total: 24,054.11 [2,234.70]	Total: 24,054.11 [2,234.70]
Glass-type and frame	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor
	SHGC shown below South: 1.21 [6.89]	SHGC shown below	SHGC shown below	SHGC shown below	SHGC shown below
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	East: 1.21 [6.89]	South: 0.57 [3.26] East: 0.57 [3.26]	South: 0.57 [3.26] East: 0.57 [3.26]	South: 0.57 [3.26] East: 0.57 [3.26]	South: 0.57 [3.26] East: 0.57 [3.26]
	North: 1.21 [6.89]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]	North: 0.57 [3.26]
	West: 1.21 [6.89]	West: 0.57 [3.26]	West: 0.57 [3.26]	West: 0.57 [3.26]	
01100					West: 0.57 [3.26]
SHGC	South: 0.61	South: 0.39	South: 0.39	South: 0.39	South: 0.39
SHGC	South: 0.61 East: 0.61	South: 0.39 East: 0.39	South: 0.39 East: 0.39	South: 0.39 East: 0.39	South: 0.39 East: 0.39
SHGC	South: 0.61 East: 0.61 North: 0.61	South: 0.39 East: 0.39 North: 0.49	South: 0.39 East: 0.39 North: 0.49	South: 0.39 East: 0.39 North: 0.49	South: 0.39 East: 0.39 North: 0.49
	South: 0.61 East: 0.61 North: 0.61 West: 0.61	South: 0.39 East: 0.39 North: 0.49 West: 0.39	South: 0.39 East: 0.39 North: 0.49 West: 0.39	South: 0.39 East: 0.39 North: 0.49 West: 0.39	South: 0.39 East: 0.39 North: 0.49 West: 0.39
SHGC Visible transmittance	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42
	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42
	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42
Visible transmittance	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53
Visible transmittance Foundation	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42
Visible transmittance Foundation Foundation Type	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42
Visible transmittance Foundation Foundation Type Construction	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula
Visible transmittance Foundation Foundation Type Construction R-value (ft ^A 2·h·9F/Btu [m ^A 2·K/W])	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37]
Visible transmittance Foundation Foundation Type Construction R-value (ft^2·h.ºF/Btu [m^2·K/W]) Dimensions - Total Area (ft^2 [m^2])	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula
Visible transmittance Foundation Foundation Type Construction R-value (ft^2:h °F/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00]
Visible transmittance Foundation Foundation Type Construction R-value (ft^2:h.ºF/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board
Visible transmittance Foundation Foundation Type Construction R-value (ft^2:h°F/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction Dimensions - Total Area (ft^2 [m^2])	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00]
Visible transmittance Foundation Foundation Type Construction R-value (ft^2:h.ºF/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board
Visible transmittance Foundation Foundation Type Construction R-value (ft^2:h°F/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction Dimensions - Total Area (ft^2 [m^2])	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 West: 0.67 Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board
Visible transmittance Foundation Foundation Type Construction R-value (ft^2-h°F/Btu [m^2-K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction Dimensions - Total Area (ft^2 [m^2]) Internal Mass	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 North: 0.53 West: 0.42 South: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00]
Visible transmittance Foundation Foundation Type Construction R-value (ft^2·h·°F/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction Dimensions - Total Area (ft^2 [m^2]) Internal Mass Construction Dimensions - Total Area (ft^2 [m^2])	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood
Visible transmittance Foundation Foundation Type Construction R-value (ft^2-h^oF/Btu [m^2:K/W]) Dimensions - Total Area (ft^2 [m^2]) Interior Partitions Construction Dimensions - Total Area (ft^2 [m^2]) Internal Mass Construction	South: 0.61 East: 0.61 North: 0.61 West: 0.61 South: 0.67 East: 0.67 North: 0.67 West: 0.67 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood 512,448.25 [47,608.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood 512,448.25 [47,608.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood 512,448.25 [47,608.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insulation 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood 512,448.25 [47,608.00]	South: 0.39 East: 0.39 North: 0.49 West: 0.39 South: 0.42 East: 0.42 North: 0.53 West: 0.42 Mass Floor Carpet over heavy concrete and insula 2.11 [0.37] 128,112.06 [11,902.00] 2x4 steel-frame with gypsum board 74,141.81 [6,888.00] 6 inch wood 512,448.25 [47,608.00]

ogram		7			10
Model Number	6	7	8	9	10
Building Name	High School	High School	High School	High School	High School
Location	San Francisco, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago-ohare, IL
(Latitude, Longitude) Weather File	(37.62, -122.38) USA_CA_San.Francisco_TMY2.epw	(39.18, -76.67) USA_MD_Baltimore_TMY2.epw	(35.05, -106.62) USA_NM_Albuquerque_TMY2.epw	(47.45, -122.3) USA_WA_Seattle-Tacoma_TMY2.epw	(41.78, -87.75) USA_IL_Chicago-OHare_TMY2.ep
ASHRAE 90.1-2004 Climate Zone	3C	4A	4B	4C	5A
	36	47	4D	40	54
System Type	0.007.40	0.007.40	0.007.40	0.007.40	0.007.40
ASHRAE 90.1-2004 Appendix G Table G3.1.1B System Number	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC	3: PSZ-AC
Heating Type	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace	Gas Furnace
Cooling Type	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion	Direct Expansion
	-			-	
Fan Control	Constant Volume	Constant Volume	Constant Volume	Constant Volume	Constant Volume
Distribution and Terminal Units	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air	Single Zone/Direct Air
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (853.01 [3,000.03])	Autosized (837.35 [2,944.94])	Autosized (848.31 [2,983.52])	Autosized (768.14 [2,701.56])	Autosized (836.49 [2,941.93])
Heating (kBtu/h [kW])	Autosized (472.64 [1,612.72])	Autosized (539.99 [1,842.53])	Autosized (457.47 [1,560.95])	Autosized (475.95 [1,624.01])	Autosized (591.78 [2,019.24])
HVAC Efficiency					
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control					
Before Terminal Temperature Schedule (°F	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]	Jan - Mar: 55.4°F [13°C]
[°C])	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]	Apr - Sep: 60.8°F [16°C]
	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]	Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F	N/A	N/A	N/A	N/A	N/A
[°C])	N1/A	NI/A	NI/A	N/A	N1/A
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	Yes	No	Yes	Yes	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information	See Zone Level Information
Fan and Pump Loads					
Fan Schedules	Always available	Always available	Always available	Always available	Always available
Supply Fan Efficiency (%)	65.00	65.00	65.00	65.00	65.00
Supply Fan Volumetric Flow Rate (cfm [m^3/s])	384,005.34 [181.23]	361,064.72 [170.40]	381,896.51 [180.24]	345,802.42 [163.20]	363,227.56 [171.42]
Supply Fan Pressure Drop (in H2O [Pa])	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank	Storage Tank	Storage Tank	Storage Tank	Storage Tank
Fuel	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m^3])	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]
	.,	.,,	.,,	.,,	.,,
rnal Loads & Schedules Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH	See HTGSETP_SCH
-		See CLGSETP_SCH			
Cooling	See CLGSETP_SCH	See OLGSETP_SUR	See CLGSETP_SCH	See CLGSETP_SCH	See CLGSETP_SCH
Lighting	1 57 (10 00)	1.57.110.001	1.57.140.000	4.57.640.001	1 57 110 001
Average Power Density (W/ft^2 [W/m^2])	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]
Schedule	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH	See BLDG_LIGHT_SCH
Plug loads					
Average Power Density (W/ft^2 [W/m^2])	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]
Schedule	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH	See BLDG_EQUIP_SCH
Occupancy					
Average People (#/1000 ft^2 [#/100 m^2])	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]
Schedule	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH	See BLDG_OCC_SCH

Table E-5 High Baseline Scorecard: Climate Zones 5-8

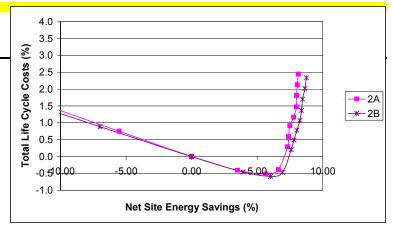
ogram					
Model Number	11	12	13	14	15
Building Name	High School				
Location	Boise, ID	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
(Latitude, Longitude)	(43.57, -116.22)	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
Weather File	USA_ID_Boise_TMY2.epw	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	5B	6A	6B	7A	8A
rm					
Total Floor Area (ft ² [m ²])	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]	210,886.53 [19,592.00]
Number of Floors	2	2	2	2	2
Window Fraction (Window to Wall Ratio)	South: 0.35				
	East: 0.35				
	North: 0.35				
	West: 0.35				
	Total: 0.35				
Window Locations	See Picture				
Skylight/TDD Percent	1.05	1.05	1.05	1.05	1.05
Shading	None	None	None	None	None
Floor to Floor Height (ft [m])	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]	13.12 [4.00]
ric					
Exterior walls					
Construction	R-7.6 ci	R-7.6 ci	R-7.6 ci	R-11.4 ci	R-13.3 ci
R-value (ft ² ·hr·°F/Btu [m ² ·K/W])	7.31 [1.29]	8.75 [1.54]	8.75 [1.54]	10.21 [1.80]	11.58 [2.04]
Gross Dimensions - Total Area (ft ² [m ²])	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]	68,716.80 [6,384.00]
	00,7 10.00 [0,004.00]	00,710.00 [0,004.00]	00,110.00 [0,004.00]	00,110.00 [0,004.00]	00,7 10.00 [0,004.00]
Net Dimensions - Total Area (ft ² [m ²])	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]	44,662.69 [4,149.30]
Roof					
Construction	R-15 ci	R-15 ci	R-15 ci	R-15 ci	R-20 ci
R-value (ft ² ·h·°F/Btu [m ² ·K/W])	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	14.82 (2.61)	19.67 (3.46)
Gross Dimensions - Total Area (ft ² [m ²])	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]
Gloss Dimensions - Total Area (it 2 [iii 2])	128,112.00[11,902.00]	120,112.00 [11,902.00]	128,112.00 [11,902.00]	120,112.00 [11,902.00]	128,112.00[11,902.00]
Net Dimensions - Total Area (ft^2 [m^2])	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]	126,767.11 [11,777.05]
Window	120,10111[11,11100]	120,10111 [11,11100]		.20,10111 [11,11100]	120,10111 [11,11100]
Dimensions - Total Area (ft^2 [m^2])	South: 9 109 99 [752 24]	Coutby 9, 109, 99, [752, 24]	Coutby 9 109 99 [752 24]	Coutby 9 109 99 [752 24]	Courth: 0 100 00 [752 24]
Dimensions - Total Area (ft ² [m ²])	South: 8,108.88 [753.34] East: 3,918.06 [364.00]				
	North: 8,108.88 [753.34]				
	West: 3,918.28 [364.02]				
	Total: 24,054.11 [2,234.70]				
Glass-type and frame	Hypothetical window meeting U-factor and	Hypothetical window meeting U-factor			
	SHGC shown below				
U-Factor (Btu/h·ft^2·°F [W/m^2·K])	South: 0.57 [3.26]	South: 0.57 [3.26]	South: 0.57 [3.26] East: 0.57 [3.26]	South: 0.57 [3.26] East: 0.57 [3.26]	South: 0.46 [2.63] East: 0.46 [2.64]
	East: 0.57 [3.26]	East: 0.57 [3.26]			North: 0.46 [2.64]
	North: 0.57 [3.26] West: 0.57 [3.26]	North: 0.57 [3.26] West: 0.57 [3.26]	North: 0.57 [3.26] West: 0.57 [3.26]	North: 0.57 [3.25] West: 0.57 [3.26]	West: 0.46 [2.64]
0.100					
SHGC	South: 0.39 East: 0.39	South: 0.39 East: 0.39	South: 0.39 East: 0.39	South: 0.49 East: 0.49	South: 0.36 East: 0.46
	North: 0.49	North: 0.49	North: 0.49	North: 0.64	North: 0.46
	West: 0.39	West: 0.39	West: 0.39	West: 0.49	West: 0.46
Visible transmittance	South: 0.42	South: 0.42	South: 0.42	South: 0.53	South: 0.38
	East: 0.42 North: 0.53	East: 0.42 North: 0.53	East: 0.42 North: 0.53	East: 0.53 North: 0.71	East: 0.49 North: 0.49
	West: 0.42	West: 0.42	West: 0.42	West: 0.53	West: 0.49
Foundation					
Foundation Type	Mass Floor				
Construction	Carpet over heavy concrete and insulation	Carpet over heavy concrete and insula			
R-value (ft^2·h·°F/Btu [m^2·K/W])	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]	2.11 [0.37]
Dimensions - Total Area (ft^2 [m^2])	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]	128,112.06 [11,902.00]
Interior Partitions					
Construction	2x4 steel-frame with gypsum board				
Dimensions - Total Area (ft^2 [m^2])	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]	74,141.81 [6,888.00]
Internal Mass					
Construction	6 inch wood				
Dimensions - Total Area (ft ² [m ²])	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]	512,448.25 [47,608.00]
Thermal Properties (lb/ft^2 [kg/m^2])	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]	16.60 [81.00]
Air Barrier System	[000]				
Infiltration (ACH)	0.50	0.50	0.50	0.50	0.50

Table E-6 High Baseline Scorecard: Climate Zones 5-8 (Cont.)


