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Abstract

This paper is concerned with mismeasured binary explanatory variablesin alinear
regression. Modification of atechnique in Hausman et al. (1998) allows simple
computation of bounds under relatively weak assumptions. When one has instruments,
we show how to obtain consistent parameter estimates using GMM. We show how to
incorporate the estimated measurement error bounds into the GMM estimates, and we
develop a specification test based on the compatibility of the GMM estimates with the
measurement error bounds. When the mismeasured variable is endogenous, the 1V
estimate and the measurement error bounds can be used to bound the mismeasured
variable's coefficient.



I. Introduction

This paper is concerned with mismeasured binary explanatory variablesin alinear
regression. We obtain results that allow us to improve on existing estimators under
different assumptions about the extent of prior information. We examine three different
cases. 1) the mismeasured variable is assumed exogenous, and no instruments are
available; 2) the mismeasured variable is assumed exogenous, and one or more
instruments are available; and 3) the mismeasured variable is not assumed exogenous,
and instruments are available. In thefirst two cases, we derive bounds or point estimates
under weaker assumptions on prior information than in the previous literature, and in the
third case—which has not to our knowledge been analyzed—we al so derive bounds.

In case 1, the traditional approach to the measurement error problem isto use
auxiliary information on the measurement error process. More generally, one may not
have good point estimates of the measurement error parameters, but may nevertheless be
able to bound them—using a validation study, for example. Bollinger (1996) shows how
these bounds can in turn be used to bound the regression coefficient.

Recently Hausman, Abrevaya, and Scott-Morton (1998) (hereafter HAS) have
developed atechnique that allows the anal yst to bound the measurement error process by
estimating the parameters from the data, without information from validation studies. We
modify their technique to allow simple computation of bounds without functional form
assumptions. Combining the estimated measurement error bounds with the OLS
coefficient yields bounds on the true effect of the mismeasured explanatory variable.

When instruments are available, asin case 2, instrumental variable (1V)

estimation is another common method of dealing with measurement error. However,



recent research has shown that 1V estimation is upwardly biased when the mismeasured
variable is binary (Loewenstein and Spletzer 1997; Berger, Black and Scott 2000; Kane,
Rouse and Staiger 1999) because measurement error in this case must be negatively
correlated with the true value. Berger, Black, and Scott (2000) (BBS hereafter) and
Kane, Rouse, and Staiger (1999) (KRS hereafter) show that when one has two erroneous
measures, one can obtain a consistent estimate using a generalized method of moments
(GMM) technique.

Two distinct measures of the same variable are not commonly available. We thus
extend the analysisin BBS and KRS to the case where the second measure is replaced by
one or more instruments. We provide a closed-form solution for the GMM parameter
estimates. We also show how to incorporate the estimated measurement error bounds
into the GMM estimates, and we devel op a specification test of the measurement error
model based on the compatibility of the GMM estimates with the measurement error
bounds.

Lastly, we show that the GMM technique is not easily extended to the case where
the mismeasured variable is endogenous. However, the IV estimate and estimates of the
measurement error bounds can be used to bound the effect of the mismeasured variable,
analogous to the OL S case without endogeneity.

The paper is organized asfollows. Section Il outlines the model, summarizes the
HAS technique, and introduces our extension of HAS. Section |11 then turns to the case
where one or more instruments exist for the mismeasured variable. Section IV considers
the case where there are avail able instruments, but the mismeasured binary variableis

endogenous. Section V presents an empirical example looking at the returns to on-the-



job training and section VI concludes.

[1. Bounding the Effect of a Mismeasured Binary Explanatory Variable When No
Instrument is Available

Our mode! is:

(D Yi=c+Xyy+pBT*+g
for observation i in arandom sample of n observations, where Y;, T;* and g are scaars, ¢
isaconstant, and X;isa 1 x k row vector. We assume without loss of generality that 8>
0. Dropping the subscript for convenience, the variable T* isabinary variable that takes
on the values of zero and one; T* and the elements of X are not linearly dependent. The
error term e is mean zero and uncorrelated with T* and X. The variable T* is measured
with error. Instead of T*, we observe the binary variable T = T* + U, where U denotes
measurement error (which can take on the values of 1, -1, or 0).

Define the measurement error probabilities a, =Pr(T =1|T*=0)=Pr(U =1| T* =
0)and a, =Pr(T =0|T* =1 =Pr(U =-1| T* = 1). These probabilities are assumed to be
independent of X and e. We should note that this may be a strong assumption in many
applications (see Black, Sanders, and Taylor 2000); in aregression of earnings on
education and (binary) training status, for example, more educated respondents may
better understand the survey questions on training. Modifying this assumption would
require modification of the standard results on the effect of measurement error on
regression coefficients (Aigner 1973, BBS, KRS).

Let p=Pr(T =1) and p* =Pr(T* =1). Itisstraightforward to show that

(2 cov(T,T*) = p*(1-p*)(1-ao-0a).

Following Bollinger (1996) and others, we impose the restriction that cov(T,T*) > O (if

thisis not the case, then measurement error is so severe that (1-T) is a better measure of



T* thanisT), whichimpliesag + a; < 1.
Note that

Cov(T,U | X)

(3) p”mﬁols:ﬁ(l_ Var(I'|X)

).

Since Cov(T,U|X) >0, plim ,Bols < B. After some algebra, one can show that
4 B=plimByx(p,Rag.a) ,

p(l-p)1-RA-a,-a,)
(p-ay)l-0a;, - p)-Rpl-p)

where x(a,,0,, p,R) = and where

Cov(X,T)Var(X)™*Cov(X,T)
pP(d-p)

R= Is the theoretical R-squared from aregression of T on

X. ltisstraightforward to show that y is an increasing function of both ap and a;. Thus,
If we have available upper bounds ay™ and a;" on the measurement error parameters ap
and a1, we can bound

(5)  plimB,, <B<plim B, x(@f™,af™, p,R).

A Percentile Method for Bounding M easurement Error

We now develop a method to bound ap and a;.  The independence of X and the
measurement error process implies that
©6) Pr(T=1X)=2Q- a) Pr(T*=1X) + ao (1 — Pr(T*=1JX))
=ap+ (1 - ap— 1) Pr(T*=1JX).
If one knows the functional form of Pr(T* = 1|X), one can estimate ap and a; from (6) by

maximum likelihood, as in Hausman, Abrevaya, and Scott-Morton (1998) (HAS



hereafter). But as we now show, simple Jn -convergent bounds for apand a; are
available without knowledge of the true functional form.*

Equation (6) has the important implication that a, <Pr(T =1| X)<1-a, foral X.
Thus, for any subset Sof the range of X, an estimate of Pr(T=1|X [J S) can be used to
bound ap and a;. Imagine a procedure where one takes a subset S comprising g percent
of the samplein order to use the sample average T over Sas abound. If one has prior
knowledge of the ranking of sample observations according to Pr(T=1|X), one would

obviously obtain the tightest possible bound for ap (a1) by estimating E(T | X OS) over

that subset of sample observations having the lowest (highest) expected value of T - that
IS, the set Sshould consist of observations with percentile rank of Pr(T=1|X) lessthan q
(greater than 1-g). Without prior knowledge of the ranking of observations by
Pr(T=1]X), one must estimate the ranking from the sample.

If the functional form chosen to estimate the ranking of Pr(T=1|X) isincorrect,
the estimated bounds will not be tight for a given g because some observations will be
misclassified in the limit as having percentile rank above g when their true rank is below
g, and vice versa (and correspondingly for rank 1-g). Since a, <Pr(T =1| X)<1-aq,
for al X, anincorrect functional form will affect only the tightness of the bounds, not
their validity.  In most cases, the percentile ranks of Pr(T=1|X) are unlikely to be

drastically affected by functional form.

