USDA
United States
Department of
Agriculture
NRCS
Natural
Resources
Conservation
Service

In cooperation with the Research Division of the College of Agricultural and Life Sciences, University of Wisconsin

Soil Survey of Burnett County, Wisconsin

Subset of Major Land Resource Areas 90 and 91

NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

How To Use This Soil Survey

This publication consists of a manuscript and a set of soil maps. The information provided can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The map symbols and names also appear as bookmarks, which link directly to the appropriate page in the publication.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

National Cooperative Soil Survey

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey. This survey was made cooperatively by the Natural Resources Conservation Service and the Research Division of the College of Agricultural and Life Sciences, University of Wisconsin. The survey is part of the technical assistance furnished to the Burnett County Land Conservation Department. The State of Wisconsin contributed funding towards the completion of this survey through the State Soil Survey Initiative. The Wisconsin Department of Natural Resources provided technical assistance.

Major fieldwork for this soil survey was completed in 2002. Soil names and descriptions were approved in 2003. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2003. Digitizing of this soil survey was completed under the direction of the Madison, Wisconsin, digitizing unit in 2004. The most current official data are available on the Internet.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

Nondiscrimination Statement

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 7206382 (TDD). USDA is an equal opportunity provider and employer.

Cover Caption

An area of Newson-Meehan complex, 0 to 3 percent slopes, in the Crex Meadows Wildlife Area. These soils are suited to wetland wildlife habitat. The use of the area by migratory waterfowl has been enhanced by the creation of additional wetlands.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Foreword ix
How This Survey Was Made 1
Formation and Classification of the Soils 5
Table 1.-Classification of the Soils 9
Soil Map Unit Descriptions 11
3A-Totagatic-Bowstring-Ausable complex, 0 to 2 percent slopes, frequently flooded 12
12A—Makwa stony muck, 0 to 1 percent slopes, extremely stony, frequently flooded 14
22A-Comstock silt loam, 0 to 3 percent slopes 14
27A—Scott Lake sandy loam, 0 to 3 percent slopes 15
28B—Haugen-Rosholt complex, 2 to 6 percent slopes, very stony 15
28C—Haugen-Rosholt complex, 6 to 12 percent slopes, very stony 17
38A—Rosholt sandy loam, 0 to 2 percent slopes 19
38B—Rosholt sandy loam, 2 to 6 percent slopes 19
38C—Rosholt sandy loam, 6 to 12 percent slopes 20
38D—Rosholt sandy loam, 12 to 20 percent slopes 20
42D-Amery sandy loam, 12 to 25 percent slopes, very stony 21
43B—Antigo silt loam, 1 to 6 percent slopes 21
43C—Antigo silt loam, 6 to 15 percent slopes 22
63A-Crystal Lake silt loam, 0 to 2 percent slopes 22
63B—Crystal Lake silt loam, 2 to 6 percent slopes 23
63C-Crystal Lake silt loam, 6 to 12 percent slopes 23
64A—Totagatic-Winterfield complex, 0 to 2 percent slopes, frequently flooded 24
69C-Keweenaw-Sayner-Vilas complex, 6 to 15 percent slopes, stony 25
69E—Keweenaw-Sayner-Vilas complex, 15 to 45 percent slopes, stony 26
82B-Cutaway-Branstad complex, 1 to 6 percent slopes 27
82C-Cutaway-Branstad complex, 6 to 12 percent slopes 28
83A—Smestad loamy fine sand, 0 to 3 percent slopes 29
85B—Taylor loam, 2 to 6 percent slopes 30
85C-Taylor loam, 6 to 12 percent slopes 30
86A—Indus-Alango complex, 0 to 2 percent slopes 31
89A—Wildwood muck, 0 to 1 percent slopes 32
96B—Karlsborg sand, 1 to 6 percent slopes 32
96C—Karlsborg sand, 6 to 12 percent slopes 33
96D—Karlsborg sand, 12 to 20 percent slopes 33
100B-Menahga sand, 0 to 6 percent slopes 34
100C-Menahga sand, 6 to 12 percent slopes 34
100D-Menahga sand, 12 to 30 percent slopes 35
120B—Kost fine sand, 0 to 6 percent slopes 35
127D—Amery-Rosholt complex, 12 to 20 percent slopes, very stony 36
127E—Amery-Rosholt complex, 20 to 45 percent slopes, very stony 37
151A—Bluffton loam, 0 to 2 percent slopes 38
152A—Alstad loam, 0 to 3 percent slopes 38
154E-Cushing fine sandy loam, 20 to 35 percent slopes 39
156B—Magnor, very stony-Magnor complex, 0 to 4 percent slopes 39
157B-Freeon, very stony-Freeon complex, 2 to 6 percent slopes 40
157C-Freeon, very stony-Freeon complex, 6 to 12 percent slopes 41
160A-Oesterle sandy loam, 0 to 2 percent slopes 42
165B—Elderon sandy loam, 2 to 6 percent slopes 42
185B—Tradelake-Taylor complex, 1 to 6 percent slopes 43
185C-Tradelake-Taylor complex, 6 to 12 percent slopes 44
185D—Tradelake-Taylor complex, 12 to 25 percent slopes 45
185E-Tradelake-Taylor complex, 25 to 35 percent slopes 46
189A-Siren loam, 0 to 3 percent slopes 47
193A-Minocqua muck, 0 to 2 percent slopes 47
337A—Plover fine sandy loam, 0 to 3 percent slopes 48
368B—Mahtomedi-Cress complex, 2 to 6 percent slopes 48
368C-Mahtomedi-Cress complex, 6 to 12 percent slopes 49
368D-Mahtomedi-Cress complex, 12 to 25 percent slopes 50
368E—Mahtomedi-Cress complex, 25 to 35 percent slopes 51
380B—Cress-Rosholt complex, 2 to 6 percent slopes 52
380C—Cress-Rosholt complex, 6 to 12 percent slopes 52
380D—Cress-Rosholt complex, 12 to 25 percent slopes 53
383B—Mahtomedi loamy sand, 0 to 6 percent slopes 54
383C-Mahtomedi loamy sand, 6 to 12 percent slopes 55
383D—Mahtomedi loamy sand, 12 to 30 percent slopes 55
392C—Rockmarsh-Dairyland-Makwa, seeped, complex, 2 to 20 percent slopes, very stony 56
396B—Friendship-Wurtsmith-Grayling complex, 0 to 6 percent slopes 57
397A—Perchlake loamy fine sand, 0 to 2 percent slopes 58
399B—Grayling sand, 0 to 6 percent slopes 59
399C-Grayling sand, 6 to 12 percent slopes 59
399D—Grayling sand, 12 to 30 percent slopes 59
406A—Loxley mucky peat, 0 to 1 percent slopes 60
407A—Seelyeville and Markey soils, 0 to 1 percent slopes 60
410A-Seelyeville and Cathro soils, 0 to 1 percent slopes 61
419A-Seelyeville, Cathro, and Markey soils, 0 to 1 percent slopes 62
421A—Dora, Markey, and Seelyeville soils, 0 to 1 percent slopes 63
422A-Seelyeville, Cathro, and Rondeau soils, 0 to 1 percent slopes 64
426B—Emmert-Mahtomedi-Menahga complex, 2 to 6 percent slopes 66
426C—Emmert-Mahtomedi-Menahga complex, 6 to 12 percent slopes 67
426D—Emmert-Mahtomedi-Menahga complex, 12 to 30 percent slopes 68
430A—Freya loamy fine sand, 0 to 3 percent slopes 69
439B—Graycalm-Menahga complex, 0 to 6 percent slopes 70
439C-Graycalm-Menahga complex, 6 to 12 percent slopes 70
439D-Graycalm-Menahga complex, 12 to 30 percent slopes 71
442C-Haugen, very stony-Greenwood complex, 0 to 15 percent slopes 72
443D—Amery, very stony-Greenwood complex, 0 to 35 percent slopes 73
459A—Loxley, Daisybay, and Dawson soils, 0 to 1 percent slopes 74
461A-Bowstring muck, 0 to 1 percent slopes, frequently flooded 75
465A-Newson-Meehan complex, 0 to 3 percent slopes 76
469E—Bigisland-Milaca complex, 15 to 45 percent slopes, very stony 77
471B—Dairyland-Emmert complex, 0 to 6 percent slopes, very stony 78
471C—Dairyland-Emmert complex, 6 to 15 percent slopes, very stony 79
472A—Rockmarsh-Clemens complex, 0 to 2 percent slopes, very stony, frequently flooded 80
473A—Dairyland-Skog complex, 0 to 3 percent slopes, very stony, rarely flooded 81
484A-Greenwood and Beseman soils, 0 to 1 percent slopes 82
485C—Lupton and Tawas soils, seeped, 2 to 15 percent slopes 82
495B—Karlsborg-Grettum-Perida complex, 1 to 6 percent slopes 83
495C—Karlsborg-Grettum-Perida complex, 6 to 12 percent slopes 85
495D—Karlsborg-Grettum-Perida complex, 12 to 30 percent slopes 86
496B—Karlsborg loamy sand, 1 to 6 percent slopes 87
496C—Karlsborg loamy sand, 6 to 12 percent slopes 88
496D—Karlsborg loamy sand, 12 to 30 percent slopes 88
497A—Meenon loamy sand, 0 to 3 percent slopes 89
521A—Dody muck, 0 to 2 percent slopes 89
523A—Nokasippi muck, 0 to 1 percent slopes 90
529B—Perida sand, 0 to 4 percent slopes 91
531A—Stengel loamy sand, 0 to 3 percent slopes 91
542B—Haugen, very stony-Haugen complex, 2 to 6 percent slopes 92
542C—Haugen, very stony-Haugen complex, 6 to 12 percent slopes 93
544F-Menahga and Mahtomedi soils, 30 to 45 percent slopes 94
553B—Branstad fine sandy loam, 2 to 6 percent slopes 95
553C-Branstad fine sandy loam, 6 to 12 percent slopes 95
553D—Branstad fine sandy loam, 12 to 20 percent slopes 96
555A—Fordum silt loam, 0 to 2 percent slopes, frequently flooded 96
557B—Shawano fine sand, 0 to 6 percent slopes 97
557C—Shawano fine sand, 6 to 12 percent slopes 97
557D—Shawano fine sand, 12 to 30 percent slopes 98
586A-Chelmo sandy loam, 0 to 2 percent slopes 98
600A—Haplosaprists and Psammaquents, 0 to 2 percent slopes 99
615B—Cress sandy loam, 0 to 6 percent slopes 99
615C-Cress sandy loam, 6 to 12 percent slopes 100
615D-Cress sandy loam, 12 to 30 percent slopes 100
620C—Lundeen-Haustrup-Rock outcrop complex, 2 to 12 percent slopes, very stony 101
621A—Bjorkland peat, 0 to 2 percent slopes 101
623A -Capitola muck, 0 to 2 percent slopes, very stony 102
624A-Ossmer silt loam, 0 to 3 percent slopes 102
631A-Giese muck, 0 to 1 percent slopes, very stony 103
632A—Aftad fine sandy loam, 0 to 2 percent slopes 104
632B—Aftad fine sandy loam, 2 to 6 percent slopes 104
632C-Aftad fine sandy loam, 6 to 12 percent slopes 105
634C—Drylanding-Beartree complex, 0 to 12 percent slopes, rocky 105
635C—Drylanding-Beartree complex, 0 to 12 percent slopes, rocky, rarely flooded 106
648B—Sconsin silt loam, 1 to 6 percent slopes 107
669D—Fremstadt, stony-Pomroy complex, 15 to 30 percent slopes 108
671B—Spoonerhill, stony-Spoonerhill complex, 2 to 6 percent slopes 109
706A—Winterfield-Totagatic complex, 0 to 2 percent slopes, frequently flooded 110
715A—Mora silt loam, 0 to 3 percent slopes, very stony 111
717B—Milaca silt loam, 3 to 6 percent slopes, very stony 111
717C—Milaca silt loam, 6 to 12 percent slopes, very stony 112
720F—Haustrup-Lundeen-Rock outcrop complex, 12 to 65 percent slopes, very stony 112
726B—Sissabagama loamy sand, 0 to 6 percent slopes 113
742B—Milaca sandy loam, 2 to 6 percent slopes, very stony 114
742C-Milaca sandy loam, 6 to 12 percent slopes, very stony 114
742D—Milaca sandy loam, 12 to 20 percent slopes, very stony 115
755A-Moppet, occasionally flooded-Fordum, frequently flooded, complex, 0 to 3 percent slopes 115
771A—Lenroot loamy sand, 0 to 3 percent slopes 116
812B—Mora sandy loam, 0 to 4 percent slopes, very stony 117
825A-Meehan sand, 0 to 2 percent slopes 117
896A—Wurtsmith sand, 0 to 3 percent slopes 118
980A—Soderbeck very gravelly loam, 0 to 2 percent slopes, very stony, rarely flooded 118
1070C—Fremstadt, stony-Cress complex, 6 to 15 percent slopes 119
1070D—Fremstadt, stony-Cress complex, 15 to 30 percent slopes 120
1080B—Spoonerhill-Spoonerhill, stony-Cress complex, 1 to 6 percent slopes 121
2002—Udorthents, earthen dams 122
2015-Pits 122
2050—Landfill 123
3011A—Barronett silt loam, 0 to 2 percent slopes 123
3082E—Braham-Shawano complex, 12 to 35 percent slopes 123
3114A—Saprists, Aquents, and Aquepts, 0 to 1 percent slopes, ponded, flooded 124
3125A -Meehan loamy sand, 0 to 2 percent slopes 125
3126A-Wurtsmith loamy sand, 0 to 3 percent slopes 126
3312B—Glendenning, very stony-Glendenning complex, 0 to 4 percent slopes 126
3336A-Fenander fine sandy loam, 0 to 2 percent slopes 127
3403A—Loxley, Beseman, and Dawson soils, 0 to 1 percent slopes 128
3429B—Lara loamy fine sand, 0 to 6 percent slopes 129
3429C-Lara loamy fine sand, 6 to 12 percent slopes 130
3446A—Newson muck, 0 to 2 percent slopes 130
3448B—Grettum loamy sand, 0 to 6 percent slopes 131
3448C—Grettum loamy sand, 6 to 12 percent slopes 131
3510B—Pomroy-Fremstadt-Fremstadt, stony, complex, 1 to 6 percent slopes 132
3510C—Pomroy-Fremstadt-Fremstadt, stony, complex, 6 to 15 percent slopes 133
3511A—Bushville loamy sand, 0 to 3 percent slopes 134
3516A -Slimlake sandy loam, 0 to 3 percent slopes 135
3625A -Lino loamy fine sand, 0 to 2 percent slopes 135
3626A-Crex loamy fine sand, 0 to 3 percent slopes 136
3629B—Perida loamy sand, 0 to 4 percent slopes 136
3636B—Plainbo sand, 2 to 6 percent slopes 137
3636C—Plainbo sand, 6 to 12 percent slopes 137
M-W-Miscellaneous water 138
W-Water 138
Table 2.—Acreage and Proportionate Extent of the Soils 138
Use and Management of the Soils 143
Interpretive Ratings 143
Rating Class Terms 143
Numerical Ratings 143
Crops and Pasture 144
Climate 144
Cropland Management Considerations 144
Crop Yield Estimates 146
Land Capability Classification 147
Prime Farmland 148
Conservation Tree/Shrub Suitability Groups 149
Forest Land Management 149
Forest Land Harvest Equipment Considerations 149
Forest Haul Road Considerations 150
Forest Log Landing Considerations 150
Forest Land Site Preparation and Planting Considerations 150
Forest Habitat Types 151
Recreation 156
Wildlife Habitat 157
Engineering 159
Building Site Development 160
Sanitary Facilities 161
Construction Materials 163
Water Management 165
Agricultural Waste Management 166
Table 3.-Temperature and Precipitation 168
Table 4.-Freeze Dates in Spring and Fall 169
Table 5.-Growing Season 169
Table 6.-Cropland Management Considerations 170
Table 7a.-Land Capability and Yields per Acre of Crops and Pasture 207
Table 7b.-Land Capability and Yields per Acre of Crops and Pasture 218
Table 8.-Prime Farmland 229
Table 9.-Conservation Tree/Shrub Suitability Groups 230
Table 10.-Forest Land Harvest Equipment Considerations 242
Table 11.-Forest Haul Road Considerations 257
Table 12.-Forest Log Landing Considerations 271
Table 13.-Forest Land Site Preparation and Planting Considerations 285
Table 14.-Forest Habitat Types 301
Table 15a.-Recreational Development 314
Table 15b.-Recreational Development 345
Table 16.-Wildlife Habitat 372
Table 17a.-Building Site Development 388
Table 17b.-Building Site Development 413
Table 18a.-Sanitary Facilities 444
Table 18b.-Sanitary Facilities 481
Table 19a.-Construction Materials 512
Table 19b.-Construction Materials 534
Table 20.-Water Management 572
Table 21a.-Agricultural Waste Management 599
Table 21b.-Agricultural Waste Management 639
Soil Properties 691
Engineering Index Properties 691
Physical Properties 692
Chemical Properties 694
Water Features 694
Soil Features 696
Table 22.-Engineering Index Properties 698
Table 23.-Physical Properties of the Soils 815
Table 24.-Chemical Properties of the Soils 845
Table 25.-Soil Moisture Status by Depth 875
Table 26.-Flooding Frequency and Duration 912
Table 27.-Ponding Frequency, Duration, and Depth 929
Table 28.-Soil Features 950
References 963
Glossary 965

Foreword

Soil surveys contain information that affects land use planning in survey areas. They include predictions of soil behavior for selected land uses. The surveys highlight soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

Soil surveys are designed for many different users. Farmers, foresters, and agronomists can use the surveys to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the surveys to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the surveys to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described, and information on specific uses is given. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Patricia S. Leavenworth
State Conservationist
Natural Resources Conservation Service

Soil Survey of Burnett County, Wisconsin, Subset of Major Land Resource Areas 90 and 91

By Fred J. Simeth, Natural Resources Conservation Service

Fieldwork by Keith A. Anderson, Scot A. Haley, David J. Hvizdak, Mark A. Krupinski, Kenneth W. Lubich, James A. Martzke, Phillip D. Meyer, Fred. J. Simeth, Jeff C. Talsky, Chanc L. Vogel, and Robert D. Weihrouch, Natural Resources Conservation Service
United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the Research Division of the College of Agricultural and Life Sciences, University of Wisconsin

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area, which is in Major Land Resource Areas 90 and 91. The majority of MLRA 90 occurs in Wisconsin, and the majority of MLRA 91 occurs in Minnesota. Major land resource areas (MLRAs) are geographically associated land resource units that share a common land use, elevation, topography, climate, water, soils, and vegetation (USDA, 1981). Burnett County, which is in northwestern Wisconsin(fig. 1), is a subset of MLRA 90, Central Wisconsin and Minnesota Thin Loess and Till, and MLRA 91, Wisconsin and Minnesota Sandy Outwash. Map unit design and the soil descriptions are based on documentation of the occurrence of each soil throughout the MLRAs.

The information in this survey includes a brief description of the soils and miscellaneous areas and interpretive tables showing soil properties and the subsequent effects on suitability, limitations, and management for specified uses.

During the fieldwork for this survey, soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landscape or segment of the landscape. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landscape, soil scientists develop a concept, or model, of how the soils were formed. Thus, during mapping, this model enables the soil scientists to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Individual soils on the landscape commonly merge into one another as their characteristics gradually change. To construct an accurate map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an

Figure 1.-Location of Burnett County in Wisconsin.
understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they observed. The maximum depth of observation was about 80 inches (6.7 feet). Soil scientists noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, soil reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Interpretations are modified as necessary to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a zone in which the soil moisture status is wet within certain depths in most years, but they cannot predict that this zone will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Formation and Classification of the Soils

Soil is produced by the action of soil-forming processes on materials deposited or accumulated by geologic forces. The characteristics and properties of soil in a given area are determined by (1) the physical and mineralogical composition of the parent material; (2) the climate under which the soil material has accumulated and existed since accumulation; (3) the living organisms on and in the soil; (4) the relief, or lay of the land; and (5) the length of time the forces of soil formation have acted on the soil material (Jenny, 1941). The relative effect of each of these factors is reflected in the soil profile.

The interaction of these factors during the transformation of the parent material into soil generates complex physical, chemical, and biological processes that cause minerals to become weathered and organic matter to accumulate. Material in suspension or in solution moves downward through the soil to form definite layers, or horizons, in the soil. These layers-surface layer, subsurface layer, subsoil, and substratum-are defined in the Glossary.

All of the major factors of soil formation are interrelated. When one factor changes, the other four factors are affected. The following paragraphs describe the factors of soil formation as they relate to the soils in the survey area.

Parent Material

Parent material largely determines the physical and chemical properties of the soil, such as the capacity or ability of the soil to store water and nutrients for plants and the rate at which water can pass through the soil.

The soils in Burnett County formed in a wide variety of parent materials, including till, outwash, glaciolacustrine deposits, and alluvial deposits.

Till is unsorted, unstratified drift consisting mainly of clay, silt, and sand. It may contain gravel, cobbles, stones, or boulders. The till in the southern part of the county is dominantly sandy loam. Freeon and Magnor soils are examples of soils that formed in silty deposits and in the underlying loamy till. The loamy till is dense at a depth of 40 to 60 inches. This dense layer restricts the movement of water through the soil. Branstad and Alstad soils are examples of soils that formed in loamy calcareous till. These soils occur south of Grantsburg.

Fremstadt and Spoonerhill soils are examples of till soils that are dominantly sandy throughout. They have a thin loamy upper layer but have friable sandy till in the subsoil and substratum. These soils are in the east-central part of the county on moraines surrounded by sandy outwash soils.

Outwash is sand, sand and gravel, or stratified sand and gravel deposited by water flowing from a melting glacier. Rosholt, Scott Lake, and Oesterle soils formed mostly in loamy deposits over sandy and gravelly outwash. Antigo and Sconsin soils formed mostly in silty deposits over sandy and gravelly outwash. These soils are mostly in the southeastern part of the county.

Graycalm, Grettum, Mahtomedi, and Menahga soils are examples of outwash soils that are sandy or gravelly throughout. These soils are in the central and northwestern parts of the county.

Glaciolacustrine deposits are materials ranging from fine clay to sand derived from glaciers and deposited in glacial lakes, mainly by glacial meltwater. Many deposits are interbedded or laminated. In Burnett County, ice-walled lake plains formed as surrounding stagnant ice melted. These dish-shaped plateau formations are easy to recognize on topographic maps (Johnson, 2000). Barronett, Comstock, and Crystal Lake soils are examples of soils that formed in areas where these deposits are dominantly loamy. Sissabagama soils are examples of soils that formed in areas where loamy glaciolacustrine deposits are covered by deep deposits of sandy outwash.

Other glaciolacustrine deposits in Burnett County were laid down in areas once covered by Glacial Lake Grantsburg. Glacial Lake Grantsburg formed as the Grantsburg Sublobe of the Des Moines glacial advance dammed the southwestflowing St. Croix River in the vicinity of Grantsburg. It is estimated that Glacial Lake Grantsburg lasted for about 80 to 100 years (Johnson, 2000). Dody, Karlsborg, and Perida soils are examples of soils that formed in areas where a thin layer of clayey Glacial Lake Grantsburg glaciolacustrine deposits were covered by moderately deep or deep sandy outwash or glaciolacustrine deposits. These soils are in the east-central part of the county. Alango, Indus, and Taylor soils are examples of soils that have thick clayey deposits. These soils are in the southwestern part of the county, east of Grantsburg.

Some of the soils in the county, such as Totagatic and Winterfield soils, formed in sandy postglacial alluvial deposits that were laid down as rivers overflowed and deposited fresh sediments on the flood plains. Fordum soils are examples of soils that formed in loamy alluvial deposits.

Climate

Climate influences soil formation by providing the moisture and temperatures necessary for the weathering of parent material. It also alters the parent material through the mechanical action of freezing and thawing.

Water dissolves and transfers soluble materials and nutrients to the lower parts of the soil. Reaction, or pH , is largely influenced by this process. Temperature affects the rate at which chemical reactions and biological processes proceed. These reactions and processes are slower at a lower temperature than at a higher temperature. Moisture and temperature also affect the kinds of plants and animals that grow on and in the soil. The accumulation and decomposition of organic material also are influenced by moisture and temperature.

Wind can affect the development of soil by adding or removing fine particles of soil or organic material. It also affects the moisture content of soils by influencing the rate of evaporation. Shawano soils in the southwestern part of the county are examples of soils in which the upper layers have been reworked by the wind.

Climate can also have more localized effects. For example, north- and east-facing slopes tend to be cooler and wetter than south- and west-facing slopes. Depressional areas generally have cooler temperatures for a longer part of the year than summits and slopes of hills.

Burnett County has a cool, subhumid continental climate that favors the growth of trees and the formation of leached, acid soils with a thin, dark surface layer and a clayenriched subsoil.

Living Organisms

Living organisms, such as plants, bacteria, fungi, insects, earthworms, nematodes, and rodents, influence the formation of soils. In addition to providing organic matter to the soil, their activities result in the development of soil structure and the formation of
voids in the soil and thus encourage the transferral of clay and nutrients from the upper layers to the subsoil.

Plants generally have more influence than other living organisms on soil formation. Plant roots excrete substances that act on the parent material to bring nutrients or mineral substances into solution. These nutrients are translocated by plant roots upward to stems and leaves. When the plants die, minerals and nutrients are released to the upper soil layers. The organic acids formed from the decaying plant residue accelerate soil formation by reacting with rock and mineral constituents. Plants also affect soil formation by modifying the effects of climate-for example, by removing soil moisture through evapotransportation and by reducing the hazard of erosion.

Soil organisms decompose organic compounds and sequester nitrogen and other nutrients and make them available to plants. Organisms in the soil also enhance soil structure and porosity as they move through the soil. Roots and percolating water follow the channels created by animal activity.

Relief

Relief is an important factor in soil formation because it affects drainage, aeration, and erosion.

Because relief influences runoff and drainage, it can affect the types of vegetation present and the chemical changes on and in the soil. Soil profile development occurs most rapidly in well drained, gently sloping areas. Profile development is slower on steep slopes, where runoff is rapid and the rate of water infiltration is slower. Excessive runoff reduces the amount of water that is available for leaching the soil and for use by plants, and it can increase the hazard of erosion. Differences in relief can account for the formation of different soils in similar kinds of parent material. For example, some soils in the county formed in similar kinds of parent material but have different drainage classes because they are in different positions on the landscape.

Oesterle and other somewhat poorly drained soils have redoximorphic features in the subsoil because of seasonal wetness. These soils commonly are less sloping and have a slower rate of surface runoff than the well drained soils. They are also lower on the landscape and typically receive runoff from the adjacent uplands.

Minocqua and other poorly drained and very poorly drained soils are in the lowest positions on the landscape, where runoff is very slow or ponded. They have a grayish subsoil as a result of prolonged saturation and poor aeration. The surface layer generally is darker and thicker than that of upland soils because the moisture content is more favorable for the accumulation of organic material.

In areas where accumulations of decomposing plant residue are thicker because of excessive wetness, organic soils have formed. Beseman, Cathro, and Markey soils are examples of soils that formed in organic material 16 to 51 inches thick over mineral deposits. Greenwood and Seelyeville soils are examples of soils that formed in organic material more than 51 inches thick.

Time

Time is required for the formation of soil. In most cases, the longer the other factors of soil formation have been allowed to act on the parent material, the more profile development can occur. Soils that are forming in parent material that has been deposited relatively recently, such as Fordum, Totagatic, and Winterfield soils, show very little profile development.

In upland areas that support woodland vegetation, the soils that have developed are characterized by organic matter that was produced by the decay of leaves, limbs, and trunks. This decay produced acids that percolated through the surface litter and into the soil and increased the mobility of clay, organic material, and oxides, which allowed
these substances to be leached away or to accumulate in the subsoil. Over a period of time, clay, organic matter, and oxides were removed from the surface layer and a thin bleached subsurface layer formed just below it. The clay, organic matter, and oxides accumulated in the subsoil horizons below this subsurface layer in the form of thin films on individual soil particles, on peds, and along cracks and pores. Freeon soils are examples of soils that formed in an area of woodland vegetation.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2003). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties obseryedinthe field or inferred from those observations or from laboratory measurements Table 1 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Aqualf (Aqu, meaning water, plus alf, from Alfisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Epiaqualfs (Epi, meaning on or above, plus aqualf, the suborder of the Alfisols that has an aquic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. An example is Mollic Epiaqualfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-silty, mixed, superactive, frigid Mollic Epiaqualfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. An example is the Barronett series.

The Official Series Descriptions (OSDs) provide the most current information about the series mapped in Burnett County. These descriptions are available on the Web at http://soils.usda.gov.

Table 1.--Classification of the Soils
(An asterisk in the first column indicates a taxadjunct to the series)

Soil name	Family or higher taxonomic class
Aftad------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Alango----------	Very-fine, smectitic, frigid Vertic Epiaqualfs
Alstad---------	Fine-loamy, mixed, superactive, frigid Aquic Glossudalfs
Amery----------	Coarse-loamy, mixed, superactive, frigid Haplic Glossudalfs
Antigo-------	Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Haplic Glossudalfs
Ausable--------	Sandy, mixed, frigid Histic Humaquepts
Barronett------	Fine-silty, mixed, superactive, frigid Mollic Epiaqualfs
Beartree-------	Loamy-skeletal, mixed, superactive, frigid Lithic Endoaquolls
Beseman---------	Loamy, mixed, dysic, frigid Terric Haplosaprists
Bigisland------	Sandy-skeletal, isotic, frigid Typic Hapludalfs
Bjorkland------	Sandy over clayey, mixed over smectitic, frigid Typic Epiaqualfs
Bluffton-------	Fine-loamy, mixed, superactive, frigid Typic Endoaquolls
Bowstring-------	Euic, frigid Fluvaquentic Haplosaprists
Braham---------	Loamy, mixed, superactive, frigid Arenic Hapludalfs
Branstad-------	Fine-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Bushville-------	Loamy, mixed, superactive, frigid Aquic Arenic Hapludalfs
Capitola--------	Coarse-loamy, mixed, superactive, frigid Mollic Epiaqualfs
Cathro--------	Loamy, mixed, euic, frigid Terric Haplosaprists
Chelmo---------	Clayey over sandy or sandy-skeletal, smectitic over mixed, frigid Umbric Epiaqualfs
Clemens---------	Loamy-skeletal, mixed, superactive, frigid Aquic Dystric Eutrudepts
Comstock--------	Fine-silty, mixed, superactive, frigid Aquic Glossudalfs
Cress-----------	Sandy, mixed, frigid Humic Dystrudepts
Crex-----------	Mixed, frigid Oxyaquic Udipsamments
Crystal Lake----	Fine-silty, mixed, superactive, frigid Oxyaquic Glossudalfs
Cushing------	Fine-loamy, mixed, superactive, frigid Haplic Glossudalfs
Cutaway-	Fine-loamy, mixed, superactive, frigid Oxyaquic Hapludalfs
Dairyland------	Sandy-skeletal, mixed, frigid Oxyaquic Hapludalfs
Daisybay-------	Clayey, mixed, euic, frigid Terric Haplohemists
Dawson----------	Sandy or sandy-skeletal, mixed, dysic, frigid Terric Haplosaprists
Dody------------	Clayey, smectitic, frigid Arenic Albaqualfs
Dora-----------	Clayey, smectitic, euic, frigid Terric Haplosaprists
Drylanding------	Loamy-skeletal, mixed, superactive, frigid Lithic Hapludolls
Elderon	Sandy-skeletal, mixed, frigid Typic Dystrudepts
Emmert----------	Sandy-skeletal, mixed, frigid Typic Udorthents
Fenander-------	Coarse-loamy, mixed, superactive, frigid Udollic Epiaqualfs
Fordum---------	Coarse-loamy, mixed, superactive, nonacid, frigid Mollic Fluvaquents
Freeon----------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Fremstadt------	Sandy, mixed, frigid Arenic Hapludalfs
Freya----------	Sandy over clayey, mixed over smectitic, frigid Aquic Argiudolls
Friendship------	Mixed, frigid Typic Udipsamments
Giese-----------	Coarse-loamy, mixed, superactive, nonacid, frigid Mollic Epiaquepts
Glendenning-----	Coarse-loamy, mixed, superactive, frigid Aquic Glossudalfs
Graycalm-------	Mixed, frigid Lamellic Udipsamments
Grayling------	Mixed, frigid Typic Udipsamments
Greenwood------	Dysic, frigid Typic Haplohemists
Grettum--------	Mixed, frigid Lamellic Udipsamments
Haugen----------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Haustrup-------	Loamy, isotic, frigid Humic Lithic Dystrudepts
Indus----------	Very-fine, smectitic, frigid Vertic Epiaqualfs
Karlsborg--------	Very-fine, smectitic, frigid Oxyaquic Hapludalfs
Keweenaw--------	Sandy, mixed, frigid Alfic Haplorthods
Kost------------	Sandy, mixed, frigid Entic Hapludolls
Lara-------------	Sandy over clayey, mixed, superactive, frigid Oxyaquic Argiudolls
Lenroot--------	Mixed, frigid Oxyaquic Udipsamments
Lino------------	Mixed, frigid Aquic Udipsamments
Loxley-----	Dysic, frigid Typic Haplosaprists
Lundeen-----	Coarse-silty, isotic, frigid Humic Dystrudepts
Lupton----------	Euic, frigid Typic Haplosaprists
Magnor---	Coarse-loamy, mixed, superactive, frigid Aquic Glossudalfs
Mahtomedi------	Mixed, frigid Typic Udipsamments
Makwa	Loamy-skeletal, isotic, nonacid, frigid Histic Humaquepts

Table 1.--Classification of the Soils--Continued

Soil name	Family or higher taxonomic class
Markey--------	Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists
Meehan---------	Mixed, frigid Aquic Udipsamments
Meenon-----------	Clayey, smectitic, frigid Aquic Arenic Hapludalfs
Menahga--------	Mixed, frigid Typic Udipsamments
Milaca---------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Minocqua	Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, nonacid, frigid Typic Endoaquepts
Moppet---------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Dystrudepts
Mora------------	Coarse-loamy, mixed, superactive, frigid Aquic Glossudalfs
Newson----------	Mixed, frigid Humaqueptic Psammaquents
*Nokasippi-------	Fine-loamy, mixed, superactive, frigid Udollic Epiaqualfs
Oesterle------	Coarse-loamy, mixed, superactive, frigid Aquic Glossudalfs
Ossmer----------	Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Aquic Glossudalfs
Perchlake-------	Mixed, frigid Aquic Udipsamments
Perida----------	Clayey, smectitic, frigid Arenic Hapludalfs
Plainbo----------	Mixed, frigid Typic Udipsamments
Plover---------	Coarse-loamy, mixed, superactive, frigid Aquic Glossudalfs
Pomroy---------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Hapludalfs
Rockmarsh-------	Loamy-skeletal, mixed, superactive, frigid Aquollic Hapludalfs
Rondeau---------	Marly, euic, frigid Limnic Haplosaprists
Rosholt--------	Coarse-loamy, mixed, superactive, frigid Haplic Glossudalfs
Sayner----------	Sandy, mixed, frigid Entic Haplorthods
Sconsin-------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Scott Lake-------	Coarse-loamy, mixed, superactive, frigid Oxyaquic Glossudalfs
Seelyeville------	Euic, frigid Typic Haplosaprists
Shawano----------	Mixed, frigid Typic Udipsamments
Siren-----------	Fine-loamy over clayey, mixed, superactive, frigid Aquic Glossudalfs
Sissabagama------	Mixed, frigid Oxyaquic Udipsamments
Skog------------	Sandy-skeletal, mixed, frigid Oxyaquic Udorthents
Slimlake--------	Sandy, mixed, frigid Oxyaquic Dystrudepts
Smestad-	Coarse-loamy over clayey, mixed over smectitic, superactive, frigid Aquic Argiudolls
Soderbeck--------	Loamy-skeletal, mixed, active, frigid Aquic Hapludolls
Spoonerhill------	Sandy, mixed, frigid Oxyaquic Dystrudepts
Stengel-------	Clayey, smectitic, frigid Aquic Arenic Hapludalfs
Tawas----------	Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists
*Taylor-	Very-fine, smectitic, frigid Aquertic Hapludalfs
Totagatic-------	Sandy, mixed, frigid Mollic Fluvaquents
Tradelake	Coarse-loamy over clayey, mixed over smectitic, superactive, frigid Oxyaquic Glossudalfs
Vilas	Sandy, mixed, frigid Entic Haplorthods
Wildwood--------	Very-fine, smectitic, nonacid, frigid Histic Humaquepts
Winterfield--	Mixed, frigid Aquic Udipsamments
Wurtsmith	Mixed, frigid Oxyaquic Udipsamments

Soil Map Unit Descriptions

The map units delineated on the soil maps in this survey represent the soils or miscellaneous areas in the survey area. These soils or miscellaneous areas are listed as individual components in the map unit descriptions. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses. More information about each map unit is provided in the tables (see Contents).

A map unit delineation on the soil maps represents an area on the landscape. It is identified by differences in the properties and taxonomic classification of components and by the percentage of each component in the map unit.

Components that are dissimilar, or contrasting, are identified in the map unit description. Dissimilar components are those that have properties and behavioral characteristics divergent enough from those of the major components to affect use or to require different management. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps.

Components that are similar to the major components (noncontrasting) are not identified in the map unit description. Similar components are those that have properties and behavioral characteristics similar enough to those of the major components that they do not affect use or require different management.

The presence of multiple components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into segments that have similar use and management requirements. The delineation of such landscape segments on the map provides sufficient information for the development of resource plans, but if intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol is used for each map unit on the soil maps. This symbol precedes the map unit name in the map unit descriptions. Each description includes general information about the unit. The map unit descriptions include representative values in feet and the months in which a wet zone (a zone in which the soil moisture status is wet) is highest and lowest in the soil profile and ponding is shallowest and deepest on the soil surface. The descriptions also include the frequency of flooding (if it occurs) and the months in which flooding is most frequent and least frequent. Tables 25,26 , and 27 provide a complete display of this data for every month of the year. The available water capacity given in each map unit description is calculated for all horizons in the upper 60 inches of the soil profile. The organic matter content displayed in each map unit description is calculated for all horizons in the upper 10 inches of the soil profile, except those that represent the surface duff layer on forested soils. Table 23 provides a complete display of available water capacity and organic matter content by horizon.

The principal hazards and limitations to be considered in planning for specific uses are described in other sections of this survey.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer or of the underlying layers, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer or of the underlying layers. They also can differ in slope, stoniness, salinity, wetness, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. The name of a soil phase commonly indicates a feature that affects use or management. For example, Karlsborg sand, 1 to 6 percent slopes, is a phase of the Karlsborg series.

A map unit is named for the component or components that make up a dominant percentage of the map unit. Many map units consist of one dominant component. These map units are consociations. Meenon loamy sand, 0 to 3 percent slopes, is an example.

Some map units are made up of two or more dominant components. These map units are complexes or undifferentiated groups.

A complex consists of two or more components in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. Attempting to delineate the individual components of a complex would result in excessive clutter that could make the map illegible. The pattern and proportion of the components in a complex are somewhat similar in all areas. Haugen, very stony-Greenwood complex, 0 to 15 percent slopes, is an example.

An undifferentiated group is made up of two or more components that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the components in a mapped area are not uniform. An area can be made up of only one of the dominant components, or it can be made up of all of them. Seelyeville and Markey soils, 0 to 1 percent slopes, is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Map unit 2015, Pits, is an example.

Table 2 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

3A-Totagatic-Bowstring-Ausable complex, 0 to 2 percent slopes, frequently flooded

Component Description

Totagatic and similar soils

Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Mostly sandy alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November, December)
Deepest depth to wet zone: 2.5 feet (February, August)

Months in which ponding does not occur: January, February, March, June, July, August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 28.2 percent
Typical profile:
Oa-0 to 4 inches; muck
Bw1-4 to 8 inches; loamy fine sand
Bw2-8 to 17 inches; fine sand
Cg1-17 to 28 inches; fine sand
Cg2-28 to 46 inches; sand
C-46 to 70 inches; sand
C'g-70 to 80 inches; sand
Bowstring and similar soils
Extent: 15 to 60 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Highly decomposed organic material that has thin layers of sandy or loamy material
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November, December)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, December
Deepest ponding: 0.5 foot (April, May, November)
Available water capacity to a depth of 60 inches: 21.0 inches
Content of organic matter in the upper 10 inches: 80.0 percent
Typical profile:
Oa-0 to 38 inches; muck
$\mathrm{Cg}-38$ to 47 inches; fine sand
O'a-47 to 80 inches; muck

Ausable and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sandy alluvium with thin layers of organic material
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, December
Deepest ponding: 0.5 foot (April, May, November)
Available water capacity to a depth of 60 inches: 6.9 inches

Content of organic matter in the upper 10 inches: 70.0 percent
Typical profile:
Oa-0 to 10 inches; muck
Cg-10 to 60 inches; sand

12A-Makwa stony muck, 0 to 1 percent slopes, extremely stony, frequently flooded

Component Description

Makwa and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Stony muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Skeletal loamy alluvium over silty and clayey glaciolacustrine deposits
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, December
Deepest ponding: 0.5 foot (April, May, November)
Available water capacity to a depth of 60 inches: 6.6 inches
Content of organic matter in the upper 10 inches: 71.8 percent
Typical profile:
Oa-0 to 8 inches; stony muck
A-8 to 16 inches; very gravelly loam
Bw-16 to 43 inches; stratified extremely gravelly coarse sandy loam to extremely gravelly sandy clay loam
Cg-43 to 65 inches; extremely gravelly sandy loam
2C-65 to 80 inches; stratified silt loam to silty clay

22A-Comstock silt loam, 0 to 3 percent slopes

Component Description

Comstock and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Footslopes and summits
Slope range: 0 to 3 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Silty lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 5.0 feet (September)
Ponding: None
Available water capacity to a depth of 60 inches: 11.4 inches

Content of organic matter in the upper 10 inches: 2.5 percent Typical profile:

Ap-0 to 8 inches; silt loam
E-8 to 15 inches; silt loam
B/E-15 to 21 inches; silt loam
Bt-21 to 34 inches; silt loam
BC-34 to 44 inches; stratified silt loam to very fine sand
C-44 to 60 inches; stratified silt loam to very fine sand

27A—Scott Lake sandy loam, 0 to 3 percent slopes

Component Description

Scott Lake and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 5.5 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
E/B-10 to 17 inches; sandy loam
$B / E-17$ to 24 inches; sandy loam
2Bt-24 to 31 inches; gravelly loamy sand
$2 \mathrm{C}-31$ to 80 inches; stratified sand to very gravelly coarse sand

28B-Haugen-Rosholt complex, 2 to 6 percent slopes, very stony

Component Description

Haugen, very stony, and similar soils
Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None

Available water capacity to a depth of 60 inches: 6.5 inches Content of organic matter in the upper 10 inches: 1.2 percent Typical profile:

A-0 to 4 inches; sandy loam
Bw1-4 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Haugen and similar soils

Extent: 15 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
Bw1-7 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Rosholt, very stony, and similar soils

Extent: 10 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 10 inches; sandy loam
B/E-10 to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam

2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

Rosholt and similar soils

Extent: 10 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
B/E-10 to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

28C—Haugen-Rosholt complex, 6 to 12 percent slopes, very stony

Component Description

Haugen, very stony, and similar soils

Extent: 25 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 4 inches; sandy loam
Bw1-4 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Haugen and similar soils

Extent: 10 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
Bw1-7 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd—79 to 80 inches; gravelly sandy loam

Rosholt, very stony, and similar soils

Extent: 10 to 40 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

Rosholt and similar soils

Extent: 10 to 40 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained

Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
$2 \mathrm{Bt}-28$ to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

38A—Rosholt sandy loam, 0 to 2 percent slopes

Component Description

Rosholt and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Summits
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

38B—Rosholt sandy loam, 2 to 6 percent slopes

Component Description

Rosholt and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Backslopes and summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash Flooding: None

Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
B/E—10 to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

38C—Rosholt sandy loam, 6 to 12 percent slopes

Component Description

Rosholt and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
$2 \mathrm{Bt}-28$ to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

38D—Rosholt sandy loam, 12 to 20 percent slopes

Component Description

Rosholt and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Backslopes and shoulders
Slope range: 12 to 20 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None

Available water capacity to a depth of 60 inches: 4.7 inches Content of organic matter in the upper 10 inches: 1.7 percent Typical profile:

Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
B/E-10 to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

42D—Amery sandy loam, 12 to 25 percent slopes, very stony

Component Description

Amery and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 12 to 25 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw-3 to 22 inches; sandy loam
E/B-22 to 34 inches; sandy loam
B/E-34 to 41 inches; gravelly sandy loam
Bt1-41 to 57 inches; gravelly sandy loam
Bt2-57 to 71 inches; sandy loam
Cd-71 to 80 inches; sandy loam

43B—Antigo silt loam, 1 to 6 percent slopes

Component Description

Antigo and similar soils
Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Summits, shoulders, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loess or silty alluvium underlain by sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None

Available water capacity to a depth of 60 inches: 7.3 inches Content of organic matter in the upper 10 inches: 1.9 percent Typical profile:

Ap-0 to 9 inches; silt loam
E-9 to 12 inches; silt loam
B/E-12 to 19 inches; silt loam
Bt1-19 to 28 inches; silt loam
2Bt2-28 to 31 inches; loam
$2 B t 3-31$ to 33 inches; very gravelly sandy loam
$3 C-33$ to 60 inches; stratified sand to very gravelly coarse sand

43C—Antigo silt loam, 6 to 15 percent slopes

Component Description

Antigo and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loess or silty alluvium underlain by sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; silt loam
E-9 to 12 inches; silt loam
B/E-12 to 19 inches; silt loam
Bt1-19 to 28 inches; silt loam
2Bt2-28 to 31 inches; loam
$2 B t 3-31$ to 33 inches; very gravelly sandy loam
$3 C-33$ to 60 inches; stratified sand to very gravelly coarse sand

63A—Crystal Lake silt loam, 0 to 2 percent slopes

Component Description

Crystal Lake and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Kames; lake plains; stream terraces
Position on the landform: Summits
Slope range: 0 to 2 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly silty lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)

Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 12.4 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; silt loam
E-8 to 12 inches; silt loam
B/E-12 to 20 inches; silt loam
Bt-20 to 32 inches; silt loam
C-32 to 60 inches; stratified silt loam to very fine sand

63B—Crystal Lake silt loam, 2 to 6 percent slopes

Component Description

Crystal Lake and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Backslopes, summits, and shoulders
Slope range: 2 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly silty lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August,
September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 12.4 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; silt loam
E-8 to 12 inches; silt loam
B/E-12 to 20 inches; silt loam
Bt-20 to 32 inches; silt loam
C-32 to 60 inches; stratified silt loam to very fine sand

63C-Crystal Lake silt loam, 6 to 12 percent slopes

Component Description

Crystal Lake and similar soils
Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly silty lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)

Deepest depth to wet zone: More than 6.7 feet (January, February, March, July,
August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 12.4 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; silt loam
E-8 to 12 inches; silt loam
B/E-12 to 20 inches; silt loam
Bt-20 to 32 inches; silt loam
C-32 to 60 inches; stratified silt loam to very fine sand

64A—Totagatic-Winterfield complex, 0 to 2 percent slopes, frequently flooded

Component Description

Totagatic and similar soils

Extent: 45 to 65 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Mostly sandy alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November, December)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 28.2 percent
Typical profile:
Oa-0 to 4 inches; muck
Bw1-4 to 8 inches; loamy fine sand
Bw2-8 to 17 inches; fine sand
Cg1-17 to 28 inches; fine sand
Cg2-28 to 46 inches; sand
C-46 to 70 inches; sand
C'g-70 to 80 inches; sand

Winterfield and similar soils

Extent: 25 to 55 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 1 to 2 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, December)
Highest frequency of flooding: Frequent (April)

Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.0 feet (September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 2.2 percent Typical profile:

A-0 to 7 inches; loamy sand
C-7 to 60 inches; sand

69C-Keweenaw-Sayner-Vilas complex, 6 to 15 percent slopes, stony

Component Description

Keweenaw and similar soils

Extent: 20 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 0.6 percent
Typical profile:
A-0 to 2 inches; loamy sand
E-2 to 4 inches; loamy sand
Bs1,Bs2-4 to 16 inches; loamy sand
Bs3-16 to 20 inches; loamy sand
E'-20 to 27 inches; loamy sand
E/B—27 to 43 inches; sand
$B / E-43$ to 75 inches; loamy sand
C-75 to 80 inches; loamy sand

Sayner and similar soils

Extent: 20 to 40 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
A-0 to 2 inches; loamy sand
E-2 to 4 inches; loamy sand

Bs1-4 to 7 inches; loamy sand
Bs2-7 to 14 inches; sand
BC-14 to 22 inches; gravelly sand
C-22 to 60 inches; stratified sand to very gravelly coarse sand

Vilas and similar soils

Extent: 10 to 30 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 2 inches; loamy sand
$\mathrm{E}-2$ to 4 inches; loamy sand
Bs1-4 to 11 inches; loamy sand
Bs2-11 to 23 inches; sand
B-23 to 32 inches; sand
C-32 to 80 inches; sand

69E—Keweenaw-Sayner-Vilas complex, 15 to 45 percent slopes, stony

Component Description

Keweenaw and similar soils

Extent: 20 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 15 to 45 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 0.6 percent
Typical profile:
A-0 to 2 inches; loamy sand
$\mathrm{E}-2$ to 4 inches; loamy sand
Bs1,Bs2-4 to 16 inches; loamy sand
Bs3-16 to 20 inches; loamy sand
$E^{\prime}-20$ to 27 inches; loamy sand
E/B-27 to 43 inches; sand
B/E-43 to 75 inches; loamy sand
C-75 to 80 inches; loamy sand

Sayner and similar soils

Extent: 20 to 40 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 15 to 45 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches Content of organic matter in the upper 10 inches: 1.4 percent Typical profile:

A-0 to 2 inches; loamy sand
E-2 to 4 inches; loamy sand
Bs1-4 to 7 inches; loamy sand
Bs2-7 to 14 inches; sand
$B C-14$ to 22 inches; gravelly sand
C-22 to 60 inches; stratified sand to very gravelly coarse sand

Vilas and similar soils

Extent: 10 to 30 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 15 to 45 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 2 inches; loamy sand
E-2 to 4 inches; loamy sand
Bs1-4 to 11 inches; loamy sand
Bs2-11 to 23 inches; sand
B-23 to 32 inches; sand
C-32 to 80 inches; sand

82B—Cutaway-Branstad complex, 1 to 6 percent slopes

Component Description

Cutaway and similar soils

Extent: 15 to 85 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Moderately well drained
Parent material: Sandy eolian deposits over calcareous loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 9.0 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
E-10 to 21 inches; loamy fine sand
2B/E-21 to 24 inches; fine sandy loam
2Bt1-24 to 35 inches; sandy clay loam
2Bt2- 35 to 53 inches; loam
2C-53 to 80 inches; loam

Branstad and similar soils

Extent: 15 to 85 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; fine sandy loam
E/B-14 to 20 inches; fine sandy loam
$B / E-20$ to 45 inches; sandy clay loam
Bt1-45 to 55 inches; sandy clay loam
Bt2-55 to 68 inches; fine sandy loam
Btk-68 to 80 inches; fine sandy loam

82C—Cutaway-Branstad complex, 6 to 12 percent slopes
 Component Description

Cutaway and similar soils

Extent: 50 to 85 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy eolian deposits over calcareous loamy till

Flooding: None

Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 9.0 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
E-10 to 21 inches; loamy fine sand
2B/E-21 to 24 inches; fine sandy loam
2Bt1-24 to 35 inches; sandy clay loam
2Bt2-35 to 53 inches; loam
2C-53 to 80 inches; loam

Branstad and similar soils

Extent: 15 to 50 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
$\mathrm{E}-9$ to 14 inches; fine sandy loam
E/B-14 to 20 inches; fine sandy loam
$B / E-20$ to 45 inches; sandy clay loam
Bt1-45 to 55 inches; sandy clay loam
Bt2—55 to 68 inches; fine sandy loam
Btk-68 to 80 inches; fine sandy loam

83A-Smestad loamy fine sand, 0 to 3 percent slopes

Component Description

Smestad and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy and loamy lacustrine deposits over clayey lacustrine deposits Flooding: None
Shallowest depth to wet zone: 0.5 foot (April, May)

Deepest depth to wet zone: More than 6.7 feet (July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 6.4 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 10 inches; loamy fine sand
$\mathrm{Bw}-10$ to 32 inches; loamy fine sand
2Bt-32 to 37 inches; fine sandy loam
$3 B \operatorname{tg}-37$ to 57 inches; clay
3Bkg-57 to 80 inches; clay

85B-Taylor loam, 2 to 6 percent slopes

Component Description

Taylor and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; loam
E-9 to 14 inches; clay loam
Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

85C-Taylor loam, 6 to 12 percent slopes

Component Description

Taylor and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey glaciolacustrine deposits; clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)

Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap—0 to 9 inches; loam
E-9 to 14 inches; clay loam
Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

86A—Indus-Alango complex, 0 to 2 percent slopes

Component Description

Indus and similar soils

Extent: 60 to 85 percent of the mapped areas
Geomorphic setting: Flats on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; clay loam
Btg-9 to 21 inches; clay
BC-21 to 25 inches; clay
Ckg-25 to 39 inches; clay
Cg-39 to 60 inches; clay

Alango and similar soils

Extent: 15 to 35 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 1 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April, May)
Deepest depth to wet zone: More than 6.7 feet (July, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 8.7 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; clay loam
E-9 to 10 inches; silty clay loam

Btg-10 to 28 inches; clay
Bkg-28 to 60 inches; clay
Cg-60 to 80 inches; clay

89A-Wildwood muck, 0 to 1 percent slopes
 Component Description

Wildwood and similar soils

Extent: 65 to 95 percent of the mapped areas
Geomorphic setting: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Thin mantle of organic soil material over clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 5.7 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 12 inches; muck
A-12 to 17 inches; silty clay
$\mathrm{Bg}-17$ to 24 inches; clay
Cg-24 to 60 inches; clay

96B—Karlsborg sand, 1 to 6 percent slopes

Component Description

Karlsborg and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent

Typical profile:
Ap-0 to 9 inches; sand
Bw-9 to 28 inches; sand
$2 \mathrm{Bt}-28$ to 48 inches; clay
3C-48 to 80 inches; sand

96C—Karlsborg sand, 6 to 12 percent slopes

Component Description

Karlsborg and similar soils

Extent: 25 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

96D—Karlsborg sand, 12 to 20 percent slopes

 Component Description
Karlsborg and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 20 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None

Available water capacity to a depth of 60 inches: 4.7 inches Content of organic matter in the upper 10 inches: 1.2 percent Typical profile:

Ap-0 to 9 inches; sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

100B—Menahga sand, 0 to 6 percent slopes Component Description

Menahga and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches Content of organic matter in the upper 10 inches: 0.5 percent Typical profile:

A-0 to 2 inches; sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

100C—Menahga sand, 6 to 12 percent slopes

Component Description

Menahga and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-O to 1 inch; slightly decomposed plant material
A-1 to 2 inches; sand

Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

100D—Menahga sand, 12 to 30 percent slopes

Component Description

Menahga and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
$\mathrm{Oi}-0$ to 1 inch; slightly decomposed plant material
A-1 to 2 inches; sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

120B—Kost fine sand, 0 to 6 percent slopes

Component Description

Kost and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.2 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; fine sand
A-9 to 25 inches; fine sand
Bw-25 to 36 inches; sand
BC-36 to 42 inches; fine sand
C-42 to 60 inches; sand

127D—Amery-Rosholt complex, 12 to 20 percent slopes, very stony

Component Description

Amery and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 12 to 20 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A- 0 to 3 inches; sandy loam
Bw-3 to 22 inches; sandy loam
E/B-22 to 34 inches; sandy loam
B/E-34 to 41 inches; gravelly sandy loam
Bt1-41 to 57 inches; gravelly sandy loam
Bt2-57 to 71 inches; sandy loam
Cd-71 to 80 inches; sandy loam

Rosholt and similar soils

Extent: 15 to 60 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 12 to 20 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 10 inches; sandy loam
B/E—10 to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

127E—Amery-Rosholt complex, 20 to 45 percent slopes, very stony

Component Description

Amery and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 20 to 45 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw-3 to 22 inches; sandy loam
E/B-22 to 34 inches; sandy loam
$B / E-34$ to 41 inches; gravelly sandy loam
Bt1-41 to 57 inches; gravelly sandy loam
Bt2—57 to 71 inches; sandy loam
Cd-71 to 80 inches; sandy loam
Rosholt and similar soils
Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 20 to 45 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
$\mathrm{Bt}-14$ to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

151A—Bluffton loam, 0 to 2 percent slopes

Component Description

Bluffton and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Drainageways and depressions on moraines
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: At the surface (April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 4.0 percent
Typical profile:
Ap-0 to 8 inches; loam
A-8 to 19 inches; loam
Bg-19 to 22 inches; fine sandy loam
C1-22 to 26 inches; fine sandy loam
C2-26 to 38 inches; loam
C3-38 to 60 inches; sandy clay loam

152A—Alstad loam, 0 to 3 percent slopes

Component Description

Alstad and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.0 inches
Content of organic matter in the upper 10 inches: 3.3 percent
Typical profile:
Ap-0 to 9 inches; loam
$\mathrm{E}-9$ to 15 inches; fine sandy loam
E/B-15 to 18 inches; fine sandy loam
$B / E-18$ to 24 inches; sandy clay loam
Bt-24 to 49 inches; sandy clay loam
C-49 to 60 inches; fine sandy loam

154E—Cushing fine sandy loam, 20 to 35 percent slopes

Component Description

Cushing and similar soils
Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 20 to 35 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy calcareous till
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.2 percent Typical profile:
A-0 to 5 inches; fine sandy loam
E-5 to 15 inches; fine sandy loam
$B / E-15$ to 33 inches; fine sandy loam
Bt-33 to 57 inches; loam
Btk-57 to 65 inches; fine sandy loam
Bk-65 to 73 inches; fine sandy loam
C-73 to 80 inches; fine sandy loam

156B—Magnor, very stony-Magnor complex, 0 to 4 percent slopes

Component Description

Magnor, very stony, and similar soils
Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 0 to 4 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent Typical profile:

A-0 to 4 inches; silt loam
E-4 to 11 inches; silt loam
E/B-11 to 16 inches; silt loam
$B / E-16$ to 21 inches; silt loam
2Bt1,2Bt2-21 to 39 inches; sandy loam
2Bt3-39 to 58 inches; fine sandy loam
$2 \mathrm{Cd}-58$ to 60 inches; fine sandy loam

Magnor and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 0 to 4 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; silt loam
E-8 to 11 inches; silt loam
E/B-11 to 16 inches; silt loam
$B / E-16$ to 21 inches; silt loam
2Bt1,2Bt2-21 to 39 inches; sandy loam
2Bt3-39 to 58 inches; fine sandy loam
$2 \mathrm{Cd}-58$ to 60 inches; fine sandy loam

157B—Freeon, very stony-Freeon complex, 2 to 6 percent slopes

Component Description

Freeon, very stony, and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits and footslopes
Slope range: 2 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; silt loam
E/B-4 to 19 inches; silt loam
2B/E-19 to 39 inches; sandy loam
2Bt-39 to 53 inches; sandy loam
2BCd—53 to 80 inches; sandy loam
Freeon and similar soils
Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines

Position on the landform: Footslopes and summits
Slope range: 2 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Ap-0 to 4 inches; silt loam
E/B-4 to 19 inches; silt loam
2B/E-19 to 39 inches; sandy loam
2Bt-39 to 53 inches; sandy loam
2BCd-53 to 80 inches; sandy loam

157C-Freeon, very stony-Freeon complex, 6 to 12 percent slopes

Component Description

Freeon, very stony, and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; silt loam
E/B-4 to 19 inches; silt loam
2B/E-19 to 39 inches; sandy loam
$2 \mathrm{Bt}-39$ to 53 inches; sandy loam
2BCd—53 to 80 inches; sandy loam

Freeon and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material

Drainage class: Moderately well drained
Parent material: Loess or silty alluvium underlain by dense loamy till
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Ap-0 to 4 inches; silt loam
E/B-4 to 19 inches; silt loam
2B/E-19 to 39 inches; sandy loam
2Bt- 39 to 53 inches; sandy loam
2BCd-53 to 80 inches; sandy loam

160A-Oesterle sandy loam, 0 to 2 percent slopes
 Component Description

Oesterle and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 2.0 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
E/B-7 to 11 inches; sandy loam
Bt-11 to 31 inches; sandy loam
2C-31 to 60 inches; stratified sand to very gravelly coarse sand

165B—Elderon sandy loam, 2 to 6 percent slopes Component Description

Elderon and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; eskers; kames
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin loamy deposits over cobbly and gravelly sandy drift

Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.0 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
Bs- 7 to 15 inches; very cobbly coarse sandy loam
Bt-15 to 44 inches; extremely cobbly loamy coarse sand
C-44 to 60 inches; extremely cobbly coarse sand

185B—Tradelake-Taylor complex, 1 to 6 percent slopes

Component Description

Tradelake and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium deposits over clayey lacustrine deposits over sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, July, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 13 inches; fine sandy loam
$B / E-13$ to 21 inches; fine sandy loam
Bt1-21 to 25 inches; sandy loam
2Bt2,2Bt3-25 to 48 inches; clay
$2 \mathrm{Btg}-48$ to 52 inches; clay
3C-52 to 80 inches; sand

Taylor and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September, October, November, December)
Ponding: None

Available water capacity to a depth of 60 inches: 7.0 inches Content of organic matter in the upper 10 inches: 1.9 percent Typical profile:

Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; clay loam
Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

185C-Tradelake-Taylor complex, 6 to 12 percent slopes

Component Description

Tradelake and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium deposits over clayey lacustrine deposits over sandy
outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, July,
August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 13 inches; fine sandy loam
$B / E-13$ to 21 inches; fine sandy loam
Bt1-21 to 25 inches; sandy loam
2Bt2,2Bt3-25 to 48 inches; clay
2Btg-48 to 52 inches; clay
3C-52 to 80 inches; sand

Taylor and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.9 percent

Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; clay loam
Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

185D—Tradelake-Taylor complex, 12 to 25 percent slopes

Component Description

Tradelake and similar soils

Extent: 40 to 85 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 25 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium deposits over clayey lacustrine deposits over sandy
outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 13 inches; fine sandy loam
$B / E-13$ to 21 inches; fine sandy loam
Bt1-21 to 25 inches; sandy loam
2Bt2,2Bt3-25 to 48 inches; clay
2Btg-48 to 52 inches; clay
3C-52 to 80 inches; sand

Taylor and similar soils

Extent: 15 to 50 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 25 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam

E-9 to 14 inches; clay loam
Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

185E—Tradelake-Taylor complex, 25 to 35 percent slopes

Component Description

Tradelake and similar soils

Extent: 40 to 70 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 25 to 35 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium deposits over clayey lacustrine deposits over sandy
outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 13 inches; fine sandy loam
B/E-13 to 21 inches; fine sandy loam
Bt1-21 to 25 inches; sandy loam
2Bt2,2Bt3-25 to 48 inches; clay
2Btg-48 to 52 inches; clay
3C-52 to 80 inches; sand

Taylor and similar soils

Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Backslopes and shoulders
Slope range: 25 to 35 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.0 foot (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; clay loam

Bt-14 to 25 inches; clay
BC-25 to 32 inches; clay
C-32 to 60 inches; clay

189A—Siren loam, 0 to 3 percent slopes

Component Description

Siren and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Thin loamy mantle over clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 3.2 percent
Typical profile:
Ap-0 to 9 inches; loam
E-9 to 13 inches; sandy loam
B/E-13 to 20 inches; sandy clay loam
2Bt-20 to 43 inches; clay
2Bk-43 to 80 inches; clay

193A—Minocqua muck, 0 to 2 percent slopes
 Component Description

Minocqua and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on outwash plains and stream terraces
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Silty and loamy alluvium underlain by sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 6.2 inches
Content of organic matter in the upper 10 inches: 18.6 percent
Typical profile:
Oe-0 to 4 inches; muck
Eg-4 to 15 inches; silt loam

2Bg-15 to 28 inches; loam
3C-28 to 60 inches; stratified sand to very gravelly coarse sand

337A—Plover fine sandy loam, 0 to 3 percent slopes
 Component Description

Plover and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Stratified loamy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 5.0 feet (September)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
E-10 to 13 inches; fine sandy loam
$B / E-13$ to 18 inches; fine sandy loam
Bt-18 to 32 inches; fine sandy loam
C-32 to 60 inches; stratified fine sand to silt

368B—Mahtomedi-Cress complex, 2 to 6 percent slopes

Component Description

Mahtomedi and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Cress and similar soils

Extent: 15 to 60 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly
outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
$2 \mathrm{C}-36$ to 60 inches; stratified sand to very gravelly coarse sand

368C—Mahtomedi-Cress complex, 6 to 12 percent slopes Component Description

Mahtomedi and similar soils

Extent: 20 to 80 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Cress and similar soils

Extent: 15 to 60 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained

Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
$2 \mathrm{C}-36$ to 60 inches; stratified sand to very gravelly coarse sand

368D—Mahtomedi-Cress complex, 12 to 25 percent slopes

Component Description

Mahtomedi and similar soils

Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 25 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Cress and similar soils

Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 25 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent

Typical profile:

A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
$2 \mathrm{C}-36$ to 60 inches; stratified sand to very gravelly coarse sand

368E—Mahtomedi-Cress complex, 25 to 35 percent slopes

Component Description

Mahtomedi and similar soils

Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 25 to 35 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Gravelly sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Cress and similar soils

Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 25 to 35 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

380B—Cress-Rosholt complex, 2 to 6 percent slopes

Component Description

Cress and similar soils

Extent: 35 to 75 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

Rosholt and similar soils

Extent: 25 to 65 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

380C—Cress-Rosholt complex, 6 to 12 percent slopes Component Description

Cress and similar soils

Extent: 35 to 75 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces

Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

Rosholt and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
$B / E-10$ to 14 inches; sandy loam
Bt-14 to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
2C-34 to 60 inches; stratified sand to very gravelly coarse sand

380D—Cress-Rosholt complex, 12 to 25 percent slopes

Component Description

Cress and similar soils

Extent: 35 to 75 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 12 to 25 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash

Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

Rosholt and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Backslopes and shoulders
Slope range: 12 to 25 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
Ap-0 to 8 inches; sandy loam
E-8 to 10 inches; sandy loam
B/E-10 to 14 inches; sandy loam
$\mathrm{Bt}-14$ to 28 inches; sandy loam
2Bt-28 to 34 inches; gravelly loamy sand
$2 \mathrm{C}-34$ to 60 inches; stratified sand to very gravelly coarse sand

383B—Mahtomedi loamy sand, 0 to 6 percent slopes

Component Description

Mahtomedi and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand

Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

383C—Mahtomedi loamy sand, 6 to 12 percent slopes

Component Description

Mahtomedi and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

383D—Mahtomedi loamy sand, 12 to 30 percent slopes
 Component Description

Mahtomedi and similar soils
Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

392C—Rockmarsh-Dairyland-Makwa, seeped, complex, 2 to 20 percent slopes, very stony

Component Description

Rockmarsh and similar soils

Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes
Slope range: 2 to 20 percent
Texture of the surface layer: Cobbly mucky peat
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loamy-skeletal alluvium over dense loamy till Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 10.1 percent Typical profile:

Oe-0 to 1 inch; cobbly mucky peat
A-1 to 8 inches; very cobbly silt loam
$2 \mathrm{Bw}-8$ to 23 inches; extremely gravelly loamy coarse sand
$3 \mathrm{Bt}-23$ to 46 inches; extremely gravelly sandy clay loam
3Cd-46 to 80 inches; extremely cobbly sandy loam
Dairyland and similar soils
Extent: 20 to 40 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes
Slope range: 2 to 20 percent
Texture of the surface layer: Cobbly sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy-skeletal alluvium over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; cobbly sandy loam
Bw-7 to 14 inches; very gravelly loamy sand
Bt1-14 to 36 inches; very gravelly loamy sand
Bt2- 36 to 49 inches; extremely gravelly loamy sand
2Cd-49 to 80 inches; sandy loam

Makwa and similar soils

Extent: 15 to 30 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes
Slope range: 2 to 12 percent

Texture of the surface layer: Stony muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Skeletal loamy alluvium over silty and clayey glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.6 inches
Content of organic matter in the upper 10 inches: 71.8 percent
Typical profile:
Oa-0 to 8 inches; stony muck
A-8 to 16 inches; very gravelly loam
Bw-16 to 43 inches; stratified extremely gravelly coarse sandy loam to extremely gravelly sandy clay loam
Cg—43 to 65 inches; extremely gravelly sandy loam
2C-65 to 80 inches; stratified silt loam to silty clay

396B—Friendship-Wurtsmith-Grayling complex, 0 to 6 percent slopes

Component Description

Friendship and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy eolian deposits
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 3.6 inches
Content of organic matter in the upper 10 inches: 0.7 percent
Typical profile:
A-0 to 4 inches; sand
Bw-4 to 29 inches; sand
C-29 to 60 inches; sand

Wurtsmith and similar soils

Extent: 20 to 55 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy eolian deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)

Deepest depth to wet zone: 5.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.7 inches
Content of organic matter in the upper 10 inches: 2.2 percent
Typical profile:
A-0 to 6 inches; sand
Bw-6 to 33 inches; sand
C-33 to 60 inches; sand

Grayling and similar soils

Extent: 15 to 35 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
A-0 to 3 inches; sand
Bw-3 to 15 inches; sand
BC-15 to 23 inches; sand
C-23 to 60 inches; sand

397A—Perchlake loamy fine sand, 0 to 2 percent slopes

Component Description

Perchlake and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; outwash plains
Position on the landform: Footslopes
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bw-9 to 18 inches; fine sand
E\&Bt-18 to 42 inches; sand, loamy sand
2Btg-42 to 46 inches; fine sandy loam
$3 C-46$ to 60 inches; sand

399B—Grayling sand, 0 to 6 percent slopes

Component Description

Grayling and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches Content of organic matter in the upper 10 inches: 1.4 percent Typical profile:

A-0 to 3 inches; sand
Bw-3 to 15 inches; sand
BC-15 to 23 inches; sand
C-23 to 60 inches; sand

399C-Grayling sand, 6 to 12 percent slopes

Component Description

Grayling and similar soils

Extent: 93 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
A-0 to 3 inches; sand
Bw-3 to 15 inches; sand
BC- 15 to 23 inches; sand
C-23 to 60 inches; sand

399D—Grayling sand, 12 to 30 percent slopes

 Component DescriptionGrayling and similar soils
Extent: 93 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains

Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
A-0 to 3 inches; sand
Bw-3 to 15 inches; sand
BC-15 to 23 inches; sand
C-23 to 60 inches; sand

406A-Loxley mucky peat, 0 to 1 percent slopes

Component Description

Loxley and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains and outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 25.2 inches
Content of organic matter in the upper 10 inches: 80.0 percent
Typical profile:
Oe-0 to 13 inches; mucky peat
Oa-13 to 60 inches; muck

407A—Seelyeville and Markey soils, 0 to 1 percent slopes
 Component Description

Seelyeville and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on
outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained

Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

Markey and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick overlying sandy deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 14.4 inches
Content of organic matter in the upper 10 inches: 70.0 percent
Typical profile:
Oa-0 to 32 inches; muck
Cg-32 to 60 inches; sand

410A-Seelyeville and Cathro soils, 0 to 1 percent slopes

Component Description

Seelyeville and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

Cathro and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over loamy or silty deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 16.6 inches
Content of organic matter in the upper 10 inches: 72.5 percent
Typical profile:
Oa-0 to 28 inches; muck
Cg1-28 to 49 inches; loam
Cg2—49 to 60 inches; sandy loam

419A—Seelyeville, Cathro, and Markey soils, 0 to 1 percent slopes

Component Description

Seelyeville and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

Cathro and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over loamy or silty deposits
Flooding: None

Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 16.6 inches
Content of organic matter in the upper 10 inches: 72.5 percent
Typical profile:
Oa-0 to 28 inches; muck
Cg1-28 to 49 inches; loam
Cg2-49 to 60 inches; sandy loam

Markey and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over sandy deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 14.4 inches
Content of organic matter in the upper 10 inches: 70.0 percent
Typical profile:
Oa-0 to 32 inches; muck
Cg-32 to 60 inches; sand

421A—Dora, Markey, and Seelyeville soils, 0 to 1 percent slopes

Component Description

Dora and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over clayey material
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 16.7 inches
Content of organic matter in the upper 10 inches: 72.5 percent
Typical profile:
Oe-0 to 12 inches; mucky peat

Oa-12 to 32 inches; muck
A-32 to 36 inches; mucky silty clay loam
Cg1- 36 to 42 inches; silty clay loam
Cg2,Cg3-42 to 60 inches; silty clay

Markey and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over sandy deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 14.4 inches
Content of organic matter in the upper 10 inches: 70.0 percent
Typical profile:
Oa-0 to 32 inches; muck
Cg-32 to 60 inches; sand

Seelyeville and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

422A-Seelyeville, Cathro, and Rondeau soils, 0 to 1 percent slopes

Component Description

Seelyeville and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways and depressions on outwash plains
Slope range: 0 to 1 percent

Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

Cathro and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over loamy or silty deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 16.6 inches
Content of organic matter in the upper 10 inches: 72.5 percent
Typical profile:
Oa-0 to 28 inches; muck
Cg1-28 to 49 inches; loam
Cg2-49 to 60 inches; sandy loam

Rondeau and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over limnic materials (mostly marl)
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 21.8 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 44 inches; muck
Cg-44 to 60 inches; marl

426B—Emmert-Mahtomedi-Menahga complex, 2 to 6 percent slopes

Component Description

Emmert and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Stream terraces; eskers; outwash plains
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy-skeletal outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.9 inches
Content of organic matter in the upper 10 inches: 0.2 percent
Typical profile:
A-0 to 1 inch; loamy sand
Bw-1 to 5 inches; gravelly loamy coarse sand
BC-5 to 24 inches; very gravelly coarse sand
C-24 to 60 inches; very gravelly coarse sand

Mahtomedi and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains; eskers
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent Typical profile:

A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Menahga and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains; eskers; stream terraces
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None

Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

426C-Emmert-Mahtomedi-Menahga complex, 6 to 12 percent slopes

Component Description

Emmert and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Stream terraces; eskers; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy-skeletal outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.9 inches
Content of organic matter in the upper 10 inches: 0.2 percent
Typical profile:
A-0 to 1 inch; loamy sand
Bw-1 to 5 inches; gravelly loamy coarse sand
BC-5 to 24 inches; very gravelly coarse sand
C-24 to 60 inches; very gravelly coarse sand

Mahtomedi and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Eskers; stream terraces; outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Menahga and similar soils

Extent: 15 to 20 percent of the mapped areas
Geomorphic setting: Stream terraces; eskers; outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

426D—Emmert-Mahtomedi-Menahga complex, 12 to 30 percent slopes

Component Description

Emmert and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Eskers; outwash plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy-skeletal outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.9 inches
Content of organic matter in the upper 10 inches: 0.2 percent
Typical profile:
A-0 to 1 inch; loamy sand
Bw-1 to 5 inches; gravelly loamy coarse sand
BC-5 to 24 inches; very gravelly coarse sand
C-24 to 60 inches; very gravelly coarse sand

Mahtomedi and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Eskers; stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None

Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

Menahga and similar soils

Extent: 15 to 30 percent of the mapped areas
Geomorphic setting: Stream terraces; eskers; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

430A-Freya loamy fine sand, 0 to 3 percent slopes

Component Description

Freya and similar soils

Extent: 50 to 90 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy lacustrine deposits over clayey lacustrine deposits Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
Ap-0 to 11 inches; loamy fine sand
Bw-11 to 32 inches; fine sand
Bt-32 to 47 inches; loamy fine sand
2Btg1,2Btg2-47 to 66 inches; clay

2Btkg-66 to 72 inches; clay
2Cg-72 to 80 inches; clay

439B—Graycalm-Menahga complex, 0 to 6 percent slopes

Component Description

Graycalm and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 0.6 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 22 inches; sand
E-22 to 35 inches; sand
E\&Bt-35 to 60 inches; stratified sand to loamy sand

Menahga and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

439C-Graycalm-Menahga complex, 6 to 12 percent slopes

Geomorphic setting: Outwash plains

```
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 0.6 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 22 inches; sand
E-22 to 35 inches; sand
E\&Bt-35 to 60 inches; stratified sand to loamy sand
```


Menahga and similar soils

```
Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
B-2 to 25 inches; sand
C-25 to 80 inches; sand
```


439D—Graycalm-Menahga complex, 12 to 30 percent slopes

Component Description

Graycalm and similar soils
Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches

Content of organic matter in the upper 10 inches: 0.6 percent Typical profile:

A-0 to 3 inches; loamy sand
Bw-3 to 22 inches; sand
E-22 to 35 inches; sand
E\&Bt-35 to 60 inches; stratified sand to loamy sand

Menahga and similar soils

Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches Content of organic matter in the upper 10 inches: 0.3 percent Typical profile:

Oi-O to 1 inch; slightly decomposed plant material
A-1 to 2 inches; loamy sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

442C-Haugen, very stony-Greenwood complex, 0 to 15 percent slopes

Component Description

Haugen and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 2 to 15 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 4 inches; sandy loam
Bw1-4 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
$B / E-35$ to 49 inches; sandy loam

Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Greenwood and similar soils

Extent: 15 to 35 percent of the mapped areas
Geomorphic setting: Depressions on disintegration moraines
Slope range: 0 to 2 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic deposits more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 30.5 inches
Content of organic matter in the upper 10 inches: 65.0 percent
Typical profile:
Oi-0 to 6 inches; peat
Oe-6 to 60 inches; mucky peat

443D—Amery, very stony-Greenwood complex, 0 to 35 percent slopes

Component Description

Amery and similar soils

Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 15 to 35 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw-3 to 22 inches; sandy loam
E/B-22 to 34 inches; sandy loam
$B / E-34$ to 41 inches; gravelly sandy loam
Bt1-41 to 57 inches; gravelly sandy loam
Bt2—57 to 71 inches; sandy loam
Cd—71 to 80 inches; sandy loam

Greenwood and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Depressions on disintegration moraines Slope range: 0 to 2 percent

Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic deposits more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 30.5 inches
Content of organic matter in the upper 10 inches: 65.0 percent
Typical profile:
Oi-0 to 6 inches; peat
Oe-6 to 60 inches; mucky peat

459A—Loxley, Daisybay, and Dawson soils, 0 to 1 percent slopes

Component Description

Loxley and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 26.5 inches
Content of organic matter in the upper 10 inches: 80.0 percent
Typical profile:
Oe-0 to 13 inches; mucky peat
Oa-13 to 60 inches; muck

Daisybay and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over clayey deposits
Flooding: None
Wet zone: At the surface all year

Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 13.5 inches
Content of organic matter in the upper 10 inches: 74.5 percent
Typical profile:
Oi-0 to 7 inches; peat
Oe-7 to 30 inches; mucky peat
Oa-30 to 35 inches; muck
Cg-35 to 80 inches; clay

Dawson and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over sandy deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 0.5 foot (January, February, March, July, August, September, December)
Months in which ponding does not occur: January, February, March, May, June, July, August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 18.2 inches
Content of organic matter in the upper 10 inches: 75.0 percent
Typical profile:
Oi-0 to 8 inches; peat
Oa-8 to 38 inches; muck
A-38 to 40 inches; silt loam
2C-40 to 60 inches; sand

461A—Bowstring muck, 0 to 1 percent slopes, frequently flooded

Component Description

Bowstring and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Highly decomposed organic material that has thin layers of sandy or loamy material
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)

Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, December
Deepest ponding: 0.5 foot (April, May, November)
Available water capacity to a depth of 60 inches: 21.1 inches
Content of organic matter in the upper 10 inches: 80.0 percent
Typical profile:
Oa-0 to 38 inches; muck
Cg-38 to 47 inches; fine sand
O'a-47 to 80 inches; muck

465A—Newson-Meehan complex, 0 to 3 percent slopes

Component Description

Newson and similar soils

Extent: 30 to 80 percent of the mapped areas
Geomorphic setting: Depressions on outwash plains
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sandy eolian deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 25.0 percent
Typical profile:
Oa-0 to 3 inches; muck
A-3 to 8 inches; loamy sand
$\mathrm{Bg}-8$ to 16 inches; sand
BCg-16 to 22 inches; sand
C-22 to 60 inches; sand

Meehan and similar soils

Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy eolian deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None

Available water capacity to a depth of 60 inches: 3.3 inches Content of organic matter in the upper 10 inches: 0.8 percent Typical profile:

A-0 to 4 inches; sand
Bw-4 to 29 inches; sand
C-29 to 60 inches; sand

469E—Bigisland-Milaca complex, 15 to 45 percent slopes, very stony

Component Description

Bigisland and similar soils

Extent: 30 to 70 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Shoulders
Slope range: 15 to 45 percent
Texture of the surface layer: Cobbly loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat excessively drained
Parent material: Sandy-skeletal alluvium over dense loamy till
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 3 inches; cobbly loamy sand
Bw-3 to 13 inches; very cobbly sand
Bt-13 to 25 inches; very gravelly loamy sand
B'w-25 to 47 inches; stratified gravelly sand to sand
B't-47 to 56 inches; extremely gravelly loamy coarse sand
2Cd—56 to 80 inches; extremely gravelly coarse sandy loam
Milaca and similar soils
Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes and shoulders
Slope range: 15 to 45 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.8 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; sandy loam
$\mathrm{E}-4$ to 13 inches; fine sandy loam
B/E-13 to 17 inches; sandy loam
Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

471B—Dairyland-Emmert complex, 0 to 6 percent slopes, very stony

Component Description

Dairyland and similar soils

Extent: 50 to 80 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Cobbly sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy-skeletal alluvium over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; cobbly sandy loam
Bw-7 to 14 inches; very gravelly loamy sand
Bt1-14 to 36 inches; very gravelly loamy sand
Bt2- 36 to 49 inches; extremely gravelly loamy sand
2Cd-49 to 80 inches; sandy loam

Emmert and similar soils

Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Gravelly coarse sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy-skeletal outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.9 inches
Content of organic matter in the upper 10 inches: 0.2 percent
Typical profile:
A-0 to 1 inch; gravelly coarse sandy loam
Bw-1 to 5 inches; gravelly loamy coarse sand

BC-5 to 24 inches; very gravelly coarse sand
C-24 to 60 inches; very gravelly coarse sand

471C—Dairyland-Emmert complex, 6 to 15 percent slopes, very stony

Component Description

Dairyland and similar soils

Extent: 50 to 85 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Very cobbly loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy-skeletal alluvium over dense loamy till Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; very cobbly loamy sand
Bw-7 to 14 inches; very gravelly loamy sand
Bt1-14 to 36 inches; very gravelly loamy sand
Bt2- 36 to 49 inches; extremely gravelly loamy sand
2Cd-49 to 80 inches; sandy loam