Program					
Model Number	11	12	13	14	15
Building Name	High School				
Location	Boise, ID	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks, AK
(Latitude, Longitude)	(43.57, -116.22)	(44.47, -73.15)	(46.6, -112)	(46.83, -92.18)	(64.82, -147.87)
Weather File	USA_ID_Boise_TMY2.epw	USA_VT_Burlington_TMY2.epw	USA_MT_Helena_TMY2.epw	USA_MN_Duluth_TMY2.epw	USA_AK_Fairbanks_TMY2.epw
ASHRAE 90.1-2004 Climate Zone	5B	6A	6B	7A	8A
VAC					
System Type					
ASHRAE 90.1-2004 Appendix G Table G3.1.1B System Number	3: PSZ-AC				
Heating Type	Gas Furnace				
Cooling Type	Direct Expansion				
Fan Control	Constant Volume				
Distribution and Terminal Units	Single Zone/Direct Air				
HVAC Sizing					
Air Conditioning (tons [kW])	Autosized (849.70 [2,988.40])	Autosized (771.98 [2,715.07])	Autosized (807.87 [2,841.27])	Autosized (807.58 [2,840.27])	Autosized (671.54 [2,361.81])
Heating (kBtu/h [kW])	Autosized (538.94 [1,838.94])	Autosized (585.55 [1,997.98])	Autosized (556.98 [1,900.51])	Autosized (616.10 [2,102.22])	Autosized (660.42 [2,253.44])
HVAC Efficiency				· · · · · ·	
Air Conditioning (COP)	3.30	3.30	3.30	3.30	3.30
Heating Efficiency (%)	80.00	80.00	80.00	80.00	80.00
HVAC Control					
Before Terminal Temperature Schedule (°F	Jan - Mar: 55.4°F [13°C]				
	Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]	Apr - Sep: 60.8°F [16°C] Oct - Dec: 55.4°F [13°C]
Chilled Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Hot Water Supply Temperatures (°F [°C])	N/A	N/A	N/A	N/A	N/A
Economizer	Yes	Yes	Yes	Yes	Yes
Night Cycle	Yes	Yes	Yes	Yes	Yes
Heat Recovery	No	No	No	No	No
Demand Control Ventilation	Yes	Yes	Yes	Yes	Yes
Ventilation (cfm [m^3/s])	See Zone Level Information				
Fan and Pump Loads					
Fan Schedules	Always available				
Supply Fan Efficiency (%)	65.00	65.00	65.00	65.00	65.00
Supply Fan Volumetric Flow Rate (cfm [m^3/s])	382,517.49 [180.53]	338,756.28 [159.88]	363,687.21 [171.64]	360,382.73 [170.08]	302,314.70 [142.68]
Supply Fan Pressure Drop (in H2O [Pa])	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]	2.51 [625.00]
Cooling Tower Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Pump Power (hp [kW])	N/A	N/A	N/A	N/A	N/A
Service Hot Water					
SWH Type	Storage Tank				
Fuel	Natural Gas				
Thermal Efficiency (%)	80.00	80.00	80.00	80.00	80.00
Temperature Setpoint (°F [°C])	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]	140.00 [60.00]
Water Consumption (gal [m^3])	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]	1,146,023.05 [4,338.17]
Iternal Loads & Schedules	.,,	.,,	.,,	.,,	.,,
Heating & Cooling					
Setpoint Schedule					
Heating	See HTGSETP_SCH				
	See CLGSETP_SCH				
Cooling	SEE OLOSEIF_SUR	300 0L03ETF_30F	JEE OLGGETF_DUR		
Lighting	4 57 [46 90]	1 57 [10 90]	1 57 [16 90]	1 57 [46 90]	1 57 [16 90]
Average Power Density (W/ft^2 [W/m^2])	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]	1.57 [16.89]
Schedule	See BLDG_LIGHT_SCH				
Plug loads	A 74 /7	0.74		0.747-000	
Average Power Density (W/ft^2 [W/m^2])	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]	0.74 [7.96]
Schedule	See BLDG_EQUIP_SCH				
Occupancy					
Average People (#/1000 ft^2 [#/100 m^2])	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]	29.57 [31.83]
Schedule	See BLDG_OCC_SCH				

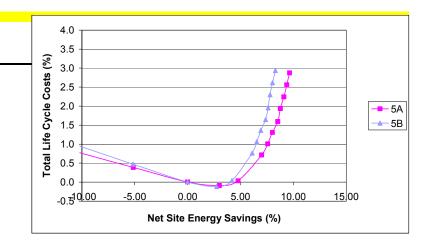
Appendix F. Envelope Optimizations

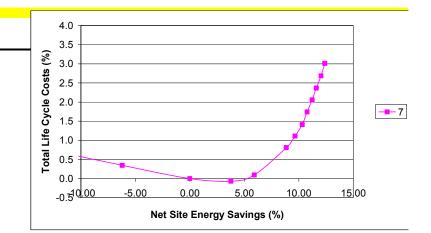
This appendix presents the optimization result tables and curves for the full range of roof and wall insulation options considered in the optimization (Appendix F.1 and F.2, respectively). For each climate zone (1 through 8), the lowest point on the optimization curve was selected as the lowest TLCC option. The options selected for the K-12 AEDG recommendations are highlighted with dark cell lines. The percent savings for both TLCC and energy savings use the SO AEDG insulation levels as the reference. The 0,0 point in the optimization curves and results tables represent this starting point. The SO AEDG, ASHRAE 90.1-1999, ASHRAE 90.1-2007 (with Addendum AS), and the K-12 AEDG insulation levels are shown in the results table.

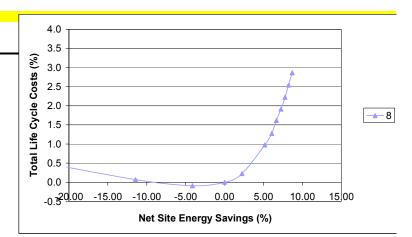

F.1 Insulation above Deck Optimization Results

Climate Zone 2

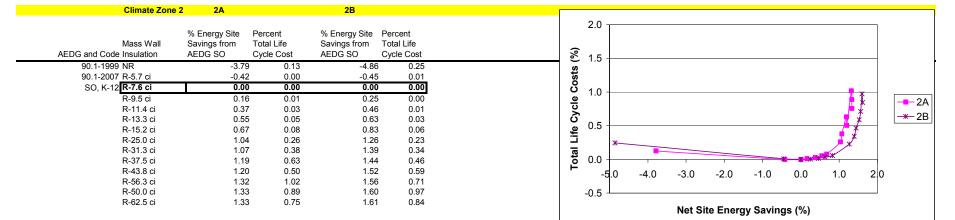
Insulation Above AEDG and Code Deck	% Energy Site Savings from AEDG SO	Percent Total Life Cycle Cost	% Energy Site Savings from AEDG SO	Percent Total Life Cycle Cost
NR	-104.01	14.47	-120.14	15.68
R-3.8 ci	-30.25	4.13	-35.88	4.51
R-5.0 ci	-20.93	2.83	-25.10	3.14
R-7.6 ci	-11.07	1.50	-13.11	1.66
R-10.0 ci	-5.53	0.75	-7.00	0.88
SO, 90.1-1999 R-15.0 ci	0.00	0.00	0.00	0.00
90.1-2007 R-20.0 ci	3.50	-0.41	3.91	-0.46
K-12 R-25.0 ci	5.66	-0.52	6.02	-0.59
R-30.0 ci	6.61	-0.39	6.92	-0.47
R-40.0 ci	7.32	0.29	7.59	0.20
R-50.0 ci	7.39	0.59	7.80	0.49
R-55.0 ci	7.49	0.91	8.03	0.78
R-60.0 ci	7.77	1.17	8.26	1.07
R-65.0 ci	7.99	1.47	8.38	1.37
R-75.0 ci	8.01	1.81	8.46	1.70
R-85.0 ci	8.06	2.13	8.64	2.02
R-95.0 ci	8.14	2.44	8.75	2.33

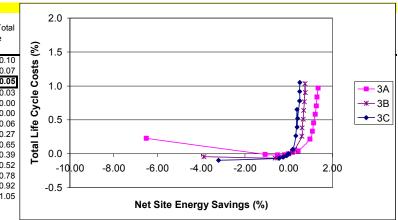

2A


2B

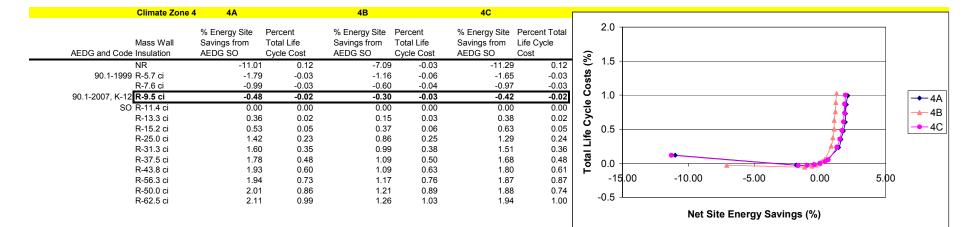

Clima	te Zone 5 5A		5B	
Insulat AEDG and Code Deck	% Energy Site ion Above Savings from AEDG SO		% Energy Site Savings from AEDG SO	Percent Total Life Cycle Cost
NR	-160).62 13.81	-165.85	14.97
R-3.8 ci	-55	5.09 4.22	-55.75	4.77
R-5.0 ci	-40	.43 3.01	-40.71	3.49
R-7.6 ci	-23	3.18 1.74	-23.25	2.08
R-10.0 c	ci -14	.44 1.09	-14.54	1.34
90.1-1999 R-15.0 d	si -5	5.14 0.38	-5.17	0.47
SO, 90.1-2007 R-20.0 d	ci C	0.00 0.00	0.00	0.00
K-12 R-25.0 d	i	3.01 -0.09	2.74	-0.12
R-30.0 c	ci 4	.78 0.04	4.19	0.04
R-40.0 c	si 7	.00 0.71	6.11	0.76
R-50.0 c	si 7	.58 1.01	6.55	1.06
R-55.0 c	si 8	3.02 1.31	6.92	1.36
R-60.0 c	si 8	8.54 1.59	7.38	1.65
R-65.0 c	si 8	8.78 1.93	7.61	1.95
R-75.0 c	si G	0.11 2.24	7.80	2.30
R-85.0 c	si 🤤	.37 2.56	8.04	2.62
R-95.0 c	si g	0.64 2.88	8.30	2.94

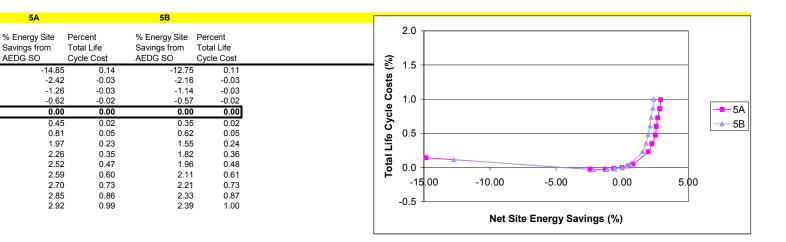
Climate Zone 6	6A		6B		
Insulation Above S	Savings from To	ercent otal Life ycle Cost		ercent otal Life ycle Cost	4.0 3.5 3.0
NR	-162.52	12.66	-178.89	13.78	
R-3.8 ci	-56.77	3.87	-61.96	4.29	\$ 2.5
R-5.0 ci	-41.80	2.74	-45.81	3.13	8 2.5
R-7.6 ci	-24.08	1.59	-26.43	1.88	
R-10.0 ci	-15.08	0.99	-16.62	1.23	
90.1-1999 R-15.0 ci	-5.42	0.35	-5.87	0.43	ð 1.5
SO, 90.1-2007 R-20.0 ci	0.00	0.00	0.00	0.00	
K-12 R-25.0 ci	3.11	-0.07	3.33	-0.10	1.0
R-30.0 ci	5.16	0.07	5.18	0.06	
R-40.0 ci	7.77	0.77	7.44	0.79	0.5
R-50.0 ci	8.54	1.07	8.04	1.10	
R-55.0 ci	9.07	1.38	8.56	1.40	0.0
R-60.0 ci	9.60	1.67	9.14	1.69	_ _{0.5} 10 <u>.00 -5.00 0.00 5.00 10.00 15</u> 00
R-65.0 ci	9.92	2.01	9.37	2.05	-0.5
R-75.0 ci	10.24	2.32	9.72	2.35	Net Site Energy Savings (%)
R-85.0 ci	10.60	2.64	10.09	2.67	
R-95.0 ci	10.89	2.96	10.32	2.99	