! HAS present another procedure for estimating misclassification probabilities (and
Pr(T*=1|X)) that does not rely on prior knowledge of the functional form of Pr(T*=1|X),
but this procedure is computationally quite complex and converges at a rate slower than

Jn.



Because we require asymptotic results where the functional form of Pr(T=1|X)
may be misspecified, it is convenient to work with quasi-maximum-likelihood (QML)
estimation (see White 1982) in estimating the ranking of Pr(T=1|X). Specifically,
consider estimation of the model E(T|X) = G(X; J), where G is acdf but not necessarily
the true one and o isavector of parameters. Let 3 denote the quasi-maximum-
likelihood estimator: & = argmax L(J) =

argmax(1/ n)( Z In(L-G(x;;0)) + Z ING(x;0)), so that the predicted value of T is

i1 =0 i =1
simply T= G(X;S) . We assume sufficient regularity such that the quasi-maximum
likelihood estimator & exists and convergesto alimit & and such that +/n(d - &*)

converges to anormal distribution.?

We now introduce some necessary notation. Let J, denote the cumulative
distribution function of G(X; J) and let K; =J;' (g) denotethe g-quantilefor J. .
Letting 8 = [5’ Kq]', one can define the function, A°(6,) =E(T |G(X;d)<k,). In
addition, let <, = min(c|55(c) > () denote the sample g-quantile for T, where 55 isthe
empirical cdf of T. Let Io(eq) denote the set of all sample observations such that
G(X;9) <K, and similarly, define |1(9_q) asthe set of all sample observations such

that G(X;9) 2 k,_, .

? See White (1982) for details. The resultsin the text and the appendix go through, with
appropriate substitutions, for any estimator o such that Jn (0 - 0*) hasthe same limiting

distribution as K\/ﬁ(z u(T, X;J%) , Where u is a mean zero function of the data
fulfilling the conditions for the central limit theorem and K is a constant vector. Least



T
We now present our bounds estimates. Let Ao(éq) EE'OL‘L) be average
#(1°(6,))
1-T)
observed Tin 19(9,), where 6=[8' &,] andlet A'(6.)=""C~__ The
#(1M(0.-q))

statisticsA°(6,) and A'(6,_,) are obvious upper bound estimates for ao and a1 and can
be used to bound B. The following bounding results are straightforward:

Proposition 1:

@ ao< plimA°(g,)=A°@;)

() < plimA'(6.,) = A'(6;,)

(©  plim By, < B<plim By X(A°(8,), A'(6,5), P.R) = plim Bu X (A°(6;), A (64), P R),

where 6, 5[5*’ Kq]

We now discuss the asymptotic distributions of A°(4,) and A'(8,,) and how to
use the estimates in constructing asymptotic confidence intervals for oo, a1, and 3. We
discuss A°(@,); the properties of A'(4,_,) are symmetrical.

Decompose (A°(4,) - A°(8;)) into (A°(,) - A°(6,)) + (A°(8,) - A°(6;)) . The
asymptotic variance of the second term depends on the gradient vector of A° at 9; ,andis

not straightforward to estimate. However, note that A° (éq) (the population mean T for

the set defined by T< /?q) isavalid bound for 0p. We can therefore treat A° (éq) asan

squares regression is one example of such an estimator.



object of estimation in its own right, and deal only with the first term in the

decomposition. We show in the appendix, under weak additional regularity conditions,

that the fact that éq is estimated has no effect on the limiting distribution of
Jn(A°(@,) - A°(8,)) , which takes the simple form (0, A°(8,)(1- A°(6,))/q) . In effect,
we can treat 6, asfixed.

Constructing a confidence interval for A° (éq) isimmediate. Itisalso
straightforward to construct a conservative confidence interval for the parameter of
interest, ap. We summarize our results in the following proposition.

Proposition 2:

(7a)  lim Pr(A°(8,) - s(n, )z, ,, < A°(G,) < A°(8,) +s(n,0)z,_,,,) =1-r
(7o) limPr0<a, < A’(G,) +s(n.O)z, ) 21-r.

where z denotes the rth percentile of the standard normal cdf and

Let Bupung = PliM By x (@M, a™ , p,R) denote the theoretical upward bound on
B, as determined by the measurement error bounds a,* and a;"*. Using the delta
method, one can derive a confidence interval for B« Similar to (7a) from the joint
distribution of Sy, p, R, A°(d,),and A'(8,_,) . Thejoint distribution can be estimated
using a stacked regression. For this purpose, it is convenient to let 0T2|x denote the

average variance of T conditional on X and to replace Rin (4) with 0T2|x using the



o7

relation R=1- )
p(L-p)

Regressing the squared residual, e?, from aregression of T on X

on aconstant yields the coefficient o7 . Inaddition, let Ioand |1 be indicators of
membership in the sets 1°(8,) and 1*(6,.,) , respectively, and let V = (1-1, —1,)/(1- 2q) .

It can be verified that regressing T on V, lo—qV, and I, — qV yields the coefficients p,

A°(@,), and A'(6,,). Thisgives usthe stacked regression:

Oc O
0 0
oY O
oyo X T O 0 0 o%ﬁggeg
STEE® 0 0V Iy-qv I,-aV Oy p O+E O
2 00 0
BRH B 0 00 0 0 1%AD%E$D
d-A'[
Eaﬁxg

To construct aw-percent confidence interval for 3 analogousto (7b), note that
(Bys: Busowns ) are distributed bivariate normal. Let ®(c,d, r) denote the probability that
X; < cand X, < d, where X, and X, are standard normal random variables with

correlationr. Let ¢, and d, satisfy &(c,,,d,,—p) =w, where pisthe correlation between

:éubound and :éols . Wethen have
(8) w=1imPr(Bye = Cu0ys < PIiM Bys. PIiM Busous < Busana + GwOusauna)
= le Pr(ﬁOlS ~CwOois s ﬁ s ﬁUbound + dWUUbound) ’

where o denotes the standard error of the subscripted estimator. A minimum length w-

percent confidence interval can be constructed by choosing c,, and d,, to solve the

following minimization problem:
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CTLn (dwaubound + Cwaols) SUbJ ect to CD(CW’ dw ,—,0) =W

The preceding analysis treats q as fixed. Var (A°(8,)) decreases with g since the
subsample used to compute A°(8,) increaseswith g. However, Pr(T*=1), and
consequently, A° (éq) will in general beincreasingin g. The choice of g thusinvolvesa

trade-off between the tightness and the variance of the bounds. We leave the optimal
choice of qasatopic for research.

Our upper bound on £ does not take into account the constraint that the variance
of eisbounded below by zero. Whether this constraint binds can be checked by

examining the “reverse regression” coefficient generated by regressing Ton Y and X. Let
B denote the coefficient on Y and ﬁ,ev =1/ B the slopeimplied by the reverse regression.
Bollinger (1996) shows that the constraint binds only if .o, <(@- A°(6,) = A"(8,)) Busoud -
We refer the reader to the boundsin Bollinger (1996) for this case (which isunlikely to
occur for low and moderate values of R? in the main regression).