Emmert and similar soils

Extent: 10 to 35 percent of the mapped areas
Geomorphic setting: Stream terraces
Position on the landform: Backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy-skeletal outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.9 inches
Content of organic matter in the upper 10 inches: 0.2 percent Typical profile:

A-0 to 1 inch; loamy sand
Bw-1 to 5 inches; gravelly loamy coarse sand
BC-5 to 24 inches; very gravelly coarse sand
C-24 to 60 inches; very gravelly coarse sand

472A—Rockmarsh-Clemens complex, 0 to 2 percent slopes, very stony, frequently flooded

Component Description

Rockmarsh and similar soils

Extent: 40 to 70 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Cobbly mucky peat
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loamy-skeletal alluvium over dense loamy till
Lowest frequency of flooding (if it occurs): Rare (January, February, December)
Highest frequency of flooding: Frequent (April)
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 10.1 percent Typical profile:

Oe-0 to 1 inch; cobbly mucky peat
A-1 to 8 inches; very cobbly silt loam
2Bw-8 to 23 inches; extremely gravelly loamy coarse sand
3Bt-23 to 46 inches; extremely gravelly sandy clay loam
3Cd-46 to 80 inches; extremely cobbly sandy loam

Clemens and similar soils

Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Flood plains; stream terraces
Slope range: 0 to 2 percent
Texture of the surface layer: Extremely gravelly loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Loamy-skeletal alluvium over sandy-skeletal alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February,
December)
Highest frequency of flooding: Frequent (April)
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.0 feet (September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 0.8 percent Typical profile:

Oa-0 to 2 inches; highly decomposed plant material
A-2 to 7 inches; extremely gravelly loam
Bw1-7 to 10 inches; very gravelly loam
Bw2-10 to 13 inches; very gravelly coarse sandy loam
Bt1-13 to 32 inches; very gravelly coarse sandy loam
Bt2-32 to 46 inches; extremely gravelly coarse sandy loam
2C-46 to 80 inches; extremely gravelly loamy coarse sand

473A—Dairyland-Skog complex, 0 to 3 percent slopes, very stony, rarely flooded

Component Description

Dairyland and similar soils

Extent: 40 to 60 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 3 percent
Texture of the surface layer: Cobbly sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy-skeletal alluvium over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; cobbly sandy loam
Bw-7 to 14 inches; very gravelly loamy sand
Bt1-14 to 36 inches; very gravelly loamy sand
Bt2-36 to 49 inches; extremely gravelly loamy sand
2Cd-49 to 80 inches; sandy loam

Skog and similar soils

Extent: 25 to 50 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 3 percent
Texture of the surface layer: Gravelly sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium over sandy-skeletal alluvium
Months in which flooding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Highest frequency of flooding: Rare (April)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 5.5 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
Oa-0 to 1 inch; highly decomposed plant material
A—1 to 6 inches; gravelly sandy loam
E-6 to 11 inches; gravelly sandy loam
Bt-11 to 27 inches; extremely gravelly loamy sand
BC—27 to 38 inches; extremely gravelly coarse sand
C-38 to 80 inches; extremely gravelly coarse sand

484A-Greenwood and Beseman soils, 0 to 1 percent slopes

Component Description

Greenwood and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic deposits more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July, August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 30.5 inches
Content of organic matter in the upper 10 inches: 65.0 percent
Typical profile:
Oi-0 to 6 inches; peat
Oe-6 to 60 inches; mucky peat

Beseman and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over loamy till Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 18.2 inches
Content of organic matter in the upper 10 inches: 50.0 percent
Typical profile:
Oa-0 to 36 inches; muck
Cg-36 to 60 inches; silt loam

485C—Lupton and Tawas soils, seeped, 2 to 15 percent slopes

Component Description

Lupton and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes
Slope range: 2 to 15 percent

Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous and woody organic material more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Ponding: None
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 55.0 percent
Typical profile:
Oa-0 to 65 inches; muck

Tawas and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes
Slope range: 2 to 15 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over sandy deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September, October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 14.2 inches
Content of organic matter in the upper 10 inches: 55.0 percent
Typical profile:
Oa-0 to 31 inches; muck
$\mathrm{Cg}-31$ to 60 inches; fine sand

495B—Karlsborg-Grettum-Perida complex, 1 to 6 percent slopes

Component Description

Karlsborg and similar soils

Extent: 30 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches

Content of organic matter in the upper 10 inches: 1.2 percent Typical profile:

Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
$2 \mathrm{Bt}-28$ to 48 inches; clay
3C-48 to 80 inches; sand
Grettum and similar soils
Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or lacustrine deposits with lamellae
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 32 inches; sand
E\&Bt-32 to 75 inches; sand
C-75 to 80 inches; sand

Perida and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 3.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.8 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw1,Bw2,Bw3-9 to 43 inches; sand
Bw4-43 to 45 inches; loamy sand
2Bt1- 45 to 60 inches; clay
2Bt2-60 to 74 inches; silty clay
3C-74 to 80 inches; sand

495C—Karlsborg-Grettum-Perida complex, 6 to 12 percent slopes

Component Description

Karlsborg and similar soils

Extent: 25 to 60 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

Grettum and similar soils

Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or lacustrine deposits with lamellae
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 32 inches; sand
E\&Bt-32 to 75 inches; sand
C-75 to 80 inches; sand

Perida and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains

Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 3.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.8 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw1,Bw2,Bw3-9 to 43 inches; sand
Bw4-43 to 45 inches; loamy sand
2Bt1-45 to 60 inches; clay
2Bt2—60 to 74 inches; silty clay
3C-74 to 80 inches; sand

495D—Karlsborg-Grettum-Perida complex, 12 to 30 percent slopes

Component Description

Karlsborg and similar soils

Extent: 30 to 50 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap—0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

Grettum and similar soils

Extent: 20 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders

Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or lacustrine deposits with lamellae
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 32 inches; sand
E\&Bt-32 to 75 inches; sand
C-75 to 80 inches; sand

Perida and similar soils

Extent: 10 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 3.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.8 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw1,Bw2,Bw3-9 to 43 inches; sand
Bw4-43 to 45 inches; loamy sand
2Bt1-45 to 60 inches; clay
2Bt2-60 to 74 inches; silty clay
3C-74 to 80 inches; sand

496B—Karlsborg loamy sand, 1 to 6 percent slopes

Component Description

Karlsborg and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

496C—Karlsborg loamy sand, 6 to 12 percent slopes Component Description

Karlsborg and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

496D—Karlsborg loamy sand, 12 to 30 percent slopes

Component Description

Karlsborg and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy sand

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Bt-28 to 48 inches; clay
3C-48 to 80 inches; sand

497A—Meenon loamy sand, 0 to 3 percent slopes

Component Description

Meenon and similar soils

Extent: 60 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April, May)
Deepest depth to wet zone: More than 6.7 feet (July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 28 inches; sand
2Btg-28 to 41 inches; clay
3C-41 to 80 inches; sand

521A—Dody muck, 0 to 2 percent slopes

Component Description

Dody and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Drainageways and depressions on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Very poorly drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, November, December)
Deepest depth to wet zone: 2.5 feet (August, September)
Months in which ponding does not occur: January, February, March, June, July,
August, September, December
Deepest ponding: 0.5 foot (April, May, October, November)
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 11.5 percent
Typical profile:
Oa-0 to 3 inches; muck
Eg-3 to 9 inches; sand
Bw-9 to 20 inches; fine sand
$\mathrm{Bg}-20$ to 23 inches; loamy sand
2Btg-23 to 47 inches; clay
3C1-47 to 58 inches; loamy sand
3C2-58 to 80 inches; sand

523A—Nokasippi muck, 0 to 1 percent slopes

 Component Description
Nokasippi and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: 30 to 50 inches to dense material
Drainage class: Very poorly drained
Parent material: Sandy outwash over dense loamy till
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: More than 6.7 feet (August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, December
Deepest ponding: 0.5 foot (April, May, November)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 43.6 percent
Typical profile:
Oa-0 to 6 inches; muck
Eg-6 to 15 inches; loamy sand
$2 \mathrm{E}-15$ to 22 inches; very fine sandy loam
2 Btg-22 to 31 inches; sandy clay loam
$3 B C-31$ to 45 inches; gravelly loamy coarse sand
4Cd-45 to 60 inches; cobbly sandy loam

529B—Perida sand, 0 to 4 percent slopes

Component Description

Perida and similar soils

Extent: 60 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 0 to 4 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 3.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.6 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; sand
Bw1,Bw2,Bw3-9 to 43 inches; sand
Bw4-43 to 45 inches; sand
2Bt1-45 to 60 inches; clay
2Bt2-60 to 74 inches; silty clay
3C-74 to 80 inches; sand

531A-Stengel loamy sand, 0 to 3 percent slopes

Component Description

Stengel and similar soils

Extent: 60 to 90 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: 16 to 24 inches to abrupt textural change
Drainage class: Somewhat poorly drained
Parent material: Sandy outwash or sandy lacustrine deposits over clayey lacustrine
deposits underlain by sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April, May)
Deepest depth to wet zone: More than 6.7 feet (July, August, September)
Ponding: None
Available water capacity to a depth of 60 inches: 5.0 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
A-0 to 4 inches; loamy sand
Bw1-4 to 20 inches; loamy sand

Bw2-20 to 46 inches; sand
Bw3-46 to 50 inches; loamy sand
2Bt-50 to 76 inches; clay
3C-76 to 80 inches; sand

542B—Haugen, very stony-Haugen complex, 2 to 6 percent slopes

Component Description

Haugen, very stony, and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes and summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 4 inches; sandy loam
Bw1-4 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Haugen and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes and summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
Bw1-7 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam

E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

542C—Haugen, very stony-Haugen complex, 6 to 12 percent slopes

Component Description

Haugen, very stony, and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 4 inches; sandy loam
Bw1-4 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam
E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

Haugen and similar soils

Extent: 5 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (March, April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
Bw1-7 to 15 inches; sandy loam
Bw2-15 to 23 inches; gravelly sandy loam

E/B-23 to 35 inches; gravelly sandy loam
B/E-35 to 49 inches; sandy loam
Bt-49 to 79 inches; gravelly sandy loam
Cd-79 to 80 inches; gravelly sandy loam

544F-Menahga and Mahtomedi soils, 30 to 45 percent slopes

Component Description

Menahga and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 30 to 45 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
Oi-O to 1 inch; slightly decomposed plant material
A-1 to 2 inches; sand
Bw-2 to 25 inches; sand
C-25 to 80 inches; sand

Mahtomedi and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Stream terraces; outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 30 to 45 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.7 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw1-8 to 15 inches; gravelly coarse sand
Bw2-15 to 30 inches; gravelly sand
C-30 to 60 inches; gravelly sand

553B—Branstad fine sandy loam, 2 to 6 percent slopes

Component Description

Branstad and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; fine sandy loam
E/B-14 to 20 inches; fine sandy loam
$B / E-20$ to 45 inches; sandy clay loam
Bt1-45 to 55 inches; sandy clay loam
Bt2—55 to 68 inches; fine sandy loam
Btk-68 to 80 inches; fine sandy loam

553C—Branstad fine sandy loam, 6 to 12 percent slopes

Component Description

Branstad and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; fine sandy loam
E/B-14 to 20 inches; fine sandy loam
B/E-20 to 45 inches; sandy clay loam
Bt1-45 to 55 inches; sandy clay loam

Bt2-55 to 68 inches; fine sandy loam
Btk-68 to 80 inches; fine sandy loam

553D—Branstad fine sandy loam, 12 to 20 percent slopes Component Description

Branstad and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 12 to 20 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy calcareous till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April, May)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August,
September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 9.8 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
E-9 to 14 inches; fine sandy loam
E/B-14 to 20 inches; fine sandy loam
$B / E-20$ to 45 inches; sandy clay loam
Bt1-45 to 55 inches; sandy clay loam
Bt2-55 to 68 inches; fine sandy loam
Btk-68 to 80 inches; fine sandy loam

555A—Fordum silt loam, 0 to 2 percent slopes, frequently flooded

Component Description

Fordum and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Silty or loamy alluvium underlain by sandy and gravelly alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 7.2 inches

Content of organic matter in the upper 10 inches: 7.4 percent Typical profile:

A-0 to 6 inches; silt loam
Cg1-6 to 18 inches; silt loam
Cg2-18 to 30 inches; fine sandy loam
$2 \mathrm{Cg}-30$ to 60 inches; sand

557B—Shawano fine sand, 0 to 6 percent slopes

 Component Description
Shawano and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
A-0 to 2 inches; fine sand
BA-2 to 4 inches; fine sand
Bw-4 to 26 inches; fine sand
C-26 to 60 inches; fine sand

557C-Shawano fine sand, 6 to 12 percent slopes

Component Description

Shawano and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year Ponding: None
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
A-0 to 2 inches; fine sand
BA-2 to 4 inches; fine sand
Bw-4 to 26 inches; fine sand
C-26 to 60 inches; fine sand

557D—Shawano fine sand, 12 to 30 percent slopes

Component Description

Shawano and similar soils

Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
A-0 to 2 inches; fine sand
BA-2 to 4 inches; fine sand
Bw-4 to 26 inches; fine sand
C-26 to 60 inches; fine sand

586A-Chelmo sandy loam, 0 to 2 percent slopes

Component Description

Chelmo and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains and outwash plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Clayey lacustrine deposits underlain by sandy outwash or sandy
lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 5.5 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Btg-9 to 24 inches; clay
2Cg-24 to 34 inches; stratified loamy sand to sand to sandy loam
3C-34 to 80 inches; sand

600A—Haplosaprists and Psammaquents, 0 to 2 percent slopes

Component Description

Haplosaprists and similar soils

Extent: 0 to 100 percent of the mapped areas
Slope range: 0 to 1 percent
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Wet zone: At the surface all year
Ponding depth: 1.0 foot all year
General description: This component consists of areas where very poorly drained organic soils are altered for use as cranberry beds. The alterations include excavating the organic material, filling with sand, and constructing ditches and dikes.

Psammaquents and similar soils

Extent: 0 to 100 percent of the mapped areas
Slope range: 0 to 2 percent
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Wet zone: At the surface all year
Ponding depth: 1.0 foot all year
General description: This component consists of areas where poorly drained and very poorly drained sandy soils are altered for use as cranberry beds. The alterations include land leveling and constructing ditches and dikes.

615B—Cress sandy loam, 0 to 6 percent slopes
 Component Description

Cress and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

615C—Cress sandy loam, 6 to 12 percent slopes

Component Description

Cress and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent Typical profile:

A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

615D-Cress sandy loam, 12 to 30 percent slopes

Component Description

Cress and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

620C-Lundeen-Haustrup-Rock outcrop complex, 2 to 12 percent slopes, very stony

Component Description

Lundeen and similar soils

Extent: 15 to 70 percent of the mapped areas
Geomorphic setting: Knobs
Position on the landform: Shoulders and backslopes
Slope range: 2 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Parent material: Eolian deposits over basalt bedrock
Flooding: None
Depth to wet zone: More than 2.5 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
A1-0 to 3 inches; silt loam
A2-3 to 16 inches; silt loam
Bw-16 to 33 inches; silt loam
2R-33 to 80 inches; bedrock

Haustrup and similar soils

Extent: 10 to 50 percent of the mapped areas
Geomorphic setting: Knobs
Position on the landform: Backslopes and shoulders
Slope range: 2 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Parent material: Loess over basalt bedrock
Flooding: None
Depth to wet zone: More than 1.0 foot all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
A1-0 to 4 inches; silt loam
A2-4 to 16 inches; silt loam
2R-16 to 80 inches; bedrock

Rock outcrop

Extent: 15 to 30 percent of the mapped areas
Slope range: 2 to 12 percent

621A—Bjorkland peat, 0 to 2 percent slopes Component Description

Bjorkland and similar soils

Extent: 60 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sandy lacustrine deposits over clayey lacustrine deposits
Flooding: None
Wet zone: At the surface all year
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 48.5 percent
Typical profile:
Oi-0 to 2 inches; peat
Oa-2 to 8 inches; muck
A-8 to 14 inches; fine sand
Eg-14 to 25 inches; fine sand
Bt-25 to 34 inches; loamy fine sand
2Btg-34 to 38 inches; clay
2Bkg-38 to 80 inches; clay

623A—Capitola muck, 0 to 2 percent slopes, very stony Component Description

Capitola and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on moraines
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: 20 to 40 inches to dense material
Drainage class: Very poorly drained
Parent material: Silty or loamy alluvium underlain by dense loamy till Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 35.3 percent
Typical profile:
Oa-0 to 5 inches; muck
A-5 to 7 inches; silt loam
Bg-7 to 22 inches; silt loam
2Btg-22 to 33 inches; sandy loam
2Cd-33 to 60 inches; sandy loam

624A-Ossmer silt loam, 0 to 3 percent slopes

 Component Description
Ossmer and similar soils

Extent: 70 to 100 percent of the mapped areas

Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Loess or silty alluvium underlain by sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.9 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 4 inches; silt loam
E—4 to 6 inches; silt loam
E/B-6 to 11 inches; silt loam
B/E-11 to 26 inches; silt loam
2Bt1-26 to 34 inches; loam
2Bt2-34 to 38 inches; sandy loam
3C-38 to 60 inches; stratified sand to very gravelly coarse sand

631A—Giese muck, 0 to 1 percent slopes, very stony Component Description

Giese and similar soils

Extent: 80 to 95 percent of the mapped areas
Geomorphic setting: Depressions and drainageways on moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: 40 to 80 inches to dense material
Drainage class: Very poorly drained
Parent material: Mostly silty alluvium or loamy alluvium over dense loamy till
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Months in which ponding does not occur: January, February, July, August, September,
October, December
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 11.2 percent
Typical profile:
Oa-0 to 1 inch; muck
A-1 to 6 inches; silt loam
Eg-6 to 11 inches; silt loam
Bg1-11 to 24 inches; silt loam
Bg2-24 to 30 inches; loam
2Bw-30 to 36 inches; fine sandy loam
$2 B C-36$ to 70 inches; fine sandy loam
2Cd-70 to 80 inches; fine sandy loam

632A—Aftad fine sandy loam, 0 to 2 percent slopes

Component Description

Aftad and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Summits
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly loamy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 2.0 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
E/B-10 to 29 inches; fine sandy loam
$B / E-29$ to 36 inches; fine sandy loam
Bt-36 to 41 inches; fine sandy loam
C-41 to 60 inches; stratified fine sand to silt

632B—Aftad fine sandy loam, 2 to 6 percent slopes

Component Description

Aftad and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly loamy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 2.0 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
E/B-10 to 29 inches; fine sandy loam
$B / E-29$ to 36 inches; fine sandy loam
Bt-36 to 41 inches; fine sandy loam
C-41 to 60 inches; stratified fine sand to silt

632C—Aftad fine sandy loam, 6 to 12 percent slopes

Component Description

Aftad and similar soils
Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; stream terraces
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mostly loamy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 2.0 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
E/B-10 to 29 inches; fine sandy loam
$B / E-29$ to 36 inches; fine sandy loam
Bt- 36 to 41 inches; fine sandy loam
C-41 to 60 inches; stratified fine sand to silt

634C—Drylanding-Beartree complex, 0 to 12 percent slopes, rocky

Component Description

Drylanding and similar soils

Extent: 45 to 95 percent of the mapped areas
Geomorphic setting: Strath terraces
Position on the landform: Shoulders and backslopes
Slope range: 2 to 12 percent
Texture of the surface layer: Channery silt loam
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Parent material: Loamy alluvium over mudstone bedrock
Flooding: None
Depth to wet zone: More than 1.0 foot all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.4 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 4 inches; channery silt loam
Bw-4 to 12 inches; very channery silt loam
2R-12 to 80 inches; bedrock

Beartree and similar soils

Extent: 10 to 30 percent of the mapped areas
Geomorphic setting: Depressions on strath terraces
Slope range: 0 to 2 percent

Texture of the surface layer: Muck
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Very poorly drained
Parent material: Loamy alluvium over siltstone bedrock
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, October, November, December)
Deepest depth to wet zone: More than 1.5 feet (January, February, August, September)
Months in which ponding does not occur: January, February, June, July, August, September, November, December
Deepest ponding: 1.0 foot (March, April, May)
Available water capacity to a depth of 60 inches: 2.4 inches
Content of organic matter in the upper 10 inches: 12.8 percent
Typical profile:
Oa-0 to 1 inch; muck
A1-1 to 4 inches; channery silt loam
A2-4 to 16 inches; extremely channery silt loam
2R—16 to 80 inches; bedrock
Rock outcrop
Extent: 1 to 10 percent of the mapped areas
Slope range: 2 to 12 percent

635C—Drylanding-Beartree complex, 0 to 12 percent slopes, rocky, rarely flooded

Component Description

Drylanding and similar soils

Extent: 55 to 85 percent of the mapped areas
Geomorphic setting: Strath terraces
Position on the landform: Backslopes and shoulders
Slope range: 2 to 12 percent
Texture of the surface layer: Channery silt loam
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Parent material: Loamy alluvium over mudstone bedrock
Months in which flooding does not occur: January, February, June, July, August,
September, October, November, December
Highest frequency of flooding: Rare (March, April, May)
Depth to wet zone: More than 1.0 foot all year
Ponding: None
Available water capacity to a depth of 60 inches: 1.4 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 4 inches; channery silt loam
Bw-4 to 12 inches; very channery silt loam
2R-12 to 80 inches; bedrock

Beartree and similar soils

Extent: 15 to 35 percent of the mapped areas
Geomorphic setting: Depressions on strath terraces
Slope range: 0 to 2 percent

Texture of the surface layer: Muck
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Very poorly drained
Parent material: Loamy alluvium over siltstone bedrock
Months in which flooding does not occur: January, February, July, August, September, October, November, December
Highest frequency of flooding: Rare (March, April, May, June)
Shallowest depth to wet zone: At the surface (April, May, October, November, December)
Deepest depth to wet zone: More than 1.5 feet (January, February, August, September)
Months in which ponding does not occur: January, February, June, July, August, September, November, December
Deepest ponding: 1.0 foot (March, April, May)
Available water capacity to a depth of 60 inches: 2.4 inches
Content of organic matter in the upper 10 inches: 12.8 percent
Typical profile:
Oa-0 to 1 inch; muck
A1-1 to 4 inches; channery silt loam
A2-4 to 16 inches; extremely channery silt loam
2R-16 to 80 inches; bedrock

Rock outcrop

Extent: 1 to 10 percent of the mapped areas
Slope range: 2 to 12 percent

648B—Sconsin silt loam, 1 to 6 percent slopes

Component Description

Sconsin and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Outwash terraces; stream terraces; outwash plains
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 20 to 38 inches to dense material
Drainage class: Moderately well drained
Parent material: Loess or silty alluvium underlain by sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, May, June, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.9 inches
Content of organic matter in the upper 10 inches: 1.5 percent Typical profile:

A-0 to 4 inches; silt loam
E—4 to 5 inches; silt loam
Bw—5 to 10 inches; silt loam
$E^{\prime}-10$ to 18 inches; silt loam
E/B-18 to 27 inches; silt loam
2B/E-27 to 34 inches; loam

2BCd—34 to 38 inches; sandy loam
3C-38 to 60 inches; stratified sand to very gravelly coarse sand

669D—Fremstadt, stony-Pomroy complex, 15 to 30 percent slopes

Component Description

Fremstadt, stony, and similar soils

Extent: 20 to 80 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 15 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 5 inches; loamy sand
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand
Pomroy and similar soils
Extent: 20 to 60 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 15 to 30 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy outwash over loamy till over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.6 inches
Content of organic matter in the upper 10 inches: 0.4 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 30 inches; loamy sand
$2 \mathrm{Bt}-30$ to 45 inches; sandy loam
2BCd—45 to 80 inches; sandy loam

671B-Spoonerhill, stony-Spoonerhill complex, 2 to 6 percent slopes

Component Description

Spoonerhill, stony, and similar soils

Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Thin mantle of loamy alluvium and sandy alluvium underlain by sandy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 12 inches; gravelly sandy loam
2Bw2-12 to 16 inches; gravelly loamy sand
2E/B-16 to 34 inches; loamy sand
2C1-34 to 46 inches; sand
2C2-46 to 80 inches; gravelly loamy sand

Spoonerhill and similar soils

Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Thin mantle of loamy alluvium and sandy alluvium underlain by sandy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 12 inches; gravelly sandy loam
2Bw2-12 to 16 inches; gravelly loamy sand
2E/B-16 to 34 inches; loamy sand

2C1-34 to 46 inches; sand
2C2-46 to 80 inches; gravelly loamy sand

706A—Winterfield-Totagatic complex, 0 to 2 percent slopes, frequently flooded

Component Description

Winterfield and similar soils

Extent: 50 to 80 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 1 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, December)
Highest frequency of flooding: Frequent (April)
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.0 feet (September, October)
Ponding: None
Available water capacity to a depth of 60 inches: 5.0 inches
Content of organic matter in the upper 10 inches: 2.2 percent
Typical profile:
A-0 to 7 inches; very fine sandy loam
C-7 to 60 inches; sand

Totagatic and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Mostly sandy alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August, December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (May, November, December)
Deepest depth to wet zone: More than 6.7 feet (April)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 0.8 percent Typical profile:

A-0 to 4 inches; fine sandy loam
Bw1-4 to 8 inches; loamy fine sand
Bw2-8 to 17 inches; fine sand
Cg1-17 to 28 inches; fine sand
Cg2-28 to 46 inches; sand
C-46 to 70 inches; sand
C^{\prime} g-70 to 80 inches; sand

715A—Mora silt loam, 0 to 3 percent slopes, very stony

Component Description

Mora and similar soils

Extent: 60 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
A-0 to 4 inches; silt loam
E-4 to 9 inches; fine sandy loam
$B / E-9$ to 14 inches; sandy loam
Bt-14 to 36 inches; sandy loam
BC-36 to 46 inches; sandy loam
BCd-46 to 80 inches; sandy loam

717B—Milaca silt loam, 3 to 6 percent slopes, very stony
 Component Description

Milaca and similar soils

Extent: 70 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Footslopes and summits
Slope range: 3 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; silt loam
E-4 to 13 inches; fine sandy loam
$B / E-13$ to 17 inches; sandy loam
Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

717C-Milaca silt loam, 6 to 12 percent slopes, very stony Component Description

Milaca and similar soils
Extent: 70 to 90 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 1.8 percent Typical profile:
A-0 to 4 inches; silt loam
E-4 to 13 inches; fine sandy loam
$B / E-13$ to 17 inches; sandy loam
Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

720F—Haustrup-Lundeen-Rock outcrop complex, 12 to 65 percent slopes, very stony
 Component Description

Haustrup and similar soils

Extent: 40 to 70 percent of the mapped areas
Geomorphic setting: Knobs
Position on the landform: Shoulders and backslopes
Slope range: 12 to 25 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Parent material: Loess over basalt bedrock
Flooding: None
Depth to wet zone: More than 1.0 foot all year
Ponding: None
Available water capacity to a depth of 60 inches: 3.7 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
A1-0 to 4 inches; silt loam
A2—4 to 16 inches; silt loam
2R—16 to 80 inches; bedrock

Lundeen and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Knobs
Position on the landform: Shoulders and backslopes
Slope range: 12 to 25 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Parent material: Eolian deposits over basalt bedrock
Flooding: None
Depth to wet zone: More than 2.5 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 7.3 inches Content of organic matter in the upper 10 inches: 1.7 percent Typical profile:

A1-0 to 3 inches; silt loam
A2-3 to 16 inches; silt loam
Bw-16 to 33 inches; silt loam
2R-33 to 80 inches; bedrock

Rock outcrop

Extent: 15 to 35 percent of the mapped areas
Slope range: 12 to 65 percent

726B—Sissabagama loamy sand, 0 to 6 percent slopes

Component Description

Sissabagama and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy deposits underlain by stratified sandy and loamy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 5.7 inches
Content of organic matter in the upper 10 inches: 2.0 percent
Typical profile:
Ap-0 to 10 inches; loamy sand
Bw-10 to 31 inches; sand
E\&Bt-31 to 45 inches; sand
2C-45 to 80 inches; stratified very fine sand to silt

742B—Milaca sandy loam, 2 to 6 percent slopes, very stony

Component Description

Milaca and similar soils
Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.8 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 13 inches; fine sandy loam
B/E-13 to 17 inches; sandy loam
Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

742C—Milaca sandy loam, 6 to 12 percent slopes, very stony

Component Description

Milaca and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.8 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 13 inches; fine sandy loam
B/E—13 to 17 inches; sandy loam

Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

742D—Milaca sandy loam, 12 to 20 percent slopes, very stony

Component Description

Milaca and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Backslopes and shoulders
Slope range: 12 to 20 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.8 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 13 inches; fine sandy loam
B/E-13 to 17 inches; sandy loam
Bt-17 to 43 inches; sandy loam
BCd-43 to 80 inches; sandy loam

755A-Moppet, occasionally flooded-Fordum, frequently flooded, complex, 0 to 3 percent slopes Component Description

Moppet and similar soils

Extent: 35 to 75 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium underlain by sandy and gravelly alluvium
Lowest frequency of flooding (if it occurs): Very rare (January, February, July, August, December)
Highest frequency of flooding: Occasional (April, May)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 4.5 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 1.4 percent

Typical profile:

A-0 to 4 inches; fine sandy loam
E-4 to 10 inches; fine sandy loam
Bw-10 to 39 inches; fine sandy loam
2C-39 to 60 inches; gravelly sand
Fordum and similar soils
Extent: 25 to 65 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Silty or loamy alluvium underlain by sandy and gravelly alluvium
Lowest frequency of flooding (if it occurs): Rare (January, February, July, August,
December)
Highest frequency of flooding: Frequent (April, May)
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 7.2 inches
Content of organic matter in the upper 10 inches: 7.4 percent
Typical profile:
A-0 to 6 inches; silt loam
Cg1-6 to 18 inches; silt loam
Cg2-18 to 30 inches; fine sandy loam
$2 \mathrm{Cg}-30$ to 60 inches; sand

771A—Lenroot loamy sand, 0 to 3 percent slopes

Component Description

Lenroot and similar soils

Extent: 75 to 95 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: 5.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 2.8 inches
Content of organic matter in the upper 10 inches: 0.5 percent
Typical profile:
A-0 to 4 inches; loamy sand
Bw1-4 to 8 inches; loamy sand
Bw2-8 to 14 inches; loamy coarse sand

BC-14 to 21 inches; gravelly coarse sand
C-21 to 80 inches; stratified coarse sand to gravelly coarse sand

812B—Mora sandy loam, 0 to 4 percent slopes, very stony Component Description

Mora and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Footslopes
Slope range: 0 to 4 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Loamy deposits over dense loamy till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.0 inches
Content of organic matter in the upper 10 inches: 1.7 percent
Typical profile:
A-0 to 4 inches; sandy loam
E-4 to 9 inches; fine sandy loam
$B / E-9$ to 14 inches; sandy loam
Bt-14 to 36 inches; sandy loam
BC-36 to 46 inches; sandy loam
BCd-46 to 80 inches; sandy loam

825A—Meehan sand, 0 to 2 percent slopes

Component Description

Meehan and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Footslopes
Slope range: 0 to 2 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy lacustrine material or sandy outwash
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 4 inches; sand
Bw-4 to 29 inches; sand
C-29 to 60 inches; sand

896A-Wurtsmith sand, 0 to 3 percent slopes

Component Description

Wurtsmith and similar soils
Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy lacustrine deposits or sandy outwash
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: 5.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 2.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 6 inches; sand
Bw-6 to 33 inches; sand
C-92 to 60 inches; sand

980A—Soderbeck very gravelly loam, 0 to 2 percent slopes, very stony, rarely flooded

Component Description

Soderbeck and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very gravelly loam
Depth to restrictive feature: 40 to 60 inches to lithic bedrock
Drainage class: Somewhat poorly drained
Parent material: Loamy-skeletal alluvium over sandy-skeletal alluvium over sandstone
Months in which flooding does not occur: January, February, March, May, June, July, August, September, October, November, December
Highest frequency of flooding: Rare (April)
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.7 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
A-0 to 4 inches; very gravelly loam
Bt1-4 to 18 inches; extremely gravelly loam
Bt2-18 to 28 inches; extremely gravelly coarse sandy loam
2BC-28 to 42 inches; extremely gravelly coarse sand
$3 \mathrm{Cr}-42$ to 55 inches; bedrock
3R-55 to 80 inches; bedrock

1070C—Fremstadt, stony-Cress complex, 6 to 15 percent slopes

Component Description

Fremstadt and similar soils

Extent: 30 to 70 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 6 to 15 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.0 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 5 inches; sandy loam
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand

Cress and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
2C-36 to 60 inches; stratified sand to very gravelly coarse sand

1070D—Fremstadt, stony-Cress complex, 15 to 30 percent slopes

Component Description

Fremstadt and similar soils

Extent: 40 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 15 to 30 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.0 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.5 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 5 inches; sandy loam
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand

Cress and similar soils

Extent: 20 to 50 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Backslopes and shoulders
Slope range: 12 to 30 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly
outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
$2 \mathrm{C}-36$ to 60 inches; stratified sand to very gravelly coarse sand

1080B—Spoonerhill-Spoonerhill, stony-Cress complex, 1 to 6 percent slopes

Component Description

Spoonerhill and similar soils

Extent: 5 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Thin mantle of loamy alluvium and sandy alluvium underlain by sandy till or sandy mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 12 inches; gravelly sandy loam
2Bw2-12 to 16 inches; gravelly loamy sand
2E/B-16 to 34 inches; loamy sand
2C1-34 to 46 inches; sand
2C2-46 to 80 inches; gravelly loamy sand

Spoonerhill, stony, and similar soils

Extent: 5 to 80 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Thin mantle of loamy alluvium and sandy alluvium underlain by sandy till or sandy mudflow sediments
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, March, June, July,
August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 12 inches; gravelly sandy loam
2Bw2-12 to 16 inches; gravelly loamy sand

2E/B-16 to 34 inches; loamy sand
2C1-34 to 46 inches; sand
2C2-46 to 80 inches; gravelly loamy sand

Cress and similar soils

Extent: 15 to 35 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat excessively drained
Parent material: Thin layer of loamy alluvium underlain by stratified sandy and gravelly outwash
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 3 inches; sandy loam
Bw1-3 to 15 inches; sandy loam
2Bw2-15 to 31 inches; loamy sand
2Bw3-31 to 36 inches; gravelly loamy sand
$2 \mathrm{C}-36$ to 60 inches; stratified sand to very gravelly coarse sand

2002—Udorthents, earthen dams

Component Description

Udorthents, earthen dams

Extent: 100 percent of the map unit
General description: Earthen dams generally consist of silty, loamy, and clayey soils.
Service roads, spillways, very steep side slopes, dikes, levees, and small concrete or steel dam structures may be included in mapping. Because of the variability of this map unit, interpretations for specific uses are not available. Onsite investigation is needed.

2015—Pits

Component Description

Pits

Extent: 100 percent of the map unit
Geomorphic setting: Stream terraces; outwash plains; moraines; eskers
Flooding: None
Ponding: None
General description: This map unit consists of open excavations from which sand, gravel, or loamy material has been removed. Most pits are in areas of glacial outwash, but some are in areas of till. Some pits are still in use. Others are no longer used and have been reclaimed or are covered with brush and weeds. Some pits contain water. Because of the variability of this map unit, interpretations for specific uses are not available. Onsite investigation is needed.

2050-Landfill

Component Description

Landfill

Extent: 100 percent of the map unit
General description: This map unit occurs as an area of accumulated waste products of human habitation, which can be above or below natural ground level. Because of the variability of this map unit, interpretations for specific uses are not available. Onsite investigation is needed.

3011A—Barronett silt loam, 0 to 2 percent slopes

Component Description

Barronett and similar soils

Extent: 75 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways on stream terraces
Slope range: 0 to 2 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Mostly silty lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 5.5 feet (February)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 11.5 inches
Content of organic matter in the upper 10 inches: 6.1 percent
Typical profile:
Ap-0 to 9 inches; silt loam
Eg-9 to 16 inches; silt loam
Btg-16 to 34 inches; silt loam
Cg-34 to 60 inches; stratified silt loam to very fine sand

3082E—Braham-Shawano complex, 12 to 35 percent slopes

Component Description

Braham and similar soils

Extent: 40 to 70 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy eolian deposits over loamy calcareous till
Flooding: None

Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
Ap-0 to 8 inches; loamy fine sand
E-8 to 28 inches; loamy sand
2Bt1-28 to 42 inches; clay loam
2Bt2-42 to 48 inches; loam
2Bk—48 to 80 inches; loam

Shawano and similar soils

Extent: 15 to 40 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Shoulders and backslopes
Slope range: 12 to 35 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Sandy eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 4.4 inches
Content of organic matter in the upper 10 inches: 0.3 percent
Typical profile:
A-0 to 2 inches; fine sand
BA-2 to 4 inches; fine sand
Bw-4 to 26 inches; fine sand
C-26 to 60 inches; fine sand

3114A—Saprists, Aquents, and Aquepts, 0 to 1 percent slopes, ponded, flooded

Component Description

Saprists and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Drainageways on lake plains, outwash plains, and moraines;
depressions on outwash plains and moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous or woody organic material 16 inches to more than 51 inches thick
Flooding: None
Wet zone: At the surface all year
Ponding depth: 1.6 feet all year
Available water capacity to a depth of 60 inches: 23.9 inches
Content of organic matter in the upper 10 inches: 62.0 percent
Typical profile:
Oa-0 to 80 inches; muck

Aquents and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Drainageways on lake plains, outwash plains, and moraines;
depressions on outwash plains and moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sandy outwash, eolian, lacustrine, or till deposits
Flooding: None
Wet zone: At the surface all year
Ponding depth: 1.6 feet all year
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 25.0 percent
Typical profile:
Oa-0 to 3 inches; muck
A-3 to 8 inches; loamy sand
$\mathrm{Bg}-8$ to 16 inches; sand
BCg-16 to 22 inches; sand
C-22 to 60 inches; sand
Aquepts and similar soils
Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Drainageways on lake plains, outwash plains, and moraines;
depressions on outwash plains and moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Loamy outwash, lacustrine, till, or alluvial deposits
Flooding: None
Wet zone: At the surface all year
Ponding depth: 1.6 feet all year
Available water capacity to a depth of 60 inches: 6.2 inches
Content of organic matter in the upper 10 inches: 18.6 percent
Typical profile:
Oa-0 to 4 inches; muck
Eg-4 to 15 inches; silt loam
2Bg-15 to 28 inches; loam
3C-28 to 60 inches; stratified sand to very gravelly coarse sand

3125A—Meehan loamy sand, 0 to 2 percent slopes
 Component Description

Meehan and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Footslopes
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Sandy outwash

Flooding: None

Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.5 inches
Content of organic matter in the upper 10 inches: 1.0 percent
Typical profile:
A-0 to 5 inches; loamy sand
E-5 to 8 inches; sand
Bw-8 to 28 inches; sand
C-28 to 60 inches; sand

3126A—Wurtsmith loamy sand, 0 to 3 percent slopes

Component Description

Wurtsmith and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: 5.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 3.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw-9 to 37 inches; coarse sand
C-37 to 60 inches; sand

3312B-Glendenning, very stony-Glendenning complex, 0 to 4 percent slopes

Component Description

Glendenning, very stony, and similar soils
Extent: 20 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 0 to 4 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None

Available water capacity to a depth of 60 inches: 7.8 inches Content of organic matter in the upper 10 inches: 1.1 percent Typical profile:

A-0 to 5 inches; sandy loam
$\mathrm{E}-5$ to 15 inches; sandy loam
E/B-15 to 20 inches; sandy loam
$B / E-20$ to 26 inches; sandy loam
Bt1-26 to 40 inches; sandy loam
Bt2-40 to 65 inches; sandy loam
Cd-65 to 80 inches; sandy loam

Glendenning and similar soils

Extent: 15 to 75 percent of the mapped areas
Geomorphic setting: Disintegration moraines
Position on the landform: Footslopes
Slope range: 0 to 4 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: 60 to 80 inches to dense material
Drainage class: Somewhat poorly drained
Parent material: Sandy loam till or mudflow sediments
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.8 inches
Content of organic matter in the upper 10 inches: 1.3 percent
Typical profile:
Ap-0 to 7 inches; sandy loam
E-7 to 15 inches; sandy loam
E/B-15 to 20 inches; sandy loam
B/E-20 to 26 inches; sandy loam
Bt1-26 to 40 inches; sandy loam
Bt2-40 to 65 inches; sandy loam
Cd-65 to 80 inches; sandy loam

3336A—Fenander fine sandy loam, 0 to 2 percent slopes

Component Description

Fenander and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Depressions on lake plains; drainageways on stream terraces
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Stratified loamy and sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June, October, November)
Deepest depth to wet zone: 5.5 feet (February)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches

Content of organic matter in the upper 10 inches: 2.4 percent Typical profile:

Ap-0 to 9 inches; fine sandy loam
Eg-9 to 15 inches; fine sandy loam
Btg-15 to 27 inches; loam
BC-27 to 33 inches; fine sandy loam
C-33 to 80 inches; stratified loamy fine sand to fine sandy loam

3403A—Loxley, Beseman, and Dawson soils, 0 to 1 percent slopes

Component Description

Loxley and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material more than 51 inches thick
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 26.5 inches
Content of organic matter in the upper 10 inches: 80.0 percent
Typical profile:
Oe-0 to 13 inches; mucky peat
Oa-13 to 60 inches; muck

Beseman and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Herbaceous organic material 16 to 51 inches thick over loamy till
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 1.0 foot (January, February)
Months in which ponding does not occur: January, February, March, May, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 18.2 inches
Content of organic matter in the upper 10 inches: 50.0 percent
Typical profile:
Oa-0 to 36 inches; muck
Cg-36 to 60 inches; loam

Dawson and similar soils

Extent: 0 to 100 percent of the mapped areas
Geomorphic setting: Depressions on disintegration moraines
Slope range: 0 to 1 percent
Texture of the surface layer: Peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sphagnum moss and herbaceous organic material 16 to 51 inches
thick over sandy or sandy and gravelly deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, June, October, November)
Deepest depth to wet zone: 0.5 foot (January, February, March, July, August, September, December)
Months in which ponding does not occur: January, February, March, May, June, July, August, September, October, November, December
Deepest ponding: 0.5 foot (April)
Available water capacity to a depth of 60 inches: 18.2 inches
Content of organic matter in the upper 10 inches: 75.0 percent
Typical profile:
Oi-0 to 8 inches; peat
Oa-8 to 38 inches; muck
A-38 to 40 inches; silt loam
2C-40 to 60 inches; sand

3429B—Lara loamy fine sand, 0 to 6 percent slopes

Component Description

Lara and similar soils

Extent: 60 to 90 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy lacustrine over clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 5.1 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
Ap-0 to 10 inches; loamy fine sand
Bw-10 to 35 inches; fine sand
Bt-35 to 42 inches; loamy fine sand
2Btg-42 to 55 inches; clay
2Bt1-55 to 75 inches; clay
2Bt2-75 to 80 inches; silty clay

3429C-Lara loamy fine sand, 6 to 12 percent slopes
 Component Description

Lara and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy lacustrine over clayey lacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 5.1 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
Ap-0 to 10 inches; loamy fine sand
Bw-10 to 35 inches; fine sand
Bt-35 to 42 inches; loamy fine sand
2Btg-42 to 55 inches; clay
2Bt1-55 to 75 inches; clay
2Bt2—75 to 80 inches; silty clay

3446A—Newson muck, 0 to 2 percent slopes

Component Description

Newson and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Drainageways and depressions on outwash plains and lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Sandy outwash or sandy lacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April, May, November)
Deepest depth to wet zone: 2.5 feet (February, August)
Months in which ponding does not occur: January, February, March, June, July,
August, September, October, November, December
Deepest ponding: 0.5 foot (April, May)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 25.0 percent
Typical profile:
Oa-0 to 3 inches; muck
A-3 to 8 inches; loamy sand
$\mathrm{Bg}-8$ to 16 inches; sand

BCg-16 to 22 inches; sand
C-22 to 60 inches; sand

3448B—Grettum loamy sand, 0 to 6 percent slopes

Component Description

Grettum and similar soils

Extent: 60 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Summits
Slope range: 0 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or sandy lacustrine deposits with lamellae
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 32 inches; sand
E\&Bt-32 to 75 inches; sand
C-75 to 80 inches; sand

3448C-Grettum loamy sand, 6 to 12 percent slopes

Component Description

Grettum and similar soils

Extent: 65 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 12 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or sandy lacustrine deposits with lamellae
Flooding: None
Shallowest depth to wet zone: 4.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 32 inches; sand

E\&Bt-32 to 75 inches; sand C-75 to 80 inches; sand

3510B—Pomroy-Fremstadt-Fremstadt, stony, complex, 1 to 6 percent slopes

Component Description

Pomroy and similar soils

Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 2 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy outwash over loamy till over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.6 inches
Content of organic matter in the upper 10 inches: 0.4 percent
Typical profile:
A-0 to 3 inches; loamy sand
Bw-3 to 30 inches; loamy sand
2Bt- 30 to 45 inches; sandy loam
2BCd-45 to 80 inches; sandy loam
Fremstadt and similar soils
Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent Typical profile:

A-0 to 5 inches; loamy sand
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand

Fremstadt, stony, and similar soils
Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 5 inches; loamy sand
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand

3510C—Pomroy-Fremstadt-Fremstadt, stony, complex, 6 to 15 percent slopes

Component Description

Pomroy and similar soils

Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Moderately well drained
Parent material: Sandy outwash over loamy till over dense loamy till
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August, September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 6.6 inches
Content of organic matter in the upper 10 inches: 0.4 percent Typical profile:

A-0 to 3 inches; loamy sand
Bw-3 to 30 inches; loamy sand
$2 \mathrm{Bt}-30$ to 45 inches; sandy loam
2BCd-45 to 80 inches; sandy loam

Fremstadt and similar soils

Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines

Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
A-0 to 5 inches; loamy sand
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand
Fremstadt, stony, and similar soils
Extent: 5 to 95 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Shoulders and backslopes
Slope range: 6 to 15 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Sandy till or sandy mudflow sediments
Flooding: None
Depth to wet zone: More than 6.7 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 5.3 inches
Content of organic matter in the upper 10 inches: 1.2 percent Typical profile:

A-0 to 5 inches; loamy sand
Bw-5 to 33 inches; loamy sand
B/E1-33 to 37 inches; sandy loam
B/E2-37 to 45 inches; loamy sand
BC-45 to 70 inches; loamy sand
C-70 to 80 inches; loamy sand

3511A—Bushville loamy sand, 0 to 3 percent slopes

Component Description

Bushville and similar soils

Extent: 85 to 100 percent of the mapped areas
Geomorphic setting: Moraines
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: 40 to 60 inches to dense material
Drainage class: Somewhat poorly drained

Parent material: Mantle of sandy outwash over dense loamy till Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: More than 6.7 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 0.4 percent
Typical profile:
A-0 to 4 inches; loamy sand
$\mathrm{E}-4$ to 21 inches; loamy sand
2Bw-21 to 24 inches; fine sandy loam
2Bt1-24 to 30 inches; fine sandy loam
2Bt2- 30 to 45 inches; sandy loam
2BCd-45 to 60 inches; sandy loam

3516A—Slimlake sandy loam, 0 to 3 percent slopes
 Component Description

Slimlake and similar soils

Extent: 55 to 100 percent of the mapped areas
Geomorphic setting: Outwash plains; stream terraces
Position on the landform: Footslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Loamy alluvium over stratified sandy and gravelly outwash
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 5.5 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 1.3 percent
Typical profile:
A-0 to 6 inches; sandy loam
Bw-6 to 17 inches; sandy loam
2BC-17 to 42 inches; gravelly sand
2C1-42 to 53 inches; gravelly sand
2C2-53 to 80 inches; sand

3625A—Lino loamy fine sand, 0 to 2 percent slopes
 Component Description

Lino and similar soils

Extent: 75 to 95 percent of the mapped areas Geomorphic setting: Outwash plains; lake plains Position on the landform: Summits and footslopes
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Somewhat poorly drained
Parent material: Sandy outwash or eolian deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches Content of organic matter in the upper 10 inches: 1.0 percent Typical profile:

Ap-0 to 7 inches; loamy fine sand
Bw-7 to 45 inches; fine sand
C-45 to 60 inches; fine sand

3626A-Crex loamy fine sand, 0 to 3 percent slopes

Component Description

Crex and similar soils

Extent: 80 to 100 percent of the mapped areas
Geomorphic setting: Lake plains; outwash plains
Position on the landform: Footslopes and summits
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Sandy outwash or eolian deposits
Flooding: None
Shallowest depth to wet zone: 2.0 feet (April)
Deepest depth to wet zone: 5.0 feet (February, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.5 inches
Content of organic matter in the upper 10 inches: 2.6 percent
Typical profile:
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; loamy fine sand
Bw-7 to 40 inches; fine sand
C1-40 to 71 inches; fine sand
C2-71 to 80 inches; sand

3629B—Perida loamy sand, 0 to 4 percent slopes

Component Description

Perida and similar soils

Extent: 70 to 100 percent of the mapped areas
Geomorphic setting: Lake plains
Position on the landform: Summits
Slope range: 0 to 4 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Mantle of sandy outwash or sandy lacustrine deposits over clayey
lacustrine deposits underlain by sandy outwash or sandy lacustrine deposits

Flooding: None
Shallowest depth to wet zone: 3.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (January, February, July, August,
September, October, November, December)
Ponding: None
Available water capacity to a depth of 60 inches: 4.8 inches
Content of organic matter in the upper 10 inches: 1.2 percent
Typical profile:
Ap-0 to 9 inches; loamy sand
Bw1,Bw2,Bw3-9 to 43 inches; sand
Bw4-43 to 45 inches; loamy sand
2Bt1-45 to 60 inches; clay
2Bt2-60 to 74 inches; silty clay
3C-74 to 80 inches; sand

3636B—Plainbo sand, 2 to 6 percent slopes

Component Description

Plainbo and similar soils
Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Strath terraces
Position on the landform: Summits
Slope range: 1 to 6 percent
Texture of the surface layer: Sand
Depth to restrictive features: 20 to 40 inches to paralithic bedrock; 60 to 80 inches to lithic bedrock
Drainage class: Excessively drained
Parent material: Sandy outwash over residuum derived from sandstone
Flooding: None
Depth to wet zone: More than 2.5 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.0 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 4 inches; sand
Bw1-4 to 13 inches; sand
Bw2-13 to 32 inches; gravelly sand
$2 \mathrm{Cr}-32$ to 75 inches; weathered bedrock
2R-75 to 80 inches; bedrock

3636C—Plainbo sand, 6 to 12 percent slopes

Component Description

Plainbo and similar soils
Extent: 90 to 100 percent of the mapped areas
Geomorphic setting: Strath terraces
Position on the landform: Backslopes and shoulders
Slope range: 6 to 12 percent
Texture of the surface layer: Sand
Depth to restrictive features: 20 to 40 inches to paralithic bedrock; 60 to 80 inches to lithic bedrock

Drainage class: Excessively drained
Parent material: Sandy outwash over residuum derived from sandstone
Flooding: None
Depth to wet zone: More than 2.5 feet all year
Ponding: None
Available water capacity to a depth of 60 inches: 2.0 inches
Content of organic matter in the upper 10 inches: 0.8 percent
Typical profile:
A-0 to 4 inches; sand
Bw1-4 to 13 inches; sand
Bw2-13 to 32 inches; gravelly sand
2Cr-32 to 75 inches; weathered bedrock
2R—75 to 80 inches; bedrock

M-W—Miscellaneous water

- This map unit consists of manmade areas that are used for industrial, sanitary, or mining applications and that contain water most of the year. Included in mapping are narrow dikes that surround the water areas. Because of the variability of this map unit, interpretations for specific uses are not available. Onsite investigation is needed.

W-Water

- This map unit consists of naturally occurring bodies of water, such as rivers, streams, lakes, reservoirs, and ponds.

Table 2.--Acreage and Proportionate Extent of the Soils

Table 2.--Acreage and Proportionate Extent of the Soils--Continued

Table 2.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	Acres	Percent	
465A	\|Newson-Meehan complex, 0 to 3 percent slopes----------------------------	3,981	0.7	
469 E	\|Bigisland-Milaca complex, 15 to 45 percent slopes, very stony------------		1,335	0.2
471B	\|Dairyland-Emmert complex, 0 to 6 percent slopes, very stony-------------		1,788	0.3
$\begin{aligned} & 471 \mathrm{C} \\ & 472 \mathrm{~A} \end{aligned}$	\|Dairyland-Emmert complex, 6 to 15 percent slopes, very stony-------------		555	*
	\mid Rockmarsh-Clemens complex, 0 to 2 percent slopes, very stony, frequently			
	\| flooded--1	974	0.2	
473A	\|Dairyland-Skog complex, 0 to 3 percent slopes, very stony, rarely flooded		1,388	0.2
484A		189	*	
485 C	\|Lupton and Tawas soils, seeped, 2 to 15 percent slopes------------------		472	*
495B	\|Karlsborg-Grettum-Perida complex, 1 to 6 percent slopes------------------		2,779	0.5
495C	\|Karlsborg-Grettum-Perida complex, 6 to 12 percent slopes-----------------		4,328	0.8
495D	\|Karlsborg-Grettum-Perida complex, 12 to 30 percent slopes----------------		3,117	0.6
496B	\|Karlsborg loamy sand, 1 to 6 percent slopes-----------------------------		3,176	0.6
496C	\|Karlsborg loamy sand, 6 to 12 percent slopes-----------------------------		1,593	0.3
496D	\|Karlsborg loamy sand, 12 to 30 percent slopes----------------------------	549	*	
497A	\|Meenon loamy sand, 0 to 3 percent slopes---------------------------------	5,441	1.0	
521A	\|Dody muck, 0 to 2 percent slopes--	797	0.1	
523A	\| Nokasippi muck, 0 to 1 percent slopes------------------------------------		277	*
529B	\|Perida sand, 0 to 4 percent slopes---	2,158	0.4	
531A	\|Stengel loamy sand, 0 to 3 percent slopes---------------------------------	1,699	0.3	
542B	\|Haugen, very stony-Haugen complex, 2 to 6 percent slopes-----------------		3,940	0.7
542 C	\|Haugen, very stony-Haugen complex, 6 to 12 percent slopes----------------		3,757	0.7
544 F		6,944	1.2	
553B	\|Branstad fine sandy loam, 2 to 6 percent slopes------------------------		5,377	1.0
553C	\|Branstad fine sandy loam, 6 to 12 percent slopes------------------------		3,023	0.5
553D	\|Branstad fine sandy loam, 12 to 20 percent slopes-----------------------		1,897	0.3
555A	\|Fordum silt loam, 0 to 2 percent slopes, frequently flooded-------------		817	0.1
557B	\|Shawano fine sand, 0 to 6 percent slopes--------------------------------	6,157	1.1	
557 C	\|Shawano fine sand, 6 to 12 percent slopes--------------------------------		2,754	0.5
557D	\|Shawano fine sand, 12 to 30 percent slopes-------------------------------	1,132	0.2	
586A	\|Chelmo sandy loam, 0 to 2 percent slopes---------------------------------		500	*
600A	\|Haplosaprists and Psammaquents, 0 to 2 percent slopes--------------------		275	*
615B	\|Cress sandy loam, 0 to 6 percent slopes----------------------------------	2,825	0.5	
615C	\|Cress sandy loam, 6 to 12 percent slopes--------------------------------		2,538	0.5
615D	\|Cress sandy loam, 12 to 30 percent slopes--------------------------------	1,403	0.2	
620 C	\|Lundeen-Haustrup-Rock outcrop complex, 2 to 12 percent slopes, very stony		10	*
621A	\|Bjorkland peat, 0 to 2 percent slopes------------------------------------	1,966	0.3	
623A	\|Capitola muck, 0 to 2 percent slopes, very stony-------------------------	387	*	
624A	\|Ossmer silt loam, 0 to 3 percent slopes-----------------------------------	56	*	
631A	\|Giese muck, 0 to 1 percent slopes, very stony---------------------------		270	*
632A	\|Aftad fine sandy loam, 0 to 2 percent slopes----------------------------		273	*
632B	\|Aftad fine sandy loam, 2 to 6 percent slopes----------------------------		804	0.1
632 C	\|Aftad fine sandy loam, 6 to 12 percent slopes---------------------------		147	*
634 C	\|Drylanding-Beartree complex, 0 to 12 percent slopes, rocky---------------		49	*
635 C	\|Drylanding-Beartree complex, 0 to 12 percent slopes, rocky, rarely			
		119	*	
648B	\|Sconsin silt loam, 1 to 6 percent slopes---------------------------------	143	*	
669D	\|Fremstadt, stony-Pomroy complex, 15 to 30 percent slopes----------------		3,037	0.5
671B	\|Spoonerhill, stony-Spoonerhill complex, 2 to 6 percent slopes------------		330	*
706A	\mid Winterfield-Totagatic complex, 0 to 2 percent slopes, frequently flooded	1,568	0.3	
715A	\|Mora silt loam, 0 to 3 percent slopes, very stony-----------------------		65	*
717B	\|Milaca silt loam, 3 to 6 percent slopes, very stony--------------------		319	*
717 C	\|Milaca silt loam, 6 to 12 percent slopes, very stony--------------------		83	*
720F	\|Haustrup-Lundeen-Rock outcrop complex, 12 to 65 percent slopes, very			
	stony--1	87	*	
726B	\|Sissabagama loamy sand, 0 to 6 percent slopes---------------------------	1,273	0.2	
742B	\|Milaca sandy loam, 2 to 6 percent slopes, very stony--------------------		2,050	0.4
742 C	\mid Milaca sandy loam, 6 to 12 percent slopes, very stony--------------------\|	580	0.1	
742 D	\|Milaca sandy loam, 12 to 20 percent slopes, very stony------------------		124	*

See footnote at end of table.

Table 2.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	Acres	\| Percent	
755A	\|Moppet, occasionally flooded-Fordum, frequently flooded, complex, 0 to 3 percent slopes	106	*	
771A	\|Lenroot loamy sand, 0 to 3 percent slopes---------------------------------	80	*	
812B	\mid Mora sandy loam, 0 to 4 percent slopes, very stony-----------------------\|	755	0.1	
825A		1,263	0.2	
896A	\|Wurtsmith sand, 0 to 3 percent slopes-------------------------------------	223	*	
980A	\|Soderbeck very gravelly loam, 0 to 2 percent slopes, very stony, rarely flooded	130	*	
1070C	\|Fremstadt, stony-Cress complex, 6 to 15 percent slopes------------------		298	*
1070D	\|Fremstadt, stony-Cress complex, 15 to 30 percent slopes------------------		260	*
1080B	\|Spoonerhill-Spoonerhill, stony-Cress complex, 1 to 6 percent slopes-----		134	*
2002	\| Udorthents, earthen dams--		1	*
2015	\|Pits---		287	*
2050	\| Landfill---	2	*	
3011A	\|Barronett silt loam, 0 to 2 percent slopes-------------------------------	76	*	
3082E	\mid Braham-Shawano complex, 12 to 35 percent slopes	92	*	
3114A	\|Saprists, Aquents, and Aquepts, 0 to 1 percent slopes, ponded, flooded---		18,671	3.3
3125A	\|Meehan loamy sand, 0 to 2 percent slopes---------------------------------	3,409	0.6	
3126A	\|Wurtsmith loamy sand, 0 to 3 percent slopes-------------------------------		4,620	0.8
3312B	\|Glendenning, very stony-Glendenning complex, 0 to 4 percent slopes-------		2,356	0.4
3336A	\|Fenander fine sandy loam, 0 to 2 percent slopes-------------------------		156	*
3403A	\|Loxley, Beseman, and Dawson soils, 0 to 1 percent slopes-----------------		1,501	0.3
3429B	\mid Lara loamy fine sand, 0 to 6 percent slopes-	563	0.1	
3429C	\|Lara loamy fine sand, 6 to 12 percent slopes-----------------------------		108	*
3446A	\| Newson muck, 0 to 2 percent slopes---	4,754	0.8	
3448B	\|Grettum loamy sand, 0 to 6 percent slopes----------------------------------	22,625	4.0	
3448C	\|Grettum loamy sand, 6 to 12 percent slopes--------------------------------		8,018	1.4
3510B	\|Pomroy-Fremstadt-Fremstadt, stony, complex, 1 to 6 percent slopes--------		7,039	1.3
3510C	\| Pomroy-Fremstadt-Fremstadt, stony, complex, 6 to 15 percent slopes-------		4,118	0.7
3511A	\|Bushville loamy sand, 0 to 3 percent slopes------------------------------		1,218	0.2
3516A	\|Slimlake sandy loam, 0 to 3 percent slopes-------------------------------		404	*
3625A	\|Lino loamy fine sand, 0 to 2 percent slopes-------------------------------	2,113	0.4	
3626A	\| Crex loamy fine sand, 0 to 3 percent slopes-----------------------------		7,078	1.3
3629B	\|Perida loamy sand, 0 to 4 percent slopes-----------------------------------	1,634	0.3	
3636B	\| Plainbo sand, 2 to 6 percent slopes--------------------------------------1	47	*	
3636C	\| Plainbo sand, 6 to 12 percent slopes---------------------------------------	12	*	
M-W	\|Miscellaneous water--	17	*	
W	\| Water---	40,509	7.2	
	Total	562,733	100.0	

[^0]
Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as forest land; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; as sites for agricultural waste management; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately suited, poorly suited, and unsuited or as good, fair, poor, and very poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate
gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Crops and Pasture

General management needed for crops and for hay and pasture is suggested in this section. Climate information for the survey area is provided, the estimated yields of the main crops and hay and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described. Planners of management systems for individual fields or farms should consider obtaining specific information from the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Climate

Table 3 gives data on temperature and precipitation for the survey area as recorded at Grantsburg during the period from 1971 to 2000 . Table 4 shows probable dates of the first freeze in fall and the last freeze in spring Table 5 provides data on length of the growing season.

In winter, the average temperature is 13.2 degrees F and the average daily minimum temperature is 2.6 degrees. The lowest temperature on record, which occurred on January 14, 1965, is -44 degrees. In summer, the average temperature is 66.7 degrees and the average daily maximum temperature is 78.1 degrees. The highest temperature, which occurred on July 7, 1988, is 100 degrees.

Growing degree days are shown in table 3. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The total annual precipitation is 31.82 inches. Of this total, 20.28 inches, or about 64 percent, usually falls in May through September. The growing season for most crops falls within this period. The heaviest 1-day rainfall during the period of record was 5.58 inches on August 31, 1973. Thunderstorms occur on about 35 days each year, and most occur between late May and early September.

The average seasonal snowfall is 51.6 inches. The greatest snow depth at any one time during the period of record was 35 inches recorded on March 5, 1979. On an average, 59 days per year have at least 1 inch of snow on the ground. The heaviest 1-day snowfall on record was 17 inches on December 28, 1982.

The average relative humidity in midafternoon is about 50 percent in May and 70 percent in December. Humidity is higher at night, and the average at dawn is about 80 percent in most months. The sun shines approximately 65 percent of the time possible in summer and about 50 percent in winter. The prevailing wind is from the northwest from October through April and from the south the rest of the year. Average windspeed is highest, around 12 miles per hour, in April.

Cropland Management Considerations

The management concerns affecting the use of the soil map units in the survey area for crops are shown in table 6. The main concerns in managing nonirrigated cropland are conserving moisture, controlling wind erosion and water erosion, and maintaining soil fertility.

Conserving moisture consists primarily of reducing the evaporation and runoff rates and increasing the water infiltration rate. Applying conservation tillage and conservation cropping systems, farming on the contour, stripcropping, establishing field windbreaks, and leaving crop residue on the surface conserve moisture.

Generally, a combination of several practices is needed to control wind erosion and water erosion. Conservation tillage, stripcropping, field windbreaks, contour farming, conservation cropping systems, crop residue management, terraces, diversions, and grassed waterways help to prevent excessive soil loss.

Measures that are effective in maintaining soil fertility include applying fertilizer, both organic and inorganic, including manure; incorporating crop residue or green manure crops into the soil; and using proper crop rotations. Controlling erosion helps to prevent the loss of organic matter and plant nutrients and thus helps to maintain productivity, although the level of fertility can be reduced even in areas where erosion is controlled. All soils used for nonirrigated crops respond well to applications of fertilizer.

Some of the considerations shown in the table cannot be easily overcome. These are channels, flooding, gullies, and ponding.

Additional considerations are as follows:
Lime content, limited available water capacity, limited content of organic matter, potential poor tilth and compaction, and restricted permeability.-These limitations can be minimized by incorporating green manure crops, manure, or crop residue into the soil; applying a system of conservation tillage; and using conservation cropping systems. Also, crops may respond well to additions of phosphate fertilizer to soils that have a high content of lime.

Potential for ground-water contamination.-The proper use of nutrients and pesticides can reduce the risk of ground-water contamination.

Potential for surface-water contamination.-The risk of surface-water contamination can be reduced by the proper use of nutrients and pesticides and by conservation farming practices that reduce the runoff rate.

Surface crusting.-This limitation retards seedling development after periods of heavy rainfall.

Surface rock fragments.-This limitation causes rapid wear of tillage equipment. It cannot be easily overcome.

Surface stones.-Stones or boulders on or near the surface can hinder normal tillage unless they are removed.

Salt content.-In areas where this is a limitation, only salt-tolerant crops should be grown.

On irrigated soils the main management concerns are efficient water use, nutrient management, control of erosion, pest and weed control, and timely planting and harvesting for a successful crop. An irrigation system that provides optimum control and distribution of water at minimum cost is needed. Overirrigation wastes water, leaches plant nutrients, and causes erosion. Also, it can increase wetness and soil salinity.

Explanation of Criteria

Acid soil.-The pH is less than 6.1.
Channeled.-The word "channeled" is included in the map unit name.
Dense layer.-The bulk density is $1.80 \mathrm{~g} / \mathrm{cc}$ or greater within the soil profile.
Depth to rock.-The depth to bedrock is less than 40 inches.
Eroded.-The word "eroded" is included in the map unit name.
Excessive permeability.-Saturated hydraulic conductivity is 42 micrometers per
second or more within the soil profile.
Flooding.-Flooding is occasional, frequent, or very frequent.
Gullied.-The word "gullied" is included in the map unit name.

High content of organic matter.-The surface layer has more than 20 percent organic matter.

Lime content.-The pH is 7.4 or more in the surface layer, or the wind erodibility group is 4 L .

Limited available water capacity.-The available water capacity calculated to a depth of 60 inches or to a root-limiting layer is 6 inches or less.

Limited content of organic matter.-The content of organic matter is 2 percent or less in the surface layer.

Ponding.-Ponding duration is assigned to the soil. Water is above the surface.
Potential poor tilth and compaction.-The content of clay is 27 percent or more in the surface layer.

Potential for ground-water contamination (by nutrients or pesticides).-The depth to a zone in which the soil moisture status is wet is 4 feet or less, the saturated hydraulic conductivity of any layer is more than 42 micrometers per second, or the depth to bedrock is less than 60 inches.

Potential for surface-water contamination (by nutrients or pesticides).-The soil is occasionally, frequently, or very frequently flooded, is subject to ponding, is assigned to hydrologic group C or D and has a slope of more than 2 percent, is assigned to hydrologic group A and has a slope of more than 6 percent, or is assigned to hydrologic group B, has a slope of 3 percent or more, and has a K factor of more than 0.17 .

Previously eroded.-The word "eroded" is included in the map unit name.
Restricted permeability.-Saturated hydraulic conductivity is less than 0.42 micrometer per second within the soil profile.

Salt content.-The electrical conductivity is 4 or more in the surface layer or 8 or more within a depth of 30 inches.

Slope (equipment limitation).-The slope is more than 15 percent.
Surface crusting.-The content of clay is 27 percent or more and the content of organic matter is 2 percent or less in the surface layer.

Surface rock fragments (equipment limitation).-The terms describing the texture of the surface layer include any rock fragment modifier, except for gravelly, channery, stony, very stony, extremely stony, bouldery, very bouldery, and extremely bouldery.

Surface stones (equipment limitation). -The word "stony" or "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered by boulders.

Water erosion.-Either the slope is 6 percent or more, or the slope is more than 3 percent and less than 6 percent and the surface layer is not sandy.

Wet soil moisture status.-A zone in which the soil moisture status is wet is within 2.5 feet of the surface.

Wind erosion.-The wind erodibility group is $1,2,3$, or 4L.
Hydrologic groups are described under the heading "Water Features." Erosion factors (e.g., K factor) and wind erodibility groups are described under the heading "Physical Properties."

Crop Yield Estimates

The average yields per acre that can be expected of the principal crops and hay and pasture plants under a high level of management are shown in tables 7 a and 7 b . In any given year, yields may be higher or lower than those indicated in the tables because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in tables 7a and 7b.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in the tables are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Pasture and Hayland Interpretations

Under good management, proper grazing is essential for the production of highquality forage, stand survival, and erosion control. Proper grazing helps plants to maintain sufficient and generally vigorous top growth during the growing season. Brush control is essential in many areas, and weed control generally is needed. Rotation grazing and pasture renovation also are important management practices.

Yield estimates are often provided in animal unit months (AUM), or the amount of forage or feed required to feed one animal unit (one cow, one horse, one mule, five sheep, or five goats) for 30 days.

The local office of the Natural Resources Conservation Service or the Cooperative Extension Service can provide information about forage yields other than those shown in the yields tables.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not take into account major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for forest land or for engineering purposes.

In the capability system, soils generally are grouped at three levels-capability class, subclass, and unit (USDA, 1961). These categories indicate the degree and kinds of limitations affecting mechanized farming systems that produce the more commonly grown field crops, such as corn, small grain, cotton, hay, and field-grown vegetables. Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use.

If properly managed, soils in classes $1,2,3$, and 4 are suitable for the mechanized production of commonly grown field crops and for pasture and forest land. The degree of the soil limitations affecting the production of cultivated crops increases
progressively from class 1 to class 4. The limitations can affect levels of production and the risk of permanent soil deterioration caused by erosion and other factors.

Soils in classes 5, 6, and 7 are generally not suited to the mechanized production of commonly grown field crops without special management, but they are suitable for plants that provide a permanent cover, such as grasses and trees. The severity of the soil limitations affecting crops increases progressively from class 5 to class 7.

Areas in class 8 are generally not suitable for crops, pasture, or forest land without a level of management that is impractical. These areas may have potential for other uses, such as recreational facilities and wildlife habitat.

Capability subclasses identify the dominant kind of limitation in the class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, $2 e$. The letter e shows that the main hazard is the risk of erosion unless a close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

There are no subclasses in class 1 because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use mainly to pasture, forest land, wildlife habitat, or recreation

The capability classification of map units in the survey area is given in tables 7a and 7b.

Prime Farmland

Prime farmland is of major importance in meeting the Nation's short- and longrange needs for food and fiber. The acreage of high-quality farmland is limited, and the U.S. Department of Agriculture recognizes that government at local, State, and Federal levels, as well as individuals, must encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland soils, as defined by the U.S. Department of Agriculture, are soils that are best suited to food, feed, forage, fiber, and oilseed crops. Such soils have properties that favor the economic production of sustained high yields of crops. The soils need only to be treated and managed by acceptable farming methods. An adequate moisture supply and a sufficiently long growing season are required. Prime farmland soils produce the highest yields with minimal expenditure of energy and economic resources, and farming these soils results in the least damage to the environment.

Prime farmland soils may presently be used as cropland, pasture, or forest land or for other purposes. They either are used for food and fiber or are available for these uses. Urban or built-up land, public land, and water areas cannot be considered prime farmland. Urban or built-up land is any contiguous unit of land 10 acres or more in size that is used for such purposes as housing, industrial, and commercial sites, sites for institutions or public buildings, small parks, golf courses, cemeteries, railroad yards, airports, sanitary landfills, sewage treatment plants, and water-control structures. Public land is land not available for farming in national forests, national parks, military reservations, and state parks.

Prime farmland soils commonly receive an adequate and dependable supply of moisture from precipitation or irrigation. The temperature and growing season are favorable, and the level of acidity or alkalinity and the content of salts and sodium are acceptable. The soils have few, if any, rocks and are permeable to water and air. They are not excessively erodible or saturated with water for long periods, and they are not frequently flooded during the growing season or are protected from flooding. Slopes range mainly from 0 to 6 percent.

Soils that have a saturated zone high in the profile or soils that are subject to flooding may qualify as prime farmland where these limitations are overcome by drainage measures or flood control. Onsite evaluation is necessary to determine the effectiveness of corrective measures. More information about the criteria for prime farmland can be obtained at the local office of the Natural Resources Conservation Service.

A recent trend in land use has been the conversion of prime farmland to urban and industrial uses. The loss of prime farmland to other uses puts pressure on lands that are less productive than prime farmland.

About 51,472 acres, or about 9 percent of the survey area, meets the requirements for prime farmland.

The map units in the survey area that meet the requirements for prime farmland are listed in table 8. This list does not constitute a recommendation for a particular land use. The location of each map unit is shown on the soil maps. The soil qualities that affect use and management are described in the section "Soil Map Unit Descriptions."

Conservation Tree/Shrub Suitability Groups

Conservation tree/shrub suitability groups consist of soils in which the kinds and degrees of the hazards and limitations that affect the survival and growth of trees and shrubs in conservation plantings are about the same. The conservation tree/shrub suitability groups assigned to the soils in the survey area are listed in table 9. Descriptions of the groups are provided in the "National Forestry Manual," which is available in local offices of the Natural Resources Conservation Service or on the Internet.

Forest Land Management

Information about the hazards and limitations that should be considered in areas used as forest land is given in tables 10 through 13.

Forest Land Harvest Equipment Considerations

Table 10 provides information regarding the use of harvest equipment in areas used as forest land.

For most soils spring is the most limiting season. Alternate thawing and freezing during snowmelt cause saturation and low strength of the surface soil layers. When thawing is complete, saturation continues for short periods in well drained soils to nearly all year in very poorly drained soils in depressions. Degrees of wetness are generally proportionate to the depth at which a zone of saturation occurs. This zone generally is lower in summer during the heavy use of moisture by vegetation and is nearer the surface during periods when absorbed precipitation is greater than the vegetation requires. Harvesting during periods of saturation usually results in severe soil damage, except when the soil is frozen. The preferred season for timber harvest on many soils is winter, when wetness and low soil strength can be overcome by freezing.

Considerations shown in table 10 are as follows:
Slope.-The upper slope limit is more than 15 percent.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 10 inches.
Rubbly surface.-The word "rubbly" is in the map unit name.

Surface stones.-The words "extremely stony" are in the map unit name.
Surface boulders.-The word "bouldery" is in the map unit name.
Areas of rock outcrop.-Rock outcrop is a named component in the map unit.
Susceptible to rutting and wheel slippage (low strength).-The AASHTO
classification is A-6, A-7, or A-8 in any layer at a depth of 20 inches or less.
Poor traction (loose sandy material).-The USDA texture includes sands or loamy sands in any layer at a depth of 10 inches or less.

Forest Haul Road Considerations

Table 11 provides information regarding the use of the soils as haul roads. Haul roads serve as transportation routes from log landings to primary roads. Generally, haul roads are unpaved, but some are graveled.

Considerations shown in the table are as follows:
Slope.-The slope is 8 percent or more.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 20 inches.
Depth to soft rock.-The depth to soft bedrock is less than 20 inches.
Surface boulders.-The word "bouldery" is in the map unit name.
Areas of rock outcrop.-Rock outcrop is a named component in the map unit.
Low bearing strength.-The AASHTO classification is A-6, A-7, or A-8 in any layer at a depth of 20 inches or less.

Rubbly surface.-The word "rubbly" is in the map unit name.

Forest Log Landing Considerations

Table 12 provides information regarding the use of the soils as log landings. Log landings are areas where logs are assembled for transportation. Areas that require little or no cutting, filling, or surface preparation are desired.

Considerations shown in the table are as follows:
Slope.-The slope is more than 3 percent.
Flooding.-The soil is occasionally flooded or frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Surface boulders.-The word "bouldery" is in the map unit name.
Areas of rock outcrop.-Rock outcrop is a named component in the map unit.
Susceptible to rutting and wheel slippage (low strength).-The AASHTO classification is A-6, A-7, or A-8 in any layer at a depth of 20 inches or less.

Rubbly surface.-The word "rubbly" is in the map unit name.

Forest Land Site Preparation and Planting Considerations

Table 13 provides information regarding considerations affecting site preparation and planting in areas used as forest land.

Considerations shown in the table are as follows:
Slope.-The upper slope limit is more than 15 percent.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 20 inches.
Surface stones.-The word "stony" is in the map unit name.
Surface boulders.-The word "bouldery" is in the map unit name.
Areas of rock outcrop.-Rock outcrop is a named component in the map unit.
Water erosion.-The slope is 8 percent or more.
Potential poor tilth and compaction.-The AASHTO classification is A-6 or A-7 in the upper 10 inches.

Rubbly surface.-The word "rubbly" is in the map unit name.
Cobbly surface.-The word "cobbly" is in the map unit name.

Forest Habitat Types

Joseph A. Kovach, forest ecologist/silviculturist, Division of Forestry, Wisconsin Department of Natural Resources, helped prepare this section.

The forest habitat type classification system (FHTCS) is a site classification system based on the floristic composition of plant communities. The system depends on the identification of potential climax associations, repeatable patterns in the composition of the understory vegetation, and differential understory species. It groups land units with similar capacity to produce vegetation. The floristic composition of the plant community is used as an integrated indicator of those environmental factors that affect species reproduction, growth, competition, and community development. This classification system enables the recognition of ecologically similar landscape units and vegetation communities. It is a system for classifying forest plant communities and the sites on which they develop.

A forest habitat type is an aggregation of sites (units of land) capable of producing similar late-successional (potential climax) forest plant communities. Each recognizable habitat type represents a relatively narrow segment of environmental variation that is characterized by a certain limited potential for vegetation development. Although at any given time a habitat type can support a variety of disturbance-induced (seral) plant communities, the ultimate product of succession is presumed to be a similar climax community. Field identification of a habitat type provides a convenient label (habitat type name) for a given site and places that site in the context of a larger group of sites that share similar ecological traits.

Forest habitat types are characterized by plant associations, not by individual indicator species. Differential (diagnostic) species combinations in the understory flora are used to identify habitat types at any successional stage, but these combinations have meaning only in the context of the specific habitat types or groups being compared.

The forest habitat types in Burnett County can be identified and interpreted using Field Guide to Forest Habitat Types of Northern Wisconsin, 2nd edition (Kotar and others, 2002). The guide provides keys to habitat type identification based on the presence or absence of differential understory species; describes the characteristic understory species composition, the common forest cover types, and the expected successional trends; and summarizes management implications for each habitat type. Management considerations include inherent site capability (biological potential), potential responses to disturbance, competition, successional trends, potential cover types, and expected suitability and productivity for specific tree species. Additional interpretive information is available in Wisconsin Forest Statistics, 1996: Analysis by Habitat Type Class (Kotar and others, 1999).

Although soil map units do not coincide exactly with habitat types, there is a strong correlation between them. Soil moisture and nutrient regimes are key factors determining habitat type occurrence. Habitat types for the soils in Burnett County are shown in table 14. A single habitat type is considered dominant if it constitutes more than 60 percent coverage (one habitat type that has more than 60 percent
occurrence). If no habitat types are dominant but two types with 25 to 59 percent occurrence add up to more than 70 percent, then they would be considered codominant. A common habitat type is listed when the expected frequency of occurrence is 15 to 55 percent and the requirements for identification as codominant are not met.

The following paragraphs briefly describe the habitat types in the county. The types are listed in the following order: dry and nutrient-poor sites; mesic and nutrient-rich sites; wet-mesic sites (nutrient rich to nutrient poor); and wet sites.

Region 1 Habitat Types (predominant in Burnett County)

PQGCe—Pinus strobus-Quercus spp./Gaultheria procumbens-Ceanothus americanus habitat type. The common name is Eastern white pine-Oaks/ Wintergreen-New Jersey tea. The presumed potential climax overstory is dominated by eastern white pine and oaks (white oak, bur oak, northern red oak, and northern pin oak). Currently, common cover types include any mixture of jack pine, red pine, northern pin oak, and northern red oak. Aspen is an occasional dominant or associate, whereas bur oak and white oak are occasional associates. The dominant ground flora commonly includes grasses and sedges, hazelnut, blueberry, blackberries, juneberry, wild rose, bracken fern, wild lily-of-the-valley, wintergreen, northern bedstraw, and oak seedlings.

The moisture regime is dry, and the nutrient regime is poor. The pines (jack pine, red pine, and white pine) exhibit moderate potential productivity. The timber productivity of other species is relatively poor, but the oaks do provide abundant mast for wildlife.

This habitat type is common on outwash plains throughout the county.
PQGCe(Ap)—Amorpha canescens (leadplant) phase. This phase is identified by the presence of leadplant or bluebell. It appears to be associated with a historically distinct fire disturbance regime. It occurs on outwash plains in the southwest corner of the county.

QAp-Quercus spp./Amorpha canescens habitat type. The common name is Oaks/Leadplant. The presumed potential climax overstory is dominated by oaks (white oak, bur oak, northern red oak, and northern pin oak) and perhaps eastern white pine. Currently, common cover types include any mixture of jack pine and pin oak. Frequent associates and occasional dominants include northern red oak, bur oak, white oak, aspen, and red pine. The dominant ground flora frequently includes grasses and sedges, hazelnut, chokecherry, juneberry, blackberries, blueberry, wild rose, leadplant, poison ivy, wild lily-of-the-valley, wild columbine, and oak seedlings. Bracken fern is abundant in some places.

The moisture regime is dry, and the nutrient regime is poor or medium. The pines (jack pine, red pine, and white pine) exhibit good potential productivity, but regeneration of jack pine can be difficult because of intense shrub competition. Oaks and aspen demonstrate only moderate productivity, but the oaks do provide abundant mast for wildlife.

This habitat type occurs on outwash plains in the southwest corner of the county.
PArVAm—Pinus strobus-Acer rubrum/Vaccinium angustifolium-Amphicarpa bracteata habitat type. The common name is Eastern white pine-Red maple/ Blueberry-Hog peanut. The presumed potential climax overstory is dominated by eastern white pine, red maple, northern red oak, and white oak. Currently, common cover types include any mixture of aspen, white oak, red oak, and red maple. Overstory associates include white birch, northern pin oak, bur oak, white pine, red pine, and jack pine. The dominant ground flora commonly includes grasses and sedges, hazelnut, juneberry, blackberries, blueberry, bracken fern, bigleaf aster, hog peanut, wild sarsaparilla, and red maple seedlings.

The moisture regime is dry or dry-mesic, and the nutrient regime is poor or medium. All of the pines exhibit excellent potential productivity, but intense competition often limits opportunities for the establishment and maintenance of jack pine. Aspen and paper birch can exhibit good growth and productivity, but the oaks and red maple demonstrate only moderate productivity.