Climate Zone 7	′ 7A	
	% Energy Site	Percent
Insulation Above	 Savings from 	Total Life
AEDG and Code Deck	AEDG SO	Cycle Cost
NR	-186.44	12.69
R-3.8 ci	-64.91	3.89
R-5.0 ci	-47.81	2.77
R-7.6 ci	-27.47	1.63
R-10.0 ci	-17.30	1.02
90.1-1999 R-15.0 ci	-6.20	0.35
SO, 90.1-2007 R-20.0 ci	0.00	0.00
K-12 R-25.0 ci	3.76	-0.07
R-30.0 ci	5.92	0.09
R-40.0 ci	8.85	0.81
R-50.0 ci	9.66	1.11
R-55.0 ci	10.31	1.41
R-60.0 ci	10.76	1.74
R-65.0 ci	11.22	2.05
R-75.0 ci	11.61	2.36
R-85.0 ci	12.04	2.69
R-95.0 ci	12.39	3.01



	Climate Zone 8	8A	
		% Energy Site	Percent
	Insulation Above	Savings from	Total Life
AEDG and Code	Deck	AEDG SO	Cycle Cost
	NR	-199.67	8.81
	R-5.0 ci	-75.97	2.64
	R-7.6 ci	-58.15	1.85
	R-10.0 ci	-36.13	1.02
	R-15.0 ci	-24.50	0.56
90.1-2007, 90.1-1999	R-20.0 ci	-11.43	0.07
K-12	R-25.0 ci	-4.12	-0.09
SO	R-30.0 ci	0.00	0.00
	R-40.0 ci	2.25	0.23
	R-50.0 ci	5.16	0.97
	R-55.0 ci	6.06	1.28
	R-60.0 ci	6.65	1.62
	R-65.0 ci	7.25	1.91
	R-75.0 ci	7.78	2.22
	R-85.0 ci	8.23	2.54
	R-95.0 ci	8.69	2.86


F.2 Mass Wall Insulation Optimization Results


Climate Zone	1 1A % Energy Site	Percent				
Mass Wall	Savings from	Total Life			2.0	
AEDG and Code Insulation	AEDG SO	Cycle Cost				
SO, 90.1-2007, 90.1-1999 NR	0.0	0.00	Small Office (SO) Guide Recommendation at 0,0	(%)	1.5	
K-12 R-5.7 ci	2.4	2 -0.12	K-12 Recommendation at minimum life cycle cost, OR at mi	Š	1.5	
R-7.6 ci	2.7	2 -0.12	Minimum Code (ASHRAE 90.1-2007)	ŝ		
R-9.5 ci	2.8	6 -0.11		ပိ	10	
R-11.4 ci	3.0	3 -0.09		Ð	1.0	•
R-13.3 ci	3.1			<u>ک</u>		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
R-15.2 ci	3.1	9 -0.04		<u>୍</u>		
R-25.0 ci	3.4	4 0.14		ife	0.5	
R-31.3 ci	3.5			Ľ.		
R-37.5 ci	3.6			ta		
R-43.8 ci	3.6			ō	0.0	
R-56.3 ci	3.7			-	0	0.00 1.00 2.00 3.00 4.00
R-50.0 ci	3.7					
R-62.5 ci	3.7	3 0.90			-0.5	;
						Net Site Energy Savings (%)

Climate Zone	3 3A		3B		3C	
	% Energy Site	Percent	% Energy Site	Percent	% Energy Site	Percent Total
Mass Wall	Savings from	Total Life	Savings from	Total Life	Savings from	Life Cycle
AEDG and Code Insulation	AEDG SO	Cycle Cost	AEDG SO	Cycle Cost	AEDG SO	Cost
NR	-6.51	0.23	-3.87	-0.04	-3.21	-0.10
90.1-1999 R-5.7 ci	-1.08	-0.01	-0.62	-0.06	-0.44	-0.07
90.1-2007, K-12 R-7.6 ci	-0.51	-0.02	-0.38	-0.05	-0.25	-0.05
R-9.5 ci	-0.19	-0.01	-0.16	-0.03	-0.11	-0.03
SO R-11.4 ci	0.00	0.00	0.00	0.00	0.00	0.00
R-13.3 ci	0.17	0.02	0.17	0.03	0.00	0.00
R-15.2 ci	0.43	0.04	0.27	0.06	0.18	0.06
R-25.0 ci	0.97	0.22	0.60	0.26	0.32	0.27
R-31.3 ci	1.08	0.33	0.61	0.38	0.38	0.65
R-37.5 ci	1.14	0.46	0.66	0.51	0.38	0.39
R-43.8 ci	1.21	0.58	0.68	0.64	0.41	0.52
R-56.3 ci	1.26	0.71	0.71	0.77	0.50	0.78
R-50.0 ci	1.29	0.84	0.74	1.04	0.50	0.92
R-62.5 ci	1.34	0.97	0.76	0.90	0.51	1.05

Climate Zon	e 6 6A	6B	
Mass Wall AEDG and Code Insulation	% Energy Site Percent Savings from Total Life AEDG SO Cycle Cost	% Energy Site Percent Savings from Total Life AEDG SO Cycle Cost	4.0 3.5 3.0
NR	-16.42 0.0	-15.11 0.02	3.0
R-5.7 ci	-2.73 -0.0	-2.52 -0.05	si
90.1-1999 R-7.6 ci	-1.49 -0.0	-1.31 -0.04	8 2.5
R-9.5 ci	-0.77 -0.0	-0.65 -0.02	
SO R-11.4 ci	0.00 0.0	0.00 0.00	<u>e</u> 2.0
90.1-2007, K-12 R-13.3 ci	0.48 0.0	0.47 0.03	5 1.5
R-15.2 ci	0.90 0.0	0.84 0.06	
R-25.0 ci	2.16 0.2	2.01 0.25	1.0 1 .0
R-31.3 ci	2.51 0.3	2.33 0.37	
R-37.5 ci	2.68 0.4	2.51 0.50	8 0.5
R-43.8 ci	2.94 0.6	2.73 0.63	
R-56.3 ci	3.08 0.7	2.79 0.76	0.0
R-50.0 ci	3.28 0.8	2.98 0.89	-0.5 ² 0.00 -15.00 -10.00 -5.00 0.00 5.00
R-62.5 ci	3.32 1.0	3.05 1.03	-0.5
			Net Site Energy Savings (%)

Climate Zone 5

Mass Wall

NR

R-5.7 ci

R-9.5 ci

R-13.3 ci

R-15.2 ci

R-25.0 ci

R-31.3 ci

R-37.5 ci

R-43.8 ci

R-56.3 ci

R-50.0 ci

R-62.5 ci

AEDG and Code Insulation

SO, 90.1-2007, K-12 R-11.4 ci

90.1-1999 R-7.6 ci

5A

Savings from

-14.85

-2.42

-1.26

-0.62

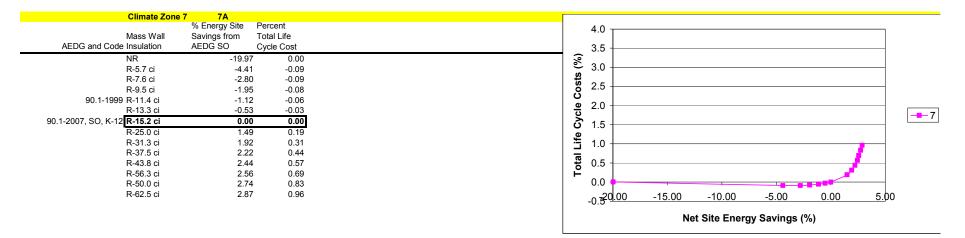
0.00

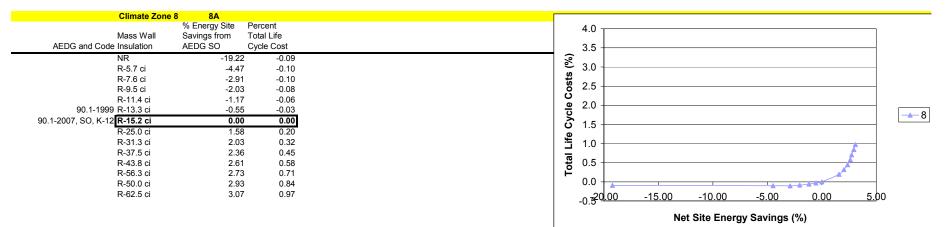
0.45

0.81

1.97

2.26


2.52


2.59

2.70

2.85 2.92

AEDG SO

Appendix G. Energy Savings End Use Tables: ASHRAE 90.1-1999 Baseline

Elemen	tary School End Uses			ctricity (Gas (k	Btu/ft ²)	Total End	Savings
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	%
	Baseline	20.9	20.0	0.8	14.9	18.0	0.0	0.4	0.7	75.7	NA
	30% - No Daylight PSZ	10.4	12.7	0.6	14.9	10.4	0.0	0.2	0.8	50.0	34.0%
	30% - No Daylight VAV	13.1	12.7	0.6	14.9	5.6	0.6	0.0	0.8	48.3	36.3%
1A	30% - No Daylight PVAV	9.7	12.7	0.6	14.9	5.6	0.0	0.0	0.8	44.4	41.4%
	30% - Daylit PSZ	9.6	9.3	0.6	14.9	9.7	0.0	0.2	0.7	45.1	40.4%
	30% - Daylit VAV	12.1	9.3	0.6	14.9	5.2	0.6	0.0	0.7	43.5	42.5%
	30% - Daylit PVAV	9.0	9.3	0.6	14.9	5.2	0.0	0.0	0.7	39.9	47.4%
	Baseline	14.2	20.0	0.8	14.9	17.5	0.0	3.3	1.0	71.8	NA
	30% - No Daylight PSZ	6.6	12.7	0.6	14.9	9.3	0.0	1.0	1.0	46.2	35.7%
	30% - No Daylight VAV	9.4	12.7	0.6	14.9	5.0	0.6	1.0	1.0	45.2	37.0%
2A	30% - No Daylight PVAV	7.0	12.7	0.6	14.9	5.0	0.0	1.8	1.0	42.3	41.1%
	30% - Daylit PSZ	5.9	9.4	0.6	14.9	8.6	0.0	1.1	1.0	41.6	42.1%
	30% - Daylit VAV	8.7	9.4	0.6	14.9	4.6	0.5	1.1	1.0	40.8	43.2%
	30% - Daylit PVAV	6.4	9.4	0.6	14.9	4.6	0.0	1.1	1.0	38.1	46.9%
	Baseline	16.6	20.0	0.8	14.9	19.3	0.0	1.5	0.9	74.0	NA
	30% - No Daylight PSZ	7.1	12.7	0.6	14.9	9.8	0.0	0.6	0.9	46.6	37.1%
2B	30% - No Daylight VAV	8.6	12.7	0.6	14.9	5.3	0.5	0.7	0.9	44.3	40.2%
2D	30% - No Daylight PVAV	6.4	12.7	0.6	14.9	5.3	0.0	0.7	0.9	41.6	43.8%
	30% - Daylit PSZ	6.2	9.4	0.6	14.9	8.9	0.0	0.6	0.9	41.6	43.9%
	30% - Daylit VAV	7.7	9.4	0.6	14.9	4.8	0.5	0.7	0.9	39.4	46.7%
	30% - Daylit PVAV	5.7	9.4	0.6	14.9	4.8	0.0	0.7	0.9	37.0	50.0%
	Baseline	9.7	20.0	0.8	14.9	16.0	0.0	4.9	1.2	67.4	NA
	30% - No Daylight PSZ	4.3	10.1	0.6	14.9	9.5	0.0	2.7	1.2	43.3	35.8%
3A	30% - No Daylight VAV	7.3	10.1	0.6	14.9	5.1	0.6	3.0	1.2	42.8	36.4%
	30% - No Daylight PVAV	5.4	10.1	0.6	14.9	5.1	0.0	3.2	1.2	40.6	39.8%
	30% - Daylit PSZ	4.0	9.5	0.6	14.9	8.9	0.0	2.8	1.2	41.9	37.8%
	30% - Daylit VAV	6.9	9.5	0.6	14.9	4.8	0.6	2.9	1.2	41.3	38.7%
	30% - Daylit PVAV	5.1	9.5	0.6	14.9	4.8	0.0	3.0	1.2	39.2	41.9%
-	Baseline	9.6	20.0	0.8	14.9	15.5	0.0	1.8	1.1	63.7	NA 25.60/
-	30% - No Daylight PSZ	4.2 6.2	10.1	0.6	14.9	9.1 5.0	0.0	0.9	1.1	41.0	35.6%
3B	30% - No Daylight VAV 30% - No Daylight PVAV	4.6	10.1	0.6	14.9 14.9	5.0	0.0	1.2	1.1	39.6 37.6	37.8% 40.9%
-	30% - Daylit PSZ	3.9	9.4	0.6	14.9	8.5	0.0	1.5	1.1	37.0	38.1%
	30% - Daylit VAV	5.8	9.4	0.6	14.9	4.6	0.0	1.0	1.1	39.4	40.2%
	30% - Daylit PVAV	4.3	9.4	0.6	14.9	4.6	0.4	1.2	1.1	36.2	40.2%
	Baseline	3.7	20.0	0.8	14.9	17.5	0.0	2.3	1.1	60.4	43.170 NA
	30% - No Daylight PSZ	0.8	10.1	0.8	14.9	7.4	0.0	0.8	1.3	36.0	40.4%
	30% - No Daylight VAV	2.5	10.1	0.6	14.9	3.4	0.3	1.6	1.3	34.7	42.6%
3C	30% - No Daylight PVAV	1.8	10.1	0.6	14.9	3.4	0.0	1.8	1.3	33.9	43.9%
∎ ⊦	30% - Daylit PSZ	0.6	9.5	0.6	14.9	6.8	0.0	0.8	1.4	34.6	42.8%
∎ ⊨	30% - Daylit VAV	2.4	9.5	0.6	14.9	3.6	0.3	1.5	1.3	34.1	43.6%
I ⊦	30% - Daylit PVAV	1.8	9.5	0.6	14.9	3.6	0.0	1.6	1.3	33.3	44.9%
	Baseline	6.5	20.0	0.8	14.9	16.9	0.0	10.8	1.4	71.2	NA
	30% - No Daylight PSZ	3.0	10.1	0.6	14.9	10.2	0.0	5.4	1.4	45.5	36.1%
	30% - No Daylight VAV	6.2	10.1	0.6	14.9	5.6	0.6	5.5	1.4	44.9	36.9%
4A	30% - No Daylight PVAV	4.6	10.1	0.6	14.9	5.6	0.0	5.9	1.4	43.0	39.6%
	30% - Daylit PSZ	2.6	9.4	0.6	14.9	9.0	0.0	5.6	1.4	43.5	38.9%
l t	30% - Daylit VAV	5.6	9.4	0.6	14.9	5.0	0.6	5.2	1.4	42.6	40.2%
l L	30% - Daylit PVAV	4.1	9.4	0.6	14.9	5.0	0.0	5.6	1.4	40.9	42.5%
	Baseline	6.8	20.0	0.8	14.9	17.1	0.0	4.7	1.3	65.6	NA
l [30% - No Daylight PSZ	2.9	10.1	0.6	14.9	10.2	0.0	2.3	1.4	42.5	35.2%
	30% - No Daylight VAV	5.5	10.1	0.6	14.9	5.7	0.5	2.7	1.3	41.4	36.9%
4B	30% - No Daylight PVAV	4.1	10.1	0.6	14.9	5.7	0.0	2.9	1.3	39.7	39.5%
[[30% - Daylit PSZ	2.6	9.2	0.6	14.9	9.1	0.0	2.4	1.4	40.2	38.7%
[30% - Daylit VAV	4.9	9.2	0.6	14.9	5.0	0.4	2.6	1.3	39.1	40.3%
I	30% - Daylit PVAV	3.6	9.2	0.6	14.9	5.0	0.0	2.8	1.3	37.6	42.6%