Stronger prior information will of course yield tighter bounds. We noted above
that knowledge of the functional form of Pr(T* = 1|X) can be used to estimate apand o,

from (6) by maximum likelihood, asin HAS.® We compare the percentile method with

HAS at several points below. Without knowledge of Pr(T* = 1|X), but with knowledge

3 More precisely, one can estimate upper bounds for apand a1. AsHAS
themselves note, their model is indistinguishable from one where T* = 1 for afraction of
the population 0y, and T* = 0 for afraction a1, independent of X. More generally, one
can envision a mixture of these two extreme cases, where the proportions ap and a; are
composed partly of those whose response is independent of X and partly of those who
misreport, so true measurement error is bounded below by zero and above by the
estimated values of ap and a;.
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of afunctional form h(X; J) such that Pr(T=1|X) = G(h(X; 9)) for an unknown cdf G--
that is, asingle-index condition--one can consistently estimate o up to amultiplicative
constant as in Ichimura (1986) and Han (1987), and thus estimate bounds that are tight
for agiven g. Finaly, if thereisaset Ssuch that it isknown apriori that Pr(T*=1| X [7
S = 0 (for example, knowledge that the training program whose impact is of interest is
not offered at a given location), then Pr(T=1| X /7S = ao, and correspondingly for a;.
[11. A GMM Estimator for Estimating the Effect of a Mismeasured Binary
Explanatory Variable When Instruments are Available

Where instruments are available, instrumental variable estimation isa commonly
prescribed fix to measurement error in aregressor. We begin this section by showing that
IV estimation by itself isinconsistent for the coefficient of the mismeasured variable but
consistent for other variables (assumed to be correctly measured). We next derive a
consistent closed-form GMM estimator and then show how to incorporate the estimated
measurement error bounds developed in the previous section into the GMM estimates.
We also develop a specification test for the measurement error model.

|V _Estimation

When cov(T*,U) = 0, any variable Z which is correlated with T* and independent
of e and the measurement error process can be used as an instrument. However, if T* is
binary, T* and U will be negatively correlated for any (non-degenerate) distribution of T*
and U. Because the classical assumption that T* and U are uncorrelated cannot hold
when T* isbinary, Z will not be avalid instrument. To be more precise, let Z be avector

of variables such that Cov(Z,T*) # 0, Cov(Z, €)=0, and Cov(Z,U[T*)=0. Thelast equality
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captures the idea that Z is independent of the measurement error process conditional on
T*, but since Cov(T*,U) # 0, this does not imply that the unconditional covariance
Cov(Z,U)=0.

As others have demonstrated, the fact that Cov(Z,U)#£0 means that the use of Z as
instruments will result in an inconsistent estimate of 5.* Interestingly, as we now show,
thelV estimate of y isconsistent. In anticipation of the discussion to follow, it is

convenient to frame the analysis in terms of GMM estimation.

. . g 0. . .
Asiswell known, the IV estimator B?'VD Is equivalent to the GMM estimator
& 8

%31Bwhose probability limit is given by
Y O
lim@, O Lo~ - _ _
©) @gnms agqinm@.9) mE DAmEY mE.9)
where

(108)  m(B,,V) =Cov(Z,Y -B,T - XV)

(10b) m,(B,,¥) = Cov(X,Y -B,T - Xy),
and A isaweighting matrix (in the case of TSLS, A=Var(Z X)™).> (The subscript on
the estimate for 8 will be convenient in the discussion below where we obtain other

estimates using additional moment conditions.) We now prove

* Wefollow previous papers (Loewenstein and Spletzer 1997, Berger, Black and Scott
1997, Kane, Rouse and Staiger 1999) in referring to estimators using the elements of Z as
instruments as IV estimators, in spite of the fact that technically the Z variables are not
Instruments.

> Naturally, in carrying out the GMM estimation, the popul ation moments are replaced by
the sample moments.
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Proposition 3: plim3, =k, and plimy,, =y, where kl:%l—a _ay)
0 1

Proof:

It follows immediately from equation (1) that

(118 Cowv(Z,Y)=/[Cov(Z,T*)+Cov(Z, X)y

(11b)  Cov(X,Y) = BCov(X,T*)+Var(X)y.

Letting raw denote the coefficient of correlation between two random variables A
and W, and rawy the partial correlation between A and W conditional on V, the coefficient
of correlation between X and U conditional on T* can be expressed as (Gujarati 1978, p.

112)

rXU - rXT* rUT*
NS

Fxums =

Using the fact that ryxy+ = 0, one finds that Var(T*)Cov(X,U) =
Cov(T*,U)Cov(X,T*). Thisresult together with (2) and the fact that Cov(T*,U) =
— p*(1- p*)(aot ) givesus

(12) Cov(X,U)=-(a, +a,)k,Cov(X,T).
From (12) and its analogue for Z, we have Cov(Z,T*)/Cov(Z,T) = Cov(X,T*)/Cov(X,T) =
ki. Substituting into (11) yields

(13a) Cov(Z,Y) =k, BCov(Z,T) +Cov(Z, X)y

(13b) Cov(X,Y) =k, BCov(X,T) +Var(X)y .

Substituting (13) into (10), we see that

(12a)  m(B,.7) = (kB ~ B)COV(Z,T) +Cov(Z, X)(y - /)
(120)  my(B,,7) = (kB - B)CoV(X,T) ~Var (X)(y - 7)
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which impliesthat plimB, =k,8 and plimy, =y . Q.E.D.
Although 1V yields an inconsistent estimate of £, the proof of proposition 3
suggests away that one might be able to obtain a consistent estimate. The GMM

estimator using the moment conditions (11) yields an estimate of 3, that isasimple

function of 5 and the measurement error parameters ap and a;. |f one can use additional

moments that allow determination of ap and a1, then one can solve for 8.

GMM Estimation

Consider for the moment the case without covariates. KRS and BBS analyze a
model with two mismeasured indicators T; and T, of T*. They note that seven moments
areobservable: E(Y | T, =i, T, =), Pr(T, =1,T, = ), 1,j)={0,1} (one of the cell
probabilitiesis redundant). Thisallows the identification of the seven parametersc, S,
p*, Ook, Ok, k={1,2}. Note that knowledge of E(Y [T, =1,T, =) and
Pr(T, =i,T, = ]) isequivalent to knowledge of the following sets of moments: E(Y),
Cov(Tk,Y), Cov(T1iTy,Y), E(Ty), and Cov(Ty1,T2). Inour analysis, an instrument takes the
place of one of the aternate measures, so that the moments are E(Y ), Cov(T,Y),
Cov(Z,Y), Cov(ZT,Y), E(T), E(Z), and Cov(Z,T ). Thus, our model isidentified and can
be estimated using GMM.

Turning our attention back to the full model (1), note that we have aready used
the covariances between Z and Y in the moment conditions (13a) and the covariances
between X and Y in the moment conditions (13b). To use Cov(T,Y ) and Cov(ZT,Y ), we

note from (1) that
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(23c) Cow(T,Y)=k,pVar(T) + Cov(T, X)y
(23d) Cov(W,Y) =Kk, Cov(W,T) + Cov(W, X)y

where W = (Z - Z) [T , k, = o¥(T.T") ,and k, ECOV(W'T*y ® Algebra

Var (T) Cov(W,T)"

establishes that:

(14) k — (p_aO)(l_ p_al) .
> p-pd-a,-ay)’

_ A-p-ay) *a,
@-p)l-a,-ay)

3

Toestimate B, =k, and B, =k, , we expand the IV moment conditions (10) to
include:
(10c)  my(B,,7)=Cov(T,Y = B,T = X7)
(10d)  m,(Bs,7) =Cov(W,Y - B,T - X).
Since the factors k, and ks are both functions of p aswell as ap and a;, we need an
estimate of p to close the model, so we add afinal moment condition:
(10e) m;,=E(T)-p.
Substituting (13c) and (13d) into (10) yields

(2a)  my(B,,7)= (4B~ B)COVZ,T)+Cov(Z, X)(y - 7)
(W20)  my(B,,7) = (kB = B,)Cov(X,T) = Var (X)(y - 7)
(12¢)  my(B,,7) = (k; B~ B,)Var (T) + Cov(T, X)(y - 7)
(12d") My (B;,7) = (ksfB = B5)CoV(W,T) + Cov(W, X)(y = 7)
(12¢) mg(p)=E(T) - p.