This habitat type is most common on outwash plains throughout the county, but it also occurs on moraines and glacial lake plains.

PArVAm(Ap)-Amorpha canescens (leadplant) phase. This phase is identified by the presence of leadplant or bluebell. It occurs only in the western part of the county. It appears to be associated with a historically distinct fire disturbance regime.

AVDe-Acer saccharum/Vaccinium angustifolium-Desmodium glutinosum habitat type. The common name is Sugar maple/Blueberry-Pointed-leaved tick trefoil. The presumed potential climax overstory is dominated by sugar maple, red maple, American basswood, and white ash but may also include northern red oak, white oak, and eastern white pine. Currently, common cover types include any mixture of aspen, white oak, red oak, and red maple. Overstory associates include sugar maple, basswood, white pine, and white birch. The dominant ground flora commonly includes grasses and sedges, maple-leaved viburnum, hazelnut, blackberries, bracken fern, bigleaf aster, pointed-leaved tick trefoil, hog peanut, wild sarsaparilla, interrupted fern, ironwood, and red maple and sugar maple seedlings.

The moisture regime is dry-mesic, and the nutrient regime is medium. Trees exhibiting excellent potential productivity include white pine, red pine, white birch, and aspen. Also, white oak, red oak, and red maple can exhibit good growth and productivity. The mesic hardwoods (sugar maple, basswood, and white ash) offer only moderate to poor potential productivity.

This habitat type is common on rolling moraines and outwash plains in the southern part of the county and on stream terraces along the St. Croix River.

AAt-Acer saccharum/Athyrium filix-femina habitat type. The common name is Sugar maple/Lady fern. The presumed potential climax overstory is dominated by sugar maple, basswood, white ash, and red maple. Currently, common cover types include any mixture of northern red oak, white oak, red maple, sugar maple, and aspen. Common overstory associates include American basswood, white ash, eastern white pine, and white birch. The dominant ground flora commonly includes grasses and sedges, sugar maple seedlings, ironwood seedlings, hazelnut, bigleaf aster, hog peanut, pointed-leaved tick trefoil, lady fern, interrupted fern, bracken fern, early meadow rue, sweet cicely, trilliums, sessile-leaved bellwort, wild sarsaparilla, and maple-leaved viburnum.

The moisture regime is dry-mesic, and the nutrient regime is medium or rich. Mesic hardwoods (sugar maple, basswood, white ash, and red maple) are very competitive, and potential productivity is good. Red oak, white oak, and white pine demonstrate excellent productivity but require significant disturbance for successful regeneration. Following severe disturbance, aspen and paper birch can demonstrate excellent productivity as pioneers.

This habitat type is common on moraines and outwash plains in the southern part of the county.

ACaCi -Acer saccharum/Caulophyllum thalictroides-Circaea quadrisulcata habitat type. The common name is Sugar maple/Blue cohosh-Enchanter's nightshade. The presumed potential climax overstory is dominated by sugar maple, American basswood, and white ash. Currently, common cover types include any mixture of sugar maple, northern red oak, white oak, and aspen. Common associates are red maple, basswood, white ash, black cherry, and white birch. The dominant ground flora commonly includes grasses and sedges, sugar maple seedlings, bigleaf aster, wild geranium, sweet cicely, lady fern, early meadow rue, trilliums, yellow violets, enchanter's nightshade, hog peanut, maidenhair fern, and black snakeroot.

The moisture regime is mesic or dry-mesic, and the nutrient regime is rich. Most tree species can exhibit excellent growth and productivity on these sites if establishment opportunities exist and competition is controlled. Northern hardwoods demonstrate excellent productive potential and competitive advantages. Oaks commonly are present but require aggressive management (significant disturbance) for regeneration.

This habitat type is common on moraines and outwash plains in the southern part of the county.

ASal—Acer saccharum/Sanguinaria canadensis-Impatiens capensis habitat type. The common name is Sugar maple/Bloodroot-Jewelweed. The presumed potential climax overstory is dominated by sugar maple, red maple, white ash, green ash, black ash, American basswood, and yellow birch. Currently, common cover types include any mixture of aspen, red maple, oaks (red oak, white oak, and bur oak), basswood, and white birch. The dominant ground flora commonly includes grasses and sedges, lady fern, sweet cicely, jewelweed, bigleaf aster, wood anemone, trilliums, bloodroot, early meadow rue, gooseberry, sensitive fern, interrupted fern, wild geranium, Virginia creeper, Virginia waterleaf, enchanter's nightshade, black snakeroot, hog peanut, and hazelnut.

The moisture regime is wet-mesic or mesic, and the nutrient regime is rich. Although the characteristic dampness can limit tree growth and productivity, most of the commonly occurring tree species can exhibit good potential productivity. Mesic hardwoods (sugar maple, basswood, and white ash) are most competitive in the absence of disturbance, but productivity is only good to moderate. Mid-tolerant hardwoods that require some disturbance for regeneration but that demonstrate good to excellent productive potential are black ash and red maple.

This habitat type is somewhat common on moraines, outwash plains, and glacial lake plains in the southern part of the county and on the stream terraces along the St. Croix River.

ArVRp—Acer rubrum/Vaccinium spp.-Rubus pubescens habitat type. The common name is Red maple/Blueberries-Dwarf raspberry. The presumed potential climax overstory is dominated by red maple and eastern white pine. Currently, aspen and red maple dominate most stands. Common associates and occasional dominants include white birch, pines (white pine, red pine, and jack pine), and oaks (white oak, bur oak, northern red oak, and northern pin oak). The dominant ground flora commonly includes grasses and sedges, hazelnut, bush honeysuckle, bunchberry, dwarf raspberry, swamp dewberry, bracken fern, interrupted fern, lady fern, bigleaf aster, wild lily-of-the-valley, sessile-leaved bellwort, wild sarsaparilla, and red maple seedlings.

The moisture regime is wet-mesic to dry-mesic, and the nutrient regime is poor or medium. Although the characteristic dampness can limit tree growth and productivity, most of the commonly occurring tree species can exhibit good to moderate potential productivity. White pine offers the greatest growth potential.

This habitat type is somewhat common on outwash plains and glacial lake plains throughout the county.

Region 2 Habitat Types (occurring only in the extreme northwest corner of Burnett County, on the undulating ground moraines and outwash terraces northwest of the St. Croix River)

AVCI—Acer saccharum/Vaccinium species-Clintonia borealis habitat type. The common name is Sugar maple/Blueberries-Yellow beadlily. The presumed potential climax overstory is dominated by sugar maple, red maple, and balsam fir but may also include eastern white pine and northern red oak. Currently, common cover types include any mixture of aspen, white birch, red oak, red maple, sugar maple, and balsam fir. The dominant ground flora commonly includes hazelnut, mountain maple,
juneberry, alternate-leaved dogwood, fly honeysuckle, bush honeysuckle, blueberries, bracken fern, wild sarsaparilla, bigleaf aster, wild lily-of-the-valley, yellow beadlily, ground-pine, starflower, rosy twistedstalk, sessile bellwort, spinulose shield fern, and seedlings of sugar maple, red maple, balsam fir, and ironwood.

The moisture regime is dry-mesic, and the nutrient regime is poor or medium. Trees exhibiting excellent potential productivity on these sites include white pine, white birch, and aspen. Also, red oak, red maple, white spruce, and balsam fir can exhibit good growth and productivity. The mesic hardwoods (sugar maple, basswood, white ash, and yellow birch) offer only poor to moderate potential productivity.

ACl-Acer saccharum/Clintonia borealis habitat type. The common name is Sugar maple/Yellow beadlily. The presumed potential climax overstory is dominated by sugar maple, red maple, American basswood, and yellow birch. Currently, common cover types include any mixture of sugar maple, red maple, northern red oak, white birch, and aspen. Common associates are basswood and yellow birch. The dominant ground flora commonly includes hazelnut, alternate-leaved dogwood, fly honeysuckle, wild sarsaparilla, bigleaf aster, starflower, sessile bellwort, hairy Solomon's seal, rosy twistedstalk, wild lily-of-the-valley, yellow beadlily, spinulose shield fern, and ironwood and sugar maple seedlings.

The moisture regime is dry-mesic, and the nutrient regime is medium. Trees exhibiting excellent potential productivity on these sites include white pine, white spruce, white birch, and aspen. Also, red oak, red maple, and balsam fir can exhibit good growth and productivity. The mesic hardwoods (sugar maple, basswood, white ash, and yellow birch) offer only moderate potential productivity.

AAs-Acer saccharum/Arisaema atrorubens habitat type. The common name is Sugar maple/Jack-in-the-pulpit. The presumed potential climax overstory is dominated by sugar maple, American basswood, yellow birch, and red maple. Currently, most stands are dominated by sugar maple. Common overstory associates include basswood, white birch, northern red oak, red maple, yellow birch, and aspen. The dominant ground flora commonly includes hazelnut, alternate-leaved dogwood, mountain maple, juneberry, fly honeysuckle, lady fern, spinulose shield fern, wild sarsaparilla, bigleaf aster, yellow beadlily, rosy twistedstalk, sessile bellwort, wild lily-of-the-valley, sweet cicely, jack-in-the-pulpit, trillium, baneberry, yellow violets, wood anemone, starflower, and ironwood and sugar maple seedlings.

The moisture regime is mesic, and the nutrient regime is medium or rich. Most trees can exhibit excellent growth and productivity on these sites if establishment opportunities exist and competition is controlled. Northern hardwoods demonstrate excellent potential productivity and competitive advantages.

AAtRp-Acer saccharum/Athyrium filix-femina-Rubus pubescens habitat type. The common name is Sugar maple/Lady fern-Dwarf raspberry. The presumed potential climax overstory is dominated by sugar maple, red maple, ashes (black ash, green ash, and white ash), American basswood, yellow birch, and balsam fir. Currently, common cover types include any mixture of aspen, red maple, and sugar maple. Common associates and occasional dominants are northern red oak, black ash, balsam fir, white birch, basswood, green ash, and yellow birch. The dominant ground flora commonly includes hazelnut, juneberry, gooseberries, alder, dwarf raspberry, bunchberry, bush honeysuckle, bracken fern, interrupted fern, lady fern, spinulose shield fern, horsetails, wild sarsaparilla, bigleaf aster, wild lily-of-the-valley, yellow beadlily, sessile bellwort, rosy twistedstalk, starflower, and seedlings of sugar maple, red maple, and ironwood.

The moisture regime is wet-mesic or mesic, and the nutrient regime is medium. Although the characteristic dampness can limit tree growth and productivity, most of the commonly occurring tree species can exhibit good potential productivity. These sites are not ideal for management of northern hardwoods because the growth and quality of sugar maple are limited.

Forest Lowland Habitat Types

No forested lowland habitat types have been defined and characterized. Currently, common lowland cover types include any mixture of northern white-cedar, tamarack, black spruce, balsam fir, black ash, red maple, silver maple, and aspen. To help identify biological potentials, these poorly drained and very poorly drained sites can be subdivided into flood plain (Lfp), mineral soil lowland (LImin), nonacid organic soil lowland (Lnorg), and acid organic soil lowland (Laorg). Forested lowlands are common throughout the county.

Recreation

The soils of the survey area are rated in tables 15 a and 15 b according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 15 a and 15 b can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of
plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a zone in which the soil moisture status is wet, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a zone in which the soil moisture status is wet, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a zone in which the soil moisture status is wet; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments. The kind and abundance of wildlife depend largely on the amount and distribution of food, cover, and water. Wildlife habitat can be created or improved by planting appropriate vegetation, by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants.

In table 16, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning
parks, wildlife refuges, nature study areas, and other developments for wildlife; in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.
Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the root zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of grain and seed crops are corn, soybeans, wheat, oats, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flooding, and slope. Soil temperature and soil moisture also are considerations. Examples of grasses and legumes are bromegrass, timothy, orchardgrass, clover, alfalfa, wheatgrass, and birdsfoot trefoil.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of wild herbaceous plants are bluestems, indiangrass, blueberry, goldenrod, lambsquarters, dandelions, blackberry, ragweed, and nightshade.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the root zone, available water capacity, and wetness. Examples of these plants are oak, poplar, box elder, birch, maple, green ash, willow, and American elm. Examples of fruit-producing shrubs that are suitable for planting on soils rated good are Russian olive and crabapple.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the root zone, available water capacity, and wetness. Examples of coniferous plants are pine, spruce, cedar, and tamarack.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweeds, wild millet, rushes, sedges, bulrushes, wild rice, arrowhead, waterplantain, cattail, prairie cordgrass, bluejoint grass, asters, and beggarticks.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness,
surface stoniness, slope, and permeability. Examples of shallow water areas are waterfowl feeding areas, wildlife watering developments, beaver ponds, and other wildlife ponds.

The habitat for various kinds of wildlife is described in the following paragraphs.
Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, shrubs, and vines. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. Wildlife attracted to these areas include Hungarian partridge, ring-necked pheasant, bobwhite quail, sharp-tailed grouse, meadowlark, field sparrow, killdeer, cottontail rabbit, and red fox.

Habitat for woodland wildlife consists of areas of deciduous and/or coniferous plants and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas include wild turkey, ruffed grouse, thrushes, woodpeckers, owls, tree squirrels, porcupine, raccoon, white-tailed deer, and black bear.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are ducks, geese, herons, bitterns, rails, kingfishers, muskrat, otter, mink, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a zone in which the soil moisture status is wet, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan
drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 17 a and 17 b show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a zone in which the soil moisture status is wet, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a zone in which the soil moisture status is wet, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a zone in which the soil moisture status is wet, ponding, flooding, subsidence, linear extensibility (shrink-swell potential),
and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a zone in which the soil moisture status is wet, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a zone in which the soil moisture status is wet, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to a seasonal zone in which the soil moisture status is wet, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to a zone in which the soil moisture status is wet, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a zone in which the soil moisture status is wet; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sanitary Facilities

Tables 18 a and 18 b show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a zone in which the soil moisture status is wet, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a zone in which the soil moisture status is wet, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if a saturated zone is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a zone in which the soil moisture status is wet, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the
movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an area sanitary landfill, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, depth to a zone in which the soil moisture status is wet, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If permeability is too rapid or if fractured bedrock, a fractured cemented pan, or a saturated zone is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, depth to a zone in which the soil moisture status is wet, ponding, rock fragments, slope, depth to bedrock or a cemented pan, reaction, and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or a saturated zone to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Construction Materials

Tables 19 a and 19 b give information about the soils as potential sources of gravel, sand, reclamation material, roadfill, and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 19a only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to
evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of gravel or sand. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 1.00 indicates that the layer is a good source. A number between 0.00 and 1.00 indicates the degree to which the layer is a likely source.

In table 19b, the soils are rated good, fair, or poor as potential sources of reclamation material, roadfill, and topsoil. The features that limit the soils as sources of these materials are specified in the table. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of reclamation material, roadfill, or topsoil. The lower the number, the greater the limitation.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a zone in which the soil moisture status is wet, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a zone in which the soil moisture status is wet, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a zone in which the soil moisture status is wet, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Water Management

Table 20 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A wet zone high in the soil profile affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a zone in which the soil moisture status is wet, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Agricultural Waste Management

Soil properties are important considerations in areas where soils are used as sites for the treatment and disposal of organic waste and wastewater. Selection of soils with properties that favor waste management can help to prevent environmental damage.

Tables 21a and 21b show the degree and kind of soil limitations affecting the treatment of agricultural waste, including municipal and food-processing wastewater and effluent from lagoons or storage ponds. Municipal wastewater is the waste stream from a municipality. It contains domestic waste and may contain industrial waste. It may have received primary or secondary treatment. It is rarely untreated sewage. Food-processing wastewater results from the preparation of fruits, vegetables, milk, cheese, and meats for public consumption. In places it is high in content of sodium and chloride. In the context of these tables, the effluent in lagoons and storage ponds is from facilities used to treat or store food-processing wastewater or domestic or animal waste. Domestic and food-processing wastewater is very dilute, and the effluent from the facilities that treat or store it commonly is very low in content of carbonaceous and nitrogenous material; the content of nitrogen commonly ranges from 10 to 30 milligrams per liter. The wastewater from animal waste treatment lagoons or storage ponds, however, has much higher concentrations of these materials, mainly because the manure has not been diluted as much as the domestic waste. The content of nitrogen in this wastewater generally ranges from 50 to 2,000 milligrams per liter. When wastewater is applied, checks should be made to ensure that nitrogen, heavy metals, and salts are not added in excessive amounts.

The ratings in the tables are for waste management systems that not only dispose of and treat organic waste or wastewater but also are beneficial to crops (application of manure and food-processing waste, application of sewage sludge, and disposal of wastewater by irrigation) and for waste management systems that are designed only for the purpose of wastewater disposal and treatment (overland flow of wastewater).

The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect agricultural waste management. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Application of manure and food-processing waste not only disposes of waste material but also can improve crop production by increasing the supply of nutrients in the soils where the material is applied. Manure is the excrement of livestock and poultry, and food-processing waste is damaged fruit and vegetables and the peelings, stems, leaves, pits, and soil particles removed in food preparation. The manure and food-processing waste are either solid, slurry, or liquid. Their nitrogen content varies. A high content of nitrogen limits the application rate. Toxic or otherwise dangerous wastes, such as those mixed with the lye used in food processing, are not considered in the ratings.

The ratings are based on the soil properties that affect absorption, plant growth, microbial activity, erodibility, the rate at which the waste is applied, and the method by
which the waste is applied. The properties that affect absorption include permeability, depth to a water table, ponding, the sodium adsorption ratio, depth to bedrock or a cemented pan, and available water capacity. The properties that affect plant growth and microbial activity include reaction, the sodium adsorption ratio, salinity, and bulk density. The wind erodibility group, the soil erodibility factor K, and slope are considered in estimating the likelihood that wind erosion or water erosion will transport the waste material from the application site. Stones, cobbles, a water table, ponding, and flooding can hinder the application of waste. Permanently frozen soils are unsuitable for waste treatment.

Application of sewage sludge not only disposes of waste material but also can improve crop production by increasing the supply of nutrients in the soils where the material is applied. In the context of this table, sewage sludge is the residual product of the treatment of municipal sewage. The solid component consists mainly of cell mass, primarily bacteria cells that developed during secondary treatment and have incorporated soluble organics into their own bodies. The sludge has small amounts of sand, silt, and other solid debris. The content of nitrogen varies. Some sludge has constituents that are toxic to plants or hazardous to the food chain, such as heavy metals and exotic organic compounds, and should be analyzed chemically prior to use.

The content of water in the sludge ranges from about 98 percent to less than 40 percent. The sludge is considered liquid if it is more than about 90 percent water, slurry if it is about 50 to 90 percent water, and solid if it is less than about 50 percent water.

The ratings in the table are based on the soil properties that affect absorption, plant growth, microbial activity, erodibility, the rate at which the sludge is applied, and the method by which the sludge is applied. The properties that affect absorption, plant growth, and microbial activity include permeability, depth to a water table, ponding, the sodium adsorption ratio, depth to bedrock or a cemented pan, available water capacity, reaction, salinity, and bulk density. The wind erodibility group, the soil erodibility factor K , and slope are considered in estimating the likelihood that wind erosion or water erosion will transport the waste material from the application site. Stones, cobbles, a water table, ponding, and flooding can hinder the application of sludge. Permanently frozen soils are unsuitable for waste treatment.

Disposal of wastewater by irrigation not only disposes of municipal wastewater and wastewater from food-processing plants, lagoons, and storage ponds but also can improve crop production by increasing the amount of water available to crops. The ratings in the table are based on the soil properties that affect the design, construction, management, and performance of the irrigation system. The properties that affect design and management include the sodium adsorption ratio, depth to a water table, ponding, available water capacity, permeability, slope, and flooding. The properties that affect construction include stones, cobbles, depth to bedrock or a cemented pan, depth to a water table, and ponding. The properties that affect performance include depth to bedrock or a cemented pan, bulk density, the sodium adsorption ratio, salinity, reaction, and the cation-exchange capacity, which is used to estimate the capacity of a soil to adsorb heavy metals. Permanently frozen soils are not suitable for disposal of wastewater by irrigation.

Overland flow of wastewater is a process in which wastewater is applied to the upper reaches of sloped land and allowed to flow across vegetated surfaces, sometimes called terraces, to runoff-collection ditches. The length of the run generally is 150 to 300 feet. The application rate ranges from 2.5 to 16.0 inches per week. It commonly exceeds the rate needed for irrigation of cropland. The wastewater leaves solids and nutrients on the vegetated surfaces as it flows downslope in a thin film. Most of the water reaches the collection ditch, some is lost through evapotranspiration, and a small amount may percolate to the ground water.

The ratings in the table are based on the soil properties that affect absorption, plant growth, microbial activity, and the design and construction of the system. Reaction and the cation-exchange capacity affect absorption. Reaction, salinity, and the sodium adsorption ratio affect plant growth and microbial activity. Slope, permeability, depth to a water table, ponding, flooding, depth to bedrock or a cemented pan, stones, and cobbles affect design and construction. Permanently frozen soils are unsuitable for waste treatment.

Table 3.--Temperature and Precipitation
(Recorded in the period 1971-2000 at Grantsburg, Wisconsin)

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 4.--Freeze Dates in Spring and Fall

| (Recorded in the period $1971-2000$ at Grantsburg, Wisconsin) |
| :--- | :--- | :--- | :--- |

Table 5.--Growing Season
(Recorded in the period 1971-2000 at Grantsburg, Wisconsin)
\(\left.\begin{array}{l|c|c|c}\hline \& Daily minimum temperature

during growing season\end{array}\right]\)| Higher |
| :---: |
| Probability |

Table 6.--Cropland Management Considerations
(See text for a description of the considerations listed in this table)

Map symbol and soil name	Cropland management considerations
3A:	
Totagatic---------	Flooding
	Excessive permeability
	High content of organic matter
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
Bowstring-	Flooding
	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
Ausable------------	Flooding
	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
12A:	
Makwa	Flooding
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Wet soil moisture status
22A:	
Comstock-----------	Acid soil
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
27A:	
Scott Lake	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wind erosion
28B:	
Haugen, very sto	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
28B:	
Haugen	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Rosholt, very stony	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
Rosholt	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
28C:	
Haugen, very stony	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
Haugen	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Rosholt, very stony	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
Rosholt	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations-Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Cropland management considerations
38A:	
Rosholt	Excessive permeability Limited available water capacity Potential for ground-water contamination Wind erosion
38B:	
Rosholt	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
38C:	
Rosholt	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
38D:	
Rosholt	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
42D:	
Amery	Acid soil
	Slope
	Dense layer
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wind erosion
43B:	
Antigo	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
43C:	
Antigo	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
63A :	
Crystal Lake	Acid soil
	Potential for ground-water contamination
	Wet soil moisture status
63B :	
Crystal Lake	Acid soil
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
63C:	
Crystal Lake	Acid soil
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status
64A:	
Totagatic	Flooding
	Excessive permeability
	High content of organic matter
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
Winterfield-	Flooding
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
	Wind erosion
69C:	
Keweenaw-	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Surface stones
	Water erosion
	Wind erosion
Sayner-------------	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
Vilas	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
69E:	
Keweenaw-----------	Slope
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Surface stones
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \\ & \hline \end{aligned}$	Cropland management considerations
69E:	
Sayner	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
Vilas	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
82B:	
Cutaway	Excessive permeability
	Limited content of organic matter
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
Branstad	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status
	Wind erosion
82C:	
Cutaway	Excessive permeability
	Limited content of organic matter
	Potential for ground-water contamination
	Water erosion
	Wet soil moisture status
	Wind erosion
Branstad-	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status
	Wind erosion
83A:	
Smestad	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
	Wind erosion
85B :	
Taylor	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
$\begin{aligned} & \text { 85C: } \\ & \text { Taylor- } \end{aligned}$	Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wet soil moisture status Wind erosion
$\begin{aligned} & \text { 86A: } \\ & \text { Indus - } \end{aligned}$	```Potential poor tilth and compaction Potential for ground-water contamination Restricted permeability Wet soil moisture status```
Alango-	```Potential poor tilth and compaction Potential for ground-water contamination Restricted permeability Wet soil moisture status```
89A: Wildwood-	High content of organic matter Limited available water capacity Ponding Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status Wind erosion
$\begin{aligned} & \text { 96B: } \\ & \text { Karlsborg- } \end{aligned}$	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status Wind erosion
$\begin{aligned} & \text { 96C: } \\ & \text { Karlsborg- } \end{aligned}$	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wet soil moisture status Wind erosion
$\begin{aligned} & \text { 96D: } \\ & \text { Karlsborg- } \end{aligned}$	Slope Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wet soil moisture status Wind erosion

Table 6.--Cropland Management Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Cropland management considerations
100B:	
Menahga	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion
100C:	
Menahga	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
100D:	
Menahga	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
120B:	
Kost	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion
127D:	
Amery	Acid soil
	Slope
	Dense layer
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wind erosion
Rosholt	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
127E:	
Amery	Acid soil
	Slope
	Dense layer
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
127E:	
Rosholt	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
151A:	
Bluffton	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
152A:	
Alstad	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
154E:	
Cushing	Slope
	Potential for surface-water contamination
	Water erosion
	Wind erosion
156B:	
Magnor, very stony	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
Magnor	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
157B:	
Freeon, very ston	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
Freeon	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
157C:	
Freeon, very stony----------\| Dense layer	
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
Freeon	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
160A:	
Oesterle	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
165B :	
Elderon	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Water erosion
	Wind erosion
185B :	
Tradelake	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Taylor	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
185C:	
Tradelake----------	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Taylor	Potential for ground-water contamination Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
185D:	
Tradelake	Slope
	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Taylor	Slope
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
185E:	
Tradelake	Slope
	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
Taylor	Slope
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
189A:	
Siren	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
193A:	
Minocqua	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
337A:	
Plov	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
	Wind erosion
368B:	
Mahtomedi	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion

Table 6.--Cropland Management Considerations-Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
368E:	
Cress	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
380B:	
Cress	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Water erosion
	Wind erosion
Rosholt-	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
380C:	
Cress	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
Rosholt	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
380D:	
Cress	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
Rosholt	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
396B:	
Wurtsmith	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
Grayling	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wind erosion
397A:	
Perchlake	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
399B:	
Grayling-----------	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wind erosion
399C:	
Grayling-----------	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
399D:	
Grayling	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
406A:	
Loxl	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
407A:	
Seelyeville	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
407A:	
Markey-	Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
410A:	
Seelyeville	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Cathro	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
419A:	
Seelyeville	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Cathro-	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Markey	Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
421A:	
Dor	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status
Markey	Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Seelyeville	High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Cropland management considerations
426D:	
Emmert	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
Mahtomedi	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
Menahga-	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
430A:	
Freya	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
	Wind erosion
439B:	
Graycalm	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion
Menahga	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion
439C:	
Graycalm	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
439C:	
Menahga	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
439D:	
Graycalm	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
Menahga	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
442C:	
Haugen	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
Greenwood	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
443D:	
Amery	Acid soil
	Slope
	Dense layer
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wind erosion
Greenwood	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
459A:	
Loxley-	Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Daisybay	Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Dawson	Acid soil Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
461A:	
Bowstring	Flooding Excessive permeability High content of organic matter Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
465A:	
Newson	Acid soil Excessive permeability High content of organic matter Limited available water capacity Ponding Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status
Meehan-	Excessive permeability Limited available water capacity Potential for ground-water contamination Wet soil moisture status Wind erosion
469E:	
Bigisland-	```Slope Dense layer Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Surface rock fragments Surface stones Water erosion Wind erosion```

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
469E:	
Milaca	Slope
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
471B:	
Dairyland-	Dense layer
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface rock fragments
	Surface stones
	Wet soil moisture status
	Wind erosion
Emmert	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Surface stones
	Wind erosion
471C:	
Dairyland	Dense layer
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface rock fragments
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
Emmert	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
	Wind erosion
472A:	
Rockmarsh	Flooding
	Dense layer
	High content of organic matter
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface rock fragments
	Surface stones
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
472A:	
Clemens	Flooding
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface rock fragments
	Surface stones
	Wet soil moisture status
473A:	
Dairyland	Dense layer
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface rock fragments
	Surface stones
	Wet soil moisture status
	Wind erosion
Skog	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Wind erosion
484A:	
Greenwood	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
Beseman-	High content of organic matter Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
485C:	
Lupton	High content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status
Tawas	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
495B:	
Karlsborg	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status Wind erosion
Grettum-	Excessive permeability Limited available water capacity Potential for ground-water contamination Wind erosion
Perida	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wind erosion
495C:	
Karlsborg	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wet soil moisture status Wind erosion
Grettum	Excessive permeability Limited available water capacity Potential for ground-water contamination Potential for surface-water contamination Water erosion Wind erosion
Perida	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wind erosion
495D:	
Karlsborg-	slope Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Water erosion Wet soil moisture status Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
521A:	
Dody	Excessive permeability
	High content of organic matter
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
523A:	
Nokasippi	Dense layer
	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
529B:	
Perida	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Restricted permeability
	Wind erosion
531A:	
Stengel	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Restricted permeability
	Wet soil moisture status
	Wind erosion
542B:	
Haugen, very stony	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
Haugen	Acid soil
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
555A:	
Fordum-	Flooding
	Excessive permeability
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
557B :	
Shawano-------------------\| Excessive permeability	
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wind erosion
557C:	
Shawano-	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
557D:	
Shawano	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
586A:	
Chelmo	Excessive permeability
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
600A:	
Haplosaprists--------------\| Onsite investigation required	
Psammaquents---------------\| Onsite investigation required	
615B:	
Cres	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Water erosion
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
615C:	
Cress	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
615D:	
Cress	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
620C:	
Lundeen	Acid soil
	Depth to rock
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Haustrup	Acid soil
	Depth to rock
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Rock outcrop-------621A:	Not applicable
	621A:
Bjorkland-	Acid soil
	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
623A:	
Capitola	High content of organic matter
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Wet soil moisture status
624A:	
Ossmer	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
715A:	
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Wet soil moisture status
717B :	
Milaca	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
717C:	
Milaca	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
720F:	
Haustrup-	Acid soil
	Slope
	Depth to rock
	Limited available water capacity
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Lundeen-	Acid soil
	Slope
	Depth to rock
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Rock outcrop-------726 B :	Not applicable
Sissabagama---------------\| Excessive permeability	
Sissabagama	Limited available water capacity
	Potential for ground-water contamination
	Wind erosion
742B:	
Milac	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
742C:	
Milaca	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
742D:	
Milaca	Slope
	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
755A :	
Moppet	Acid soil
	Flooding
	Excessive permeability
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wind erosion
Fordum-	Flooding
	Excessive permeability
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
771A:	
Lenroot	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
812B:	
Mora	Dense layer
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Surface stones
	Water erosion
	Wet soil moisture status
	Wind erosion
825A :	
Meehan	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
896A:	
Wurtsmith	Acid soil
	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wet soil moisture status
	Wind erosion
980A:	
Soderbeck	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Surface rock fragments
	Surface stones
	Wet soil moisture status
1070C:	
Fremstadt	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Cress	Acid soil
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
1070D:	
Fremstadt----------	Slope
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Water erosion
Cress	Acid soil
	Slope
	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Water erosion
	Wind erosion
1080B:	
Spoonerhill	Dense layer
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Water erosion
	Wet soil moisture status

Table 6.--Cropland Management Considerations-Continued

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
3403A:	
Dawson-	Acid soil
	Excessive permeability
	High content of organic matter
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
3429B:	
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Wet soil moisture status
	Wind erosion
3429C:	
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Restricted permeability
	Water erosion
	Wet soil moisture status
	Wind erosion
3446A:	
Newson-	Acid soil
	Excessive permeability
	High content of organic matter
	Limited available water capacity
	Ponding
	Potential for ground-water contamination
	Potential for surface-water contamination
	Wet soil moisture status
3448B:	
Grettum-	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Wind erosion
3448C:	
Grettum	Excessive permeability
	Limited available water capacity
	Potential for ground-water contamination
	Water erosion
	Wind erosion
3510B:	
Pomroy	Excessive permeability
	Limited available water capacity
	Limited content of organic matter
	Potential for ground-water contamination
	Potential for surface-water contamination
	Surface stones
	Wet soil moisture status
	Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Cropland management considerations
3510B:	
Fremstadt	Limited available water capacity Limited content of organic matter Potential for ground-water contamination Surface stones Wind erosion
Fremstadt, stony	Limited available water capacity Limited content of organic matter Potential for ground-water contamination Wind erosion
3510C:	
Pomroy	Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Surface stones Water erosion Wet soil moisture status Wind erosion
Fremstadt	Limited available water capacity Limited content of organic matter Potential for ground-water contamination Water erosion Wind erosion
Fremstadt, stony	Limited available water capacity Limited content of organic matter Potential for ground-water contamination Surface stones Water erosion Wind erosion
3511A:	
Bushville	Dense layer Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status Wind erosion
3516A:	
Slimlake	Excessive permeability Limited available water capacity Potential for ground-water contamination Wind erosion
3625A:	
Lino	Acid soil Excessive permeability Limited available water capacity Limited content of organic matter Potential for ground-water contamination Wet soil moisture status Wind erosion

Table 6.--Cropland Management Considerations--Continued

```Map symbol and soil name```	Cropland management considerations
3626A:	
Crex-	Acid soil   Excessive permeability   Limited available water capacity   Potential for ground-water contamination   Wet soil moisture status   Wind erosion
3629B:	
Perida-	Excessive permeability   Limited available water capacity   Limited content of organic matter   Potential for ground-water contamination   Restricted permeability   Wind erosion
3636B:	
Plainbo-	Depth to rock   Excessive permeability   Limited available water capacity   Limited content of organic matter   Potential for ground-water contamination   Wind erosion
3636C:	
Plainbo-	Depth to rock   Excessive permeability   Limited available water capacity   Limited content of organic matter   Potential for ground-water contamination   Water erosion   Wind erosion
M-W.   Miscellaneous water	
W.   Water	

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture
(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Yields for stony or very stony map units are based on the assumption that the stones have been removed. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil)


Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
				,		
64A---------------		---	---	---	---	---
Totagatic-------	7w			\|		
Winterfield------	4w					
				\|		
69C---------------		2.0	40	9.0	35	14
Keweenaw---------	4 s			\|		
Sayner-----------	6 s			\|		
Vilas------------	6 s			\|		
				\|		
69E---------------		---	--	---	--	---
Keweenaw---------	7 s					
Sayner-----------	7 s			\|		
Vilas------------	7s			\|		
		\|		\|		
82B---------------		3.8	95	15.0	70	32
Cutaway---	2 e			\|		
Branstad--------	2 e			\|		
				\|		
82C---------------		3.6	90	14.0	70	30
Cutaway--	3 e			\|		
Branstad--------	3 e			\|		
				\|		
83A---	3w	3.0	75	13.0	60	24
Smestad				\|		
				\|		
85B-	3 s	3.2	80	13.0	65	26
Taylor						
				\|		
85C-	3 s	3.0	75	13.0	60	24
Taylor						
				\|		
86A---------------		3.2	80	13.0	65	26
Indus-----------	6w			\|		
Alango-----------	2w			\|		
				\|		
89A-----	6w	-	---	---	---	---
Wildwood						
96B--	3s	2.6	65	12.0	55	20
Karlsborg						
96C-------	4s	2.4	60	11.0	55	18
Karlsborg				\|		
96D---------------	6s	2.2	55	11.0	50	18
Karlsborg				\|		
				\|		
100B--	4 s	2.0	40	9.0	35	14
Menahga				\|		
		1		1		
100C---	6 s	2.0	40	9.0	35	14
Menahga				\|		
				\|		
100D----	7s	---	---	---	---	---
Menahga				\|		
				\|		
120B-	4 s	2.2	55	11.0	50	18
Kost				\|		
				\|		
127D--------------		3.0	75	13.0	60	24
Amery-----------	6 s			\|		
Rosholt----------	6 s			,		
				\|		

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
127E--------------		---	-	\| ---	---	---
Amery-----------	7 s			\|		
Rosholt----------	7 s			\|		
				\|		
151A-----	6w	---	---	---	---	---
Bluffton				\|		
				\|		
152A--------------	2w	3.6	90	14.0	70	30
Alstad				\|		
				$\mid$		
154E--	$6 e$	3.4	85	14.0	65	28
Cushing				\|		
				\|		
156B--------------		3.4	85	14.0	65	28
Magnor, very stony-	4 s			\|		
Magnor------------	2w			\|		
				\|		
157B-------------		3.8	95	15.0	70	32
Freeon, very stony-	4 s			\|		
Freeon----------	2 e			\|		
				\|		
157C--------------		3.6	90	14.0	70	30
Freeon, very stony-	6 s			\|		
Freeon------------	3 e			\|		
				1		
160A---	2w	3.4	85	14.0	65	28
Oesterle				\|		
				\|		
165B----	4 s	2.2	55	11.0	50	18
Elderon		\|		,		
185B-------------		\| 3.4	85	14.0	65	28
Tradelake-------	2 e			\|		
Taylor----------	2 e			\|		
				1		
185C----		3.2	80	13.0	65	26
Tradelake	3 e			\|		
Taylor----------	3 e	\|		,		
185D--------------		1 3.0	75	13.0	60	24
Tradelake--------	4 e	\|		\|		
Taylor----------	4 e	\|		\|		
				1		
185E--------------		2.8	70	12.0	60	---
Tradelake	6 e			\|		
Taylor-----------	6 e	\|		\|		
				,		
189A--	2w	\| 3.2	80	13.0	65	26
Siren		\|		1		
		\|		\|		
193A--------------	6w	---	---	---	---	---
Minocqua		\|		,		
				\|		
337A-------------	2w	\| 3.6	90	\| 14.0	70	30
Plover				\|		
				\|		
368B--------------		\| 2.0	50	10.0	45	16
Mahtomedi---------	4 s			1		
Cress-------------	3 s			\|		
				,		
368C--------------		\| 2.0	45	10.0	40	16
Mahtomedi---------	6 s	,		,		
Cress-------------	4 e	,		\|		

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
368D---------------		2.0	40	9.0	35	14
Mahtomedi--------	7 s					
Cress-------------	6 e	\|				
		\|				
368E--------------		2.0	35	9.0	30	---
Mahtomedi--------	7 s					
Cress-------------	7 e	\|				
		\|				
380B---------------		2.8	70	12.0	60	22
Cress-------------	3 s	\|				
Rosholt----------	2s	\|				
380C--------------		2.6	65	12.0	55	20
Cress-------------	4 e	\|				
Rosholt-----------	3 e	\|				
380D---------------		2.4	60	11.0	55	18
Cress------------	6 e	\|				
Rosholt--	4 e					
383B------	$4 s$	2.0	35	9.0	30	14
Mahtomedi		\|				
383C--	6 s	2.0	30	8.0	25	12
Mahtomedi		\|				
		\|				
	7s	---	---	---	---	---
Mahtomedi						
		\|				
		---	---	---	---	---
Rockmarsh-------	7 s					
Dairyland--------	7 s	\|				
Makwa------------	6w	\|				
396B---------------		2.0	35	9.0	30	14
Friendship-------	4 s	\|				
Wurtsmith	4 s					
Grayling	4 s	\|				
	4w	2.2	55	11.0	50	18
Perchlake						
		1				
399B---	$4 s$	2.0	35	9.0	30	14
Grayling		\|				
		1				
399C----	6 s	2.0	30	8.0	25	12
Grayling		\|				
		\|				
399D---------------	7s	---	---	---	---	---
Grayling		\|				
		\|				
406A---------------	7w	---	---	---	---	---
Loxley		\|				
		1				
$407 \mathrm{~A}-$		---	---	---	---	---
Seelyeville-------	7w	1				
Markey-----------	7w	\|				
		1				
410A--------------		---	---	---	---	---
Seelyeville-------	7w	\|				
Cathro------------	7w	,				
		\|				

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
		\|				
419A------------		---	---	---	---	---
Seelyeville-----	7w					
Cathro-----------	7w	\|				
Markey-	7w	\|				
421A--------------		---	-	-	---	---
Dora------------	7w	I				
Markey-	7w	1				
Seelyeville----	7w	\|				
		\|				
422A-------------		---	-	--	--	-- -
Seelyeville------	7w	\|				
Cathro-----------	7w	\|				
Rondeau-------	7w					
		\|				
426B--------------		2.0	40	9.0	35	14
Emmert----------	4 s	\|				
Mahtomedi--------	4 s	\|				
Menahga--	4 s					
		\|				
426C------------		2.0	35	9.0	30	14
Emmert-----------	6 s	\|				
Mahtomedi--------	6 s					
Menahga-----	6 s					
		\|				
426D-------------		-	-	\| ---	--	---
Emmert----------	7 s					
Mahtomedi--------	7 s	\|				
Menahga-	7 s					
		\|				
430A-	4w	2.6	65	12.0	55	20
Freya		\|				
		\|				
439B------------		2.0	50	10.0	45	16
Graycalm--------	4 s			\|		
Menahga---------	4 s			\|		
		1				
439C------------		2.0	45	10.0	40	16
Graycalm--------	6 s					
Menahga---------	6 s	\|				
		\|				
439D-------------		---	---	---	---	---
Graycalm	7 s	\|				
Menahga----------	7s	\|				
		\|				
$442 \mathrm{C}$		3.2	80	13.0	65	26
Haugen----------	6 s	\|				
Greenwood---------	7w	\|				
		1				
443D-------------		3.0	75	13.0	60	24
Amery-----------	7 s	\|				
Greenwood--------	7w	\|				
		\|				
459A-------------		---	---	---	---	---
Loxley-----------	7w	\|				
Daisybay--------	7w	\|				
Dawson------------	7w	\|				
		\|				
461A-------------	7w	---	---	---	---	---
Bowstring		-				

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
				\|		
465A--------------		2.0	50	10.0	45	---
Newson------------	6w			\|		
Meehan--	4w			\|		
				\|		
469E-------------		---	---	---	---	---
Bigisland---------	7 s			\|		
Milaca------------	7s			\|		
				\|		
471B--------------		---	---	---	---	---
Dairyland---------	7 s			\|		
Emmert------------	7 s			\|		
471C--------------		---	---	--	-	---
Dairyland--------	7s			\|		
Emmert------------	7 s			\|		
				\|		
472A--------------		---	---	---	--	---
Rockmarsh---------	7 s			\|		
Clemens----------	7s			\|		
				\|		
473A--------------		---	--	---	---	---
Dairyland--------	7s			\|		
Skog------------	7 s			\|		
				\|		
484A-------------		---	-	---	---	---
Greenwood-------	7w			\|		
Beseman-----------	7w			\|		
				\|		
		---	---	---	---	---
Lupton----------	7w			\|		
Tawas------------	7w			\|		
				1		
		2.2	55	11.0	50	18
Karlsborg-------	3 s			\|		
Grettum---------	4 s			\|		
Perida-----------	4 s			\|		
495C--------------		2.0	50	10.0	45	16
Karlsborg---------	4 s			\|		
Grettum-	6 s			\|		
Perida	6 s			\|		
				1		
495D-------------		2.0	45	10.0	40	16
Karlsborg-	6 s			\|		
Grettum---------	7 s			\|		
Perida-----------	7s			\|		
				\|		
496B-----	3 s	2.4	60	11.0	55	18
Karlsborg				\|		
				1		
	4 s	2.2	55	11.0	50	18
Karlsborg				\|		
				1		
	6s	2.0	50	10.0	45	16
Karlsborg				\|		
				1		
497A--	4w	2.6	65	12.0	55	20
Meenon				\|		
				1		
521A---------------	6w	---	---	---	---	---
Dody				1		
				\|		

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued


Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
		Tons	Bu	Tons	Bu	Bu
621A--	6w	---	---	---	---	---
Bjorkland						
623A---------------	7w	---	---	-	---	---
Capitola						
624A--	2w	3.8	95	15.0	70	32
Ossmer						
631A------------	6w	---	---	---	---	---
Giese						
				\|		
632A--	1	4.0	100	15.0	75	34
Aftad						
632B--	2 e	3.8	95	15.0	70	32
Aftad						
632C--	3 e	3.6	90	14.0	70	30
Aftad						
				\|		
634C--------------		---	--	\| ---	---	---
Drylanding-	7 s			\|		
Beartree--------	7w			\|		
Rock outcrop-	8			\|		
				\|		
635C-------------		---	---	\| ---	---	---
Drylanding-------	7 s			\|		
Beartree-------	7w			\|		
Rock outcrop-----	8					
				\|		
648B-	2 e	4.0	100	15.0	75	34
Sconsin				I		
				\|		
669D--------------		2.0	50	10.0	45	16
	6 e			\|		
Pomroy----------------------------	6 e			\|		
				\|		
		2.6	65	\| 12.0	55	20
Spoonerhill, stony-	3 s			\|		
Spoonerhill-------	3 s			\|		
				\|		
		---	---	\| ---	---	---
Winterfield-	4w			\|		
Totagatic-	7w			\|		
				\|		
715A-	4s	3.4	85	\| 14.0	65	28
Mora				\|		
				\|		
717B---------	4 s	3.6	90	\| 14.0	70	30
Milaca				\|		
				\|		
717C--	6 s	3.4	85	\| 14.0	65	28
Milaca				\|		
				\|		
720F-------------------\|		---	---	\| ---	---	---
Haustrup--------	6 s			\|		
Lundeen----------	6 s			\|		
Rock outcrop-------726B-----------------Sissabagama	8			\|		
				,		
	4s	2.4	60	11.0	55	18
Sissabagama						

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
742B-------------------- \|	4 s	3.2	80	13.0	65	26
Milaca				)		
742C-------------------- \|	6 s	3.0	75	13.0	60	24
Milaca				\|		
742D-------------------- \|	$6 s$	2.8	70	12.0	60	22
Milaca						
755A-------------------- \|		---	---	---	---	---
Moppet---------------- \|	3w			\|		
Fordum------------------ \|	6 w					
771A-------------------- \|	4 s	2.0	50	10.0	45	16
Lenroot						
812B-------------------- \|	4 s	3.0	75	13.0	60	24
Mora						
825A-------------------- \|	4w	2.0	40	9.0	35	14
Meehan						
896A------------------- \|	$4 s$	2.0	40	9.0	35	14
Wurtsmith						
\|						
980A------------------- \|	7 s	---	--	---	---	---
Soderbeck				\|		
1070C----------------------- \|		2.2	55	11.0	50	18
Fremstadt-------------- \|	4 e			\|		
Cress------------------	4 e			\|		
$1070 \mathrm{D}$		2.0	50	10.0	45	16
Fremstadt-------------- \|	6 e			\|		
Cress------------------	6 e			\|		
1080B------------------------ \|		2.4	60	11.0	55	18
Spoonerhill------------ \|	3 s			\|		
Spoonerhill, stony------\|	3 s			\|		
Cress------------------ \|	3 s			\|		
				\|		
2002 .				\|		
Udorthents, earthen dams\|				\|		
				\|		
2015.				\|		
Pits				\|		
				\|		
2050.				\|		
Landfill		\|		\|		
\|				\|		
3011A------------------ \|	6w	---	---	---	-- -	---
Barronett				\|		
				\|		
3082E------------------ \|		2.8	70	12.0	60	22
Braham---------------- \|	6 e			,		
Shawano---------------- \|	7 s			\|		
				\|		
3114A------------------- \|		---	---	---	---	---
Saprists---------------\|	8w			,		
Aquents--------------- \|	8w			\|		
Aquepts----------------- \|	8w			\|		

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
3125A------------------- \|	4w	2.0	50	10.0	45	16
Meehan				$\square$		
3126A------------------ \|	4 s	2.4	60	11.0	55	18
Wurtsmith						
3312B------------------- \|		3.2	80	13.0	65	26
Glendenning, very stony \|	4 s			\|		
Glendenning	2w					
3336A------------------- \|	6w	--	--	-	---	---
Fenander						
3403A-------------------		---	---	\| ---	---	---
Loxley-----------------	7w			\|		
Beseman----------------\|	7w					
Dawson------------------	7w			\|		
	3 s	2.8	70	12.0	60	22
Lara						
	4 e	2.6	65	12.0	55	20
Lara						
3446A------------------- \|	6w	---	---	---	---	---
Newson						
3448B--------------------	4 s	2.0	45	10.0	40	16
Grettum						
3448C-------------------	6 s	2.0	40	9.0	35	14
Grettum						
$3510 \mathrm{~B}$		2.4	60	11.0	55	18
Pomroy----------------	3 e			\|		
Fremstadt, stony-	3 s			\|		
Fremstadt--------------\|	3 s					
3510C------------------\|		2.2	55	11.0	50	18
Pomroy	4 e					
Fremstadt--------------	4 s			\|		
Fremstadt, stony-------\|	4 s					
	2w	2.4	60	11.0	55	18
Bushville						
	3 s	2.6	65	12.0	55	20
Slimlake \|						
				\|		
	4w	2.4	60	11.0	55	18
Lino		\|		\|		
				\|		
3626A-------------------\|	4 s	2.2	55	11.0	50	18
Crex		\|		\|		
		1		1		
3629B-------------------\|	4s	2.0	50	10.0	45	16
Perida				\|		
		1		1		
3636B------------------- \|	4 s	2.0	40	9.0	35	---
Plainbo \|				\|		

Table 7a.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\|Alfalfa hay	Corn	\| Corn silage	Oats	Soybeans
		Tons	Bu	Tons	Bu	Bu
3636C---	6s	2.0	35	9.0	30	--
Plainbo						
M-W.						
Miscellaneous water						
w.						
Water						

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture
(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Yields for stony or very stony map units are based on the assumption that the stones have been removed. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil)

Map symbol and soil name	Land capability	Bluegrass-   \|white clover	Orchard-grass-alsike	Orchard-   grass-red   clover		Timothyalsike
		Tons	\| Tons	Tons	Tons	Tons
3A-----------------		---	--- \|	---	---	---
Totagatic--------	7w					
Bowstring--------	7w				,	
Ausable-----------	7w				,	
12A---------------	7w	---	---	--	---	---
Makwa					\|	
22A---	2w	2.8	3.6	3.8	3.2	3.4
Comstock						
27A------	2 s	2.4	3.2	3.4	2.8	3.0
Scott Lake						
28B---------------		2.0	2.8	3.0	2.4	2.6
Haugen, very stony-	4 s				\|	
Haugen------------	2 e				\|	
Rosholt, very stony	4 s					
Rosholt----------	2 s					
28C----------------		1.8	2.6	2.8	2.2	2.4
Haugen, very stony-	6 s				\|	
Haugen----------	3 e				\|	
Rosholt, very stony	6 s				\|	
Rosholt-----------	3 e					
	2s	2.6	3.4	3.6	3.0	3.2
Rosholt						
	2s	2.4	3.2	3.4	2.8	3.0
Rosholt						
38C-	3 e	2.2	3.0	3.2	2.6	2.8
Rosholt						
38D----	4 e	2.0	2.8	3.0	2.4	2.6
Rosholt						
42D-	6 s	1.6	2.4	2.6	2.0	2.2
Amery						
	2 e	2.4	3.2	3.4	2.8	3.0
Antigo						
	3 e	2.2	3.0	3.2	2.6	2.8
Antigo						
					1	
63A-------	1	3.2	4.0	4.2	3.6	3.8
Crystal Lake					\|	
63B-	2 e	3.0	3.8	4.0	3.4	3.6
Crystal Lake					1	
					1	
63C----	3 e	2.8	\| 3.6	3.8	3.2	3.4
Crystal Lake					1	

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\| Bluegrass-   \|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \\ \hline \end{array}$	Orchard-   grass-red   clover	$\begin{aligned} & \text { \|Red clover } \\ & \text { hay } \\ & \hline \end{aligned}$	Timothyalsike
		Tons	\| Tons	Tons	Tons	Tons
64A----		-	---	---	---	---
Totagatic-------	7w					
Winterfield-------	4w					
69C----------------		1.0	1.6	1.8	1.4	1.4
Keweenaw---------	4 s					
Sayner-----------	6 s					
Vilas-----------	6 s					
69E----------------		1.0	\| ---	---	-	---
Keweenaw--------	7 s					
Sayner----	7 s					
Vilas------------	7s					
82B--------------		2.4	3.2	3.4	2.8	3.0
Cutaway---------	2 e					
Branstad---------	2 e					
82C-------------		2.2	3.0	3.2	2.6	2.8
Cutaway--------	3 e					
Branstad--------	3 e					
83A--	3w	1.6	2.4	2.6	2.0	2.2
Smestad						
	3 s	1.8	2.6	2.8	2.2	2.4
Taylor						
85C----	3 s	1.6	2.4	2.6	2.0	2.2
Taylor						
		1.8	2.6	2.8	2.2	2.4
Indus	6w					
Alango-----------	2w					
89A-----	6w	---	---	---	\| ---	---
Wildwood						
					1	
	3s	1.2	2.0	2.2	1.6	1.8
Karlsborg						
	4 s	1.0	1.8	2.0	1.4	1.6
Karlsborg						
	6 s	1.0	1.6	1.8	1.4	1.4
Karlsborg						
100B---	4s	1.0	1.6	1.8	1.4	1.4
Menahga					\|	
					\|	
100C-------------	6 s	1.0	1.6	1.8	\| 1.4	1.4
Menahga						
		1			\|	
100D----	7s	---	---	---	\| ---	---
Menahga						
					I	
	4 s	1.0	1.6	1.8	1.4	1.4
Kost						
127D--------------		1.6	2.4	2.6	2.0	2.2
Amery-----------	6 s				\|	
Rosholt----------	6 s		1		,	

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\| Bluegrass-   \|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \end{array}$	$\begin{gathered} \text { Orchard- } \\ \text { grass-red } \\ \text { clover } \end{gathered}$	$\begin{array}{\|cc} \mid r & \\ \mid \text { Red clover } \\ \text { hay } \end{array}$	Timothyalsike	
		Tons	Tons	Tons	Tons	Tons	
127E--------------		\| ---		-	---	---	---
Amery----	7 s						
Rosholt-----------	7s						
151A--------------	6w	---	---	---	---	---	
Bluffton							
152A-	2w	2.2	3.0	3.2	2.6	2.8	
Alstad							
$154 \mathrm{E}---$	6 e	2.0	2.8	3.0	2.4	2.6	
Cushing							
156B--------------		2.0	2.8	3.0	2.4	2.6	
Magnor, very stony-	4 s						
Magnor	2w						
157B---------------		2.4	3.2	3.4	2.8	3.0	
Freeon, very stony-	4 s						
Freeon------------	2 e						
157C--------------		2.2	3.0	3.2	2.6	2.8	
Freeon, very stony-	6 s						
Freeon-----------	3 e						
	2w	2.0	2.8	3.0	2.4	2.6	
Oesterle							
	4 s	1.0	1.6	1.8	1.4	1.4	
Elderon							
		2.0	2.8	3.0	2.4	2.6	
Tradelake-------	2 e						
Taylor------------	2 e						
		1.8	2.6	2.8	2.2	2.4	
Tradelake-------	3 e						
Taylor------------	3 e						
185D		1.6	2.4	2.6	2.0	2.2	
Tradelake--------	4 e						
Taylor------------	4 e						
185E--------------		1.4	2.2	2.4	1.8	2.0	
Tradelake-------	6 e						
Taylor------------	6 e						
189A--	2w	1.8	2.6	2.8	2.2	2.4	
Siren							
		1					
193A	6w	1.0	---	---	---	---	
Minocqua							
	2w	2.2	3.0	3.2	2.6	2.8	
Plover		1					
368B---------------		1.0	1.6	1.8	1.4	1.4	
Mahtomedi--------	4 s						
Cress--------------	3s						

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

| Map symbol and soil name | Land capability | \| Bluegrass- |white clover | $\begin{array}{\|c\|} \text { Orchard- } \\ \text { \|grass-alsike } \\ \hline \end{array}$ | $\begin{gathered} \text { Orchard- } \\ \text { grass-red } \\ \text { clover } \end{gathered}$ |  | Timothyalsike |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tons | Tons | Tons | Tons | Tons |
|  |  | \| |  |  |  |  |
| 368C---------- |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Mahtomedi------- | 6 s | \| |  |  |  |  |
| Cress------------ | 4 e | \| |  |  |  |  |
|  |  | \| |  |  |  |  |
| 368D-------------- |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Mahtomedi--------- | 7 s | \| |  |  |  |  |
| Cress----------- | 6 e | \| |  |  |  |  |
|  |  | $\mid$ |  |  |  |  |
| 368E-------------- |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Mahtomedi-------- | 7 s | \| |  |  |  |  |
| Cress----------- | 7 e | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 380B-------------- |  | 1.4 | 2.2 | 2.4 | 1.8 | 2.0 |
| Cress | 3 s | \| |  |  |  |  |
| Rosholt | 2 s | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 380C-------------- |  | 1.2 | 2.0 | 2.2 | 1.6 | 1.8 |
| Cress | 4 e | $\mid$ |  |  |  |  |
| Rosholt | 3 e | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 380D------------- |  | 1.2 | 1.8 | 2.0 | 1.4 | 1.6 |
| Cress----------- | 6 e | \| |  |  |  |  |
| Rosholt--------- | 4 e | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
|  | 4 s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Mahtomedi |  | 1 |  |  |  |  |
|  |  | 1 |  |  |  |  |
|  | 6s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Mahtomedi |  | \| |  |  |  |  |
|  |  | \| |  |  |  |  |
| 383D------ | 7s | 1.0 | \| --- | --- | --- | --- |
| Mahtomedi |  | \| |  |  |  |  |
|  |  | \| |  |  |  |  |
| 392C-------------- |  | -- | \| --- | --- | -- | --- |
| Rockmarsh-------- | 7 s | \| |  |  |  |  |
| Dairyland | 7 s | \| |  |  |  |  |
| Makwa | 6w | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 396B--------------- |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Friendship------ | 4 s | \| |  |  |  |  |
| Wurtsmith-------- | 4 s | \| |  |  |  |  |
| Grayling--------- | 4 s | 1 |  |  |  |  |
|  |  |  |  |  |  |  |
| 397A--- | 4w | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Perchlake |  | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
|  | 4 s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Grayling |  | \| |  |  |  |  |
|  |  | $\mid$ |  |  |  |  |
|  | 6 s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Grayling |  | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 399D---- | 7 s | 1.0 | --- | --- | --- | --- |
| Grayling |  | \| | \| | |  |  |  |
|  |  | $\mid$ | 1 |  |  |  |
| 406A-------------- | 7w | --- | --- | --- | --- | --- |
| Loxley |  |  | 1 |  |  |  |
|  |  | \| | 1 |  |  |  |
| 407A------------- |  | --- | --- | --- | --- | --- |
| Seelyeville------ | 7w | \| |  |  |  |  |
| Markey----------- | 7w | \| | 1 |  |  |  |
|  |  | 1 |  |  |  |  |

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\| Bluegrass-   \|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \end{array}$	Orchard-   grass-red   clover	$\begin{aligned} & \text { \|Red clover } \\ & \text { hay } \\ & \hline \end{aligned}$	Timothyalsike	
		Tons	Tons	Tons	Tons	Tons	
410A--------------		---	--	---	---	---	
Seelyeville------	7w						
Cathro-------------	7w	\|					
419A-------------		---	---	---	---	---	
Seelyeville------	7w	\|					
Cathro------------	7w	\|					
Markey-----------	7w	\|					
421A--------------		\| ---		\| ---	---	-	---
Dora-------------	7w	\|					
Markey-------	7w	1					
Seelyeville------	7w	1					
		\|					
422A--------------		\| ---		\| ---	-	---	---
Seelyeville-----	7w	\|					
Cathro-----------	7w	\|					
Rondeau-----------	7w	1					
426B---------------		1.0	1.6	1.8	1.4	1.4	
Emmert------------	4 s	\|					
Mahtomedi---------	4 s						
Menahga	4 s						
426C--------------		1.0	1.6	1.8	1.4	1.4	
Emmert-----------	6 s						
Mahtomedi---------	6 s						
Menahga-----------	6 s	1					
426D--------------		1.0	---	---	---	---	
Emmert----------	7 s						
Mahtomedi	7 s	\|					
Menahga	7 s						
430A--	4w	1.2	2.0	2.2	1.6	1.8	
Freya		\|					
439B---------------		1.0	1.6	1.8	1.4	1.4	
Graycalm	4 s	\|					
Menahga-----------	4 s	\|					
439C--------------		1.0	1.6	1.8	1.4	1.4	
Graycalm	6 s						
Menahga-----------	6 s						
		1					
439D--------------		1.0	---	---	---	---	
Graycalm	7 s						
Menahga-----------	7 s	\|					
		1					
442C-------------		1.8	2.6	2.8	2.2	2.4	
Haugen------------	6 s	\|					
Greenwood---------	7w	1					
		1 \|					
443D		1.6	2.4	2.6	2.0	2.2	
Amery------------	7 s	\|					
Greenwood---------	7w	1					
		1					
459A--------------		---	---	---	---	---	
Loxley-----------	7w	\|					
Daisybay----------	7w	\|			\|		
Dawson------------	7w	1					
		,					

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\| Bluegrass-   \|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \end{array}$	Orchard-grass-red clover	$\begin{aligned} & \text { \|Red clover } \\ & \text { \| hay } \end{aligned}$	Timothyalsike	
		Tons	Tons	Tons	Tons	Tons	
	7w	\| ---					
Bowstring		$\mid$ \|					
		\|					
465A-------------		1.0	1.6	1.8	1.4	1.4	
Newson-----------	6w	\|					
Meehan------------	4w	\|					
		1					
469E--------------		--	---	--	---	---	
Bigisland--------	7s	$\|\quad\|$					
Milaca------------	7 s	1					
		\|					
471B-------------		---	\| ---	---	---	---	
Dairyland--------	7s	$\mid$ \|					
Emmert----------	7s	1					
		1					
471C-------------		---	---	---	---	---	
Dairyland-	7 s	$\|\quad\|$					
Emmert------------	7s	\|					
		1					
472A-------------		---	\| ---	---	---	---	
Rockmarsh----	7 s	1					
Clemens-----------	7s	1					
		1					
473A-------------		---	---	---	---	---	
Dairyland----	7s	$\mid$ \|					
Skog------------	7 s	1					
		1					
484A-------------		---	---	---	---	---	
Greenwood---------	7w	\|					
Beseman---------	7w	\|					
		\|					
485C--------------		---	---	---	---	---	
Lupton----------	7w	\|					
Tawas------------	7w	\|					
		\|					
495B--------------		1.0	1.6	1.8	1.4	1.4	
Karlsborg--------	3 s	\|					
Grettum-	4 s	\|					
Perida----------	4 s	\|					
		1					
495C------------		1.0	1.6	1.8	1.4	1.4	
Karlsborg-------	4 s	\|					
Grettum---------	6 s	\|					
Perida------------	6 s	1					
		1					
495D-------------		1.0	1.6	1.8	1.4	1.4	
Karlsborg-------	6 s	\|			\|		
Grettum---------	7 s	\|					
Perida------------	7 s	\|			,		
		1 \|					
496B-----	3 s	1.0	1.8	2.0	1.4	1.6	
Karlsborg		,					
		1					
496C-----	$4 s$	1.0	1.6	1.8	1.4	1.4	
Karlsborg		,					
		I					
496D-----	$6 s$	1.0	1.6	1.8	1.4	1.4	
Karlsborg		,			\|		
		,			1		
497A---	4w	1.2	2.0	2.2	1.6	1.8	
Meenon		\|		I		\|	
		1			\|		

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued


Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	\| Bluegrass-   \|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \end{array}$	$\begin{gathered} \text { Orchard- } \\ \text { grass-red } \\ \text { clover } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Red clover } \\ \text { R hay } \end{array}$	$\begin{gathered} \text { Timothy- } \\ \text { alsike } \end{gathered}$
		Tons	Tons	Tons	Tons	Tons
620C--------------		1.2	2.0	2.2	1.6	1.8
Lundeen--	6 s					
Haustrup--------	6 s					
Rock outcrop-----	8					
					\|	
621A-----	6w	--	--	---	---	---
Bjorkland						
					\|	
623A--	7w	1.2	---	---	---	---
Capitola						
					\|	
624A--	2w	2.4	3.2	3.4	2.8	3.0
Ossmer					1	
					\|	
631A--------------	6w	---	---	-	---	---
Giese					\|	
					\|	
	1	2.6	3.4	3.6	3.0	3.2
Aftad					1	
					\|	
632B--	2 e	2.4	3.2	3.4	2.8	3.0
Aftad					$\mid$	
632C--	3 e	2.2	3.0	3.2	2.6	2.8
Aftad					$\mid$	
					1	
634C--------------		---	---	---	---	---
Drylanding-------	7 s					
Beartree	7w				\|	
Rock outcrop-------	8				\|	
					\|	
635C--------------		---	---	---	---	---
Drylanding-------	7 s				1	
Beartree---------	7w				\|	
Rock outcrop-----	8					
648B--	2 e	2.6	3.4	3.6	3.0	3.2
Sconsin					1	
					\|	
		1.0	1.6	1.8	1.4	1.4
Fremstadt--------	6 e				\|	
Pomroy------------	6 e					
					\|	
671B--------------		1.2	2.0	2.2	1.6	1.8
Spoonerhill, stony-	3 s					
Spoonerhill-------	3 s					
					1	
706A--------------		---	---	---	---	---
Winterfield------	4w				\|	
Totagatic---------	7w				,	
					,	
715A--------------	4 s	2.0	2.8	3.0	2.4	2.6
Mora					1	
					1	
717B----	4 s	2.2	3.0	3.2	2.6	2.8
Milaca					\|	
					1	
717C----	6 s	2.0	2.8	3.0	2.4	2.6
Milaca					\|	
					1	

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

| Map symbol and soil name | Land capability | \| Bluegrass- |white clover | Orchard-\|grass-alsike | $\begin{gathered} \text { Orchard- } \\ \text { grass-red } \\ \text { clover } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { \|Red clover } \\ & \text { hay } \\ & \hline \end{aligned}$ | Timothyalsike |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tons | Tons | Tons | Tons | Tons |
|  |  | \| |  |  |  |  |
| 720F------------------- \| |  | - | \| --- | | --- | --- | -- |
| Haustrup--------------- \| | 6 s | \| |  |  |  |  |
| Lundeen---------------- \| | 6 s | \| |  |  |  |  |
| Rock outcrop------------ \| | 8 | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
| 726B-------------------- \| | 4 s | 1.0 | 1.8 | 2.0 | 1.4 | 1.6 |
| Sissabagama |  | \| | |  |  |  |  |
|  |  | \| | |  |  |  |  |
| 742B------------------- \| | 4 s | 1.8 | 2.6 | 2.8 | 2.2 | 2.4 |
| Milaca |  | \| | |  |  |  |  |
|  |  | \| |  |  |  |  |
|  | 6 s | 1.6 | 2.4 | 2.6 | 2.0 | 2.2 |
| Milaca |  | \| |  |  |  |  |
|  |  | 1 |  |  |  |  |
|  | 6 s | 1.4 | 2.2 | 2.4 | 1.8 | 2.0 |
| Milaca |  |  |  |  |  |  |
|  |  | 1 \| |  |  |  |  |
| 755A-------------------- \| |  | 1.6 | \| --- | --- | - | -- |
| Moppet------------------ \| | 3w | \| | |  |  |  |  |
| Fordum | 6w | \| |  |  |  |  |
|  |  | \| | |  |  |  |  |
|  | 4 s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Lenroot |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 812B-------------------- \| | 4 s | 1.6 | 2.4 | 2.6 | 2.0 | 2.2 |
| Mora \| |  | \| | |  |  |  |  |
|  |  |  |  |  |  |  |
| 825A-------------------- \| | 4w | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Meehan |  | 1 \| |  |  |  |  |
|  |  |  |  |  |  |  |
| 896A-------------------- \| | 4 s | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Wurtsmith |  | \| | |  |  |  |  |
| \| |  | 1 |  |  |  |  |
| 980A---------------------- \| | 7s | --- | --- | --- | --- | --- |
| Soderbeck |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Fremstadt--------------\| | 4 e | 1 \| |  |  |  |  |
| Cress------------------ \| | 4 e | \| | |  |  |  |  |
|  |  |  |  |  |  |  |
| 1070D------------------- \| |  | 1.0 | 1.6 | 1.8 | 1.4 | 1.4 |
| Fremstadt-------------- \| | 6 e | \| |  |  |  |  |
| Cress------------------ \| | 6 e |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 1080B------------------- \| |  | 1.0 | 1.8 | 2.0 | 1.4 | 1.6 |
| Spoonerhill-------------\| | 3 s | \| | |  |  |  |  |
| Spoonerhill, stony-----\| | 3 s | \| |  |  |  |  |
| Cress------------------- | 3 s | \| |  |  |  |  |
|  |  |  |  |  |  |  |
| 2002. |  | 1 |  |  |  |  |
| Udorthents, earthen dams |  | 1 |  |  |  |  |
|  |  |  |  |  |  |  |
| 2015. \| |  | 1 |  |  |  |  |
| Pits \| |  | 1 |  |  |  |  |
|  |  | 1 \| |  |  |  |  |
| 2050. |  | 1 |  |  |  |  |
| Landfill \| |  | \| | |  |  |  |  |
|  |  | \| | |  |  |  |  |
| 3011A------------------- \| | 6w | 1.4 | --- | --- | --- | --- |
| Barronett \| |  | \| |  |  |  |  |
|  |  |  |  |  |  |  |

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	Bluegrass\|white clover	$\begin{array}{\|c\|} \text { Orchard- } \\ \mid \text { grass-alsike } \\ \hline \end{array}$	Orchard-   grass-red   clover	$\begin{aligned} & \text { \|Red clover } \\ & \text { Ray } \\ & \hline \end{aligned}$	Timothyalsike	
		Tons	Tons	Tons	Tons	Tons	
3082E------------------- \|		1.4	2.2	2.4	1.8	2.0	
Braham----------------- \|	6 e						
Shawano----------------- \|	7s						
3114A-------------------\|		---	--	--	---	---	
Saprists----------------\|	8w						
Aquents----------------- \|	8w						
Aquepts---------------- \|	8w						
3125A-------------------\|	4w	1.0	1.6	1.8	1.4	1.4	
Meehan							
3126A------------------ \|	4 s	1.0	1.8	2.0	1.4	1.6	
Wurtsmith		\|					
3312B------------------- \|		1.8	2.6	2.8	2.2	2.4	
Glendenning, very stony	4 s	1 \|					
Glendenning------------ \|	2w						
3336A------------------- \|	6w	2.0	\| ---	---	--	---	
Fenander		1 \|					
3403A------------------- \|		---	\| ---	---	---	---	
Loxley----------------- \|	7w	$\mid$ \|					
Beseman----------------- \|	7w						
Dawson------------------ \|	7w						
3429B------------------- \|	3 s	1.4	2.2	2.4	1.8	2.0	
Lara							
		1 \|					
3429C------------------ \|	4 e	1.2	2.0	2.2	1.6	1.8	
Lara \|							
3446A------------------- \|	6w	\| ---		---	---	---	---
Newson		1 \|					
		,					
3448B------------------- \|	4 s	1.0	1.6	1.8	1.4	1.4	
Grettum		1 \|					
3448C------------------- \|	6 s	1.0	1.6	1.8	1.4	1.4	
Grettum							
		\|					
3510B------------------ \|		11.0	1.8	2.0	1.4	1.6	
Pomroy----------------- \|	3 e	1 \|					
Fremstadt, stony--------\|	3 s	1					
Fremstadt-------------- \|	3 s	\|					
		\|					
3510C------------------- \|		1.0	1.6	1.8	1.4	1.4	
Pomroy----------------- \|	4 e	1 \|					
Fremstadt-------------- \|	4 s	1			\|		
Fremstadt, stony--------\|	4 s				\|		
		\|					
3511A------------------ \|	2w	11.0	1.8	2.0	1.4	1.6	
Bushville		,					
3516A------------------ \|	3 s	\| 1.2	2.0	2.2	1.6	1.8	
Slimlake		\|					
3625A------------------ \|	4w	11.0	1.8	2.0	1.4	1.6	
Lino \|							
		\|			1		
3626A------------------- \|	4s	1.0	1.6	1.8	1.4	1.4	
Crex \|		I			\|		
		\|					

Table 7b.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability	Bluegrass\|white clover	$\begin{gathered} \text { Orchard- } \\ \text { \|grass-alsike } \end{gathered}$	Orchard-   grass-red   clover	$\begin{aligned} & \text { \|Red clover } \\ & \text { hay } \\ & \hline \end{aligned}$	Timothyalsike
		Tons	\| Tons	Tons	Tons	Tons
3629B-	4s	1.0	1.6	1.8	1.4	1.4
Perida						
3636B-	4 s	1.0	1.6	1.8	1.4	1.4
Plainbo						
$3636 \mathrm{C}---$	6 s	1.0	1.6	1.8	1.4	1.4
Plainbo						
M-w.						
Miscellaneous water						
W.						
Water						

Table 8.--Prime Farmland
(Only the soils considered prime farmland are listed. Urban or built-up areas of the soils listed are not considered prime farmland)

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Map unit name
22A	Comstock silt loam, 0 to 3 percent slopes
27A	Scott Lake sandy loam, 0 to 3 percent slopes
28B	Haugen-Rosholt complex, 2 to 6 percent slopes, very stony
38A	Rosholt sandy loam, 0 to 2 percent slopes
38B	Rosholt sandy loam, 2 to 6 percent slopes
43B	Antigo silt loam, 1 to 6 percent slopes
63A	Crystal Lake silt loam, 0 to 2 percent slopes
63B	Crystal Lake silt loam, 2 to 6 percent slopes
82B	Cutaway-Branstad complex, 1 to 6 percent slopes
83A	Smestad loamy fine sand, 0 to 3 percent slopes
85B	Taylor loam, 2 to 6 percent slopes
86A	Indus-Alango complex, 0 to 2 percent slopes
89A	Wildwood muck, 0 to 1 percent slopes
151A	Bluffton loam, 0 to 2 percent slopes
152A	Alstad loam, 0 to 3 percent slopes
156B	Magnor, very stony-Magnor complex, 0 to 4 percent slopes
157B	Freeon, very stony-Freeon complex, 2 to 6 percent slopes
160A	Oesterle sandy loam, 0 to 2 percent slopes
185B	Tradelake-Taylor complex, 1 to 6 percent slopes
189A	Siren loam, 0 to 3 percent slopes
193A	Minocqua muck, 0 to 2 percent slopes
337A	Plover fine sandy loam, 0 to 3 percent slopes
542B	Haugen, very stony-Haugen complex, 2 to 6 percent slopes
553B	Branstad fine sandy loam, 2 to 6 percent slopes
621A	Bjorkland peat, 0 to 2 percent slopes
623A	Capitola muck, 0 to 2 percent slopes, very stony
624A	Ossmer silt loam, 0 to 3 percent slopes
631A	Giese muck, 0 to 1 percent slopes, very stony
632A	Aftad fine sandy loam, 0 to 2 percent slopes
632B	Aftad fine sandy loam, 2 to 6 percent slopes
648B	Sconsin silt loam, 1 to 6 percent slopes
715A	Mora silt loam, 0 to 3 percent slopes, very stony
717B	Milaca silt loam, 3 to 6 percent slopes, very stony
742B	Milaca sandy loam, 2 to 6 percent slopes, very stony
812B	Mora sandy loam, 0 to 4 percent slopes, very stony
3011A	Barronett silt loam, 0 to 2 percent slopes
3312B	Glendenning, very stony-Glendenning complex, 0 to 4 percent slopes
3336A	Fenander fine sandy loam, 0 to 2 percent slopes

Table 9.--Conservation Tree/Shrub Suitability Groups
(Absence of an entry indicates that a conservation tree/shrub suitability group is not assigned)

```Map symbol and soil name```	```Conservation tree/shrub suitability group```
3A:	
Totagatic------------	10
Bowstring-------------	10
Ausable-------------	10
12A:	
Makwa----------------	10
22A:	
Comstock-	10
27A:	
Scott Lake------------	6GA
28B:	
Haugen, very stony----	2A
Haugen----------------	2A
Rosholt, very stony---	6GA
Rosholt---	6GA
28C:	
Haugen, very stony----	2A
Haugen-------	2A
Rosholt, very stony---	6GA
Rosholt--------------	6GA
38A:	
Rosholt----	6GA
38B:	
Rosholt--------------	6GA
38C:	
Rosholt-------------- \|	6GA
38D:	
Rosholt--------------	6GA
42D:	
Amery---------------- \|	4A
43B:	
Antigo--------------- \|	6GA
43C:	
Antigo--------------- \|	6GA
63A:	
Crystal Lake----------\|	2A

| Table $9 .-$ Conservation Tree/Shrub Suitability Groups--Continued |
| :--- | :--- |
| Mapmbol |
| and |
| soil name |

| Mable $9 .-$ Conservation Tree/Shrub Suitability Groups--Continued |
| :---: | :---: |
| and |
| soil name |

Table $9 .-$ ConservationTree/Shrub Suitability Groups--Continued and soil name	Conservation tree/shrub
suitability group	

| Table $9 .-$ Conservation |
| :--- | :--- |
| Map symbol |
| and | Tree/Shrub Suitability Groups--Continued

| Table $9 .--$ Conservation Tree/Shrub Suitability Groups--Continued |
| :--- | :--- |
| Map symbl |
| and |
| soil name |

| Table 9.--Conservation Tree/Shrub Suitability Groups--Continued |
| :--- | :--- |
| Map symbol |
| and |
| soil name |

Table 10.--Forest Land Harvest Equipment Considerations
(See text for a description of the considerations listed in this table)

Map symbol and soil name	Forest land harvest equipment
considerations	

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment considerations
43B:	
Antigo	No major considerations
43C:	
Antigo-	No major considerations
63A:	
Crystal Lak	Wetness
	Susceptible to rutting and wheel slippage
63B:	
Crystal Lak	Wetness
	Susceptible to rutting and wheel slippage
63C:	
Crystal Lake	Wetness
	Susceptible to rutting and wheel slippage
64A:	
Totagatic	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
	Poor traction (loose sandy material)
Winterfield	Flooding
	Wetness
	Poor traction (loose sandy material)
69C:	
Keweenaw----------------\| Poor traction (loose sandy material)	
Sayner----------------------------	Poor traction (loose sandy material)
	Poor traction (loose sandy material)
69E:	
Keweenaw-----------	slope
	Poor traction (loose sandy material)
Sayner-------------	Slope
	Poor traction (loose sandy material)
Vilas--------------	Slope
	Poor traction (loose sandy material)
82B:	
Cutaway---------------------	Poor traction (loose sandy material)
	Susceptible to rutting and wheel slippage
82C:	
Cutaway-----------------------	Poor traction (loose sandy material)
	Susceptible to rutting and wheel slippage
83A:	
Smestad------------	Wetness
	Poor traction (loose sandy material)
Tayl	Wetness
	Susceptible to rutting and wheel slippage

Map symbol and soil name	Forest land harvest equipment considerations
85C:	
Taylor	Wetness
	Susceptible to rutting and wheel slippage
86A:	
Indus	Wetness
	Susceptible to rutting and wheel slippage
Alango	Wetness
	Susceptible to rutting and wheel slippage
89A:	
Wildwood-	Wetness
	Susceptible to rutting and wheel slippage
96B:	
Karlsborg	
	Poor traction (loose sandy material)
96C:	
Karlsborg	
	Poor traction (loose sandy material)
96D:	
Karlsborg	Slope
	Wetness
	Poor traction (loose sandy material)
100B:	
Menahga-	Poor traction (loose sandy material)
100C:	
Menahga-	Poor traction (loose sandy material)
100D:	
Menahg	Slope
	Poor traction (loose sandy material)
	120B:
Kost	Poor traction (loose sandy material)
127D:	
Amery	Slope
Roshol	Slope
127E:	
Amery	Slope
Rosholt------------151A:	Slope
Bluffton	Wetness
	Susceptible to rutting and wheel slippage
152A:	
Alstad	Wetness
	Susceptible to rutting and wheel slippage
154E:	
Cushing	Slope
	Susceptible to rutting and wheel slippage

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment
considerations	

Map symbol and soil name	Forest land harvest equipment considerations
368C:	
Mahtomedi	Poor traction (loose sandy material)
Cress---	No major considerations
368D:	
Mahtomedi	Slope
	Poor traction (loose sandy material)
Cress-	Slope
368E:	
Mahtomedi	Slope
	Poor traction (loose sandy material)
Cress	Slope
380B:	
Cress	No major considerations
Rosholt	No major considerations
380C:	
Cress	No major considerations
Rosholt	No major considerations
380D:	
Cress-	Slope
Rosholt	Slope
383B:	
Mahtomedi	Poor traction (loose sandy material)
383C:	
Mahtomedi	Poor traction (loose sandy material)
383D:	
Mahtomedi	Slope
	Poor traction (loose sandy material)
392C:	
Rockmarsh	Slope
	Wetness
	Susceptible to rutting and wheel slippage
Dairyland	Slope
	Wetness
Makwa	Wetness
	Susceptible to rutting and wheel slippage
396B:	
Friendship--------------\| Poor traction (loose sandy material)	
Wurtsmith	Poor traction (loose sandy material)
Grayling-------------------- \|	Poor traction (loose sandy material)
397A :	
Perchl	Wetness
	Poor traction (loose sandy material)

Table 10.--Forest Land Harvest Equipment Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Forest land harvest equipment considerations
399B:	
Grayling-	Poor traction (loose sandy material)
399C:	
Grayling-	Poor traction (loose sandy material)
399D:	
Grayling	Slope
	Poor traction (loose sandy material)
406A:	
Loxley	Wetness
	Susceptible to rutting and wheel slippage
407A:	
Seelyeville--------	Wetness
	Susceptible to rutting and wheel slippage
Markey	Wetness
	Susceptible to rutting and wheel slippage
410A:	
Seelyevill	Wetness
	Susceptible to rutting and wheel slippage
Cathro	Wetness
	Susceptible to rutting and wheel slippage
419A:	
Seelyeville--------	Wetness
	Susceptible to rutting and wheel slippage
Cathro-------------	Wetness
	Susceptible to rutting and wheel slippage
Markey-------------	Wetness
	Susceptible to rutting and wheel slippage
421A:	
Dora	Wetness
	Susceptible to rutting and wheel slippage
Markey	Wetness
	Susceptible to rutting and wheel slippage
Seelyeville--------	Wetness
	Susceptible to rutting and wheel slippage
422A:	
Seelyeville	Wetness
	Susceptible to rutting and wheel slippage
Cathro------------	Wetness
	Susceptible to rutting and wheel slippage
Rondeau-----------	Wetness
	Susceptible to rutting and wheel slippage
426B:	
Emmert	Poor traction (loose sandy material)
	Poor traction (loose sandy material)
Menahga-----------------\| Poor traction (loose sandy material)	

Map symbol and soil name	Forest land harvest equipment considerations
426C:	
Emmert	Poor traction (loose sandy material)
Mahtomedi	Poor traction (loose sandy material)
Menahga-	Poor traction (loose sandy material)
426D:	
Emmert	Slope
	Poor traction (loose sandy material)
Mahtomedi-----------	Slope
	Poor traction (loose sandy material)
Menahga-------------	Slope
	Poor traction (loose sandy material)
430A:	
Freya	Wetness
	Poor traction (loose sandy material)
439B:	
Graycalm-	Poor traction (loose sandy material)
Menahga-	Poor traction (loose sandy material)
439C:	
Graycalm-	Poor traction (loose sandy material)
Menahga-	Poor traction (loose sandy material)
439D:	
Graycalm----------	Slope
	Poor traction (loose sandy material)
Menahga------------	Slope
	Poor traction (loose sandy material)
442C:	
Haugen-	Wetness
Greenwood	Wetness
	Susceptible to rutting and wheel slippage
443D:	
Amery--------------	Slope
	Wetness
	Susceptible to rutting and wheel slippage
459A:	
Loxle	Wetness
	Susceptible to rutting and wheel slippage
Daisybay-----------	Susceptible to rutting and wheel slippage
Dawson	Wetness
	Susceptible to rutting and wheel slippage
Bowstring	Flooding
	Wetness
	Susceptible to rutting and wheel slippage

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment
considerations	

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment considerations
542C:	
Haugen, very stony-	Wetness
Haugen--	Wetness
544F:	
Menahga-	Slope
	Poor traction (loose sandy material)
Mahtomedi-	Slope
	Poor traction (loose sandy material)
553B:	
Branstad-	Susceptible to rutting and wheel slippage
553C:	
Branstad-	Susceptible to rutting and wheel slippage
553D:	
Branstad	Slope
	Susceptible to rutting and wheel slippage
555A:	
Fordum	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
557B :	
Shawano	Poor traction (loose sandy material)
557C:	
Shawano	Poor traction (loose sandy material)
557D:	
Shawano	Slope
	Poor traction (loose sandy material)
586A:	
Chelmo	Wetness
	Susceptible to rutting and wheel slippage
600A:	
Haplosaprists-------------\| Onsite investigation required	
Psammaquents	Onsite investigation required
615B:	
Cress	No major considerations
615C:	
Cress	No major considerations
615D:	
Cress	Slope
620C:	
Lundeen	Areas of rock outcrop
Haustrup	Areas of rock outcrop
Rock outcrop.	