Table G-1 Elementary End Uses: Climate Zones 1-4

Elementary School End Uses			Ele	ctricity	(kBtu/	ft ²)		Gas (k	Btu/ft ²)	Total	Savings
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equi p	Fans	Pumps	Heating	Water Systems	End Uses (kBtu/ft ²)	Savings %
	Baseline	2.0	20.0	0.8	14.9	15.3	0.0	6.4	1.4	60.9	NA
	30% - No Daylight PSZ	0.9	10.1	0.6	14.9	9.1	0.0	3.7	1.5	40.8	33.0%
	30% - No Daylight VAV	2.2	10.1	0.6	14.9	4.2	0.2	4.4	1.4	38.0	37.5%
4C	30% - No Daylight PVAV	1.5	10.1	0.6	14.9	4.2	0.0	4.7	1.4	37.5	38.4%
	30% - Daylit PSZ	0.7	9.7	0.6	14.9	8.0	0.0	3.8	1.5	39.2	35.6%
	30% - Daylit VAV	2.0	9.7	0.6	14.9	4.3	0.2	3.8	1.4	37.0	39.2%
	30% - Daylit PVAV	1.4	9.7	0.6	14.9	4.3	0.0	4.1	1.4	36.5	40.1%
	Baseline	5.1	20.0	0.8	14.9	18.3	0.0	18.9	1.5	79.6	NA
	30% - No Daylight PSZ	2.5	12.7	0.6	14.9	11.0	0.0	8.3	1.5	51.6	35.1%
	30% - No Daylight VAV	6.2	12.7	0.6	14.9	6.1	0.7	8.4	1.5	51.2	35.7%
5A	30% - No Daylight PVAV	4.7	12.7	0.6	14.9	6.1	0.0	8.9	1.5	49.5	37.8%
	30% - Daylit PSZ	2.1	9.4	0.6	14.9	9.6	0.0	9.3	1.5	47.4	40.4%
	30% - Daylit VAV	5.4	9.4	0.6	14.9	5.3	0.6	8.6	1.5	46.4	41.7%
	30% - Daylit PVAV	4.0	9.4	0.6	14.9	5.3	0.0	9.1	1.5	45.0	43.4%
	Baseline	4.5	20.0	0.8	14.9	18.2	0.0	11.1	1.5	71.0	NA
	30% - No Daylight PSZ	2.1	12.7	0.6	14.9	10.7	0.0	5.0	1.5	47.5	33.2%
	30% - No Daylight VAV	4.9	12.7	0.6	14.9	5.8	0.5	4.9	1.5	45.9	35.3%
5B	30% - No Daylight PVAV	3.9	12.7	0.6	14.9	5.9	0.0	5.9	1.5	45.5	36.0%
	30% - Daylit PSZ	1.6	9.3	0.6	14.9	9.3	0.0	5.7	1.5	42.9	39.5%
	30% - Daylit VAV	4.4	9.3	0.6	14.9	5.2	0.5	5.7	1.5	42.0	40.8%
	30% - Daylit PVAV	3.3	9.3	0.6	14.9	5.2	0.0	6.0	1.5	40.8	42.5%
	Baseline	3.5	20.0	0.8	14.9	17.9	0.0	28.6	1.7	87.4	NA
	30% - No Daylight PSZ	1.7	12.7	0.6	14.9	10.8	0.0	12.3	1.7	54.7	37.3%
	30% - No Daylight VAV	5.4	12.7	0.6	14.9	6.0	0.7	12.1	1.7	54.0	38.2%
6A	30% - No Daylight PVAV	4.2	12.7	0.6	14.9	6.0	0.0	12.9	1.7	52.9	39.4%
	30% - Daylit PSZ	1.3	9.4	0.6	14.9	9.3	0.0	13.3	1.7	50.5	42.2%
	30% - Daylit VAV	4.6	9.4	0.6	14.9	5.1	0.6	12.4	1.7	49.3	43.6%
	30% - Daylit PVAV	3.6	9.4	0.6	14.9	5.1	0.0	13.2	1.7	48.5	44.5%
	Baseline	2.9	20.0	0.8	14.9	18.4	0.0	21.1	1.7	79.8	NA
	30% - No Daylight PSZ	1.3	12.7	0.6	14.9	10.6	0.0	9.3	1.7	51.2	35.9%
	30% - No Daylight VAV	4.5	12.7	0.6	14.9	5.9	0.5	9.9	1.7	50.8	36.4%
6B	30% - No Daylight PVAV	3.5	12.7	0.6	14.9	5.9	0.0	10.6	1.7	49.9	37.4%
	30% - Daylit PSZ	1.0	9.3	0.6	14.9	9.1	0.0	10.1	1.7	46.7	41.5%
	30% - Daylit VAV	3.7	9.3	0.6	14.9	5.1	0.5	10.1	1.7	46.0	42.4%
	30% - Daylit PVAV	2.9	9.3	0.6	14.9	5.1	0.0	10.8	1.7	45.4	43.1%
	Baseline	2.0	20.0	0.8	14.9	19.8	0.0	38.9	1.9	98.3	NA
	30% - No Daylight PSZ	0.9	12.7	0.6	14.9	11.2	0.0	16.3	1.9	58.5	40.4%
	30% - No Daylight VAV	4.5	12.7	0.6	14.9	6.2	0.7	16.1	1.9	57.7	41.3%
7 A	30% - No Daylight PVAV	3.5	12.7	0.6	14.9	6.2	0.0	17.2	1.9	57.1	41.9%
	30% - Daylit PSZ	0.6	9.3	0.6	14.9	9.7	0.0	17.1	1.9	54.1	44.9%
	30% - Daylit VAV	3.8	9.3	0.6	14.9	5.4	0.7	16.4	1.8	52.9	46.1%
	30% - Daylit PVAV	2.9	9.3	0.6	14.9	5.4	0.0	17.6	1.8	52.6	46.5%
	Baseline	0.8	20.0	0.8	14.9	17.2	0.0	79.2	2.1	135.0	NA
	30% - No Daylight PSZ	0.6	12.7	0.6	14.9	14.0	0.0	33.3	2.1	78.2	42.1%
	30% - No Daylight VAV	4.6	12.7	0.6	14.9	7.6	1.0	38.2	2.1	81.7	39.5%
8	30% - No Daylight PVAV	3.6	12.7	0.6	14.9	7.6	0.0	40.9	2.1	82.4	38.9%
	30% - Daylit PSZ	0.5	10.1	0.6	14.9	13.3	0.0	32.8	2.1	74.2	45.1%
	30% - Daylit VAV	4.2	10.1	0.6	14.9	7.2	0.9	38.7	2.1	78.7	41.7%
	30% - Daylit PVAV	3.3	10.1	0.6	14.9	7.2	0.0	41.4	2.1	79.6	41.1%