Thisleads to

® Note the definition of W. The formulafor ks below is correct only if Z is normalized to
zero before multiplying by T.
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Proposition 4: Let 3,, f3,, 3;,and p be GMM estimates using moments (12).

Then

(158)  B=+4pl- B)B.B, + (A~ P)Bs - PB.)’

(15b) éo — ﬁﬁl + (1_Aﬁ)ﬁ3 B ﬁ
2p3,

and

(150 6 =@ PB-U-Dp -
1 28,

are consistent estimators for 3, ap and a1.”
Proof:

From (12a) - (12€), it is clear that any GMM estimator using moment conditions

(10a) — (10e) will have:

(16a) plimp, = plimB,, = kB
(16b)  plimy = plimy, =y
(16c) plimB, =k,B

@6d) plimB, = kB

(a6e) plimp=np.

Substituting (14) and Proposition 3 into (16) and solving for S, ap and a; yields the

consistency result. Q.E.D.

An optimal GMM estimator can be derived as follows. Let

" Note that sgn(plim(5,)) =san(plim(5,)) = sgn(plim(5,)) = san(B) since ki, ko, and

ks are all greater than zero. Allowing < 0, (15a) becomes

B =sgn(B) 4D~ P)B.B, + (- P)B, - DB -
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0[]
gxoom B/D %OOXO% g}g
0t O t 0 x 0 0,0 .
= = 0 [o = a0 _
% 0 0 w 0 SV _mOtxoD’n_Uggg’andg_H[Q rmel,
30001 93 Booo il %ﬁ

where N° issomeinitial consistent estimate of M and where z, x, y, and t devote the

deviations of Z, X, Y, and T from their sample means. Write the sample moments (10) in

stacked form:

(a7 m=1/n)H[Q-TT].

The optimal GMM estimator minimizes mV 'm, where V is the asymptotic
variance matrix of m (Hansen 1982). Letting [Q -1 °]'= [el g & e“]’, note that
¢' isnot generally homoscedastic. For example,
gl=y - Bt —-x7 =R - Bt —xy+e', sothat Var(e* |t) = BVar(T*|T =t +T)
+Var (e) will not in general be constant acrosst. The optimal GMM estimator given the
moment conditions (10) and taking into account heteroscedasticity is

A=(C'HS™H' M) M"HS™H’'Q, where S= Z (H'§&'H,;); see Wooldridge (1996).

0
Note that the asymptotic distribution for +/n %g A ois
4 E

N(O, % D(F HS™H’ r)‘l% 5 where d' -Q%g o8 o8, 6%8 % Dcan be
1 3

obtained from (15a). If desired, ¢ may be calculated as Y - Bp* =Xy .

Finally, we might point out that there is one substantive difference between the
situation in which there is more than one imperfect measure of a binary explanatory

variable and that where one or more instruments take the place of one of the alternative
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measures. In the former case, Cov(X,T1)Cov(T,,T*) = Cov(X,T2)Cov(T,,T*) since
Cov(X,T;) = Cov(X,T*)Cov(T;,T*) for i = 1,2. KRS usethisrestriction to obtain
additional identifying information. Since Cov(X,Z) is unrestricted, there is no analogous
restriction when instruments take the place of one of the measures.?

Incorporating Restrictions on the M easurement Error Parameters Into the GMM

Estimation

Estimates of ap and a; based on (15b-c) are not guaranteed to be between 0 and
1. Additionally, they are not guaranteed to be less than bounds derived from the HAS or
percentile methods in Section 1. Bounds on the measurement error parameters can be
incorporated into the GMM estimation procedure.® We first discuss imposing bounds

using the percentile method, than briefly discuss using the HAS bounds.

Let A =plimA'(d,), D,=A —a;,and D, =A'(§,) -4, Therestriction that the
measurement error parameters be between zero and the bounds A; can be expressed asL >
0, where L= [D0 D, a, al] . Note that these restrictions imply that that o, <1.

Let I denote the vector of parameters [TTAy A;]’. One can directly incorporate the

percentile bounds into the estimation procedure by extending the moment conditions (10)

to include aregression of T on a constant over the subset of the data with X< K4 to

estimate Ao, and aregression of 1 — T on a constant over the subset of the data with

8 |f one makes the stronger assumption that e is not just uncorrelated with, but is
independent of X and T*, additional moment conditions analogous to (13d) can be
imposed using Cov(xT ,Y). More broadly, if any interactions between elements of X and
T* can be excluded from (1), Cov(xT, Y) can be used asin (13d).

® BBS do not take into account the bounds on a and a; in their GMM procedure. KRS
account for it by parameterizing ap and a; to be between zero and one, resulting in anon-
linear GMM procedure.
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Xd > K., to estimate A;, Smilar to the stacked regressions above. Denote this extended

moment set m,.

The classical approach to point estimation isto estimate 'l by minimizing the
weighted sum of squares m;'Vy'ms subjectto L=|D, D, 4, @,|=0. Notethat the
constraints are non-linear since the &, estimates are non-linear functions of the

regression parameters. Incorporating inequality constraintsinto classical inference
presents challenges. The asymptotic distribution depends on whether the true parameter
Ison the boundary of the feasible set. If the true parameter isin the interior of the
feasible set, then the asymptotic distribution is equal to that of the equivalent
unconstrained estimator, but this may be a poor guide to finite-sample behavior. The
bootstrap, acommon method of improving finite-sample performance of variance
estimates, isinconsistent in inequality-constrained problems (Andrews 2000).

We believe that Geweke' s (1986) Bayesian method presents the simplest
satisfactory approach to this problem. Geweke shows that if the prior for the parameter
vector is diffuse over the feasible set, the posterior distribution is the portion of the
estimated sampling distribution of the unrestricted parameter estimate in the feasible
region. The posterior mean can be evaluated by taking random draws from the sampling
distribution and averaging over draws in the feasible region. Applied to our problem, one
first uses GMM to obtain an unconstrained estimate . One then takes draws from the

distribution N(I1,V (1)) and averages over those draws where [ >0.

A Specification Test for the Measurement Error Model.

The foregoing assumes that the data were generated by (1) (i.e., that eis

uncorrelated with T* and X), that the measurement error is uncorrelated with X and Z
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conditional on T*, and that the instruments Z are valid. If these assumptions are violated,
it is not necessarily the casethat plimL>0. Thuswe can use atest of the null hypothesis
that L >0 as a specification test of the measurement error model.

Let ddenotethe 4 x 1 vector (LR - L)', where LR denotes the inequality-restricted
estimator of L. Letting dx denote the subvector of J corresponding to al the binding

constraints and letting V, ( I:) denote the corresponding elements of the variance matrix

of L, construct the test statistic
(18) 7=,V (L)*3,.
We now show that asymptotically the 1—q percentile of the chi-square distribution with 2
degrees of freedom isavalid critical value for atest with significance leve q.
Proposition 5:

limPr(r<c|L=0)2 x2(c) and limPr(r <c|L=0) = x2(c)

n-o

Proof:

TheA (éq) parameters must be non-negative since they are sample means of non-

negative variables. Thus, no more than two out of the four elements of L can violate the
inequality constraintsand Ja will never have more than two elements.