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment
considerations	

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment considerations
1070D:	
Fremstadt	Slope
	Poor traction (loose sandy material)
Cress-	slope
1080B:	
Spoonerhill-	Wetness
Spoonerhill, stony--	Wetness
Cress-	No major considerations
2002.	
Udorthents, earthen dams	
2015.	
Pits	
2050.	
Landfill	
3011A:	
Barronett	Wetness
	Susceptible to rutting and wheel slippage
3082E:	
Braham-	Slope
	Poor traction (loose sandy material)
Shawano-----------------	Slope
	Poor traction (loose sandy material)
3114A:	
Saprists	Wetness
	Susceptible to rutting and wheel slippage
Aquents	Wetness
	Susceptible to rutting and wheel slippage Poor traction (loose sandy material)
Aquepts-----------------	Wetness
	Susceptible to rutting and wheel slippage
	3125A:
Meehan	Wetness
	Poor traction (loose sandy material)
3126A:	
Wurtsmith	Poor traction (loose sandy material)
3312B:	
Glendenning, very stony--	Wetness
	Wetness
3336A:	
Fenander--	Wetness

Table 10.--Forest Land Harvest Equipment Considerations--Continued

Map symbol and soil name	Forest land harvest equipment
considerations	

Table 10.--Forest Land Harvest Equipment Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Forest land harvest equipment considerations
3636B:	
Plainbo-	Poor traction (loose sandy material)
3636C:	
Plainbo-	Poor traction (loose sandy material)
M-W.	
Miscellaneous water	
W.	
Water	

Table 11.--Forest Haul Road Considerations

Table 11.--Forest Haul Road Considerations--Continued

Map symbol and soil name	Forest haul road considerations
43B:	
Antigo-	No major considerations
43C:	
Antigo-	Slope
63A:	
Crystal Lak	Wetness
	Low bearing strength
63B:	
Crystal Lak	Wetness
	Low bearing strength
63C:	
Crystal Lake	Slope
	Wetness
	Low bearing strength
64A:	
Totagatic----------	Flooding
	Wetness
	Low bearing strength
Winterfield-	Flooding
	Wetness
69C:	
Keweenaw-	Slope
Sayner	Slope
Vilas-	Slope
69E:	
Keweenaw-	Slope
Sayner	Slope
Vilas-	Slope
82B:	
Cutaway------------------ ${ }^{\text {a }}$ \| No major considerations	
Branstad-------------------\| Low bearing strength	
82C:	
Cutaway-	Slope
Branstad	Slope
	Low bearing strength
83A:	
Smestad-	Wetness
85B:	
Taylor	Wetness
	Low bearing strength
85C:	
Taylo	Slope
	Wetness
	Low bearing strength

Table 11.--Forest Haul Road Considerations--Continued

```Map symbol and soil name```	Forest haul road considerations
86A:	
Indus---------------------- \| Wetness	
	Low bearing strength
Alango-------------	Wetness
	Low bearing strength
89A:	
Wildwood-----------	Wetness
	Low bearing strength
96B:	
Karlsborg----------	Wetness
Karlsborg----------	Slope
	Wetness
96D:	
Karlsborg-----------	Slope
	Wetness
100B:	
Menahga------------------ ${ }^{\text {- }}$ \| No major considerations	
100C:	
Menahga--------------------- ${ }^{\text {- }}$ Slope	
100D:	
Menahga--------------------- ${ }^{\text {- }}$ \| Slope	
120B:	
Kost-------------------- ${ }^{\text {- }}$ \| No major considerations	
127D:	
Amery-------------------------------	slope
	slope
127E:	
Amery-----------------------------	Slope
	Slope
151A:	
Bluffton-----------	Wetness
	Low bearing strength
152A:	
Alstad	Wetness
	Low bearing strength
154E:	
Cushing	Slope
	Low bearing strength
156B:	
Magnor, very stony	Wetness
Magnor------------	Wetness

Table 11.--Forest Haul Road Considerations--Continued

Map symbol and soil name	Forest haul road considerations
157B:	
Freeon, very stony-	Wetness
Freeon-	Wetness
157C:	
Freeon, very stony	Slope Wetness
Freeon	Slope
	Wetness
160A:	
Oesterle-	Wetness
165B:	
Elderon-	No major considerations
185B:	
Tradelake	Wetness
Taylor-------------	Wetness
	Low bearing strength
185C:	
Tradelake	Slope
	Wetness
Taylor	Slope
	Wetness
	Low bearing strength
185D:	
Tradelake----------	Slope
	Wetness
Taylor	Slope
	Wetness
	Low bearing strength
185E:	
Tradelake---------	Slope
	Wetness
Taylor	Slope
	Wetness
	Low bearing strength
189A:	
Siren	Wetness
	Low bearing strength
193A:	
Minocqua	Wetness
	Low bearing strength
337A:	
Plover-	Wetness
368B:	
Mahtomedi-	No major considerations
Cress	No major considerations


$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Forest haul road considerations
368C:	
Mahtomedi-	Slope
Cress	slope
368D:	
Mahtomedi	Slope
Cress-	Slope
368E:	
Mahtomedi	Slope
Cress	Slope
380B:	
Cress	No major considerations
Rosholt	No major considerations
380C:	
Cress	Slope
Rosholt	Slope
380D:	
Cress	Slope
Rosholt	Slope
383B:	
Mahtomedi	No major considerations
383C:	
Mahtomedi-	Slope
383D:	
Mahtomedi	Slope
392C:	
Rockmarsh----------	Slope
	Wetness
	Low bearing strength
Dairyland	Slope
	Wetness
Makwa	Slope
	Wetness
	Low bearing strength
396B:	
Friendship-	No major considerations
Wurtsmith-	No major considerations
Grayling--	No major considerations
397A:	
Perchlake-	Wetness
3998:	
Grayling-	No major considerations

Table 11.--Forest Haul Road Considerations--Continued

Map symbol and soil name	Forest haul road considerations
399C:	
Grayling-	Slope
399D:	
Grayling-	Slope
406A:	
Loxley------------	Wetness
	Low bearing strength
407A:	
Seelyeville--------	Wetness
	Low bearing strength
Markey	Wetness
	Low bearing strength
410A:	
Seelyeville--------	Wetness
	Low bearing strength
Cathro-------------	Wetness
	Low bearing strength
419A:	
Seelyeville--------	Wetness
	Low bearing strength
Cathro-------------	Wetness
	Low bearing strength
Markey-------------	Wetness
	Low bearing strength
421A:	
Dora	Wetness
	Low bearing strength
Markey-------------	Wetness
	Low bearing strength
Seelyeville	Wetness
	Low bearing strength
422A:	
Seelyeville--------	Wetness
	Low bearing strength
Cathro-------------	Wetness
	Low bearing strength
Rondeau------------	Wetness
	Low bearing strength
	426B:
Emmert	No major considerations
Mahtomedi-	No major considerations
Menahga	No major considerations

Table 11.--Forest Haul Road Considerations--Continued


Table 11.--Forest Haul Road Considerations--Continued


Table 11.--Forest Haul Road Considerations--Continued

Map symbol and soil name	Forest haul road considerations
495C:	
Karlsborg----------	Slope
	Wetness
Grettum-	Slope
Perida-------------	Slope
	Wetness
495D:	
Karlsborg----------	Slope
	Wetness
Grettum-	Slope
Perida	Slope
	Wetness
496B:	
Karlsborg-	Wetness
496C:	
Karlsborg	Slope
	Wetness
496D:	
Karlsborg	Slope
	Wetness
497A:	
Meenon	Wetness
521A:	
Dody	Wetness
	Low bearing strength
523A:	
Nokasippi----------	Wetness
	Low bearing strength
529B:	
Perida-	Wetness
531A:	
Stengel	Wetness
542B:	
Haugen, very stony-	Wetness
Haugen-	Wetness
542C:	
Haugen, very stony-	Slope
	Wetness
Haugen	Slope
	Wetness
544F:	
Menahga-	Slope
Mahtomedi-	Slope


$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Forest haul road considerations
553B:	
Branstad-	Low bearing strength
553C:	
Branstad-	Slope
	Low bearing strength
553D:	
Branstad-	Slope
	Low bearing strength
555A:	
Fordum-	Flooding
	Wetness
	Low bearing strength
557B:	
Shawano-	No major considerations
557C:	
Shawano-	Slope
557D:	
Shawano-	Slope
586A:	
Chelmo-	Wetness
	Low bearing strength
600A:	
Haplosaprists-	Onsite investigation required
Psammaquents	Onsite investigation required
615B:	
Cress	No major considerations
615C:	
Cress	Slope
615D:	
Cress	Slope
620C:	
Lundeen-	Slope
	Areas of rock outcrop
Haustrup-	slope   Depth to hard rock
	Areas of rock outcrop
Rock outcrop.	
621A:	
Bjorkland-	Wetness
	Low bearing strength
623A:	
Capitola-----------	Wetness
	Low bearing strength
624A:	
Ossmer-	Wetness

Table 11.--Forest Haul Road Considerations--Continued

```Map symbol and soil name```	Forest haul road considerations
631A:	
Giese	Wetness
	Low bearing strength
632A:	
Aftad-	Wetness
632B:	
Aftad-	Wetness
632C:	
Aftad--	
	Wetness
634C:	
Drylanding-	slope
	Depth to hard rock
Beartree-	Wetness
	Depth to hard rock
	Low bearing strength
Rock outcrop.	
635C:	
Drylanding	Slope
	Depth to hard rock
Beartree-	Wetness
	Depth to hard rock
	Low bearing strength
Rock outcrop.	
648B:	
Sconsin-	Wetness
669D:	
Fremstadt, stony-	slope
Pomroy-	Slope
	Wetness
671B:	
Spoonerhill, stony-	Wetness
Spoonerhill-	Wetness
706A:	
Winterfield-	Flooding
	Wetness
	Flooding
	Flooding Wetness
715A:	
Mora-	Wetness
717B:	
Milaca-	Wetness
717C:	

Table 11.--Forest Haul Road Considerations--Continued

Map symbol and soil name	Forest haul road considerations
720F:	
Haustrup-	Slope
	Depth to hard rock
	Areas of rock outcrop
Lundeen-------------	Slope
	Areas of rock outcrop
Rock outcrop.	
726B:	
Sissabagama-	Wetness
742B:	
Milaca-	Wetness
742C:	
Milaca	Slope
	Wetness
742D:	
Milaca	Slope
	Wetness
755A:	
Moppet---------------------\| ${ }^{\text {a }}$ No major considerations	
Fordum	Flooding
	Wetness
	Low bearing strength
771A:	
Lenroot	No major considerations
812B:	
Mora-	Wetness
825A :	
Meehan-	Wetness
896A:	
Wurtsmith-	No major considerations
980A:	
Soderbeck-	Wetness
	Surface boulders
1070C:	
Fremstadt	slope
Cress-	Slope
1070D:	
Fremstadt-	slope
Cress	Slope
1080B:	
Spoonerhill-----	Wetness
Spoonerhill, stony-	Wetness
Cress	No major considerations

Table 11.--Forest Haul Road Considerations--Continued

```Map symbol and soil name```	Forest haul road considerations
2002.	
Udorthents, earthen dams	
2015.	
Pits	
2050.	
Landfill	
3011A:	
Barronett-	Wetness
	Low bearing strength
3082E:	
Braham-	slope
Shawano--	Slope
3114A:	
Saprists	Wetness
	Low bearing strength
Aquents-	Wetness
	Low bearing strength
Aquepts-	Wetness
	Low bearing strength
3125A:	
Meehan--	Wetness
3126A:	
Wurtsmith-	No major considerations
3312B:	
Glendenning, very stony--	Wetness
Glendenning-----------	Wetness
3336A:	
Fenander-	Wetness
3403A:	
Loxley--	Wetness
	Low bearing strength
Beseman---	Wetness
	Low bearing strength
Dawson------------------	Wetness
	Low bearing strength
3429 B :	
Lara-	Wetness
3429 C :	
Lara-------------------	Slope
	Wetness
3446A:	
  Wetness   Low bearing strength	


```Map symbol and soil name```	Forest haul road considerations
3448B:	
Grettum-	No major considerations
3448C:	
Grettum-	Slope
3510B:	
Pomroy-	Wetness
Fremstadt	No major considerations
Fremstadt, stony-	No major considerations
3510C:	
Pomroy	Slope
	Wetness
Fremstadt	Slope
Fremstadt, stony--	slope
3511A:	
Bushville	Wetness
3516A:	
Slimlake-	No major considerations
3625A:	
Lino-	Wetness
3626A:	
Crex-	No major considerations
3629B:	
Perida-	Wetness
3636B:	
Plainbo	No major considerations
3636C:	
Plainbo-	slope
M-W. Miscellaneous water	
W.	
Water	

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
43C:	
Antigo-	Slope
63A:	
Crystal Lake-	Wetness
	Susceptible to rutting and wheel slippage
63B:	
Crystal Lake-	Wetness
	Susceptible to rutting and wheel slippage
63C:	
Crystal Lake	Slope
	Wetness
	Susceptible to rutting and wheel slippage
64A:	
Totagat	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
Winterfield-	Flooding
	Wetness
69C:	
Keweenaw-	Slope
Sayner-	Slope
Vilas-	Slope
69E:	
Keweenaw-	Slope
Sayner-	Slope
Vilas-	Slope
82B:	
Cutaway-	No major considerations
Branstad-	Susceptible to rutting and wheel slippage
82C:	
Cutaway-	Slope
Branstad	Slope
	Susceptible to rutting and wheel slippage
83A:	
Smestad-----------85B:	Wetness
	85B :
Taylor	Wetness
	Susceptible to rutting and wheel slippage
85C:	
Taylo	Slope
	Wetness
	Susceptible to rutting and wheel slippage

Table 12.--Forest Log Landing Considerations--Continued

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
157B:	
Freeon, very stony-	Wetness
Freeon-----------	Wetness
157C:	
Freeon, very stony-	Slope
	Wetness
Freeon	Slope
	Wetness
160A:	
Oesterle--	Wetness
165B:	
Elderon-	No major considerations
185B:	
Tradelake-	Wetness
Taylor	Wetness
	Susceptible to rutting and wheel slippage
185C:	
Tradelake----------	Slope
	Wetness
Taylor	Slope
	Wetness
	Susceptible to rutting and wheel slippage
185D:	
Tradelake	Slope
	Wetness
Taylor	Slope
	Wetness
	Susceptible to rutting and wheel slippage
185E:	
Tradelake	Slope
	Wetness
Taylor	Slope
	Wetness
	Susceptible to rutting and wheel slippage
189A:	
Siren	Wetness
	Susceptible to rutting and wheel slippage
193A:	
Minocqua	Wetness
	Susceptible to rutting and wheel slippage
337A:	
Plover-	Wetness
368B:	
Mahtomedi---	No major considerations
Cress-	No major considerations

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
368C:	
Mahtomedi-	slope
Cress	slope
368D:	
Mahtomedi	Slope
Cress-	Slope
368E:	
Mahtomedi	Slope
Cress-	Slope
380B:	
Cress	No major considerations
Rosholt	No major considerations
380C:	
Cress-	Slope
Rosholt-	Slope
380D:	
Cress	Slope
Rosholt-	Slope
383B :	
Mahtomedi-	No major considerations
383C:	
Mahtomedi-	Slope
383D:	
Mahtomedi-	Slope
392C:	
Rockmarsh-	Slope
	Wetness
	Susceptible to rutting and wheel slippage
Dairyland	Slope
	Wetness
Makwa	Slope
	Wetness
	Susceptible to rutting and wheel slippage
396B:	
Friendship-	No major considerations
Wurtsmith-	No major considerations
Grayling---	No major considerations
397A:	
Perchlake--	Wetness
399B:	
Grayling-	No major considerations

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
399C:	
Grayling-	Slope
3998:	
Grayling-	Slope
406A:	
Loxley	Wetness
	Susceptible to rutting and wheel slippage
407A:	
Seelyeville--------	Wetness
	Susceptible to rutting and wheel slippage
Markey-------------	Wetness
	Susceptible to rutting and wheel slippage
410A:	
Seelyeville	Wetness
	Susceptible to rutting and wheel slippage
Cathro-------------	Wetness
	Susceptible to rutting and wheel slippage
419A:	
Seelyevill	Wetness
	Susceptible to rutting and wheel slippage
Cathro-------------	Wetness
	Susceptible to rutting and wheel slippage
Markey-------------	Wetness
	Susceptible to rutting and wheel slippage
421A:	
Dora	Wetness
	Susceptible to rutting and wheel slippage
Markey------------	Wetness
	Susceptible to rutting and wheel slippage
Seelyeville--------	Wetness
	Susceptible to rutting and wheel slippage
422A:	
Seelye	Wetness
	Susceptible to rutting and wheel slippage
Cathro-------------	Wetness
	Susceptible to rutting and wheel slippage
Rondeau------------	Wetness
	Susceptible to rutting and wheel slippage
426B:	
Emmert	No major considerations
Mahtomedi-----------Menahga------------	No major considerations
	No major considerations

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
426C:	
Emmert-	Slope
Mahtomedi-	Slope
Menahga--	Slope
426D:	
Emmert-	Slope
Mahtomedi-	Slope
Menahga-	Slope
430A:	
Freya-	Wetness
439B:	
Graycalm-	No major considerations
Menahga-	No major considerations
439C:	
Graycalm-	Slope
Menahga-	Slope
439D:	
Graycalm-	Slope
Menahga-	Slope
442C:	
Haugen	Slope
	Wetness
Greenwood-	Wetness
	Susceptible to rutting and wheel slippage
443D:	
Amery-	Slope
Greenwood	Wetness
	Susceptible to rutting and wheel slippage
459A:	
Loxley	Wetness
	Susceptible to rutting and wheel slippage
Daisybay-----------	Wetness
	Susceptible to rutting and wheel slippage
Dawson	Wetness
	Susceptible to rutting and wheel slippage
461A:	
Bowstring	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
465A:	
Newson	Wetness
	Susceptible to rutting and wheel slippage
Meehan-------	Wetness

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
469E:	
Bigisland-	Slope
	Susceptible to rutting and wheel slippage
Milaca-	Slope
	Wetness
471B:	
Dairyland-	Wetness
Emmert---------------------\| ${ }^{\text {a }}$ No major considerations	
471C:	
Dairyland----------	Slope
	Wetness
Emmert-----------------------	slope
472A:	
Rockmarsh	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
Clemens-----------	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
473A:	
Dairyland----------	Wetness
	No major considerations
484A:	
Greenwood-	Wetness
	Susceptible to rutting and wheel slippage
Beseman	Wetness
	Susceptible to rutting and wheel slippage
485C:	
Lupton	Slope
	Wetness
	Susceptible to rutting and wheel slippage
Tawas	Slope
	Wetness
	Susceptible to rutting and wheel slippage
495B:	
Karlsborg----------	Wetness
	No major considerations
Perida	Wetness
495C:	
Karlsborg	Slope
	Wetness
Grettum--	slope
Perida	Slope
	Wetness

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
495D:	
Karlsborg-	Slope
	Wetness
Grettum-----	slope
Perida	Slope
	Wetness
496B:	
Karlsborg-	Wetness
496C:	
Karlsborg	Slope
	Wetness
496D:	
Karlsborg-	Slope
	Wetness
497A :	
Meenon-	Wetness
521A:	
Dody	Wetness
	Susceptible to rutting and wheel slippage
523A:	
Nokasippi	Wetness
	Susceptible to rutting and wheel slippage
529B:	
	Wetness
531A:	
Stengel-------	Wetness
542B:	
Haugen, very stony-	Wetness
Haugen-	Wetness
542C:	
Haugen, very stony	Slope
	Wetness
Haugen--------------	slope
	Wetness
544F:	
Menahga-------------Mahtomedi-----------	Slope
	Slope
553B:	
Branstad-	Susceptible to rutting and wheel slippage
553C:	
Branstad	Slope
	Susceptible to rutting and wheel slippage
	553D:
Branstad-	Slope
	Susceptible to rutting and wheel slippage

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
555A:	
Fordum-	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
557B:	
Shawano-	No major considerations
557C:	
Shawano-	Slope
557D:	
Shawano-	Slope
586A:	
Chelmo--	Wetness
	Susceptible to rutting and wheel slippage
600A:	
Haplosaprists-	Onsite investigation required
Psammaquents-	Onsite investigation required
615B:	
Cress	No major considerations
615C:	
Cress	Slope
615D:	
Cress-	Slope
620C:	
Lundeen	Slope
	Areas of rock outcrop
Haustrup	Slope
	Areas of rock outcrop
Rock outcrop.	
621A:	
Bjorkland-	Wetness
	Susceptible to rutting and wheel slippage
623A:	
Capitola-	Wetness
	Susceptible to rutting and wheel slippage
624A:	
Ossmer-	Wetness
631A:	
Giese	Wetness
	Susceptible to rutting and wheel slippage
632A:	
Aftad-	Wetness
632B:	
Aftad-	Wetness

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
742B:	
Milaca-	Wetness
742C:	
Milaca-	Slope
	Wetness
742D:	
Milaca	Slope
	Wetness
755A:	
Moppet--	Flooding
Fordum-	Flooding
	Wetness
	Susceptible to rutting and wheel slippage
771A:	
Lenroot-	No major considerations
812B:	
Mora-	Wetness
825A:	
Meehan---	Wetness
896A:	
Wurtsmith-	No major considerations
980A:	
Soderbeck-	Wetness
	Surface boulders
1070C:	
Fremstadt-	Slope
Cress-	Slope
1070D:	
Fremstadt-	Slope
Cress-	Slope
1080B:	
Spoonerhill-------------	Wetness
	Wetness
Cress-	No major considerations
2002.	
Udorthents, earthen dams	
2015.	
Pits	
2050.	
Landfill	
3011A:	
Barronett	Wetness
	Susceptible to rutting and wheel slippage

Table 12.--Forest Log Landing Considerations--Continued

Map symbol and soil name	Forest log landing considerations
3082E:	
Braham-	Slope
Shawano--	Slope
3114A:	
Saprists--------------------	Wetness
	Susceptible to rutting and wheel slippage
Aquents--------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
Aquepts-------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
3125A:	
Meehan---------------------- \|	Wetness
3126A:	
Wurtsmith-------------------	No major considerations
3312B: \|	
Glendenning, very stony-----\|	Wetness
Glendenning----------------- \|	Wetness
3336A:	
Fenander------------------- \|	Wetness
3403A:	
Loxley---------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
Beseman-------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
Dawson---------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
3429B:	
Lara----------------------- \|	Wetness
3429C:	
Lara---------------------- \|	Slope
	Wetness
3446A:	
Newson---------------------- \|	Wetness
	Susceptible to rutting and wheel slippage
3448B:	
Grettum-------------------	No major considerations
3448C:	
Grettum-------------------- \|	Slope
3510B:	
Pomroy-------------------- \|	Wetness
Fremstadt------------------\|	No major considerations
Fremstadt, stony-------------\|	No major considerations

Table 12.--Forest Log Landing Considerations--Continued

Map symbol	
and	
soil name	Forest log landing
considerations	

Map symbol and soil name	Forest land site preparation and planting considerations
38D:	
Rosholt	Slope
	Cobbly surface
	Water erosion
42D:	
Amery	Slope
	Surface stones
	Cobbly surface
	Water erosion
43B:	
Antigo	Cobbly surface
43C:	
Antigo	Cobbly surface
	Water erosion
63A:	
Crystal Lak	Wetness
	Potential poor tilth and compaction
63B:	
Crystal Lal	Wetness
	Potential poor tilth and compaction
63C:	
Crystal Lake	Wetness
	Water erosion
	Potential poor tilth and compaction
64A:	
Totagatic	Flooding
	Wetness
Winterfield-	
	Wetness
69C:	
Keweenaw-	Surface stones
	Water erosion
Sayner-------------	
	Cobbly surface
	Water erosion
Vilas-	
	Water erosion
69E:	
Keweenaw-----------	slope
	Surface stones
	Water erosion
Sayner-	Slope
	Surface stones
	Cobbly surface
	Water erosion
Vilas	Slope
	Surface stones
	Water erosion

Map symbol and soil name	Forest land site preparation and planting considerations
82B:	
Cutaway-	No major considerations
Branstad-------------------\| ${ }^{\text {\| }}$ No major considerations	
82C:	
Cutaway-	Water erosion
Branstad------------------ \| Water erosion	
83A:	
Smestad---------------------\|	Wetness
85B :	
Taylor-------------	Wetness
	Potential poor tilth and compaction
85C:	
Taylor	Wetness
	Water erosion
	Potential poor tilth and compaction
86A :	
Indus	Wetness
	Potential poor tilth and compaction
Alango	Wetness
	Potential poor tilth and compaction
89A:	
Wildwood--------------------	Wetness
96B:	
Karlsborg------------------	Wetness
96C:	
Karlsborg	
	Water erosion
	96D:
Karlsborg	Slope
	Wetness
	Water erosion
100B:	
Menahga	No major considerations
100C:	
Menahga	Water erosion
100D:	
Menahga	Slope
	Water erosion
120B:	
	No major considerations
127D:	
Amery	slope
	Surface stones
	Cobbly surface
	Water erosion

Map symbol and soil name	Forest land site preparation and planting considerations
127D:	
Rosholt------------	Slope
	Surface stones
	Cobbly surface
	Water erosion
127E:	
Amery-	Slope
	Surface stones
	Cobbly surface
	Water erosion
Rosholt------------	Slope
	Slope
	Surface stones
	Cobbly surface
	Water erosion
151A:	
Bluffton-------------------- \|	Wetness
152A:	
Alstad-	Wetness
	Cobbly surface
154E:	
Cushing	Slope
	Cobbly surface
	Water erosion
156B:	
Magnor, very stony	Wetness
	Cobbly surface
Magnor----------------------- \|	Wetness
157B:	
Freeon, very stony	Wetness
	Cobbly surface
Freeon-----------------------	Wetness
157C:	
Freeon, very stony	Wetness
	Surface stones
	Cobbly surface
	Water erosion
Freeon-------------	
	Water erosion
160A:	
Oesterle-	
	Cobbly surface
165B:	
Elderon	No major considerations
185B:	
Tradelake-------------------- \|	Wetness
Taylor-------------	Wetness
	Potential poor tilth and compaction

Map symbol and soil name	Forest land site preparation and planting considerations
368E:	
Mahtomedi	slope Cobbly surface Water erosion
Cress--	slope Cobbly surface Water erosion
380B:	
Cress	Cobbly surface
Rosholt-	Cobbly surface
380C:	
Cress-	Cobbly surface Water erosion
Rosholt-	Cobbly surface Water erosion
380D:	
Cress-	slope Cobbly surface Water erosion
Rosholt--	```Slope Cobbly surface Water erosion```
383B:	
Mahtomedi-	Cobbly surface
383C:	
Mahtomedi-	Cobbly surface Water erosion
383D:	
Mahtomedi-	slope Cobbly surface Water erosion
392C:	
Rockmarsh-	```Slope Wetness Surface stones Cobbly surface Water erosion Potential poor tilth and compaction```
Dairyland-	```Slope Wetness Surface stones Cobbly surface Water erosion```
Makwa-	Wetness Surface stones Cobbly surface Water erosion

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Forest land site preparation and planting considerations
615C:	
Cress-	Cobbly surface Water erosion
615D:	
Cress	Slope
	Cobbly surface
	Water erosion
620C:	
Lundeen-	Surface stones
	Areas of rock outcrop
	Water erosion
Haustrup-----------	
	Surface stones
	Areas of rock outcrop
	Water erosion
Rock outcrop-	Not rated
621A:	
Bjorkland-	Wetness
623A:	
Capitola	Wetness
	Surface stones
624A:	
Ossmer	Wetness
	Cobbly surface
631A:	
Giese	Wetness
	Surface stones
632A:	
Aftad-	Wetness
632B:	
Aftad-	Wetness
632C:	
Aftad	Wetness
	Water erosion
634C:	
Drylanding	Depth to hard rock
	Water erosion
Beartree--	Wetness Depth to hard rock
	Potential poor tilth and compaction
Rock outcrop.	
	635C:
Drylanding	Depth to hard rock
	Water erosion

Map symbol and soil name	Forest land site preparation and planting considerations
726B:	
Sissabagama-	Wetness
742B:	
Milaca------------	Wetness
	Surface stones
	Cobbly surface
742C:	
Milaca	Wetness
	Surface stones
	Cobbly surface
	Water erosion
742D:	
Milaca	Slope
	Wetness
	Cobbly surface
	Water erosion
755A:	
Moppet	No major considerations
Fordum-	Flooding
	Wetness
	Cobbly surface
	Potential poor tilth and compaction
771A:	
Lenroot	No major considerations
812B:	
Mora	Wetness
	Cobbly surface
825A:	
Meehan	Wetness
896A :	
Wurtsmith	No major considerations
	980A:
Soderbeck	Wetness
	Surface boulders
	Cobbly surface
Fremstadt-	Surface stones
	Cobbly surface
	Water erosion
Cress	Cobbly surface
	Water erosion
1070D: \|	
Fremstadt	Slope
	Surface stones
	Cobbly surface
	Water erosion

Table 14.--Forest Habitat Types
(Absence of an entry indicates that no forest habitat type is applicable. See text for descriptions of the forest habitat types listed in this table)

Table 14.--Forest Habitat Types--Continued

Table 14.--Forest Habitat Types--Continued

Map symbol and map unit name	Dominant habitat type	Codominant habitat types	Common habitat types	Region	
521A-	Lwmin			1	
Dody muck, 0 to 2 percent slopes					
523A----------------------- \|	Lwmin				
Nokasippi muck, 0 to 1 percent slopes					
	PArVAm			1	
		\|ArVRp, PArVAm			1
542B Haugen, very stony-Haugen complex, 2 to 6 percent slopes		\|AAt, AVDe		1	
542C Haugen, very stony-Haugen complex, 6 to 12 percent slopes		\|AAt, AVDe		1	
```544F Menahga and Mahtomedi soils, 30 to 45 percent slopes```	PArVAm		PQGCe	1	
```553B- Branstad fine sandy loam, 2 to 6 percent slopes```	ACaCi			1	
```553C- Branstad fine sandy loam, 6 to 12 percent slopes```	ACaCi			1	
553D-   Branstad fine sandy loam, 12 to 20 percent slopes	ACaCi			1	
555A--------------------\| ${ }^{\text {a }}$ LfpFordum silt loam, 0 to 2percent slopes, frequentlyflooded					
		\| QAp, PQGCe-Ap			1
```557C------------------------- Shawano fine sand, 6 to 12 percent slopes```		\| QAp, PQGCe-Ap			1
```557D------------------------- Shawano fine sand, 12 to 30\| percent slopes```		\| QAp, PQGCe-Ap			1

Table 14.--Forest Habitat Types--Continued


Table 14.--Forest Habitat Types--Continued


Table 14.--Forest Habitat Types--Continued

Map symbol and map unit name	Dominant   habitat type	Codominant habitat types	Common habitat types	Region
771A-	PArVAm			1
Lenroot loamy sand, 0 to 3 percent slopes				
812B   Mora sandy loam, 0 to 4 percent slopes, very stony\|	AAtRp		AVCl	2
825A----------------------- \|	ArVRp			1
Meehan sand, 0 to 2 percent\| slopes				
896A-----------------------	PQGCe			1
Wurtsmith sand, 0 to 3 percent slopes				
980A-	AVDe			1
Soderbeck very gravelly				
loam, 0 to 2 percent				
slopes, very stony, rarely\|				
flooded				
```1070C Fremstadt, stony-Cress complex, 6 to }15\mathrm{ percent slopes```		AVDe, PArVAm		1
1070D Fremstadt, stony-Cress complex, 15 to 30 percent slopes		\|AVDe, PArVAm		1
\qquad Spoonerhill-Spoonerhill, stony-Cress complex, 1 to 6 percent slopes		AVDe, PArVAm		1
2002.				
Udorthents, earthen dams				
2015.				
Pits				
2050.				
Landfill				
```3011A-----------------------  percent slopes```	Lwmin			
3082E---------------------\|	AAt			1
Braham-Shawano complex, 12 to 35 percent slopes				
3114A.				
Saprists, Aquents, and				
Aquepts, 0 to 1 percentslopes, ponded, flooded				
slopes, ponded, flooded				
3125A--------------------\|ArVRp			PArVAm	1
Meehan loamy sand, 0 to 2 percent slopes				

Table 14.--Forest Habitat Types--Continued


Table 14.--Forest Habitat Types--Continued

Map symbol and map unit name	Dominant habitat type	Codominant habitat types	Common habitat types	Region
3629B-------	\| PArVAm			1
Perida loamy sand, 0 to 4				
percent slopes				
3636B-	\| PQGCe			1
Plainbo sand, 2 to 6				
percent slopes				
3636C---	\| PQGCe			1
Plainbo sand, 6 to 12				
percent slopes				
M-W.				
Miscellaneous water				
	\|			
W.				
Water				

Table 15a.--Recreational Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds			
	Rating class and limiting features	\| Value		Rating class and limiting features	\| Value		Rating class and limiting features	\| Value
3A:								
Totagatic---------- \|	Very limited		Very limited		Very limited			
	Depth to	11.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Flooding	1.00	Ponding	1.00	Flooding	1.00		
	Ponding	11.00	Flooding	0.40	Ponding	1.00		
Bowstring----------- \|	Very limited		Very limited		Very limited			
	Depth to	1.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Flooding	1.00	Content of	1.00	Content of	1.00		
	Content of	1.00	organic matter		organic matter			
	organic matter		Ponding	1.00	Flooding	1.00		
	Ponding	11.00	Flooding	10.40	Ponding	1.00		
Ausable------------ \|	Very limited		Very limited		Very limited			
	Depth to	1.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Flooding	1.00	Ponding	1.00	Flooding	1.00		
	Ponding	1.00	Flooding	10.40	Ponding	1.00		
12A:								
Makwa	Very limited		Very limited		Very limited			
	Depth to	1.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Flooding	1.00	Ponding	1.00	Flooding	1.00		
	Ponding	1.00	Too stony	0.50	Ponding	1.00		
	Too stony	10.50	Flooding	10.40	Content of large	0.99		
	Content of large	0.01	Content of large	0.01	stones			
	stones		stones		Too stony	0.50		
Comstock								
	Very limited		Very limited		Very limited			
	Depth to	1.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
27A:								
Scott Lake---------- \|	Not limited		Not limited		Somewhat limited			
					Gravel content	0.04		
28B:								
Haugen, very stony--\|	Somewhat limited		Somewhat limited		Somewhat limited			
	Restricted	10.60	Restricted	0.60	Restricted	0.60		
	permeability		permeability		permeability			
	Too stony	10.50	Too stony	10.50	Slope	10.50		
	Depth to	10.39	Depth to	10.19	Too stony	10.50		
	saturated zone		saturated zone		Depth to	0.39		
					saturated zone			
		1			Gravel content	0.05		

Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds		
	Rating class and	\|Value		Rating class and	\|Value	Rating class and	\|Value
	limiting features		limiting features		limiting features		
28B:							
Haugen	Somewhat limited		\|Somewhat limited		\|Somewhat limited		
	Restricted	10.60	Restricted	10.60	Restricted	0.60	
	permeability		permeability		permeability		
	Depth to	10.39	Depth to	10.19	Slope	0.50	
	saturated zone		saturated zone		Depth to	0.39	
					saturated zone		
					Gravel content	0.05	
					Content of large	0.03	
					stones		
Rosholt, very stony	\|Somewhat limited		\| Somewhat limited		\|Somewhat limited		
	Too stony	10.50	Too stony	10.50	slope	10.50	
					Too stony	10.50	
					Gravel content	10.03	
					Content of large	0.01	
					stones		
Rosholt	Not limited		\| Not limited		\|Somewhat limited		
					Slope	10.50	
					Gravel content	10.04	
28C:							
Haugen, very stony--\|	Somewhat limited		\| Somewhat limited		\|Very limited		
	Restricted	10.60	Restricted	10.60	Slope	$1.00$	
	permeability		permeability		Restricted	$10.60$	
	Too stony	10.50	Too stony	10.50	permeability		
	Depth to	10.39	Depth to	10.19	Too stony	10.50	
	saturated zone		saturated zone		Depth to	10.39	
	slope	10.04	slope	10.04	saturated zone		
					Gravel content	0.05	
Haugen-------------	Somewhat limited		\| Somewhat limited		\|Very limited		
	\| Restricted	0.60	\| Restricted	10.60	Slope	11.00	
	permeability		permeability		Restricted	10.60	
	Depth to	10.39	Depth to	10.19	permeability		
	saturated zone		saturated zone		Depth to	0.39	
	slope	0.04	Slope	10.04	saturated zone		
					Gravel content	0.05	
					Content of large	0.03	
					stones		
Rosholt, very stony	Somewhat limited		\|Somewhat limited		\|Very limited		
	Too stony	10.50	Too stony	10.50	Slope	11.00	
	Slope	10.04	Slope	10.04	Too stony	10.50	
					Gravel content	10.03	
					Content of large	10.01	
					stones		
Rosholt-------------			\|Somewhat limited				
	Slope	10.04	slope	10.04	Slope	11.00	
					Gravel content	10.04	
38A:							
Rosholt	Not limited		\| Not limited		\|Somewhat limited		
					Gravel content	10.04	
38B:							
Rosholt	Not limited	1	\| Not limited		\|Somewhat limited		
					Slope	10.50	
					Gravel content	10.04	

Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and	\|Value	Rating class and	\| Value	Rating class and	\|Value
	limiting features		limiting features		limiting features	
38C:						
Rosholt	Somewhat limited		\|Somewhat limited		\|Very limited	
	Slope	0.04	Slope	10.04	Slope	11.00
					Gravel content	$10.04$
38D:						
Rosholt	\|Very limited		\|Very limited	1.00	\|Very limited	
	\| slope	1.00	slope		slope	11.00
					Gravel content	10.04
42D:						
Amery	\|Very limited		\|Very limited		\| Very limited	
	Slope	11.00	Slope	11.00	Slope	11.00
	Too stony	10.50	Too stony	10.50	Too stony	10.50
	Restricted permeability	\| 0.21	Restricted permeability	10.21	Restricted permeability	10.21
					Gravel content	10.05
					Content of large stones	10.03
43B:	\|					
Antigo	Not limited		Not limited		\|Somewhat limited	
					\| slope	10.50
43C:						
Antigo	Somewhat limited		Somewhat limited		\|Very limited	
	slope	10.37	Slope	10.37	slope	11.00
63A:						
Crystal Lak	\|Somewhat limited		Somewhat limited		Somewhat limited	
	Depth to saturated zone	10.39	Restricted permeability	0.21	Depth to saturated zone	10.39
	Restricted permeability	10.21	Depth to saturated zone	10.19	$\begin{aligned} & \text { Restricted } \\ & \text { permeability } \end{aligned}$	10.21
63B :	\|					
Crystal Lake	Somewhat limited		\| Somewhat limited		\|Somewhat limited	
	Depth to saturated zone	10.39	Restricted	10.21	Slope	10.50
			permeability		Depth to saturated zone	10.39
	$\begin{aligned} & \text { Restricted } \\ & \text { permeability } \end{aligned}$	10.21	Depth to saturated zone	10.19		
					Restricted	10.21
					permeability	
63C:	\|					
Crystal Lake	\|Somewhat limited		\|Somewhat limited		\|Very limited	
	Depth to	10.39	Restricted	10.21	\| slope	
	saturated zone		permeability		Depth to	10.39
	Restricted	10.21	Depth to	10.19	saturated zone	
	permeability		saturated zone		Restricted	10.21
	Slope	10.04	slope	10.04	permeability	
64A :	\|					
Totagatic	\|Very limited		Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to   saturated zone	11.00	Depth to   saturated zone	11.00
	Flooding	11.00	Ponding	11.00	Flooding	11.00
	Ponding	11.00	Flooding	10.40	Ponding	11.00

Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds		
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
64A:Wint							
	Very limited		\|Very limited		$\mid$ Very limited		
	Depth to	11.00	Depth to	11.00	Depth to	11.00	
	saturated zone		saturated zone		saturated zone		
	Flooding	11.00	Too sandy	10.79	Flooding	11.00	
	Too sandy	10.79	Flooding	10.40	Too sandy	10.79	
69C:							
Keweenaw	Somewhat limited		\|Somewhat limited		\|Very limited		
	Too sandy	10.76	Too sandy	10.76	Slope	11.00	
	Slope	10.16	Slope	10.16	Too sandy	10.76	
					Content of large	\| 0.01	
					stones		
Sayner	\|Somewhat limited		Somewhat limited		\|Very limited		
	Too sandy	10.87	Too sandy	10.87	Slope	11.00	
	Slope	10.16	slope	10.16	Too sandy	10.87	
					Content of large stones	0.05	
					Gravel content	0.02	
Vilas------------	Somewhat limited		Somewhat limited		\|Very limited		
	Too sandy	10.87	Too sandy	10.87	Slope	11.00	
	Slope	10.16	Slope	\| 0.16	Too sandy	10.87	
					Gravel content	10.04	
69E:							
Keweenaw	\|Very limited		\|Very limited		\|Very limited		
	Slope	1.00	Slope	11.00	Slope	11.00	
	Too sandy	0.76	Too sandy	10.76	Too sandy	10.76	
					Content of large stones	10.01	
Sayner----------	\|Very limited		\| Very limited		Very limited		
	Slope	11.00	Slope	11.00	slope	11.00	
	Too sandy	10.87	Too sandy	10.87	Too sandy	10.87	
					Content of large stones	10.05	
					Gravel content	10.02	
Vilas-----------	Very limited		\| Very limited		\|Very limited		
	Slope	11.00	Slope	11.00	Slope	11.00	
	Too sandy	10.87	Too sandy	10.87	Too sandy	10.87	
					Gravel content	10.04	
82B:							
Cutaway	\|Somewhat limited Too sandy		Somewhat limited   Too sandy		\|Somewhat limited		
		10.72		10.72	\| Too sandy	10.72	
	Depth to saturated zone	10.39	Depth to saturated zone	10.19	Depth to saturated zone	10.39	
					Slope	0.28	
Branstad	Somewhat limited		\|Somewhat limited		\|Somewhat limited		
	Depth to saturated zone	10.39	Depth to saturated zone	10.19	Depth to saturated zone	$0.39$	
					Slope	10.28	

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds		
	Rating class and	\|Value		Rating class and	\|Value	Rating class and	\| Value
	limiting features		limiting features		limiting features		
Karlsborg	Very limited		$\mid$ Very limited		\|Very limited		
	Too sandy	11.00	Too sandy	11.00	Too sandy	1.00	
	Depth to	10.98	Restricted	10.98	Depth to	0.98	
	saturated zone		permeability		saturated zone		
	Restricted	10.98	Depth to	10.75	Restricted	0.98	
	permeability		saturated zone		permeability		
					Slope	0.50	
96C:							
Karlsborg	Very limited		\|Very limited		\|Very limited		
	Too sandy	11.00	Too sandy	11.00	Slope	\| 1.00	
	Depth to	10.98	Restricted	10.98	Too sandy	11.00	
	saturated zone		permeability		Depth to	0.98	
	Restricted	10.98	Depth to	10.75	saturated zone		
	permeability		saturated zone		Restricted	0.98	
	slope	10.04	Slope	10.04	permeability		
96D:	,						
Karlsborg	Very limited		\| Very limited		\|Very limited		
	Too sandy	11.00	\| Too sandy	\| 1.00	Slope	1.00	
	Slope	11.00	Slope	11.00	Too sandy	11.00	
	Depth to saturated zone	10.98	Restricted	10.98	Depth to	10.98	
	Restricted	10.98	Depth to	10.75	Restricted	10.98	
	permeability		saturated zone		permeability		
100B:	\|						
Menahga	\|Very limited		\|Very limited		\|Very limited		
	Too sandy	11.00	Too sandy	11.00	\| Too sandy	$1.00$	
					slope	$0.12$	
100C:							
Menahga	\|Somewhat limited slope		\|Somewhat limited		\|Very limited		
		10.04	Slope	10.04	slope	11.00	
100D:							
Menahga	\|Very limited		\| Very limited		\|Very limited		
	Slope	11.00	slope	11.00	Slope	1.00	
120B:							
Kost	\|Very limited		\|Very limited		\|Very limited		
	Too sandy	11.00	Too sandy	\| 1.00	Too sandy	1.00	
					slope	10.12	
127D:	\|						
Amery	\|Very limited		\|Very limited		\|Very limited		
	slope	1.00	\| slope	11.00	\| Slope	1.00	
	Too stony	10.50	Too stony	10.50	Too stony	10.50	
	Restricted permeability	\| 0.21	Restricted permeability	10.21	Restricted permeability	10.21	
					Gravel content	10.05	
					Content of large	10.03	
					stones		
Rosholt	\|Very limited		\|Very limited		\|Very limited		
	Slope	1.00	Slope	1.00	slope	11.00	
	Too stony	10.50	Too stony	10.50	\| Too stony	10.50	
					Gravel content	10.03	
					Content of large	10.01	
					\| stones		

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds			
	Rating class and limiting features	\| Value		Rating class and limiting features	\| Value		Rating class and limiting features	\| Value
157B:								
Freeon------------- \|Very limited			\|Very limited		\|Very limited			
	Depth to	11.00	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Restricted	10.43	Restricted	10.43	Slope	0.50		
	permeability		permeability		Restricted	0.43		
					permeability			
		-			Content of large	0.01		
					stones			
157C: \|								
Freeon, very stony--\|	\|Very limited		\| Very limited		\| Very limited			
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Too stony	10.50	Too stony	10.50	Slope	11.00		
	Restricted	10.43	Restricted	10.43	Too stony	10.50		
	permeability		permeability		Restricted	10.43		
	Slope	10.04	slope	10.04	permeability			
Freeon	\|Very limited		Very limited		\|Very limited			
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Restricted	0.43	Restricted	10.43	Slope	1.00		
	permeability		permeability		Restricted	0.43		
	Slope	\| 0.04	Slope	10.04	permeability			
					Content of large	0.01		
					stones			
160A:								
Oesterle	Very limited		\| Very limited		\| Very limited			
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
165B:								
Elderon------------ \|	Not limited		Not limited		\|Somewhat limited			
					Slope	0.50		
					Content of large	0.01		
					stones			
185B:								
Tradelake	Somewhat limited		\|Somewhat limited		\|Somewhat limited			
	Depth to	\| 0.98	Restricted	10.98	Depth to	0.98		
	saturated zone		permeability		saturated zone			
	Restricted	10.98	Depth to	\| 0.75	Restricted	0.98		
	permeability		saturated zone		permeability			
					slope	0.50		
Taylor	Very limited		\| Very limited		\|Very limited			
	Depth to saturated zone	\| 1.00	\| Restricted	\| 1.00	Depth to saturated zone	11.00		
	Restricted	11.00	Depth to	10.99	Restricted	1.00		
	permeability		saturated zone		permeability			
					slope	0.50		
185C:		1 \|						
Tradelake---------\| ${ }^{\text {Somewhat }}$ limited			Somewhat limited		Very limited			
	\| Depth to	10.98	Restricted	10.98	slope	11.00		
	saturated zone		\| permeability		Depth to	0.98		
	Restricted	10.98	Depth to	10.75	saturated zone			
	permeability		\| saturated zone		Restricted	0.98		
	slope	\| 0.04	slope	\| 0.04	permeability			

Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and	\| Value	Rating class and	\| Value	Rating class and	\| Value
	limiting features		limiting features		limiting features	
185C:						
Taylor	Very limited		\|Very limited		\| Very limited	
	Depth to saturated zone	11.00	Restricted permeability	11.00	Depth to saturated zone	1.00
	Restricted	11.00	Depth to	10.99	Slope	1.00
	permeability		saturated zone		Restricted	1.00
	slope	10.04	Slope	10.04	permeability	
185D:						
Tradelake	Very limited		Very limited		\|Very limited	
	Slope	11.00	Slope	11.00	Slope	1.00
	Restricted	10.98	Restricted	10.98	Restricted	0.98
			permeability		permeability	
	Depth to saturated zone	10.39	Depth to	10.19	Depth to	0.39
			saturated zone		saturated zone	
Taylor	\|Very limited		Very limited		\| Very limited	
	Depth to saturated zone	11.00	Restricted permeability	\| 1.00	Depth to saturated zone	1.00
	Restricted	11.00	Slope	11.00	Slope	\| 1.00
	permeability		Depth to	10.99	Restricted	11.00
	Slope	11.00	saturated zone		permeability	
185E:	,		Very limited			
Tradelake	\|Very limited				$\mid$ Very limited	
	Slope	11.00	Slope	11.00	Slope	1.00
	Restricted	10.98	Restricted	10.98	Restricted	10.98
	permeability		permeability		permeability	
		10.39	Depth to	10.19	Depth to	0.39
	saturated zone		saturated zone		saturated zone	
Taylor	Very limited		Very limited		\|Very limited	
	Depth to	11.00	Slope	1.00	Depth to	1.00
	saturated zone		Restricted	\| 1.00	saturated zone	
	Slope	11.00	permeability		Slope	11.00
	Restricted	11.00	Depth to	10.99	Restricted	1.00
	permeability		saturated zone		permeability	
189A:	\|					
Siren	\|Very limited		\|Very limited		\| Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Restricted permeability	10.43	Restricted permeability	10.43	$\begin{aligned} & \text { Restricted } \\ & \text { permeability } \end{aligned}$	0.43
					Gravel content	0.39
193A:						
Minocqua	\|Very limited		Very limited		\| Very limited	
	Depth to saturated zone Ponding	11.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
		11.00	Ponding	11.00	Ponding	11.00
337A:						
Plover	\|Very limited		Very limited		\|Very limited	
	Depth to saturated zone	11.00	```Depth to saturated zone```	1.00	Depth to saturated zone	1.00
	Restricted	10.60	Restricted	10.60	Restricted	0.60
	permeability		permeability		permeability	

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and	\|Value	Rating class and	\| Value	Rating class and	\|Value
	limiting features		limiting features		limiting features	
383B:						
Mahtomedi	Somewhat limitedToo sandy	10.72	\|Somewhat limited	10.72	\| Somewhat limited	
			Too sandy		Too sandy	10.72
					slope	10.12
					Gravel content	10.04
383C:			Somewhat limited			
Mahtomedi	Somewhat limited				\|Very limited	
	Too sandy	10.72	Too sandy	10.72	Slope	\| 1.00
	Slope	10.04	Slope	10.04	Too sandy	10.72
					Gravel content	$10.04$
383D:						
Mahtomedi	\|Very limited				\|Very limited	
	Slope	11.00	slope	11.00	\| Slope	11.00
	Too sandy	10.72	Too sandy	10.72	Too sandy	10.72
					Gravel content	10.04
392C:						
Rockmarsh	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	\| Depth to saturated zone	11.00
	Too stony	10.50	Too stony	10.50	Content of large	11.00
	Slope	10.37	Slope	10.37	stones	
	Content of large	10.29	Content of large	\| 0.29	Slope	$1.00$
	stones		stones		Too stony	$10.50$
Dairyland-	\|Somewhat limited		\| Somewhat limited		\|Very limited	
	Too stony	10.50	\| Too stony	10.50	\| slope	11.00
	Depth to	10.39	Slope	10.37	Too stony	10.50
	saturated zone		Depth to	10.19	Depth to	10.39
	slope	10.37	saturated zone		saturated zone	
Makwa	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	\| Depth to saturated zone	11.00	Depth to   saturated zone	11.00
	Too stony	10.50	Too stony	10.50	Slope	11.00
	Content of large stones	10.01	Content of large stones	10.01	Content of large stones	10.99
					Too stony	10.50
396B:						
Friendship------	\|Very limited		\|Very limited		$\mid$ Very limited	
	Too sandy	11.00	Too sandy	11.00	\| Too sandy	11.00
Wurtsmith-			\|Very limited		\|Very limited	
	Too sandy	11.00	Too sandy	11.00	Too sandy	11.00
	Depth to	10.39	Depth to	10.19	Depth to	10.39
	saturated zone		saturated zone		saturated zone	\|
					Gravel content	10.06
Grayling	\|Very limited		\|Very limited		\| Very limited	
	Too sandy	11.00	\| Too sandy	11.00	\| Too sandy	
					slope	10.12
397A :						
Perchlake	Very limited		\|Very limited		\| Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	Too sandy	10.96	Too sandy	10.96	Too sandy	10.96

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and	\|Value	Rating class and	\| Value	Rating class and	\|Value
	limiting features		limiting features		limiting features	
459A:						
Dawson	Very limited		\|Very limited		$\mid$ Very limited	
	Depth to saturated zone	1.00	Depth to	11.00	Depth to	1.00
			saturated zone		saturated zone	
	Ponding	11.00	Ponding	11.00	Ponding	1.00
461A:						
Bowstring	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zon	11.00	Depth to saturated zone	1.00
	Flooding	1.00	Content of	11.00	Content of	1.00
	Content of	\| 1.00	organic matter		organic matter	
	organic matter		Ponding	11.00	Flooding	1.00
	Ponding	11.00	Flooding	10.40	Ponding	11.00
465A:						
Newson	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone Ponding	11.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
		\| 1.00	Ponding	\| 1.00	Ponding	1.00
Meehan	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Too sandy	1.00	Depth tosaturated zone	1.00
			Depth to	\| 1.00		
	Too sandy	11.00	saturated zone		Too sandy	11.00
469E:	\|					
Bigisland	Very limited		\|Very limited		\|Very limited	
	Slope	11.00	Slope	11.00	Slope	11.00
	Too sandy	10.68	Too sandy	10.68	Content of large	\| 1.00
	Gravel content	10.65	Gravel content	10.65	stones	
	Too stony	10.50	Too stony	10.50	Gravel content	11.00
	Content of large	10.16	Content of large	\| 0.16	Too sandy	10.68
	stones		stones		Too stony	10.50
Milaca	\|Very limited		\|Very limited		\|Very limited	
	slope	11.00	Slope	11.00	Slope	1.00
	Too stony	10.50	Too stony	10.50	Too stony	10.50
	Depth to	10.39	Depth to	10.19	Depth to	10.39
	saturated zone		saturated zone		saturated zone	
		I				
471B:		\|	\| Somewhat limited			
Dairyland	Somewhat limited				\|Somewhat limited	
	Too stony	10.50	Too stony	10.50	Too stony	10.50
	Depth to ${ }^{\text {saturated zone }}$	10.39	Depth to saturated zone	10.19	Depth to saturated zone	10.39
					Slope	0.12
		\|				
Emmert	Somewhat limited Too stony Gravel content		\|Somewhat limited		\|Very limited	
		10.50	Too stony	10.50	\| Gravel content	11.00
		10.10	Gravel content	10.10	Too stony	10.50
					slope	10.12
		\|	\|		Content of large	0.01
					stones	

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
495D:Grettum						
	Very limited		Very limited		\|Very limited	
	Slope	11.00	Slope	11.00	Slope	1.00
	Too sandy	10.81	Too sandy	10.81	Too sandy	0.81
Perida	Very limited		Very limited		\|Very limited	
	Slope	11.00	Slope	11.00	Slope	1.00
	Too sandy	0.81	Too sandy	10.81	Too sandy	0.81
496B:						
Karlsborg	Somewhat limited		Somewhat limited		Somewhat limited	
	Depth to	0.98	Restricted	10.98	Depth to	0.98
	saturated zone		permeability		saturated zone	
	Restricted	0.98	Too sandy	10.81	Restricted	0.98
	permeability		Depth to	10.75	permeability	
	Too sandy	0.81	saturated zone		Too sandy	0.81
					slope	0.50
496C:						
Karlsborg	Somewhat limited		Somewhat limited		\| Very limited	
	Depth to	0.98	Restricted	10.98	slope	1.00
	saturated zone		permeability		Depth to	0.98
	Restricted	0.98	Too sandy	\| 0.81	saturated zone	
	permeability		Depth to	10.75	Restricted	0.98
	Too sandy	0.81	saturated zone		permeability	
	Slope	0.04	Slope	0.04	Too sandy	0.81
496D:						
Karlsborg	Very limited		Very limited		\| Very limited	
	Slope	11.00	Slope	11.00	slope	1.00
	Depth to	0.98	Restricted	0.98	Depth to	0.98
	saturated zone		permeability		saturated zone	
	Restricted	0.98	Too sandy	$0.81$	Restricted	0.98
	permeability		Depth to	10.75	permeability	
	Too sandy	0.81	saturated zone		Too sandy	0.81
497A:						
Meenon	Very limited		Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Restricted	11.00	Restricted	11.00	Restricted	1.00
	permeability		permeability		permeability	
	Too sandy	0.81	Too sandy	0.81	Too sandy	$0.81$
		$1$			Gravel content	0.06
521A:						
Dody	Very limited		Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Ponding	11.00	Ponding	11.00	Ponding	\| 1.00
	Restricted	0.98	Restricted	10.98	Restricted	\| 0.98
	permeability		permeability		permeability	
		1				
523A:						
Nokasippi	Very limited		Very limited		Very limited	
	Depth to	11.00	Depth to	\| 1.00	Depth to	\| 1.00
	saturated zone		saturated zone		saturated zone	
	Ponding	11.00	Ponding	11.00	Ponding	1.00

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds		
	Rating class and	\| Value		Rating class and	\| Value	Rating class and	\|Value
	limiting features		limiting features		limiting features		
632C:							
Aftad	\|Somewhat limited	10.39	Somewhat limited		\|Very limited		
	Depth tosaturated zone		Depth to	10.19	Slope	11.00	
			saturated zone		Depth to	0.39	
	\| slope	0.04	Slope	10.04	saturated zone		
634C:	\|						
Drylanding	\|Very limited		Very limited		\|Very limited		
	Depth to bedrock	1.00	Restricted	11.00	\| Restricted	1.00	
	\| Restricted	1.00	permeability		permeability		
			Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
	$\left\lvert\, \begin{gathered}\text { Content of large } \\ \text { stones }\end{gathered}\right.$	0.12	Content of large stones	\| 0.12	Content of large	1.00	
					slope	1.00	
					Gravel content	10.18	
Beartree	\|Very limited		\|Very limited		\|Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00	
	Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
	\| Ponding	1.00	Ponding	\| 1.00	Ponding	11.00	
	\| Not rated		Not rated		Not rated		
Rock outcrop----							
635C:Drylanding							
	\|Very limited		\|Very limited		\|Very limited		
	\| Flooding	1.00	Restricted	11.00	\| Restricted	1.00	
	Depth to bedrock	1.00	permeability		permeability		
	Restricted permeability	1.00	Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
			Content of large stones	0.12	Content of large stones	1.00	
	Content of large stones	0.12					
					slope	11.00	
					Gravel content	10.18	
Beartree	\|Very limited		\|Very limited		$\mid$ Very limited		
	Depth to	1.00	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Flooding	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
	Depth to bedrock	1.00	Ponding	11.00	Ponding	1.00	
	Ponding	1.00					
Rock outcrop-	Not rated		Not rated		Not rated		
648B:							
Sconsin	Somewhat limited		Somewhat limited		\|Somewhat limited		
	Depth to saturated zone	0.98	Depth to saturated zone	10.75	Depth to saturated zone	10.98	
					slope	10.50	
669D:							
Fremstadt, stony	\|Very limited		Very limited		Very limited		
	\| Slope	1.00	Slope	11.00	\| Slope	11.00	
	Too sandy	0.50	Too sandy	10.50	Too sandy	10.50	
	Too stony	0.50	Too stony	10.50	Too stony	10.50	
					Gravel content	10.43	

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and   limiting features	\|Value
		\|		\|		
812B:						
Mora	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Too stony	10.50	Too stony	10.50	Too stony	10.50
825A:		1				
Meehan	\|Very limited		\| Very limited		\|Very limited	
	Depth to	11.00	Too sandy	11.00	Depth to	1.00
	saturated zone		Depth to	11.00		
	Too sandy	11.00	saturated zone		Too sandy	1.00
896A:		1				
Wurtsmith	\|Very limited		\|Very limited		\|Very limited	
	Too sandy	11.00	Too sandy	11.00	Too sandy	1.00
	Depth to	10.39	Depth to	10.19	Depth to	0.39
	saturated zone		saturated zone		saturated zone	
					Gravel content	0.06
980A:		\|				
Soderbeck					\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Flooding	11.00	Gravel content	10.97	Gravel content	11.00
	Gravel content	10.97	Too stony	10.50	Content of large	0.99
	Too stony	$10.50$	Content of large	10.01	stones	
	Content of large stones	10.01	stones		Too stony	0.50
1070C:						
Fremstadt			Somewhat limited		$\mid$ Very limited	
	slope	10.16	slope	10.16	slope	11.00
					Gravel content	10.43
Cress			\|Somewhat limited			
	Slope	10.04	\| slope	10.04	\| Slope	1.00
1070D:		\|				
Fremstadt	\|Very limited		\|Very limited			
	Slope	11.00	Slope	1.00	\| slope	\| 1.00
					Gravel content	10.43
Cress	Very limited		\|Very limited		\|Very limited	
	slope	11.00	slope	11.00	slope	1.00
1080B:Spoonerhill		1				
	Somewhat limited		\| Somewhat limited		\| Somewhat limited	
	Depth to	10.39	Restricted	10.21	slope	10.50
	\| saturated zone	\|	permeability		Depth to	10.39
	Restricted permeability	10.21	Depth to saturated zone	10.19	saturated zone Restricted	10.21
					permeability	
		\|			Gravel content	10.02
		\|			Content of large	10.01
			\|	\|	stones	

Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued


Table 15a.--Recreational Development--Continued

Map symbol and soil name	Camp areas		Picnic areas		Playgrounds	
	Rating class and	\|Value	Rating class and	\|Value	Rating class and	\|Value
	limiting features		limiting features		limiting features	
M-W :						
Miscellaneous water	Not rated		Not rated		\| Not rated	
W:						
Water---------------	Not rated		Not rated		\| Not rated	

Table 15b.--Recreational Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Paths and trails		Off-road motorcycle trails		Golf fairways	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and   limiting features	\|Value
3A:						
Totagatic	\|Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Flooding	1.00
	saturated zone		saturated zone		Depth to	1.00
	Ponding	1.00	Ponding	11.00	saturated zone	
	Flooding	10.40	Flooding	10.40	Ponding	1.00
Bowstring	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	\| Depth to	11.00	\| Flooding	1.00
	saturated zone		saturated zone		Content of	1.00
	Content of	1.00	Content of	11.00	organic matter	
	organic matter		organic matter		Depth to	1.00
	Ponding	\| 1.00	Ponding	11.00	saturated zone	
	Flooding	10.40	Flooding	10.40	Ponding	1.00
Ausable	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Flooding	1.00
	saturated zone		saturated zone		Depth to	1.00
	Ponding	1.00	Ponding	11.00	saturated zone	
	Flooding	10.40	Flooding	10.40	Ponding	1.00
12A:						
Makwa	\|Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Flooding	\| 1.00
	saturated zone		saturated zone		Depth to	1.00
	Ponding	1.00	Ponding	11.00	saturated zone	
	Too stony	10.50	Too stony	10.50	Ponding	1.00
	Flooding	0.40	Flooding	10.40	Content of large	0.99
	Content of large	0.01	Content of large	10.01	stones	
	stones		stones			
22A:						
Comstock----------- \|	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
27A:						
Scott Lake	Not limited		\| Not limited		\| Somewhat limited	
					Droughty	0.01
28B:						
Haugen, very stony--\|	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited	
	Too stony	10.50	Too stony	10.50	Depth to	0.19
					saturated zone	
					Content of large	0.03
					stones	
Haugen------------- \|	Not limited		\| Not limited		\|Somewhat limited	
					Depth to	0.19
					saturated zone	
					Content of large	0.03
				1	stones	

Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road motorcycle trai		Golf fairways	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
28B:						
Rosholt, very stony	Somewhat limited		Somewhat limited		\|Somewhat limited	
	Too stony	0.50	Too stony	0.50	Droughty	0.02
					Content of large	$0.01$
					stones	
Rosholt-----------	Not limited		Not limited		\|Somewhat limited	
					Droughty	0.01
28C:						
Haugen, very stony--	Somewhat limited		Somewhat limited		Somewhat limited	
	Too stony	0.50	Too stony	0.50	Depth to	0.19
					saturated zone	
					slope	0.04
					Content of large	0.03
					stones	
Haugen-------------	Not limited		Not limited		\|Somewhat limited	
					Depth to	0.19
					saturated zone	
					Slope	0.04
					Content of large	0.03
					stones	
Rosholt, very stony			Somewhat limited		\|Somewhat limited	
	Too stony	0.50	Too stony	0.50	Slope	0.04
					Droughty	0.02
					Content of large	0.01
					stones	
Rosholt------------	Not limited		Not limited		\|Somewhat limited	
					Slope	0.04
					Droughty	0.01
38A:						
Rosholt-----------	Not limited		Not limited		\|Somewhat limited	
					Droughty	0.01
38B:						
Rosholt------------	Not limited		Not limited		\|Somewhat limited	
					Droughty	0.01
38C:						
Rosholt------------	Not limited		Not limited		\|Somewhat limited	
					Slope	0.04
					Droughty	10.01
38D:						
Rosholt-	Somewhat limited		Not limited		\| Very limited	
	Slope	0.02			Slope	1.00
					Droughty	0.01
42D:						
Amery	Somewhat limited		Somewhat limited			
	Too stony	$0.50$	Too stony	0.50	slope	1.00
	Slope	0.02			Content of large	0.03
					stones	
43B:						
Antigo------------\| ${ }^{\text {Not }}$ limited			Not limited		Not limited	

Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road motorcycle tra		Golf fairways		
	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value	
				,			
Antigo----------	Very limited		\| Very limited		\|Somewhat limited		
	Water erosion	\| 1.00	Water erosion	\| 1.00	Slope	0.37	
63A:							
Crystal Lake----	Not limited		Not limited		\|Somewhat limited		
					Depth to	0.19	
				\|	saturated zone		
63B:							
Crystal Lake	Not limited		Not limited		\|Somewhat limited		
					Depth to	0.19	
					saturated zone		
				\|			
63C:							
Crystal Lak	Very limited		\| Very limited	\|	\|Somewhat limited		
	Water erosion	\| 1.00	Water erosion	1.00	Depth to	0.19	
					saturated zone		
					Slope	\| 0.04	
				1			
64A:							
Totagatic----------\|Very limited			\| Very limited	\|	\| Very limited		
	Depth to	\| 1.00	Depth to	\| 1.00	\| Flooding	\| 1.00	
	saturated zone		saturated zone		Depth to	1.00	
	Ponding	11.00	Ponding	11.00	saturated zone		
	Flooding	10.40	Flooding	0.40	Ponding	\| 1.00	
Winterfield--------\|	Very limited			\| Very limited		\| Very limited	
	Depth to	\| 1.00	Depth to	1.00	Flooding	\| 1.00	
	saturated zone		saturated zone		Depth to	11.00	
	Too sandy	10.79	Too sandy	0.79	saturated zone		
	Flooding	10.40	Flooding	10.40	Droughty	0.50	
69C:							
Keweenaw--------	Somewhat limited		Somewhat limited		\|Somewhat limited		
	Too sandy	\| 0.76	Too sandy	0.76	Slope	10.16	
					Droughty	\| 0.06	
					Content of large	0.01	
				1	stones		
Sayner					\|Somewhat limited		
	Too sandy	\| 0.87	Too sandy	0.87	\| Droughty	\| 0.94	
					Slope	\| 0.16	
				\|	Content of large	10.05	
					stones		
				1			
Vilas-----------	Somewhat limited		Somewhat limited	1	\|Somewhat limited		
	Too sandy	\| 0.87	Too sandy	\| 0.87	Droughty	\| 0.42	
					Slope	\| 0.16	
				1			
69 E :							
Keweenaw--------	Very limited		Somewhat limited	1	\| Very limited		
	Slope	\| 1.00	Too sandy	\| 0.76	Slope	11.00	
	Too sandy	\| 0.76	Slope	\| 0.22	Droughty	\| 0.06	
				1	Content of large	0.01	
				1	stones		

Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road motorcycle trai		Golf fairways			
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
422A:								
Seelyeville	\|Very limited		Very limited		Very limited			
	Depth to	11.00	Depth to	11.00	Content of	1.00		
	saturated zone		saturated zone		organic matter			
	Content of	11.00	Content of	1.00	Depth to	1.00		
	organic matter		organic matter		saturated zone			
	Ponding	11.00	Ponding	1.00	Ponding	1.00		
Cathro	\|Very limited		\|Very limited		\|Very limited			
	Depth to	11.00	Depth to	11.00	Content of	1.00		
	saturated zon		saturated zon		organic matter			
	organic matter		organic matter	1.00	saturated zone			
	Ponding	11.00	Ponding	1.00	Ponding	1.00		
Rondeau-	$\mid$ Very limited		\|Very limited		Very limited			
	Depth to	11.00	Depth to	11.00	Content of	1.00		
	saturated zone		saturated zone		organic matter			
	Content of organic matter	11.00	Content of organic matter	11.00	Depth to saturated zone	1.00		
	\| Ponding	11.00	Ponding	11.00	Ponding	1.00		
426B:								
Emmert	Somewhat limited		Somewhat limited		\|Very limited			
	\| Too sandy	10.88	Too sandy	10.88	Droughty	11.00		
					Content of large	0.01		
					stones			
Mahtomedi-	Somewhat limited Too sandy		\|Somewhat limited		\|Very limited			
		10.72	Too sandy	10.72	Droughty	1.00		
Menahga	\| Not limited		Not limited		Somewhat limited			
					Droughty	0.49		
426C:								
Emmert	\|Somewhat limited		\|Somewhat limited		$\mid$ Very limited			
	Too sandy	10.88	Too sandy	10.88	Droughty	11.00		
					Slope	10.04		
					Content of large	0.01		
					stones			
Mahtomedi	\|Somewhat limited		\|Somewhat limited					
	\| Too sandy	10.72	Too sandy	0.72	\|Very limited Droughty	11.00		
					Slope	10.04		
Menahga -	Not limited		Not limited		Somewhat limited			
					Droughty	10.49		
					slope	10.04		
426D:								
Emmert	Somewhat limited		Somewhat limited		\|Very limited			
	Too sandy	10.88	Too sandy	10.88	Droughty	11.00		
	Slope	10.68			Slope	\| 1.00		
					Content of large	10.01		
					stones			
Mahtomedi	\|Somewhat limited		Somewhat limited		\|Very limited			
	Too sandy	10.72	Too sandy	0.72	slope	\| 1.00		
	Slope	10.68			Droughty	11.00		

Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road   motorcycle trails		Golf fairways		
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value	Rating class and   \| limiting features	\|Value
485C:							
Lupton	Very limited		\|Very limited		\|Very limited		
	Depth to	1.00	Depth to	11.00	Content of	11.00	
	saturated zone		saturated zone		organic matter		
	Content of organic matter	1.00	Content of organic matter	11.00	Depth to saturated zone	11.00	
Tawas	\|Very limited		\|Very limited		\| Very limited		
	Depth to	1.00	Depth to	11.00	Content of	11.00	
	Content of	1.00	Content of	11.00	organic matter Depth to	11.00	
	organic matter		organic matter		saturated zone		
	Ponding	1.00	Ponding	\| 1.00	Ponding	11.00	
495B:	-						
Karlsborg	Somewhat limited		\|Somewhat limited		Somewhat limited		
	Too sandy	0.81	Too sandy	10.81	Depth to	10.75	
	Depth to saturated zone	0.44	Depth to	10.44	saturated zone		
			saturated zone		Droughty	10.26	
Grettum	\|Somewhat limited		\|Somewhat limited		Somewhat limited		
	\| Too sandy	0.81	Too sandy	10.81	Droughty	10.61	
Perida	Somewhat limited		Somewhat limited		\| Somewhat limited		
	\| Too sandy	0.81	\| Too sandy	10.81	\| Droughty	10.44	
495C:	Somewhat limited						
Karlsborg			Somewhat limited		\|Somewhat limited		
	Too sandy	0.81	Too sandy	10.81	\| Depth to	10.75	
	Depth to saturated zone	0.44	Depth to	10.44	saturated zone		
			saturated zone		Droughty	0.26	
					slope	10.04	
Grettum-	Somewhat limited		\|Somewhat limited		Somewhat limited		
	Too sandy	0.81	Too sandy	10.81	Droughty	10.61	
					Slope	10.04	
Perida	Somewhat limited		Somewhat limited		Somewhat limited		
	Too sandy	0.81	Too sandy	10.81	Droughty	10.44	
					slope	10.04	
495D:							
Karlsborg	Somewhat limited		\|Somewhat limited		\|Very limited		
	Too sandy	0.81	Too sandy	10.81	Slope	11.00	
	Slope	0.68	Depth to	\| 0.44	Depth to	10.75	
	Depth to saturated zone	0.44	saturated zone		saturated zone		
					Droughty	10.26	
Grettum	Somewhat limited		Somewhat limited		Very limited		
	Too sandy	0.81	Too sandy	10.81	\| slope	1.00	
	Slope	0.68			Droughty	10.61	
Perida	Somewhat limited		Somewhat limited		Very limited		
	Too sandy	0.81	\| Too sandy	10.81	\| slope	11.00	
	slope	0.68			Droughty	10.44	
496B:	\|						
Karlsborg	\|Somewhat limited		\|Somewhat limited		Somewhat limited		
	Too sandy	0.81	Too sandy	10.81	Depth to	10.75	
	Depth to	0.44	Depth to	10.44	saturated zone		
	saturated zone		saturated zone		Droughty	10.26	

Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		$\begin{gathered} \text { Off-road } \\ \text { motorcycle trails } \end{gathered}$		Golf fairways			
	Rating class and limiting features	\|Value	\| Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	
542C:								
Haugen, very stony--\|	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited			
	Too stony	10.50	Too stony	0.50	Depth to	0.19		
					saturated zone			
					Slope	0.04		
					Content of large	0.03		
					stones			
Haugen-------------	Not limited		\| Not limited		\|Somewhat limited			
					Depth to	0.19		
					saturated zone			
					Slope	10.04		
						0.03		
					stones			
544F:								
Menahga	\|Very limited		\| Somewhat limited		$\mid$ Very limited			
	slope	11.00	Slope	0.96	Slope	\| 1.00		
					Droughty	10.51		
Mahtomedi-	\|Very limited		\| Somewhat limited		$\mid$ Very limited			
	Slope	11.00	Slope	0.96	Slope	11.00		
	Too sandy	10.72	Too sandy	0.72	Droughty	\| 1.00		
553B:								
Branstad-----------	Not limited		\| Not limited					
					\| Depth to	0.19		
					saturated zone			
553C:								
Branstad	Not limited		\| Not limited		\| Somewhat limited			
					Depth to	0.19		
					saturated zone			
					Slope	0.04		
553D:								
Branstad-----------			\| Not limited					
	Slope	10.02			slope	\| 1.00		
					Depth to	10.19		
					saturated zone			
555A:								
Fordum	Very limited		\|Very limited		\| Very limited			
	Depth to	11.00	Depth to	1.00	\| Flooding			
	saturated zone		saturated zone		Depth to	\| 1.00		
	Ponding	11.00	Ponding	1.00	saturated zone			
	Flooding	10.40	Flooding	10.40	Ponding	\| 1.00		
557B:								
Shawano	\|Very limited		\|Very limited		\| Somewhat limited			
	Too sandy	11.00	Too sandy	1.00	Droughty	0.46		
557C:								
Shawano------------ \|	\|Very limited		\|Very limited		\| Somewhat limited			
	Too sandy	11.00	Too sandy	1.00	Droughty	10.46		
					Slope	10.04		
557D: \|								
Shawano------------	\|Very limited		\|Very limited		$\mid$ Very limited			
	Too sandy	1.00	Too sandy	1.00	slope	11.00		
	slope	10.68			Droughty	10.46		

Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road motorcycle trai		Golf fairways	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
669D:						
Pomroy------------- \|	Somewhat limited		\|Somewhat limited		\|Very limited	
	Slope	0.82	Too sandy	0.50	Slope	\| 1.00
	Too sandy	0.50			Depth to	0.19
					saturated zone	
671B:						
Spoonerhill, stony--\|	Not limited		\| Not limited		Somewhat limited	
					Droughty	0.42
					Depth to	0.19
					saturated zone	
					Content of large	0.05
					stones	
Spoonerhill-------- \|	Not limited		\| Not limited		Somewhat limited	
					Droughty	0.42
					Depth to	0.19
					saturated zone	
					Content of large	0.01
					stones	
706A:						
Winterfield--------\|Very limited			\| Very limited		\| Very limited	
	Depth to	1.00	Depth to	1.00	Flooding	1.00
	saturated zone		saturated zone		Depth to	1.00
	Flooding	0.40	Flooding	0.40	saturated zone	
					Droughty	0.10
Totagatic---------- \| Very limited			\| Very limited		\| Very limited	
	Depth to	1.00	Depth to	1.00	Flooding	1.00
	saturated zone		saturated zone		Depth to	1.00
	Ponding	1.00	Ponding	1.00	saturated zone	
	Flooding	0.40	Flooding	0.40	Ponding	1.00
					Droughty	0.37
715A:						
Mora	Very limited		\| Very limited		\| Very limited	
	Depth to	1.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Too stony	0.50	Too stony	0.50		
717B:						
Milaca	Somewhat limited		\|Somewhat limited		Somewhat limited	
	Too stony	0.50	Too stony	0.50	Depth to	\| 0.19
					saturated zone	
717C:						
Milaca------------- \| Very limited			\| Very limited		\|Somewhat limited	
	Water erosion	1.00	Water erosion	1.00	Depth to	0.19
	Too stony	0.50	Too stony	0.50	saturated zone	
					slope	0.04
			\|			
720F:			\|			
Haustrup-----------\| Somewhat limited			Somewhat limited		Very limited	
	Too stony	0.50	\| Too stony	0.50	Depth to bedrock	1.00
	Slope	0.18			Slope	1.00
					Droughty	0.14

Table 15b.--Recreational Development--Continued


Table 15b.--Recreational Development--Continued

Map symbol and soil name	Paths and trails		Off-road motorcycle trail		Golf fairways	
	Rating class and limiting features	Value	Rating class and   limiting features	Value	Rating class and limiting features	Value
M-W :						
Miscellaneous water	Not rated		Not rated		Not rated	
W :						
Water------------- ${ }^{\text {Not }}$ Noted			Not rated		Not rated	

Table 16.--Wildlife Habitat
(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)


Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued

Map symbol   and   soil name	Potential for habitat elements							\| Potential as habitat for--		
	Grain   and   seed   crops	$\begin{array}{\|c\|} \mid \text { Grasses } \\ \left\|\begin{array}{c} \text { and } \end{array}\right\| \\ \mid \text { legumes } \end{array}$	Wild \|herbaceous plants	Hardwood trees	$\begin{aligned} & \text { \|Conif }- \\ & \mid \text { erous } \\ & \mid \text { plants } \end{aligned}$	\|Wetland plants	Shallow   water   areas	Open-   land   wild-   life	Wood-$\mid$ landwild-life	```Wetland wild- life```
									\|	
185E:										
Tradelake	\| Very	\| Fair	\| Good	\| Good	\| Good	\| Very	\| Very	\| Fair	\| Good	\| Very
	poor					\| poor	\| poor			poor
Taylor	\| Very	\| Fair	\| Good	\| Good	\| Good	\| Very	\| very	$\mid$ Fair	\| Good	\| Very
	poor					\| poor	\| poor			\| poor
189A:										
Siren-	Fair	\| Fair	\| Good	\| Good	\| Good	\|Fair	\| Fair	\| Fair	\| Good	\| Fair
193A:										
Minocqua	\| Very	\| Fair	\|Fair	\|Fair	\| Fair	\| Good	\| Good	\| Poor	\|Fair	\| Good
	poor									
337A:										
Plover	Fair	\| Good	\| Good	\| Good	\| Good	\|Fair	\| Fair	\| Good	\| Good	\| Fair
368B:										
Mahtomedi	\| Poor	\| Fair	\| Fair	\| Poor	\| Fair			\| Fair	\| Fair	\| Very
						poor	poor			poor
Cress	Fair	\| Fair	\| Fair	\|Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
368C:										
Mahtomedi	\| Poor	\| Fair	\| Fair	\| Poor	\| Fair	\| Very	\| Very	\| Fair	\|Fair	\| Very
						\| poor	poor			\| poor
Cress	Fair	\| Fair	\| Fair	\|Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
368D :										
Mahtomedi	Poor	\| Fair	\| Fair	\| Poor	\| Fair			Fair	\|Fair	
						poor	poor			poor
Cress	Fair	\| Fair	\| Fair	\|Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
368E:										
Mahtomedi	\| Poor	\| Fair	\| Fair	\| Poor	\| Fair	\| Very	\| Very	Fair	\|Fair	\| Very
						\| poor	\| poor			poor
Cress-----------	Fair	\| Fair	\| Fair	\| Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
380B:										
Cress	Fair	\| Fair	\| Fair	\|Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
									\|	
Rosholt	\| Good	\| Poor		\| Good	\| Good	\| Very				
							poor			poor
									\|	
380C:									\|	
Cress	Fair	\| Fair	\| Fair	\|Fair	\| Fair			\| Fair	\|Fair	
						poor	poor			poor
Rosholt	Fair	\| Good	\| Good	\| Good	\| Good	\| Very	\| Very	\| Good	\| Good	\| very
						\| poor	poor		\|	\| poor

Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued

Map symbol   and   soil name	Potential for habitat elements							\| Potential as habitat for--		
	Grain and seed crops	$\begin{array}{\|c} \mid \text { Grasses } \\ \text { and } \\ \mid \text { legumes } \end{array}$	$\begin{array}{\|l\|} \hline \text { Wild } \\ \mid \text { herba- } \\ \text { ceous } \\ \mid \text { plants } \end{array}$	Hardwood trees	$\begin{array}{\|l} \mid \text { Conif- } \\ \mid \text { erous } \\ \mid \text { plants } \end{array}$	$\begin{aligned} & \mid \\ & \text { \| Wetland } \\ & \text { \|plants } \end{aligned}$		Open-   land   wild-   life	Wood-   land   wild-   life	$\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$
465A :										
Newson-----------Meehan-----------	\|Fair	\| Fair	\|Fair	\| Poor	\| Poor	\| Good	\| Good	\|Fair	\| Poor	\| Good
	\| Poor	Fair	\| Good	\| Fair	\| Fair	\|Fair	\| Fair	Fair	\|Fair	\| Fair
469E:										
Bigisland	\| Very	\| Poor	\| Fair	\|Fair	\| Fair	\| Very	\| Very	\| Poor	\| Fair	\| Very
	\| poor					\| poor	\| poor			\| poor
Milaca	\| Very	\| Poor	\| Good	\| Good	\| Good	\| Very	\| Very	Poor	\| Good	\| Very
	\| poor					\| poor	\| poor			\| poor
471B:										
Dairyland	\| Very	\| Poor	\| Very	\| Poor	\| Poor	\| Poor	\| Very	\| Very	\| Poor	\| Very
	\| poor		\| poor				\| poor	poor		poor
Emmert -		\| Poor	\| Poor	\| Very			\| Very	Poor	\| Very	
	\| poor			\| poor	poor	\| poor	\| poor		\| poor	poor
471C:										
Dairyland	\| Very	\| Poor	\| Very	\| Poor	\| Poor	\| Very	\| Very	\| Very	\| Poor	$\mid$ Very
	\| poor		\| poor			\| poor	\| poor	poor		\| poor
Emmert		\| Poor	\| Poor					Poor		
	\| poor			\| poor	poor	\| poor	poor		\| poor	poor
472A:										
Rockmarsh	\| Very	\| Poor	\| Good	\|Fair	\| Fair					
	\| poor									
						\|				
Clemens	\| Very	\| Poor	\| Good	\|Fair	\| Fair	\|Fair	\| Fair	\|Fair	\|Fair	\| Fair
	\| poor									
473A:						\|				
Dairyland	\| Very	\| Poor	\| Fair	\| Poor	\| Poor	\| Poor	\| Poor	Poor	\| Poor	\| Poor
	\| poor									
						\|				
Skog	\| Very	\| Poor	\| Fair	\| Poor	\| Poor	\| Poor	\| Poor	Poor	\| Poor	\| Poor
	\| poor									
484A :										
Greenwood	\| Very	\| Poor	\| Poor	$\mid$ Poor	$\mid$ Poor	\| Good	\| Good	Poor	\| Poor	\| Good
	\| poor									
						\|				
Beseman-	\| Very	\| Poor	\| Poor	\| Poor	\| Poor	\| Good	\| Good	Poor	\| Poor	\| Good
	\| poor									
						\|				
485C:						\|				
Lupton	\| Very	\| Poor	\| Poor	$\mid$ Poor	\| Poor	\| Poor	\| Very	Poor	\| Poor	\| Very
	\| poor						\| poor			poor
Tawas	$\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$	\| Poor	$\begin{aligned} & \mid \text { very } \\ & \text { \| poor } \end{aligned}$	Poor	\| Poor	$\mid$ Very poor				
495B:						\|				
Karlsborg	\| Fair	\| Good	\| Good	\| Good	\| Good	\| Poor	\| Poor	\| Good	\| Good	\| Poor
						\|				
Grettum-	\| Poor	\| Poor	\| Fair	\| Good	\| Good			Poor	\| Good	
						\| poor	poor			poor
Perida	\| Poor	\| Fair	\| Good	\|Fair	\| Fair	\| Poor	\| Poor	Fair	\| Fair	\| Poor

Table 16.--Wildlife Habitat--Continued


Table 16.--Wildlife Habitat--Continued

Map symbol   and   soil name	Potential for habitat elements							\| Potential as habitat for--			
	Grain		Wild					Open-	Wood-	Wetland	
	and	\|Grasses	\| herba-	Hard-	\| Conif-	\| Wetland	Shallow	land	land	wild-	
	seed	and \|	\| ceous	wood	erous	\|plants	water	wild-	wild-	life	
	crops	\| legumes	plants	trees	\|plants		areas	life	life		
3114A:	Very					\| Good		1	\|	\|	
Aquepts		\| Very	\| Very   poor	$\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$	\| Very			\| Very	Very	\| Good	
	\| poor	\| poor					Good	\| poor	\| poor		
						\| Fair					
3125A:	\| Poor		\| Good	\|Fair	\| Fair			Fair	Fair		
Meehan-----------------		Fair					\| Fair			Fair	
3126A:											
	Poor		\| Fair	Fair	\| Fair	\| Poor	\| Very	\| Poor	\| Fair	Very	
Wurtsmith		\| Poor									
							\| poor			poor	
3312B:	\| Fair	\| Fair	\| Good	\| Good	\| Good	\| Fair	\| Poor		\| Good	\| Good	\| Fair
Glendenning, very stony											
Glendenning------------	\|Fair				\| Good	\|Fair	\| Poor		\| Good	\| Good	\| Fair
		$\mid$ Fair	\| Good	\| Good							
3336A:											
	Fair		\|Fair	\|Fair	\| Fair	\| Good	\| Good	Fair	Fair	Good	
Fenander		\| Fair									
3403A:											
		\| Poor		\| Poor	\| Poor			Poor	Poor	\| Good	
Loxley------------------ \|											
	\| pery	Poor		Poor	\|	Good					
							\| Good		Poor	Poor	
Beseman--------------- \|	\|very   poor	\| Good				\| Good					
				\|	\| Poor	\| Good	\| Good	Poor	Poor		
Dawson-----------------	\| Very   poor	\| Poor	\| Poor	\| Poor						\| Good	
3429B:	\| Poor	\| Fair	\| Good	\|Fair	\| Fair	\| Poor	\| Poor	Fair	Fair	\| Poor	
Lara------------------											
	\|		\| Good								
3429C:	\| Poor	\| Fair		\|Fair	\|Fair	$\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$	\|Very poor	Fair	\|Fair	\|Very poor	
3446A:	\|Fair	\| Fair	Fair	\| Poor	\| Poor	\| Good	Good	Fair	Poor		
Newson-----------------										Good	
3448B:				\|							
Grettum-	\| Poor	\| Poor	\| Fair	\| Good	\| Good	\| Very	\| Very	\| Poor	\| Good	Very	
						\| poor	\| poor			poor	
					\|						
3448C:				\|							
Grettum-	\| Poor	\| Poor	\|Fair	\| Good	\| Good	\| Very	\| Very	\| Poor	\| Good	\| Very	
						poor	\| poor			poor	
3510B:											
Pomroy-----------------	\| Poor	\| Fair	\| Good	\| Good	\| Good	\| Poor	\| Very	\| Fair	\| Good	Very	
							\| poor			poor	
				\|	\|						
Fremstadt--------------	\| Poor	\| Fair	\| Good	\| Good	\| Good	\| Poor	\| Very	\| Fair	\| Good	\|Very	
							\| poor			poor	
				\|	\|						
Fremstadt, stony-------	Poor	\|Fair	\| Good	\| Good	\| Good	\| Poor	\| Very	\| Fair	\| Good	Very	
							poor			poor	
				\|	\|				\|		
3510C:				\|	\|	\|					
Pomroy----------------	\| Poor	\| Fair	\| Good	\| Good	\| Good	\| Very	\| Very	\| Fair	\| Good	Very	
						\| poor	\| poor			poor	

Table 16.--Wildlife Habitat--Continued

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings			
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value		Rating class and limiting features	Value
3A:								
	\|Very limited		\|Very limited		\|Very limited			
	Subsidence	11.00	Subsidence	11.00	Subsidence	\| 1.00		
	Flooding	11.00	Flooding	11.00	Flooding	\| 1.00		
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	1.00		
	saturated zone		saturated zone		saturated zone			
	Ponding	11.00	Ponding	1.00	Ponding	1.00		
Bowstring-	Very limited		\|Very limited		\|Very limited			
	Subsidence	11.00	Subsidence	11.00	Subsidence	\| 1.00		
	Flooding	\| 1.00	Flooding	11.00	Flooding	\| 1.00		
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zon	\| 1.00		
	Content of	11.00	Content of	11.00	Content of	\| 1.00		
	organic matter		organic matter		organic matter			
	Ponding	11.00	Ponding	1.00	Ponding	11.00		
Ausable	\|Very limited		\|Very limited		\| Very limited			
	Subsidence	11.00	Subsidence	1.00	Subsidence	\| 1.00		
	Flooding	\| 1.00	Flooding	1.00	Flooding	\| 1.00		
	Depth to	11.00	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone					
	Ponding	11.00	Ponding	11.00	Ponding	\| 1.00		
12A:								
Makwa	Very limited		\|Very limited		\|Very limited			
	Flooding	11.00	\| Flooding	1.00	Flooding	\| 1.00		
	Depth to	11.00	Depth to	1.00	Depth to	11.00		
	saturated zone		saturated zone		saturated zone			
	Ponding	1.00	Ponding	1.00	Ponding	11.00		
	Content of large stones	\| 0.11	Content of large stones	\| 0.11	Content of large stones	\| 0.11		
22A:								
	Very limited		\|Very limited		\|Very limited			
	Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00		
	Shrink-swell	10.50			Shrink-swell	10.50		
27A:								
Scott Lake	Not limited		\|Very limited		\| Not limited			
			Depth to	10.99				
			saturated zone					
28B:								
Haugen, very stony--\|	Somewhat limited		\|Very limited		\|Somewhat limited			
	Depth to saturated zone	10.39	Depth to saturated zone	11.00	Depth to saturated zone	10.39		
	saturated zone		saturated zone		saturated zone			
Haugen	Somewhat limited		\|Very limited		\|Somewhat limited			
	Depth to saturated zone	10.39	Depth to saturated zone	11.00	Depth to saturated zone	10.39		

Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
28B:						
Rosholt, very stony	\| Not limited		\| Not limited		Not limited	
Rosholt	Not limited		\| Not limited		\| Not limited	
28C:						
Haugen, very stony--	Somewhat limited		\| Very limited		\| Very limited	
	Depth to	0.39	Depth to	11.00	Slope	1.00
	saturated zone		saturated zone		Depth to	0.39
	slope	0.04	slope	0.04	saturated zone	
Haugen	Somewhat limited		\| Very limited		\| Very limited	
	Depth to	0.39	Depth to	11.00	Slope	1.00
	saturated zone		saturated zone		Depth to	0.39
	Slope	0.04	slope	0.04	saturated zone	
Rosholt, very stony	\| Somewhat limited		\|Somewhat limited		\|Very limited	
	Slope	0.04	Slope	0.04	Slope	1.00
Rosholt	Somewhat limited		\|Somewhat limited		\|Very limited	
	Slope	0.04	Slope	0.04	Slope	1.00
38A:						
Rosholt-----------	Not limited		\| Not limited		Not limited	
38B:						
Rosholt-----------	Not limited		\| Not limited		\| Not limited	
38C:						
Roshol	Somewhat limited		\|Somewhat limited		\|Very limited	
	slope	0.04	slope	0.04	slope	1.00
38D:						
Rosholt	Very limited		\| Very limited		\|Very limited	
	Slope	1.00	Slope	11.00	Slope	11.00
42D:						
Amery-------------	\| Very limited		\|Very limited		\|Very limited	
	Slope	1.00	\| slope	11.00	\| Slope	1.00
43B:						
Antigo------------1	Not limited		\| Not limited		\| Not limited	
	43C:					
Antigo	Somewhat limited		\| Somewhat limited		\| Very limited	
	Slope	0.37	\| Slope	10.37	Slope	1.00
63A:						
Crystal Lake-	Somewhat limited		\| Very limited		\|Somewhat limited	
	Shrink-swell	0.50	Depth to	11.00	Shrink-swell	0.50
	Depth to	0.39	saturated zone		Depth to	0.39
	saturated zone				saturated zone	
63B:						
Crystal Lake	Somewhat limited		\| Very limited		\|Somewhat limited	
	Shrink-swell	0.50	Depth to	11.00	Shrink-swell	10.50
	Depth to	0.39	saturated zone		Depth to	0.39
	saturated zone				saturated zone	

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	Rating class and limiting features	\|value	Rating class and limiting features	\| Value	Rating class and limiting features	${ }^{\text {\| Value }}$
100D:						
Menahga	\|Very limited		\|Very limited		\|Very limited	
	Slope	\| 1.00	Slope	11.00	slope	1.00
120B:						
Kost	Not limited		\| Not limited		\| Not limited	
127D:						
Amery	\|Very limited		\|Very limited		\|Very limited	
	Slope	11.00	slope	11.00	slope	1.00
Rosholt	\|Very limited		\|Very limited		\|Very limited	
	slope	11.00	Slope	11.00	slope	11.00
127E:						
Amery	\|Very limited		\|Very limited		\|Very limited	
	slope	11.00	slope	11.00	slope	11.00
Rosholt	\|Very limited		\|Very limited		\|Very limited	
	Slope	\| 1.00	\| slope	11.00	\| slope	11.00
151A:						
Bluffton-	Very limited		\|Very limited		\| Very limited	
	Depth to	11.00	Depth to	11.00	Depth to	11.00
	saturated zone		saturated zone		saturated zone	
	Ponding	11.00	Ponding	11.00	Ponding	11.00
	Shrink-swell	10.50	Shrink-swell	10.50	Shrink-swell	10.50
152A:						
Alstad	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	Shrink-swell	10.50	Shrink-swell	10.50	Shrink-swell	0.50
154E:						
Cushing	\|Very limited		\|Very limited		\|Very limited	
	slope	11.00	Slope	11.00	Slope	11.00
	Shrink-swell	10.50	Shrink-swell	10.50	Shrink-swell	10.50
156B:						
Magnor, very stony--	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
Magnor------------- \|						
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
157B:						
Freeon, very stony--\|	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
Freeon	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
380C:						
Cress-----------	Somewhat limited		Somewhat limited		\| Very limited	
	Slope	0.04	Slope	0.04	slope	1.00
Rosholt---------	Somewhat limited		Somewhat limited		\| Very limited	
	slope	0.04	slope	0.04	slope	1.00
380D:						
Cress-----------	Very limited		Very limited		\| Very limited	
	slope	1.00	slope	11.00	slope	1.00
Rosholt---------	Very limited		Very limited		\| Very limited	
	slope	1.00	slope	11.00	slope	1.00
383B:						
Mahtomedi---------\| ${ }^{\text {Not }}$ limited			Not limited		\| Not limited	
383C:						
Mahtomedi-------	Somewhat limited		Somewhat limited		\| Very limited	
	Slope	0.04	Slope	0.04	Slope	1.00
383D:						
Mahtomedi----------\| Very limited			Very limited		\|Very limited	
	slope	1.00	slope	11.00	slope	1.00
392C:						
Rockmarsh----------\| Very limited			Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Content of large	0.88	Content of large	10.88	Slope	$1.00$
	stones		stones		Content of large	0.88
	Slope	0.37	slope	0.37	stones	
Dairyland----------\| Somewhat limited			\| Very limited		\|Very limited	
	Content of large	0.60	Depth to	11.00	Slope	1.00
	stones		saturated zone		Content of large	0.60
	Depth to	0.39	Content of large	0.60	stones	
	saturated zone		stones		Depth to	0.39
	slope	0.37	slope	0.37	saturated zone	
Makwa------------- \| Very limited			Very limited		\| Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Content of large	0.11	Content of large	0.11	slope	0.88
	stones		stones		Content of large	0.11
					stones	
396B:						
Friendship------	Not limited		Somewhat limited		\| Not limited	
			Depth to	10.35		
			saturated zone			
Wurtsmith----------\| Somewhat limited			Very limited		\| Somewhat limited	
	Depth to	0.39	Depth to	11.00	Depth to	0.39
	saturated zone		saturated zone		\| saturated zone	
Grayling--------	Not limited		Not limited		\| Not limited	

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings		
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
419A:							
Seelyeville--------\|Very limited			Very limited		\| Very limited		
	Subsidence	11.00	Subsidence	11.00	Subsidence	1.00	
	Depth to	11.00	Depth to	\| 1.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	11.00	Content of	11.00	Content of	1.00	
	organic matter		organic matter		organic matter		
	Ponding	11.00	Ponding	11.00	Ponding	1.00	
Cathro------------- \| Very limited			Very limited		\| Very limited		
	Subsidence	1.00	Subsidence	11.00	Subsidence	1.00	
	Depth to	11.00	Depth to	\| 1.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	1.00	Ponding	11.00	Content of	1.00	
	organic matter				organic matter		
	Ponding	1.00			Ponding	1.00	
Markey------------- \| Very limited			Very limited		\| Very limited		
	Depth to	1.00	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	11.00	Ponding	\| 1.00	Content of	1.00	
	organic matter				organic matter		
	Ponding	1.00			Ponding	1.00	
421A:							
Dora--------------- \| Very limited			Very limited		\|Very limited		
	Depth to	1.00	Depth to	\| 1.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	11.00	Ponding	11.00	Content of	\| 1.00	
	organic matter				organic matter		
	Ponding	11.00			Ponding	1.00	
Markey------------- \| Very limited			Very limited		Very limited		
	Depth to	1.00	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	1.00	Ponding	11.00	Content of	1.00	
	organic matter				organic matter		
	Ponding	1.00			Ponding	1.00	
Seelyeville--------\|	Very limited			Very limited		\| Very limited	
	Subsidence	1.00	Subsidence	11.00	Subsidence	1.00	
	Depth to	1.00	Depth to	11.00	Depth to	11.00	
	saturated zone		saturated zone		saturated zone		
	Content of	1.00	Content of	11.00	Content of	\| 1.00	
	organic matter		organic matter		organic matter		
	Ponding	1.00	Ponding	\| 1.00	Ponding	1.00	
422A:							
Seelyeville--------\| Very limited			\| Very limited		\| Very limited		
	Subsidence	1.00	Subsidence	11.00	Subsidence	11.00	
	Depth to	1.00	Depth to	11.00	Depth to	11.00	
	saturated zone		saturated zone		saturated zone		
	Content of	1.00	Content of	11.00	Content of	1.00	
	organic matter		organic matter		organic matter		
	Ponding	1.00	Ponding	11.00	Ponding	1.00	

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
635C:						
Drylanding	\|Very limited		\|Very limited		\|Very limited	
	Flooding	11.00	Flooding	11.00	Flooding	1.00
	Depth to hard bedrock	11.00	Depth to hard bedrock	\| 1.00	Depth to hard bedrock	1.00
	Content of large	10.39	Content of large	0.39	slope	0.88
	stones		stones		Content of large	0.39
					stones	
Beartree-----------	\|Very limited		\|Very limited		\|Very limited	
	Flooding	11.00	Flooding	11.00	Flooding	1.00
	Depth to	11.00	Depth to	\| 1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to hard bedrock	11.00
	Content of large stones	\| 1.00	Content of large stones	1.00	Content of large stones	11.00
	Ponding	11.00	Ponding	11.00	Ponding	1.00
Rock outcrop	Not rated		\| Not rated		\| Not rated	
648B:						
Sconsi	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.98	Depth to	11.00	Depth to	0.98
	saturated zone		saturated zone		saturated zone	
669D:						
Fremstadt, stony----\|	\|Very limited		\|Very limited		\|Very limited	
	Slope	11.00	\| slope	11.00	\| slope	11.00
Pomroy------------- \|	\|Very limited		\|Very limited		\|Very limited	
	Slope	11.00	slope	11.00	slope	1.00
	Depth to	10.39	Depth to	11.00	Depth to	10.39
	saturated zone		saturated zone		saturated zone	
671B:						
Spoonerhill, stony--\|	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to saturated zone	10.39	Depth to saturated zone	11.00	Depth to saturated zone	10.39
Spoonerhill-------- \|	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.39	Depth to	11.00	Depth to	0.39
	saturated zone		saturated zone		saturated zone	
706A:						
Winterfield--------\|	\|Very limited		\|Very limited			
	Flooding	\| 1.00	\| Flooding	1.00	\| Flooding	11.00
	Depth to	11.00	Depth to	11.00	Depth to	11.00
	saturated zone		saturated zone		saturated zone	
Totagatic----------	\|Very limited		\|Very limited		\|Very limited	
	Flooding	11.00	Flooding	11.00	Flooding	\| 1.00
	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	Ponding	\| 1.00	Ponding	11.00	Ponding	11.00
715A:						
Mor	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued

Map symbol and soil name	Dwellings without basements		Dwellings with basements		Small commercial buildings		
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value		Rating class and limiting features	\| Value
3336A:							
Fenander	\|Very limited		\|Very limited		\|Very limited		
	\| Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	
	Ponding	\| 1.00	Ponding	11.00	Ponding	\| 1.00	
3403A:							
Loxley	Very limited		\|Very limited		\|Very limited		
	Subsidence	11.00	Subsidence	11.00	Subsidence	\| 1.00	
	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	
	Content of	\| 1.00	Content of	11.00	Content of	\| 1.00	
	\| organic matter		organic matter		organic matter		
	\| Ponding	11.00	Ponding	1.00	Ponding	1.00	
Beseman	\|Very limited		\|Very limited		\|Very limited		
	\| Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00	
	Content of	11.00	Subsidence	11.00	Content of	11.00	
	\| organic matter		Ponding	11.00	organic matter		
	\| Subsidence	\| 1.00			Subsidence	11.00	
	Ponding	11.00			Ponding	1.00	
Dawson-	\|Very limited		\|Very limited		\|Very limited		
	\| Subsidence	11.00	Subsidence	1.00	Subsidence	11.00	
	Depth to	11.00	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	11.00	Ponding	1.00	Content of	11.00	
	organic matter				organic matter		
	\| Ponding	11.00			Ponding	1.00	
3429B:							
Lara	Somewhat limited		\|Very limited		\|Somewhat limited		
	Depth to saturated zone	10.98	Depth to saturated zone	\| 1.00	```Depth to saturated zone```	0.98	
3429C:							
Lara-			\|Very limited		\|Very limited		
	Depth to	10.98	Depth to	1.00	Slope	11.00	
	\| saturated zone		saturated zone		Depth to	10.98	
	\| slope	10.04	Slope	10.04	saturated zone		
3446A:							
Newson-	\|Very limited		\|Very limited		\| Very limited		
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00	
	\| Ponding	\| 1.00	Ponding	11.00	Ponding	\| 1.00	
3448B:							
Grettum	\| Not limited		\| Somewhat limited		\| Not limited		
			Depth to	10.35			
			saturated zone				
	\|						
3448C:							
Grettum			\|Somewhat limited		\|Very limited		
	slope	10.04	Depth to	10.35	slope	\| 1.00	
			saturated zone				
			Slope	10.04			

Table 17a.--Building Site Development--Continued


Table 17a.--Building Site Development--Continued


Table 17b.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
3A:Totaga	,					
	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Flooding	11.00
	\| saturated zone		saturated zone		Depth to	11.00
	\| Subsidence	1.00	Cutbanks cave	\| 1.00	saturated zone	
	Flooding	1.00	Ponding	11.00	Ponding	11.00
	Ponding	1.00	Flooding	10.80		
	Frost action	0.50				
Bowstring-	Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Flooding	\| 1.00
	\| saturated zone		saturated zone		Content of	11.00
	Subsidence	1.00	Cutbanks cave	11.00	organic matter	
	Frost action	1.00	Ponding	\| 1.00	Depth to	11.00
	Flooding	1.00	Content of	\| 1.00	saturated zone	
	Ponding	1.00	organic matter		Ponding	1.00
			Flooding	10.80		
Ausable-	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	\| Depth to	11.00	Flooding	11.00
	saturated zone		saturated zone		Depth to	11.00
	Subsidence	1.00	Cutbanks cave	11.00	saturated zone	
	Flooding	1.00	Ponding	11.00	Ponding	11.00
	Ponding	$\text { \| } 1.00$	Flooding	10.80		
	Frost action	0.50				
12A:Makw						
	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Flooding	
	saturated zone		saturated zone		Depth to	$1.00$
	Frost action	1.00	Cutbanks cave	11.00	saturated zone	
	Flooding	1.00	Ponding	11.00	Ponding	11.00
	Ponding	1.00	Flooding	10.80	Content of large	10.99
	Content of large stones	0.11	Content of large stones	0.11	stones	
22A:	\|					
Comstock	\|Very limited		\| Very limited		\|Very limited	
	Depth to saturated zone	1.00	```Depth to saturated zone```	11.00	```Depth to saturated zone```	11.00
	Frost action	1.00	Cutbanks cave	11.00		
	Low strength	1.00				
	Shrink-swell	0.50				
27A:	,					
Scott Lake	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	\| Cutbanks cave	$1.00$	Droughty	10.01
	\|		Depth to	10.99		
	I		saturated zone			

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value		Rating class and limiting features	Value
28B:							
Haugen, very stony--\|	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Depth to	1.00	Depth to	0.19	
	Depth to	\| 0.19	saturated zone		saturated zone		
	saturated zone		Cutbanks cave	1.00	Content of large	0.03	
					stones		
Haugen	Somewhat limited		\|Very limited		Somewhat limited		
	Frost action	0.50	Depth to	1.00	Depth to	0.19	
	Depth to	0.19	saturated zone		saturated zone		
	saturated zone		Cutbanks cave	1.00	Content of large	0.03	
					stones		
Rosholt, very stony	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Cutbanks cave	1.00	Droughty	0.02	
					Content of large	$\mid 0.01$	
					stones		
Rosholt	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Cutbanks cave	1.00	Droughty	0.01	
28C:							
Haugen, very stony--	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Depth to	1.00	Depth to	0.19	
	Depth to	\| 0.19	saturated zone		saturated zone		
	saturated zone		Cutbanks cave	1.00	slope	0.04	
	Slope	0.04	slope	0.04	Content of large	0.03	
					stones		
Haugen-------------- \|	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Depth to	1.00	Depth to	0.19	
	Depth to	0.19	saturated zone		saturated zone		
	saturated zone		Cutbanks cave	1.00	Slope	0.04	
	Slope	0.04	Slope	0.04	Content of large	0.03	
					stones		
Rosholt, very stony	\| Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	10.50	Cutbanks cave	1.00	Slope	0.04	
	Slope	10.04	slope	0.04	Droughty	0.02	
					Content of large	0.01	
					stones		
Rosholt	Somewhat limited		\| Very limited		Somewhat limited		
	Frost action	0.50	Cutbanks cave	1.00	Slope	0.04	
	Slope	10.04	slope	0.04	Droughty	0.01	
38A:							
Rosholt------------	Somewhat limited		Very limited		Somewhat limited		
	Frost action	0.50	Cutbanks cave	1.00	Droughty	0.01	
38B:							
Rosholt	Somewhat limited		Very limited		Somewhat limited		
	Frost action	0.50	Cutbanks cave	1.00	Droughty	0.01	
38C:							
Rosholt	Somewhat limited		Very limited		Somewhat limited		
	\| Frost action	0.50	Cutbanks cave	1.00	Slope	0.04	
	\| Slope	0.04	Slope	0.04	Droughty	0.01	

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
				\|		
38D:						
Roshol	Very limited		\|Very limited		$\mid$ Very limited	
	Slope	11.00	Cutbanks cave	11.00	Slope	1.00
	Frost action	10.50	Slope	\| 1.00	Droughty	0.01
42D:						
Amery	\|Very limited		\|Very limited		$\mid$ Very limited	
	\| Slope	11.00	Cutbanks cave	11.00	Slope	1.00
	Frost action	10.50	Slope	\| 1.00	Content of large	0.03
					stones	
43B:						
Antigo	Somewhat limited		\|Very limited		\| Not limited	
	Frost action	10.50	Cutbanks cave	11.00		
43C:						
Antigo	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	10.50	Cutbanks cave	11.00	Slope	0.37
	Slope	10.37	slope	10.37		
63A:						
Crystal Lak	\|Very limited		\|Very limited		\|Somewhat limited	
	Frost action	11.00	Depth to	11.00	Depth to	0.19
	Low strength	11.00	saturated zone		saturated zone	
	\| Shrink-swell	10.50	Cutbanks cave	11.00		
	\| Depth to	$\text { \| } 0.19$				
	saturated zone			\|		
63B:						
Crystal Lal	\|Very limited		\|Very limited		\|Somewhat limited	
	Frost action	11.00	Depth to	1.00	Depth to	0.19
	Low strength	\| 1.00	saturated zone		saturated zone	
	Shrink-swell	10.50	Cutbanks cave	11.00		
	Depth to	10.19				\|
	saturated zone					
63C:						
Crystal Lake	\|Very limited		\|Very limited		\|Somewhat limited	
	\| Frost action	11.00	Depth to	1.00	Depth to	0.19
	Low strength	\| 1.00	saturated zone		saturated zone	
	Shrink-swell	10.50	Cutbanks cave	11.00	slope	0.04
	Depth to	10.19	slope	10.04		
	saturated zone					
	slope	10.04		\|		
				\|		
64A:						
Totagatic	\|Very limited		\|Very limited	,	$\mid$ Very limited	
	Depth to	11.00	Depth to	11.00	Flooding	\| 1.00
	saturated zone		saturated zone		Depth to	11.00
	Subsidence	1.00	Cutbanks cave	11.00	saturated zone	
	Flooding	11.00	Ponding	11.00	Ponding	1.00
	Ponding	11.00	Flooding	10.80		
	Frost action	10.50				
				\|		
Winterfield	\|Very limited		\|Very limited	,	$\mid$ Very limited	
	\| Depth to	11.00	\| Depth to	11.00	\| Flooding	\| 1.00
	saturated zone		\| saturated zone		Depth to	11.00
	Flooding	11.00	Cutbanks cave	11.00	saturated zone	
	\|		Flooding	10.80	Droughty	0.50

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
69C:						
Keweenaw	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Slope	0.16	Cutbanks cave	\| 1.00	Slope	0.16
			Slope	10.16	Droughty	0.06
					Content of large	0.01
					stones	
Sayner	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Slope	0.16	Cutbanks cave	11.00	Droughty	0.94
			Slope	10.16	Slope	0.16
					Content of large	0.05
					stones	
Vilas	Somewhat limited		\|Very limited		\| Somewhat limited	
	\| slope	0.16	Cutbanks cave	1.00	Droughty	0.42
			Slope	\| 0.16	Slope	0.16
69E:						
Keweenaw	\|Very limited		\|Very limited		\|Very limited	
	\| slope	1.00	Slope	11.00	slope	1.00
			Cutbanks cave	11.00	Droughty	0.06
					Content of large	
					stones	
	I					
Sayner	\|Very limited		\|Very limited		\|Very limited	
	\| slope	1.00	Slope	1.00	Slope	1.00
			Cutbanks cave	1.00	Droughty	0.94
					Content of large	0.05
					stones	
Vilas			\|Very limited		\|Very limited	
	\| Slope	1.00	Slope	11.00	Slope	1.00
			Cutbanks cave	11.00	Droughty	0.42
82B:						
Cutaway	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	\| Shrink-swell	0.50	Depth to	1.00	Depth to	0.19
		0.19	saturated zone		saturated zone	
	\| saturated zone		Cutbanks cave	1.00		
Branstad-	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	\| Depth to	0.19	saturated zone		saturated zone	
	\| saturated zone		Cutbanks cave	10.10		
82C:						
Cutaway	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	\| Shrink-swell	0.50	Depth to	11.00	Depth to	0.19
	\| Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	1.00	Slope	10.04
	\| Slope	0.04	Slope	10.04		
Branstad-	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	\| Depth to	0.19	saturated zone		saturated zone	
	\| saturated zone		Cutbanks cave	10.10	slope	0.04
	\| slope	0.04	Slope	10.04		
	\|					

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	$\square$	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
Smestad	Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Frost action	10.50	Too clayey	11.00		
			Cutbanks cave	1.00		
85B :						
Taylor	\|Very limited		\|Very limited		\|Very limited	
	\| Shrink-swell	1.00	Depth to	1.00	Depth to	0.99
	Low strength	1.00	saturated zone		saturated zone	
	Depth to	10.99	Too clayey	11.00		
	saturated zone		Cutbanks cave	0.10		
	Frost action	0.50				
85C:						
Taylo	\|Very limited		\|Very limited		\|Very limited	
	Shrink-swell	1.00	\| Depth to	1.00	\| Depth to	0.99
	Low strength	1.00	saturated zone		saturated zone	
	Depth to	10.99	Too clayey	$1.00$	Slope	0.04
	saturated zone		Cutbanks cave	$10.10$		
	Frost action	0.50	Slope	0.04		\|
	Slope	0.04				
86A:						
Indus	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
	Frost action	11.00	Too clayey	11.00	Ponding	11.00
	Low strength	1.00	Ponding	11.00		
	Shrink-swell	11.00	Cutbanks cave	0.10		
	Ponding	1.00				
Alango	\|Very limited		\|Very limited		\|Very limited	
	\| Shrink-swell	1.00	\| Depth to	1.00	Depth to	11.00
	Depth to	1.00	saturated zone		saturated zone	
	saturated zone		Too clayey	11.00		
	Frost action	1.00	Cutbanks cave	0.10		
	Low strength	1.00				
89A:						
Wildwood	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	1.00	Content of organic matter	11.00
	Frost action	1.00	Too clayey	11.00	Depth to	11.00
	Low strength	1.00	Ponding	11.00	saturated zone	
	Shrink-swell	11.00	Cutbanks cave	0.10	Ponding	1.00
	Ponding	1.00				
96B:						
Karlsborg			\|Very limited			
	Depth to   saturated zone	10.75	Depth to saturated zone	11.00	Depth to saturated zone	10.75
	Frost action	0.50	Too clayey	11.00	Too sandy	10.50
			Cutbanks cave	11.00	Droughty	10.26
						\|

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
96C:						
Karlsborg	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.75	Depth to	11.00	Depth to	0.75
	saturated zone		saturated zone		saturated zone	
	Frost action	10.50	Too clayey	11.00	Too sandy	0.50
	Slope	10.04	Cutbanks cave	11.00	Droughty	0.26
			Slope	\| 0.04	Slope	0.04
96D:						
Karlsborg	Very limited		\|Very limited		\|Very limited	
	slope	11.00	Depth to	11.00	Slope	1.00
	Depth to	10.75	saturated zone		Depth to	0.75
	saturated zone		Too clayey	11.00	saturated zone	
	Frost action	10.50	Cutbanks cave	\| 1.00	Too sandy	0.50
			Slope	\| 1.00	Droughty	0.26
100B:						
Menahga	Not limited		\|Very limited		\|Somewhat limited	
			\| Cutbanks cave	\| 1.00	\| Droughty	0.93
					Too sandy	0.50
100C:						
Menahga	Somewhat limited		\|Very limited		\|Somewhat limited	
	Slope	10.04	Cutbanks cave	1.00	Droughty	0.51
			Slope	10.04	slope	0.04
100D:						
Menahga	Very limited		\|Very limited		\|Very limited	
	Slope	11.00	Cutbanks cave	11.00	slope	1.00
			Slope	11.00	Droughty	0.51
120B:						
Kost	Not limited		\|Very limited		\|Somewhat limited	
			Cutbanks cave	11.00	Droughty	0.50
127D:		\|				
Amery	Very limited		\|Very limited		\|Very limited	
	Slope	\| 1.00	Cutbanks cave	11.00	slope	1.00
	Frost action	10.50	Slope	11.00		0.03
					stones	
Rosholt			\|Very limited		\|Very limited	
	Slope	11.00	Cutbanks cave	1.00	Slope	1.00
	Frost action	10.50	Slope	\| 1.00	Droughty	0.02
					Content of large stones	0.01
		\|	\|			
127E:		\|				
Amery	Very limited		\|Very limited		\|Very limited	
	Slope	11.00	Slope	1.00	slope	1.00
	Frost action	10.50	Cutbanks cave	\| 1.00	\| Content of large	0.03
		\|				
Rosholt	Very limited		\|Very limited		\|Very limited	
	slope	11.00	\| slope	1.00	\| slope	11.00
	Frost action	10.50	Cutbanks cave	11.00	\| Droughty	0.02
			\|		Content of large	0.01
					stones	
		1				

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
151A:						
Bluffton	\|Very limited		\|Very limited		$\mid$ Very limited	
	Depth to	11.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Frost action	11.00	Ponding	1.00	Ponding	1.00
	Ponding	11.00	Cutbanks cave	0.10		
	Shrink-swell	10.50				
152A:						
Alstad	\|Very limited		\|Very limited		$\mid$ Very limited	
	Depth to	11.00	Depth to	1.00	Depth to saturated zone	1.00
	Frost action	11.00	Cutbanks cave	0.10	saturated zone	
	Shrink-swell	0.50				
154E:						
Cushing	\|Very limited		\|Very limited		$\mid$ Very limited	
	Slope	11.00	slope	1.00	Slope	1.00
	Shrink-swell	10.50	Cutbanks cave	0.10		
	Frost action	10.50				
156B:						
Magnor, very stony--\|	\|Very limited		\|Very limited		$\mid$ Very limited	
	Depth to	11.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone			
	Frost action	10.50	Dense layer	$10.50$	Content of large	0.01
			Cutbanks cave	$10.10$	stones	
Magnor	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
	Frost action	10.50	Dense layer	0.50		
			Cutbanks cave	0.10		
157B:						
Freeon, very stony--\|	Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
	Frost action	10.50	Dense layer	10.50		
			Cutbanks cave	0.10		
		1				
Freeon-------------- \|	\|Very limited		\|Very limited		\|Very limited	
	```Depth to saturated zone```	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
	Frost action	10.50	Dense layer	10.50	Content of large	0.01
			Cutbanks cave	10.10	stones	
		,				
157C:		1 \|				
Freeon, very stony--\|	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
	Frost action	10.50	Dense layer	10.50	Slope	0.04
	Slope	10.04	Cutbanks cave	10.10		
			Slope	10.04		
		1 \|				
Freeon-------------- \|	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Frost action	10.50	Dense layer	10.50	Slope	10.04
	Slope	10.04	Cutbanks cave	10.10	Content of large	0.01
			slope	10.04	stones	