Table G-2 Elementary School End Uses: Climate Zones 4-8

Middle	Middle School End Uses		El	ectricity	(kBtu/ft ²	²)		Gas ((Btu/ft ²)	Total End	
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	Savings %
	Baseline	20.5	19.9	0.7	11.6	17.4	0.0	0.4	1.3	71.7	NA
	30% - No Daylight PSZ	10.2	12.7	0.5	11.6	10.0	0.0	0.2	1.2	46.4	35.4%
1A	30% - No Daylight VAV	13.5	12.7	0.5	11.6	5.5	0.6	0.0	1.2	45.6	36.4%
IA	30% - No Daylight PVAV	10.1	12.7	0.5	11.6	5.5	0.0	0.0	1.2	41.6	42.1%
	30% - Daylit PSZ	9.4	9.7	0.5	11.6	9.4	0.0	0.2	1.2	42.0	41.5%
	30% - Daylit VAV	12.6	9.7	0.5	11.6	5.1	0.6	0.0	1.2	41.3	42.4%
	30% - Daylit PVAV	9.4	9.7	0.5	11.6	5.1	0.0	0.0	1.2	37.5	47.7%
	Baseline	13.8	19.9	0.7	11.6	16.9	0.0	3.2	1.8	67.8	NA
	30% - No Daylight PSZ	6.3	12.7	0.5	11.6	9.0	0.0	1.5	1.6	43.2	36.3%
2A	30% - No Daylight VAV	9.8	12.7	0.5	11.6	4.9	0.6	1.1	1.6	42.8	36.9%
	30% - No Daylight PVAV	7.3	12.7	0.5	11.6	4.9	0.0	2.0	1.6	39.8	41.3%
	30% - Daylit PSZ	5.7	9.8	0.5	11.6	8.3	0.0	1.6	1.6	39.1	42.3%
	30% - Daylit VAV	9.1	9.8	0.5	11.6	4.6	0.5	1.1	1.6	38.9	42.7%
	30% - Daylit PVAV	6.8	9.8	0.5	11.6	4.6	0.0	1.2	1.6	36.1	46.8%
	Baseline	15.8	19.9	0.7	11.6	18.3	0.0	1.4	1.6	69.2	NA
	30% - No Daylight PSZ	6.7	12.7	0.5	11.6	9.2	0.0	0.7	1.4	42.9	38.0%
2B	30% - No Daylight VAV	8.7	12.7	0.5	11.6	5.1	0.5	0.8	1.4	41.4	40.2%
20	30% - No Daylight PVAV	6.5	12.7	0.5	11.6	5.1	0.0	0.8	1.4	38.7	44.1%
	30% - Daylit PSZ	6.1	9.7	0.5	11.6	8.5	0.0	0.8	1.4	38.7	44.1%
	30% - Daylit VAV	7.9	9.7	0.5	11.6	4.7	0.5	0.8	1.4	37.1	46.3%
	30% - Daylit PVAV	5.9	9.7	0.5	11.6	4.7	0.0	0.8	1.4	34.7	49.9%
	Baseline	9.4	19.9	0.7	11.6	15.7	0.0	5.1	2.1	64.4	NA
	30% - No Daylight PSZ	4.1	10.4	0.5	11.6	9.1	0.0	3.7	1.9	41.4	35.7%
3A	30% - No Daylight VAV	7.6	10.4	0.5	11.6	5.1	0.6	3.1	1.9	40.8	36.7%
0/1	30% - No Daylight PVAV	5.6	10.4	0.5	11.6	5.1	0.0	3.3	1.9	38.4	40.4%
	30% - Daylit PSZ	3.8	9.9	0.5	11.6	8.6	0.0	3.8	1.9	40.2	37.7%
	30% - Daylit VAV	7.2	9.9	0.5	11.6	4.8	0.6	2.9	1.9	39.4	38.9%
	30% - Daylit PVAV	5.3	9.9	0.5	11.6	4.8	0.0	3.1	1.9	37.2	42.3%
	Baseline	9.4	19.9	0.7	11.6	15.3	0.0	2.0	2.0	60.8	NA
	30% - No Daylight PSZ	4.1	10.4	0.5	11.6	8.8	0.0	1.5	1.8	38.7	36.3%
3B	30% - No Daylight VAV	6.4	10.4	0.5	11.6	4.9	0.5	1.3	1.8	37.4	38.4%
	30% - No Daylight PVAV	4.7	10.4	0.5	11.6	4.9	0.0	1.4	1.8	35.4	41.7%
	30% - Daylit PSZ	3.8	9.8	0.5	11.6	8.3	0.0	1.6	1.8	37.3	38.7%
	30% - Daylit VAV 30% - Daylit PVAV	6.0 4.4	9.8 9.8	0.5	11.6 11.6	4.6 4.6	0.4	1.3 1.3	1.8	36.0	40.8%
	-									34.1	43.9%
	Baseline 30% - No Daylight PSZ	3.3 0.6	19.9 10.4	0.7	11.6 11.6	17.0 7.1	0.0	2.2 1.3	2.4	57.0 33.7	NA 41.0%
	30% - No Daylight VAV	2.5			11.6	3.4			2.2		
3C	30% - No Daylight PVAV	2.5	10.4	0.5	11.6	3.4	0.3	1.8 1.9	2.2	32.7 31.8	42.7% 44.2%
	30% - No Daylight PVAV 30% - Daylit PSZ	0.5	9.9	0.5	11.6	5.4 6.6	0.0	1.9	2.2	31.8	44.2%
	30% - Daylit PS2 30% - Daylit VAV	2.3	9.9 9.9	0.5	11.6	3.1	0.0	1.4	2.2	32.0	42.9%
	30% - Daylit PVAV	1.7	9.9 9.9	0.5	11.6	3.1	0.3	1.0	2.2	30.8	44.7%
	Baseline	6.2	19.9	0.3	11.6	16.5	0.0	11.0	2.2	68.4	40.076 NA
	30% - No Daylight PSZ	2.8	19.9	0.7	11.6	9.6	0.0	7.3	2.5	68.4 44.5	NA 34.9%
	30% - No Daylight VAV	6.2	10.4	0.5	11.6	5.4	0.6	5.5	2.3	44.5	37.7%
4A	30% - No Daylight PVAV	4.6	10.4	0.5	11.6	5.4	0.0	5.9	2.3	40.7	40.4%
	30% - Daylit PSZ	2.5	9.6	0.5	11.6	8.8	0.0	7.5	2.3	40.7	37.6%
	30% - Daylit VAV	5.7	9.6	0.5	11.6	5.0	0.6	5.3	2.3	40.6	40.6%
	30% - Daylit PVAV	4.2	9.6	0.5	11.6	5.0	0.0	5.7	2.3	38.9	43.1%
	Baseline	6.6	19.9	0.7	11.6	16.8	0.0	4.9	2.5	62.8	NA
	30% - No Daylight PSZ	2.8	19.9	0.7	11.6	9.7	0.0	3.5	2.3	40.7	35.2%
	30% - No Daylight VAV	5.5	10.4	0.5	11.6	5.6	0.5	2.9	2.2	39.2	37.6%
4B	30% - No Daylight PVAV	4.1	10.4	0.5	11.6	5.6	0.0	3.1	2.2	37.5	40.3%
	30% - No Daylight PVAV	2.4	9.5	0.5	11.6	8.8	0.0	3.1	2.2	37.3	38.4%
	30% - Daylit PS2 30% - Daylit VAV	5.0	9.5 9.5	0.5	11.6	5.1	0.0	2.8	2.2	37.0	41.0%
	30% - Daylit PVAV	3.7	9.5 9.5	0.5	11.6	5.1	0.4	3.0	2.2	37.0	41.0%
	30% - Dayiit PVAV	3./	9.3	0.5	11.0	3.1	0.0	5.0	2.2	55.5	43.3%

Table G-3 Middle School End Uses: Climate Zones 1-4

Middle School End Uses			Ele	ectricity	(kBtu/f	t ²)		Gas (kBtu/ft ²)	Total End	Savings
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	%
	Baseline	1.8	19.9	0.7	11.6	14.9	0.0	6.9	2.6	58.4	NA
	30% - No Daylight PSZ	0.7	10.4	0.5	11.6	8.5	0.0	5.5	2.4	39.6	32.2%
	30% - No Daylight VAV	2.2	10.4	0.5	11.6	4.1	0.2	4.4	2.4	35.8	38.7%
4C	30% - No Daylight PVAV	1.5	10.4	0.5	11.6	4.1	0.0	4.7	2.4	35.2	39.7%
	30% - Daylit PSZ	0.5	9.9	0.5	11.6	7.7	0.0	5.6	2.4	38.3	34.5%
	30% - Daylit VAV	1.9	9.9	0.5	11.6	3.7	0.2	4.0	2.4	34.3	41.3%
	30% - Daylit PVAV	1.4	9.9	0.5	11.6	3.7	0.0	4.3	2.4	33.8	42.1%
	Baseline	5.0	19.9	0.7	11.6	17.9	0.0	18.4	2.8	76.2	NA
	30% - No Daylight PSZ	2.3	12.7	0.5	11.6	10.5	0.0	10.9	2.5	51.1	33.0%
	30% - No Daylight VAV	6.3	12.7	0.5	11.6	6.0	0.7	8.3	2.5	48.5	36.3%
5A	30% - No Daylight PVAV	4.7	12.7	0.5	11.6	6.0	0.0	8.8	2.5	46.8	38.6%
	30% - Daylit PSZ	1.9	9.6	0.5	11.6	9.4	0.0	11.7	2.5	47.2	38.0%
	30% - Daylit VAV	5.5	9.6	0.5	11.6	5.4	0.6	8.6	2.5	44.4	41.7%
	30% - Daylit PVAV	4.1	9.6	0.5	11.6	5.4	0.0	9.2	2.5	42.9	43.7%
	Baseline	4.3	19.9	0.7	11.6	17.7	0.0	11.1	2.8	68.0	NA
	30% - No Daylight PSZ	1.9	12.7	0.5	11.6	10.1	0.0	7.1	2.5	46.4	31.8%
	30% - No Daylight VAV	5.1	12.7	0.5	11.6	5.8	0.5	5.5	2.5	44.3	34.9%
5B	30% - No Daylight PVAV	3.8	12.7	0.5	11.6	5.8	0.0	5.9	2.5	42.9	37.0%
	30% - Daylit PSZ	1.5	9.5	0.5	11.6	9.0	0.0	7.8	2.5	42.5	37.6%
	30% - Daylit VAV	4.4	9.5	0.5	11.6	5.2	0.5	5.8	2.5	40.0	41.2%
	30% - Daylit PVAV	3.3	9.5	0.5	11.6	5.2	0.0	6.1	2.5	38.8	43.0%
	Baseline	3.3	19.9	0.7	11.6	17.6	0.0	27.1	3.1	83.2	NA
	30% - No Daylight PSZ	1.5	12.7	0.5	11.6	10.3	0.0	15.3	2.7	54.7	34.3%
C A	30% - No Daylight VAV	5.4	12.7	0.5	11.6	5.9	0.7	11.9	2.7	51.4	38.3%
6A	30% - No Daylight PVAV	4.2	12.7	0.5	11.6	5.9	0.0	12.7	2.7	50.3	39.6%
	30% - Daylit PSZ	1.2	9.6	0.5	11.6	9.2	0.0	16.0	2.7	50.8	39.0%
	30% - Daylit VAV	4.7	9.6	0.5	11.6	5.2 5.2	0.6	12.3	2.7 2.7	47.2	43.2%
	30% - Daylit PVAV	3.6	9.6	0.5	11.6		0.0	13.1		46.4	44.2%
	Baseline	2.8	19.9 12.7	0.7	11.6 11.6	18.0 10.2	0.0	20.2 11.8	3.1 2.8	76.2 50.7	NA 33.5%
	30% - No Daylight PSZ 30% - No Daylight VAV	4.5	12.7	0.5	11.6	5.9	0.0	9.8	2.8	48.2	36.7%
6B	30% - No Daylight PVAV	3.5	12.7	0.5	11.6	5.9	0.0	10.4	2.8	47.4	37.8%
00	30% - Daylit PSZ	0.9	9.6	0.5	11.6	9.0	0.0	12.4	2.8	46.7	38.7%
	30% - Daylit VAV	3.8	9.6	0.5	11.6	5.2	0.5	10.1	2.8	44.0	42.2%
	30% - Daylit PVAV	3.0	9.6	0.5	11.6	5.2	0.0	10.1	2.8	43.4	43.0%
	Baseline	1.8	19.9	0.7	11.6	19.4	0.0	36.7	3.5	93.5	NA
	30% - No Daylight PSZ	0.8	19.9	0.5	11.6	19.4	0.0	20.1	3.1	59.5	36.4%
	30% - No Daylight VAV	4.5	12.7	0.5	11.6	6.1	0.7	15.9	3.1	55.1	41.1%
7A	30% - No Daylight PVAV	3.5	12.7	0.5	11.6	6.1	0.0	17.0	3.1	54.5	41.8%
	30% - Daylit PSZ	0.5	9.6	0.5	11.6	9.6	0.0	20.5	3.1	55.4	40.8%
	30% - Daylit VAV	3.8	9.6	0.5	11.6	5.5	0.7	16.3	3.1	51.0	45.5%
	30% - Daylit PVAV	3.0	9.6	0.5	11.6	5.5	0.0	17.5	3.1	50.6	45.9%
	Baseline	0.8	19.9	0.6	11.6	16.8	0.0	71.4	3.9	124.9	NA
	30% - No Daylight PSZ	0.5	12.7	0.5	11.6	13.0	0.0	36.8	3.5	78.5	37.2%
	30% - No Daylight VAV	4.3	12.7	0.5	11.6	7.3	0.9	36.8	3.5	77.6	37.9%
8	30% - No Daylight PVAV	3.3	12.7	0.5	11.6	7.3	0.0	39.4	3.5	78.3	37.3%
	30% - Daylit PSZ	0.4	10.3	0.5	11.6	12.5	0.0	36.3	3.5	75.1	39.9%
	30% - Daylit VAV	3.9	10.3	0.5	11.6	7.0	0.9	37.3	3.5	75.0	40.0%
	30% - Daylit PVAV	3.0	10.3	0.5	11.6	7.0	0.0	40.0	3.5	75.8	39.3%