All four constraints are satisfied with equality when ap=Ao=0a; = A; = 0.
Asymptotically, Var(A'(8,)) = A (1 - A) = 0 at this point, so that the distribution of D,
converges to the distribution of - ¢, and the restrictions collapse to

-4, -4, &, @,]=0,orequivaently, @, =4, =0. Whatever combinations of
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constraints are violated in the sample, the statistic T thus equals
[@, a,]var(@)™d, 4, ,whichisasymptotically distributed x?(2).%

Now consider the case where two constraints are satisfied with equality, one
corresponding to apand oneto a1. If a; =0, let Ai=a; and 1 =D;. Conversely, if D; =0,
let A =D; and 1 =a;. Asthe sample becomeslarge, the probability that the inequality
constraints involving A; are violated approaches zero. We therefore need only consider

cases where the constraints involving a; are violated in the sample. If no constraints are
violated in the sample, 1= 0. If one constraint i isviolated, T = )A\f /Var()A\i ), whichis

distributed x*(1). If both constraints are violated, 1 = [X o = AR A, - ij]

Var (A) 4, - A8 4, - A%] , which is precisely Wolak's (1987) test statistic W. Wolak
(1987) showsthat Wis equal to the distance between the inequality-restricted and
unrestricted estimates, evaluated in the norm of the covariance matrix of the unrestricted
estimates. This distance must be less than or equal to the distance A between the
unrestricted estimates and the estimates obtained imposing the equality restrictions

A, =\, =0. Alisdistributed x*(2). ThusT isamixture of random variables al of

which are less than or equa to X2 (2).

Applying asimilar argument for cases with other combinations of constraints

holding with equality, we can conclude that the point where all four constraints are

19 Note that the more traditional chi-square statistic J'Var (I:) 9, asin Wolak (1991),
does not exist at this point, as Var(I:) issingular.
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satisfied with equality is the least favorable point for the purpose of computing a
distribution of the test statistic under the null hypothesis.™>**  Q.E.D.

Applying the HAS bounds

The application of HAS bounds to the Geweke technique isimmediate. However,
the distribution of the test statistic T under the null is not easily derived under the HAS
method. Negative estimates of Ap and A; are possible, so all four constraints may be
violated at the sametime. Asexplained in Wolak (1991), the distribution of 1 at the point
where all constraints bind is a weighted mixture of chi-squares from zero to four degrees
of freedom, with the weights depending on Var(A). Since Var (/1 ) will vary across

pointsin the null due to the non-linearity of the constraints, one can no longer show that

this point is the least favorable point in the null.

V. Bounding the Effect of a Mismeasured Endogenous Binary Explanatory
Variable
Now suppose theresidual e in (1) isuncorrelated with X and Z, but correlated

with T*. Projecting Ton T* and Z, wehave: T =0, +(@-a, —a,)T * +n,wheren is

orthogonal to T* and Z. Thus, Cov(T,e) =(1-a, —a,)Cov(T*,e) and Cov(W,e) =

™ Our constraintsinvolve @, and d,, which are nonlinear functionsof f3,,3,, 3,,and p.
Whileit isawaystrue for linear constraints that the least favorable point in the null
occurs where al constraints are satisfied with equality, we needed to demonstrate this
here because it is not always true when the constraints are non-linear; see Wolak (1991).
12 The statistic t, while it involves estimating LR subject to non-linear constraints, isin
many cases easy to calculate. Cases with zero or one constraint binding were dealt with
inthetext. If two constraints are violated, and if each constraint is still violated after
imposing the other constraint as an equality and cal cul ating the constrained optimum,
then L® = 0. One can also show that the constraint that o, = 0 is equivalent to the linear

constraint % < [.
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(1-a, —a,)Cov(zT*,e) , which means that the population moment conditions (13c) and

(13d) become:

(23c’)  Cov(T,Y) =k,BVar(T) +Cov(T, X)y+(1-a, —a,)Cov(T*,e)
(23d’) Cov(W,Y) =k,BCov(W,T) + Cov(W, X)y+(1-a, —a,)Cov(ZT*,e).

By assumption, Cov(T*,e) is not equal to zero. What about Cov(ZT*,e)?
Projecting T* onto z, X, and e, we have: T* =9, + 5, X +J,z+ d,e+ w, where « is
orthogonal to X, Z, and e. So

(19)  Cov(zZT*,e) =Cov(ze, T*) = 3,E(2Xe) + J,E(z%€) + J,E(ze®) + Cov(ze, w)
Independence of X and Z with e, not just orthogonality, is required to guarantee that the
first three terms on the right hand side of (19) are zero. Cov(ze,w) will not in general be
zero except under the strong assumption that E(T*| X, Z, €) islinear in X, Z, and e--that is,
that the linear probability model appliesto T*.

We can conclude that endogeneity of T* adds two more sets of unknown
parameters to the moment conditions (13) -- Cov(T*,e) and Cov(ZT*,e). Consequently,

the GMM method described above is now underidentified. However, note that
Proposition 3 still holds, so that plim[f?)iV still equals B/(1-a,—a;) (and plimy, =y).
Under the maintained assumption that a, +a; <1, ,Biv Is asymptotically still an upper
bound, and zero is alower bound. Thislower bound can be tightened by employing the
HAS or the percentile method to obtain upper bounds ag™® and o™ for the

measurement error parameters ap and ar.*® Specifically, one has:

plim B, (1-af™ —a™)<B<plimj,.

13 Naturally, the instruments Z can be used in estimating Pr(T=1|X, Z) (for the percentile
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Confidence intervals for the lower bound can be generated asin Section 1l.

V. Empirical Example

We now illustrate the use of our measurement error techniques with an analysis of
the effect of training incidence on wage growth. Employee training is a particularly
interesting application of these techniques because there is evidence that it is measured
with agreat deal of error. Using a survey of matched employer-employee responses to
the same training questions, Barron, Berger, and Black (1997) find that the correlation
between worker reported training and employer reported training is only .32 for the
incidence of on-site formal training, and .38 for off-site formal training.

We use data from the National Longitudinal Survey of Y outh 1979 Cohort
(NLSY79). NLSY79isadataset of 12,686 individuals who were aged 14 to 21 in 1979.
These youth have been interviewed annually since 1979, and the response rate has been
90 percent or greater in each year. We use data from the 1987 through 1994 surveys.
Our dependent variable is the change in real log wages between interviews. We exclude
job changers, so all wage growth iswithin-job. We also exclude the military subsample,
observations with real wages below $1 or above $100 in 1982-84 dollars, and
observations where the respondent is an active member of the armed forces, self-
employed, in afarm occupation, or enrolled in school. Finaly, we exclude observations
where variables have missing values (except for the cases noted below where we use

missing indicators).

method) or Pr(T*=1|X, Z) (for HAS) to help tighten the measurement error bounds.
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Our training measure equals one if the respondent reports completing atraining
program on the current job since the last interview (the training may have started before
the last interview) and zero otherwise. Our control variables are age, tenure, experience,
the Armed Forces Qualifying Test measure of cognitive skills (AFQT),** and dummies
for female, black, Hispanic, ever married, one-digit occupational categories, collective
bargaining, part-time status, and calendar year. In addition, there are dummies for
missing AFQT, collective bargaining status, and part-time status, with the variables set
equal to zero if their missing indicators equal one. Our final sample has 20,300
observations from 8,031 jobs and 6,345 individuals. The observed incidence of training
is12.9 percent.

We use two instruments. Thefirst isameasure of gross job destruction and
creation by 2 digit industry created from Michigan unemployment insurance data.™> The
second is years of completed schooling. Our first instrument can be justified by the fact
that the employer’s return to a given training-induced increase in worker productivity is
higher for alonger-lived job match (see Royalty 1996). Job creation and destruction
rates are plausibly related to the magnitude of exogenous demand shocks and hence
exogenoudly shift turnover rates. The second instrument is motivated by the consideration
that years of school is an indicator of trainability. In this context, note that the inclusion
of AFQT and one-digit occupation dummies in the wage growth equation arguably
controls for the direct effect of schooling on productivity growth. We also include runs
where the reallocation variabl e serves as the sole instrument (rows denoted “1

instrument” in the table).