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	\|Value		\| Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
160A:							
Oesterle	\|Very limited		\|Very limited		\mid Very limited		
	Depth to	1.00	Depth to	11.00	Depth to	11.00	
	saturated zone		saturated zone		saturated zone		
	Frost action	0.50	Cutbanks cave	11.00			
165B:							
Elderon	Somewhat limited		\|Very limited		\| Somewhat limited		
	Content of large	0.14	Cutbanks cave	11.00	Droughty	10.94	
	stones		Content of large	\| 0.14	Content of large	0.01	
			stones		stones		
185B:							
Tradelake	\|Very limited		\|Very limited		\|Somewhat limited		
	Shrink-swell	1.00	Depth to	11.00	Depth to	0.75	
	Low strength	1.00	saturated zone		saturated zone		
	Depth to	0.75	Too clayey	11.00			
	saturated zone		Cutbanks cave	\| 1.00			
	Frost action	0.50					
Taylor	\|Very limited		\|Very limited		\mid Very limited		
	Shrink-swell	1.00	Depth to	11.00	Depth to	10.99	
	Low strength	1.00	saturated zone		saturated zone		
	Depth to	0.99	Too clayey	11.00			
	saturated zone		Cutbanks cave	10.10			
	Frost action	0.50					
185C:							
Tradelake	Very limited		\|Very limited		\| Somewhat limited		
	Shrink-swell	11.00	Depth to	11.00	Depth to	0.75	
	Low strength	\| 1.00	saturated zone		saturated zone		
	Depth to	10.75	Too clayey	11.00	slope	10.04	
	saturated zone		Cutbanks cave	11.00			
	Frost action	10.50	Slope	10.04			
	Slope	10.04					
Taylor	\|Very limited		\mid Very limited		\mid Very limited		
	Shrink-swell	11.00	Depth to	11.00	Depth to	0.99	
	Low strength	1.00	saturated zone		saturated zone		
	Depth to	10.99	Too clayey	11.00	slope	10.04	
	saturated zone		Cutbanks cave	10.10			
	Frost action	10.50	Slope	10.04			
	Slope	10.04					
185D:							
Tradelake	Very limited		\|Very limited				
	\| Shrink-swell	11.00	\| Depth to	11.00	\| Slope	11.00	
	Low strength	1.00	saturated zone		Depth to	10.19	
	Slope	11.00	Too clayey	11.00	saturated zone		
	Frost action	10.50	Cutbanks cave	11.00			
	Depth to	10.19	Slope	11.00			
	saturated zone						
Taylor	Very limited		\|Very limited		\mid Very limited		
	Shrink-swell	11.00	Depth to	11.00	Slope	11.00	
	Low strength	11.00	saturated zone		\| Depth to	10.99	
	Slope	11.00	Too clayey	11.00	saturated zone		
	Depth to	10.99	Slope	11.00			
	saturated zone		Cutbanks cave	10.10			
	Frost action	10.50					

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
368D:						
	Very limited		\|Very limited		\|Very limited	
	Slope	1.00	Cutbanks cave	11.00	Slope	1.00
			Slope	\| 1.00	Droughty	0.13
368E:						
Mahtomed	\|Very limited		\|Very limited		\|Very limited	
	Slope	1.00	Slope	11.00	Slope	11.00
			Cutbanks cave	11.00	Droughty	1.00
Cress	\|Very limited		\|Very limited		\|Very limited	
	\| slope	1.00	Slope	11.00	slope	1.00
			Cutbanks cave	11.00	Droughty	0.13
380B:						
Cress	\| Not limited					
			Cutbanks cave	11.00	Droughty	0.13
Rosholt						
	\| Frost action	0.50	Cutbanks cave	11.00	Droughty	0.01
380C:						
Cress						
	\| Slope	0.04	Cutbanks cave	11.00	Droughty	10.13
			Slope	10.04	Slope	10.04
Rosholt	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Cutbanks cave	11.00	Slope	10.04
	\| Slope	0.04	Slope	10.04	Droughty	10.01
	-					
380D:						
Cress	\|Very limited		\|Very limited		\|Very limited	
	\| slope	1.00	Cutbanks cave		slope	11.00
			slope	1.00	Droughty	10.13
Rosholt	\|Very limited		\|Very limited		\| Very limited	
	\| Slope	1.00	Cutbanks cave	11.00	Slope	11.00
	\| Frost action	0.50	Slope	11.00	Droughty	10.01
383B:						
Mahtomedi	Not limited		\|Very limited		\|Very limited	
			Cutbanks cave	11.00	Droughty	1.00
383C:						
Mahtomedi	\|Somewhat limited		\|Very limited		\|Very limited	
	slope	0.04	Cutbanks cave	11.00	Droughty	11.00
			Slope	10.04	slope	10.04
383D:						
Mahtomedi	\|Very limited		\|Very limited		\|Very limited	
	\| Slope	1.00	Cutbanks cave	11.00	Slope	$\text { \| } 1.00$
	\|		slope	11.00	Droughty	11.00

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
399D:							
Grayling	Very limited		\|Very limited		\|Very limited		
	slope	1.00	Cutbanks cave	11.00	Droughty	1.00	
			Slope	11.00	Slope	1.00	
					Too sandy	0.50	
406A:							
Loxley	\|Very limited		\|Very limited		\| Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	1.00	
	\| Subsidence	1.00	Content of	1.00	Depth to	1.00	
	Ponding	1.00	organic matter		saturated zone		
	Frost action	1.00	Ponding	11.00	Ponding	1.00	
			Cutbanks cave	10.10			
407A:							
Seelyeville	\|Very limited		\|Very limited		\|Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	1.00	Content of organic matter	1.00	
	Subsidence	1.00	Content of	11.00	Depth to	1.00	
	Ponding	1.00	organic matter		saturated zone		
	Frost action	1.00	Ponding	1.00	Ponding	1.00	
			Cutbanks cave	10.10			
Markey			\|Very limited				
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	1.00	
	Frost action	1.00	Cutbanks cave	1.00	Depth to	1.00	
	Ponding	1.00	Ponding	1.00	saturated zone		
			Content of	11.00	Ponding	1.00	
			organic matter				
410A:							
Seelyeville	\|Very limited		\|Very limited		\| Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	1.00	
	\| Subsidence	1.00	Content of	1.00	Depth to	1.00	
	Ponding	1.00	organic matter		saturated zone		
	Frost action	1.00	Ponding	1.00	Ponding	1.00	
			Cutbanks cave	10.10			
Cathro	Very limited		\|Very limited		\|Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	1.00	
	Subsidence	1.00	Ponding	\| 1.00	Depth to	1.00	
	Frost action	1.00	Content of	1.00	saturated zone		
	Ponding	1.00	organic matter		Ponding	1.00	
			Cutbanks cave	10.10			
419A:							
Seelyeville	\|Very limited		\|Very limited		\|Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	$\mid 1.00$	
	Subsidence	1.00	Content of	1.00	Depth to	11.00	
	Ponding	1.00	organic matter		saturated zone		
	Frost action	1.00	Ponding	11.00	Ponding	1.00	
			Cutbanks cave	10.10			

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
422A:							
Rondeau	\|Very limited		\|Very limited		\|Very limited		
	\| Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	11.00	
	\| Subsidence	1.00	Ponding	11.00	Depth to	11.00	
	\| Frost action	1.00	Content of	11.00	saturated zone		
	\| Ponding	1.00	organic matter		Ponding	11.00	
			Cutbanks cave	10.10			
426B:							
Emmert	\| Not limited				\|Very limited		
			Cutbanks cave	1.00	Droughty	\| 1.00	
					Content of large	0.01	
					stones		
Mahtomedi	\| Not limited		\|Very limited		\| Very limited		
			Cutbanks cave	11.00	Droughty	11.00	
Menahga	Not limited		\|Very limited		\|Somewhat limited		
			Cutbanks cave	1.00	Droughty	0.49	
426C:							
Emmert	\|Somewhat limited		\|Very limited		\|Very limited		
	\| slope	0.04	Cutbanks cave	1.00	Droughty	11.00	
			Slope	10.04	Slope	10.04	
					Content of large stones	10.01	
Mahtomedi-							
	Slope	0.04	Cutbanks cave	\| 1.00	Very limited Droughty	1.00	
			Slope	10.04	slope	10.04	
Menahga	\|Somewhat limited		\|Very limited		\| Somewhat limited		
	slope	0.04	Cutbanks cave	1.00	Droughty	10.49	
			Slope	0.04	slope	10.04	
426D:							
Emmert	\|Very limited		\|Very limited		\|Very limited		
	\| slope	1.00	\| Cutbanks cave	1.00	Droughty	\| 1.00	
			Slope	11.00	Slope	\| 1.00	
					Content of large	10.01	
	\|				stones		
Mahtomedi	\|Very limited		\|Very limited		Very limited		
	\| slope	1.00	Cutbanks cave	1.00	Slope	11.00	
	\|		Slope	1.00	Droughty	11.00	
Menahga	\|Very limited		\|Very limited		Very limited		
	\| Slope	1.00	\| Cutbanks cave	$\text { \| } 1.00$	Slope	11.00	
	\|		Slope	1.00	Droughty	10.49	
430A:							
Freya-							
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00	
			Too clayey	1.00	Droughty	10.20	
	\|		Cutbanks cave	11.00			

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
459A:						
Loxley	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	\| 1.00
	Subsidence	1.00	Content of	1.00	Depth to	11.00
	Ponding	1.00	organic matter		saturated zone	
	Frost action	1.00	Ponding	11.00	Ponding	1.00
			Cutbanks cave	0.10		
Daisybay-	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	```Depth to saturated zone```	\| 1.00
	Frost action	1.00	Ponding	11.00	Ponding	11.00
	Ponding	1.00	Content of	11.00		
			organic matter			
			Cutbanks cave	10.10		
			Too clayey	10.03		
Dawson	\|Very limited		\mid Very limited		\mid Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	\| 1.00
	saturated zone		saturated zone		saturated zone	
	Subsidence	1.00	Cutbanks cave	11.00	Ponding	11.00
	Frost action	1.00	Ponding	11.00		
	Ponding	1.00	Content of	11.00		
			organic matter			
461A:						
Bowstring	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	\| Flooding	\| 1.00
	saturated zone		saturated zone		Content of	11.00
	Subsidence	1.00	Cutbanks cave	11.00	organic matter	
	Frost action	$\text { \| } 1.00$	Ponding	1.00	Depth to	11.00
	Flooding	1.00	Content of	11.00	saturated zone	
	Ponding	1.00	organic matter		Ponding	11.00
			Flooding	10.80		
465A:						
Newson	\|Very limited		\|Very limited		\mid Very limited	
	Depth to saturated zone	1.00	\| Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00
	Ponding	1.00	Cutbanks cave	11.00	Ponding	11.00
	Frost action	0.50	Ponding	11.00		
Meehan	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	1.00	Depth to saturated zone	11.00	```Depth to saturated zone```	\| 1.00
			Cutbanks cave	1.00	Droughty	10.94
					Too sandy	10.50
469E:						
Bigisland	\|Very limited		\|Very limited		\mid Very limited	
	Slope	1.00	Slope	11.00	Slope	11.00
	Content of large	0.61		\| 1.00	Content of large	\|1.00
	stones		Content of large	10.61	stones	
			stones		Droughty	10.99
	\|		Dense layer	10.50	Gravel content	10.65

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets	Shallow excavations		Lawns and landscaping			
	Rating class and \mid Value limiting features	Rating class and limiting features	\| Value	Rating class and limiting features	Value		
$469 \mathrm{E}:$							
Milaca-------------\|Very limited		Very limited		Very limited			
	Slope \|1.00	Slope	11.00	slope	11.00		
	Frost action \|0.50	Depth to	\| 1.00	Depth to	0.19		
	Depth to \|0.19	saturated zone		saturated zone			
	saturated zone	Dense layer	0.50				
	\|	Cutbanks cave	10.10				
	1 \|						
471B:							
Dairyland	Somewhat limited	Very limited		Somewhat limited			
	Content of large \| 0.60	Depth to	\| 1.00	Droughty	0.32		
	stones	saturated zone		Depth to	\| 0.19		
	Depth to \|0.19	Cutbanks cave	\| 1.00	saturated zone			
	saturated zone	Content of large	0.60				
	\|		stones				
	1 \|	Dense layer	0.50				
	\|						
Emmert----------	Not limited	Very limited		Very limited			
	\|		Cutbanks cave	1.00	Droughty	1.00	
	1 \|			Gravel content	0.10		
	1 \|			Content of large	0.01		
	1 \|			stones			
	\|						
471C:							
Dairyland-------	Somewhat limited	Very limited		Somewhat limited			
	Content of large \| 0.60	Depth to	1.00	Slope	0.37		
	stones	saturated zone		Droughty	\| 0.32		
	Slope 10.37	Cutbanks cave	1.00	Depth to	0.19		
	Depth to 0.19	Content of large	0.60	saturated zone			
	saturated zone	stones					
		Dense layer	10.50				
		Slope	0.37				
Emmert		Very limited		Very limited			
	Slope 0.37	Cutbanks cave	1.00	Droughty	11.00		
	\|		Slope	\| 0.37	Slope	\| 0.37	
	1 \|			Content of large	0.01		
	1			stones			
	1 \|						
472A:							
Rockmarsh----------\|Very limited		Very limited		Very limited			
	Depth to \|1.00	Depth to	\| 1.00	Flooding	11.00		
	saturated zone \|	saturated zone		Depth to	1.00		
	Flooding \|1.00	Cutbanks cave	\| 1.00	saturated zone			
	$\begin{aligned} & \text { Content of large } \\ & \text { stones } \end{aligned}$	Content of large stones	\| 0.88	Content of large stones	11.00		
	Frost action \|0.50	Flooding	10.80	Droughty	0.01		
		Dense layer	10.50				
	\|						
Clemens---------	Very limited	Very limited		Very limited			
	Depth to \|1.00	Depth to	11.00	Flooding	11.00		
	saturated zone	saturated zone		Depth to	11.00		
	Flooding \|1.00	Cutbanks cave	\| 1.00	saturated zone			
	Frost action \|0.50	Flooding	10.80				
	Content of large \|0.23	Content of large	10.23				
	stones	stones					

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	${ }^{\text {\| Value }}$
473A:						
Dairyland	Somewhat limited		\|Very limited		\|Somewhat limited	
	Content of large	0.60	Depth to	1.00	Droughty	
	stones		saturated zone		Depth to	0.19
	Depth to	0.19	Cutbanks cave	11.00	saturated zone	
	\| saturated zone		Content of large	0.60		
			stones			
			Dense layer	10.50		
Skog	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Flooding	0.40	Cutbanks cave	11.00	Droughty	0.96
			Depth to	10.99		
			saturated zone			
484A:						
Greenwood	\|Very limited		\|Very limited		\|Very limited	
	\| Depth to \| saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	\| Frost action	1.00	Content of	11.00	Ponding	1.00
	\| Ponding	1.00	organic matter			
			Ponding	11.00		
	\|		Cutbanks cave	10.10		
Beseman			\|Very limited		\| Very limited	
	\| Depth to \| saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	11.00
	\| Frost action	1.00	Ponding	11.00	Depth to	1.00
	\| Subsidence	1.00	Content of	\| 1.00		
	\| Ponding	1.00	organic matter		Ponding	11.00
			Cutbanks cave	10.10		
485C:	\|					
Lupton	\mid Very limited		\|Very limited		\|Very limited	
	\| Depth to \| saturated zone	1.00	Depth to saturated zone	$\mid 1.00$	Content of organic matter	$\mid 1.00$
	Frost action	1.00	Content of organic matter	\| 1.00	Depth to saturated zone	11.00
	\|		Cutbanks cave	10.10		
Tawas	\|Very limited		\|Very limited		\|Very limited	
	\| Depth to \| saturated zone	1.00	Depth to saturated zone	11.00	Content of organic matter	11.00
	\| Frost action	1.00	Cutbanks cave	11.00	Depth to	11.00
	\| Ponding	1.00	Ponding	11.00	saturated zone	
	\|		Content of organic matter	\| 1.00	Ponding	11.00
	\|					
495B :	\|					
Karlsborg	\|Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to saturated zone	0.75	Depth to saturated zone	\| 1.00	Depth to saturated zone	10.75
	\| Frost action	0.50	Too clayey	11.00	Droughty	10.26
			Cutbanks cave	\| 1.00		
Grettum	\| Not limited		\|Very limited		\|Somewhat limited	
			\| Cutbanks cave	11.00	Droughty	10.61
	\|		Depth to	10.35		
			saturated zone			

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
495B:Perida						
	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Cutbanks cave	11.00	Droughty	10.44
			Too clayey	\| 1.00		
			Depth to	0.82		
			saturated zone			
495C:						
Karlsborg	Somewhat limited		\|Very limited		\| Somewhat limited	
	Depth to	0.75	Depth to	11.00	Depth to	10.75
	saturated zone		saturated zone		saturated zone	
	Frost action	0.50	Too clayey	11.00	Droughty	10.26
	slope	0.04	Cutbanks cave	11.00	slope	10.04
			Slope	0.04		
Grettum-	Somewhat limited		\|Very limited		\| Somewhat limited	
	Slope	0.04	Cutbanks cave	1.00	Droughty	10.61
			Depth to	0.35	slope	10.04
			saturated zone			
			slope	10.04		
Perida			\|Very limited		Somewhat limited	
	Frost action	0.50	Cutbanks cave	11.00	Droughty	10.44
	Slope	0.04	Too clayey	11.00	Slope	10.04
			Depth to	0.82		
			saturated zone			
			slope	10.04		
495D:Karlsborg						
	Very limited		\|Very limited		\|Very limited	
	slope	11.00	Depth to	11.00	Slope	11.00
	Depth to	10.75	saturated zone		Depth to	10.75
	saturated zone		Too clayey	11.00	saturated zone	
	Frost action	10.50	Cutbanks cave	11.00	Droughty	10.26
			slope	1.00		
Grettum	Very limited		\|Very limited		\|Very limited	
	Slope	11.00	\| Cutbanks cave	11.00	slope	\| 1.00
			Slope	11.00	Droughty	10.61
			Depth to	10.35		
			saturated zone			
Perida	Very limited		\|Very limited		\|Very limited	
	slope	11.00	Cutbanks cave	11.00	Slope	11.00
	Frost action	10.50	Slope	\| 1.00	Droughty	10.44
			Too clayey	11.00		
			Depth to	10.82		
			saturated zone			
496B:Karlsborg			\|			
			\|Very limited			
	Depth to saturated zone	10.75	Depth to saturated zone	11.00	Depth to saturated zone	10.75
	Frost action	10.50	Too clayey	11.00	Droughty	10.26
			Cutbanks cave	\| 1.00		

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	${ }^{\text {\| Value }}$
496C:						
Karlsborg-	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.75	Depth to	11.00	Depth to	0.75
	Frost action	0.5	Too clayey	1.00	Drough	0.26
	Slope	\| 0.04	Cutbanks cave	1.00	slope	0.04
			Slope	10.04		
496D:						
Karlsborg	\|Very limited		\|Very limited		\|Very limited	
	slope	\| 1.00	\| Depth to	11.00	Slope	11.00
	Depth to	10.75	saturated zone		Depth to	0.75
	saturated zone		Too clayey	\| 1.00	saturated zone	
	Frost action	10.50	Cutbanks cave	1.00	Droughty	0.26
			Slope	11.00		
497A:						
Meeno	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	```Depth to saturated zone```	11.00
	Frost action	10.50	Too clayey	1.00	Droughty	0.41
			Cutbanks cave	$\text { \| } 1.00$		
521A:						
Dody	\|Very limited		\|Very limited		\| Very limited	
	Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	```Depth to saturated zone```	\| 1.00
	Frost action	1.00	Cutbanks cave	11.00	Ponding	11.00
	Low strength	11.00	Too clayey	11.00		
	Shrink-swell	\| 1.00	Ponding	11.00		
	Ponding	\| 1.00				
523A:						
Nokasippi----------\|	\|Very limited		\|Very limited		\| Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	```Depth to saturated zone```	11.00
	Frost action	11.00	Cutbanks cave	11.00	Ponding	11.00
	Ponding	\| 1.00	Ponding	11.00		
			Dense layer	10.50		
529B:						
Perida-------------- \|	Somewhat limited		\|Very limited			
	Frost action	10.50	Cutbanks cave	11.00	\| Droughty	0.62
			Too clayey	11.00	Too sandy	10.50
			Depth to	10.82		
			saturated zone			
531A :						
Stengel						
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
			Cutbanks cave	\| 1.00	Droughty	11.00
			Too clayey	11.00		
542B:						
Haugen, very stony--\|			\|Very limited		\|Somewhat limited	
	Frost action	10.50	\| Depth to	11.00	Depth to	10.19
	Depth to	\| 0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	11.00	Content of large	0.03
					stones	

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
542B:						
	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	1.00	Content of large	0.03
					stones	
542C:						
Haugen, very stony--\|	Somewhat limited		\|Very limited		\| Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	1.00	Slope	0.04
	slope	0.04	slope	0.04	Content of large	0.03
					stones	
Haugen	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	1.00	Slope	0.04
	slope	0.04	Slope	0.04	Content of large	0.03
					stones	
544F:						
Menahga	Very limited		\|Very limited		\|Very limited	
	Slope	1.00	slope	1.00	Slope	1.00
			Cutbanks cave	1.00	Droughty	0.51
Mahtomedi	Very limited		\|Very limited		\|Very limited	
	slope	1.00	\| Slope	1.00	slope	1.00
			Cutbanks cave	1.00	Droughty	1.00
553B:						
Branstad-	Somewhat limited		\|Very limited		Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	0.10		
553C:						
Branstad-			\|Very limited			
	Frost action	10.50	Depth to	1.00	Depth to	0.19
	Depth to	0.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	10.10	Slope	0.04
	slope	0.04	Slope	10.04		
553D:						
Branstad	Very limited		\|Very limited		\|Very limited	
	Slope	1.00	Depth to	1.00	Slope	1.00
	Frost action	0.50	saturated zone		Depth to	0.19
	Depth to	0.19	Slope	11.00	saturated zone	
	saturated zone		Cutbanks cave	10.10		
555A:						
Fordum	Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	1.00	Flooding	11.00
	saturated zone		saturated zone		Depth to	11.00
	Frost action	1.00	Cutbanks cave	11.00	saturated zone	
	Flooding	1.00	Ponding	11.00	Ponding	1.00
	Ponding	1.00	Flooding	10.80		

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
Shawano	Not limited		\mid Very limited		\| Somewhat limited		
			Cutbanks cave	11.00	Droughty	10.46	
557C:							
Shawano	Somewhat limited		\|Very limited		\|Somewhat limited		
	Slope	0.04	Cutbanks cave	11.00	Droughty	10.46	
			Slope	10.04	slope	10.04	
557D:							
Shawano	\|Very limited		\|Very limited		\mid Very limited		
	Slope	1.00	Cutbanks cave	11.00	slope		
			Slope	1.00	Droughty	10.46	
586A:							
Chelmo	\|Very limited		\|Very limited		\| Very limited		
	Depth to saturated zone	1.00	\| Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00	
	Frost action	1.00	Cutbanks cave	11.00	Ponding	1.00	
	Low strength	1.00	Too clayey	11.00			
	Shrink-swell	1.00	Ponding	\| 1.00			
	Ponding	1.00					
600A:							
Haplosaprists	Not rated		\| Not rated		\| Not rated		
Psammaquents----	Not rated		\| Not rated		\| Not rated		
615B :							
Cress-----------	Not limited						
			Cutbanks cave	11.00	\| Droughty	10.13	
615C:							
Cress	Somewhat limited		\|Very limited				
	Slope	0.04	\| Cutbanks cave	11.00	\| Droughty	10.13	
			Slope	10.04	Slope	10.04	
615D:							
Cress	\|Very limited		\|Very limited		\mid Very limited		
	Slope	1.00	Cutbanks cave	11.00	slope	11.00	
			slope	11.00	Droughty	10.13	
620C:							
Lundeen	\|Very limited				\|Somewhat limited		
	Frost action	1.00	\| Depth to hard	11.00	\| Depth to bedrock	0.46	
	Depth to hard	0.46	bedrock				
	bedrock		Cutbanks cave	10.10			
	Low strength	0.22					
Haustrup-	\|Very limited		\|Very limited		\|Very limited		
	\| Depth to hard bedrock	1.00	\| Depth to hard bedrock	11.00	\| Depth to bedrock Droughty	$\begin{aligned} & 1.00 \\ & 0.14 \end{aligned}$	
	Frost action	0.50	Cutbanks cave	10.10			
Rock outcrop----	Not rated		\| Not rated		\| Not rated		

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping		
	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value	\| Rating class and limiting features	\|Value
634C:Bear							
	\|Very limited		\mid Very limited		\mid Very limited		
	Depth to hard	1.00	Depth to hard	11.00	Depth to bedrock	1.00	
	bedrock		bedrock		Depth to	11.00	
	Depth to	1.00	Depth to	11.00	saturated zone		
	saturated zone		saturated zone		Ponding	11.00	
	Frost action	1.00	Content of large	11.00	Droughty	10.95	
	Content of large	1.00	stones				
	stones		Ponding	11.00			
	Ponding	1.00	Cutbanks cave	0.10			
Rock outcrop--------	Not rated		\| Not rated		\| Not rated		
				\|			
635C:							
Drylanding			\|Very limited		\|Very limited		
	Depth to hard bedrock	1.00	Depth to hard bedrock	11.00	Depth to bedrock Droughty	1.00 1.00	
	Frost action	1.00	Content of large	0.39	Content of large	1.00	
	Flooding	0.40	stones		stones		
	Content of large	0.39	Cutbanks cave	0.10			
	stones						
Beartree----------- \|	Very limited		\|Very limited		\|Very limited		
	\| Depth to hard	1.00	Depth to hard	11.00	Depth to bedrock	1.00	
	bedrock		bedrock		Depth to	1.00	
	Depth to	1.00	Depth to	11.00			
	saturated zone		saturated zone		Ponding	11.00	
	Frost action	1.00	Content of large	11.00	Droughty	10.95	
	Content of large	1.00	stones				
	stones		Ponding	11.00			
	Ponding	1.00	Cutbanks cave	10.10			
Rock outcrop-------	Not rated		\| Not rated		\| Not rated		
648B:							
Sconsin------------ \|	Somewhat limited		\|Very limited		\|Somewhat limited		
	Depth to saturated zone	0.75	Depth to saturated zone	11.00	Depth to saturated zone	10.75	
	Frost action	0.50	Cutbanks cave	11.00			
			Dense layer	10.50			
669D:							
Fremstadt, stony----\|			\|Very limited		\|Very limited		
	slope	1.00	Slope	11.00	slope	11.00	
			Cutbanks cave	\| 1.00	Droughty	10.01	
Pomroy------------- \|	\|Very limited		\|Very limited		\|Very limited		
	\| Slope	1.00	\| slope	11.00	\| Slope	11.00	
	Frost action	0.50	Depth to	11.00	Depth to	10.19	
	Depth to	0.19	saturated zone		saturated zone		
	saturated zone		Cutbanks cave	11.00			
			Dense layer	10.50			
671B:				\|			
Spoonerhill, stony--\|	Somewhat limited		\|Very limited		\| Somewhat limited		
	Depth to	0.19	Depth to	11.00	Droughty	10.42	
	saturated zone		saturated zone		Depth to	10.19	
			Cutbanks cave	1.00	saturated zone		
			Dense layer	10.50	Content of large	0.05	
					stones		

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
825A:						
Meehan	\|Very limited		\|Very limited		\mid Very limited	
	Depth to	11.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
			Cutbanks cave	1.00	Droughty	0.94
					Too sandy	0.50
896A :						
Wurtsmith	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.19	Depth to	1.00	Droughty	0.94
	saturated zone		saturated zone		Too sandy	10.50
			Cutbanks cave	1.00	Depth to	0.19
					saturated zone	
980A:						
Soderbeck	\|Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Frost action	10.50	Cutbanks cave	1.00	Content of large	0.99
	Content of large	10.45	Content of large	0.45	stones	
	stones		stones		Gravel content	0.97
	Flooding	10.40	Depth to hard	0.42	Droughty	\| 0.61
			bedrock			
1070C:						
Fremstadt----------\|	Somewhat limited		\|Very limited		\|Somewhat limited	
	Slope	10.16	Cutbanks cave	11.00	slope	10.16
			Slope	10.16	Droughty	10.01
Cress---------------	Somewhat limited		\|Very limited		\| Somewhat limited	
	slope	10.04	Cutbanks cave	1.00	Droughty	0.13
			Slope	0.04	slope	0.04
1070D:						
Fremstadt			\|Very limited		\|Very limited	
	Slope	11.00	slope	11.00	slope	1.00
			Cutbanks cave	1.00	Droughty	10.01
Cress			\| Very limited			
	Slope	11.00	\| Cutbanks cave	\| 1.00	Slope	1.00
			Slope	1.00	Droughty	0.13
1080B:						
Spoonerhill	Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	10.19	Depth to	11.00	Droughty	10.42
	saturated zone		saturated zone		Depth to	\| 0.19
			Cutbanks cave	11.00	saturated zone	
			Dense layer	10.50	Content of large	0.01
					stones	
Spoonerhill, stony--\|	Somewhat limited		\|Very limited		\| Somewhat limited	
	Depth to	10.19	Depth to	1.00	Droughty	10.42
	saturated zone		saturated zone		Depth to	10.19
			Cutbanks cave	11.00	saturated zone	
			Dense layer	10.50	Content of large	0.05
					stones	
				\|		
Cress--------------- \|	Not limited		Very limited		\| Somewhat limited	
		\|	Cutbanks cave	1.00	Droughty	0.13

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
2002:						
Udorthents, earthen						
dams-------------	Not rated		Not rated		Not rated	
2015:						
Pits	Not rated		Not rated		Not rated	
2050:						
Landfill	Not rated		Not rated		Not rated	
3011A:						
Barronett	Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone			
	Frost action	11.00	Cutbanks cave	11.00	Ponding	1.00
	Low strength	11.00	Ponding	1.00		
	Ponding	\| 1.00				
	Shrink-swell	10.50				
3082E:						
Braham	\|Very limited		\|Very limited		\| Very limited	
	Slope	11.00	Cutbanks cave	11.00	slope	1.00
			slope	1.00		
Shawano------------ \|			Very limited		\|Very limited	
	Slope	11.00	Cutbanks cave	11.00	Slope	1.00
			Slope	1.00	Droughty	10.46
3114A:						
Saprists-----------	Not rated		\|Very limited		\|Very limited	
			Ponding	1.00	Ponding	1.00
			Depth to	1.00		11.00
			saturated zone		organic matter	
			Content of	1.00	Depth to	1.00
			organic matter		saturated zone	
			Cutbanks cave	0.10		
Aquents------------	Not rated		\|Very limited		\|Very limited	
			Ponding	1.00	Ponding	1.00
			Depth to	1.00	Depth to	\| 1.00
			saturated zone		saturated zone	
			Cutbanks cave	1.00		
Aquepts-------------	Not rated		\|Very limited		\| Very limited	
			Ponding	11.00	Ponding	\| 1.00
			Depth to	11.00	Depth to	11.00
			saturated zone		saturated zone	
			Cutbanks cave	11.00		
3125A:						
Meehan	Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	11.00	Depth to	11.00
	saturated zone		\| saturated zone		saturated zone	
			Cutbanks cave	1.00	Droughty	10.88
3126A:		\|		\mid		
Wurtsmith----------\|	Somewhat limited		\|Very limited		\| Somewhat limited	
	Depth to	10.19	Depth to	1.00	Droughty	10.83
	saturated zone		saturated zone		Depth to	10.19
			Cutbanks cave	11.00	saturated zone	

Table 17b.--Building Site Development--Continued

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
3446A:						
Newson	Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Ponding	11.00	Cutbanks cave	11.00	Ponding	1.00
	Frost action	10.50	Ponding	\| 1.00		
3448B:						
Grettum---------	Not limited		\|Very limited		\|Somewhat limited	
			Cutbanks cave	11.00	Droughty	0.61
			Depth to	10.35		
			saturated zone			
3448C:						
Grettum			\|Very limited		\|Somewhat limited	
	slope	0.04	Cutbanks cave	1.00	Droughty	0.61
			Depth to	10.35	slope	0.04
			saturated zone			
			slope	10.04		
3510B:						
Pomroy	Somewhat limited		\|Very limited		\|Somewhat limited	
	Frost action	0.50	Depth to	1.00	Depth to	0.19
	Depth to	10.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	11.00		
			Dense layer	10.50		
Fremstadt	Not limited					
			Cutbanks cave	11.00	Droughty	0.01
Fremstadt, stony-	Not limited		\|Very limited		\|Somewhat limited	
			\| Cutbanks cave	11.00	Droughty	0.01
3510C:						
Pomroy						
	Frost action	10.50	Depth to	1.00	Depth to	0.19
	Depth to	10.19	saturated zone		saturated zone	
	saturated zone		Cutbanks cave	1.00	slope	0.16
	slope	0.16	Dense layer	10.50		
			Slope	10.16		
Fremstadt	Somewhat limited		\|Very limited		\|Somewhat limited	
	Slope	0.16	Cutbanks cave	1.00	Slope	0.16
			slope	10.16	Droughty	0.01
Fremstadt, stony-						
	slope	0.16	Cutbanks cave	1.00	\| slope	0.16
			Slope	\| 0.16	Droughty	0.01
3511A:						
Bushville	Very limited		\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	\| 1.00	Depth to saturated zone	1.00
	saturated zone		saturated zone		saturated zone	
			Cutbanks cave Dense layer	1.00 10.50		
			Dense layer	0.50		
3516A:						
Slimlake--------	Not limited		\|Very limited		\|Somewhat limited	
			\| Cutbanks cave	1.00	Droughty	0.21
			Depth to	10.99		
			saturated zone			

Table 17b.--Building Site Development--Continued

Map symbol and soil name	Local roads and streets		Shallow excavations		Lawns and landscaping	
	Rating class and \mid limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
3625A:						
Lino-	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	\| 1.00	Depth to	11.00
	\| saturated zone		saturated zone		saturated zone	
			Cutbanks cave	\| 1.00	Droughty	10.19
3626A:						
Crex	\| Somewhat limited		\|Very limited		\|Somewhat limited	
	Depth to	0.19	Depth to	11.00	Droughty	10.23
	saturated zone		saturated zone		Depth to	
			Cutbanks cave	\| 1.00	saturated zone	
3629B:						
Perida	\|Somewhat limited		\|Very limited		\| Somewhat limited	
	\| Frost action	0.50	Cutbanks cave		Droughty	10.44
			Too clayey	\| 1.00		
			Depth to	10.82		
			saturated zone			
3636B:						
Plainbo------------	\| Not limited		\|Very limited		\|Very limited	
			Cutbanks cave	\| 1.00	Droughty	11.00
			Depth to soft	10.46	Too sandy	10.50
			bedrock		Depth to bedrock	0.46
3636C:						
Plainbo-------------	\| Somewhat limited		\|Very limited		\|Very limited	
	slope	0.04	Cutbanks cave	\| 1.00	\| Droughty	11.00
			Depth to soft	10.46	Too sandy	10.50
			bedrock		Depth to bedrock	10.46
			slope	10.04	Slope	10.04
M-W:						
Miscellaneous water	\| Not rated		Not rated		\| Not rated	
W :						
Water--------------	Not rated		\| Not rated		\| Not rated	

Table 18a.--Sanitary Facilities
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	absorption fields		Sewage lagoons	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value
27A:				
Scott Lake	\| Very limited		\| Very limited	
	Depth to	1.00	Seepage	11.00
	saturated zone		Depth to	1.00
	Filtering	1.00	saturated zone	
	capacity			
	Seepage	1.00		
	Restricted	0.46		
	permeability			
28B:				
Haugen, very stony--\|	\| Very limited		Somewhat limited	
	Depth to	1.00	Depth to	0.75
	saturated zone		saturated zone	
	Restricted	1.00	Seepage	0.53
	permeability		slope	0.32
Haugen	\| Very limited		\|Somewhat limited	
	Depth to	1.00	Depth to	0.75
	saturated zone		saturated zone	
	Restricted	1.00	Seepage	10.53
	permeability		Slope	\| 0.32
Rosholt, very stony	\| Very limited		\| Very limited	
	Filtering	1.00	Seepage	\| 1.00
	capacity		Slope	10.32
	Seepage	1.00		
	Restricted	0.46		
	permeability			
Rosholt------------ \|	\|Very limited		\|Very limited	
	Filtering	1.00	Seepage	11.00
	capacity		slope	10.32
	Seepage	1.00		
	Restricted	0.46		
	permeability			
28C:				
Haugen, very stony--\|	\| Very limited		\| Very limited	
	Depth to	1.00	slope	11.00
	saturated zone		Depth to	10.75
	Restricted	1.00	saturated zone	
	permeability		Seepage	0.53
	Slope	0.04		
Haugen-	\| Very limited		\| Very limited	
	Depth to	1.00	Slope	\| 1.00
	saturated zone		Depth to	10.75
	Restricted	1.00	saturated zone	
	permeability		Seepage	10.53
	slope	0.04		
Rosholt, very stony	\| Very limited		\| Very limited	
	Filtering	1.00	Seepage	11.00
	capacity		Slope	\| 1.00
	Seepage	1.00		
	Restricted	0.46		
	permeability			\|
	Slope	0.04		\|

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
28C:Rosholt				
	Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Slope	\| 1.00
	Seepage	1.00		
	Restricted	10.46		
	permeability			
	slope	10.04		
38A:				
Rosholt	Very limited			
	Filtering	11.00	Seepage	1.00
	capacity			
	Seepage	11.00		
		10.46		
	permeability			
38B:				
Rosholt	Very limited		\mid Very limited	
	Filtering	11.00	\| Seepage	1.00
	capacity		slope	10.32
	Seepage	11.00		
	Restricted	10.46		
	permeability			
38C:				
Rosholt	Very limited		\|Very limited	
	Filtering	1.00	\| Seepage	11.00
	capacity		\| slope	11.00
	Seepage	11.00		
	Restricted	10.46		
	permeability			
	Slope	10.04		
38D:				
Rosholt-				
	Filtering	1.00	Slope	11.00
	capacity		Seepage	11.00
	Seepage	11.00		
	Slope	11.00		
	Restricted	10.46		
	permeability			
42D:				
Amery	Very limited		\mid Very limited	
	Restricted	1.00	Slope	11.00
	permeability		Seepage	10.53
	Slope	1.00		
43B:		1		
Antigo	Very limited		\|Very limited	
	Filtering	11.00	\| Seepage	\| 1.00
	capacity		Slope	10.32
	Seepage	11.00		
	Restricted	10.46		
	permeability			

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons		
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
43C:					
Antigo-------------\| Very limited			\| Very limited		
	Filtering	11.00	Seepage	\| 1.00	
	capacity		Slope	1.00	
	Seepage	\| 1.00			
	Restricted	10.46			
	permeability				
	slope	10.37			
63A:			\|Very limited		
Crystal Lake-------\|Very limited					
	Depth to	\| 1.00	Depth to saturated zone	1.00	
	saturated zone				
	Restricted	11.00	Seepage	0.53	
	permeability				
63B:					
Crystal Lake-------\|	Very limited			Very limited	
	Depth to	11.00	Depth to saturated zone	1.00	
	saturated zone				
	Restricted	11.00	Seepage	0.53	
	permeability		Slope	0.32	
63C:					
Crystal Lake-------\|Very limited			Very limited		
	Depth to	\| 1.00	Slope	1.00	
	saturated zone		Depth to	0.99	
	Restricted	11.00	saturated zone		
	permeability		Seepage	0.53	
	slope	0.04			
64A:					
Totagatic---------\| Very limited			\|Very limited		
	Flooding	11.00	Flooding	1.00	
	Depth to	11.00	Seepage	1.00	
	saturated zone		Depth to	1.00	
	Filtering	11.00	saturated zone	\|	
	capacity		Ponding	1.00	
	Subsidence	11.00	Content of	1.00	
	Seepage	11.00	organic matter		
Winterfield--------\| Very limited			Very limited		
	Flooding	11.00	Flooding	1.00	
	Depth to	11.00	Seepage	11.00	
	saturated zone		Depth to	\| 1.00	
	Filtering	11.00	saturated zone		
	capacity				
	Seepage	11.00			
69C:					
Keweenaw	Very limited		Very limited		
	Seepage	11.00	Seepage	11.00	
	Slope	10.16	Slope	11.00	
Sayner------------- \| Very limited			Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Slope	11.00	
	Seepage	1.00			
	slope	\| 0.16			