Table G-4 Middle School End Uses: Climate Zones 4-8

High School End Uses			Elec	ctricity (k	(Btu/ft ²)			Gas ((Btu/ft ²)	Total End Uses	• • • •
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	Savings %
	Baseline	22.1	20.5	0.4	10.4	17.4	0.0	0.3	1.3	72.4	NA
	30% - No Daylight PSZ	11.4	12.7	0.3	10.4	10.2	0.0	0.2	1.2	46.4	36.0%
1A	30% - No Daylight VAV	15.4	12.7	0.3	10.4	6.2	0.7	0.0	1.2	46.9	35.3%
IA	30% - No Daylight PVAV	11.5	12.7	0.3	10.4	6.1	0.0	0.0	1.2	42.3	41.6%
	30% - Daylit PSZ	10.3	9.9	0.3	10.4	9.1	0.0	0.2	1.2	41.4	42.8%
	30% - Daylit VAV	14.1	10.1	0.3	10.4	5.5	0.6	0.0	1.2	42.3	41.6%
	30% - Daylit PVAV	10.5	10.1	0.3	10.4	5.5	0.0	0.0	1.2	38.1	47.4%
	Baseline	15.4	20.5	0.4	10.4	17.3	0.0	3.5	1.8	69.3	NA
	30% - No Daylight PSZ	7.5	12.7	0.3	10.4	9.5	0.0	1.5	1.6	43.6	37.1%
2A	30% - No Daylight VAV 30% - No Daylight PVAV	11.2	12.7	0.3	10.4	5.7		1.4 2.2	1.6	44.0	36.5%
	30% - No Daylight PVAV 30% - Daylit PSZ	8.3	12.7	0.3	10.4	5.7	0.0		1.6	40.5	41.5%
		6.6 10.0	10.1 10.2	0.3	10.4 10.4	8.4 5.0	0.0	1.6 1.4	1.6	39.0 39.6	43.8% 42.8%
	30% - Daylit VAV 30% - Daylit PVAV	7.5	10.2	0.3	10.4	5.0	0.0	1.4	1.6		42.8%
	30% - Daylit PVAV Baseline					5.0 19.9	0.0			36.5	
	30% - No Daylight PSZ	18.8 8.6	20.5 12.7	0.4	10.4 10.4	19.9	0.0	1.6 0.7	1.6	73.2 44.6	NA 39.1%
	30% - No Daylight VAV	8.0	12.7	0.3	10.4	6.7	0.0	0.7	1.4	44.0	39.1%
2B	30% - No Daylight PVAV	8.4	12.7	0.3	10.4	6.7	0.0	1.0	1.4	44.4	44.1%
	30% - Daylit PSZ	7.5	10.1	0.3	10.4	9.2	0.0	0.7	1.4	39.6	44.1%
	30% - Daylit VAV	10.0	10.1	0.3	10.4	5.9	0.6	0.9	1.4	39.7	45.7%
	30% - Daylit PVAV	7.4	10.2	0.3	10.4	5.9	0.0	1.0	1.4	36.7	49.9%
	Baseline	10.9	20.5	0.4	10.4	16.0	0.0	5.6	2.2	65.9	NA
	30% - No Daylight PSZ	5.0	10.4	0.4	10.4	9.8	0.0	4.1	1.9	42.0	36.2%
	30% - No Daylight VAV	8.6	10.1	0.3	10.1	6.0	0.8	3.9	1.9	42.3	35.9%
3A	30% - No Daylight PVAV	6.3	10.4	0.3	10.4	6.0	0.0	4.2	1.9	39.6	39.9%
	30% - Daylit PSZ	4.6	10.2	0.3	10.4	8.9	0.0	4.0	1.9	40.3	38.9%
	30% - Daylit VAV	7.8	10.2	0.3	10.4	5.3	0.7	3.6	1.9	40.4	38.7%
	30% - Daylit PVAV	5.8	10.3	0.3	10.4	5.3	0.0	3.9	1.9	38.0	42.4%
	Baseline	10.9	20.5	0.4	10.4	15.4	0.0	2.2	2.1	61.8	NA
	30% - No Daylight PSZ	5.0	10.4	0.3	10.4	9.4	0.0	1.5	1.8	38.8	37.2%
	30% - No Daylight VAV	7.5	10.4	0.3	10.4	5.9	0.6	1.7	1.8	38.8	37.3%
3B	30% - No Daylight PVAV	5.6	10.4	0.3	10.4	5.9	0.0	1.9	1.8	36.4	41.1%
	30% - Daylit PSZ	4.5	10.1	0.3	10.4	8.3	0.0	1.5	1.8	36.9	40.2%
	30% - Daylit VAV	6.8	10.3	0.3	10.4	5.3	0.5	1.6	1.8	37.0	40.2%
	30% - Daylit PVAV	5.1	10.3	0.3	10.4	5.3	0.0	1.7	1.8	34.8	43.6%
	Baseline	4.1	20.5	0.4	10.4	16.6	0.0	2.7	2.5	57.1	NA
	30% - No Daylight PSZ	0.9	10.4	0.3	10.4	7.5	0.0	1.5	2.2	33.3	41.7%
	30% - No Daylight VAV	2.6	10.4	0.3	10.4	3.7	0.4	2.1	2.2	32.1	43.8%
3C	30% - No Daylight PVAV	1.9	10.4	0.3	10.4	3.7	0.0	2.2	2.2	31.2	45.4%
	30% - Daylit PSZ	0.7	10.2	0.3	10.4	6.7	0.0	1.5	2.2	32.0	44.0%
	30% - Daylit VAV	2.3	10.4	0.3	10.4	3.3	0.3	1.9	2.2	31.1	45.6%
	30% - Daylit PVAV	1.7	10.4	0.3	10.4	3.3	0.0	2.0	2.2	30.3	47.0%
	Baseline	7.3	20.5	0.4	10.4	16.7	0.0	12.4	2.6	70.3	NA
	30% - No Daylight PSZ	3.5	10.4	0.3	10.4	10.6	0.0	8.3	2.3	45.9	34.8%
4.4	30% - No Daylight VAV	7.1	10.4	0.3	10.4	6.8	0.9	7.3	2.3	45.5	35.3%
4A	30% - No Daylight PVAV	5.3	10.4	0.3	10.4	6.8	0.0	7.8	2.3	43.3	38.4%
	30% - Daylit PSZ	3.0	9.8	0.3	10.4	9.0	0.0	8.5	2.3	43.3	38.5%
	30% - Daylit VAV	6.2	9.9	0.3	10.4	5.6	0.8	7.0	2.3	42.5	39.5%
	30% - Daylit PVAV	4.5	9.9	0.3	10.4	5.6	0.0	7.6	2.3	40.7	42.2%
	Baseline	8.0	20.5	0.4	10.4	17.2	0.0	5.5	2.5	64.5	NA
	30% - No Daylight PSZ	3.6	10.4	0.3	10.4	10.9	0.0	3.6	2.2	41.6	35.6%
4B	30% - No Daylight VAV	6.6	10.4	0.3	10.4	7.1	0.7	3.8	2.2	41.5	35.6%
4D	30% - No Daylight PVAV	4.9	10.4	0.3	10.4	7.1	0.0	4.1	2.3	39.5	38.8%
	30% - Daylit PSZ	3.0	9.7	0.3	10.4	9.1	0.0	4.0	2.2	38.8	39.9%
	30% - Daylit VAV	5.6	9.8	0.3	10.4	5.8	0.6	3.8	2.2	38.6	40.2%
	30% - Daylit PVAV	4.1	9.8	0.3	10.4	5.8	0.0	4.1	2.2	36.9	42.9%

Table G-5 High School End Uses: Climate Zones 1-4

High	High School End Uses		Ele	ectricity	(kBtu/f	t ²)		Gas (kBtu/ft ²)	Total End	Savings
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	%
	Baseline	2.6	20.5	0.4	10.4	15.3	0.0	8.9	2.7	60.8	NA
	30% - No Daylight PSZ	1.1	10.4	0.3	10.4	9.5	0.0	6.6	2.4	40.8	32.9%
	30% - No Daylight VAV	2.4	10.4	0.3	10.4	5.2	0.4	5.9	2.4	37.5	38.3%
4C	30% - No Daylight PVAV	1.7	10.4	0.3	10.4	5.2	0.0	6.4	2.4	36.9	39.3%
	30% - Daylit PSZ	0.8	10.2	0.3	10.4	8.0	0.0	6.7	2.4	38.7	36.3%
	30% - Daylit VAV	2.0	10.3	0.3	10.4	4.3	0.4	5.4	2.4	35.4	41.8%
	30% - Daylit PVAV	1.4	10.3	0.3	10.4	4.3	0.0	5.8	2.4	34.9	42.7%
	Baseline	5.9	20.5	0.4	10.4	17.9	0.0	20.6	2.9	78.6	NA
	30% - No Daylight PSZ	3.0	12.7	0.3	10.4	11.6	0.0	12.3	2.6	52.9	32.7%
	30% - No Daylight VAV	7.0	12.7	0.3	10.4	7.2	1.0	10.6	2.6	51.8	34.0%
5A	30% - No Daylight PVAV	5.2	12.7	0.3	10.4	7.2	0.0	11.5	2.6	49.9	36.5%
	30% - Daylit PSZ	2.3	9.8	0.3	10.4	9.7	0.0	13.2	2.6	48.3	38.6%
	30% - Daylit VAV	5.8	9.9	0.3	10.4	6.0	0.9	10.9	2.6	46.8	40.4%
	30% - Daylit PVAV	4.3	9.9	0.3	10.4	6.0	0.0	11.8	2.6	45.3	42.3%
	Baseline	5.4	20.5	0.4	10.4	18.1	0.0	12.8	2.8	70.4	NA
	30% - No Daylight PSZ	2.5	12.7	0.3	10.4	11.5	0.0	7.8	2.5	47.8	32.2%
	30% - No Daylight VAV	6.1	12.7	0.3	10.4	7.3	0.8	7.3	2.5	47.4	32.7%
5B	30% - No Daylight PVAV	4.5	12.7	0.3	10.4	7.3	0.0	7.9	2.5	45.7	35.2%
	30% - Daylit PSZ	1.9	9.7	0.3	10.4	9.5	0.0	8.8	2.5	43.2	38.7%
	30% - Daylit VAV	4.8	9.8	0.3	10.4	6.0	0.7	7.6	2.5	42.1	40.2%
	30% - Daylit PVAV	3.6	9.8	0.3	10.4	6.0	0.0	8.2	2.5	40.8	42.0%
	Baseline	4.0	20.5	0.4	10.4	17.5	0.0	29.5	3.1	85.5	NA
	30% - No Daylight PSZ	2.0	12.7	0.3	10.4	11.4	0.0	17.1	2.8	56.8	33.6%
6A	30% - No Daylight VAV	5.9	12.7	0.3	10.4	6.9 6.9	1.1 0.0	14.9	2.8	55.0	35.6% 36.9%
6A	30% - No Daylight PVAV	4.6	12.7	0.3	10.4	9.5	0.0	16.2 17.7	2.8 2.8	53.9 51.8	
	30% - Daylit PSZ	4.8	9.8 9.8	0.3	10.4	9.5 5.7	1.0	17.7	2.8	51.8	39.4% 41.5%
	30% - Daylit VAV 30% - Daylit PVAV	3.7	9.8 9.8	0.3	10.4	5.7	0.0	16.5	2.8	49.3	41.3%
	Baseline	3.6	20.5	0.3	10.4	18.1	0.0	22.2	3.2	78.3	42.470 NA
	30% - No Daylight PSZ	1.6	12.7	0.4	10.4	11.5	0.0	13.1	2.8	52.4	33.1%
	30% - No Daylight VAV	5.1	12.7	0.3	10.4	7.3	0.9	12.3	2.8	51.8	33.9%
6B	30% - No Daylight PVAV	4.0	12.7	0.3	10.4	7.3	0.0	13.3	2.8	50.8	35.1%
	30% - Daylit PSZ	1.1	9.7	0.3	10.4	9.4	0.0	13.6	2.8	47.4	39.5%
	30% - Daylit VAV	4.0	9.8	0.3	10.4	5.9	0.8	12.5	2.8	46.6	40.5%
	30% - Daylit PVAV	3.1	9.8	0.3	10.4	5.9	0.0	13.6	2.8	46.0	41.3%
	Baseline	2.6	20.5	0.4	10.4	19.6	0.0	39.3	3.5	96.3	NA
	30% - No Daylight PSZ	1.1	12.7	0.3	10.4	12.1	0.0	22.0	3.2	61.8	35.9%
	30% - No Daylight VAV	5.0	12.7	0.3	10.4	7.2	1.2	19.4	3.2	59.3	38.4%
7 A	30% - No Daylight PVAV	3.8	12.7	0.3	10.4	7.2	0.0	21.1	3.2	58.7	39.1%
	30% - Daylit PSZ	0.8	9.7	0.3	10.4	10.0	0.0	22.2	3.2	56.5	41.3%
	30% - Daylit VAV	4.0	9.8	0.3	10.4	6.0	1.1	19.9	3.1	54.7	43.3%
	30% - Daylit PVAV	3.1	9.8	0.3	10.4	6.0	0.0	21.7	3.1	54.4	43.5%
	Baseline	1.3	20.5	0.4	10.4	18.1	0.0	74.7	4.0	129.4	NA
	30% - No Daylight PSZ	0.7	12.7	0.3	10.4	14.3	0.0	39.5	3.6	81.5	37.1%
	30% - No Daylight VAV	4.6	12.7	0.3	10.4	8.3	1.8	42.9	3.6	84.6	34.6%
8	30% - No Daylight PVAV	3.6	12.7	0.3	10.4	8.3	0.0	46.7	3.6	85.6	33.9%
	30% - Daylit PSZ	0.5	10.4	0.3	10.4	12.9	0.0	37.5	3.6	75.6	41.6%
	30% - Daylit VAV	3.9	10.5	0.3	10.4	7.3	1.7	42.6	3.6	80.3	38.0%
	30% - Daylit PVAV	3.0	10.5	0.3	10.4	7.3	0.0	46.4	3.6	81.5	37.0%