14 Specifically, the residual from aregression of AFQT on dummies for year of birth.
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To illustrate the effects of our measurement error bounds on estimates of y, we
also show OLS bounds and IV estimates for the coefficient on AFQT. Our uncorrected
OLSresultsindicate a statistically significant link between wage growth and AFQT.
Given that we find (asis common in thisliterature) a strong effect of AFQT on the
probability of receiving training, it is of interest to what extent the observed AFQT effect
on wage growth may be due to measurement error in training.

Means and standard deviations for the variables of interest are shown in table 1.
Point estimates and bounds for the wage return to training, £, for the measurement
parameters, ao, a1, and for ysq are shown in table 2. All standard errors are from a panel
version of the White heteroscedasticity-consistent estimator (see Froot 1989 and Rogers
1993). Table 3 shows minimum length confidence intervals asin (8).

The OLS resultsindicate that training during a period raises next period wages by
1.9 percent. IV estimation raises the training coefficient dramatically, to between 13 and
14 percent. Thisincrease is consistent with the hypothesis of substantial measurement
error.

To generate percentile bounds, we first estimate a probit of training incidence on
the independent variables and instruments and then observe the incidence of training
below the 5™ and above the 95™ percentiles of the distribution of predicted training. The
bound for ap isrelatively tight at 2.4 percent. The bound for a3, 70 percent, is much
higher, indicating the potential for agreat deal of measurement error. Therelative
magnitudes of these bounds are intuitively plausible, as it seems more likely that

respondents would forget or neglect to report training spells rather than to report training

1> We thank Chris Foote for supplying these data. See Foote (1998) for more details.
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that did not occur. We generate HAS bounds by estimating (6) taking F to be the normal
cdf. The HAS bounds are dightly tighter than the percentile bounds.

Applying the bounds on ap and a; to the OLS results using (5) yields upper
bounds on 3 of about 4 percent for both the percentile and HAS methods, roughly double
the OLS estimate. *® The confidence intervals from (8) are similar to, but slightly to the
left of what one would get by adding 1.96 dupoung t0 the upper bound estimate and
subtracting 1.96 gy s from the OLS estimate. Because 0upound > Oals, taking a smaller
multiple of gupoung @nd alarger multiple of gy alows usto shorten the confidence
interval slightly.

GMM results based on (17) using both instruments give a point estimate of 4
percent, similar to the bounds.'” However, the GMM estimates of ap and o, are
infeasible, with ap negative and a; above the percentile (and hence HAS) bound. We
apply the Geweke technique, generating 10,000 draws in the feasible region, to produce
feasible estimates of apand ;1. Relative to GMM, the Geweke method does not affect
the point estimate of B very much, but reduces the standard error from .008 to .007.%8
Theresults are similar when only the reallocation variable is used as an instrument.

However, the improvement in precision from using the Geweke technique is more

18 The reverse-regression upper bound on 8 from Bollinger (1996), referred to in Section
1, is22.2, corresponding to values of (0, 1) of (0.123, 0). The much tighter bound
produced by our method stems from the fact that, as explained in Bollinger (1996, p.
396), information reducing misclassification from the larger to the smaller group —in this
case, ap - isparticularly powerful in reducing the upper bound.

7 Adding an overidentifying instrument generates two overidentifying moments (15a)
and (15d). Thetest statistic for the conventional GMM overidentification test (Greene
2000, p. 482) is 1.64, far from the x*(2) critical values.

18 Of course, the GMM estimator and the Geweke estimator are not strictly comparable
unless one considers GMM as a Bayesian estimator combining the data and a diffuse
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dramatic, asthe GMM standard error for S with only one instrument is .012 while the
Geweke standard error is still .007 to three decimal places.

To test whether the measurement error model underlying the GMM and Geweke
estimates is compatible with the data, we calculate the test statistic 7in (18) (using the
percentile bounds). With two instruments, 7is 2.68, which is not significant at
conventional levels using ax?(2) distribution (the 5% critical valueis5.99). Using one
instrument, T is zero, asthe GMM values are feasible.

Theresultsfor y4q show a substantial effect of measurement error. The OLS
coefficient is statistically significant at the 1 percent level whether highest grade
completed isincluded in the regression or not. However, 1V estimation reduces the
coefficient by at |east two-thirds; the estimated coefficient isless than its standard error.
Recall that yis consistently estimated by IV. The OLS bounds using the estimated o
parameters are consistent with the low 1V estimates, with the percentile bounds slightly
lower than the IV estimates and the HA'S bounds quite close.

Finally, if we alow for endogeneity, the lower bounds for 5 from IV estimation
range from .036 to .041 across the different specifications, though with relatively large
standard errors. These lower bounds are similar to the upper bounds from OL S and to the
point estimates from the GMM and Geweke methods. The length of the confidence
intervals reflects the large standard errors, ot pound, ON the lower bounds estimates; as
above, they are to the left of intervals generated by subtracting 1.96 0 poung t0 the bound

and adding 1.96 g, to the IV estimate.

prior.
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Our prior expectation was that training incidence may be positively associated
with unobservable determinants of wage growth. However, the bounds estimates indicate
that true training is either exogenous or negatively correlated with the wage growth
residual, as the lower bound estimates allowing for endogeneity coincide with the point
estimates when one takes training to be exogenous. We conclude that our evidenceis
consistent with measurement error cutting the OLS estimate of the return to training in
half, but we cannot rule out an additional downward biasto OL S due to endogeneity.
Much of the apparent effect of AFQT on wage growth appears to be due to measurement

error in training.

V1. Conclusion

This paper has explored techniques for dealing with a mismeasured binary
explanatory variable in alinear regression. If the binary variable is measured with error,
is uncorrelated with the error term in the regression, and there is no instrument available,
then its true coefficient, £, can be bounded by combining the least squares coefficient
with the HAS or percentile method for bounding measurement error presented in Section
[1. If aninstrument isavailable, 1V isinconsistent, but £ can be consistently estimated by
the GMM estimator in Section I11. The estimated measurement bounds can be
incorporated into the GMM estimates, and the specification can be tested by comparing
the GMM estimates with the measurement error bounds. Finally, if the mismeasured
binary explanatory variable is correlated with the error term in the regression, the GMM
estimator isinconsistent, but £ can be bounded by applying the HAS or percentile

measurement error bounds to the 1V estimate.
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Tablel

Descriptive Statistics, Selected Variables

Variable Mean Std. Min. Max.
Deviation
ChangeinLnWage | 0.025 0.225 -1.492 1.487
Training Incidence 0.129 0.335 0 1
AFQT 0.7 20.3 -65.5 45.9
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Table?2

Estimates and Bounds for Selected Coefficients and Measurement Error Parameters

Parameter B o 0, Vatqt (X 107
Specification
Point Estimates
OLS, 2 instruments .019 3.24
(.005) (0.81)
OLS, 1 instrument .019 2.37
(.005) (0.87)
IV, 2 instruments .140 0.72
(.045) (1.22)
IV, 1 instrument 133 0.79
(.064) (1.27)
GMM(2) .040 -.047 757
(.008) (.046) (.029)
Geweke(2) percentile’ .038 .008 634
(.007) (.006) (.082)
Geweke(2) HAS .038 .006 .636
(.007) (.004) (.072)
GMM(1) .039 .020 .688
(.012) (.053) (.091)
Geweke(1) percentile® .037 014 599
(.007) (.008) (.124)
Geweke(1) HAS .036 .009 .587
(.006) (.006) (.124)
Upper Bounds®
Percentile’ 024 702
(.005) (.017)
HAS .015 .695
(.003) (.008)
OLS percentile bound” (2) 043 0.39
(.011) (1.67)
OLS percentile bound” (1) .043 0.44
(.011) (1.36)
OLS HAS bound (2) .038 0.88
(.009) (1.10)
OLS HAS bound (1) .038 0.79
(.010) (1.16)
Lower Bounds
Endogenous T*, IV(2) .038
percentile bound* (.012)
Endogenous T*, IV(2) HAS .041
bound (.013)
Endogenous T*, IV(1) .036
percentile bound* (.017)
Endogenous T*, IV(1) HAS .039
bound (.018)

! Standard error conditional on 8 (see Section I1).