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons		
	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value
69C:					
Vilas	Very limited		\|Very limited		
	Filtering	11.00	Seepage		
	capacity		Slope	1.00	
	Seepage	11.00			
	Slope	10.16			
69E:					
Keweenaw	Very limited		\|Very limited		
	Slope	11.00	slope	\| 1.00	
	Seepage	1.00	Seepage	11.00	
Sayner	Very limited		\mid Very limited		
	Filtering	1.00	Slope		
	capacity		Seepage	1.00	
	Slope	11.00			
	Seepage	11.00			
Vilas	Very limited		\mid Very limited		
	Filtering	1.00	slope	11.00	
	capacity		Seepage	11.00	
	slope	1.00			
	Seepage	11.00			
82B:					
Cutaway	Very limited		\mid Very limited		
	Depth to	1.00	Seepage	11.00	
	saturated zone			11.00	
	```Filtering capacity```	1.00	saturated zone Slope	$0.18$	
	Restricted	10.72			
	permeability				
Branstad	Very limited		$\mid$ Very limited		
	Depth to saturated zone	11.00	Depth to saturated zone	1.00	
	Restricted	10.72	Seepage	10.53	
	permeability		slope	10.18	
82C:					
Cutaway	Very limited		\| Very limited		
	Depth to	11.00	Seepage		
	saturated zone		Depth to	\| 1.00	
	Filtering	11.00	saturated zone		
	capacity		slope	11.00	
	Restricted	10.72			
	permeability				
	slope	10.04			
Branstad-	Very limited		\|Very limited		
	Depth to saturated zone	11.00	Depth to saturated zone	11.00	
		10.72	\| Slope	$1.00$	
	permeability		Seepage	10.53	
	Slope	10.04			

Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank   absorption fields		Sewage lagoons	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
96C:				
Karlsborg	Very limited		Very limited	
	Restricted	11.00	Seepage	1.00
	permeability		Slope	1.00
	Depth to	11.00	Depth to	0.99
	saturated zone		saturated zone	
	Filtering	11.00		
	capacity			
	Seepage	11.00		
	Slope	10.04		
96D:				
Karlsborg	Very limited		Very limited	
	Restricted	11.00	Slope	\| 1.00
	permeability		Seepage	11.00
	Depth to	11.00	Depth to	0.99
	saturated zone		saturated zone	
	Filtering	11.00		
	capacity			
	Seepage	11.00		
	Slope	\| 1.00		
100B:				
Menahga	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Slope	10.08
	Seepage	11.00		
100C:				
Menahga	Very limited		Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Slope	11.00
	Seepage	11.00		
	Slope	10.04		
100D:				
Menahga	Very limited		Very limited	
	Filtering	11.00	Slope	11.00
	capacity		Seepage	11.00
	Seepage	11.00		
	Slope	\| 1.00		
120B:				
Kost	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		slope	10.08
	Seepage	1.00		
127D:				
Amery-	\|Very limited		\|Very limited	
	Restricted	11.00	Slope	11.00
	permeability		Seepage	10.53
	Slope	11.00		
Rosholt	\|Very limited		\|Very limited	
	Filtering	11.00	\| Slope	\| 1.00
	capacity		Seepage	11.00
	Seepage	1.00		
	\| slope	\| 1.00		
	Restricted	10.46		
	permeability			\|

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value
127E:				
Amery-------------\|Very limited			\| Very limited	
Rosholt---------	slope	11.00	slope	\| 1.00
	Restricted	\| 1.00	Seepage	0.53
	permeability			
	Very limited		\|Very limited	
	Filtering	11.00	Slope	\| 1.00
	capacity		Seepage	1.00
	slope	11.00		
	Seepage	11.00		
	Restricted	10.46		
	permeability			
151A:				
Bluffton	Very limited		\|Very limited	
	Depth to	\| 1.00	Depth to	11.00
	saturated zone		saturated zone	
	Ponding	11.00	Ponding	1.00
	Restricted	10.46	Seepage	0.53
	permeability			
Alstad	Very limited		\| Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	10.72	Seepage	0.53
	permeability			
154E:				
Cushing	Very limited		\|Very limited	
	slope	11.00	slope	1.00
	Restricted	\| 1.00	Seepage	0.53
	permeability			
156B:				
Magnor, very sto	Very limited		\| Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Restricted	\| 1.00	Seepage	0.53
	permeability			
Magnor	Very limited		\| Very limited	
	Depth to	11.00	Depth to	\| 1.00
	saturated zone		saturated zone	\|
	Restricted	\| 1.00	Seepage	10.53
	permeability			
157B:				
Freeon, very ston	Very limited		\| Very limited	
	Depth to	\| 1.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	11.00	Seepage	0.53
	permeability		Slope	0.32
Freeon	Very limited		\| Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		\| saturated zone	
	Restricted	11.00	Seepage	10.53
	permeability		Slope	0.32


Map symbol and soil name	Septic tank   absorption fields		Sewage lagoons	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
157C:				
Freeon, very stony--	\|Very limited		$\mid$ Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	11.00	Slope	1.00
	permeability		Seepage	0.53
	Slope	10.04		
Freeon	\|Very limited		$\mid$ Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Restricted	11.00	slope	1.00
	permeability		Seepage	0.53
	Slope	10.04		
160A:				
Oesterle	\|Very limited		\|Very limited	
	Depth to	11.00	Seepage	1.00
	saturated zone		Depth to	1.00
	Filtering	11.00	saturated zone	
	capacity			
	Seepage	11.00		
165B:				
Elderon	\|Very limited		$\mid$ Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Content of large	0.34
	Seepage	\| 1.00	stones	
	Content of large stones	\| 0.14	slope	0.32
185B:				
Tradelake	\|Very limited		\|Very limited	
	Restricted	11.00	Seepage	1.00
	permeability		Depth to	0.99
	Depth to	11.00	saturated zone	
	saturated zone		slope	0.32
	Filtering capacity	11.00		
	Seepage	11.00		
Taylor	\|Very limited		\|Very limited	
	Restricted permeability	11.00	```Depth to saturated zone```	1.00
	Depth to	11.00	slope	0.32
	saturated zone			
185C:				
Tradelake	\|Very limited		$\mid$ Very limited	
	Restricted	1.00	Seepage	11.00
	permeability		Slope	11.00
	Depth to	11.00	Depth to	0.99
	saturated zone		saturated zone	
	Filtering capacity	11.00		\|
	Seepage	11.00		
	Slope	10.04		

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	Value	Rating class and limiting features	Value
Taylor-------------\|Very limited			Very limited	
	Restricted	\| 1.00	Depth to	1.00
	permeability		saturated zone	
	Depth to	11.00	slope	\| 1.00
	saturated zone			
	slope	10.04		
185D:				
Tradelake	Very limited		\| Very limited	
	Restrictedpermeability	\| 1.00	Slope	11.00
			Seepage	11.00
	Depth to saturated zone	11.00	Depth to	10.75
			saturated zone	
	Filtering	\| 1.00		
	capacity			
	Seepage	\| 1.00		
	slope	\| 1.00		
Taylor	\| Very limited		\|Very limited	
	Restricted	\| 1.00	Slope	11.00
	permeability		Depth to	\| 1.00
	Depth to	11.00	saturated zone	
	saturated zone			
	slope	11.00		
185E:				
Tradelake	\| Very limited		\| Very limited	
	Restricted	\| 1.00	Slope	\| 1.00
	permeability		Seepage	\| 1.00
	Depth to	11.00	Depth to	10.75
	saturated zone		saturated zone	
	Filtering	11.00		
	capacity			
	slope	\| 1.00		
	Seepage	\| 1.00		
Taylor	\|Very limited		\| Very limited	
	Restricted	\| 1.00	Slope	\| 1.00
	permeability		Depth to	\| 1.00
	Depth to	\| 1.00	saturated zone	
	saturated zone			
	slope	\| 1.00		
				\|
189A:		1		\|
Siren	\|Very limited		\|Very limited	\|
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	\| 1.00	Seepage	0.53
	permeability			
				\|
193A:				
Minocqua	Very limited		\| Very limited	\|
	Depth to	\| 1.00	Seepage	1.00
	saturated zone		Depth to	\| 1.00
	Filtering	11.00	saturated zone	
	capacity		Ponding	\| 1.00
	Seepage	11.00	Content of	1.00
	Ponding	\| 1.00	organic matter	
	Restricted	10.46		
	permeability			


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\| Value	Rating class and $\mid$ limiting features	Value
337A:Plove				
	\|Very limited		\|Very limited	
		1.00		11.00
	saturated zone		saturated zone	
	Restricted	1.00	Seepage	10.53
	permeability			
368B:				
Mahtomedi	\|Very limited		\|Very limited	
	Filtering	11.00	Seepage	
	capacity		slope	$10.32$
	Seepage	1.00		
Cress				
	Filtering	1.00	\| Seepage	11.00
	capacity		slope	10.32
	Seepage	1.00		
368C:				
Mahtomedi	\|Very limited		\|Very limited	
	\| Filtering	11.00	\| Seepage	
	capacity		slope	$1.00$
	Seepage	1.00		
	slope	10.04		
Cress	\|Very limited		\|Very limited	
	Filtering	1.00	Seepage	11.00
	capacity		slope	11.00
	Seepage	1.00		
	slope	10.04		
368D:				
Mahtomedi	\|Very limited		\|Very limited	
	Filtering	1.00	Slope	11.00
	capacity		Seepage	11.00
	Seepage	1.00		
	Slope	1.00		
Cress	Very limited		\|Very limited	
	\| Filtering	1.00	\| slope	11.00
	capacity		Seepage	11.00
	Seepage	1.00		
	slope	1.00		
368E:	\|			
Mahtomedi	\|Very limited		\|Very limited	
	Filtering	1.00	\| slope	11.00
	\| capacity		Seepage	11.00
	slope	1.00		\|
	Seepage	11.00		\|
				\|
Cress-	\|Very limited		\|Very limited	1
	Filtering	11.00	\| slope	$1.00$
	capacity		\| Seepage	11.00
	Slope	1.00		
	\| Seepage	11.00		

Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons		
	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
Mahtomedi----------\|Very limited			Very limited		
	Filtering	1.00	slope	1.00	
	capacity		Seepage	1.00	
	Seepage	1.00			
	slope	1.00			
392C:					
Rockmarsh-------	Very limited		Very limited		
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Content of large	0.88	Seepage	1.00	
	stones		Slope	1.00	
	Slope	0.37	Content of large	1.00	
			stones		
			Content of	1.00	
			organic matter		
Dairyland----------\|	Very limited			Very limited	
	Depth to	1.00	Seepage	\| 1.00	
	saturated zone		Slope	11.00	
	Filtering	1.00	Content of large	11.00	
	capacity		stones		
	Content of large	0.60	Depth to	0.75	
	stones		saturated zone		
	slope	\| 0.37			
Makwa-------------- \| Very limited			Very limited		
	Restricted	1.00	Depth to	11.00	
	permeability		saturated zone		
	Depth to	1.00	Seepage	11.00	
	saturated zone		Slope	11.00	
	Content of large	\| 0.11	Content of	11.00	
	stones		organic matter		
			Content of large	10.83	
			stones		
396B:			\|Very limited		
Friendship--------\|Very limited					
	Filtering	1.00	Seepage	11.00	
	capacity		Depth to	\| 0.17	
	Seepage	1.00	saturated zone		
	Depth to	\| 0.84			
	saturated zone				
Wurtsmith----------\| Very limited			Very limited		
	Depth to	1.00	Seepage	\| 1.00	
	saturated zone		Depth to	\| 1.00	
	Filtering	1.00	saturated zone		
	capacity				
	Seepage	1.00			
Grayling--------	Very limited		Very limited		
	Filtering	1.00	Seepage	11.00	
	capacity		Slope	\| 0.08	
	Seepage	1.00			

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
397A:Perchlak				
	Very limited		Very limited	
	Depth to	\| 1.00	Seepage	11.00
	saturated zone		Depth to	\| 1.00
	Filtering	$\text { \| } 1.00$	saturated zone	
	capacity			
	Seepage	11.00		
399B:				
Grayling	Very limited		Very limited	
	Filtering	\| 1.00	Seepage	11.00
	capacity		Slope	10.08
	Seepage	\| 1.00		
399C:				
Grayling	Very limited		Very limited	
	Filtering	\| 1.00	Seepage	1.00
	capacity		slope	\| 1.00
	Seepage	\| 1.00		
	Slope	\| 0.04		
399D:				
Grayling	Very limited		Very limited	
	Filtering	\| 1.00	slope	1.00
	capacity		Seepage	1.00
	Seepage	11.00		
	slope	11.00		
406A:				
Loxley	Very limited		Very limited	
	Depth to	11.00	Content of	1.00
	saturated zone		organic matter	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Subsidence	11.00	saturated zone	
	Seepage	1.00	Ponding	\| 1.00
	Ponding	11.00		
407A:				
Seelyeville-----	Very limited		Very limited	
	Depth to	11.00	Content of	11.00
	saturated zone		organic matter	
	Seepage	11.00	Depth to	\| 1.00
	Ponding	11.00	saturated zone	
			Seepage	\| 1.00
			Ponding	\| 1.00
Markey	Very limited		Very limited	
	Depth to	11.00	Seepage	\| 1.00
	saturated zone		Depth to	\| 1.00
	Filtering	11.00	saturated zone	
	capacity		Ponding	\| 1.00
	Seepage	11.00	Content of	\| 1.00
	Ponding	11.00	organic matter	
	Restricted	0.46		1
	permeability			\|

Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and   limiting features	\|Value
Mahtomedi	\|Very limited		\|Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Slope	\| 1.00
	Seepage	1.00		
	slope	10.04		
Menahga-	\|Very limited		\|Very limited	
	Filtering	1.00	Seepage	11.00
	capacity		Slope	11.00
	Seepage	11.00		
	Slope	10.04		
426D:				
Emmert-	\|Very limited		\|Very limited	
	Filtering	11.00	\| slope	1.00
	capacity		Seepage	1.00
	Seepage	11.00		
	slope	11.00		
Mahtomedi	\|Very limited		$\mid$ Very limited	
	Filtering	11.00	\| slope	$\text { \| } 1.00$
	capacity		Seepage	$1.00$
	Seepage	11.00		
	Slope	\| 1.00		
Menahga	Very limited		$\mid$ Very limited	
	Filtering	1.00	\| Slope	11.00
	capacity		Seepage	11.00
	Seepage	1.00		
	Slope	11.00		
430A:				
Freya	\|Very limited		$\mid$ Very limited	
	Restricted	11.00	\| Seepage	11.00
	permeability		\| Depth to	11.00
	Depth to saturated zone	11.00	\| saturated zone	
	Filtering	1.00		
	capacity			
439B:				
Graycalm-				
	Filtering	1.00	Seepage	11.00
	capacity		slope	10.08
	Seepage	1.00		
Menahga	\|Very limited		$\mid$ Very limited	
	Filtering	1.00	\| Seepage	11.00
	capacity		\| slope	10.08
	Seepage	1.00		
439C:				
Graycalm-	Very limited			
	Filtering	1.00	Seepage	\| 1.00
	capacity		slope	11.00
	Seepage	11.00		
	slope	10.04		

Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value
459A:Daisyba				
	Very limited		\| Very limited	
	Restricted	\| 1.00	Depth to	1.00
	permeability		saturated zone	
	Depth to	\| 1.00	Seepage	\| 1.00
	saturated zone		Ponding	\| 1.00
	Filtering	\| 1.00	Content of	\| 1.00
	capacity		organic matter	
	Ponding	\| 1.00		
Dawson	Very limited		\| Very limited	
	Depth to	\| 1.00	Seepage	\| 1.00
	saturated zone		Depth to	\| 1.00
	Filtering	\| 1.00	saturated zone	
	capacity		Ponding	1.00
	Subsidence	\| 1.00	Content of	1.00
	Seepage	\| 1.00	organic matter	
	Ponding	\| 1.00		
461A:				
Bowstring	Very limited		\| Very limited	
	Flooding	\| 1.00	Flooding	\| 1.00
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	1.00
	Filtering	\| 1.00	saturated zone	
	capacity		Ponding	1.00
	Subsidence	\| 1.00	Content of	1.00
	Seepage	\| 1.00	organic matter	
465A:				
Newson	Very limited		\| Very limited	
	Depth to	\| 1.00	Seepage	\| 1.00
	saturated zone		Depth to	11.00
	Filtering	\| 1.00	saturated zone	
	capacity		Ponding	11.00
	Seepage	\| 1.00	Content of	\| 1.00
	Ponding	\| 1.00	organic matter	
Meehan	Very limited		\| Very limited	
	Depth to	11.00	Seepage	\| 1.00
	saturated zone		Depth to	\| 1.00
	Filtering	11.00	saturated zone	
	capacity			
	Seepage	\| 1.00		
469E:				
Bigisland	Very limited		\| Very limited	
	Slope	11.00	slope	\| 1.00
	Content of large	0.61	Seepage	\| 1.00
	stones		Content of large	1.00
			stones	
Milaca	Very limited		\| Very limited	
	Depth to	\| 1.00	Slope	1.00
	saturated zone		Depth to	0.75
	Slope	11.00	saturated zone	
	Restricted	10.46	Seepage	0.53
	permeability			

Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and   limiting features	\| Value	Rating class and   limiting features	\|Value
495D:				
Perida	Very limited		Very limited	
	Restricted	1.00	Slope	\| 1.00
	permeability		Seepage	1.00
	Depth to	1.00		
	saturated zone			
	Filtering	1.00		
	capacity			
	Seepage	1.00		
	Slope	\| 1.00		
496B:				
Karlsborg	Very limited		Very limited	
	Restricted	1.00	Seepage	1.00
	permeability		Depth to	10.99
	Depth to	1.00	saturated zone	
	saturated zone		Slope	0.32
	Filtering	1.00		
	capacity			
	Seepage	\| 1.00		
496C:				
Karlsborg	Very limited		Very limited	
	Restricted	1.00	Seepage	\| 1.00
	permeability		Slope	11.00
	Depth to	1.00	Depth to	0.99
	saturated zone		saturated zone	
	Filtering	1.00		
	capacity			
	Seepage	1.00		
	Slope	10.04		
496D:				
Karlsborg	Very limited		Very limited	
	Restricted	1.00	Slope	11.00
	permeability		Seepage	11.00
	Depth to	1.00	Depth to	10.99
	saturated zone		saturated zone	
	Filtering	1.00		
	capacity			
	Seepage	1.00		
	slope	1.00		
497A:				
Meenon-	\|Very limited		Very limited	
	Restricted	1.00	Seepage	11.00
	permeability		Depth to	11.00
	Depth to	1.00	saturated zone	
	saturated zone			
	Filtering capacity	11.00		
	Seepage	\| 1.00		

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	
521A:				
Dody	\| Very limited		Very limited	
	Restricted	11.00	Seepage	11.00
	permeability		Depth to	\| 1.00
	Depth to	\| 1.00	saturated zone	
	saturated zone		Ponding	1.00
	Filtering	11.00	Content of	11.00
	capacity		organic matter	
	Seepage	11.00		
	Ponding	11.00		
523A:				
Nokasippi---------\|Very limited			\| Very limited	
	Depth to	11.00	Seepage	\| 1.00
	saturated zone		Depth to	11.00
	Filtering	\| 1.00	saturated zone	
	capacity		Ponding	11.00
	Ponding	11.00	Content of	\| 1.00
	Restricted	10.46	organic matter	
	permeability			
529B:				
Perida	\| Very limited		\| Very limited	
	Restricted	11.00	Seepage	\| 1.00
	permeability			
	Depth to	\| 1.00		
	saturated zone			
	Filtering	\| 1.00		
	capacity			
	Seepage	11.00		
531A:				
Stengel	\| Very limited		\| Very limited	
	Depth to	\| 1.00	Seepage	\| 1.00
	saturated zone		Depth to	11.00
	Filtering	11.00	saturated zone	
	capacity			
	Seepage	11.00		
542B:				
Haugen, very sto	\| Very limited		Somewhat limited	
	Depth to	11.00	Depth to	10.75
	saturated zone		saturated zone	
	Restricted	11.00	Seepage	10.53
	permeability		slope	\| 0.32
Haugen	\| Very limited		Somewhat limited	
	Depth to	11.00	Depth to	0.75
	saturated zone		saturated zone	
	Restricted	11.00	Seepage	10.53
	permeability		slope	10.32
542C:				
Haugen, very ston	\| Very limited		\| Very limited	
	Depth to	\| 1.00	slope	\| 1.00
	saturated zone		Depth to	0.75
	Restricted	11.00	saturated zone	
	permeability		Seepage	10.53
	Slope	0.04		


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and   limiting features	\| Value	Rating class and   limiting features	\|Value
542C:				
Haugen	Very limited		Very limited	
	Depth to	11.00	Slope	11.00
	saturated zone		Depth to	0.75
	Restricted	11.00	saturated zone	
	permeability		Seepage	0.53
	Slope	10.04		
544F:				
Menahga	\|Very limited		Very limited	
	Filtering	11.00	slope	1.00
	capacity		Seepage	\| 1.00
	Slope	11.00		
	Seepage	11.00		
Mahtomedi	\|Very limited		Very limited	
	Filtering	11.00	Slope	1.00
	capacity		Seepage	1.00
	Slope	11.00		
	Seepage	11.00		
553B:				
Branstad	Very limited		Very limited	
	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	10.72	Seepage	0.53
	permeability		slope	0.08
553C:				
Branstad	Very limited		Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Restricted	10.72	Slope	11.00
	permeability		Seepage	0.53
	Slope	10.04		
553D:				
Branstad	\|Very limited		Very limited	
	Depth to	1.00	Slope	1.00
	saturated zone		Depth to	11.00
	Slope	11.00	saturated zone	
		10.72	Seepage	0.53
	permeability			
555A:				
Fordum	Very limited		Very limited	
	Flooding	11.00	Flooding	\| 1.00
	Depth to	11.00	Seepage	11.00
	saturated zone			11.00
	Filtering	1.00	saturated zone	
	capacity		Ponding	11.00
	Seepage	11.00		
	Ponding	11.00		
557B:				
Shawano-	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		slope	10.08
	\| Seepage	11.00		

Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and   limiting features	\| Value	Rating class and limiting features	\|Value
620C:				
Haustrup	Very limited		\|Very limited	
	Depth to bedrock	11.00	Depth to hard bedrock	1.00
			Slope	\| 1.00
			Seepage	0.53
Rock outcrop	Not rated		Not rated	
621A:				
Bjorkland	Very limited		\|Very limited	
	Restricted	11.00	\| Seepage	1.00
	permeability		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Ponding	1.00
	Filtering	11.00	Content of	1.00
	capacity		organic matter	
	Ponding	11.00		
623A:	\|			
Capitola	\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Ponding	\| 1.00	Ponding	1.00
	\|		Content of organic matter	\| 1.00
			Seepage	0.53
624A:				
Ossmer	\|Very limited		\|Very limited	
	Depth to	11.00	Seepage	1.00
	saturated zone			\| 1.00
	Filtering capacity	11.00	saturated zone	
	Seepage	11.00		
	Restricted	10.46		
	permeability			
631A:				
Giese	\|Very limited		\|Very limited	
	Restricted permeability	11.00	Depth to saturated zone	1.00
	Depth to	11.00	Ponding	11.00
	saturated zone		Content of	11.00
	Ponding	11.00	organic matter	
			Seepage	0.53
632A:				
Aftad	\|Very limited		\|Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	Restricted	11.00	Seepage	10.53
	permeability			
632B:				
Aftad-	\|Very limited		Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	11.00
	Restricted	11.00	Seepage	10.53
	permeability		slope	10.32
	\|			

Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank   absorption fields		Sewage lagoons	
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
669D:				
Fremstadt, stony----\|	Very limited		\|Very limited	
	Slope	11.00	Slope	1.00
	Seepage	11.00	Seepage	1.00
Pomroy	Very limited		\|Very limited	
	Depth to	11.00	Slope	1.00
	saturated zone		Seepage	1.00
	Filtering	11.00	Depth to	0.75
	capacity		saturated zone	
	Slope	11.00		
	Restricted	10.46		
	permeability			
671B:				
Spoonerhill, stony--	Very limited		$\mid$ Very limited	
	Depth to	11.00	Seepage	1.00
	saturated zone		Depth to	10.75
	Restricted	11.00	saturated zone	
	permeability		slope	0.32
Spoonerhill	Very limited		\| Very limited	
	Depth to	11.00	\| Seepage	1.00
	saturated zone		Depth to	0.75
	Restricted	11.00	saturated zone	
	permeability		slope	0.32
706A:				
Winterfield--------\|	Very limited		\| Very limited	
	Flooding	11.00	Flooding	11.00
	Depth to	11.00	Seepage	$1.00$
	saturated zone		Depth to	1.00
	Filtering capacity	11.00	saturated zone	
	Seepage	\| 1.00		
Totagatic---------- \|	\|Very limited		$\mid$ Very limited	
	Flooding	11.00	Flooding	1.00
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	1.00
	Filtering	11.00	saturated zone	
	capacity		Ponding	1.00
	Seepage	\| 1.00		
	Ponding	11.00		
715A:				
Mor	\|Very limited		\|Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted permeability	10.46	Seepage	0.53
717B:				
Milaca	Very limited		\|Somewhat limited	
	Depth to saturated zone	11.00	\| Depth to saturated zone	0.75
	Restricted	10.46	Slope	10.68
	permeability		Seepage	10.53

Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued


Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
3082E:				
Braham	\|Very limited		\|Very limited	
	Filtering	11.00	Slope	1.00
	capacity		Seepage	1.00
	Slope	11.00		
	Restricted	10.72		
	permeability			
Shawano	\|Very limited		\|Very limited	
	Filtering	11.00	Slope	1.00
	capacity		Seepage	1.00
	Seepage	\| 1.00		
	slope	11.00		
3114A:				
Saprists	\|Very limited		\|Very limited	
	Ponding	11.00	Ponding	1.00
	Depth to saturated zone	11.00	Content of organic matter	11.00
	Seepage	11.00	Depth to	1.00
			saturated zone	
			Seepage	1.00
Aquents	\|Very limited		$\mid$ Very limited	
	Ponding	11.00	Ponding	11.00
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	1.00
	Filtering	11.00	saturated zone	
	capacity		Content of	1.00
	Seepage	11.00	organic matter	
Aquepts-	Very limited		$\mid$ Very limited	
	Ponding	11.00	Ponding	11.00
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	11.00
	Filtering	11.00	saturated zone	
	capacity		Content of	11.00
	Seepage	11.00	organic matter	
	Restricted	10.46		
	permeability			
3125A:				
Meehan	Very limited		$\mid$ Very limited	
	Depth to	11.00	\| Seepage	\| 1.00
	saturated zone		Depth to	11.00
	Filtering capacity	11.00	saturated zone	
	Seepage	11.00		
3126A:				
Wurtsmith	\|Very limited		\|Very limited	
	Depth to	11.00	\| Seepage	11.00
	saturated zone		Depth to	11.00
	Filtering capacity	11.00	saturated zone	
	Seepage	11.00		

Table 18a.--Sanitary Facilities--Continued

Map symbol and soil name	Septic tank absorption fields		Sewage lagoons			
	Rating class and limiting features	\|Value	Rating class and limiting features	Value		
3312B:						
Glendenning, very						
stony-----------\|	Very limited	Very limited				
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Restricted	11.00	Seepage	0.53		
	permeability					
Glendenning--------\| Very limited			Very limited			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Restricted	11.00	Seepage	0.53		
	permeability					
3336A:						
Fenander-----------\| Very limited			Very limited			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Restricted	11.00	Ponding	1.00		
	permeability		Seepage	0.53		
	Ponding	11.00				
3403A:						
Loxley	Very limited		Very limited			
	Depth to	11.00	Content of	1.00		
	saturated zone		organic matter			
	Filtering	11.00	Seepage	1.00		
	capacity		Depth to	1.00		
	Subsidence	11.00	saturated zone			
	Seepage	11.00	Ponding	1.00		
	Ponding	11.00				
Beseman------------ \| Very limited			Very limited			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Restricted	11.00	Seepage	1.00		
	permeability		Ponding	1.00		
	Subsidence	11.00	Content of	1.00		
	Ponding	11.00	organic matter			
Dawson-------------- \| Very limited			\| Very limited			
	Depth to	11.00	Seepage	1.00		
	saturated zone		Depth to	11.00		
	Filtering	11.00	saturated zone			
	capacity		Ponding	1.00		
	Subsidence	11.00	Content of	\| 1.00		
	Seepage	1.00	organic matter			
	Ponding	11.00				
3429B:						
Lara-	Very limited		Very limited			
	Restricted	11.00	Seepage	11.00		
	permeability		Depth to	\| 1.00		
	Depth to	11.00	saturated zone			
	saturated zone		Slope	0.08		


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
3429C:				
Lara	\|Very limited		Very limited	
	Restricted	11.00	Seepage	1.00
	permeability		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		slope	1.00
	Slope	10.04		
3446A:				
Newson	\|Very limited		Very limited	
	Depth to	11.00	Seepage	1.00
	saturated zone		Depth to	1.00
	Filtering	11.00	saturated zone	
	capacity		Ponding	1.00
	Seepage	11.00	Content of	1.00
	Ponding	\| 1.00	organic matter	
3448B:				
Grettum	\|Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Depth to	0.17
	Seepage	11.00	saturated zone	
	Depth to	10.84	slope	0.08
	saturated zone			
3448C:				
Grettum	\|Very limited		Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Slope	11.00
	Seepage	11.00	Depth to	0.17
	Depth to	10.84	saturated zone	
	saturated zone			
	slope	10.04		
3510B:				
Pomroy	\|Very limited		Very limited	
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	0.75
	Filtering	11.00	saturated zone	
	capacity		Slope	0.32
	Restricted	10.46		
	permeability			
Fremstadt	\|Very limited		Very limited	
	Seepage	11.00	Seepage	11.00
			slope	10.32
Fremstadt, stony-	\|Very limited		Very limited	
	Seepage	11.00	Seepage	11.00
			slope	10.32
3510C:				
Pomroy-	Very limited			
	Depth to	11.00	Seepage	11.00
	saturated zone		Slope	11.00
	Filtering	11.00	Depth to	0.75
	capacity		saturated zone	
	Restricted	10.46		
	\| permeability			
	slope	10.16		\|

Table 18a.--Sanitary Facilities--Continued


Map symbol and soil name	Septic tank absorption fields		Sewage lagoons	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
$\begin{aligned} & 3636 \mathrm{C}: \\ & \text { Plainbo } \end{aligned}$				
	\|Very limited		\|Very limited	
	Depth to bedrock	1.00	Depth to soft	11.00
	Filtering	1.00	bedrock	
	capacity		Seepage	11.00
	Seepage	11.00	slope	11.00
	Slope	10.04		
M-W :				
Miscellaneous water	\| Not rated		\| Not rated	
W:				
		1		
Water--------------	Not rated		\| Not rated	

Table 18b.--Sanitary Facilities
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill			
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and   limiting features	\|Value
3A:Totaga								
	Very limited		\|Very limited		\|Very limited			
	Flooding	\| 1.00	Flooding	\| 1.00	Depth to	11.00		
	Depth to	11.00	Depth to	11.00	saturated zone			
	saturated zone		saturated zone		Too sandy	1.00		
	Seepage	\| 1.00	Seepage	\| 1.00	Seepage	11.00		
	Too sandy	11.00	Ponding	11.00	Ponding	11.00		
	Ponding	1.00						
Bowstring	\|Very limited		\|Very limited		\|Very limited			
	Flooding	1.00	Flooding	1.00	Depth to	1.00		
	Depth to saturated zon	1.00	Depth to saturated zon	1.00	saturated zone Content of			
	Content of	\| 1.00	Seepage	\| 1.00	organic matter			
	organic matter		Piping	1.00	Ponding	11.00		
	Seepage	1.00			Seepage	10.16		
	Ponding	11.00						
Ausable	\|Very limited		\| Very limited		\|Very limited			
	Flooding	1.00	\| Flooding	1.00	Depth to	1.00		
	Depth to	1.00	Depth to	1.00	saturated zone			
	saturated zone		saturated zone		Too sandy	\| 1.00		
	Seepage	1.00	Seepage	1.00	Seepage	11.00		
	Too sandy	11.00	Ponding	1.00	Ponding	11.00		
	Ponding	11.00						
12A:								
Makwa	\|Very limited		\|Very limited		$\mid$ Very limited			
	Flooding	1.00	Flooding	1.00	Depth to	11.00		
	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	```saturated zone Ponding```	11.00		
	Ponding	1.00	Seepage	1.00	Gravel content	10.71		
	Content of large	0.07	Ponding	11.00	Seepage	10.16		
	stones				Content of large	10.07		
					stones			
22A:								
Comstock	\|Very limited		$\mid$ Very limited		$\mid$ Very limited			
	Depth to	1.00	Depth to	1.00	Depth to	11.00		
	saturated zone		saturated zone		saturated zone			
27A:								
Scott Lake-	\|Very limited		\|Very limited		\|Very limited			
	Depth to saturated zone	1.00	\| Depth to saturated zone	1.00	Too sandy Seepage	$\mid 1.00$		
	Seepage	1.00	Seepage	1.00	Depth to	10.47		
	Too sandy	1.00			saturated zone			
			\|		Gravel content	10.09		

Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
28B:						
Haugen, very stony--\|	Very limited		Somewhat limited		Somewhat limited	
	Depth to	0.99	Depth to	0.75	Depth to	0.86
	saturated zone		saturated zone		saturated zone	
					Gravel content	0.01
Haugen-------------- \|	Very limited		Somewhat limited		Somewhat limited	
	Depth to	0.99	Depth to	0.75	Depth to	0.86
	saturated zone		saturated zone		saturated zone	
					Gravel content	0.01
Rosholt, very stony	\|Very limited		Very limited		\|Very limited	
	Seepage	\| 1.00	Seepage	1.00	Too sandy	1.00
	Too sandy	$1.00$			Seepage	1.00
					Gravel content	0.06
Rosholt------------ \|	Very limited		Very limited		\| Very limited	
	Seepage	11.00	Seepage	1.00	Too sandy	1.00
	Too sandy	11.00			Seepage	1.00
					Gravel content	0.02
28C:						
Haugen, very stony--\|	Very limited		Somewhat limited		Somewhat limited	
	Depth to	0.99	Depth to	0.75	Depth to	0.86
	saturated zone		saturated zone		saturated zone	
	slope	0.04	slope	0.04	Slope	0.04
					Gravel content	0.01
Haugen-------------	Very limited		Somewhat limited		Somewhat limited	
	Depth to	0.99	Depth to	0.75	Depth to	0.86
	saturated zone		saturated zone		saturated zone	
	slope	0.04	slope	0.04	Slope	0.04
					Gravel content	0.01
Rosholt, very stony	\| Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	1.00	Too sandy	1.00
	Too sandy	1.00	slope	0.04	Seepage	1.00
	Slope	0.04			Gravel content	$0.06$
					Slope	0.04
Rosholt------------ \|	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	1.00	Too sandy	1.00
	Too sandy	1.00	Slope	0.04	Seepage	1.00
	slope	0.04			Slope	0.04
					Gravel content	0.02
38A:						
Rosholt	Very limited		Very limited		\|Very limited	
	Seepage	1.00	Seepage	1.00	Too sandy	1.00
	Too sandy	1.00			Seepage	1.00
					Gravel content	0.02
38B:						
Rosholt------------	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	1.00	Too sandy	1.00
	Too sandy	1.00			Seepage	1.00
					Gravel content	0.02

Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
	Rating class and limiting features	\|Value	Rating class and   limiting features	\| Value		Rating class and   limiting features	\|Value
38C:Rosholt							
	\|Very limited		\| Very limited		Very limited		
	Seepage	\| 1.00	Seepage	\| 1.00	Too sandy	1.00	
	Too sandy	11.00	Slope	10.04	Seepage	\| 1.00	
	Slope	\| 0.04			Slope	0.04	
					Gravel content	10.02	
38D:Roshol							
	\|Very limited		\| Very limited		Very limited		
	Seepage	\| 1.00	Seepage	\| 1.00	Too sandy	1.00	
	Too sandy	\| 1.00	slope	\| 1.00	Seepage	1.00	
	slope	\| 1.00			slope	\| 1.00	
					Gravel content	0.02	
42D:							
Amery	\|Very limited		\| Very limited		Very limited		
	slope	\| 1.00	slope	\| 1.00	Slope	1.00	
					Gravel content	0.02	
43B:Antig							
	\|Very limited		\| Very limited		Very limited		
	Seepage	11.00	Seepage	11.00	Too sandy	1.00	
	Too sandy	\| 1.00			Seepage	1.00	
43C:Antigo							
	\|Very limited		\| Very limited		Very limited		
	Seepage	\| 1.00	Seepage	\| 1.00	Too sandy	\| 1.00	
	Too sandy	$1.00$	slope	10.37	Seepage	\| 1.00	
	Slope	10.37			Slope	\| 0.37	
63A:							
Crystal Lak	Very limited		\| Very limited		Somewhat limited		
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	0.86	
	saturated zone		saturated zone		saturated zone		
63B:							
Crystal Lake	\| Very limited		\| Very limited		Somewhat limited		
	Depth to	\| 1.00	Depth to	\| 1.00	Depth to	10.86	
	saturated zone		saturated zone		saturated zone		
63C:							
Crystal Lake	\| Very limited		\| Very limited		Somewhat limited		
	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	10.86	
	slope	10.04	slope	10.04	slope	10.04	
64A:							
Totagatic	\|Very limited		\| Very limited		Very limited		
	Flooding	11.00	Flooding	\| 1.00	Depth to	11.00	
	Depth to	11.00	Depth to	11.00	saturated zone		
	saturated zone		saturated zone		Too sandy	\| 1.00	
	Seepage	\| 1.00	Seepage	\| 1.00	Seepage	11.00	
	Too sandy	$\mid 1.00$	Ponding	\| 1.00	Ponding	1.00	
	Ponding	\| 1.00					
Winterfield-	\| Very limited		\| Very limited		Very limited		
	Flooding	\| 1.00	Flooding	\| 1.00	Depth to	1.00	
	Depth to	11.00	Depth to	\| 1.00	saturated zone		
	saturated zone		saturated zone		Too sandy	\| 1.00	
	Seepage	11.00	Seepage	11.00	Seepage	\| 1.00	
	Too sandy	\| 1.00					

Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value		Rating class and limiting features	Value
Karlsborg----------\|Very limited			Very limited		\| Very limited		
	Depth to	11.00	Seepage	11.00	Too sandy	1.00	
	saturated zone		Slope	\| 1.00	Seepage	11.00	
	Seepage	\| 1.00	Depth to	0.99	Too clayey	1.00	
	Too sandy	11.00	saturated zone		slope	1.00	
	slope	\| 1.00			Depth to	0.99	
					saturated zone		
100B:							
Menahg	Very limited		\|Very limited		\| Very limited		
	Seepage	11.00	Seepage	\| 1.00	Too sandy	1.00	
	Too sandy	\| 1.00			Seepage	1.00	
100C:							
Menahg	\|Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	\| Seepage	11.00	Too sandy	11.00	
	Too sandy	11.00	slope	0.04	Seepage	1.00	
	Slope	\| 0.04			slope	0.04	
100D:							
Menahga	\|Very limited		\|Very limited		\| Very limited		
	Seepage	11.00	\| Seepage	\| 1.00	\| Too sandy	11.00	
	Too sandy	11.00	slope	\| 1.00	Seepage	11.00	
	Slope	\| 1.00			Slope	1.00	
120B:							
Kost	Very limited		\|Very limited		\| Very limited		
	Seepage	\| 1.00	Seepage	\| 1.00	Too sandy	11.00	
	Too sandy	\| 1.00			Seepage	1.00	
127D:							
Amery	\|Very limited		\|Very limited		\| Very limited		
	Slope	\| 1.00	slope	\| 1.00	Slope	1.00	
					Gravel content	0.02	
Rosholt	\|Very limited		\|Very limited		\| Very limited		
	Seepage	11.00	Seepage	\| 1.00	Too sandy	11.00	
	Too sandy	11.00	slope	1.00	Seepage	1.00	
	Slope	\| 1.00			Slope	1.00	
					Gravel content	0.06	
127E:							
Amery	\| Very limited		\|Very limited		\| Very limited		
	slope	\| 1.00	slope	\| 1.00	Slope	1.00	
					Gravel content	10.02	
Rosholt	\| Very limited		\|Very limited		\| Very limited		
	slope	\| 1.00	slope	\| 1.00	Slope	11.00	
	Seepage	11.00	Seepage	\| 1.00	Too sandy	11.00	
	Too sandy	\| 1.00			Seepage	11.00	
					Gravel content	0.06	
			\|				
151A:							
Bluffton	\| Very limited		Very limited		\| Very limited		
	Depth to	11.00	Depth to	\| 1.00	Depth to	11.00	
	saturated zone		saturated zone		saturated zone		
	Ponding	11.00	Ponding	\| 1.00	Ponding	11.00	

Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
185B:						
	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	10.99	Seepage	\| 1.00
	saturated zone		saturated zone		Too clayey	11.00
	Seepage	1.00			Hard to compact	1.00
	Too clayey	1.00			Depth to	0.99
					saturated zone	
Taylor	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	$1.00$
	saturated zone		saturated zone		saturated zone	
	Too clayey	1.00			Too clayey	11.00
					Hard to compact	\| 1.00
185C:						
Tradelake	\|Very limited		\| Very limited		\|Very limited	
	Depth to	1.00	Depth to	10.99	\| Seepage	11.00
	saturated zone		saturated zone		Too clayey	$1.00$
	Seepage	1.00	slope	10.04	Hard to compact	1.00
	Too clayey	1.00			Depth to	0.99
	Slope	0.04			saturated zone	
					Slope	0.04
Taylor	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	11.00
	saturated zone		saturated zone		saturated zone	
	Too clayey	$1.00$	slope	10.04	Too clayey	$1.00$
	Slope	0.04			Hard to compact	$\text { \| } 1.00$
					Slope	\| 0.04
185D:						
Tradelake	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	slope	\| 1.00	Seepage	\| 1.00
	Too clayey	11.00	Depth to	10.75	Too clayey	\| 1.00
	Slope	1.00	saturated zone		Hard to compact	\| 1.00
	Depth to	0.99			Slope	$1.00$
	saturated zone				Depth to	0.86
					saturated zone	
Taylor	\|Very limited		\|Very limited		\|Very limited	
	Depth to saturated zone	$1.00$	Depth to saturated zone	11.00	Depth to saturated zone	$1.00$
	Too clayey	$1.00$	Slope	11.00	Too clayey	$1.00$
	Slope	1.00			Hard to compact	$11.00$
					Slope	1.00
185E:						
Tradelake	\|Very limited		\|Very limited		\|Very limited	
	Slope	1.00	slope	\| 1.00	Slope	11.00
	Seepage	11.00	Depth to	10.75	Seepage	11.00
	Too clayey	1.00	saturated zone		Too clayey	11.00
	Depth to	0.99			Hard to compact	11.00
	saturated zone				Depth to	10.86
					saturated zone	
Taylor	\|Very limited		\|Very limited		\|Very limited	
	Depth to	1.00	Slope	11.00	slope	1.00
	saturated zone		Depth to	\| 1.00	Depth to	11.00
	Slope	1.00	saturated zone		saturated zone	
	Too clayey	11.00			Too clayey	11.00
					Hard to compact	1.00

Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value
Cathro------------\|Very limited			\| Very limited		\| Very limited		
Depth tosaturated zonePonding		11.00	Depth to	11.00	Depth to	1.00	
			saturated zone		saturated zone		
		11.00	Seepage	11.00	Ponding	1.00	
			Ponding	11.00			
Rondeau----------	Very limited		\| Very limited		\| Very limited		
	Depth to	11.00	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		saturated zone		
	Content of	1.00	Seepage	11.00	Content of	\| 1.00	
	organic matter		Ponding	11.00	organic matter		
	Ponding	1.00			Ponding	1.00	
					Seepage	0.16	
426B:							
Emmert	\|Very limited		\|Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	1.00	
	Too sandy	1.00			Seepage	1.00	
					Gravel content	\| 1.00	
Mahtomedi-	Very limited		\|Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	1.00	
	Too sandy	1.00			Seepage	1.00	
					Gravel content	10.01	
Menahga	Very limited		\| Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	\| 1.00	
	Too sandy	1.00			Seepage	11.00	
426 C :							
Emmert	Very limited		\| Very limited		\| Very limited		
	Seepage	1.00	\| Seepage	11.00	Too sandy	11.00	
	Too sandy	1.00	slope	0.04	Seepage	11.00	
	Slope	0.04			Gravel content	11.00	
					Slope	10.04	
Mahtomedi-------	Very limited		\| Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	11.00	
	Too sandy	1.00	slope	0.04	Seepage	\| 1.00	
	slope	0.04			slope	10.04	
					Gravel content	10.01	
Menahga	Very limited		\|Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	11.00	
	Too sandy	1.00	slope	10.04	Seepage	\| 1.00	
	slope	0.04			slope	10.04	
426D:							
Emmert -	Very limited		\| Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	11.00	
	Too sandy	1.00	slope	11.00	Seepage	11.00	
	Slope	1.00			Gravel content	11.00	
					Slope	\| 1.00	
Mahtomedi	Very limited		\| Very limited		\| Very limited		
	Seepage	1.00	Seepage	11.00	Too sandy	11.00	
	Too sandy	1.00	Slope	11.00	Seepage	11.00	
	slope	1.00			slope	\| 1.00	
					Gravel content	10.01	

Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
632C:						
Aftad------------- \|Very limited			$\mid$ Very limited		Somewhat limited	
	Depth to saturated zone	$1.00$	Depth to saturated zone	11.00	Depth to saturated zone	$0.86$
	Slope	$0.04$	Slope	0.04	Slope	$0.04$
634C:			\|			
Drylanding	Very limited		\| Very limited		Very limited	
	Depth to bedrock	$1.00$	Depth to bedrock	11.00	Depth to bedrock	$1.00$
	Content of large	0.39			Content of large	0.39
	stones				stones	
Beartree-----------\| Very limited			Very limited		Very limited	
	Depth to	1.00	Depth to	11.00	Depth to bedrock	1.00
	saturated zone		saturated zone		Depth to	1.00
	Depth to bedrock	1.00	Depth to bedrock	11.00	saturated zone	
	Content of large stones	1.00	Ponding	\| 1.00	Content of large stones	1.00
	Ponding	1.00			Ponding	1.00
Rock outcrop-------\| ${ }^{\text {Not }}$ rated			\| Not rated		\| Not rated	
635C:						
Drylanding---------\| Very limited			\| Very limited		Very limited	
Beartree--------	Depth to bedrock	1.00	Depth to bedrock	11.00	Depth to bedrock	1.00
	Flooding	0.40	Flooding	10.40	Content of large stones	10.39
	Content of large	0.39				
	stones					
	Very limited		\| Very limited		Very limited	
	Depth to	1.00	Depth to	1.00	\| Depth to bedrock	1.00
	saturated zone		saturated zone		Depth to	1.00
	Depth to bedrock	1.00	Depth to bedrock	11.00	saturated zone	
	Content of large	1.00	Ponding	11.00	Content of large	1.00
	stones		Flooding	0.40	stones	
	Ponding	1.00			Ponding	1.00
	Flooding	0.40				
Rock outcrop-----648B:	Not rated		Not rated		Not rated	
Sconsin-----------\| Very limited			Very limited		Very limited	
	Depth to	1.00	Seepage	11.00	Depth to	0.99
	saturated zone		Depth to	10.99	saturated zone	
	Seepage	1.00	saturated zone			
669D:						
Fremstadt, stony	Very limited		\| Very limited		Very limited	
	slope	1.00	slope	11.00	\| Slope	11.00
	Seepage	$1.00$	Seepage	11.00	Seepage	11.00
	Too sandy	0.50			Too sandy	10.50
Pomroy----------	Very limited		\| Very limited		Very limited	
	slope	1.00	slope	11.00	Slope	\| 1.00
	Depth to	0.99	Seepage	11.00	Seepage	11.00
	saturated zone		Depth to	10.75	Depth to	0.86
	Too sandy	0.50	saturated zone		saturated zone	
					Too sandy	0.50

Table 18b.--Sanitary Facilities--Continued


Table 18b.--Sanitary Facilities--Continued

Map symbol and soil name	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill	
	Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
3448C:						
Grettum------------\| Very limited			Very limited		Very limited	
	Depth to	1.00	Depth to	11.00	Too sandy	1.00
	saturated zone		saturated zone		Seepage	1.00
	Seepage	1.00	Seepage	11.00	Slope	0.04
	Too sandy	1.00	Slope	0.04		
	slope	0.04				
3510B:						
Pomroy	Very limited		Very limited		Very limited	
	Depth to	0.99	Seepage	11.00	Seepage	1.00
	saturated zone		Depth to	10.75	Depth to	0.86
	Too sandy	0.50	saturated zone		saturated zone	
					Too sandy	0.50
Fremstadt	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	11.00	Seepage	1.00
	Too sandy	0.50			Too sandy	0.50
Fremstadt, stony-	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	11.00	Seepage	1.00
	Too sandy	0.50			Too sandy	0.50
3510C:						
Pomroy	Very limited		Very limited		Very limited	
	Depth to	0.99	Seepage	\| 1.00	Seepage	1.00
	saturated zone		Depth to	10.75	Depth to	0.86
	Too sandy	$0.50$	saturated zone		saturated zone	
	Slope	0.16	slope	0.16	Too sandy	0.50
					Slope	0.16
Fremstadt-------	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	11.00	Seepage	1.00
	Too sandy	$0.50$	slope	\| 0.16	Too sandy	$0.50$
	Slope	0.16			slope	0.16
Fremstadt, stony	Very limited		Very limited		Very limited	
	Seepage	1.00	Seepage	\| 1.00	Seepage	1.00
	Too sandy	0.50	slope	0.16	Too sandy	0.50
	Slope	0.16			Slope	0.16
3511A:						
Bushville	Very limited		Very limited		Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
			Seepage	\| 1.00		
3516A:						
Slimlake	Very limited		Very limited		Very limited	
	Depth to	1.00	Depth to	\| 1.00	Too sandy	1.00
	saturated zone		saturated zone		Seepage	1.00
	Seepage	$1.00$	Seepage	11.00	Depth to	0.47
	Too sandy	1.00			saturated zone	
3625A:						
Lino-	Very limited		Very limited		Very limited	
	Depth to	1.00	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone		saturated zone	
	Seepage	1.00	Seepage	11.00	Too sandy	1.00
	Too sandy	1.00			Seepage	1.00


(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99 . The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)


Table 19a.--Construction Materials--Continued

Map symbol and soil name	Potential as source of gravel		Potential as source of sand	
	Rating class	\| Value	Rating class	Value
28C:Hauge		\|		
	Poor		Fair	
	Bottom layer	10.00	Bottom layer	0.02
	Thickest layer	10.00	Thickest layer	0.04
Rosholt, very stony		\|		
	Fair		Fair	
	Thickest layer	10.00	Thickest layer	0.02
	Bottom layer	\| 0.16	Bottom layer	10.50
Rosholt------------				
	Fair		Fair	
	Thickest layer	10.00	Thickest layer	10.02
	Bottom layer	$0.16$	Bottom layer	10.50
38A:		\|		
Rosholt------------	Fair		Fair	
	Thickest layer	10.00	Thickest layer	0.02
	Bottom layer	\| 0.16	Bottom layer	10.50
38B:Rosholt				
	Fair		Fair	
Rosholt	Thickest layer	10.00	Thickest layer	0.02
	Bottom layer	\| 0.16	Bottom layer	0.50
38C:		\|		
Rosholt------------	Fair		Fair	
	Thickest layer	10.00	Thickest layer	10.02
	Bottom layer	\| 0.16	Bottom layer	10.50
38D :				
		\|		
Rosholt-----------	\|Fair	1	Fair	
	Thickest layer	10.00	Thickest layer	0.02
	Bottom layer	\| 0.16	Bottom layer	10.50
42D:				
Amery	Poor		Fair	
	Thickest layer	10.00	Bottom layer	0.03
	Bottom layer	10.00	Thickest layer	10.03
43B :		\|		
Antigo------------	\|Fair	\|	Fair	
	Thickest layer	10.00	Thickest layer	10.00
	Bottom layer	10.08	Bottom layer	10.50
43C:		,		
Antigo	\| Fair	1	Fair	
	Thickest layer	10.00	Thickest layer	10.00
	Bottom layer	10.08	Bottom layer	10.50
63A:		\|		
Crystal Lake	\| Poor	,	Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
		,		
63B:		\|		\|
Crystal Lake	Poor	,	Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
		,		
63C:		\|		
Crystal Lake-------	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00


Map symbol and soil name	Potential as source of gravel		Potential as source of sand	
	Rating class	\| Value	Rating class	\|Value
64A:Totagati				
	Poor		Fair	
	Bottom layer	10.00	Thickest layer	0.44
	Thickest layer	10.00	Bottom layer	\| 0.64
Winterfield-	Poor		\|Fair	
	Thickest layer	10.00	Thickest layer	0.10
	Bottom layer	10.00	Bottom layer	0.64
69C:Keween				
	Poor		Fair	
	Bottom layer	10.00	Bottom layer	0.10
	Thickest layer	10.00	Thickest layer	10.11
Sayner	Fair		Fair	
	Thickest layer	10.00	Bottom layer	10.43
	Bottom layer	$10.08$	Thickest layer	$0.72$
Vilas	Poor		Fair	
	Bottom layer	10.00	Thickest layer	$0.72$
	Thickest layer	$10.00$	Bottom layer	$10.86$
69E:				
Keweenaw	Poor		Fair	
	Bottom layer	10.00	Bottom layer	0.10
	Thickest layer	10.00	Thickest layer	0.11
Sayner----------	Fair		Fair	
	Thickest layer	10.00	Bottom layer	10.43
	Bottom layer	10.08	Thickest layer	10.72
Vilas	Poor		Fair	
	Bottom layer	10.00	Thickest layer	10.72
	Thickest layer	10.00	Bottom layer	10.86
82B:				
Cutaway			Poor	
	Bottom layer	$10.00$	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	10.00
Branstad	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
82C:				
Cutaway---------	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
Branstad	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
83A:				
Smestad-			\|Fair	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.06
85B:				
Taylo	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00

Table 19a.--Construction Materials--Continued

Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\| Value		Rating class	\|Value
85C:					
	\| Poor		Poor		
	Bottom layer	10.00	Bottom layer	0.00	
	Thickest layer	0.00	Thickest layer	10.00	
86A :					
Indus-----------	\| Poor		Poor		
	Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	0.00	Thickest layer	10.00	
Alango	Poor		Poor		
	\| Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	0.00	Thickest layer	10.00	
89A:					
Wildwood	\| Poor		Poor		
	Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	10.00	Thickest layer	10.00	
96B :					
Karlsborg	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	0.72	
96C:					
Karlsborg	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	10.72	
96D:					
Karlsborg	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	10.72	
100B:					
Menahga	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	\| 0.34	
	Thickest layer	10.00	Bottom layer	\| 0.64	
100C:					
Menahga	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.34	
	Thickest layer	10.00	Bottom layer	\| 0.64	
100D:					
Menahga	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.34	
	Thickest layer	10.00	Bottom layer	\| 0.64	
120B:					
Kost	\| Poor		Fair		
	Bottom layer	10.00	Thickest layer	0.21	
	Thickest layer	10.00	Bottom layer	10.82	
127D:					
Amery	\| Poor		Fair		
	Thickest layer	10.00	Bottom layer	10.03	
	Bottom layer	10.00	Thickest layer	10.03	
Rosholt	\|Fair		Fair		
	Thickest layer	10.00	Thickest layer	10.02	
	\| Bottom layer	10.16	Bottom layer	10.50	


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	Value
Amery	\| Poor		\|Fair		
Rosholt------------- \|	Thickest layer	10.00	Bottom layer		
	Bottom layer	$10.00$	Thickest layer	$0.03$	
	\|Fair		\|Fair		
	Thickest layer	10.00	Thickest layer	0.02	
	Bottom layer	10.16	Bottom layer	0.50	
151A:					
Bluffton----------- \|	\| Poor		\| Poor		
	Bottom layer	10.00	Bottom layer	0.00	
	Thickest layer	10.00	Thickest layer	0.00	
152A:					
Alstad	\| Poor		\|Fair		
	Bottom layer	10.00	Thickest layer	$10.00$	
	Thickest layer	$10.00$	Bottom layer	$0.01$	
154E:Cushing					
	\| Poor		\|Fair		
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	0.01	
156B :					
Magnor, very stony--\|	\| Poor		\|Fair		
	Thickest layer	10.00	Bottom layer		
	Bottom layer	10.00	Thickest layer	0.04	
Magnor-------------	\| Poor		\|Fair		
	\| Thickest layer	10.00	Bottom layer	10.00	
	Bottom layer	10.00	Thickest layer	10.04	
Freeon, very stony--\|	\| Poor		\|Fair		
	Bottom layer	10.00	\| Bottom layer	10.03	
	Thickest layer	10.00	Thickest layer	10.04	
Freeon------------- \|	$\mid$ Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	10.03	
	Thickest layer	10.00	Thickest layer	0.04	
157C:					
Freeon, very stony--	\| Poor		\|Fair		
	Bottom layer	10.00	\| Bottom layer		
	Thickest layer	10.00	Thickest layer	10.04	
Freeon------------- \|	\| Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	10.03	
	Thickest layer	10.00	Thickest layer	10.04	
160A:		\|			
Oesterle----------- \|	\|Fair		\|Fair		
	Thickest layer	10.00	Thickest layer	10.04	
	Bottom layer	10.16	Bottom layer	10.50	
165B:		1 \|			
Elderon------------ \|	\| Poor		\| Poor		
	\| Bottom layer	10.00	Thickest layer	$10.00$	
	Thickest layer	10.00	Bottom layer	10.00	

Table 19a.--Construction Materials--Continued

Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\| Value		Rating class	Value
185B :					
Tradelake-------	Poor		Fair		
	Bottom layer	0.00	Thickest layer	0.00	
	Thickest layer	10.00	Bottom layer	0.72	
Taylor----------	Poor		Poor		
	Bottom layer	$0.00$	Bottom layer	0.00	
	Thickest layer	10.00	Thickest layer	0.00	
185C:					
Tradelake-------	Poor		Fair		
	Bottom layer	0.00	Thickest layer	0.00	
	Thickest layer	0.00	Bottom layer	0.72	
Taylor----------	Poor		Poor		
	Bottom layer	0.00	Bottom layer	0.00	
	Thickest layer	$0.00$	Thickest layer	0.00	
185D:Tradelake					
	Poor		Fair		
	Bottom layer	10.00	Thickest layer	0.00	
	Thickest layer	10.00	Bottom layer	0.72	
Taylor----------	Poor		Poor		
	Bottom layer	0.00	Bottom layer	0.00	
	Thickest layer	10.00	Thickest layer	0.00	
185E:					
Tradelake	Poor		Fair		
	Bottom layer	0.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	0.72	
Taylor----------	Poor		Poor		
	Bottom layer	10.00	Bottom layer	0.00	
	Thickest layer	10.00	Thickest layer	0.00	
189A:					
Siren	Poor		Poor		
	Bottom layer	$0.00$	Bottom layer	10.00	
	Thickest layer	0.00	Thickest layer	10.00	
193A:					
Minocqua--------	Fair		Fair		
	Thickest layer	10.00	Thickest layer	10.00	
	Bottom layer	10.08	Bottom layer	10.50	
337A:					
Plover	Poor		Poor		
	Bottom layer	0.00	Bottom layer	10.00	
	Thickest layer	10.00	Thickest layer	10.00	
368B:					
Mahtomedi	Fair		Fair		
	Thickest layer	0.00	Bottom layer	\| 0.64	
	Bottom layer	10.01	Thickest layer	\| 0.64	
Cress	Fair		Fair		
	Thickest layer	0.00	Thickest layer	10.08	
	Bottom layer	0.16	Bottom layer	10.50	


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	Value
	\|				
368C:					
Mahtomedi			\|Fair		
	\| Thickest layer	10.00	Bottom layer	0.64	
	Bottom layer	10.01	Thickest layer	0.64	
Cress-----------	\|Fair		Fair		
	\| Thickest layer	10.00	Thickest layer	10.08	
	\| Bottom layer	$10.16$	Bottom layer	$10.50$	
368D:	\|		Fair		
Mahtomedi	\|Fair				
	Thickest layer	10.00	Bottom layer	0.64	
	Bottom layer	10.01	Thickest layer	0.64	
Cress-----------	\|Fair		Fair		
	Thickest layer	10.00	Thickest layer	10.08	
	Bottom layer	10.16	Bottom layer	0.50	
368E:					
Mahtomedi	\|Fair		\|Fair		
	\| Thickest layer	10.00	Bottom layer	0.64	
	Bottom layer	$10.01$	Thickest layer	0.64	
Cress-----------	\|Fair		Fair		
	\| Thickest layer	10.00	\| Thickest layer	0.08	
	Bottom layer	10.16	Bottom layer	0.50	
380B:			Fair		
Cress-----------	\|Fair				
	Thickest layer	10.00	Thickest layer	0.08	
	Bottom layer	10.16	Bottom layer	0.50	
Rosholt---------	\|Fair		Fair		
	\| Thickest layer	10.00	Thickest layer	10.02	
	Bottom layer	10.16	Bottom layer	10.50	
380C:	\|				
Cress	\|Fair		Fair		
	\| Thickest layer	10.00	\| Thickest layer	10.08	
	Bottom layer	10.16	Bottom layer	10.50	
Rosholt	\|Fair		Fair		
	Thickest layer	10.00	\| Thickest layer	0.02	
	Bottom layer	10.16	Bottom layer	0.50	
	\|				
380D:	\|				
Cress	\| Fair		Fair		
	Thickest layer	10.00	Thickest layer	10.08	
	Bottom layer	10.16	Bottom layer	10.50	
Rosholt---------	\|Fair		Fair		
	Thickest layer	10.00	Thickest layer	10.02	
	Bottom layer	10.16	Bottom layer	10.50	
383B:					
Mahtomedi	\|Fair		Fair		
	Thickest layer	10.00	\| Thickest layer	10.64	
	Bottom layer	10.01	Bottom layer	10.64	

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand	
	Rating class	\| Value	Rating class	\| Value
407A:		\|		\|
Seelyeville	Poor		\| Poor	
	Bottom layer	10.00	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	10.00
Markey	Poor		\|Fair	
	Thickest layer	10.00	Thickest layer	10.00
	Bottom layer	10.00	Bottom layer	10.64
410A:				
Seelyevill	Poor		\| Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	$10.00$	Thickest layer	$10.00$
Cathro	Poor		\| Fair	
	Bottom layer	$10.00$	Thickest layer	$10.00$
	Thickest layer	$10.00$	Bottom layer	$10.03$
419A:				
Seelyevill	Poor		\| Poor	
	Bottom layer	10.00	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	0.00
Cathro----------	Poor		Fair	
	Bottom layer	10.00	Thickest layer	10.00
	Thickest layer	10.00	Bottom layer	10.03
Markey	Poor		\| Fair	
	Thickest layer	10.00	Thickest layer	10.00
	Bottom layer	10.00	Bottom layer	10.64
421A:				
			\| Poor	
	Bottom layer	$10.00$	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	$10.00$
		.		
Markey				
	Thickest layer	$10.00$	Thickest layer	10.00
	Bottom layer	10.00	Bottom layer	10.64
Seelyeville-----	Poor	1	\| Poor	
	Bottom layer	10.00	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	0.00
422A:		\|		
Seelyeville-----	Poor		\| Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
Cathro----------	Poor	1	\|Fair	1
	Bottom layer	10.00	Thickest layer	
	Thickest layer	10.00	Bottom layer	10.03
Rondeau	Poor	1	\| Poor	1
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
426B:		\|		
Emmert	Fair		\|Fair	1
	Bottom layer	10.50	Thickest layer	10.61
	Thickest layer	10.50	\| Bottom layer	10.80

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	Value
	,				
439D:					
Graycalm--------	\| Poor		\| Fair		
	\| Bottom layer	10.00	Bottom layer	0.18	
	\| Thickest layer	10.00	Thickest layer	0.47	
Menahga---------	\| Poor		\|Fair		
	\| Bottom layer		Thickest layer		
	\| Thickest layer	$10.00$	Bottom layer	$10.64$	
442C:	\|				
Haugen	\| Poor		\|Fair		
	\| Bottom layer	10.00	Bottom layer	0.02	
	\| Thickest layer	10.00	Thickest layer	0.04	
	\|				
Greenwood	\| Poor		\| Poor		
	\| Bottom layer	10.00	Bottom layer	0.00	
	\| Thickest layer	10.00	Thickest layer	0.00	
	\|				
443D:					
Amery	\| Poor		\| Fair		
	\| Thickest layer	10.00	Bottom layer	0.03	
	\| Bottom layer	$10.00$	Thickest layer	$\mid 0.03$	
Greenwood	\| Poor		\| Poor		
	\| Bottom layer	$10.00$	Bottom layer	0.00	
	\| Thickest layer	$10.00$	Thickest layer	0.00	
	\|				
Loxley-	\| Poor		\| Poor		
	Bottom layer	10.00	Bottom layer	0.00	
	\| Thickest layer	10.00	Thickest layer	0.00	
Daisybay	\| Poor		\| Poor		
	\| Bottom layer	10.00	Bottom layer	0.00	
	\| Thickest layer	10.00	Thickest layer	0.00	
	\|		Thickest lay		
Dawson	\|Fair		\|Fair		
	\| Thickest layer	10.00	Thickest layer	10.00	
	\| Bottom layer	10.05	Bottom layer	10.64	
461A:	\|				
Bowstring	\| Poor		\| Poor		
	\| Bottom layer	10.00	Bottom layer	10.00	
	\| Thickest layer	10.00	Thickest layer	10.00	
	\|		-nickest layer		
465A:	I				
Newson	\| Poor		\| Fair		
	\| Bottom layer	10.00	Bottom layer	0.82	
	\| Thickest layer	10.00	Thickest layer	10.82	
Meehan	\| Poor		\|Fair		
	\| Bottom layer	10.00	Thickest layer	10.48	
	\| Thickest layer	10.00	Bottom layer	10.82	
	\|				
469E:					
Bigisland	\|Fair		\|Fair		
	\| Thickest layer	10.09	Thickest layer	$10.00$	
	\| Bottom layer	10.39	Bottom layer	10.04	

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\| Value		Rating class	\| Value
495B:					
Karlsborg	Poor		\| Fair		
	Bottom layer	10.00	Thickest layer	0.00	
	Thickest layer	10.00	Bottom layer	0.72	
Grettum	Poor		\| Fair		
	Bottom layer	10.00	Thickest layer	10.36	
	Thickest layer	$10.00$	Bottom layer	$10.58$	
Perida	Poor		\| Fair		
	Bottom layer	10.00	Bottom layer	$10.58$	
	Thickest layer	$10.00$	Thickest layer	$10.72$	
495C:					
Karlsborg	Poor		Fair		
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	0.72	
Grettum---------	Poor		\| Fair		
	Bottom layer	10.00	\| Thickest layer	0.36	
	Thickest layer	10.00	Bottom layer	10.58	
Perida	Poor		\| Fair		
	Bottom layer	$10.00$	Bottom layer	10.58	
	Thickest layer	$10.00$	Thickest layer	10.72	
495D:					
Karlsborg					
	Bottom layer	$10.00$	Thickest layer	10.00	
	Thickest layer	$10.00$	Bottom layer	$10.72$	
Grettum-			Fair		
	Bottom layer	10.00	\| Thickest layer	10.36	
	Thickest layer	10.00	Bottom layer	10.58	
Perida	Poor		\| Fair		
	Bottom layer	10.00	Bottom layer	10.58	
	Thickest layer	10.00	Thickest layer	10.72	
496B:					
Karlsborg	Poor		Fair		
	Bottom layer	$10.00$	Thickest layer		
	Thickest layer	10.00	Bottom layer	10.72	
496C:					
Karlsborg					
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	10.72	
496D:					
Karlsborg	Poor		\| Fair	1	
	Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	\| Bottom layer	10.72	
497A:					
Meenon	Poor		\|Fair		
	Bottom layer	10.00	Thickest layer	$10.72$	
	Thickest layer	10.00	Bottom layer	10.72	

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand	
	Rating class	\| Value	Rating class	\|Value
	,			
$\begin{aligned} & \text { 555A: } \\ & \text { Fordum } \end{aligned}$	\|	\|		
	\| Poor		\|Fair	
	\| Thickest layer	10.00	Thickest layer	0.00
	\| Bottom layer	10.00	Bottom layer	0.53
557B:	\|	\|		
Shawano	\| Poor		\|Fair	
	\| Bottom layer	10.00	Bottom layer	0.36
	\| Thickest layer	10.00	Thickest layer	0.36
557C:	\|			
Shawano	\| Poor		\| Fair	
	\| Bottom layer	10.00	Bottom layer	0.36
	\| Thickest layer	10.00	Thickest layer	0.36
557D:	\|			
Shawano	\| Poor		\| Fair	
	\| Bottom layer	10.00	Bottom layer	$10.36$
	\| Thickest layer	$10.00$	Thickest layer	$10.36$
586A:Chelmo	\|			
	\| Poor		\|Fair	
	\| Bottom layer	10.00	Thickest layer	10.00
	\| Thickest layer	10.00	Bottom layer	0.86
600A:	\|			
Haplosaprists	\| Not rated		Not rated	
Psammaquen	Not rated		\| Not rated	
$\begin{aligned} & \text { 615B: } \\ & \text { Cress } \end{aligned}$				
	\|Fair		\|Fair	
	\| Thickest layer	10.00	Thickest layer	0.08
	Bottom layer	10.16	Bottom layer	0.50
615C:				
Cres	\|Fair		\|Fair	
	Thickest layer	10.00	Thickest layer	10.08
	\| Bottom layer	10.16	Bottom layer	0.50
615D:	\|			
Cress	\|Fair		\| Fair	
	Thickest layer	10.00	Thickest layer	10.08
	\| Bottom layer	10.16	Bottom layer	10.50
	\|			
620C:	\|			
Lundeen	\| Poor		\| Poor	
	\| Bottom layer	10.00	Bottom layer	10.00
	\| Thickest layer	10.00	Thickest layer	10.00
	\|			
Haustrup	\| Poor		$\mid$ Poor	
	\| Bottom layer	10.00	Bottom layer	10.00
	\| Thickest layer	10.00	Thickest layer	10.00
Rock outcrop-	Not rated		Not rated	
621A:				
Bjorkland-------	\| Poor		\| Fair	
	\| Bottom layer	10.00	Bottom layer	10.00
	\| Thickest layer	10.00	Thickest layer	10.30
	,			

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	Value
669D:					
Fremstadt, stony----	\| Poor		\|Fair		
	Thickest layer	10.00	Bottom layer	0.07	
	Bottom layer	10.00	Thickest layer	0.07	
Pomroy------------- \|	\| Poor		\| Fair		
	Bottom layer	10.00	Bottom layer		
	Thickest layer	$10.00$	Thickest layer	$10.08$	
671B:					
Spoonerhill, stony--\|			\|Fair		
	Bottom layer	10.00	Bottom layer	0.11	
	Thickest layer	10.00	Thickest layer	0.11	
Spoonerhill---------	\| Poor		\| Fair		
	Bottom layer	10.00	Bottom layer	0.11	
	Thickest layer	10.00	Thickest layer	0.11	
706A:					
Winterfield---------	\| Poor		\| Fair		
	Thickest layer	10.00	Thickest layer	0.00	
	Bottom layer	$10.00$	Bottom layer	10.64	
Totagatic----------	\| Poor		\| Fair		
	\| Bottom layer	10.00	Thickest layer	10.44	
	Thickest layer	10.00	Bottom layer	0.64	
Mora	\| Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	0.03	
	Thickest layer	10.00	Thickest layer	0.03	
717B:Milac					
	\| Poor		\|Fair		
	Bottom layer		Bottom layer		
	Thickest layer	10.00	Thickest layer	10.03	
717C:					
Milaca------------- \|					
	\| Bottom layer	10.00	\| Bottom layer	10.03	
	Thickest layer	10.00	Thickest layer	0.03	
720F:					
Haustrup-----------	\| Poor		\| Poor		
	Bottom layer	10.00	Bottom layer	0.00	
	Thickest layer	10.00	Thickest layer	10.00	
Lundeen------------- \|	\| Poor		\| Poor		
	\| Bottom layer	10.00	Thickest layer	10.00	
	Thickest layer	10.00	Bottom layer	10.00	
Rock outcrop-------	\| Not rated		Not rated		
726B:		1			
Sissabagama--------\|	\| Poor		\| Fair		
	\| Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	10.00	Thickest layer	10.36	

Table 19a.--Construction Materials--Continued


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	\|Value
1070D:Fremstadt-----------					
	\| Poor		\|Fair		
Cress--------------	Thickest layer	10.00	Bottom layer		
	Bottom layer	$10.00$	Thickest layer	$10.07$	
	\|Fair		\|Fair		
	\| Thickest layer	10.00	Thickest layer	10.08	
	Bottom layer	$0.16$	Bottom layer	10.50	
1080B:					
Spoonerhill--------	\| Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	10.10	
	Thickest layer	10.00	Thickest layer	0.10	
Spoonerhill, stony--\|	\| Poor		\|Fair		
	\| Bottom layer	10.00	Bottom layer	10.11	
	Thickest layer	10.00	Thickest layer	10.11	
Cress--------------	\|Fair		\|Fair		
	\| Thickest layer	10.00	Thickest layer	10.08	
	Bottom layer	10.16	Bottom layer	10.50	
2002:					
Udorthents, earthen					
	Not rated		\| Not rated		
2015:					
Pits---------------	Not rated		\| Not rated		
2050:					
Landfill----------	\| Not rated		\| Not rated		
3011A:					
Barronett	\| Poor		\| Poor		
	Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	10.00	Thickest layer	10.00	
3082E:					
Braham	\| Poor		\| Fair		
	Bottom layer	10.00	Bottom layer	10.00	
	Thickest layer	10.00	Thickest layer	10.10	
Shawano------------- \|	\| Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	10.36	
	Thickest layer	10.00	Thickest layer	10.36	
3114A:Saprist					
	\| Poor		\| Poor		
	Bottom layer	10.00	Bottom layer		
	Thickest layer	10.00	Thickest layer	10.00	
Aquents------------ \|	\| Poor		$\mid$ Fair		
	\| Bottom layer	10.00	Bottom layer	10.82	
	Thickest layer	10.00	Thickest layer	10.82	
Aquepts------------ \|	\| Poor		\|Fair		
	\| Thickest layer	10.00	Thickest layer	10.00	
	Bottom layer	10.00	Bottom layer	10.50	

Table 19a.--Construction Materials--Continued

Map symbol and soil name	Potential as source of gravel		Potential as source of sand	
	Rating class	\| Value	Rating class	Value
3125A:   Meehan				
	Poor		Fair	
	Bottom layer	10.00	Thickest layer	0.48
	Thickest layer	10.00	Bottom layer	0.82
3126A:				
Wurtsmith--------	Poor		Fair	
	Bottom layer	10.00	Thickest layer	0.54
	Thickest layer	10.00	Bottom layer	\| 0.82
3312B:				
Glendenning, very stony				
	Poor		Fair	
	Bottom layer	10.00	Bottom layer	0.03
	Thickest layer	10.00	Thickest layer	0.04
Glendenning------	Poor		Fair	
	Bottom layer	10.00	Bottom layer	0.03
	Thickest layer	10.00	Thickest layer	10.04
3336A:				
Fenander---------	Poor		Poor	
	Bottom layer	10.00	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	0.00
3403A:				
Loxley	Poor		Poor	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.00
Beseman----------	\| Poor		Poor	
	Bottom layer	10.00	Bottom layer	0.00
	Thickest layer	10.00	Thickest layer	0.00
Dawson	Poor		Fair	
	Thickest layer	10.00	Thickest layer	0.00
	Bottom layer	10.00	Bottom layer	10.64
3429B:				
Lara--	\| Poor		Fair	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.20
3429C:				
Lara-	\| Poor		Fair	
	Bottom layer	10.00	Bottom layer	10.00
	Thickest layer	10.00	Thickest layer	10.20
3446A:				\|
Newson	\| Poor		Fair	
	Bottom layer	10.00	Bottom layer	\| 0.82
	Thickest layer	10.00	Thickest layer	10.82
3448B:				\|
Grettum	\| Poor		Fair	
	Bottom layer	0.00	Thickest layer	10.36
	Thickest layer	10.00	Bottom layer	10.58
3448C:				\|
Grettum	\| Poor		Fair	
	Bottom layer	10.00	Thickest layer	10.36
	Thickest layer	10.00	Bottom layer	10.58


Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\|Value		Rating class	Value
	\|				
$\begin{aligned} & \text { 3510B: } \\ & \text { Pomroy } \end{aligned}$	\|	\|			
	Poor		\| Fair		
	Bottom layer	10.00	Bottom layer	0.02	
	Thickest layer	10.00	Thickest layer	0.08	
Fremstadt	\| Poor		\| Fair		
	Thickest layer	10.00	Bottom layer		
	\| Bottom layer	$10.00$	Thickest layer	$10.07$	
Fremstadt, stony-	\| Poor		\|Fair		
	\| Thickest layer	10.00	Bottom layer	10.07	
	\| Bottom layer	$10.00$	Thickest layer	$10.07$	
3510C:	\|				
Pomroy	\| Poor		\|Fair		
	Bottom layer	10.00	Bottom layer	10.02	
	Thickest layer	10.00	Thickest layer	10.08	
	$1$				
Fremstadt	\| Poor		\|Fair		
	\| Thickest layer	10.00	\| Bottom layer	0.07	
	Bottom layer	10.00	Thickest layer	0.07	
Fremstadt, stony-	\| Poor		\|Fair		
	\| Thickest layer	10.00	Bottom layer	10.07	
	Bottom layer	10.00	Thickest layer	10.07	
3511A:					
Bushville			\|Fair		
	\| Bottom layer	$10.00$	Bottom layer	$10.03$	
	Thickest layer	10.00	Thickest layer	$10.07$	
	\|				
3516A:	\|				
Slimlak	\| Poor		\| Fair		
	Bottom layer	10.00	Thickest layer	10.54	
	Thickest layer	10.00	Bottom layer	10.79	
3625A:	\|				
Lino-	\| Poor		$\mid$ Fair		
	\| Bottom layer	$10.00$	Thickest layer	$10.13$	
	\| Thickest layer	10.00	Bottom layer	$10.30$	
3626A:	\|				
Crex-	\| Poor		\|Fair		
	\| Bottom layer	10.00	Thickest layer	10.34	
	Thickest layer	10.00	Bottom layer	10.88	
	.				
3629B:	\|				
Perida	\| Poor		$\mid$ Fair		
	Bottom layer	10.00	Bottom layer	10.58	
	Thickest layer	10.00	Thickest layer	10.72	
	\|				
3636B:	\|	1			
Plainbo-			\|Fair		
	\| Thickest layer	10.00	Thickest layer	10.19	
	Bottom layer	10.00	Bottom layer	10.51	
3636C:	\|				
Plainbo	\| Poor		\|Fair		
	Thickest layer	10.00	Thickest layer	10.19	
	Bottom layer	10.00	Bottom layer	10.51	

Table 19a.--Construction Materials--Continued

Map symbol and soil name	Potential as source of gravel		Potential as source of sand		
	Rating class	\| Value		Rating class	\|Value
M-W :				\|	
Miscellaneous water	Not rated		Not rated		
W:				\|	
Water---------------	Not rated		Not rated	\|	

Table 19b.--Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	\|Value ${ }^{\text {\| }}$	Rating class and limiting features	\|Value	Rating class and limiting features	${ }^{\text {\| Value }}$
3A:						
Totagatic---------- \|	\| Poor		\| Poor		\| Poor	
	Too sandy	10.00	Depth to	10.00	Too sandy	0.00
	Low content of organic matter	10.12	saturated zone		Depth to saturated zone	0.00
	Too acid	10.68				
Bowstring----------- \|	\| Good		\| Poor		$\mid$ Poor	
			Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
Ausable------------- \|	\| Poor		\| Poor		\| Poor	
	Too sandy	10.00	Depth to	10.00	Too sandy	0.00
	Low content of organic matter	10.12	saturated zone		Depth to saturated zone	0.00
	Too acid	10.97				
12A:						
Makwa-------------- \|	\|Fair		\| Poor		\| Poor	
	Stone content	10.16	Depth to	10.00		0.00
	Low content of	$10.50$	saturated zone		(rock fragments)	
	organic matter		Stone content	10.16	Depth to	0.00
	Too acid	10.68	Cobble content	10.94	saturated zone	
					Rock fragments	0.00
22A:						
Comstock------------ \|	\|Fair		\| Poor		$\mid$ Poor	
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Depth to saturated zone	0.00
	Too acid	0.54			Too acid	0.98
	Water erosion	10.90				
27A:						
Scott Lake---------	Fair		Fair		\| Fair	
	Low content of organic matter	10.12	Depth to saturated zone	10.89	Hard to reclaim (rock fragments)	10.32
	Too acid	10.68			Depth to	0.89
	Droughty	10.95			saturated zone	
					Rock fragments	0.97
28B:						
Haugen, very stony--	\|Fair		\| Fair		\| Poor	
	Low content of organic matter	$0.12$	Depth to saturated zone	10.53	Hard to reclaim (dense layer)	$0.00$
	Too acid	10.54			Rock fragments	0.00
					Depth to saturated zone	0.53
					Hard to reclaim (rock fragments)	0.92
					Too acid	0.98

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
127E:Amery							
	Fair		Poor		Poor		
	Low content of	10.12	Slope	10.00	Slope	10.00	
	organic matter				Rock fragments	10.00	
	Too acid	10.54			Hard to reclaim	10.03	
					(dense layer)		
					Hard to reclaim	10.92	
					(rock fragments)		
					Too acid	10.98	
Rosholt	Fair		Poor		Poor		
	Low content of	10.12	Slope	10.00	Slope	10.00	
	organic matter				Rock fragments	10.12	
	Droughty	10.60			Hard to reclaim	10.32	
	Too acid	10.68			(rock fragments)		
151A:							
Bluffton	Fair		Poor		Poor		
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Depth to saturated zone	10.00	
			Shrink-swell	\| 0.87	saturated zon		
152A:							
Alstad	Fair		Poor		Poor		
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Depth to saturated zone	10.00	
	Too acid	10.97	Shrink-swell	10.98			
154E:							
Cushing	Fair		Poor		Poor		
	Low content of	10.40	Slope	10.00	Slope	10.00	
	organic matter		Shrink-swell	10.92			
	Too acid	10.97					
156B:							
Magnor, very stony--\|							
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Hard to reclaim (dense layer)	10.00	
	Too acid	10.20			Depth to	10.00	
	Water erosion	10.90			saturated zone		
					Rock fragments	10.00	
					Hard to reclaim	10.92	
					(rock fragments)		
Magnor-------------- \|	Fair		Poor		Poor		
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Hard to reclaim (dense layer)	10.00	
	Too acid	10.20			Depth to	10.00	
	Water erosion	10.90			saturated zone		
					Rock fragments	10.00	
					Hard to reclaim	10.92	
					(rock fragments)		
157B:							
Freeon, very stony--\|	Fair		Poor		Poor		
	Low content of organic matter	10.12	Depth to saturated zone	10.00	Depth to saturated zone	10.00	
	Too acid	10.68			Rock fragments	10.00	
	Water erosion	10.90			Hard to reclaim	10.92	
					(rock fragments)		

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\|Value ${ }^{\text {\| }}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
Tradelake-------	\| Poor		Fair		\| Poor		
	Too clayey	10.00	Depth to	\| 0.14	Too clayey	10.00	
	Low content of	10.12	saturated zone		Depth to	0.14	
	organic matter		Shrink-swell	10.38	saturated zone		
	Too acid	10.84			Slope	0.96	
Taylor	\| Poor		Poor		$\mid$ Poor		
	Too clayey	10.00	Low strength	10.00	Too clayey	10.00	
	Low content of	10.12	Shrink-swell	10.00	Depth to	0.00	
	\| organic matter		Depth to	10.00	saturated zone		
	Water erosion	10.90	saturated zone		Slope	0.96	
	Too acid	10.95					
185D :							
Tradelake-------	\| Poor		Fair		$\mid$ Poor		
	\| Too clayey	10.00	Shrink-swell	10.38	Too clayey	10.00	
	\| Low content of	10.12	Depth to	10.53	Slope	10.00	
	organic matter		saturated zone		Depth to	$10.53$	
	Too acid	10.84	slope	10.76	saturated zone		
Taylor	\| Poor		Poor		$\mid$ Poor		
	Too clayey	10.00	Low strength	10.00	Too clayey	10.00	
	Low content of	10.12	Shrink-swell	10.00	Slope	10.00	
	\| organic matter		Depth to	10.00	Depth to	10.00	
	Water erosion	10.90	saturated zone		saturated zone		
	Too acid	10.95	slope	10.76			
185E:							
Tradelake-------	\| Poor		Poor		\| Poor		
	\| Too clayey	10.00	Slope	10.00	Slope	10.00	
	Low content of	10.12	Shrink-swell	10.38	Too clayey	10.00	
	organic matter		Depth to	10.53	Depth to	10.53	
	Too acid	10.84	saturated zone		saturated zone		
Taylor	\| Poor	\|	Poor		$\mid$ Poor		
	Too clayey	10.00	Slope	10.00	Slope	10.00	
	Low content of	10.12	Low strength	10.00	Too clayey	10.00	
	\| organic matter		Shrink-swell	10.00	Depth to	10.00	
	Water erosion	10.90	Depth to	10.00	saturated zone		
	Too acid	10.95	saturated zone				
189A:							
Siren-----------	\| Poor		Poor		$\mid$ Poor		
	\| Too clayey	10.00	Depth to	10.00	Too clayey	10.00	
		10.00	saturated zone		Depth to	10.00	
	organic matter		Low strength	10.00	saturated zone		
	Too acid	10.20	Shrink-swell	10.42	Too acid	10.98	
	\|						
193A:							
Minocqua--------	\|Fair		Poor		\| Poor		
	\| Low content of   \| organic matter	$10.12$	Depth to saturated zone	10.00	Depth to saturated zone	$0.00$	
	\| Too acid	10.68			Rock fragments	10.12	
	\|				Hard to reclaim	10.68	
		1			(rock fragments)		

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and   limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
396B:							
Friendship------	Poor		Good		Poor		
	Too sandy	0.00			Too sandy	0.00	
	Wind erosion	0.00					
	Droughty	0.10					
	Low content of	0.12					
	organic matter						
	Too acid	0.68					
Wurtsmith-------	Poor		Fair		\| Poor		
	Too sandy	0.00	Depth to	0.53	Too sandy	0.00	
	Wind erosion	0.00	saturated zone		Depth to	0.53	
	Low content of	0.12			saturated zone		
	organic matter				Too acid	0.76	
	Droughty	0.13			Rock fragments	0.97	
	Too acid	0.50					
Grayling--------	Poor		Good		\| Poor		
	Too sandy	0.00			Too sandy	10.00	
	Wind erosion	$0.00$					
	Droughty	0.00					
	Low content of	0.12					
	organic matter						
	Too acid	0.50					
397A:							
Perchlake-------	Poor		Poor		\| Poor		
	Too sandy	0.00	Depth to	0.00	Too sandy	0.00	
	Wind erosion	0.00	saturated zone		Depth to	0.00	
	Low content of	0.12			saturated zone		
	organic matter						
	Too acid	0.68					
	Droughty	0.75					
399B:							
Grayling--------	Poor		Good		\| Poor		
	Too sandy	0.00			Too sandy	0.00	
	Wind erosion	0.00					
	Droughty	0.00					
	Low content of	0.12					
	organic matter						
	Too acid	0.50					
399C:							
Grayling--------	Poor		Good		\| Poor		
	Too sandy	0.00			Too sandy	10.00	
	Wind erosion	0.00			Slope	10.96	
	Droughty	0.00				\|	
	Low content of	0.12				\|	
	organic matter						
	Too acid	0.50					
						\|	
399D:							
Grayling----------- \| Poor			Fair		Poor		
	Too sandy	0.00	Slope	10.32	Too sandy	10.00	
	Wind erosion	0.00			slope	10.00	
	Droughty	0.00					
	Low content of	0.12				\|	
	organic matter					\|	
	Too acid	0.50				\|	

Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
Loxley----------	Fair		Poor		Poor	
	Too acid	0.50	Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
					Too acid	0.12
407A:						
Seelyeville-------	Fair		Poor		Poor	
	Too acid	0.88	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
Markey----------	Good		Poor		Poor	
			Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
410A:						
Seelyeville-----	Fair		Poor		Poor	
	Too acid	0.88	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
Cathro	Fair		Poor		Poor	
	Too acid	0.99	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
419A:						
Seelyeville-----	Fair		Poor		Poor	
	Too acid	0.88	Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
Cathro----------	Fair				Poor	
	Too acid	0.99	Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
Markey----------	Good		Poor		Poor	
			Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
421A:						
Dora------------	Good		Poor		Poor	
			Depth to	10.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
439B:						
Graycalm--------	\| Poor		Good		Poor	
	\| Too sandy	0.00			Too sandy	0.00
	Wind erosion	0.00			Too acid	10.99
	Low content of	0.12				
	organic matter					
	Too acid	0.50				
	Droughty	0.75				
Menahga	\| Poor		Good		Poor	
	Wind erosion	0.00			Too sandy	10.00
	Too sandy	0.00			Too acid	10.88
	Low content of	0.12				
	organic matter					
	Too acid	0.50				
	Droughty	0.61				
439C:						
Graycalm--------	\| Poor		Good		Poor	
	\| Too sandy	0.00			Too sandy	10.00
	Wind erosion	0.00			Slope	10.96
	Low content of	0.12			Too acid	0.99
	organic matter					
	Too acid	0.50				
	Droughty	0.75				
Menahga---------	\| Poor		Good		Poor	
	\| Wind erosion	0.00			Too sandy	0.00
	Too sandy	0.00			Too acid	10.88
	Low content of	0.12			Slope	10.96
	organic matter					
	Too acid	0.50				
	Droughty	0.61				
439D:						
Graycalm-------	\| Poor		Fair		Poor	