Table G-6 High School End Uses: Climate Zones 4-8

Appendix H. Energy Savings End Use Tables: ASHRAE 90.1-2004 Baseline

Flomontary School		Tau			ily Scho	Cimale	Zones 1-8				
	entary School End Uses			ectricity	(kBtu/ft ²	²)		Gas (k	(Btu/ft ²)	Total End Uses (kBtu/ft ²)	Savings %
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	(kBtu/ft⁻)	
	2004 Baseline	15.7	16.3	0.8	14.9	17.3	0.0	0.4	0.7	66.1	NA
1A	30% - Daylit PSZ	9.6	9.3	0.6	14.9	9.7	0.0	0.2	0.7	45.1	31.7%
	30% - Daylit VAV	12.1	9.3	0.6	14.9	5.2	0.6	0.0	0.7	43.5	34.1%
	30% - Daylit PVAV 2004 Baseline	9.0	9.3	0.6	14.9	5.2	0.0	0.0	0.7	39.9	39.7%
	30% - Daylit PSZ	10.5 5.9	16.3 9.4	0.8	14.9 14.9	16.9 8.6	0.0	3.7	1.0	64.1 41.6	NA 35.2%
2A	30% - Daylit VAV	8.7	9.4	0.6	14.9	4.6	0.5	1.1	1.0	40.8	36.4%
	30% - Daylit PVAV	6.4	9.4	0.6	14.9	4.6	0.0	1.1	1.0	38.1	40.5%
	2004 Baseline	12.3	16.3	0.8	14.9	18.6	0.0	1.7	0.9	65.5	NA
2B	30% - Daylit PSZ	6.2	9.4	0.6	14.9	8.9	0.0	0.6	0.9	41.6	36.5%
	30% - Daylit VAV	7.7	9.4	0.6	14.9	4.8	0.5	0.7	0.9	39.4	39.8%
	30% - Daylit PVAV	5.7	9.4	0.6	14.9	4.8	0.0	0.7	0.9	37.0	43.4%
	2004 Baseline	7.1	16.3	0.8	14.9	15.6	0.0	5.5	1.2	61.4	NA
3A	30% - Daylit PSZ	4.0	9.5	0.6	14.9	8.9	0.0	2.8	1.2	41.9	31.8%
	30% - Daylit VAV 30% - Daylit PVAV	6.9 5.1	9.5 9.5	0.6	14.9 14.9	4.8 4.8	0.6	2.9 3.0	1.2 1.2	41.3 39.2	32.7% 36.2%
	2004 Baseline	7.0	16.3	0.0	14.9	14.9	0.0	2.1	1.2	57.2	NA
3B	30% - Daylit PSZ	3.9	9.4	0.8	14.9	8.5	0.0	1.0	1.1	39.4	31.1%
50	30% - Daylit VAV	5.8	9.4	0.6	14.9	4.6	0.4	1.2	1.1	38.1	33.4%
	30% - Daylit PVAV	4.3	9.4	0.6	14.9	4.6	0.0	1.3	1.1	36.2	36.6%
	2004 Baseline	1.4	16.3	0.8	14.9	13.4	0.0	2.5	1.3	50.6	NA
3C	30% - Daylit PSZ	0.6	9.5	0.6	14.9	6.8	0.0	0.8	1.4	34.6	31.7%
	30% - Daylit VAV	2.4	9.5	0.6	14.9	3.6	0.3	1.5	1.3	34.1	32.7%
	30% - Daylit PVAV	1.8	9.5	0.6	14.9	3.6	0.0	1.6	1.3	33.3	34.3%
	2004 Baseline	4.7	16.3	0.8	14.9	16.6	0.0	11.9	1.4	66.6	NA
4A	30% - Daylit PSZ	2.6	9.4	0.6	14.9	9.0	0.0	5.6	1.4	43.5	34.7%
	30% - Daylit VAV 30% - Daylit PVAV	5.6 4.1	9.4 9.4	0.6	14.9 14.9	5.0 5.0	0.6	5.2 5.6	1.4	42.6	36.0% 38.6%
	2004 Baseline	4.1	9.4	0.8	14.9	5.0 16.7	0.0	5.6	1.4	40.9 60.3	38.0% NA
4B	30% - Daylit PSZ	2.6	9.2	0.8	14.9	9.1	0.0	2.4	1.4	40.2	33.3%
4D	30% - Daylit VAV	4.9	9.2	0.6	14.9	5.0	0.4	2.6	1.3	39.1	35.1%
	30% - Daylit PVAV	3.6	9.2	0.6	14.9	5.0	0.0	2.8	1.3	37.6	37.6%
	2004 Baseline	1.3	16.3	0.8	14.9	14.9	0.0	7.5	1.4	57.2	NA
4C	30% - Daylit PSZ	0.7	9.7	0.6	14.9	8.0	0.0	3.8	1.5	39.2	31.5%
40	30% - Daylit VAV	2.0	9.7	0.6	14.9	4.3	0.2	3.8	1.4	37.0	35.3%
	30% - Daylit PVAV	1.4	9.7	0.6	14.9	4.3	0.0	4.1	1.4	36.5	36.2%
	2004 Baseline	3.7	16.3	0.8	14.9	18.0	0.0	20.5	1.5	75.7	NA
5A	30% - Daylit PSZ	2.1	9.4	0.6	14.9	9.6	0.0	9.3	1.5	47.4	37.4%
-	30% - Daylit VAV	5.4	9.4	0.6	14.9	5.3	0.6	8.6	1.5	46.4	38.7%
	30% - Daylit PVAV	4.0	9.4	0.6	14.9	5.3	0.0	9.1	1.5	45.0	40.6%
	2004 Baseline 30% - Daylit PSZ	3.3 1.6	16.3 9.3	0.8	14.9 14.9	17.9 9.3	0.0	12.3 5.7	1.5 1.5	66.9 42.9	NA 35.9%
5B	30% - Daylit VAV	4.4	9.3	0.6	14.9	5.2	0.0	5.7	1.5	42.9	37.2%
	30% - Daylit PVAV	3.3	9.3	0.6	14.9	5.2	0.0	6.0	1.5	40.8	39.0%
	2004 Baseline	2.4	16.3	0.8	14.9	17.5	0.0	30.5	1.7	84.1	NA
C A	30% - Daylit PSZ	1.3	9.4	0.6	14.9	9.3	0.0	13.3	1.7	50.5	40.0%
6A	30% - Daylit VAV	4.6	9.4	0.6	14.9	5.1	0.6	12.4	1.7	49.3	41.4%
	30% - Daylit PVAV	3.6	9.4	0.6	14.9	5.1	0.0	13.2	1.7	48.5	42.4%
	2004 Baseline	2.1	16.3	0.8	14.9	17.9	0.0	22.8	1.7	76.5	NA
6B	30% - Daylit PSZ	1.0	9.3	0.6	14.9	9.1	0.0	10.1	1.7	46.7	38.9%
	30% - Daylit VAV	3.7	9.3	0.6	14.9	5.1	0.5	10.1	1.7	46.0	39.9%
	30% - Daylit PVAV	2.9	9.3	0.6	14.9	5.1	0.0	10.8	1.7	45.4	40.7%
	2004 Baseline	1.3	16.3 9.3	0.8	14.9 14.9	19.3 9.7	0.0	41.4	1.9 1.9	95.9 54.1	NA 42.5%
7A	30% - Daylit PSZ 30% - Daylit VAV	0.6	9.3 9.3	0.6	14.9	9.7 5.4	0.0	17.1	1.9	54.1	43.5% 44.8%
	30% - Daylit VAV	2.9	9.3	0.6	14.9	5.4	0.7	16.4	1.8	52.9	44.8%
	2004 Baseline	0.7	16.3	0.8	14.9	18.2	0.0	79.9	2.1	132.9	43.176 NA
_	30% - Daylit PSZ	0.7	10.5	0.8	14.9	13.3	0.0	32.8	2.1	74.2	44.2%
8	30% - Daylit VAV	4.2	10.1	0.6	14.9	7.2	0.9	38.7	2.1	78.7	40.8%
	30% - Daylit PVAV	3.3	10.1	0.6	14.9	7.2	0.0	41.4	2.1	79.6	40.1%
	2	1			1	1					1

Table H-1 Elementary School End Uses: Climate Zones 1-8

Middle	Middle School End Uses		Ele	ctricity (kBtu/ft	²)		Gas (k	Btu/ft ²)	Total End	Savings
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	%
	2004 Baseline	15.3	15.9	0.7	11.6	16.7	0.0	0.4	1.3	61.8	NA
1A	30% - Daylit PSZ	9.4	9.7	0.5	11.6	9.4	0.0	0.2	1.2	42.0	32.1%
	30% - Daylit VAV	12.6	9.7	0.5	11.6	5.1	0.6	0.0	1.2	41.3	33.2%
	30% - Daylit PVAV	9.4	9.7	0.5	11.6	5.1	0.0	0.0	1.2	37.5	39.3%
	2004 Baseline	10.2	15.9	0.7	11.6	16.2	0.0	3.6	1.8	59.9	NA
2A	30% - Daylit PSZ	5.7	9.8	0.5	11.6	8.3	0.0	1.6	1.6	39.1	34.7%
	30% - Daylit VAV 30% - Daylit PVAV	9.1 6.8	9.8 9.8	0.5	11.6 11.6	4.6 4.6	0.5	1.1	1.6 1.6	38.9 36.1	35.1% 39.8%
	2004 Baseline	11.7	9.8	0.3	11.6	4.0	0.0	1.2	1.6	60.6	39.8% NA
2B	30% - Daylit PSZ	6.1	9.7	0.7	11.6	8.5	0.0	0.8	1.0	38.7	36.2%
20	30% - Daylit VAV	7.9	9.7	0.5	11.6	4.7	0.5	0.8	1.4	37.1	38.7%
	30% - Daylit PVAV	5.9	9.7	0.5	11.6	4.7	0.0	0.8	1.4	34.7	42.7%
	2004 Baseline	6.9	15.9	0.7	11.6	15.3	0.0	5.7	2.1	58.2	NA
3A	30% - Daylit PSZ	3.8	9.9	0.5	11.6	8.6	0.0	3.8	1.9	40.2	31.0%
U.	30% - Daylit VAV	7.2	9.9	0.5	11.6	4.8	0.6	2.9	1.9	39.4	32.3%
	30% - Daylit PVAV	5.3	9.9	0.5	11.6	4.8	0.0	3.1	1.9	37.2	36.1%
	2004 Baseline	6.8	15.9	0.7	11.6	14.7	0.0	2.3	2.0	54.0	NA
3B	30% - Daylit PSZ	3.8	9.8	0.5	11.6	8.3	0.0	1.6	1.8	37.3	31.0%
	30% - Daylit VAV	6.0	9.8	0.5	11.6	4.6	0.4	1.3	1.8	36.0	33.3%
	30% - Daylit PVAV	4.4	9.8	0.5	11.6	4.6	0.0	1.3	1.8	34.1	36.8%
	2004 Baseline	1.3	15.9	0.7	11.6	13.1	0.0	2.4	2.4	47.4	NA
3C	30% - Daylit PSZ	0.5	9.9	0.5	11.6	6.6	0.0	1.4	2.2	32.6	31.2%
	30% - Daylit VAV	2.3	9.9	0.5	11.6	3.1	0.3	1.6	2.2	31.6	33.4%
	30% - Daylit PVAV	1.7	9.9	0.5	11.6	3.1	0.0	1.7	2.2	30.8	35.0%
	2004 Baseline 30% - Daylit PSZ	4.5	15.9 9.6	0.7	11.6 11.6	16.2 8.8	0.0	12.1 7.5	2.6 2.3	63.5 42.7	NA 32.8%
4A	30% - Daylit PSZ	5.7	9.0 9.6	0.5	11.6	5.0	0.0	5.3	2.3	42.7	36.1%
	30% - Daylit PVAV	4.2	9.6	0.5	11.6	5.0	0.0	5.7	2.3	38.9	38.8%
	2004 Baseline	4.7	15.9	0.7	11.6	16.3	0.0	5.5	2.5	57.2	NA
4B	30% - Daylit PSZ	2.4	9.5	0.7	11.6	8.8	0.0	3.7	2.3	38.7	32.4%
4D	30% - Daylit VAV	5.0	9.5	0.5	11.6	5.1	0.4	2.8	2.2	37.0	35.3%
	30% - Daylit PVAV	3.7	9.5	0.5	11.6	5.1	0.0	3.0	2.2	35.5	37.9%
	2004 Baseline	1.2	15.9	0.7	11.6	14.5	0.0	8.0	2.6	54.5	NA
40	30% - Daylit PSZ	0.5	9.9	0.5	11.6	7.7	0.0	5.6	2.4	38.3	29.7%
4C	30% - Daylit VAV	1.9	9.9	0.5	11.6	3.7	0.2	4.0	2.4	34.3	37.0%
	30% - Daylit PVAV	1.4	9.9	0.5	11.6	3.7	0.0	4.3	2.4	33.8	38.0%
	2004 Baseline	3.6	15.9	0.7	11.6	17.5	0.0	20.0	2.8	72.0	NA
5A	30% - Daylit PSZ	1.9	9.6	0.5	11.6	9.4	0.0	11.7	2.5	47.2	34.4%
•	30% - Daylit VAV	5.5	9.6	0.5	11.6	5.4	0.6	8.6	2.5	44.4	38.4%
	30% - Daylit PVAV	4.1	9.6	0.5	11.6	5.4	0.0	9.2	2.5	42.9	40.4%
	2004 Baseline	3.1	15.9	0.7	11.6	17.4	0.0	12.4	2.8	63.7	NA
5B	30% - Daylit PSZ 30% - Daylit VAV	1.5 4.4	9.5 9.5	0.5	11.6 11.6	9.0 5.2	0.0	7.8 5.8	2.5 2.5	42.5	33.4% 37.3%
	30% - Daylit VAV	3.3	9.5 9.5	0.5	11.6	5.2	0.5	5.8 6.1	2.5	40.0 38.8	37.3%
	2004 Baseline	2.3	9.5	0.3	11.6	17.2	0.0	28.9	3.1	79.7	39.2% NA
	30% - Daylit PSZ	1.2	9.6	0.7	11.6	9.2	0.0	16.0	2.7	50.8	36.3%
6A	30% - Daylit VAV	4.7	9.6	0.5	11.6	5.2	0.6	12.3	2.7	47.2	40.7%
	30% - Daylit PVAV	3.6	9.6	0.5	11.6	5.2	0.0	13.1	2.7	46.4	41.7%
	2004 Baseline	1.9	15.9	0.7	11.6	17.5	0.0	21.9	3.1	72.6	NA
60	30% - Daylit PSZ	0.9	9.6	0.5	11.6	9.0	0.0	12.4	2.8	46.7	35.6%
6B	30% - Daylit VAV	3.8	9.6	0.5	11.6	5.2	0.5	10.1	2.8	44.0	39.3%
	30% - Daylit PVAV	3.0	9.6	0.5	11.6	5.2	0.0	10.8	2.8	43.4	40.2%
	2004 Baseline	1.2	15.9	0.7	11.6	18.8	0.0	38.9	3.5	90.5	NA
7A	30% - Daylit PSZ	0.5	9.6	0.5	11.6	9.6	0.0	20.5	3.1	55.4	38.8%
17	30% - Daylit VAV	3.8	9.6	0.5	11.6	5.5	0.7	16.3	3.1	51.0	43.7%
	30% - Daylit PVAV	3.0	9.6	0.5	11.6	5.5	0.0	17.5	3.1	50.6	44.1%
	2004 Baseline	0.6	15.9	0.6	11.6	17.6	0.0	72.1	3.9	122.3	NA
8	30% - Daylit PSZ	0.4	10.3	0.5	11.6	12.5	0.0	36.3	3.5	75.1	38.6%
	30% - Daylit VAV	3.9	10.3	0.5	11.6	7.0	0.9	37.3	3.5	75.0	38.7%
	30% - Daylit PVAV	3.0	10.3	0.5	11.6	7.0	0.0	40.0	3.5	75.8	38.0%