2 Lower bound for Yaqt corresponding to upper bound for f3.
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Table 3
Minimum Length 95% Confidence Intervalsfor Training Coefficient, Selected
Specifications
Specification Interval
OLS (2), Percentile Bounds [.009, .063]
OLS (1), Percentile Bounds [.008, .063]
Endogenous T*, IV (2), [.014, .219]
Percentile Bounds
Endogenous T*, IV (1), [.002, .244]
Percentile Bounds
OLS (2), HAS Bounds [.009, .055]
OLS (1), HAS Bounds [.008, .056]
Endogenous T*, IV (2), [.009, .217]
HAS Bounds
Endogenous T*, IV (1), [-.004, .240]
HAS Bounds
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Appendix
In the text, we showed that A°(8,) (I A°(6;) . Inthis appendix, we show that
convergence occurs at rate \/n_q . Asthe analysis below makes clear, the argument is
complicated by a small sample effect arising from the fact that éq depends on the

realized values of T; over the entire sample. After demonstrating that

Jng(A° (éq) - A°(8,)) convergesto anormal distribution, we go on to establish the useful
result that 4/nq(A°(@,) - A°(8,)) (1% N(O, A°(6,)(1- A°(8,)).

In the following, let h(X) denote the density of X and let pr(X) denote the

conditional probability Pr(T=1|X). Letting J;(c) =Pr(G(X; J)=c) denote the cumulative
distribution function of G(X;J), we assume that for all & in some neighborhood of &,

(i) J,(c) iscontinuous and differentiablein & and (ii) J;(c) = j;(c) is continuous and
positive everywhere that 0 < J4c) < 1. Let «,(J) =J;* () denote the g-quantile for
J5(c) and let &, (8) =min(c|J;(c) = ), where J, isthe empirical cdf for G(X; §) for a

given 0.

Asapreliminary, we establish the asymptotic normality of x, and thus 6:

Lemmal: Vn(k, -k,*) 3 NOV;) ,where V, =V, +V, +V;,

0k . (OF 3 £ % % oK . (O* 1-—
V, = K;(5 ),(E(aa;_(f g (aLa(g) LECIONS (a L(5 ))_1) K;(5 VA 9D
JJ*(Kq*)
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ok, (0* Xo* -k
and V, = 2Cov ( Ke(@) E( 0°L )t — oL u) and where L isthe log-
FE} 033" 00 " jn(Ky*)

I [ if Y>0
likelihood and t//(Y)—Er(l_q) FY<0"

Jn(@, -6;) 2 N(OBZ C\:/ [) where

K

v, - (aa;ga*))_l (aLa(g*) 6L(5*)) £

0o* I‘(5*))‘l and

0Ky (3%)

; V; + v LG, ALY ) YXOT ),
R 00 0000’ 00 5 (Kq*)

Proof: We can decompose \/ﬁ(/?q -Ky*) as.

(Al Vn(k, -~k =VN(R,(8) — R, () +Vn(R,(3%) — k).

Koenker and Bassett (1982) show that under our continuity assumptions,

N Y W(G(X;5%) = ko (8*))
(A2)  Vn(R,(*) ko@D =7 (wf - +0,(1).

To determine the distribution of the first term of (A1), we now show that
n (k,(0) —K,(0*)) hasthe same limiting distribution as/n (kq(0) —k4(0%)). From

(A2) and its analogue for d, we have:

. . G(X:0) -k . (O
(A Nk, (8) - &, (8)) ~ V(R (3*) ~ Ko (0)) =— ﬁzw(( Ol

j5(kq () n

L1 oI HEOGE) k()

Jo (K(0%)) n

+0,(2).
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Since j;(kq(0) (2 s (kq(5*)) , it follows from(A3) that
Vn(& 4 (8) — k4 (8)) ~vn(R,(3*) —k,(5*)) has the same limiting distribution as

1 ﬁ(zw@(x;é)—xq(é» IDICCTRN

Jor (Kg*) n n

Let 5,(8)=1°(8,) n (6))°, $,(8)=(8,)° n 12(6*), p(J) = Pr(X Os,(6)), and

p,(8) = Pr(X Os,(8)). Notethat

\/ﬁ(zwe(x;&) ~ka(8) S Y(G(X;5*) ~Ka)) _ #H(S(O)H#((9)
n

n Jn
IC)
=ﬁ I )
n
U1 if X; 0s,(3),
where bi(é):g-l if X, 0s,(d),
Uo otherwise.
B
> b(9)
By the central limit theorem, +/n(~ o E(b)) convergesin distribution to

N(O,Var(b,)). Notethat E(b) = p,(d) - p,(d) and
Var(b,) = p,(3) + p,(3) — (p.(6) - p,(3))? .

> bi()
Since pl(é)EI;R 0, p2(3)DIZR 0, we can conclude that v/n— - ® 0. It

followsthat vn(&(3) — k4 (3)) -Vn(k,(5*) -k, (6*)) (L& 0, which implies that

«/ﬁ(/?q () - K,(8*)) hasthe same limiting distribution as\/ﬁ(/(q (0) - K4(0%)).
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A standard delta-method argument establishes that +/n (x, (d) - K ,*) hasthe same

oK, (0* -
limiting distribution as K;(d ) Jn(d - &%), which in turn, as shown by White (1982),
Y 0k ,(0%) a L(6) 4 aL(d)
has the same limiting distribution as o (-E ) )\/_(Z n), where L

isthe log-likelihood. A multivariate central limit theorem appliesto

\/_DA (5 )Dlmplylngthatthesum\/_(/( — K%)=

\/ﬁ(/?q (d) - K4(3*)) + \/ﬁ(/?q (0*) -« ,*) isasymptotically normal with the specified
variance.

Similarly, ¥n(6 - 6*) is asymptotically normal, with variance V; = V,

Ok

Oood

Q.E.D.
Lemma 2 below is key to the argument demonstrating the convergence of

Jna(A%(@,) - A°(6,)):

T

I
07 @,)

Lemma2: Let A°(8;) Em
q

. Then Vn(A°(8,) - A°(6})) (1% N(O.AV; ),

where A=0A°(6,)/06, denotes the gradient vector of A° at 6, .
Proof: Let S;(4,)=1°(8,) n 1°(8,)°, S,(8,)=1°(8;) n 1°(8,)",

P.(8,) =Pr(X0S,(6,)), and P,(6,) =Pr(X0S,(8,)) . One can write

Po) o

07 ®;)

#(1°6,) #(1°(6)))

(A4 Jn(A°@,)-A°@8;)) =n( )
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T- $T T, . .
|D|% ) |D|Z(9 ) iDl%q) #(l O(Hq ))_#(l O(Qq))
#(1°(6,)) #(l °6,) #(1°(8,))

T-)T, T
_ \/—(; é i0i (9) #(S,(6,))~#(S. (6, )))
#(1°(6,)) #(l (63)) #(1°(9,)

ZTiBméq) PREDLIC)
——)

=Jn n
#(1°(6, )) n H(I° @) 0
where
O if X,0S,(6,)
B (8,) =1 if X,0S,(6,)
E) otherwise

In determining the asymptotic distribution of

. T .
. XTEG) 2T SE@) |
o (= ' ), one must take into account the small
#(17(6,)) n #(1° @) n

sample effect arising from the fact that éq depends on the realized values of T; over the

entire sample. Thus, let p;,(6,) =Pr(T =1| X 0S,(4,)), and let

Pr. (6,) =Pr(T =1| X 0S,(8,).8,) = IpT(X)h(X)dX /P,(6,) denote the probability that T

X05,(6,)
=1when X 0S,(6,) and 6, istaken to be exogenous. For convenience, let
a,(6,) = pr, (6,) - P+, (6,) . Similarly, let p. (8,)=Pr(T =1| X 0S,(6,)) and write

pr, (6,) = Pr, (6,) +2,(8,) .