	\| Too sandy	0.00	Slope	0.32	Too sandy	10.00
	Wind erosion	0.00			slope	10.00
	Low content of	0.12			Too acid	10.99
	organic matter					
	Too acid	0.50				
	Droughty	0.75				
Menahga	\| Poor		Fair		Poor	
	Wind erosion	0.00	Slope	0.32	Slope	10.00
	Too sandy	0.00			Too sandy	10.00
	Low content of	0.12			Too acid	10.88
	organic matter					
	Too acid	0.50				
	Droughty	0.61				
442C:						
Haugen	\|Fair		Fair		Poor	
	Low content of organic matter	0.12	Depth to saturated zone	0.53	Hard to reclaim (dense layer)	10.00
	Too acid	0.54			Rock fragments	10.00
					Depth to	10.53
					saturated zone	
					Hard to reclaim	10.92
					(rock fragments)	
					Too acid	10.98

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\|Value		Rating class and   limiting features	\|Value	Rating class and limiting features	Value
465A:							
Newson-----------	Poor		Poor		Poor		
	Too sandy	0.00	Depth to	10.00	Too sandy	0.00	
	Low content of	0.12	saturated zone		Depth to	0.00	
	organic matter				saturated zone		
	Too acid	0.50			Rock fragments	0.97	
	Droughty	\| 0.97					
Meehan------------- \| Poor			Poor		Poor		
	Too sandy	0.00	Depth to	10.00	Too sandy	0.00	
	Wind erosion	0.00	saturated zone		Depth to	0.00	
	Droughty	10.03			saturated zone		
	Low content of	\| 0.12			Too acid	0.88	
	organic matter						
	Too acid	10.50					
469E:							
Bigisland-------	Poor		Poor		Poor		
	Droughty	0.00	Slope	0.00	Hard to reclaim	0.00	
	Wind erosion	10.00	Cobble content	10.05	(rock fragments)		
	Too acid	10.84	Stone content	\| 0.92	Rock fragments	0.00	
	Cobble content	$0.84$			Hard to reclaim	0.00	
	Low content of	10.88			(dense layer)		
	organic matter				Slope	0.00	
	Stone content	10.92					
Milaca----------	Fair		Poor		Poor		
	Low content of	\| 0.12	Slope	10.00	Slope	0.00	
	organic matter		Depth to	10.53	Hard to reclaim	0.00	
	Too acid	0.84	saturated zone		(dense layer)		
	Water erosion	10.99			Depth to	0.53	
					saturated zone		
471B:		I					
Dairyland-------	Poor		Poor		Poor		
	Low content of	10.00	Cobble content	10.00	Hard to reclaim	0.00	
	organic matter		Depth to	\| 0.53	(dense layer)		
	Droughty	10.09	saturated zone		Rock fragments	0.00	
	Too sandy	$0.18$			Hard to reclaim	0.00	
	Cobble content	\| 0.64			(rock fragments)		
	Too acid	\| 0.84			Too sandy	0.18	
					Depth to	0.53	
		1			saturated zone		
		1					
Emmert----------	Poor		Good		Poor		
	Too sandy	10.00			Too sandy	0.00	
	Low content of	10.00			Hard to reclaim	0.00	
	organic matter				(rock fragments)		
	Droughty	10.00			Rock fragments	10.00	
	Too acid	10.99					

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\|Value		Rating class and   limiting features	\| Value	Rating class and limiting features	\|Value
615B:							
Cress-----------	Fair		Good		Fair		
	Low content of	0.12			Rock fragments	0.02	
	organic matter				Too sandy	0.22	
	Too sandy	0.22			Hard to reclaim	0.32	
	Droughty	0.40			(rock fragments)		
	Too acid	0.54			Too acid	0.98	
615C:							
Cress-----------	Fair		Good		Fair		
	Low content of	0.12			Rock fragments	0.02	
	organic matter				Too sandy	0.22	
	Too sandy	0.22			Hard to reclaim	0.32	
	Droughty	0.40			(rock fragments)		
	Too acid	0.54			Slope	0.96	
					Too acid	0.98	
615D:							
Cress-----------	Fair		Fair		Poor		
	Low content of	0.12	Slope	0.32	Slope	0.00	
	organic matter				Rock fragments	0.02	
	Too sandy	0.22			Too sandy	0.22	
	Droughty	0.40			Hard to reclaim	0.32	
	Too acid	0.54			(rock fragments)		
					Too acid	0.98	
620C:							
Lundeen---------	Fair		Poor		Fair		
	Too acid	0.50	Depth to bedrock	10.00	Depth to bedrock	0.54	
	Depth to bedrock	0.54	Low strength	10.78	Too acid	0.88	
	Low content of	0.88					
	organic matter						
Haustrup--------	Poor		Poor		Poor		
	Depth to bedrock	0.00	Depth to bedrock	0.00	Depth to bedrock	0.00	
	Droughty	0.05			Too acid	0.68	
	Too acid	0.50					
Rock outcrop-------\| ${ }^{\text {Not }}$ rated			Not rated		Not rated		
621A:							
Bjorkland-------	Poor		Poor		Poor		
	Too sandy	0.00	Depth to	10.00	Too sandy	0.00	
	Low content of	0.12	saturated zone		Depth to	0.00	
	organic matter		Low strength	0.00	saturated zone		
	Too acid	0.50	Shrink-swell	10.90	Too acid	0.98	
623A:							
Capitola--------	Fair		Poor		Poor		
	Low content of organic matter	0.88	Depth to saturated zone	10.00	Depth to saturated zone	10.00	
	Too acid	0.88			Hard to reclaim	10.03	
	Droughty	0.99			(dense layer)		
					Rock fragments	10.97	

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
896A:						
Wurtsmith-------	Poor		Fair		Poor	
	Too sandy	10.00	Depth to	0.53	Too sandy	0.00
	Wind erosion	10.00	saturated zone		Depth to	0.53
	Droughty	0.00			saturated zone	
	Low content of	\| 0.12			Too acid	0.76
	organic matter					
	Too acid	0.20				
980A:						
Soderbeck-------	Fair		Poor		Poor	
	Droughty	0.04	Depth to	0.00	Hard to reclaim	0.00
	Low content of	\| 0.12	saturated zone		(dense layer)	
	organic matter		Cobble content	0.01	Depth to	0.00
	Too acid	\| 0.92	Depth to bedrock	0.58	saturated zone	
	Cobble content	10.95			Rock fragments	0.00
1070C:						
Fremstadt-------	Fair		Good		Fair	
	Too sandy	10.47			Too sandy	0.47
	Too acid	10.68			Rock fragments	0.72
	Low content of	\| 0.92			slope	0.84
	organic matter					
Cress-----------	Fair		Good		Fair	
	Low content of	\| 0.12			Rock fragments	0.02
	organic matter				Too sandy	0.22
	Too sandy	0.22			Hard to reclaim	0.32
	Droughty	0.40			(rock fragments)	
	Too acid	0.54			Slope	0.96
					Too acid	0.98
1070D:						
Fremstadt-------	Fair		Fair		Poor	
	Too sandy	0.47	Slope	0.08	Slope	0.00
	Too acid	0.68			Too sandy	0.47
	Low content of	0.92			Rock fragments	0.72
	organic matter					
Cress-----------	Fair		Fair		Poor	
	Low content of	0.12	Slope	0.32	Slope	0.00
	organic matter				Rock fragments	0.02
	Too sandy	0.22			Too sandy	0.22
	Droughty	0.40			Hard to reclaim	0.32
	Too acid	\| 0.54			(rock fragments)	
					Too acid	0.98
1080B:						
Spoonerhill-------- \| Poor			\| Fair		\| Poor	
	Too sandy	0.00	Depth to	0.53	Hard to reclaim	0.00
	Low content of	10.12	saturated zone		(dense layer)	
	organic matter				Too sandy	0.00
	Too acid	0.68			Rock fragments	0.03
	Droughty	10.96			Depth to	0.53
					saturated zone	
					Hard to reclaim	0.98
					(rock fragments)	

Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
1080B:							
Spoonerhill, stony--\|	\| Poor		Fair		Poor		
	Too sandy	0.00	Depth to	0.53	Hard to reclaim	0.00	
	Low content of	0.12	saturated zone		(dense layer)		
	organic matter				Too sandy	0.00	
	Too acid	0.68			Depth to	0.53	
					saturated zone		
	Droughty	0.96			Hard to reclaim	0.98	
					(rock fragments)		
Cress-------------- \|	\| Fair		Good		Fair		
	Low content of	0.12			Rock fragments	0.02	
	organic matter				Too sandy	0.22	
	Too sandy	0.22			Hard to reclaim	0.32	
	Droughty	0.40			(rock fragments)		
	Too acid	0.54			Too acid	0.98	
2002:							
Udorthents, earthen							
dams-------------	Not rated		Not rated		Not rated		
2015:							
Pits-------------- -	Not rated		Not rated		Not rated		
2050:							
Landfill	Not rated		Not rated		Not rated		
3011A:							
Barronett---------- \|	\| Fair		Poor		Poor		
	Low content of organic matter	0.12	Depth to saturated zone	0.00	Depth to saturated zone	0.00	
	Too acid	0.68					
	Water erosion	0.90					
3082E:							
Braham	\| Poor		Fair		Poor		
	Wind erosion	0.00	Slope	0.50	Slope	0.00	
	Too sandy	0.04			Too sandy	0.04	
	Low content of	0.12					
	organic matter						
	Too acid	0.54					
Shawano------------ \|	\| Poor		Poor		Poor		
	Too sandy	0.00	Slope	0.00	Too sandy	10.00	
	Wind erosion	0.00			Slope	10.00	
	Low content of	0.12					
	organic matter						
	Droughty	0.51					
	Too acid	0.68					
3114A:							
Saprists----------- \|	\| Fair		Poor		Poor		
	\| Too acid	0.88	Depth to	10.00	Depth to	10.00	
			saturated zone		saturated zone		
					Content of	10.00	
		\|				organic matter	

Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil		
	Rating class and limiting features	\| Value		Rating class and limiting features	Value	Rating class and limiting features	Value
3114A:							
Aquents----------	Poor		Poor		Poor		
	Too sandy	0.00	Depth to	0.00	Too sandy	0.00	
	Low content of	10.12	saturated zone		Depth to	0.00	
	organic matter				saturated zone		
	Too acid	0.50			Rock fragments	0.97	
	Droughty	\| 0.97					
Aquepts----------	Fair		Poor		Poor		
	Low content of	0.12	Depth to	0.00	Depth to	0.00	
	organic matter		saturated zone		saturated zone		
	Too acid	0.68			Rock fragments	0.12	
					Hard to reclaim	0.68	
					(rock fragments)		
3125A:							
Meehan----------	Poor		Poor		Poor		
	Too sandy	10.00	Depth to	0.00	Too sandy	0.00	
	Wind erosion	10.00	saturated zone		Depth to	0.00	
	Droughty	10.06			saturated zone		
	Low content of	10.12			Too acid	0.88	
	organic matter						
	Too acid	0.50					
3126A:							
Wurtsmith--------	Poor		Fair		Poor		
	Too sandy	10.00	Depth to	0.53	Too sandy	0.00	
	Wind erosion	10.00	saturated zone		Depth to	0.53	
	Low content of	10.12			saturated zone		
	organic matter				Too acid	0.76	
	Droughty	0.15			Rock fragments	0.97	
	Too acid	0.50					
3312 B :							
Glendenning, very stony							
	Fair		Poor		Poor		
	Low content of organic matter	0.12	Depth to saturated zone	0.00	Hard to reclaim (dense layer)	0.00	
	Too acid	0.68			Depth to	0.00	
					saturated zone		
					Rock fragments	0.12	
					Hard to reclaim	0.98	
					(rock fragments)		
Glendenning------	Fair		Poor		Poor		
	Low content of organic matter	0.12	Depth to saturated zone	0.00	Hard to reclaim (dense layer)	0.00	
	Too acid	0.68			Depth to	0.00	
					saturated zone		
					Rock fragments	0.12	
					Hard to reclaim	0.98	
					(rock fragments)		
3336A:							
Fenander	Fair		Poor		Poor		
	Low content of	0.12	Depth to	0.00	Depth to	0.00	
	organic matter		saturated zone		saturated zone		
	Too acid	0.99					

Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	Value	Rating class and   limiting features	\|Value	Rating class and limiting features	Value
3403A:						
Loxley----------	Fair		Poor		Poor	
	Too acid	0.50	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
					Too acid	0.12
Beseman------------ \| Fair			Poor		Poor	
Dawson----------	Too acid	0.61	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
					Too acid	0.12
	Poor		Poor		Poor	
	Too acid	0.00	Depth to	0.00	Depth to	0.00
			saturated zone		saturated zone	
					Content of	0.00
					organic matter	
					Too acid	0.12
3429B:						
Lara-------------	Poor		Fair		Poor	
	Too sandy	0.00	Depth to	0.14	Too sandy	0.00
	Wind erosion	0.00	saturated zone		Depth to	\| 0.14
	Low content of	0.12	Shrink-swell	0.98	saturated zone	
	organic matter					
	Too acid	0.84				
3429C:						
Lara--------------	Poor		Fair		Poor	
	Too sandy	0.00	Depth to	0.14	Too sandy	0.00
	Wind erosion	0.00	saturated zone		Depth to	0.14
	Low content of	0.12	Shrink-swell	0.98	saturated zone	
	organic matter				Slope	0.96
	Too acid	0.84				
3446A:						
Newson-----------	Poor		Poor		Poor	
	Too sandy	0.00	Depth to	0.00	Too sandy	0.00
	Low content of	0.12	saturated zone		Depth to	0.00
	organic matter				saturated zone	
	Too acid	0.50			Rock fragments	\| 0.97
	Droughty	0.97				
3448B:						
Grettum---------	Poor		Good		Poor	
	Wind erosion	0.00			Too sandy	10.00
	Too sandy	$0.00$			Too acid	10.99
	Low content of	0.12				
	organic matter					
	Too acid	0.61				
	Droughty	0.98				

Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued


Table 19b.--Construction Materials--Continued

Map symbol and soil name	Potential as source of reclamation material		Potential as source of roadfill		Potential as source of topsoil	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
3636C:						
Plainbo	Poor		\| Poor		Poor	
	Too sandy	0.00	Depth to bedrock	0.00	Too sandy	0.00
	Wind erosion	0.00			Rock fragments	0.24
	Droughty	0.00			Depth to bedrock	0.54
	Low content of	0.12			Too acid	0.76
	organic matter				Slope	0.96
	Too acid	0.50				
	Depth to bedrock	0.54				
M-W :						
Miscellaneous water	Not rated		Not rated		Not rated	
W :						
Water---------------	Not rated		Not rated		Not rated	

Table 20.--Water Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)


Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\| Value
28B:								
Rosholt	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	No ground water	1.00		
28C:								
Haugen, very stony--	Somewhat limited		\|Very limited		\|Very limited			
	Seepage	10.72	Depth to	10.99	No ground water	1.00		
			saturated zone					
			Seepage	10.04				
Haugen-------------	Somewhat limited		\|Very limited		\|Very limited			
	Seepage	10.72	Depth to	10.99	No ground water	1.00		
			saturated zone					
			Seepage	10.04				
Rosholt, very stony	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	No ground water	1.00		
Rosholt	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	No ground water	1.00		
38A:								
Rosholt	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	No ground water	1.00		
38B:								
Rosholt	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00		
38C:								
Rosholt								
	Seepage	11.00	Seepage	10.50	No ground water	1.00		
38D:								
Rosholt								
	Seepage	11.00	\| Seepage	10.50	No ground water	1.00		
	slope	10.04						
42D:								
Amery	Somewhat limited		\|Somewhat limited		\|Very limited			
	Seepage	10.72	Seepage	10.03	No ground water	1.00		
	slope	10.04						
43B :								
Antigo	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00		
43C:								
Antigo	\|Very limited		\|Somewhat limited		\|Very limited			
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00		
	slope	10.01						
63A:								
Crystal Lake-------	Somewhat limited		\|Very limited		\|Very limited			
	Seepage	10.72	Piping	11.00	Cutbanks cave	11.00		
			Depth to	10.99	Slow refill	10.96		
		\|		saturated zone		Depth to water	10.24	

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
63B:						
Crystal La	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Piping	11.00	Cutbanks cave	1.00
			Depth to	10.99	Slow refill	0.96
			saturated zone		Depth to water	0.24
63C:						
Crystal Lak	Somewhat limited		\|Very limited		\| Very limited	
	Seepage	10.72	Piping	11.00	Cutbanks cave	11.00
			Depth to	10.99	Slow refill	10.96
			saturated zone		Depth to water	0.54
64A:						
Totagatic			\|Very limited			
	Seepage	11.00	Depth to	1.00	Cutbanks cave	1.00
			saturated zone			
			Ponding	11.00		
			Seepage	10.81		
Winterfield-	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00		11.00	Cutbanks cave	1.00
			saturated zone			
			Seepage	10.64		
69C:						
Keweenaw	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.11	No ground water	1.00
Sayner	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.72	No ground water	1.00
Vilas			Somewhat limited			
	Seepage	11.00	Seepage	10.86	No ground water	11.00
69E:						
Keweenaw	Very limited		\| Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.11	No ground water	1.00
	slope	10.50				
Sayner	Very limited		\| Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.72	No ground water	11.00
	slope	10.50				
Vilas	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.86	No ground water	11.00
	slope	10.50				
82B:						
Cutaway	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	10.99	Cutbanks cave	11.00
			saturated zone		Slow refill	10.28
					Depth to water	10.01
Branstad	Somewhat limited		\|Very limited		\|Somewhat limited	
	Seepage	10.72	Depth to	10.99	Slow refill	10.28
			saturated zone		Cutbanks cave	10.10
			Piping	10.88	Depth to water	10.01

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
82C:						
Cutaway	\|Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	10.99	Cutbanks cave	1.00
			saturated zone		Slow refill	\| 0.28
					Depth to water	0.01
Branstad-	Somewhat limited		Very limited		\|Somewhat limited	
	Seepage	10.72	Depth to	10.99	Slow refill	0.28
			saturated zone		Cutbanks cave	0.10
			Piping	10.88	Depth to water	0.01
83A:						
Smestad	\|Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	11.00	Cutbanks cave	1.00
			saturated zone			
			Hard to pack	10.36		
			Seepage	10.06		
85B:						
Taylor---------	Not limited		\|Very limited		\|Very limited	
			Depth to	11.00	No ground water	1.00
			saturated zone			
			Hard to pack	10.99		
85C:						
Taylor----------	Not limited		\|Very limited		\|Very limited	
			Depth to	11.00	No ground water	1.00
			saturated zone			
			Hard to pack	10.99		
86A:						
Indus	Not limited		Very limited		Very limited	
			Depth to	11.00	No ground water	1.00
			saturated zone			
			Hard to pack	\| 1.00		
			Ponding	\| 1.00		
Alango----------	Not limited		\|Very limited		\|Very limited	
			Depth to	11.00	No ground water	1.00
			saturated zone			
			Hard to pack	11.00		
89A:						
Wildwood--------	Not limited		Very limited		\| Somewhat limited	
			Depth to	11.00	Cutbanks cave	0.10
			saturated zone			\|
			Ponding	\| 1.00		
			Hard to pack	10.99		
96B:						
Karlsborg-	Very limited		Very limited		Very limited	
	\| Seepage	11.00	Depth to	11.00	No ground water	1.00
			saturated zone			\|
			Seepage	10.72		\|
96C:						
Karlsborg			Very limited		\|Very limited	
	Seepage	11.00	Depth to saturated zone	\| 1.00	No ground water	1.00
	\|		Seepage	10.72		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
96D:							
Karlsborg	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	11.00	No ground water	1.00	
	Slope	10.04	saturated zone				
			Seepage	10.72			
100B:							
Menahga	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.64	No ground water	1.00	
100C:							
Menahga	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.64	No ground water	1.00	
100D:							
Menahga	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.64	No ground water	1.00	
	slope	10.15					
120B:							
Kost	Very limited		Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.82	No ground water	1.00	
127D:							
Amery	Somewhat limited		Somewhat limited				
	Seepage	10.72	Seepage	10.03	No ground water	1.00	
	slope	10.04					
Rosholt	Very limited		Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.50	No ground water	1.00	
	slope	10.04					
127E:							
Amery	Somewhat limited		\|Somewhat limited		\|Very limited		
	Seepage	$10.72$	Seepage	10.03	No ground water	11.00	
	Slope	10.64					
Rosholt	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	10.50	No ground water	1.00	
	Slope	\| 0.64					
151A:							
Bluffton	Somewhat limited		\|Very limited		\|Somewhat limited		
	Seepage	10.72	Depth to	1.00	Slow refill	10.28	
			saturated zone		Cutbanks cave	10.10	
			Ponding	11.00			
			Piping	10.90			
152A:							
Alstad	Somewhat limited		Very limited		\|Somewhat limited		
	Seepage	10.72	Depth to	1.00	Slow refill	10.28	
			saturated zone		Cutbanks cave	10.10	
		\|	Piping	10.85			
			Seepage	10.01		\|	
154E:							
Cushing-	Somewhat limited		\|Somewhat limited		\|Very limited		
	Seepage	10.72	Piping	10.78	No ground water	11.00	
	slope	10.36	Seepage	10.01			

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes levees	and	Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	$\mid$ Value	Rating class and limiting features	\| Value
	156B:					
Magnor, very stony--\|	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.72	Depth to	\| 1.00	No ground water	1.00
			saturated zone			
			Piping	\| 1.00		
			Thin layer	10.37		
			Seepage	$\mid 0.04$		
Magnor------------- \|	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.72	Depth to	\| 1.00	No ground water	1.00
			saturated zone			
			Piping	11.00		
			Thin layer	10.37		
			Seepage	0.04		
157B:						
Freeon, very stony--	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.02	\| Depth to	\| 1.00	No ground water	1.00
			saturated zone			
			Piping	\| 1.00		
			Thin layer	\| 0.37		
			Seepage	\| 0.04		
Freeon------------- \|	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.02	Depth to	\| 1.00	No ground water	1.00
			saturated zone			
			Piping	\| 1.00		
			Thin layer	0.37		
			Seepage	\| 0.04		
157C:						
Freeon, very stony-	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.02	Depth to	11.00	No ground water	1.00
			saturated zone			
			Piping	\| 1.00		
			Thin layer	\| 0.37		
			Seepage	0.04		
Freeon------------- \|	Somewhat limited		\| Very limited		Very limited	
	Seepage	0.02	Depth to	\| 1.00	No ground water	1.00
			saturated zone			
			Piping	\| 1.00		
			Thin layer	\| 0.37		
			Seepage	\| 0.04		
160A:						
Oesterle-----------	Very limited		\| Very limited		Very limited	
	Seepage	1.00	Depth to	\| 1.00	Cutbanks cave	\| 1.00
			saturated zone			
			Seepage	0.50		
165B:						
Elderon------------	Very limited		\|Somewhat limited		Very limited	
	Seepage	1.00	Seepage	\| 0.52	No ground water	\| 1.00
			Content of large	\| 0.14		
			\| stones			

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
185B :							
Tradelake	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	No ground water	1.00	
			saturated zone				
			Seepage	10.72			
Taylor	Not limited		\|Very limited		\|Very limited		
			Depth to	11.00	No ground water	1.00	
			saturated zone				
			Hard to pack	10.99			
185C:							
Tradelake	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	No ground water	1.00	
			saturated zone				
			Seepage	10.72			
Taylor	Not limited		\|Very limited		\|Very limited		
			Depth to	1.00	No ground water	1.00	
			saturated zone				
			Hard to pack	10.97			
185D:							
Tradelake	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	10.99	No ground water	11.00	
			saturated zone				
	Slope	10.09	Seepage	10.72			
Taylor			\|Very limited		\|Very limited		
	Slope	10.09	Depth to	1.00	No ground water	1.00	
			saturated zone				
			Hard to pack	10.97			
185E:							
Tradelake	Very limited		\|Very limited		\| Very limited		
	Seepage	11.00	Depth to	10.99	\| No ground water	11.00	
			saturated zone				
	Slope	10.50	Seepage	0.72			
Taylor			\|Very limited				
	slope	10.50	Depth to saturated zone	11.00	No ground water	11.00	
			Hard to pack	10.97			
189A:							
Siren	Somewhat limited		\|Very limited		\|Somewhat limited		
	Seepage	10.72	Depth to	1.00	Slow refill	$10.28$	
			saturated zone		Cutbanks cave	$10.10$	
			Hard to pack	10.78			
						\|	
193A:							
Minocqua	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	11.00	Cutbanks cave	11.00	
			saturated zone				
			Ponding	11.00			
			Seepage	10.50		I	

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
337A:						
Plover	Somewhat limited		\|Very limited		\| Very limited	
	Seepage	10.72	Depth to	11.00	Cutbanks cave	1.00
			saturated zone		Slow refill	\| 0.28
			Piping	11.00		
368B:						
Mahtomedi	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	No ground water	1.00
Cress	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00
368C:						
Mahtomedi						
	Seepage	11.00	Seepage	10.64	No ground water	1.00
Cress			Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00
368D:						
Mahtomedi					\|Very limited	
	Seepage	11.00	Seepage	10.64	No ground water	1.00
	slope	10.12				
Cress	Very limited					
	Seepage	1.00	Seepage	10.50	No ground water	1.00
	Slope	10.12				
368E:						
Mahtomedi	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
	Slope	10.50				
Cress	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	\| 1.00	Seepage	10.50	\| No ground water	1.00
	Slope	10.50				
380B:						
Cress		\|	\|Somewhat limited		\| Very limited	
	Seepage	11.00	Seepage	10.50	\| No ground water	1.00
Rosholt						
	Seepage	11.00	Seepage	10.50	No ground water	11.00
380C:						
Cress						
	Seepage	11.00	Seepage	10.50	No ground water	1.00
Rosholt						
	Seepage	11.00	Seepage	10.50	No ground water	1.00
380D:						
Cress						
	Seepage	1.00	Seepage	10.50	No ground water	1.00
	Slope	10.15				
		,				
Rosholt	Very limited					
	Seepage	1.00	Seepage	10.50	No ground water	1.00
	slope	\| 0.15				

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and	\|Value		Rating class and	\|Value	Rating class and	\| Value
	limiting features		limiting features		limiting features		
383B:							
Mahtomedi	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	0.64	No ground water	11.00	
383C:							
Mahtomedi	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	0.64	No ground water	11.00	
383D							
Mahtomedi	Very limited		\| Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	0.64	No ground water	11.00	
	Slope	0.15					
392C:							
Rockmarsh	Very limited		\|Very limited		\| Very limited		
	Seepage	1.00	Depth to	1.00	No ground water	11.00	
	Slope	0.01	saturated zone				
			Content of large	0.88			
			stones				
			Seepage	0.12			
			Thin layer	0.11			
Dairyland	Very limited		\|Very limited		$\mid$ Very limited		
	Seepage	$1.00$	Depth to	0.99	No ground water	11.00	
	Slope	$\mid 0.01$	saturated zone				
			Content of large	0.60			
			stones				
			Seepage	0.32			
			Thin layer	0.11			
Makwa			\|Very limited				
	Seepage	1.00	\| Depth to	1.00	\| Cutbanks cave	11.00	
			saturated zone		Content of large	10.11	
			Seepage	0.65	stones		
			Content of large	0.11			
			stones				
396B:							
Friendship	\|Very limited		\|Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	0.86	Cutbanks cave	\| 1.00	
					Depth to water	10.96	
Wurtsmith	\|Very limited		\|Very limited		\|Very limited		
	Seepage	1.00	Depth to	0.99	Cutbanks cave	\| 1.00	
			saturated zone		Depth to water	10.01	
			Seepage	0.82			
Grayling	\|Very limited		\|Somewhat limited		\|Very limited		
	Seepage	1.00	Seepage	0.64	\| No ground water	11.00	
397A:							
Perchlake	\|Very limited		\|Very limited		\| Very limited		
	Seepage	1.00	```Depth to saturated zone```	1.00	Cutbanks cave	11.00	
			Seepage	0.64			
3998:							
Grayling	\|Very limited		\|Somewhat limited		\|Very limited		
	\| Seepage	1.00	Seepage	0.64	\| No ground water	11.00	

Table 20.--Water Management--Continued


Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and	\|Value		Rating class and	\| Value	Rating class and	\| Value
	limiting features		limiting features		limiting features		
419A:							
Cathro	Very limited		\|Very limited		\|Somewhat limited		
	Seepage	11.00	Depth to	11.00	Cutbanks cave	0.10	
			saturated zone				
			Ponding	11.00			
			Seepage	10.03			
Markey	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	11.00	Cutbanks cave	11.00	
			saturated zone				
	\|		Ponding	1.00			
			Seepage	10.64			
421A:							
Dora	\|Very limited		\|Very limited		\|Very limited		
	\| Seepage	11.00	Content of	1.00	No ground water	11.00	
			organic matter				
	\|		Depth to	1.00			
			saturated zone				
	\|		Ponding	11.00			
	\|						
Markey-	\|Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	Cutbanks cave	11.00	
			saturated zone				
	\|		Ponding	11.00			
			Seepage	\| 0.64			
Seelyeville-			\|Very limited		\|Somewhat limited		
	\| Seepage	11.00	Content of	11.00	Cutbanks cave	10.10	
			organic matter				
			Depth to	1.00			
	\|		saturated zone				
	1		Piping	11.00			
	\|		Ponding	\| 1.00			
422A:							
Seelyeville	\|Very limited		\|Very limited		\| Somewhat limited		
	\| Seepage	11.00	\| Content of	\| 1.00	Cutbanks cave	10.10	
	\|		Depth to	11.00			
	\|		saturated zone				
	\|		Piping	11.00			
	\|		Ponding	11.00			
Cathro	$\mid$ Very limited		\|Very limited		\| Somewhat limited		
	\| Seepage	11.00	Depth to	11.00	Cutbanks cave	10.10	
			saturated zone				
	\|		Ponding	11.00			
	\|		Seepage	10.03			
	\|						
Rondeau-	\|Very limited		\|Very limited		\|Somewhat limited		
	\| Seepage	11.00	Content of	11.00	Cutbanks cave	10.10	
			organic matter	$!$			
	\|		Depth to	11.00		\|	
			saturated zone				
	,		Ponding	11.00			
		\|					
426B:							
Emmert	\|Very limited		\|Somewhat limited		\| Very limited		
	Seepage	11.00	Seepage	10.86	\| No ground water	11.00	
					\|		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and   limiting features	\| Value
426B:						
Mahtomedi-------	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	No ground water	1.00
Menahga	Very limited		Somewhat limited		$\mid$ Very limited	
	Seepage	11.00	Seepage	\| 0.64	No ground water	1.00
426C:						
Emmert	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.86	No ground water	1.00
Mahtomedi-						
	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	\| 0.64	\| No ground water	1.00
Menahga	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
426D:						
Emmert	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.86	\| No ground water	1.00
	Slope	10.15				
Mahtomedi						
	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
	slope	10.15				
Menahga						
	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
	Slope	10.15				
430A:						
Freya	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to saturated zone	\| 1.00	\| No ground water	1.00
			Seepage	10.20		
439B:						
Graycalm	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
Menahga	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
439C:						
Graycalm	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
Menahga	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00
439D:						
Graycalm	Very limited		Somewhat limited		\|Very limited	
	Seepage	\| 1.00	Seepage	10.64	No ground water	1.00
	slope	\| 0.15				
Menahga	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.64	No ground water	1.00
	Slope	\| 0.15				

Table 20.--Water Management--Continued


Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	Value\|	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
Newson	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	11.00
			saturated zone			
			Ponding	1.00		
			Seepage	0.82		,
Meehan	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	11.00
			saturated zone			
			Seepage	0.82		
469E:						
Bigisland	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	1.00	Content of large	0.61	No ground water	11.00
	slope	0.55	stones			
			Seepage	0.25		
			Thin layer	0.11		
Milaca	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	0.72	Depth to	0.99	No ground water	11.00
	Slope	0.55	saturated zone			
			Thin layer	0.11		
			Seepage	0.03		
471B:						
Dairyland	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	0.99	No ground water	11.00
			saturated zone			
			Content of large	0.60		
			stones			
			Seepage	0.32		\|
			Thin layer	\| 0.11		
Emmert	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	1.00	Seepage	0.86	\| No ground water	11.00
471C:						
Dairyland	Very limited		\|Very limited		\|Very limited	
	Seepage	$\text { \| } 1.00$		0.99	\| No ground water	11.00
	Slope	0.01	saturated zone			
			Content of large	0.60		
			stones			\|
			Seepage	0.32		
			Thin layer	0.11		\|
						\|
Emmert			\|Somewhat limited			
	Seepage	1.00	\| Seepage	0.86	No ground water	11.00
	slope	0.01				
						\|
472A:						
Rockmarsh	Very limited		\|Very limited		\|Very limited	\|
	Seepage	1.00	Depth to saturated zone	1.00	\| No ground water	11.00
			Content of large	0.88		\|
			stones			\|
			Seepage	0.12		\|
			Thin layer	0.11		\|
						\|

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
472A:						
Clemens	Very limited		$\mid$ Very limited		\| Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	1.00
			saturated zone		Content of large	0.23
			Seepage	0.25	stones	
			Content of large	0.23		
			stones			
473A:						
Dairyland	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	0.99	No ground water	1.00
			Content of large	0.60		
			stones			
			Seepage	0.32		
			Thin layer	0.11		
Skog-	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	1.00	Seepage	0.86	Cutbanks cave	11.00
			Depth to	0.86	Depth to water	0.06
			saturated zone			
484A:						
Greenwood	\|Very limited		\|Very limited		\| Somewhat limited	
	Seepage	1.00		1.00	Cutbanks cave	0.10
			organic matter			
			Depth to	1.00		
			saturated zone			
			Piping	1.00		
			Ponding	1.00		
Beseman-			\|Very limited			
	Seepage	1.00	Content of organic matter	1.00	\| Cutbanks cave	10.10
			Depth to	1.00		\|
			saturated zone			
			Ponding	1.00		
485C:						
Lupton	\|Very limited		\|Very limited		\|Somewhat limited	
	Seepage	1.00	Content of organic matter	1.00	Cutbanks cave	0.10
			Depth to	1.00		
			saturated zone			
			Piping	1.00		
Tawas	\|Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	11.00
			saturated zone			
			Ponding	1.00		
			Seepage	0.20		
495B:						
Karlsborg-	\|Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	\| Depth to saturated zone	1.00	No ground water	11.00
			Seepage	0.72		
Grettum	\|Very limited		\|Somewhat limited		\|Very limited	
	\| Seepage	1.00	Seepage	0.58	\| Cutbanks cave	11.00
					Depth to water	10.96

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
	Rating class and limiting features	\|Value		Rating class and   \| limiting features	\|Value		Rating class and limiting features	\|Value   \|
495B:								
Perida	Very limited		\|Somewhat limited		\|Very limited			
	Seepage	1.00	Seepage	10.72	No ground water	1.00		
			Depth to	10.09				
			saturated zone			\|		
						\|		
495C:								
Karlsborg	Very limited		\|Very limited		\|Very limited			
	Seepage	1.00	Depth to	11.00	No ground water	1.00		
			saturated zone					
			Seepage	10.72				
Grettum-	Very limited		\|Somewhat limited		\|Very limited			
	Seepage	1.00	Seepage	10.58	Cutbanks cave	11.00		
					\| Depth to water	$10.96$		
Perida	Very limited		\|Somewhat limited		\|Very limited			
	Seepage	1.00	\| Seepage	$10.72$	No ground water	1.00		
			\| Depth to	$10.09$				
			saturated zone					
495D:								
Karlsborg	Very limited		\|Very limited		\|Very limited			
	Seepage	1.00	Depth to	11.00	\| No ground water	1.00		
	slope	0.15	saturated zone					
			\| Seepage	10.72				
Grettum-			\|Somewhat limited		\|Very limited			
	Seepage	1.00	Seepage	10.58	Cutbanks cave	11.00		
	Slope	10.15			Depth to water	10.96		
Perida	Very limited		\|Somewhat limited					
	Seepage	1.00	\| Seepage	10.72	No ground water	11.00		
	slope	0.15	Depth to	10.09				
			saturated zone					
496B:								
Karlsborg	Very limited		\|Very limited		\|Very limited			
	Seepage	1.00		11.00	\| No ground water	1.00		
			saturated zone					
			Seepage	10.72		\|		
						\|		
496C:								
Karlsborg	Very limited		\|Very limited		\|Very limited			
	Seepage	1.00	Depth to	1.00	No ground water	11.00		
			saturated zone					
			\| Seepage	10.72		\|		
						\|		
496D: \|								
Karlsborg	Very limited		\|Very limited					
	Seepage	1.00	\| Depth to	1.00	No ground water	11.00		
	slope	10.15	saturated zone			\|		
			Seepage	10.72		\|		
						\|		
497A :								
Meenon	Very limited		\|Very limited		\|Very limited	\|		
	Seepage	1.00	\| Depth to   \| saturated zone	1.00	No ground water	11.00		
		1	Seepage	10.72		\|		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value	Rating class and   limiting features	\|Value
521A:							
Dody	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	11.00	No ground water	1.00	
			saturated zone				
			Ponding	11.00			
			Seepage	0.13			
523A:							
Nokasippi	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	11.00	Cutbanks cave	1.00	
			saturated zone				
			Ponding	11.00			
			Thin layer	10.26			
			Seepage	\| 0.14			
529B:							
Perida	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.72	\| No ground water	1.00	
			Depth to	$10.09$			
			saturated zone				
531A:							
Stengel	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	\| No ground water	1.00	
			saturated zone				
			Thin layer	11.00			
			Seepage	0.82			
542B:							
Haugen, very stony--	Somewhat limited		\|Very limited		\|Very limited		
	Seepage	10.72	Depth to	0.99	No ground water	1.00	
			saturated zone				
			Seepage	10.04			
Haugen-------------- \|			\|Very limited				
	Seepage	10.72	Depth to	10.99	\| No ground water	1.00	
			saturated zone				
			Seepage	0.04			
542C:							
Haugen, very stony--\|	Somewhat limited		\|Very limited		$\mid$ Very limited		
	Seepage	10.72	Depth to	10.99	\| No ground water	1.00	
			saturated zone				
			Seepage	10.04			
Haugen							
	Seepage	10.72	Depth to saturated zone	10.99	No ground water	1.00	
			Seepage	10.04			
					\|		
544F:							
Menahga	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.64	\| No ground water	1.00	
	slope	10.82					
Mahtomedi----------\|	\|Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.64	No ground water	1.00	
	Slope	10.82		\|		\|	

Table 20.--Water Management--Continued


Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and limiting features	\|Value	Rating class and   limiting features	\| Value		Rating class and   limiting features	\|Value
615D:							
Cress	Very limited		\|Somewhat limited		\|Very limited		
	Seepage	\| 1.00	Seepage	10.50	No ground water	1.00	
	Slope	10.15					
620C:							
Lundeen	Somewhat limited		\|Very limited		\|Very limited		
	Depth to bedrock	10.86	Piping	11.00	No ground water	1.00	
	Seepage	10.72	Thin layer	10.86			
Haustrup-	Very limited		\|Very limited		\|Very limited		
	Depth to bedrock	\| 1.00	Piping	11.00	No ground water	1.00	
			Thin layer	\| 1.00			
Rock outcrop	Not rated		Not rated		Not rated		
						\|	
621A:						\|	
Bjorkland	Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	\| Cutbanks cave	1.00	
			saturated zone			\|	
			Ponding	1.00			
			Seepage	10.30			
623A:							
Capitola	Somewhat limited		\|Very limited		\|Very limited		
	Seepage	10.72	Depth to	1.00	No ground water	1.00	
			saturated zone				
			Piping	1.00			
			Ponding	1.00			
			Thin layer	10.86		\|	
			Seepage	10.04			
624A:							
Ossmer			\|Very limited		\| Very limited		
	Seepage	11.00	Depth to	1.00	Cutbanks cave	1.00	
			saturated zone				
			Seepage	10.50		\|	
631A:							
Giese	Somewhat limited		\|Very limited		\|Very limited		
	Seepage	10.72	Depth to	11.00	No ground water	1.00	
			saturated zone				
			Ponding	11.00			
			Seepage	10.02		\|	
						\|	
632A:							
Aftad	Somewhat limited		\|Very limited		\|Very limited		
	Seepage	10.72	Piping	1.00	\| Cutbanks cave	\| 1.00	
			Depth to	10.99	Slow refill	$10.28$	
			saturated zone		Depth to water	10.24	
632B:							
Aftad	Somewhat limited		\|Very limited		\|Very limited		
	Seepage	10.72	Piping	1.00	\| Cutbanks cave	11.00	
			Depth to	10.99	\| Slow refill	10.28	
			saturated zone		Depth to water	10.24	
						\|	

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and	\| Value	Rating class and	\| Value	Rating class and	\|Value
	limiting features		limiting features		limiting features	
632C:						
Aftad	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Piping	11.00	Cutbanks cave	1.00
			Depth to	10.99	Slow refill	0.96
			saturated zone		Depth to water	0.54
634C:						
Drylanding	Very limited		\|Very limited		\|Very limited	
	Depth to bedrock	11.00	Thin layer	11.00	No ground water	1.00
			Content of large	\| 0.39		
			stones			
Beartree	Very limited		\|Very limited		\|Very limited	
	Depth to bedrock	\| 1.00	Depth to saturated zone	11.00	Depth to hard bedrock	11.00
			Thin layer	11.00	Content of large	1.00
			Content of large	\| 1.00	stones	
			stones		Cutbanks cave	0.10
			Ponding	11.00		
			Piping	10.98		
Rock outcrop	Not rated		Not rated		\| Not rated	
635C:						
Drylanding	Very limited		\|Very limited		\|Very limited	
	Depth to bedrock	\| 1.00	Thin layer	11.00	No ground water	1.00
			Content of large	10.39		
			stones			
Beartree	Very limited		\|Very limited		\|Very limited	
	Depth to bedrock	11.00	Depth to saturated zone	11.00	Depth to hard bedrock	1.00
			Thin layer	11.00	Content of large	1.00
			Content of large	\| 1.00	stones	
			stones		Cutbanks cave	0.10
			Ponding	11.00		
			Piping	10.98		
Rock outcrop-	Not rated		Not rated		Not rated	
	, rated					
648B:						
Sconsin			\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	11.00	No ground water	1.00
			saturated zone			
			Piping	11.00		
			Thin layer	10.88		
			Seepage	10.01		
669D:						
Fremstadt, stony-	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.07	\| No ground water	11.00
	Slope	10.18				
Pomroy	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	10.99	No ground water	11.00
	Slope	10.18	saturated zone			
			Thin layer	10.11		
			Seepage	10.08		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\| Value	\| Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
671B:						
Spoonerhill, stony--\|	\|Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	0.99	No ground water	11.00
			saturated zone			
			Seepage	0.11		
Spoonerhill-------- \|	\|Very limited		\|Very limited		\| Very limited	
	Seepage	1.00	Depth to	0.99	No ground water	\| 1.00
			saturated zone			
			Seepage	0.11		
706A:						
Winterfield--------	\|Very limited		\|Very limited		$\mid$ Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	11.00
			saturated zone			
			Seepage	0.64		
Totagatic---------	\|Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	1.00	Cutbanks cave	11.00
			saturated zone			
			Ponding	1.00		
			Seepage	0.81		
715A:						
Mora	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	0.72	Depth to	1.00	No ground water	11.00
			saturated zone			
			Piping	1.00		
			Thin layer	10.11		
			Seepage	10.03		
717B:						
Milaca------------	\|Somewhat limited		$\mid$ Very limited		\|Very limited	
	Seepage	0.72	\| Piping		No ground water	11.00
			\| Depth to	10.99		
			saturated zone			
			Thin layer	0.11		
			Seepage	10.03		
717C:						
Milaca------------	\|Somewhat limited		\|Very limited		\|Very limited	
	Seepage	0.72	\| Piping	1.00	\| No ground water	11.00
			\| Depth to	10.99		
			saturated zone			
			Thin layer	10.11		
			Seepage	10.03		
720F:						
Haustrup----------- \|						
	\| Depth to bedrock	1.00	\| Piping	1.00	\| No ground water	\| 1.00
	Slope	0.08	Thin layer	11.00		
Lundeen------------ \|					\|Very limited	
	Depth to bedrock	0.86	\| Piping	1.00	\| No ground water	11.00
	Seepage	0.72	Thin layer	10.86		
	Slope	0.08				
Rock outcrop	Not rated		\| Not rated		\| Not rated	

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
726B:						
Sissabagama	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Depth to	10.86	Cutbanks cave	1.00
			saturated zone		Depth to water	0.24
			Seepage	10.36		
742B:						
Milaca	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	10.99	No ground water	1.00
			saturated zone			
			Thin layer	10.11		
			Seepage	10.03		
742C:						
Milaca	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	10.99	\| No ground water	1.00
			saturated zone			
			Thin layer	10.11		
			Seepage	10.03		
742D:						
Milaca	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	0.99	No ground water	1.00
	Slope	10.04	saturated zone			
			Thin layer	\| 0.11		
			Seepage	10.03		
755A :						
Moppet	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Depth to	10.86	Cutbanks cave	1.00
			saturated zone		Depth to water	0.06
			Seepage	10.42		
Fordum	Very limited		Very limited		\|Very limited	
	Seepage	1.00	Depth to	11.00	Cutbanks cave	1.00
			saturated zone			
			Ponding	11.00		
			Seepage	10.53		
771A:						
Lenroot	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	10.99	Cutbanks cave	1.00
			saturated zone		Depth to water	0.01
			Seepage	10.54		
812B:						
Mora	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	11.00	\| No ground water	1.00
			saturated zone			
			Thin layer	10.11		
			Seepage	10.03		
825A:						
Meehan	Very limited		\|Very limited		\|Very limited	
	Seepage	1.00	Depth to	11.00	Cutbanks cave	1.00
			saturated zone			
			Seepage	10.82		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and $\mid$ limiting features	\|Value
896A:						
Wurtsmith	Very limited		$\mid$ Very limited		\| Very limited	
	Seepage	11.00	Depth to	0.99	Cutbanks cave	1.00
			saturated zone		Depth to water	0.01
			Seepage	0.82		
980A:						
Soderbeck---------- \|	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	1.00	No ground water	1.00
	Depth to bedrock	10.10	saturated zone			
			Seepage	0.58		
			Content of large	0.45		
			stones			
			Thin layer	0.11		
1070C:						
Fremstadt	Very limited		\|Somewhat limited		$\mid$ Very limited	
	Seepage	11.00	Seepage	0.07	\| No ground water	1.00
Cress	Very limited		\| Somewhat limited		$\mid$ Very limited	
	Seepage	11.00	Seepage	0.50	No ground water	1.00
1070D:						
Fremstadt	Very limited		\| Somewhat limited		\| Very limited	
	Seepage	11.00	Seepage	0.07	No ground water	1.00
	Slope	10.21				
Cress			\| Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	0.50	No ground water	1.00
	slope	10.15				
1080B:						
Spoonerhill-------- \|	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to saturated zone	0.99	No ground water	1.00
			Seepage	0.10		
Spoonerhill, stony--\|	Very limited		$\mid$ Very limited		\|Very limited	
	Seepage	11.00	Depth to saturated zone	0.99	\| No ground water	1.00
			Seepage	0.11		
Cress--------------	Very limited		\| Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	0.50	No ground water	\| 1.00
2002:						
Udorthents, earthen						
	Not rated		\| Not rated		\| Not rated	
2015:						
Pits	Not rated		\| Not rated		\| Not rated	
2050:						
Landfill-----------	Not rated		\| Not rated		\| Not rated	
3011A:						\|
Barronett---------- \|	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to saturated zone	1.00	Cutbanks cave Slow refill	$\begin{aligned} & 1.00 \\ & 10.28 \end{aligned}$
		\|	Piping	1.00		
		1	Ponding	1.00		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
3082E:						
Braham	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	0.10	No ground water	1.00
	Slope	10.12				
Shawano	Very limited		Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.36	No ground water	1.00
	Slope	10.32				
3114A:						
Saprists	Very limited		\|Very limited		\|Somewhat limited	
	Seepage	11.00	Content of	11.00	Cutbanks cave	0.10
			organic matter			
			Ponding	11.00		
			Depth to	11.00		
			saturated zone			
			Piping	\| 1.00		
Aquents	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Ponding	11.00	Cutbanks cave	1.00
			Depth to	11.00		
			saturated zone			
			Seepage	10.82		
Aquepts	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Ponding	11.00	Cutbanks cave	1.00
			Depth to	\| 1.00		\|
			saturated zone			
			Seepage	10.50		
3125A:						
Meehan	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	11.00	Cutbanks cave	1.00
			saturated zone			
			Seepage	10.82		
3126A:						
Wurtsmith	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	10.99	Cutbanks cave	11.00
			saturated zone		Depth to water	0.01
			Seepage	10.82		
3312B:						
Glendenning, very						
stony	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	11.00	No ground water	1.00
			saturated zone			
			Seepage	10.04		I
Glendenning	Somewhat limited		Very limited		\|Very limited	
	Seepage	10.72	Depth to	11.00	No ground water	1.00
			saturated zone			
			Seepage	10.04		
3336A:						
Fenander	Somewhat limited		\|Very limited		\|Very limited	
	Seepage	10.72	Depth to	11.00	Cutbanks cave	11.00
			saturated zone		Slow refill	10.28
			Ponding	11.00		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value
3403A:							
Loxley----------	\|Very limited		\| Very limited		\|Somewhat limited		
	Seepage	11.00	Content of	11.00	Cutbanks cave	10.10	
			organic matter				
			Depth to	11.00			
			saturated zone				
			Piping	11.00			
			Ponding	11.00			
Beseman-	\|Very limited		\|Very limited		\| Somewhat limited		
	Seepage	11.00	Content of	1.00	Cutbanks cave	0.10	
			organic matter				
			Depth to	11.00			
			saturated zone				
			Piping	11.00		\|	
			Ponding	1.00			
Dawson	\|Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Content of	11.00	Cutbanks cave	1.00	
			organic matter				
			Depth to	11.00			
			saturated zone				
			Ponding	\| 1.00			
			Seepage	\| 0.64			
3429B:							
Lara-	\|Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	Cutbanks cave	1.00	
			saturated zone				
			Seepage	10.20			
3429C:							
Lara			\| Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	\| Cutbanks cave	1.00	
			saturated zone				
			Seepage	10.20			
3446A:							
Newson	\|Very limited		\|Very limited		\|Very limited		
	Seepage	11.00	Depth to	1.00	Cutbanks cave	1.00	
			saturated zone				
			Ponding	1.00			
			Seepage	10.82			
3448B:							
Grettum	\|Very limited		\|Somewhat limited		\|Very limited		
	Seepage	11.00	Seepage	10.58	Cutbanks cave	11.00	
					Depth to water	10.96	
3448C:							
Grettum-							
	Seepage	11.00	Seepage	10.58	Cutbanks cave	11.00	
					Depth to water	10.96	
3510B:							
Pomroy	\|Very limited		\|Very limited		\| Very limited	\|	
	Seepage	11.00	Depth to	10.99	\| No ground water	11.00	
			\| saturated zone				
			Thin layer	0.11		\|	
	I		Seepage	0.08		\|	

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and   limiting features	\| Value
3510B:						
Fremstadt	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.07	No ground water	1.00
Fremstadt, stony-	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.07	\| No ground water	1.00
3510C:						
Pomroy	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	10.99	No ground water	1.00
			saturated zone			
			Thin layer	10.11		
			Seepage	10.08		
Fremstadt	Very limited		\|Somewhat limited		$\mid$ Very limited	
	Seepage	11.00	Seepage	10.07	\| No ground water	1.00
Fremstadt, stony-	Very limited		\|Somewhat limited		$\mid$ Very limited	
	Seepage	11.00	Seepage	10.07	\| No ground water	1.00
3511A:						
Bushville	Very limited		\|Very limited		\|Very limited	
	Seepage	11.00	Depth to	11.00	\| No ground water	1.00
			saturated zone			
			Thin layer	10.11		
			Seepage	10.07		
3516A:						
Slimlake	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Depth to	10.86	Cutbanks cave	\| 1.00
			saturated zone		Depth to water	10.06
			Seepage	10.79		
3625A:						
Lino						
	Seepage	11.00	Depth to	11.00	Cutbanks cave	11.00
			saturated zone			
			Seepage	10.30		
3626A:						
Crex	Very limited		\|Very limited		$\mid$ Very limited	
	Seepage	11.00	Depth to	10.99	Cutbanks cave	\| 1.00
			saturated zone		Depth to water	10.01
			Seepage	10.88		
3629B:						
Perida-	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	11.00	Seepage	10.72	\| No ground water	11.00
			Depth to	10.09		
			saturated zone			
					\|	
3636B:						
Plainbo	Very limited		\|Somewhat limited		\|Very limited	
	Seepage	\| 1.00	Thin layer	10.86	\| No ground water	\| 1.00
	Depth to bedrock	\| 0.11	Seepage	\| 0.51		

Table 20.--Water Management--Continued

Map symbol and soil name	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
	Rating class and limiting features	\|Value		Rating class and limiting features	\| Value		Rating class and limiting features	\| Value
3636C:								
Plainbo	Very limited		\|Somewhat limited		\|Very limited			
	Seepage	1.00	Thin layer	10.86	No ground water	1.00		
	Depth to bedrock	0.11	Seepage	10.51				
M-W:								
Miscellaneous water	Not rated		\| Not rated		\| Not rated			
W:								
Water	Not rated		\| Not rated		\| Not rated			

Table 21a.--Agricultural Waste Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application sewage sludge		
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
28C:					
Rosholt, very stony	\| Very limited		Very limited		
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Dense layer	11.00	Droughty	0.40	
	Too stony	0.50	Too acid	0.31	
	Droughty	0.40	slope	0.04	
	Too acid	10.08			
Rosholt------------	\|Very limited		Very limited		
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Dense layer	11.00	Droughty	0.33	
	Droughty	0.33	Too acid	0.31	
	Too acid	10.08	slope	0.04	
	Slope	0.04			
38A:					
Rosholt	\|Very limited		Very limited		
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Dense layer	11.00	Droughty	0.33	
	Droughty	0.33	Too acid	0.31	
	Too acid	0.08			
38B:					
Rosholt	\| Very limited		Very limited		
	Filtering	11.00	Filtering	\| 1.00	
	capacity		capacity		
	Dense layer	11.00	Droughty	0.33	
	\| Droughty	10.33	Too acid	0.31	
	\| Too acid	0.08			
38C:					
Rosholt	\| Very limited		Very limited		
	\| Filtering	11.00	Filtering	\| 1.00	
	capacity		capacity		
	Dense layer	\| 1.00	Droughty	0.33	
	Droughty	0.33	Too acid	0.31	
	Too acid	0.08	slope	0.04	
	slope	0.04			
38D:					
Rosholt	\| Very limited		Very limited		
	Filtering	11.00	Filtering	11.00	
	capacity		capacity		
	Dense layer	11.00	slope	\| 1.00	
	Slope	11.00	Droughty	10.33	
	Droughty	10.33	Too acid	0.31	
	Too acid	0.08			
42D:					
Amery	\|Very limited		Very limited		
	slope	11.00	slope	\| 1.00	
	Too stony	0.50	Too acid	\| 0.77	
	Restricted	10.41	Restricted	\| 0.31	
	\| permeability		permeability		
	\| Too acid	10.22			

Table 21a.--Agricultural Waste Management-Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application sewage sludg	
	Rating class and limiting features	Value	Rating class and limiting features	Value
337A:				
Plover-------------\|Very limited			$\mid$ Very limited	
	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	0.89	Restricted	0.78
	permeability		permeability	
	Too acid	0.08	Too acid	0.31
368B:				
Mahtomedi	Very limited		Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Droughty	1.00	Droughty	1.00
	Leaching	0.45	Too acid	0.42
	Too acid	0.11		
Cress-------------\| Very limited			Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Droughty	0.60	Droughty	0.60
	Leaching	0.45	Too acid	0.31
	Too acid	0.08		
368C:				
Mahtomedi---------\| Very limited			\| Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Droughty	1.00	Droughty	1.00
	Leaching	0.45	Too acid	0.42
	Too acid	0.11	Slope	0.04
	Slope	0.04		
Cress-------------- \| Very limited			\| Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Droughty	0.60	Droughty	0.60
	Leaching	0.45	Too acid	0.31
	Too acid	0.08	Slope	0.04
	Slope	0.04		
368D:				
Mahtomedi----------\|Very limited			\| Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Slope	1.00	Slope	1.00
	Droughty	1.00	Droughty	1.00
	Leaching	0.45	Too acid	0.42
	Too acid	0.11		
Cress-------------- \| Very limited			\|Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Slope	1.00	Slope	\| 1.00
	Droughty	0.60	Droughty	0.60
	Leaching	0.45	Too acid	0.31
	Too acid	0.08		

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application   of sewage sludge	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
368E:				
Mahtomedi	Very limited		\|Very limited	
	Slope	\| 1.00	Filtering	11.00
	Filtering	\| 1.00	capacity	
	capacity		Slope	\| 1.00
	Droughty	11.00	Droughty   Too acid	\| 1.00
	Leaching	10.45		10.42
	Too acid	\| 0.11		
Cress-----------	\|Very limited		Very limited	
	Slope	11.00	Filtering capacity	\| 1.00
	Filtering	11.00		
	capacity		Slope	\| 1.00
	Droughty	10.60	Droughty   Too acid	10.60
	Leaching	10.45		10.31
	Too acid	10.08		
380B:				
Cress	\|Very limited		Very limited	
	Filtering	11.00	Filtering capacity	11.00
	capacity			
	Droughty	10.60	Droughty	10.60
	Leaching	10.45	Too acid	10.31
	\| Too acid	10.08		
Rosholt	\|Very limited		Very limited	
	Filtering capacity	11.00	Filtering capacity	11.00
	Dense layer	11.00	Droughty	10.33
	Droughty	10.33	Too acid	10.31
	Too acid	10.08		
380C:				
Cress	\|Very limited		\|Very limited	
	\| Filtering	11.00	Filtering capacity	\| 1.00
	Droughty	10.60	Droughty	10.60
	Leaching	10.45	Too acidSlope	10.31
	Too acid	10.08		10.04
	slope	10.04	slope	
Rosholt	\|Very limited		\|Very limited	
	Filtering capacity	11.00	Filtering capacity	\| 1.00
	Dense layer	11.00	Droughty	10.33
	Droughty	10.33	Too acidSlope	10.31
	Too acid	10.08		10.04
	Slope	10.04	slope	
380D:				
Cress	Very limited		\|Very limited	
	Filtering	11.00	$\begin{array}{r} \text { Filtering } \\ \text { capacity } \end{array}$	11.00
	Slope	11.00	slope	11.00
	Droughty	10.60	Droughty   Too acid	10.60
	Leaching	10.45		10.31
	Too acid	10.08		

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
392C:				
Makwa--------------\| Very limited			\|Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	11.00	Low adsorption	\| 1.00
	permeability		Restricted	1.00
	Large stones on	11.00	permeability	
	the surface		Large stones on	1.00
	Too stony	0.50	the surface	
	Runoff	10.40	Too acid	0.77
396B:				
Friendship	\| Very limited		\| Very limited	
	Filtering	\| 1.00	Filtering	1.00
	capacity		capacity	
	Droughty	10.90	Droughty	0.90
	Leaching	10.45	Too acid	0.21
	Too acid	10.05		
Wurtsmith	Very limited		\| Very limited	
	Filtering	11.00	Filtering	1.00
	capacity		capacity	
	Depth to	0.99	Too acid	1.00
	saturated zone		Depth to	0.99
	Droughty	10.87	saturated zone	
	Too acid	\| 0.78	Droughty	0.87
	Leaching	10.45		
Grayling	Very limited		\| Very limited	
	Filtering	11.00	Filtering	1.00
	capacity		capacity	
	Droughty	11.00	Too acid	11.00
	Too acid	10.78	Droughty	\| 1.00
	Leaching	10.45		
397A:				
Perchlake----------\| Very limited			\| Very limited	
	Filtering	11.00	Filtering	11.00
	capacity		capacity	
	Depth to	11.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Droughty	0.25	Too acid	0.77
	Too acid	10.22	Droughty	0.25
399B:				
Grayling-----------\| Very limited			Very limited	
	Filtering	11.00	\| Filtering	\| 1.00
	capacity		capacity	
	Droughty	11.00	Too acid	\| 1.00
	Too acid	10.78	Droughty	\| 1.00
	Leaching	10.45		
399C:				
Grayling--------	Very limited		Very limited	
	Filtering capacity	\| 1.00	Filtering capacity	\| 1.00
	Droughty	11.00	Too acid	\| 1.00
	Too acid	10.78	Droughty	11.00
	Leaching	10.45	Slope	\| 0.04
	slope	0.04		

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge	
	Rating class and limiting features	Value	Rating class and limiting features	Value
399D:				
Grayling----------\|Very limited			Very limited	
	Filtering	1.00	Filtering	\| 1.00
	capacity		capacity	
	Slope	1.00	Too acid	1.00
	Droughty	1.00	Slope	11.00
	Too acid	0.78	Droughty	\| 1.00
	Leaching	0.45		
406A:				
Loxley-------------\| Very limited			\| Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Depth to	1.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Too acid	0.94	Too acid	\| 1.00
	Leaching	0.90	Ponding	\| 1.00
407A:				
Seelyeville--------\|Very limited			\|Very limited	
	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Leaching	0.90	Ponding	\| 1.00
	Too acid	0.08	Too acid	\| 0.31
Markey------------- \| Very limited			\| Very limited	
	Filtering	1.00	Filtering	\| 1.00
	capacity		capacity	
	Depth to	1.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Leaching	0.90	Ponding	\| 1.00
410A:				
Seelyeville--------\| Very limited			\|Very limited	
	Depth to	1.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Leaching	0.90	Ponding	11.00
	Too acid	0.08	Too acid	\| 0.31
Cathro-------------\| Very limited			\| Very limited	
	Depth to	1.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Leaching	0.90	Ponding	11.00
	Too acid	0.02	Too acid	\| 0.07
419A:				
Seelyevi	Very limited		\|Very limited	
	Depth to	1.00	Depth to	11.00
	saturated zone		saturated zone	
	Ponding	1.00	Low adsorption	\| 1.00
	Leaching	0.90	Ponding	\| 1.00
	Too acid	0.08	Too acid	\| 0.31

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge			
	Rating class and limiting features	\|Value	Rating class and limiting features	Value		
419A:						
Cathro------------ \| Very limited		Very limite				
	Depth to	11.00	Depth to	\| 1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	1.00		
	Leaching	10.90	Ponding	1.00		
	Too acid	10.02	Too acid	0.07		
Markey------------- \| Very limited			\|Very limited			
	Filtering	11.00	Filtering	$1.00$		
	capacity		capacity			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	1.00		
	Leaching	10.90	Ponding	1.00		
421A:						
Dora--------------- \| Very limited			\| Very limited			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Restricted	11.00	Low adsorption	$1.00$		
	permeability		Restricted	$1.00$		
	Ponding	1.00	permeability			
	Leaching	10.90	Ponding	1.00		
	Too acid	10.02	Too acid	0.07		
Markey------------- \| Very limited			\| Very limited			
	Filtering	11.00	Filtering	1.00		
	capacity		capacity			
	Depth to	11.00	Depth to	\| 1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	\| 1.00		
	Leaching	10.90	Ponding	1.00		
Seelyeville--------\|	Very limited			\| Very limited		
	Depth to	11.00	Depth to	\| 1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	\| 1.00		
	Leaching	$0.90$	Ponding	11.00		
	Too acid	10.08	Too acid	0.31		
422A:						
Seelyeville--------\|Very limited			\| Very limited			
	Depth to	11.00	Depth to	\| 1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	\| 1.00		
	Leaching	$0.90$	Ponding	11.00		
	Too acid	10.08	Too acid	10.31		
Cathro------------\|Very limited			\| Very limited			
	Depth to	11.00	Depth to	1.00		
	saturated zone		saturated zone			
	Ponding	11.00	Low adsorption	\| 1.00		
	Leaching	10.90	Ponding	1.00		
	Too acid	10.02	Too acid	10.07		

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application sewage sludge	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value
439C:				
	\| Very limited		Very limited	
	Filtering	\| 1.00	Filtering	11.00
	capacity		capacity	
	Too acid	0.50	Low adsorption	11.00
	Leaching	10.45	Too acid	0.99
	Droughty	0.39	Droughty	0.39
	slope	10.04	Slope	0.04
439D:				
Graycalm	\|Very limited		Very limited	
	Filtering	11.00	Filtering	1.00
	capacity		capacity	
	Slope	11.00	Slope	11.00
	Too acid	$0.50$	Too acid	$0.99$
	Leaching	10.45	Droughty	10.25
	Droughty	0.25		
Menahga	\|Very limited		Very limited	
	Filtering	11.00	Filtering	11.00
	capacity		capacity	
	slope	11.00	Low adsorption	1.00
	Too acid	0.50	Slope	11.00
	Leaching	10.45	Too acid	0.99
	Droughty	0.39	Droughty	0.39
442C:				
Haugen	\|Very limited		Very limited	
	Depth to saturated zone	0.99	Depth to saturated zone	0.99
	Restricted	10.89	Too acid	0.91
	permeability		Restricted	0.78
	Too stony	0.50	permeability	
	Too acid	10.32		
Greenwood	\| Very limited		Very limited	
	Filtering	11.00	Filtering	11.00
	capacity		capacity	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Ponding	11.00	Low adsorption	\| 1.00
	Too acid	10.94	Too acid	\| 1.00
	Leaching	10.90	Ponding	11.00
443D:				
Amery	\| Very limited		Very limited	
	slope	11.00	Slope	\| 1.00
	Too stony	0.50	Too acid	\| 0.31
	Restricted	\| 0.41	Restricted	\| 0.31
	permeability		permeability	
	Too acid	0.08		
Greenwood	\| Very limited		Very limited	
	Filtering capacity	$1.00$	Filtering capacity	$1.00$
	Depth to	11.00	Depth to	11.00
	saturated zone		saturated zone	
	Ponding	11.00	Low adsorption	11.00
	Too acid	0.94	Too acid	\| 1.00
	Leaching	10.90	Ponding	11.00

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application of sewage sludge		
	Rating class and limiting features	\|Value		Rating class and   limiting features	Value
495D:Karlsbor					
	Very limited		\|Very limited		
	Filtering	11.00	Filtering	\| 1.00	
	capacity		capacity		
	Depth to	\| 1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Restricted	\| 1.00	Restricted	1.00	
	permeability		permeability		
	Slope	11.00	Slope	1.00	
	Runoff	10.40	Too acid	0.77	
Grettum	Very limited		\| Very limited		
	Filtering	\| 1.00	Filtering	1.00	
	capacity		capacity		
	Slope	11.00	slope	1.00	
	Leaching	10.45	Too acid	0.85	
	Too acid	\| 0.27	Droughty	0.02	
	Droughty	$0.02$			
Perida	Very limited		\| Very limited		
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Restricted	\| 1.00	Restricted	1.00	
	permeability		permeability		
	slope	11.00	slope	1.00	
	Too acid	\| 0.27	Too acid	10.85	
	Depth to	10.09	Depth to	0.09	
	saturated zone		saturated zone		
496B:					
Karlsborg	Very limited		\| Very limited		
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Depth to	\| 1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Restricted	\| 1.00	Restricted	\| 1.00	
	permeability		permeability		
	Too acid	10.22	Too acid	0.77	
496C:					
Karlsborg	Very limited		\| Very limited		
	Filtering	11.00	Filtering	\| 1.00	
	capacity		capacity		
	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		
	Restricted	11.00	Restricted	11.00	
	permeability		permeability		
	Too acid	10.22	Too acid	0.77	
	Slope	10.04	Slope	0.04	
496D:					
Karlsborg	Very limited		Very limited		
	Filtering	11.00	Filtering	\| 1.00	
	capacity		capacity		
	Depth to	11.00	Depth to	1.00	
	saturated zone		saturated zone		
	Restricted	11.00	Restricted	1.00	
	permeability		permeability		
	slope	\| 1.00	Slope	1.00	
	Too acid	\| 0.22	Too acid	0.77	

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application   of sewage sludge		
	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value
Meenon	Very limited		\|Very limited		
	Filtering	1.00	Filtering	11.00	
	capacity		capacity		
	Restricted	1.00	Restricted	11.00	
	permeability		permeability		
	Depth to	1.00	Depth to	11.00	
	saturated zone		saturated zone		
	Too acid	10.08	Too acid	10.31	
	Droughty	10.03	Droughty	10.03	
521A:					
Dody	\|Very limited		\|Very limited		
	Filtering	1.00	Filtering	1.00	
	capacity		capacity		
	Depth to	1.00	Depth to	11.00	
	saturated zone		saturated zone		
	Restricted	1.00	Low adsorption	\| 1.00	
	permeability		Restricted	\| 1.00	
	Ponding	11.00	permeability		
	Leaching	10.50	Ponding	1.00	
523A:					
Nokasippi	Very limited		\|Very limited		
	Filtering capacity	1.00	Filtering capacity	11.00	
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Ponding	1.00	Low adsorption	11.00	
	Leaching	0.70	Ponding	1.00	
	Too acid	10.22	Too acid	10.77	
529B :					
Perida	\|Very limited		\|Very limited		
	Filtering capacity	1.00	$\begin{aligned} & \text { Filtering } \\ & \text { capacity } \end{aligned}$	11.00	
	Restricted	11.00	Restricted	11.00	
	permeability		permeability		
	Too acid	10.22	Too acid	10.77	
	Depth to	10.09	Depth to	10.09	
	saturated zone		saturated zone		
531A:					
Stengel	Very limited		\|Very limited		
	Filtering	1.00	Droughty	\| 1.00	
	capacity		Filtering	\| 1.00	
	Depth to	1.00	capacity		
	saturated zone		Depth to	11.00	
	Droughty	1.00	saturated zone		
	Depth to ${ }^{\text {discontinuity }}$	10.99	Depth to ${ }_{\text {discontinuity }}$	10.99	
	Leaching	10.70	Too acid	10.31	
542B:					
Haugen, very ston	\|Very limited		\|Very limited		
	Depth to	10.99	Depth to	10.99	
	saturated zone		saturated zone		
	Restricted	10.89	Too acid	10.91	
	permeability		Restricted	10.78	
	Too stony	0.50	permeability		
	Too acid	10.32		\|	

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge	
	Rating class and limiting features	\|Value	Rating class and limiting features	
542B:				
Haugen------------- \| Very limited			\| Very limited	
	Depth to	0.99	Depth to	0.99
	saturated zone		saturated zone	
	Restricted	0.89	Too acid	0.91
	permeability		Restricted	\| 0.78
	Too acid	0.32	permeability	
542C:				
Haugen, very st	Very limited		Very limited	
	Depth to	0.99	Depth to	10.99
	saturated zone		saturated zone	
	Restricted	0.89	Too acid	0.91
	permeability		Restricted	10.78
	Too stony	0.50	permeability	
	Too acid	0.32	slope	10.04
	slope	0.04		
Haugen	Very limited		\| Very limited	
	Depth to	0.99	Depth to	10.99
	saturated zone		saturated zone	
	Restricted	0.89	Too acid	0.91
	permeability		Restricted	10.78
	Too acid	0.32	permeability	
	Slope	$10.04$	slope	10.04
544F:				
Menahg	Very limited		\| Very limited	
	Slope	1.00	Filtering	\| 1.00
	Filtering	1.00	capacity	
	capacity		Low adsorption	\| 1.00
	Too acid	0.50	Slope	11.00
	Leaching	0.45	Too acid	10.99
	Droughty	0.40	Droughty	10.40
Mahtomedi----------\| Very limited			Very limited	
	slope	1.00	Filtering	\| 1.00
	Filtering	1.00	capacity	
	capacity		Slope	11.00
	Droughty	1.00	Droughty	11.00
	Leaching	0.45	Too acid	10.42
	Too acid	0.11		
553B:				
Branstad----------\|Very limited			Very limited	
	Depth to	0.99	Depth to	0.99
	saturated zone		saturated zone	
553C:				
Branstad	Very limited		\| Very limited	
	Depth to	0.99	Depth to	0.99
	saturated zone		saturated zone	
	Slope	0.04	Slope	10.04
553D:				
Branstad	Very limited		\| Very limited	
	slope	1.00	slope	\| 1.00
	Depth to	0.99	Depth to	10.99
	saturated zone		saturated zone	

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		Application sewage sludge			
	Rating class and limiting features	Value	Rating class and limiting features	Value		
615C:						
Cress-------------- \|Very limited	Very limited					
	Filtering	1.00	Filtering	1.00		
	capacity		capacity			
	Droughty	0.60	Droughty	0.60		
	Leaching	0.45	Too acid	0.31		
	Too acid	0.08	slope	0.04		
	Slope	0.04				
615D:						
	Filtering	1.00	Filtering	11.00		
	capacity		capacity			
	slope	1.00	slope	1.00		
	Droughty	0.60	Droughty	0.60		
	Leaching	0.45	Too acid	0.31		
	Too acid	0.08				
620C:						
Lundeen----------- \| Somewhat limited		Very limited				
	Too stony	0.50	Low adsorption	1.00		
	Too acid	0.50	Too acid	0.99		
	Depth to bedrock	0.46	Depth to bedrock	0.46		
	Runoff	0.40				
Haustrup----------\|Very limited		Very limited				
	Depth to bedrock	1.00	Depth to bedrock	11.00		
	Droughty	0.95	Low adsorption	11.00		
	Too acid	0.82	Too acid	1.00		
	Too stony	0.50	Droughty	0.95		
	Runoff	0.40				
Rock outcrop-------\| Not rated			Not rated			
621A:						
Bjorkland--------- \|Very limited			Very limited			
	Filtering	1.00	Filtering	11.00		
	capacity		capacity			
	Depth to	1.00	Depth to	11.00		
	saturated zone		saturated zone			
	Restricted	1.00	Low adsorption	11.00		
	permeability		Restricted	11.00		
	Ponding	1.00	permeability			
	Too acid	0.62	Too acid	11.00		
623A:						
Capitola-----------\|Very limited			\| Very limited			
	Depth to	1.00	Depth to	11.00		
	saturated zone		saturated zone			
	Ponding	1.00	Low adsorption	11.00		
	Leaching	0.70	Ponding	11.00		
	Too stony	0.50	Depth to dense	0.46		
	Depth to dense	0.46	material			
	material		Too acid	0.31		

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
720F:				
Lundeen	Very limited		Very limited	
	slope	11.00	Low adsorption	1.00
	Too stony	10.50	Slope	11.00
	Too acid	10.50	Too acid	0.99
	Depth to bedrock	10.46	Depth to bedrock	0.46
	Runoff	$0.40$		
Rock outcrop----726B:	Not rated		Not rated	
	726B:			
Sissabagama	Very limited		Very limited	
	Filtering capacity	\| 1.00	Filtering capacity	1.00
	Restricted	10.89	Depth to	0.86
	permeability		saturated zone	
	Depth to	10.86	Restricted	0.78
	saturated zone		permeability	
	Leaching	10.45	Too acid	0.31
	Too acid	10.08		
742B:				
Milaca	Very limited		Very limited	
	Depth to	10.99	Depth to	0.99
	saturated zone		saturated zone	
	Too stony	10.50	Too acid	0.42
	Too acid	\| 0.11		
742C:				
Milaca	Very limited		Very limited	
	Depth to	10.99	Depth to	0.99
	saturated zone		saturated zone	
	Too stony	0.50	Too acid	10.42
	Too acid	0.11	slope	0.04
	slope	0.04		
742D:				
Milaca	Very limited		Very limited	
	slope	11.00	slope	1.00
	Depth to	10.99	Depth to	0.99
	saturated zone		saturated zone	
	Too stony	0.50	Too acid	0.42
	Too acid	\| 0.11		
755A:				
Moppet	Very limited		Very limited	
	Filtering capacity	\| 1.00	Filtering capacity	11.00
	Depth to	10.86	Flooding	\| 1.00
	saturated zone		Too acid	\| 1.00
	Too acid	0.62	Depth to	10.86
	Flooding	10.60	saturated zone	
Fordum	Very limited		Very limited	
	Filtering	11.00	Filtering	1.00
	capacity		capacity	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Flooding	\| 1.00	Flooding	\| 1.00
	Ponding	\| 1.00	Ponding	\| 1.00
	Runoff	10.40		

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge				
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		
771A:							
Lenroot----------- \|Very limited		Very limited					
	Filtering	11.00	Filtering	1.00			
	capacity		capacity				
	Depth to	10.99	Depth to	0.99			
	saturated zone		saturated zone				
	Droughty	10.89	Droughty	0.89			
	Leaching	10.45	Too acid	0.42			
	Too acid	10.11					
812B:							
Mora--------------\|	Very limited		Very limite				
	Depth to	\| 1.00	Depth to	1.00			
	saturated zone		saturated zone				
	Too stony	0.50	Too acid	0.42			
	Too acid	$0.11$					
825A:							
Meehan----------- \|Very limited		Very limited					
	Filtering	11.00	Filtering	1.00			
	capacity		capacity				
	Depth to	\| 1.00	Depth to	1.00			
	saturated zone		saturated zone				
	Droughty	10.97	Droughty	0.97			
	Too acid	\| 0.27	Too acid	0.85			
896A:							
Wurtsmith---------\|Very limited		Very limited					
	Filtering	11.00	Droughty	\| 1.00			
	capacity		Filtering	\| 1.00			
	Droughty	\| 1.00	capacity				
	Depth to	10.99	Depth to	0.99			
	saturated zone		saturated zone				
	Leaching	10.45	Too acid	0.85			
	Too acid	\| 0.27					
980A:							
Soderbeck---------\|	Very limited		Very limited				
	Filtering	11.00	Filtering capacity	\| 1.00			
	Depth to	11.00	Depth to	1.00			
	saturated zone		saturated zone				
	Droughty	10.96	Low adsorption	\| 1.00			
	Too stony	0.50	Droughty	10.96			
	Cobble content	10.50	Cobble content	0.50			
1070C:							
Fremstadt----------\| Somewhat limited		Somewhat limited					
	Leaching	10.45	Too acid	10.31			
	Slope	0.16	Slope	\| 0.16			
	Too acid	0.08	Filtering	\| 0.01			
	Filtering	10.01	capacity				
	capacity						
Cress-------------- \|Very limited			\| Very limited				
	Filtering	11.00	Filtering	\| 1.00			
	capacity		capacity				
	Droughty	0.60	Droughty	10.60			
	Leaching	10.45	Too acid	10.31			
	Too acid	10.08	slope	0.04			
	slope	10.04					

Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued


Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application o manure and foo processing was		of sewage sludge		
	Rating class and limiting features	\|Value		Rating class and limiting features	Value
3126A:					
Wurtsmith---------\|Very limited			\| Very limited		
	Filtering	1.00	Filtering	1.00	
	capacity		capacity		
	Depth to	0.99	Too acid	1.00	
	saturated zone		Depth to	0.99	
	Droughty	0.85	saturated zone		
	Too acid	0.78	Droughty	0.85	
	Leaching	0.45			
3312B:					
Glendenning, very					
stony------------- \| Very limited			Very limited		
	Depth to saturated zone	1.00	Depth to saturated zone	$1.00$	
	Too stony	0.50	Too acid	0.31	
	Restricted	0.41	Restricted	0.31	
	permeability		permeability		
	Too acid	0.08			
Glendenning--------\|	Very limited			\| Very limited	
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Restricted	0.41	Too acid	0.31	
	permeability		Restricted	0.31	
	Too acid	0.08	permeability		
3336A:			\|Very limited		
Fenander----------- \| Very limited					
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Ponding	1.00	Ponding	1.00	
	Leaching	0.70	Restricted	0.31	
	Restricted	0.41	permeability		
	permeability				
3403A:					
Loxley------------ \| Very limited			Very limited		
	Filtering	1.00	Filtering	1.00	
	capacity		capacity		
	Depth to	1.00	Depth to	11.00	
	saturated zone		saturated zone		
	Ponding	1.00	Low adsorption	1.00	
	Too acid	0.94	Too acid	11.00	
	Leaching	0.90	Ponding	1.00	
Beseman----------- \| Very limited			Very limited		
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Ponding	1.00	Low adsorption	11.00	
	Too acid	0.94	Too acid	11.00	
	Leaching	0.90	Ponding	11.00	
	Restricted	0.41	Restricted	0.31	
	permeability		permeability		

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge			
	Rating class and limiting features	Value	Rating class and limiting features	Value		
3403A:						
Dawson-------------\| Very limited		Very limited				
	Filtering	1.00	Filtering	11.00		
	capacity		capacity			
	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone			
	Ponding	1.00	Low adsorption	11.00		
	Too acid	0.94	Too acid	11.00		
	Leaching	0.90	Ponding	11.00		
3429 B :						
Lara-------------\|Very limited		Very limited				
	Restricted	1.00	Restricted	11.00		
	permeability		permeability			
	Depth to	1.00	Depth to	11.00		
	saturated zone		saturated zone			
	Filtering	0.01	Filtering	0.01		
	capacity		capacity			
3429C:						
Lara------------- \|Very limited	Very limited					
	Restricted	1.00	Restricted	1.00		
	permeability		permeability			
	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone			
	Slope	0.04	Slope	0.04		
	Filtering	0.01	Filtering	0.01		
	capacity		capacity			
3446A:						
Newson----------- \|Very limited		Very limited				
	Filtering	1.00	Filtering	1.00		
	capacity		capacity			
	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone			
	Ponding	1.00	Low adsorption	11.00		
	Too acid	0.62	Too acid	11.00		
	Runoff	0.40	Ponding	11.00		
3448B:						
Grettum----------- \| Very limited	Very limited					
	Filtering	1.00	Filtering	11.00		
	capacity		capacity			
	Too acid	0.27	Too acid	10.85		
	Droughty	0.02	Droughty	0.02		
3448C: \|						
Grettum---------- \|Very limited		Very limited				
	Filtering	1.00	Filtering	11.00		
	capacity		capacity			
	Too acid	0.27	Too acid	0.85		
	Slope	0.04	Slope	\| 0.04		
	Droughty	0.02	Droughty	0.02		

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value
3510B:				
Pomroy	\|Very limited		Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Depth to	0.99	Depth to	0.99
	saturated zone		saturated zone	
	Too stony	0.50	Too acid	0.91
	Too acid	0.32	Droughty	0.05
	Droughty	0.05		
Fremstadt	\|Somewhat limited		Somewhat limited	
	Too stony	0.50	Too acid	0.91