Table H-2 Middle School End Uses: Climate Zones 1-8

High School End Uses				ectricity				-	(Btu/ft ²)	Total End	
Climate	Strategy	Cooling	Int. Lights	Ext. Lights	Int. Equip	Fans	Pumps	Heating	Water Systems	Uses (kBtu/ft ²)	Savings %
	2004 Baseline	16.3	16.3	0.4	10.4	16.5	0.0	0.4	1.3	61.6	NA
1A	30% - Daylit PSZ	10.3	9.9	0.3	10.4	9.1	0.0	0.2	1.2	41.4	32.8%
	30% - Daylit VAV	14.1	10.1	0.3	10.4	5.5	0.6	0.0	1.2	42.3	31.4%
	30% - Daylit PVAV	10.5	10.1	0.3	10.4	5.5	0.0	0.0	1.2	38.1	38.2%
	2004 Baseline	11.2	16.3	0.4	10.4	16.5	0.0	3.9	1.8	60.6	NA
2A	30% - Daylit PSZ	6.6	10.1	0.3	10.4	8.4	0.0	1.6	1.6	39.0	35.7%
	30% - Daylit VAV	10.0	10.2	0.3	10.4	5.0	0.6	1.4	1.6	39.6	34.7%
	30% - Daylit PVAV	7.5	10.2	0.3	10.4	5.0	0.0	1.5	1.6	36.5	39.8%
	2004 Baseline	13.9	16.3	0.4	10.4	19.0	0.0	1.8	1.6	63.4	NA
2B	30% - Daylit PSZ	7.5	10.1	0.3	10.4	9.2	0.0	0.7	1.4	39.6	37.5%
	30% - Daylit VAV 30% - Daylit PVAV	10.0 7.4	10.2 10.2	0.3	10.4	5.9 5.9	0.6	0.9	1.4	39.7 36.7	37.3% 42.2%
	2004 Baseline										
	30% - Daylit PSZ	7.9 4.6	16.3 10.2	0.4	10.4 10.4	15.4 8.9	0.0	6.4 4.0	2.2	59.0 40.3	NA 31.7%
3A	30% - Daylit VAV	7.8	10.2	0.3	10.4	5.3	0.7	3.6	1.9	40.3	31.5%
	30% - Daylit PVAV	5.8	10.3	0.3	10.4	5.3	0.0	3.9	1.9	38.0	35.7%
	2004 Baseline	7.8	16.3	0.3	10.4	14.6	0.0	2.5	2.1	54.1	NA
3B	30% - Daylit PSZ	4.5	10.3	0.4	10.4	8.3	0.0	1.5	1.8	36.9	31.8%
30	30% - Daylit VAV	6.8	10.3	0.3	10.4	5.3	0.5	1.6	1.8	37.0	31.7%
	30% - Daylit PVAV	5.1	10.3	0.3	10.4	5.3	0.0	1.7	1.8	34.8	35.6%
	2004 Baseline	1.8	16.3	0.4	10.4	13.3	0.0	3.1	2.5	47.8	NA
3C	30% - Daylit PSZ	0.7	10.2	0.3	10.4	6.7	0.0	1.5	2.2	32.0	33.1%
	30% - Daylit VAV	2.3	10.4	0.3	10.4	3.3	0.3	1.9	2.2	31.1	35.0%
	30% - Daylit PVAV	1.7	10.4	0.3	10.4	3.3	0.0	2.0	2.2	30.3	36.7%
	2004 Baseline	5.3	16.3	0.4	10.4	16.3	0.0	13.7	2.6	65.0	NA
4A	30% - Daylit PSZ	3.0	9.8	0.3	10.4	9.0	0.0	8.5	2.3	43.3	33.4%
	30% - Daylit VAV	6.2	9.9	0.3	10.4	5.6	0.8	7.0	2.3	42.5	34.6%
	30% - Daylit PVAV	4.5	9.9	0.3	10.4	5.6	0.0	7.6	2.3	40.7	37.4%
	2004 Baseline	5.7	16.3	0.4	10.4	16.7	0.0	6.2	2.5	58.2	NA
4B	30% - Daylit PSZ	3.0	9.7	0.3	10.4	9.1	0.0	4.0	2.2	38.8	33.4%
	30% - Daylit VAV	5.6	9.8	0.3	10.4	5.8	0.6	3.8	2.2	38.6	33.8%
	30% - Daylit PVAV	4.1	9.8	0.3	10.4	5.8	0.0	4.1	2.2	36.9	36.7%
	2004 Baseline 30% - Daylit PSZ	1.7 0.8	16.3 10.2	0.4	10.4 10.4	15.0 8.0	0.0	10.0 6.7	2.7 2.4	56.5 38.7	NA 31.5%
4C	30% - Daylit VAV	2.0	10.2	0.3	10.4	4.3	0.0	5.4	2.4	35.4	37.4%
	30% - Daylit PVAV	1.4	10.3	0.3	10.4	4.3	0.4	5.8	2.4	34.9	38.3%
	2004 Baseline	4.2	16.3	0.4	10.4	17.6	0.0	22.4	2.9	74.2	NA
	30% - Daylit PSZ	2.3	9.8	0.4	10.4	9.7	0.0	13.2	2.6	48.3	34.9%
5A	30% - Daylit VAV	5.8	9.9	0.3	10.4	6.0	0.9	10.9	2.6	46.8	36.9%
	30% - Daylit PVAV	4.3	9.9	0.3	10.4	6.0	0.0	11.8	2.6	45.3	38.9%
	2004 Baseline	3.8	16.3	0.4	10.4	17.7	0.0	14.1	2.8	65.6	NA
50	30% - Daylit PSZ	1.9	9.7	0.3	10.4	9.5	0.0	8.8	2.5	43.2	34.3%
5B	30% - Daylit VAV	4.8	9.8	0.3	10.4	6.0	0.7	7.6	2.5	42.1	35.9%
	30% - Daylit PVAV	3.6	9.8	0.3	10.4	6.0	0.0	8.2	2.5	40.8	37.8%
	2004 Baseline	2.8	16.3	0.4	10.4	17.1	0.0	31.6	3.1	81.8	NA
6A	30% - Daylit PSZ	1.5	9.8	0.3	10.4	9.5	0.0	17.7	2.8	51.8	36.6%
•	30% - Daylit VAV	4.8	9.8	0.3	10.4	5.7	1.0	15.2	2.8	50.0	38.8%
	30% - Daylit PVAV	3.7	9.8	0.3	10.4	5.7	0.0	16.5	2.8	49.3	39.7%
	2004 Baseline	2.4	16.3	0.4	10.4	17.6	0.0	24.0	3.2	74.4	NA
6B	30% - Daylit PSZ	1.1	9.7	0.3	10.4	9.4	0.0	13.6	2.8	47.4	36.3%
	30% - Daylit VAV 30% - Daylit PVAV	4.0	9.8 9.8	0.3	10.4	5.9 5.9	0.8	12.5	2.8 2.8	46.6 46.0	37.4%
		3.1			10.4		0.0	13.6			38.1%
	2004 Baseline 30% - Daylit PSZ	1.6 0.8	16.3 9.7	0.4	10.4 10.4	18.8 10.0	0.0	42.0 22.2	3.5 3.2	93.1	NA 39.3%
7A	30% - Daylit PSZ 30% - Daylit VAV	0.8 4.0	9.7 9.8	0.3	10.4	10.0 6.0	0.0	19.9	3.2	56.5 54.7	39.3% 41.3%
	30% - Daylit PVAV	3.1	9.8 9.8	0.3	10.4	6.0	0.0	21.7	3.1	54.7	41.5%
	2004 Baseline 30% - Daylit PSZ	0.9	16.3 10.4	0.4	10.4 10.4	18.6 12.9	0.0	76.1 37.5	4.0 3.6	126.8 75.6	NA 40.4%
8	30% - Daylit VAV	3.9	10.4	0.3	10.4	7.3	1.7	42.6	3.6	80.3	36.7%
	30% - Daylit PVAV	3.9	10.5	0.3	10.4	7.3	0.0	46.4	3.6	81.5	35.7%
	Joro Daymir A	5.0	10.5	0.5	10.4	1.5	0.0	±0.1	5.0	01.5	55.170

Table H-3 High School End Uses: Climate Zones 1-8

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.							
1. REPORT D			EPORT TYPE			3. DATES COVERED (From - To)	
Septembe	er 2007	Τe	echnical Report		-		
	TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools30% Energy Savings					DE-AC36-99-GO10337		
Design Gi	uide for K-12	SCN00IS30%	Energy Savings	5 5b. G		NT NUMBER	
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
S. Pless, P. Torcellini, and N. Long					NREL/TP-550-42114		
						5e. TASK NUMBER BEC71011	
					5f. WOF	RK UNIT NUMBER	
 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 					8. PERFORMING ORGANIZATION REPORT NUMBER NREL/TP-550-42114		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)						10. SPONSOR/MONITOR'S ACRONYM(S) NREL	
						11. SPONSORING/MONITORING AGENCY REPORT NUMBER	
12. DISTRIBUTION AVAILABILITY STATEMENT							
National Technical Information Service							
U.S. Department of Commerce							
5285 Port Royal Road							
Springfield, VA 22161							
13. SUPPLEMENTARY NOTES							
14. ABSTRACT (Maximum 200 Words)							
This Technical Support Document describes the process and methodology for the development of the Advanced							
Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide							
recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA							
Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings							
target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside							
sources less or equal energy than they generate on site from renewable energy sources. 15. SUBJECT TERMS							
advanced energy design guide; zero energy schools; renewable energy							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 0F ABSTRACT 0F PAGES 19a. NAME OF RESPONSIBLE PERSON						OF RESPONSIBLE PERSON	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	UL		19h TEI EPU	IONE NUMBER (Include area code)	
Streasonnou	2	5			IJD. IELEPH	IONE NOMBER (Include area COUE)	
Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. 739.18							