40

where B (8,) =Pr(T =1|X0S,(8,).6,) = J’pT(X)h(X)dX/P @,) and a,(8,) isa
X085, (8,)

small sample effect. Since a,(6,) and a,(8,) approach 0 as , approaches 6, and
6,2 6, a,(f,) 2 0anda,@,)2 O.
Note that

Y186 . YTE@)

) e @y v rrEy " a (PrlIRE) - PGP 6.)

Vn(a,(6,)P.(8,) ~ 2, (8,)P, (6,)

#(l (9 )

0 (6 ))\F(pn(e )PL(6,) ~ Pr2(8,)P:(6,)).

Substituting (A5) into (A4) and adding and subtracting
T

I
n 0 (@,)

#(l (62)) #(1°(6,))

(P,(8,) - P.(6,)) , one obtains

z iBi (éq)

(A6) Vn(A°(6,)- A (tﬁ’q))‘#(I @ ))\/_( — = (Pr1(85)P(6y) — Pr2(64) P2 (6,))))

Vn(a,(6,)P.(8,) ~ 2, (8,)P, (6,)

(o (9 )
o (9 P R CACRLICR R ACALICH
Jn n |D|;-I)-i ZBi(éq) - . A A
@ ey T n RO TRED RE) -RE).

Letting §=Pr(G(X;d)<K,) = h(X)dX , one can write
X:G(X:8)sk,
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[ pr (O(X)dx [ P OORO) X

X:G(X;8)=k, _ XG(Xo* )<k

(A7) A%4,)-A°(6;) = ; ]

a( J'IOT(X)h(X)dX— IPT(X)h(X)dX)
X05,(6,) X0$,(6,)

ad

(@-9) J'IOT (X)h(X)dX

X:G(X;8) <k
+

qq

_ Py, (6)P(6,) ~ Pr2(6)P,(6,) + (a - DA (6)
q )
which implies that

(A8)  Pr.(6,)P.(B,) — Pr2(0,)P(8,) =6(A°(8,) - A°(8,) + (P, (8,) — P.(6,) A°(6})

Substituting (A8) into (A6) and rearranging yields:

(A9) Jn(A (eq)—A(eq»-#( (9 ))ﬂq(A @,) - A°(E))) + X(n,8,)
where
) ZTiBi(éq) o o
(A10) ><<n,9q)-1_/¢(I (9»ﬂ —— = (Pr(G0)Ri(6;) ~ Pr2(8,)P,(6,)))

#(I (9 ))\/_( 2 (6,)P(6,) ~ 2, (6,)P,(6,))

Jn n iol (g-l)-i Z B (éq) . ~
- : (BB —PuAd
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Ti
n iniv@,) 0yt ~ ~
- -~ A2@))(P(E,) - P,(6,)).
Ir'#(I"(e?;)) (#(lo(eq)) A (62))(P1(6) = P (6q))

Asn becomeslarge, X(n,8) convergesin probability to zero. To seethis, note

S TiB.(6,)
that by the central limit theorem, +/n (- Pr1(G)PLE,) - Pr2(8,)P:(6,)))

convergesin distribution to N(0, x(P,(6,), P»(8,))) , where

X(P.(6,),P(8,)) = P.(8,) - pr1(8,)P.(8,) + Pr2(8,)P:(8,))% + Py(6,)(-1- pry(8,)P.(6,) + Pr2(6,)P1(6,))7.

0y
Since P,(8,) 12 0, P,(4,) (I 0, and s rfé’q)) = q,
TiB
n , ~ ~ AL ~ A . .
#(IO(Q,;))\/E( - (Pr1(8,)P.(6,) — Pra(6,)P,(6,))) I2 0. Similarly, the third term

DI Y:1CA

n i0l (HUL) | _ 9" -p, 9" ’
Ry P00 Re)

on the right hand side of (A7), /n

n

converges in probability to zero. Also, notethat —————
#(17°(6,))

JnR,(6,) and

n

m\/ﬁ P, (éq) converge asymptotically to stable (normal) distributions. Since
q

a,(8,) and a,(8,) both converge in probability to 0,
T

|
n 07 (8,)

#(1°(8,)) #(1°(6,))

In(a,(0,)R.(8,) - 2,(6,)P;(6,)) (2 0.
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Finally, consider the fourth term on the right hand side of (A10). Since
P.(8;)=P,(8;) =0and Vn(@, - 6,) isasymptotically normal,

\/E(F’l(éq) -P, (éq)) [ N(O, (6P1(6?;)/69) - (0P2(6?;)/66?))Véq (6P1(9;)/66?) - (0P, (9;)/69)).

T o
MOLCL) AO(H;)andw[g q, it follows that
#(1°(8,)) n
T
n il (qu) _A%g" é ~ é - .
#(Io(ga))\/n_(#(lo(eq)) A EDREy) - PO T2 0

We can conclude that

(A1L)  Vn(A°G,) - A@) I ————an((A°(9,) - A°(6;)) , which
#(1°(6;))
implies that
In(A°@,) - A°@8;)) % N(0.4'V; A) Q.E.D.

Note that in order to estimate the variance of A°(8,) - A°(6;) from the formulain

K, (0%)

0
the lemma, one would need to estimate the derivative vectors A, 3—5 and the

density j,. (k,*).

Using the above lemma, it is easy to demonstrate that /ng(A°(8,) - A°(6;))
converges to a normal distribution with mean zero.

Theorem1: \/nq(A°(4,) - A°(8;)) converges asymptotically to a normal

distribution with zero mean.

Proof:

Decompose,/nq(A°(8,) - A°(6;)) asfollows:
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(A12)  nq(A°(8,) - A°(8;)) =/na(A°(8;) - A°(6;)) +/na(A°(,) - A°(6})) .

Ti
i0rv(e;)

e A°(6,)) . From the preceding

Note that /ng(A°(8;) - A°(6})) L:D\/n_q(

lemmas, we know that \/nq(A°(8,) - A°(6;)) hasthe same asymptotic distribution asa

linear combination of \/n_q(z :;;/n) and \/nq ZU/(G(X;T) —kq(58*)) both of which
are mean zero. By the multivariate central limit theorem, the components of (A12) are
multivariate normal. Thus, the sum /nq(A°(@;) - A°(8;)) +/nq(A°(8) - A°(8})) is
asymptotically normal with mean zero. Q.E.D.
Corollary 1: {/nq(A°(6,) - A°(6,)) (2 N(0,A°(8;)1— A°(8,)).
Proof:
Instead of (A12), one can decompose /nq(A°(8,) - A°(4,)) as
(A13)  Jna(A°(6,) - A°(6,)) =na(A°(6,) - A°(8,)) + Jna(A°(6,) - A°(6,))
Substituting (A9) and (A12) into (A13) and rearranging terms yields
(A14)  Jng(A°(0,) - A°(8,)) =4na(A°(8;) - A°(6,)) +JaX (n.6,)
We have already shown than X (n,6) (I3 0 and
\/n_q(AO(eg) -A%G,)) 0% N(O,A°(6,)1-AE,). Q.ED.
Corollary 1 and thefact that A°(4,) (L2 A°(6;) immediately give us

Corollary 2: /nq(A°(@,) - A°(8,)) (I3 N(O, A°(6,)(1- A°(8,)).