	Too acid	0.32	Filtering	0.01
	Filtering	0.01	capacity	
	capacity			
Fremstadt, stony-	Somewhat limited		Somewhat limited	
	Too acid	0.32	Too acid	0.91
	Filtering	0.01	Filtering	0.01
	capacity		capacity	
3510C:				
Pomroy	\|Very limited		Very limited	
	Filtering	1.00	Filtering	\| 1.00
	capacity		capacity	
	Depth to	0.99	Depth to	0.99
	saturated zone		saturated zone	
	Too stony	0.50	Too acid	0.91
	Too acid	0.32	Slope	0.16
	slope	0.16	Droughty	0.05
Fremstadt	Somewhat limited		Somewhat limited	
	Too acid	0.32	Too acid	0.91
	Slope	0.16	slope	0.16
	Filtering	0.01	Filtering	0.01
	capacity		capacity	
Fremstadt, stony-	\|Somewhat limited		Somewhat limited	
	Too stony	0.50	Too acid	0.91
	Too acid	0.32	slope	0.16
	Slope	0.16	Filtering	0.01
	Filtering	0.01	capacity	
	capacity			
3511A:				
Bushville	\|Very limited		Very limited	
	Filtering capacity	1.00	Filtering capacity	\| 1.00
	Depth to	1.00	Depth to	11.00
	saturated zone		saturated zone	
	Droughty	0.23	Too acid	10.42
	Too acid	0.11	Droughty	10.23
3516A:				
Slimlake	\|Very limited		Very limited	
	Filtering	1.00	Filtering	1.00
	capacity		capacity	
	Depth to	0.86	Depth to	10.86
	saturated zone		saturated zone	
	Too acid	0.11	Too acid	10.42
	Droughty	0.07	Droughty	10.07

Table 21a.--Agricultural Waste Management--Continued

Map symbol and soil name	Application of manure and foodprocessing waste		of sewage sludge		
	Rating class and limiting features		Rating class and limiting features	Value	
3625A:					
Lino------------- \| Very limited	Very limited				
	Filtering	1.00	Filtering	1.00	
	capacity		capacity		
	Depth to	1.00	Depth to	1.00	
	saturated zone		saturated zone		
	Leaching	0.45	Too acid	0.67	
	Droughty	0.33	Droughty	0.33	
	Too acid	0.18			
3626A:					
Crex------------- \| Very limited	Very limited				
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Depth to	10.99	Low adsorption	1.00	
	saturated zone		Too acid	1.00	
	Too acid	10.62	Depth to	0.99	
	Droughty	0.01	saturated zone		
			Droughty	0.01	
3629 B :					
Perida-----------\|Very limited	Very limited				
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Restricted	11.00	Restricted	1.00	
	permeability		permeability		
	Leaching	0.45	Too acid	0.85	
	Too acid	\| 0.27	Depth to	0.09	
	Depth to	10.09	saturated zone		
	saturated zone				
3636B:					
Plainbo----------\| Very limited	Very limited				
	Filtering	\| 1.00	Filtering	1.00	
	capacity		capacity		
	Droughty	11.00	Low adsorption	1.00	
	Depth to bedrock	0.46	Droughty	1.00	
	Too acid	\| 0.32	Too acid	10.91	
			Depth to bedrock	0.46	
3636C:					
Plainbo----------\| Very limited	Very limited				
	Filtering	11.00	Filtering	1.00	
	capacity		capacity		
	Droughty	11.00	Low adsorption	1.00	
	Depth to bedrock	10.46	Droughty	11.00	
	Too acid	10.32	Too acid	0.91	
	Slope	\| 0.04	Depth to bedrock	0.46	
		1			
M-W :					
Miscellaneous water	Not rated		Not rated		
W :					
Water--------------\| Not rated			Not rated		

Table 21b.--Agricultural Waste Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
3A:Totagat				
	\|Very limited		\| Very limited	
	Filtering	1.00	Flooding	11.00
	capacity		Seepage	1.00
	Depth to	1.00	Depth to	1.00
	saturated zone		saturated zone	
	Flooding	1.00	Ponding	1.00
	Ponding	1.00	Too acid	0.77
	Too acid	\| 0.77		
Bowstring	\|Very limited		\|Very limited	
	Filtering	1.00	Flooding	1.00
	capacity		Depth to	1.00
	Depth to	1.00	saturated zone	
	saturated zone		Low adsorption	1.00
	Low adsorption	\| 1.00	Seepage	1.00
	Flooding	1.00	Ponding	1.00
	Ponding	\| 1.00		
Ausable	\|Very limited		\|Very limited	
	Filtering	1.00	Flooding	11.00
	capacity		Depth to	1.00
	Depth to	1.00	saturated zone	
	saturated zone		Seepage	11.00
	Flooding	1.00	Ponding	11.00
	Ponding	1.00	Too acid	0.07
	Too acid	10.07		
12A:				
Makwa	Very limited		\|Very limited	
	Depth to	1.00	Flooding	11.00
	saturated zone		Depth to	11.00
	Flooding	1.00	saturated zone	
	Restricted	\| 1.00	Seepage	11.00
	permeability		Ponding	11.00
	Large stones on the surface	1.00	Stone content	10.84
	Ponding	11.00		
22A:				
Comstock	Very limited		\|Very limited	
	Depth to	1.00	Seepage	11.00
	saturated zone		Depth to	11.00
	Too acid	10.31	saturated zone	
	Restricted	10.31	Too acid	10.31
	permeability			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\|Value	Rating class and   limiting features	Value
27A:				
Scott Lak	Very limited		Very limited	
	Filtering	1.00	Seepage	1.00
	capacity		Depth to	0.86
	Depth to	0.86	saturated zone	
	saturated zone		Too acid	0.31
	Too acid	10.31		
	Droughty	10.05		
28B :				
Haugen, very stony--	Very limited		Very limited	
	Depth to	0.99	Seepage	1.00
	saturated zone		Depth to	0.99
	Too acid	10.91	saturated zone	
	Restricted	$10.78$	Too acid	0.91
	permeability			
	Too steep for	10.08		
	surface			
	application			
Haugen--------------	Very limited		Very limited	
	Depth to	0.99	Seepage	\| 1.00
	saturated zone		Depth to	$0.99$
	Too acid	0.91	saturated zone	
	Restricted	10.78	Too acid	0.91
	permeability			
	Too steep for	10.08		
	surface			
	application			
Rosholt, very stony	Very limited		Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too acid	0.31
	Droughty	10.40		
	Too acid	10.31		
	Too steep for	0.08		
	surface			
	application			
Rosholt------------	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too acid	\| 0.31
	Droughty	10.33		
	Too acid	10.31		
	Too steep for	10.08		
	surface			
	application	1		

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
	\|				
69E:					
Sayner	Very limited		Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too steep forsurface	11.00	
	Too steep for	11.00			
	surface		application		
	application		Too acid	10.77	
	Too steep for	11.00			
	\| sprinkler				
	application				
	Droughty	10.99			
	Too acid	10.77			
Vilas	\|Very limited		Very limited		
	Filtering	11.00	Seepage	1.00	
	capacity		Too steep for surface	11.00	
	Too steep for	11.00			
	surface		application	0.31	
	application		Too acid		
	Too steep for	11.00			
	\| sprinkler				
	\| application				
	Too acid	10.31			
	Droughty	10.04			
82B:					
Cutaway	\|Very limited		Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Depth to   saturated zone   Too acid	10.99	
	Depth to	10.99			
	\| saturated zone			10.03	
	\| Too acid	10.03	Too acid		
	Too steep for	10.02			
	surface				
	\| application				
	\|				
Branstad	\|Very limited		Very limited		
	\| Depth to	10.99	\| Seepage	11.00	
	saturated zone		Depth to saturated zone	10.99	
	Too steep for	10.02			
	surface				
	application				
	\|				
82C:					
Cutaway	\|Very limited		Very limited		
	\| Filtering	11.00	\| Seepage	11.00	
	\| capacity		Depth to	10.99	
	\| Too steep for	11.00	saturated zone		
	surface		Too steep for surface	10.50	
	application	10.99	surface		
	\| saturated zone		Too acid	10.03	
	\| Too steep for	10.22			
	\| sprinkler			\|	
	\| application				
	Too acid	10.03		\|	

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
86A:Al ango					
	Very limited		Very limited		
	Restricted	11.00	Depth to	1.00	
	permeability		saturated zone		
	Depth to	\| 1.00	Seepage	10.69	
	saturated zone		Too acid	0.07	
	Too acid	0.07			
89A:Wildwood					
	Very limited		Very limited		
	Depth to	11.00	Depth to	11.00	
	saturated zone		saturated zone		
	Restricted	11.00	Seepage	11.00	
	permeability		Ponding	1.00	
	Ponding	11.00	Too acid	0.42	
	Too acid	0.42			
	Droughty	\| 0.01			
96B:					
Karlsborg	Very limited		Very limited		
	Filtering	11.00	Seepage	\| 1.00	
	capacity		Depth to	\| 1.00	
	Depth to	11.00	saturated zone		
	saturated zone		Too acid	0.77	
	Restricted	11.00			
	permeability				
	Too acid	10.77			
	Too steep for	10.08			
	surface				
	application				
96C:					
Karlsborg	Very limited		Very limited		
	Filtering	\| 1.00	Seepage	\| 1.00	
	capacity		Depth to	11.00	
	Depth to	\| 1.00	saturated zone		
	saturated zone		Too acid	10.77	
	Restricted	11.00	Too steep for	10.50	
	permeability		surface		
	Too steep for	11.00	application		
	surface				
	application				
	Too acid	10.77			
96D:					
Karlsborg	Very limited		Very limited		
	Filtering	\| 1.00	Seepage	\| 1.00	
	capacity		Depth to	\| 1.00	
	Depth to	11.00	saturated zone		
	saturated zone	$\mid$	Too steep for	11.00	
	Too steep for	11.00	surface		
	surface		application		
	application		Too acid	0.77	
	Restricted	\| 1.00			
	permeability				
	Too steep for	11.00			
	sprinkler				
	application				

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	Value	Rating class and limiting features	\|Value
	\|			
127D:Roshol	I			
	\|Very limited		\|Very limited	
	Filtering	1.00	Seepage	\| 1.00
	\| capacity		Too steep for	\| 1.00
	Too steep for	1.00	surface	
	\| surface		application	
	\| application		Too acid	10.31
	\| Too steep for	1.00		
	\| sprinkler			
	\| application			
	Droughty	0.40		
	\| Too acid	0.31		
127E:				
Amery	\|Very limited		\|Very limited	
	\| Too steep for	1.00	Seepage	11.00
	\| surface		Too steep for	11.00
	\| application		surface	
	\| Too steep for	1.00		
	\| sprinkler		Too acid	10.77
	application			
	\| Too acid	0.77		
	\| Restricted	0.31		
	\| permeability			
	\|			
Rosholt			\|Very limited	
	\| Filtering	1.00	Seepage	11.00
	\| capacity		Too steep for	11.00
	\| Too steep for	1.00	surface	
	\| surface		application	
	\| application		Too acid	0.31
	Too steep for	1.00		
	\| sprinkler			
	\| application			
	Droughty	0.40		
	\| Too acid	0.31		
	,			
151A:	\|			
Bluffton	$\mid$ Very limited		\|Very limited	
	\| Depth to	1.00	Seepage	1.00
	\| saturated zone		Depth to	1.00
	Ponding	1.00	saturated zone	
	\|		Ponding	1.00
	\|			
152A:	\|			
Alstad	\|Very limited		\|Very limited	
	\| Depth to	1.00	Seepage	
	\| saturated zone		Depth to	11.00
	\| Too acid	0.07	saturated zone	
	\|		Too acid	0.07

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	$\left\lvert\, \begin{aligned} & \text { Rating class and } \\ & \text { limiting features }\end{aligned}\right.$	\| Value		Rating class and limiting features	\|Value
154E:	,				
	\|Very limited		Very limited		
	Too steep for	11.00	Seepage	\| 1.00	
	\| surface		Too steep for	11.00	
	\| application		surface		
	Too steep for	11.00	application		
	\| sprinkler		Too acid	0.07	
	application				
	\| Restricted	10.31			
	permeability				
	\| Too acid	10.07			
156B:					
Magnor, very st	Very limited		Very limited		
	Depth to	\| 1.00	Seepage	1.00	
	saturated zone		Depth to	1.00	
	\| Too acid	10.85	saturated zone		
	\| Restricted	10.60	Too acid	0.85	
	\| permeability				
Magnor	\|Very limited		Very limited		
	\| Depth to	11.00	Seepage	1.00	
	\| saturated zone		Depth to	1.00	
	\| Too acid	10.85	saturated zone		
	Restricted	10.60	Too acid	0.85	
	permeability				
157B:					
Freeon, very st	\|Very limited		Very limited		
	\| Depth to	11.00	Seepage	11.00	
	\| saturated zone		Depth to	\| 1.00	
	\| Too acid	10.77	saturated zone		
	Restricted	10.60	Too acid	0.77	
	permeability				
	Too steep for	10.08			
	surface				
	\| application				
Freeon	\|Very limited		Very limited		
	Depth to	11.00	Seepage	11.00	
	\| saturated zone		Depth to	\| 1.00	
	\| Too acid	10.85	saturated zone		
	Restricted permeability	10.60	Too acid	0.85	
	\| Too steep for	10.08			
	surface				
	\| application				
157C:		,			
Freeon, very ston	\|Very limited		Very limited		
	Depth to	11.00	Seepage	\| 1.00	
	\| saturated zone		Depth to	\| 1.00	
	Too steep for	11.00	saturated zone		
	surface		Too acid	\| 0.77	
	\| application		Too steep for	10.50	
	Too acid	10.77	surface		
	\| Restricted	10.60	application		
	\| permeability				
	\| Too steep for	10.22		\|	
	sprinkler			\|	
	application			\|	

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater   by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\| Value		Rating class and   limiting features	\|Value
	\|				
185C:Tradelake	\|				
	\|Very limited		\|Very limited		
	Filtering	1.00	Seepage	\|1.00	
	\| capacity		Depth to	1.00	
	\| Depth to	1.00	saturated zone		
	saturated zone		Too steep for	0.50	
	\| Restricted	1.00	surface		
	\| permeability		application		
	\| Too steep for	11.00	Too acid	0.42	
	\| surface				
	\| application				
	\| Too acid	0.42			
Taylor	\|Very limited		$\mid$ Very limited		
	Restricted	1.00	Seepage		
	permeability		Depth to	$1.00$	
	\| Depth to	1.00	saturated zone		
	\| saturated zone		Too steep for	0.50	
	\| Too steep for	1.00	surface		
	\| surface		application		
	\| application		Too acid	0.14	
	\| Too steep for	0.22			
	\| sprinkler				
	\| application				
	\| Too acid	10.14			
	\|				
185D:					
Tradelake	\|Very limited		\|Very limited		
	\| Filtering	1.00	\| Seepage	\|1.00	
	\| capacity		Too steep for	11.00	
	\| Too steep for	1.00	surface		
	\| surface		application		
	\| application		Depth to	0.99	
	\| Restricted	1.00	saturated zone		
	\| permeability		Too acid	0.42	
	\| Too steep for	1.00			
	\| sprinkler				
	\| application				
	Depth to	10.99			
	\| saturated zone				
	\|				
Taylor	\|Very limited		\|Very limited		
	\| Restricted	1.00	\| Seepage	\| 1.00	
	\| permeability		Depth to	11.00	
	\| Depth to	11.00	saturated zone		
	\| saturated zone		Too steep for	11.00	
	\| Too steep for	1.00	surface		
	\| surface		application		
	\| application		Too acid	10.14	
	\| Too steep for	1.00			
	\| sprinkler				
	\| application				
	\| Too acid	0.14		\|	

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\|Value	Rating class and limiting features	
368B:				
Mahtomedi----------\|Very limited			\|Very limited	
	Filtering	1.00	Seepage	1.00
	capacity		Too acid	0.42
	Droughty	1.00		
	Too acid	0.42		
	Too steep for	0.08		
	surface			
	application			
Cress-------------- \| Very limited			\| Very limited	
	Filtering	1.00	Seepage	\| 1.00
	capacity		Too acid	0.31
	Droughty	0.60		
	Too acid	$\mid 0.31$		
	Too steep for	10.08		
	surface			
	application			
368C:				
Mahtomedi----------\| Very limited			\| Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Too steep for	0.50
	Too steep for	1.00	surface	
	surface		application	
	application		Too acid	0.42
	Droughty	11.00		
	Too acid	10.42		
	Too steep for	\| 0.22		
	sprinkler			
	application			
Cress-----------	Very limited		\| Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Too steep for	0.50
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.31
	Droughty	0.60		
	Too acid	\| 0.31		
	Too steep for	\| 0.22		
	sprinkler			
	application			
368D:				
Mahtomedi----------\|Very limited			\| Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Too steep for	\| 1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.42
	Too steep for	11.00		
	sprinkler			
	application			
	Droughty	1.00		
	Too acid	10.42		

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and   limiting features	\| Value	Rating class and   limiting features	\|Value
368D:				
Cress	Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	\| 1.00
	Too steep for	1.00	surface	
	surface		application	
	application		Too acid	0.31
	Too steep for	11.00		
	sprinkler			
	application			
	Droughty	10.60		
	Too acid	10.31		
368E:				
Mahtomedi	Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	1.00
	Too steep for	1.00	surface	
	surface		application	
	application		Too acid	0.42
	Too steep for	11.00		
	sprinkler			
	application			
	Droughty	11.00		
	Too acid	10.42		
Cress	Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	11.00
	Too steep for	1.00	surface	
	surface		application	
	application		Too acid	0.31
	Too steep for	11.00		
	sprinkler			
	application			
	Droughty	10.60		
	Too acid	10.31		
380B:				
Cress	Very limited		\|Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too acid	10.31
	Droughty	10.60		
	Too acid	10.31		
	Too steep for	10.08		
	surface			
	application			
Rosholt	Very limited		\|Very limited	
	Filtering	1.00	Seepage	11.00
	capacity		Too acid	10.31
	Droughty	10.33		
	Too acid	10.31		
	Too steep for	10.08		
	surface			
	application			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\| Value		Rating class and limiting features	Value
$380 \mathrm{C}:$Cress					
	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too steep for	0.50	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.31	
	Droughty	0.60			
	Too acid	0.31			
	Too steep for	0.22			
	sprinkler				
	application				
Rosholt---------	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too steep for	0.50	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.31	
	Droughty	0.33			
	Too acid	0.31			
	Too steep for	0.22			
	sprinkler				
	application				
380D:					
Cress	Very limited		Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too steep for	\| 1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.31	
	Too steep for	1.00			
	sprinkler				
	application				
	Droughty	0.60			
	Too acid	0.31			
Rosholt-	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too steep for	\| 1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.31	
	Too steep for	1.00			
	sprinkler				
	application				
	Droughty	0.33			
	Too acid	0.31			
383B:					
Mahtomedi----------\| Very limited			\| Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too acid	10.42	
	Droughty	1.00			
	Too acid	0.42		\|	

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	
399C:Grayling				
	Very limited		Very limited	
	Filtering	\| 1.00	Seepage	\| 1.00
	capacity		Too acid	11.00
	Too acid	$\text { \| } 1.00$	Too steep for	0.50
	Too steep for	\| 1.00	surface	
	surface		application	
	application			
	Droughty	11.00		
	Too steep for	0.22		
	sprinkler			
	application			
399D:				
Grayling	\| Very limited		Very limited	
	Filtering	\| 1.00	Seepage	1.00
	capacity		Too steep for	\| 1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	1.00
	Too steep for	11.00		
	sprinkler			
	application			
	Too acid	11.00		
	Droughty	11.00		
406A:				
Loxley-------------\|Very limited			Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Depth to	11.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	11.00
	Too acid	11.00	Too level	11.00
	Ponding	\| 1.00	Ponding	\| 1.00
407A:				
Seelyeville	Very limited		Very limited	
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Ponding	11.00	Seepage	11.00
	Too acid	0.31	Too level	11.00
			Ponding	11.00
			Too acid	10.31
Markey----------	\| Very limited		Very limited	
	\| Filtering	11.00	Depth to	\| 1.00
	capacity		saturated zone	
	Depth to	\| 1.00	Seepage	\| 1.00
	saturated zone		Ponding	\| 1.00
	Ponding	11.00		
410A:				
Seelyeville	\|Very limited		Very limited	
	Depth to saturated zone	11.00	Depth to saturated zone	1.00
	Ponding	11.00	Seepage	\| 1.00
	Too acid	0.31	Too level	11.00
			Ponding	11.00
			Too acid	\| 0.31

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features		Rating class and limiting features	Value
422A:				
Seelyeville---------\|Very limited			\| Very limited	
	Depth to	11.00	Depth to	\| 1.00
	saturated zone		saturated zone	
	Ponding	11.00	Seepage	1.00
	Too acid	0.31	Too level	1.00
			Ponding	1.00
			Too acid	10.31
Cathro------------- \| Very limited			\| Very limited	
	Depth to	11.00	Depth to	11.00
	saturated zone		saturated zone	
	Ponding	11.00	Seepage	1.00
	Too acid	0.07	Too level	1.00
			Ponding	1.00
			Too acid	10.07
Rondeau------------- \| Very limited			\| Very limited	
	Depth to	\| 1.00	Depth to	1.00
	saturated zone		saturated zone	
	Restricted	11.00	Seepage	1.00
	permeability		Too level	11.00
	Ponding	11.00	Ponding	11.00
426B:			$1$	
Emmert------------ \| Very limited			\|Very limited	
	Filtering	\| 1.00	Seepage	1.00
	capacity		Too acid	0.03
	Droughty	11.00		
	Too steep for	10.08		
	surface			
	application			
	Too acid	10.03		
Mahtomedi---------- \| Very limited			\| Very limited	
	Filtering	\| 1.00	Seepage	11.00
	capacity		Too acid	\| 0.42
	Droughty	11.00		
	Too acid	10.42		
	Too steep for	10.08		1
	surface			
	application			\|
Menahga------------ \| Very limited			\| Very limited	1
	Filtering	11.00	Seepage	$1.00$
	capacity		Too acid	10.99
	Too acid	10.99		
	Droughty	10.39		1
	Too steep for	10.08		\|
	surface			
	application			1
				1

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater   by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	
426D:					
Mahtomedi	Very limited		\|Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too steep for	\| 1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	10.42	
	Too steep for	1.00			
	sprinkler				
	application				
	Droughty	1.00			
	Too acid	\| 0.42			
Menahga-	Very limited		\|Very limited		
	Filtering	1.00	Seepage	11.00	
	capacity		Too steep for		
	Too steep for	1.00	surface	11.00	
	surface		application		
	application		Too acid	10.99	
	Too steep for	1.00			
	sprinkler				
	application				
	Too acid	10.99			
	Droughty	0.39			
430A:					
Freya	Very limited		\|Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Depth to	\| 1.00	
	Restricted	1.00	saturated zone		
	permeability		Too acid	0.03	
	Depth to	1.00			
	saturated zone				
	Too acid	0.03			
439B:					
Graycalm	Very limited		\|Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too acid	10.99	
	Too acid	0.99			
	Droughty	0.25			
Menahga	Very limited		\|Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too acid	10.99	
	Too acid	0.99			
	Droughty	0.39			
439C:					
Graycalm-	Very limited		\|Very limited		
	Filtering	1.00	Seepage	11.00	
	capacity		Too acid	10.99	
	Too steep for surface	1.00	Too steep for surface	10.50	
	application		application		
	Too acid	0.99		\|	
	Droughty	0.25		\|	
	Too steep for	0.22	\|	\|	
	sprinkler			\|	
	application		\|	\|	
				\|	

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\| Value		Rating class and limiting features	\|Value
439C:Menahg					
	Very limited		Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too acid	10.99	
	Too steep for	\| 1.00	Too steep for	0.50	
	surface		surface		
	application		application		
	Too acid	10.99			
	Droughty	0.39			
	Too steep for	\| 0.22			
	sprinkler				
	application				
439D:					
Graycalm-----------\|Very limited			Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too steep for	11.00	
	Too steep for	11.00	surface		
	surface		application		
	application		Too acid	0.99	
	Too steep for	11.00			
	sprinkler				
	application				
	Too acid	10.99			
	Droughty	10.25			
Menahga-----------\|Very limited			Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too steep for	11.00	
	Too steep for	11.00	surface		
	surface		application		
	application		Too acid	0.99	
	Too steep for	11.00			
	sprinkler				
	application				
	Too acid	10.99			
	Droughty	0.39			
442C:					
Haugen------------- \| Very limited			\| Very limited		
	Depth to	10.99	Seepage	11.00	
	saturated zone		Depth to	10.99	
	Too steep for	0.92	saturated zone		
	surface		Too acid	0.91	
	application		Too steep for	10.06	
	Too acid	0.91	surface		
	Restricted	\| 0.78	application		
	permeability				
	Too steep for	10.02			
	sprinkler				
	application				
Greenwood----------\| Very limited			Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Depth to	\| 1.00	
	Depth to	11.00	saturated zone		
	saturated zone		Too acid	11.00	
	Too acid	11.00	Ponding	11.00	
	Ponding	11.00			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
443D:				
Amery	Very limited		\|Very limited	
	Too steep for	11.00	Seepage	1.00
	surface		Too steep for	1.00
	application		surface	
	Too steep for	1.00	application	
	sprinkler		Too acid	0.31
	application			
	Too acid	10.31		
	Restricted	\| 0.31		
	permeability			
Greenwood-	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	1.00
	Too acid	11.00	Ponding	1.00
	Ponding	11.00		
459A:				
Loxley	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	1.00
	Too acid	1.00	Too level	1.00
	Ponding	11.00	Ponding	1.00
Daisybay-			\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	1.00
	Too acid	11.00	Too level	1.00
	Restricted	1.00	Ponding	1.00
	permeability			
	Ponding	11.00		
Dawson	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	1.00	saturated zone	
	saturated zone		Too acid	11.00
	Too acid	1.00	Too level	11.00
	Ponding	11.00	Ponding	1.00
	Low adsorption	10.01		
461A:				
Bowstring	Very limited		\|Very limited	
	Filtering	11.00	\| Flooding	1.00
	capacity		Depth to	11.00
	Depth to	11.00	saturated zone	
	saturated zone		Low adsorption	11.00
	Low adsorption	11.00	Seepage	\| 1.00
	Flooding	11.00	Ponding	1.00
	Ponding	11.00		

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and   limiting features	$\begin{aligned} & \text { \|Value } \\ & \hline \end{aligned}$
471C:				
Dairyland	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Cobble content	1.00
	Too steep for	11.00	Depth to	0.99
	surface		saturated zone	
	application		Too steep for	0.94
	Depth to	10.99	surface	
	saturated zone		application	
	Droughty	10.91		
	Too steep for	10.60		
	sprinkler			
	application			
Emmert	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Too steep for	0.94
	Droughty	11.00	surface	
	Too steep for	11.00	application	
	surface		Too acid	0.03
	application			
	Too steep for	10.60		
	sprinkler			
	application			
	Too acid	10.03		
472A:				
Rockmarsh	Very limited		\|Very limited	
	Depth to	11.00	Flooding	1.00
	saturated zone		Seepage	1.00
	Flooding	11.00	Depth to	1.00
	Cobble content	11.00	saturated zone	
	Too acid	10.91	Cobble content	1.00
	Droughty	\| 0.21	Too acid	0.91
Clemens-	Very limited		\|Very limited	
	Filtering	11.00	Flooding	1.00
	capacity		Seepage	1.00
	Depth to	11.00	Depth to	1.00
	saturated zone		saturated zone	
	Flooding	1.00	Cobble content	0.89
	Too acid	10.42	Too acid	0.42
473A:				
Dairyland	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Cobble content	\| 1.00
	Depth to	10.99	Depth to	10.99
	saturated zone		saturated zone	
	Droughty	10.91		
Skog	Very limited		\|Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Depth to	10.86
	Droughty	10.99	saturated zone	
	Depth to	10.86	Flooding	0.40
	saturated zone		Too acid	0.03
	Too acid	10.03		\|
				\|

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater			
	Rating class and limiting features	Value	Rating class and limiting features	Value		
484A:						
Greenwood---------- \|Very limited		Very limited				
	Filtering	1.00	Seepage	11.00		
	capacity		Depth to	11.00		
	Depth to	1.00	saturated zone			
	saturated zone		Too acid	11.00		
	Too acid	1.00	Ponding	11.00		
	Ponding	1.00				
Beseman------------ \| Very limited			\|Very limited			
	Depth to	1.00	Seepage	11.00		
	saturated zone		Depth to	11.00		
	Too acid	1.00	saturated zone			
	Ponding	1.00	Too acid	11.00		
	Restricted	0.31	Too level	11.00		
	permeability		Ponding	1.00		
485C:						
Lupton-------------- \| Very limited			Very limited			
	Depth to	1.00	Depth to	1.00		
	saturated zone		saturated zone			
	Too steep for	1.00	Seepage	11.00		
	surface		Too steep for	0.22		
	application		surface			
	Too steep for	0.10	application			
	sprinkler					
	application					
Tawas-------------- \| Very limited			\| Very limited			
	Filtering	1.00	Depth to	\| 1.00		
	capacity		saturated zone			
	Depth to	1.00	Seepage	11.00		
	saturated zone		Ponding	11.00		
	Too steep for	1.00	Too steep for	0.22		
	surface		surface			
	application		application			
	Ponding	1.00				
	Too steep for	0.10				
	sprinkler					
	application					
495B:						
Karlsborg-----------\|Very limited		\|	Very limited			
	Filtering	1.00	Seepage	11.00		
	capacity		Depth to	11.00		
	Depth to	1.00	saturated zone			
	saturated zone		Too acid	0.77		
	Restricted	1.00				
	permeability					
	Too acid	0.77				
	Too steep for	0.08				
	surface					
	application					

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	Value
495B:					
Grettum	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too acid	$0.85$	
	Too acid	0.85			
	Too steep for	0.08			
	surface				
	application				
	Droughty	0.02			
Perida	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too acid	0.85	
	Restricted	1.00	Depth to	0.09	
	permeability		saturated zone		
	Too acid	0.85			
	Depth to	0.09			
	saturated zone				
	Too steep for	0.08			
	surface				
	application				
495C:					
Karlsborg	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Depth to	1.00	
		1.00	saturated zone		
	saturated zone		Too acid	10.77	
	Restricted	1.00	Too steep for	10.50	
	permeability		surface		
	Too steep for	1.00	application		
	surface				
	application				
	Too acid	0.77			
Grettum-	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too acid	0.85	
	Too steep for surface	1.00	Too steep for surface	0.50	
	application		application		
	Too acid	0.85			
	Too steep for	0.22		\|	
	sprinkler				
	application			\|	
	Droughty	0.02			
Perida-	Very limited		Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too acid	10.85	
	Restricted	1.00	Too steep for	10.50	
	permeability		surface		
	Too steep for	1.00	application	$\mid$	
	surface		Depth to	10.09	
	application		saturated zone		
	Too acid	0.85		\|	
	Too steep for	0.22		1	
	sprinkler				
	application			\|	

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	Value
495D:				
Karlsborg----------\| Very limited			Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too steep for	1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.77
	Restricted	11.00		
	permeability			
	Too steep for	11.00		
	sprinkler			
	application			
Grettum------------\|Very limited			Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	\| 1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.85
	Too steep for	11.00		
	sprinkler			
	application			
	Too acid	10.85		
	Droughty	10.02		
Perida------------- \| Very limited			Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	11.00
	Restricted	11.00	surface	
	permeability		application	
	Too steep for	11.00	Too acid	0.85
	surface		Depth to	0.09
	application		saturated zone	
	Too steep for	1.00		
	sprinkler			
	application			
	Too acid	10.85		
496 B :				
Karlsborg----------\|Very limited			Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Depth to	\| 1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	0.77
	Restricted	11.00		
	permeability			
	Too acid	10.77		
	Too steep for	10.08		
	surface			
	application			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
496C:				
Karlsborg	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	0.77
	Restricted permeability	11.00	Too steep for surface	0.50
	Too steep for	11.00	application	
	surface			
	application			
	Too acid	10.77		
496D:				
Karlsborg	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too steep for	1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.77
	Restricted	11.00		
	permeability			
	Too steep for	11.00		
	sprinkler			
	application			
497A:				
Meenon	Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Depth to	1.00
	Restricted	11.00	saturated zone	
	permeability		Too acid	0.31
	Depth to	11.00		
	saturated zone			
	Too acid	10.31		
	Droughty	10.03		
521A:				
Dody	Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	11.00
	Depth to	1.00	saturated zone	
	saturated zone		Ponding	1.00
	Restricted	1.00	Too acid	0.31
	permeability			
	Ponding	11.00		
	Too acid	10.31		
523A:				
Nokasippi	Very limited		\|Very limited	\|
	Filtering capacity	11.00	Depth to saturated zone	11.00
	Depth to	1.00	Seepage	11.00
	saturated zone		Too level	\| 1.00
	Ponding	11.00	Ponding	11.00
	Too acid	10.77	Too acid	10.77
				\|

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	Value
542C:   Haug					
	Very limited		Very limited		
	Too steep for	11.00	Seepage	11.00	
	surface		Depth to	0.99	
	application		saturated zone		
	Depth to	0.99	Too acid	0.91	
	saturated zone		Too steep for	0.50	
	Too acid	\| 0.91	surface		
	Restricted	\| 0.78	application		
	permeability				
	Too steep for	\| 0.22			
	sprinkler				
	application				
544F:					
Menahga	Very limited		Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too steep for	11.00	
	Too steep for	11.00	surface		
	surface		application		
	application		Too acid	0.99	
	Too steep for	11.00			
	sprinkler				
	application				
	Too acid	10.99			
	Droughty	0.40			
Mahtomedi-------	Very limited		Very limited		
	Filtering	11.00	Seepage	11.00	
	capacity		Too steep for	11.00	
	Too steep for	11.00	surface		
	surface		application		
	application		Too acid	0.42	
	Too steep for	11.00			
	sprinkler				
	application				
	Droughty	11.00			
	Too acid	10.42			
553B :					
Branstad----------\|Very limited			Very limited		
	Depth to	10.99	Seepage	11.00	
	saturated zone		Depth to	0.99	
			saturated zone		
553C:					
Branstad	Very limited		Very limited		
	Too steep for	11.00	Seepage	11.00	
	surface		Depth to	10.99	
	application		saturated zone		
	Depth to	0.99	Too steep for	0.50	
	saturated zone		surface		
	Too steep for	10.22	application		
	sprinkler				
	application				

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	$\mid$ Value	Rating class and   limiting features	\|Value
586A:   Chelmo				
	Very limited		Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Depth to	1.00
	Depth to	\| 1.00	saturated zone	
	saturated zone		Ponding	1.00
	Restricted	\| 1.00		
	permeability			
	Ponding	11.00		
600A:				
Haplosaprists------\| Not rated			Not rated	
Psammaquents--615B:	Not rated		Not rated	
615B: Cress	Very limited		Very limited	
Cress	Filtering	\| 1.00	Seepage	\| 1.00
	capacity		Too acid	$0.31$
	Droughty	10.60		
	Too acid	\| 0.31		
615C:				
Cress	Very limited		Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Too steep for	10.50
	Too steep for	\| 1.00	surface	
	surface		application	
	application		Too acid	\| 0.31
	Droughty	0.60		
	Too acid	\| 0.31		
	Too steep for	\| 0.22		
	sprinkler			
	application			
615D :				
Cress	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too steep for	\| 1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	\| 0.31
	Too steep for	\| 1.00		
	sprinkler			
	application			
	Droughty	0.60		
	Too acid	\| 0.31		
620C:				
Lundeen	Very limited		Very limited	
	Too acid	10.99	Seepage	\| 1.00
	Too steep for	\| 0.92	Depth to bedrock	\| 1.00
	surface		Too acid	10.99
	application		Too steep for	10.06
	Depth to bedrock	10.46	surface	
	Too steep for	10.02	application	
	sprinkler			
	application			

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
632B:					
Aftad	\|Very limited		\|Very limited		
	Depth to	10.99	Seepage	1.00	
	saturated zone		Depth to	0.99	
	Too acid	10.31	saturated zone		
	Restricted	10.30	Too acid	0.31	
	permeability				
	Too steep for	10.08			
	surface				
	application				
632C:					
Aftad	\|Very limited		\|Very limited		
	Too steep for	11.00	Seepage	1.00	
	surface		Depth to	0.99	
	application		saturated zone		
	Depth to	10.99	Too steep for	0.50	
	saturated zone		surface		
	Too acid	10.31	application		
	Restricted	10.30	Too acid	0.31	
	permeability				
	Too steep for	10.22			
	sprinkler				
	application				
634C:					
Drylanding	\|Very limited		\|Very limited		
	Droughty	\| 1.00	Seepage	1.00	
	Depth to bedrock	1.00	Depth to bedrock	11.00	
	Too steep for surface	10.92	Too steep for surface	10.06	
	application		application		
	Cobble content	10.87	Too acid	0.03	
	Large stones on	10.08			
	the surface				
Beartree-	\|Very limited		\|Very limited		
	Droughty	\| 1.00	Depth to	1.00	
	Depth to	11.00	saturated zone		
	\| saturated zone		Depth to bedrock	\| 1.00	
	Depth to bedrock	\| 1.00	Seepage	11.00	
	Ponding	11.00	Ponding	11.00	
			Cobble content	10.02	
Rock outcrop----635C:	Not rated		Not rated		
Drylanding	\|Very limited		\|Very limited		
	Droughty	11.00	\| Seepage	11.00	
	Depth to bedrock	1.00	Depth to bedrock	11.00	
	Too steep for	10.92	Flooding	10.40	
	surface		Too steep for	10.06	
	application		surface		
	Cobble content	10.87	application		
	Large stones on the surface	10.08	Too acid	10.03	

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	Value
635C:					
Beartree-----------\|Very limited			\| Very limited		
	Droughty	1.00	Depth to	\| 1.00	
	Depth to	1.00	saturated zone		
	saturated zone		Depth to bedrock	1.00	
	Depth to bedrock	1.00	Seepage	1.00	
	Ponding	11.00	Ponding	1.00	
			Flooding	0.40	
Rock outcrop--------	Not rated		Not rated		
648B :			\|		
Sconsin------------ \|	Very limited		\| Very limited		
	Depth to	11.00	Seepage	1.00	
	saturated zone		Depth to	\| 1.00	
	Too acid	10.31	saturated zone		
	Too steep for	10.08	Too acid	0.31	
	surface				
	application				
669D:					
Fremstadt, stony----\|	Very limited		\| Very limited		
	Too steep for	11.00	Seepage	1.00	
	surface		Too steep for	1.00	
	application		surface		
	Too steep for	1.00	application		
	sprinkler		Too acid	0.91	
	application				
	Too acid	0.91			
	Filtering	0.01			
	capacity				
Pomroy------------- \|	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too steep for	1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Depth to	0.99	
	Too steep for	1.00	saturated zone		
	sprinkler		Too acid	0.91	
	application				
	Depth to	0.99			
	saturated zone				
	Too acid	10.91			
671B:					
Spoonerhill, stony--\|	Very limited		\| Very limited		
	Depth to	0.99	Seepage	1.00	
	saturated zone		Depth to	10.99	
	Too acid	\| 0.31	saturated zone		
	Restricted	0.31	Too acid	0.31	
	permeability				
	Too steep for	10.08			
	surface				
	application				
	Droughty	10.04		\|	

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	Value
720FHaus	Very limited		Very limited	
	Depth to bedrock	1.00	Seepage	1.00
	Too steep for	1.00	Depth to bedrock	1.00
	surface		Too steep for	1.00
	application		surface	
	Too steep for	1.00	application	
	sprinkler		Too acid	1.00
	application			
	Too acid	1.00		
	Droughty	10.95		
Lundeen---------	Very limited		Very limited	
	Too steep for	1.00	Seepage	1.00
	surface		Depth to bedrock	1.00
	application		Too steep for	1.00
	Too steep for	1.00	surface	
	sprinkler		application	
	application		Too acid	0.99
	Too acid	10.99		
	Depth to bedrock	10.46		
Rock outcrop-------\| Not rated			Not rated	
726B:				
Sissabagama--------\|Very limited			Very limited	
	Filtering	1.00	Seepage	1.00
	capacity		Depth to	0.86
	Depth to	0.86	saturated zone	
	saturated zone		Too acid	0.31
	Restricted	10.78		
	permeability			
	Too acid	0.31		
742B :				
Milaca------------\| Very limited			Very limited	
	Depth to	10.99	Seepage	1.00
	saturated zone		Depth to	0.99
	Too acid	0.42	saturated zone	
	Too steep for	0.08	Too acid	0.42
	surface			
	application			
742C:				
Milaca	Very limited		Very limited	
	Too steep for	1.00	Seepage	11.00
	surface		Depth to	0.99
	application		saturated zone	
	Depth to	10.99	Too steep for	0.50
	saturated zone		surface	
	Too acid	10.42	application	
	Too steep for	\| 0.22	Too acid	\| 0.42
	sprinkler			
	application			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	\| Value
742D:Milac				
	\|Very limited		\|Very limited	
	Too steep for	11.00	Seepage	\| 1.00
	surface		Too steep for	1.00
	application		surface	
	Too steep for	11.00	application	
	sprinkler		Depth to	0.99
	application		saturated zone	
	Depth to	10.99	Too acid	0.42
	saturated zone			
	Too acid	10.42		
755A :				
Moppet	\|Very limited		\|Very limited	
	Filtering	11.00	\| Flooding	\| 1.00
	capacity		Seepage	11.00
	Too acid	11.00	Too acid	11.00
	Depth to saturated zone	10.86	Depth to saturated zone	10.86
	Flooding	10.60		
Fordum-	\|Very limited		\|Very limited	
	Filtering	11.00	Flooding	\| 1.00
	capacity		Seepage	11.00
		11.00	Depth to	11.00
	saturated zone		saturated zone	
	Flooding	11.00	Ponding	1.00
	Ponding	11.00		
771A:				
Lenroot	\|Very limited		\|Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	10.99
	Depth to	10.99	saturated zone	
	saturated zone		Too acid	0.42
	Droughty	10.89		
	Too acid	10.42		
812B:				
Mora	\|Very limited		\|Very limited	
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	11.00
	Too acid	10.42	saturated zone	
			Too acid	10.42
825A:				
Meehan	\|Very limited		\|Very limited	
	Filtering	11.00	Seepage	\| 1.00
	capacity		Depth to	11.00
	Depth to saturated zone	11.00	```saturated zone Too acid```	10.85
	Droughty	10.97		
	Too acid	10.85		

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
1070D:Cress				
	Very limited		Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Too steep for	1.00
	Too steep for	11.00	surface	
	surface		application	
	application		Too acid	0.31
	Too steep for	11.00		
	sprinkler			
	application			
	Droughty	10.60		
	Too acid	10.31		
1080B:				
Spoonerhill--------	Very limited		Very limited	
	Depth to	10.99	Seepage	1.00
	saturated zone		Depth to	0.99
	Too acid	0.31	saturated zone	
	Restricted	\| 0.31	Too acid	0.31
	permeability			
	Too steep for	10.08		
	surface			
	application			
	Droughty	10.04		
Spoonerhill, stony--	Very limited		Very limited	
	Depth to	10.99	Seepage	11.00
	saturated zone		Depth to	10.99
	Too acid	0.31	saturated zone	
	Restricted	0.31	Too acid	\| 0.31
	permeability			
	Too steep for	0.08		
	surface			
	application			
	Droughty	0.04		
Cress--------------- \|	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too acid	\| 0.31
	Droughty	0.60		
	Too acid	0.31		
2002:				
Udorthents, earthen				
	Not rated		Not rated	
2015:				
Pits	Not rated		Not rated	,
				\|
2050:				
Landfill-----------	Not rated		Not rated	
3011A:				1
Barronett	Very limited		Very limited	
	Depth to	11.00	Seepage	11.00
	saturated zone		Depth to	11.00
	Ponding	1.00	saturated zone	
	Too acid	0.31	Ponding	\| 1.00
	Restricted	\| 0.31	Too acid	\| 0.31
	permeability			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\|Value		Rating class and limiting features	Value
3082E:Braham					
	Very limited		Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Too steep for	1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.03	
	Too steep for	1.00			
	sprinkler				
	application				
	Too acid	0.03			
Shawano-	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Too steep for	1.00	
	Too steep for	1.00	surface		
	surface		application		
	application		Too acid	0.31	
	Too steep for	1.00			
	sprinkler				
	application				
	Droughty	0.49			
	Too acid	0.31			
3114A:					
Saprists	Very limited		Very limited		
	Ponding	1.00	Ponding	\| 1.00	
	Depth to	1.00	Depth to	\| 1.00	
	saturated zone		saturated zone		
	Too acid	0.31	Seepage	1.00	
			Too level	1.00	
			Too acid	0.31	
Aquents	Very limited		Very limited		
	Filtering	1.00	Seepage	1.00	
	capacity		Ponding	1.00	
	Ponding	1.00	Depth to	1.00	
	Depth to	1.00	saturated zone	\|	
	saturated zone		Too acid	11.00	
	Too acid	1.00	Too level	\| 1.00	
	Droughty	0.03			
Aquepts	Very limited		Very limited		
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Ponding	\| 1.00	
	Ponding	1.00	Depth to	\| 1.00	
	Depth to	1.00	saturated zone	\|	
	saturated zone		Too level	\| 1.00	
	Too acid	0.07	Too acid	\| 0.07	
3125A:				\|	
Meehan	Very limited		Very limited	\|	
	Filtering	1.00	Seepage	\| 1.00	
	capacity		Depth to	\| 1.00	
	Depth to	1.00	saturated zone		
	saturated zone		Too acid	0.85	
	Droughty	0.94		\|	
	Too acid	0.85		,	

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater		
	Rating class and limiting features	\| Value		Rating class and limiting features	Value
3126A:Wurtsmith					
	\| Very limited		Very limited		
	Filtering	\| 1.00	Seepage	1.00	
	capacity		Too acid	1.00	
	Too acid	\| 1.00	Depth to	0.99	
	Depth to	$0.99$	saturated zone		
	saturated zone				
	Droughty	0.85			
3312B:					
Glendenning, very stony					
	\| Very limited		Very limited		
	Depth to	11.00	Seepage	1.00	
	saturated zone		Depth to	1.00	
	Too acid	\| 0.31	saturated zone		
	Restricted	$0.31$	Too acid	0.31	
	permeability				
Glendenning	\| Very limited		Very limited		
	Depth to	11.00	Seepage	1.00	
	saturated zone		Depth to	\| 1.00	
	Too acid	\| 0.31	saturated zone		
	Restricted	\| 0.31	Too acid	0.31	
	permeability				
3336A:					
Fenande	Very limited		Very limited		
	Depth to	\| 1.00	Seepage	\| 1.00	
	saturated zone		Depth to	$1.00$	
	Ponding	11.00	saturated zone		
	Restricted	\| 0.31	Ponding	1.00	
	permeability				
3403A:					
Loxley	\| Very limited		Very limited		
	Filtering	\| 1.00	Seepage	1.00	
	capacity		Depth to	1.00	
	Depth to	11.00	saturated zone		
	saturated zone		Too acid	1.00	
	Too acid	11.00	Too level	11.00	
	Ponding	11.00	Ponding	11.00	
Beseman	\|Very limited		Very limited		
	Depth to	11.00	Seepage	1.00	
	saturated zone		Depth to	1.00	
	Too acid	1.00	saturated zone		
	Ponding	11.00	Too acid	\| 1.00	
	Restricted	\| 0.31	Too level	$1.00$	
	permeability		Ponding	\| 1.00	
Dawson	\| Very limited		Very limited		
	Filtering	11.00	Seepage	1.00	
	capacity		Depth to	\| 1.00	
	Depth to	11.00	saturated zone		
	saturated zone		Too acid	\| 1.00	
	Too acid	1.00	Too level	11.00	
	Ponding	11.00	Ponding	\| 1.00	
	Low adsorption	0.01			

Table 21b.--Agricultural Waste Management--Continued

Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\|Value	Rating class and limiting features	Value
		3429B:		
Lara--------------- \| Very limited			Very limited	
	Restricted	11.00	Seepage	\| 1.00
	permeability		Depth to	1.00
	Depth to	1.00	saturated zone	
	saturated zone			
	Filtering	0.01		
	capacity			
3429C:				
Lara------------	Very limited		Very limited	
	Restricted	11.00	Seepage	\| 1.00
	permeability		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too steep for	0.50
	Too steep for	11.00	surface	
	surface		application	
	application			
	Too steep for	10.22		
	sprinkler			
	application			
	Filtering	10.01		
	capacity			
3446A:				
Newson	Very limited		\| Very limited	
	Filtering	11.00	Seepage	1.00
	capacity		Depth to	1.00
	Depth to	11.00	saturated zone	
	saturated zone		Too acid	1.00
	Too acid	11.00	Ponding	1.00
	Ponding	11.00		
	Droughty	10.03		
3448B:				
Grettum	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too acid	0.85
	Too acid	10.85		
	Droughty	\| 0.02		
3448C:				
Grettum	Very limited		Very limited	
	Filtering	11.00	Seepage	11.00
	capacity		Too acid	10.85
	Too steep for	11.00	Too steep for	10.50
	surface		surface	
	application		application	
	Too acid	10.85		\|
	Too steep for	10.22		\|
	sprinkler			
	application			\|
	Droughty	10.02		\|

Table 21b.--Agricultural Waste Management--Continued


Table 21b.--Agricultural Waste Management--Continued


Map symbol and soil name	Disposal of wastewater by irrigation		Overland flow of wastewater	
	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
$\begin{aligned} & \text { 3636B: } \\ & \text { Plainb } \end{aligned}$				
	\|Very limited		\|Very limited	
	Filtering	11.00	\| Seepage	1.00
	capacity		Depth to bedrock	1.00
	Droughty	11.00	Too acid	0.91
	Too acid	10.91		
	Depth to bedrock	10.46		
	Too steep for	10.08		
	surface			
	application			
3636C:				
Plainbo	\|Very limited		$\mid$ Very limited	
	\| Filtering	11.00	Seepage	1.00
	capacity		Depth to bedrock	\| 1.00
	Droughty	11.00	Too acid	0.91
	Too steep for	11.00	Too steep for	0.50
	surface		surface	
	application		application	
	Too acid	10.91		
	Depth to bedrock	10.46		
M-W :				
Miscellaneous water	\| Not rated		\| Not rated	
W:Water------------				
	Not rated		\| Not rated	

## Soil Properties

Data relating to soil properties are collected during the course of the soil survey.
Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

## Engineering Index Properties

Table 22 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture.
These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group
index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

## Physical Properties

Table 23 shows estimates of some physical characteristics and features that affect soilbehavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 23, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3-$ or $1 / 10-$ bar $(33 \mathrm{kPa}$ or 10 kPa$)$ moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity ( $\mathrm{K}_{\text {sat }}$ ). The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension ( 33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 23, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 23 as the K factor ( Kw and Kf ) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor $T$ is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook" (USDA, NRCS).

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

## Chemical Properties

Table 24 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality ( pH 7.0 ) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium- N volatilization.

## Water Features

Soil moisture status is an estimate of the fluctuating water content in a soil. It greatly influences vegetation type and plant growth; physical properties of soils, such as permeability, workability, strength, linear extensibility, and frost action; and chemical interactions and transport. Many other properties, qualities, and interpretations also are affected. Soil moisture status is important in the classification of soils, wetland, and habitat.

Table 25 gives estimates of soil moisture for each component of a map unit at various depths for every month of the year. The depths displayed are representative values that are indicative of conditions that occur most commonly. Dry indicates a moisture condition under which most plants (especially crops) cannot extract water for growth. Moist indicates a moisture condition under which soil water is most readily available for plant growth. Wet indicates a condition under which water will stand in an unlined hole or at least a condition under which the soil is too wet for the growth of most agricultural species. A moisture status of 4.0-6.7 (wet) indicates that most of the time the component is saturated at some depth between 4.0 feet and 6.7 feet during the month designated. In some years the soil may be saturated at a depth of less than 4.0 feet or more than 6.7 feet; however, field observations indicate that the soil will be saturated between these depths in most years. In the summer, the soil may show the effects of drying plus intermittent rains that result in a moist or wet layer over a dry layer that gets moist or wet again.

In table 25, hydrologic soil groups are groups of soils that, when saturated, have the same runoff potential under similar storm and ground cover conditions. The soil properties that affect the runoff potential are those that influence the minimum rate of infiltration in a bare soil after prolonged wetting and when the soil is not frozen. These properties include the depth to a zone in which the soil moisture status is wet, the infiltration rate, permeability after prolonged wetting, and the depth to a very slowly
permeable horizon or horizons. The influences of ground cover and slope are treated independently and are not taken into account in hydrologic soil groups.

In the definitions of the hydrologic soil groups, the infiltration rate is the rate at which water enters the soil at the surface and is controlled by surface conditions. The transmission rate is the rate at which water moves through the soil and is controlled by properties of the soil horizons.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist chiefly of very deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have a moderately fine to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a horizon or horizons that impede the downward movement of water or soils that have a moderately fine or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clayey soils that have a high linear extensibility; soils that have a zone, high in the profile, in which the soil moisture status is wet on a permanent basis; soils that have a claypan or clay horizon or horizons at or near the surface; and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas.

Flooding, the temporary covering of the soil surface by flowing water, is caused by overflow from streams or by runoff from adjacent slopes. Shallow water standing or flowing for short periods after rainfall or snowmelt is not considered flooding. Standing water in marshes and swamps or in closed depressions is considered to be ponding.

Table 26 gives estimates of the frequency and duration of flooding for every month of the year. Flooding frequency is the annual probability of a flood event expressed as a class. None indicates no reasonable possibility of flooding (the chance of flooding is nearly 0 percent in any year, or flooding is likely less than once in 500 years). Very rare indicates that flooding is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year, or flooding is likely less than once in 100 years but more than once in 500 years). Rare indicates that flooding is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year, or flooding is likely 1 to 5 times in 100 years). Occasional indicates that flooding occurs infrequently under usual weather conditions (the chance of flooding is 5 to 50 percent in any year, or flooding is likely 5 to 50 times in 100 years). Frequent indicates that flooding is likely to occur often under usual weather conditions (the chance of flooding is more than 50 percent in any year, or flooding is likely more than 50 times in 100 years; but the chance of flooding is less than 50 percent in all months in any year). Very frequent indicates that flooding is likely to occur very often under usual weather conditions (the chance of flooding is more than 50 percent in all months of any year).

Flooding duration is the average duration of inundation per flood occurrence expressed as a class. Extremely brief is 0.1 hour to 4.0 hours; very brief is 4 to 48 hours; brief is 2 to 7 days; long is 7 to 30 days; and very long is more than 30 days. About two-thirds to three-fourths of all flooding occurs during the stated period.

The information on flooding is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and level of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation.

Table 27 gives estimates of the frequency, duration, and depth of ponding for every month of the year. The depths displayed are representative values that are indicative of conditions that occur most of the time.

Ponding frequency is the number of times ponding occurs over a period of time. None indicates no reasonable possibility of ponding (the chance of ponding is nearly 0 percent in any year). Rare indicates that ponding is unlikely but possible under unusual weather conditions (the chance of ponding ranges from nearly 0 percent to 5 percent in any year, or ponding is likely 0 to 5 times in 100 years). Occasional indicates that ponding is expected infrequently under usual weather conditions (the chance of ponding ranges from 5 to 50 percent in any one year, or ponding is likely 5 to 50 times in 100 years). Frequent indicates that ponding is likely to occur under usual weather conditions (the chance of ponding is more than 50 percent in any year, or ponding is likely more than 50 times in 100 years).

Ponding duration is the average length of time of the ponding occurrence. It is expressed as very brief (less than 2 days), brief ( 2 to 7 days), long ( 7 to 30 days), and very long (more than 30 days).

## Soil Features

Table 28 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a zone of saturation close to the surface in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of
uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification				Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
					$\square$									
					>10	3-10								
			Unified	AASHTO	inches	inches	4	10	40	200				
	In				Pct	Pct					Pct			
28B:				\|										
Rosholt, very														
stony	0-4	\| Sandy loam	\| SM	\|A-2, A-4	1-5	0-3	\|80-100		75-100	\|50-75	\| 25-40	0-21	\|NP-4	
	4-10	\| Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		50-100	\|35-75	\|15-40	0-23	\|NP-6	
		\| fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	10-14	\| Sandy loam,	SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	55-100\|	50-100	\|35-75	\| 15-40	0-23	\| NP-6		
		\| fine sandy												
		\| loam, gravelly												
		\| loamy sand												
	14-28	\|Sandy loam,	\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	55-100\|	50-100	\|35-80	\|20-45	0-26	\| NP-8		
		\| fine sandy												
		\| loam, gravelly												
		\| loam												
	28-34	\|Gravelly loamy	\|GM, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-100	20-80	5-25	0-23	\| NP-6	
		sand, very	SM, SP-SM	\|										
		\| gravelly												
		\| coarse sand,												
		\| sand												
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-95	\|15-65	0-15	0-14	NP
		to very	SP, SP-SM	\|										
		\| gravelly												
		\| coarse sand												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   limit	Plasticity index	
			Unified	AASHTO	$\begin{array}{\|l\|} \mid>10 \\ \mid \text { inches } \end{array}$	$\begin{array}{\|c\|} \hline 3-10 \\ \text { inches } \end{array}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
		\|											
Haugen	0-7	\| Sandy loam	\| SC-SM, SM	A-2-4, A-4	0-5	0-7	\|85-100	75-98	\| 50-70	\| 20-40	19-32	3-9	
	7-15	\| Sandy loam,		\| SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\| 55-100	50-90	\| 35-85	\|15-65	16-28	1-9
		gravelly sandy											
		\| loam, fine											
		\| sandy loam,											
		\| gravelly loam											
	15-23	\| Gravelly sandy	\|SM, SC-SM	\|A-1, A-2, A-4		0-5	0-7	\|55-100	50-90	\| 35-75	\|15-45	\|16-28	1-9
		\| loam, sandy											
		\| loam, fine											
		\| sandy loam,											
		\| gravelly loam											
	23-35	\| Gravelly sandy	\|SC-SM, SM	\|A-1, A-2, A-4		0-5	0-7	\|55-100	50-90	\| 35-75	\|15-45	\|16-27	2-10
		\| loam, sandy											
		\| loam, gravelly											
		\| fine sandy											
		loam											
	35-49	\| Sandy loam,	\|SC, SM	\|A-2, A-4, A-1		0-5	0-7	55-100	50-90	\| 35-75	\|15-45	17-28	3-10
		\| gravelly sandy											
		\| loam, fine											
		\| sandy loam											
	49-79	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2	0-5	0-7	55-100	50-90	\| 35-75	\|15-45	18-30	4-12	
		\| loam, sandy											
		loam, fine											
		sandy loam											
	79-80	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2, A-4\|	0-5	0-7	\|55-100	50-90	\| 35-75	\| $15-45$	17-27	3-10	
		loam, sandy											
		\| loam, fine											
		\| sandy loam											

Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification				Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
					$\square$									
					>10	3-10								
			Unified	AASHTO	inches	inches	4	10	40	200				
	In				Pct	Pct					Pct			
28C:				\|										
Rosholt, very														
stony	0-4	\| Sandy loam	\| SM	\|A-2, A-4	1-5	0-3	\|80-100		75-100	\|50-75	\| 25-40	0-21	\|NP-4	
	4-10	\| Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		50-100	\|35-75	\|15-40	0-23	\|NP-6	
		\| fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	10-14	\| Sandy loam,	SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	55-100\|	50-100	\|35-75	\| 15-40	0-23	\| NP-6		
		\| fine sandy												
		\| loam, gravelly												
		\| loamy sand												
	14-28	\|Sandy loam,	\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	55-100\|	50-100	\|35-80	\|20-45	0-26	\| NP-8		
		\| fine sandy												
		\| loam, gravelly												
		loam \|												
	28-34	\|Gravelly loamy	\|GM, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-100	20-80	5-25	0-23	\| NP-6	
		sand, very	SM, SP-SM	\|										
		\| gravelly												
		\| coarse sand,												
		\| sand												
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-95	\|15-65	0-15	0-14	NP
		to very	SP, SP-SM	\|										
		\| gravelly												
		\| coarse sand												



Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit	Plasticity index	
			\|		$\left\lvert\, \begin{array}{l\|l\|}  \\ >10 \mid 3-10 \end{array}\right.$									
			Unified	A AASHTO	\|inches	\|inches		4	10	40	200			
	In			\|	Pct	Pct					Pct			
38B:														
Rosholt-----	0-8	\|Sandy loam	\| SM	\|A-2, A-4	0	0-3	\| 80-100		75-100	\|50-75	\|25-40	0-21	\| NP-4	
	8-10	\|Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	\|35-75	\|15-40	0-23	\| NP-6	
		\| fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	10-14	\|Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	35-75	\|15-40	0-23	\| NP-6	
		fine sandy												
		\| loam, gravelly												
		\| loamy sand												
	14-28	\|Sandy loam,	\|SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	35-80	\|20-45	0-26	\| NP-8	
		\| fine sandy												
		loam, gravelly\|												
		loam												
	28-34	\|Gravelly loamy	\| SM, SP-SM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		25-100	20-80	5-25	0-23	\| NP-6	
		\| sand, very	\| GM, GP-GM											
		\| gravelly												
		\| coarse sand,												
		sand \|												
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		25-100	15-65	0-15	0-14	NP
		\| to very		\| SP, SP-SM										
		\| gravelly												
		\| coarse sand												
38C:														
Rosholt		\| Sandy loam						\|75-100		\|50-75	\|25-40			
	8-10	\| Sandy loam,	\| SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	\|35-75	\|15-40	0-23	\|NP-6	
		fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	10-14	\| Sandy loam,	\| SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	35-75	15-40	0-23	\|NP-6	
		\| fine sandy												
		\| loam, gravelly												
		\| loamy sand												
	14-28	\| Sandy loam,	\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		50-100	\|35-80	\|20-45	0-26	\| NP-8	
	14-28	fine sandy	\|SC, SM	\|A-1, A-2, A-4				\|55-100		50-100	35-80	20-45		
		\| loam, gravelly												
		loam \|												
	28-34	\|Gravelly loamy	\| GM, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		25-100	20-80	5-25	0-23	\| NP-6	
		sand, very	\| SM, SP-SM											
		\| gravelly												
		\| coarse sand,												
		sand												
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		25-100	15-65	0-15	0-14	NP
		\| to very		\| SP, SP-SM										
		\| gravelly												
		\| coarse sand												

Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plas\|ticity	index		
			Unified												
				AASHTO	$>10 \mid 3-10$   inches $\mid$ inches										
							\| 4	10	40	200					
	In				Pct	Pct					Pct				
Rosholt-----	0-8	\|Sandy loam	\| SM	\|A-2, A-4	0	0-3	\|80-100		75-100\|	50-75	\|25-40	0-21	\|NP-4		
	8-10	\|Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		\|50-100		35-75	\|15-40	0-23	\| NP-6	
		\| fine sandy		\|SC-SM, SM											
		\| loam, gravelly													
		\| loamy sand													
	10-14	\| Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		\| 50-100		35-75	\|15-40	0-23	\| NP-6	
		\| fine sandy													
		\| loam, gravelly													
		\| loamy sand													
	14-28	\| Sandy loam,	\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		50-100	35-80	\|20-45	0-26	\| NP-8		
		\| fine sandy													
		\| loam, gravelly													
		\| loam													
	28-34			$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		\|25-100		20-80	5-25	0-23	\| NP-6	
		sand, very	\| SM, SP-SM	\|A-1, A-2, A-3		0	0-25	\|30-100		\|25-100		20-80	5-25	0-23	NP-6
		\| gravelly													
		\| coarse sand,													
		sand													
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\| 30-100		\|25-100		15-65	0-15	0-14	NP
		\| to very		\| SP, SP-SM											
		\| gravelly													
		coarse sand \|													

Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plas\|ticity index		
					$\begin{array}{\|c\|c\|} \left\lvert\, \begin{array}{\|c\|c\|} \hline 10-10 \\ \mid \text { inches } & \text { inches } \end{array}\right. \\ \hline \end{array}$									
			Unified	AASHTO			\| 4		10	40	200			
	In	\|				Pct	Pct					Pct		
		\|												
69C:														
Keweenaw-----	0-2	\| Loamy sand	\|SC, SC-SM, SM		A-2, A-2-4	0-2	0-20	\| 90-100		75-100	40-75	15-30	0-20	\| NP-10
	2-4	\|Sandy loam,	\|SC, SC-SM, SM		A-1-b, A-2,	0	0-50	\| 85-100		\| 65-100	\|45-75	15-35	0-20	\| NP-10
		\| loamy sand,		A-2-4										
		\| gravelly loamy												
		\| fine sand,												
		\| cobbly loamy												
		\| sand												
	4-16	\|Sandy loam,	\|SC, SC-SM, SM		A-2, A-1-b,	0	0-25	\| 85-100		\|65-100	\|45-75	15-35	0-20	\| NP-10
		\| gravelly loamy		A-2-4										
		\| sand, loamy												
		\| sand, cobbly												
		\| loamy fine												
		\| sand												
	16-20	\| Loamy sand,	\|SC, SC-SM,	A-2, A-1-b	0	0-25	\| 85-100		\|65-100	\|45-75	10-25	0-20	\| NP-10	
	$16-20$	\| cobbly loamy	SM, SP-SM	A-2, A-1-b			\|85-100		- 100	-	10-25		-	
		\| fine sand,												
		\| gravelly loamy												
		\| sand, sand												
	20-27	\| Loamy sand,	\|SC, SC-SM,	A-1-b, A-2,	0	0-25	\| 85-100		\|65-100	\|45-75	\|10-25	0-23	\| NP-10	
		\| cobbly sand,	SM, SP-SM	A-2-4										
		\| gravelly loamy												
	27-43	\| Sand, cobbly	\|SC, SC-SM,	A-3, A-1-b,	0	0-25	\| 85-100		\| 65-100	\|40-80	5-20	0-27	\| NP-10	
		\| loamy sand,	SM, SP-SM	A-2, A-2-4										
		\| gravelly loamy												
		\| fine sand,												
		\| sandy loam												
	43-75	\| Loamy sand,	\|SC, SC-SM, SM		A-1-b, A-2,	0	0-25	\| 85-100		\|65-100	\|45-80	10-30	0-30	\| NP-10
		\| sandy loam,		A-2-4										
		\| fine sandy												
		\| loam, gravelly												
		\| loamy fine												
		sand												
	75-80	\| Loamy sand,	\|SC, SC-SM,	A-1-b, A-2,	0	0-25	\| 85-100		\|65-100	\|45-75	\|10-25	0-20	\| NP-10	
		gravelly loamy	SM, SP-SM	A-2-4										
		\| sand, cobbly												
		\| sand												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

$\begin{gathered} \text { Map symbol } \\ \text { and } \\ \text { soil name } \end{gathered}$	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
			Unified	AASHTO	$>10$ $3-10$   $\mid$ inches inches									
							4	10	40	200				
	In		\|			Pct	Pct					Pct		
			\|		\|									
152A:														
Alstad-------	0-9	\| Loam	\| ML	A-4	0	0-4	\|85-100		\|80-98	\| 65-95	50-75	\| 21-40	3-12	
	9-15	\|Fine sandy	\|SC-SM, ML, SM		A-4	0	0-4	\| 85-100		\|80-98	\| 55-95	\| $35-75$	\|16-29	1-10
		l loam, loam												
	15-18	\| Fine sandy	\| SC-SM	A-4, A-6	0	0-4	\|85-100		\|80-98	\| 55-95	\| 35-75	25-38	8-18	
		\| loam, loam												
	18-24	\| Sandy clay	\| SC-SM	A-6	0	0-4	\|85-100		\|80-98	\| 55-95	\| 35-80	\|26-42	10-21	
		\| loam, loam,												
		\| fine sandy	1											
		\| loam, clay												
		\| loam												
	24-49	\|Sandy clay	\| SC-SM	A-2-6, A-6	0	0-4	\|85-100		\|80-98	\| 55-95	\| $30-80$	\|29-44	12-23	
		\| loam, fine												
		\| sandy loam,	\|											
		\| loam, clay												
		loam												
	49-60	\|Fine sandy	\|SC-SM	A-2-4	0	0-4	85-100	80-98	\|55-95	\|30-75	\|23-29	8-11		
		\| loam, loam												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
					>10	3-10								
			Unified	AASHTO	inches	\|inches		\| 4	10	40	200			
	In	\|		\|			Pct	Pct					Pct	
156B:														
Magnor, verystony------														
	0-4	\|Silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	A-4	0-2	0-5	\|90-100		\|85-100	80-100	\|70-90	\| 20-33	3-10	
	4-11	\| Silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	\|A-4	0-2	0-5	\| 90-100		\|85-100	80-100	\|70-90	\|16-27	2-8	
	11-16	\|silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	A-4	0-2	0-5	\|90-100		\|85-100	\| 80-100		70-90	\|17-26	3-9
	16-21	\|silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	A-4	0-2	0-5	\| 90-100		\|85-100	\| 80-100		\|70-90	\|18-27	3-10
	21-39	\|Sandy loam,	\|SC-SM, CL-ML,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\| 55-100		\| 50-90	\| $30-80$	15-70	\|18-29	3-11	
		\| fine sandy	\| CL, ML, SC,											
		\| loam, gravelly		SM										
		\| sandy loam,												
		loam												
	39-58	\|Fine sandy	\| CL-ML, SC-SM,	\|A-1, A-2, A-4		0-5	0-7	\|55-100		50-90	\| $30-80$	15-70	\| 18-29	3-11
		\| loam, sandy		\| CL, ML, SC,										
		\| loam, gravelly		SM										
		\| sandy loam,												
		\| loam												
	58-60	\|Fine sandy	\|SC-SM, SM	A-1, A-2	0-5	0-7	\| 55-100		50-90	\| 30-60	15-30	0-26	\| NP-9	
		\| loam, sandy												
		\| loam, gravelly												
		\| fine sandy												
		loam												
Magnor-------	0-8	\| Silt loam	\| CL, CL-ML, ML ${ }^{\text {d }}$	A-4	0-2	0-5	\|90-100		85-100	\| 80-100		70-90	\| 20-34	3-11
	8-11	\| Silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	A-4	0-2	0-5	\|90-100		\|85-100	\| 80-100		\|70-90	\|16-27	2-8
	11-16	\|Silt loam	\|CL, CL-ML, ML ${ }^{\text {c }}$	A-4	0-2	0-5	\| 90-100		\|85-100	\| 80-100		\|70-90	\|17-26	3-9
	16-21	\|Silt loam	\|CL, CL-ML, ML		0-2	0-5	\| 90-100		\|85-100	\| 80-100		\|70-90	\|18-27	3-10
	21-39	\|Sandy loam,	\|CL, ML, SC,		$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\|55-100		50-90	\| 30-80	15-70	\|18-29	3-11
		\| fine sandy	SM, SC-SM,											
		\| loam, gravelly		\| CL-ML										
		\| sandy loam,												
		loam												
	39-58	\|Fine sandy	\| CL, ML, SC,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\|55-100		150-90	\| 30-80	15-70	\| 18-29	3-11	
		\| loam, sandy	SM, CL-ML,											
		\| loam, gravelly		SC-SM										
		\| sandy loam,												
		loam												
	58-60	\|Fine sandy	\|SC-SM, SM	A-1, A-2	0-5	0-7	\|55-100		50-90	\| 30-60	15-30	0-26	\| NP-9	
		\| loam, sandy												
		\| loam, gravelly												
		$\mid$ fine sandy \|												
		\| loam												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

| Map symbol <br> and <br> soil name | Depth | USDA texture | Classification |  | Fragments |  | Percentage passing sieve number-- |  |  |  | \|Liquid| <br> \|limit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | >10 | 3-10 |  |  |  |  |  |  |
|  |  |  | Unified | AASHTO | \| inches | \|inches | 4 | 10 | 40 | 200 |  |  |
|  | In | , |  |  | Pct | Pct |  | \| |  |  | Pct |  |
|  |  | \| | , |  |  |  |  | \| |  | \| |  |  |
| 165B : |  |  |  |  |  |  |  |  |  |  |  |  |
| Elderon------ | 0-7 | \| Sandy loam | \|SC, SC-SM, SM| | A-2-4 | 0-2 | 3-25 | \|85-100 | 75-93 | \|45-65 | \| 25-35 | \| 18-31 | 2-10 |
|  | 7-15 | \|Very cobbly | \|GM, SC-SM, SM| | A-1-b, A-2-4 | 0-5 | \| 15 -55 | \|30-60 | \| 25-55 | \| 15-35 | \| 10-15 | \|16-27 | 2-10 |
|  |  | \| coarse sandy |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam, very |  |  |  |  |  |  |  |  |  |  |
|  |  | \| gravelly |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| coarse sandy |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| loam, very | |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| gravelly sandy| |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| loam, very | |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| cobbly sandy |  |  |  |  |  |  |  |  |  |  |
|  |  | loam |  |  |  |  |  |  |  |  |  |  |
|  | 15-44 | \| Extremely | \|SM, SC-SM, GM| | A-1-b, A-2-4 | 0-5 | \| 15-55 | 130-60 | \| 25-55 | 15-25 | 1-15 | 0-22 | \|NP-6 |
|  |  | \| cobbly loamy |  |  |  |  |  |  |  |  |  |  |
|  |  | \| coarse sand, |  |  |  |  |  |  |  |  |  |  |
|  |  | \| very gravelly |  |  |  |  |  |  |  |  |  |  |
|  |  | \| coarse sand, |  |  |  |  |  |  |  |  |  |  |
|  |  | \| very cobbly |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| sand, |  |  |  |  |  | , |  |  |  |  |
|  |  | \| extremely |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| gravelly loamy| |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| coarse sand, | |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| very gravelly |  |  |  |  |  | , |  |  |  |  |
|  |  | \| loamy sand |  |  |  |  |  |  |  |  |  |  |
|  | 44-60 | \|Extremely | \| GW, GC-GM | A-1-b | 0-5 | \| 15-55 | \|30-60 | \|25-55 | \| 15-25 | 0-10 | 0-20 | \|NP-4 |
|  |  | \| cobbly coarse |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand, very |  |  |  |  |  |  |  |  |  |  |
|  |  | \| cobbly sand, |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| very gravelly |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| coarse sand, |  |  |  |  |  | \| |  |  |  |  |
|  |  | \| extremely |  |  |  |  |  | \| |  |  |  |  |
|  |  | gravelly sand \| |  |  |  |  |  | \| |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification				Percentage passing sieve number--				Liquid   limit	Plasticity index		
					$\square$									
					$\begin{array}{\|l\|} \hline>10 \\ \text { inches } \end{array}$	$\left\lvert\, \begin{gathered} 3-10 \\ \text { inches } \end{gathered}\right.$								
			Unified	AASHTO			\| 4	10	40	200				
	In				Pct	Pct					Pct			
337A:														
Plover------	0-10	\|Fine sandy loam		\| ML, SM	\|A-4	0	0	\| 95-100		\|90-100	65-90	\| 35-50	0-20	\| NP-4
	10-13	$\mid$ Fine sandy	\| CL-ML, ML,	\|A-4	0	0	\| 95-100		\|90-100	$\|70-100\|$	140-80	0-20	\| NP-5	
		\| loam, sandy	SC-SM, SM											
		loam, silt												
		loam												
	13-18	$\mid$ Fine sandy	\| CL-ML, ML,	\|A-4	0	0	\| 95-100		90-100	70-100	140-80	0-20	\| NP-5	
		loam, sandy	SC-SM, SM											
		loam, silt												
		loam												
	18-32	$\mid$ Fine sandy	\| CL-ML, ML,	\|A-4	0	0	\| 95-100		90-100	65-95	140-75	0-25	\| NP-7	
		\| loam, sandy	\| SC-SM, SM											
		loam, loam												
	32-60	\|Stratified fine		\| CL-ML, ML,	\|A-4	0	0	\|95-100		\|90-100	60-95	\|35-75	0-25	\|NP-7
		sand to silt	\| SC-SM, SM											
368B:														
Mahtomedi----	0-5	\| Loamy sand	\|SC-SM, SM	A-2	0	0-3	\| 85-100		75-100	\|40-75	120-30	0-28	\| NP-10	
	5-8	\| Sand, coarse	\|SP-SM, SM	A-2, A-3	0	0-3	\| 85-100		75-100	\|35-75	5-30	0-23	\|NP-6	
		sand, loamy coarse sand												
	8-15	\|Gravelly coarse		\|SM, SP-SM	\| A-1	0	0-15	\|60-95	\| 50-90	\|25-65	2-15	0-23	\|NP-6	
		sand, coarse   sand, gravelly	-	A-1	0		160-9		25-65	2-15	0-23			
		sand, gravelly   sand, sand												
	15-30	\| Gravelly sand,	\|SM, SP-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-15	\|60-95	\| 50-90	\| 25-65	2-15	0-23	\|NP-6		
		\| coarse sand,												
		\| sand												
	30-60	\| Gravelly sand,	\|SM, SP-SM	$\|\mathrm{A}-3, \mathrm{~A}-1, \mathrm{~A}-2\|$	0	0-15	\|55-95	\| 50-90	\| 25-65	0-15	0-23	\| NP-6		
		\| coarse sand												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index			
			Unified	AASHTO	\|inches	inches	4	10	40	200					
	In	\|			\|	Pct	Pct					Pct			
		\|		\|											
380B:															
Rosholt-----	0-8	\|Sandy loam	\| SM	\|A-2, A-4	0	0-3	\| 80-100		\|75-100		\|50-75	25-40	0-21	\| NP-4	
	8-10	\|Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		\| 50-100		\|35-75	15-40	0-23	\| NP-6	
		\| fine sandy													
		\| loam, gravelly													
		loamy sand \|													
	10-14	\| Sandy loam,	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		\|50-100		\|35-75	15-40	0-23	\|NP-6	
		fine sandy													
		$\mid \text { loam, gravelly\| }$													
		\| loamy sand													
	14-28	\| Sandy loam,		\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		\|50-100		\|35-80	20-45	0-26	\| NP-8
		fine sandy													
		$\mid \text { loam, gravelly\| }$													
		loam \|													
	28-34	\|Gravelly loamy	\| GM, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		\| 25-100		20-80	5-25	0-23	\| NP-6	
		\| sand, very	SM, SP-SM												
		\| gravelly													
		\| coarse sand,													
		sand													
	34-60	\|Stratified sand		\|GP, GP-GM,	\|A-1, A-2, A-3		0	0-25	$\|30-100\|$	\|25-100		15-65	0-15	0-14	NP
		\| to very	\| SP, SP-SM												
		\| gravelly													
		\| coarse sand													
380C:															
Cress-------	$0-3$	\| Sandy loam	\|SC, SM	\|A-2-4, A-4	0		\| 85-100		$\|80-100\|$	\|55-80	25-45	0-28	\| NP-9		
	3-15	\| Sandy loam,	\|SC, SM	\|A-2-4, A-4	0	0-5	\|85-100		$\|80-100\|$	\|55-80	25-45	0-28	\| NP-9		
		\| fine sandy													
		\| loam													
	15-31		\|SM, SP-SM	A-3	0	0-5	\|55-100		50-95	\|20-75	0-30	0-21	\|NP-4		
		coarse sand,													
		\| gravelly sand,													
		\| very gravelly													
		\| loamy sand													
	31-36	\| Gravelly loamy	SM, SP-SM	\|A-3	0	0-5	\|55-100		\|50-100		20-75	0-30	0-21	\| NP-4	
		sand, coarse													
		\| sand, gravelly													
		\| sand, very													
		\| gravelly loamy													
		sand \|													
	36-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-5	$\|30-100\|$	25-95	\| 15-65	0-15	0-14	NP		
		\| to very	\| SP, SP-SM												
		\| gravelly													
		\| coarse sand													

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plas\|ticity index		
					$\begin{array}{\|c\|c\|} \hline>10\|3-10\| \\ \text { inches } \mid \text { inches } \mid \end{array}$									
			Unified	AASHTO			\| 4	10	40	200				
	In				Pct	Pct					Pct			
380D:														
Rosholt------	0-8	\|Sandy loam	\| SM	\|A-2, A-4	0	0-3	\| 80-100		75-100	50-75	\|25-40	0-21	\| NP-4	
	8-10	\|Sandy loam,	\| SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\| 55-100		\| 50-100	\|35-75	\|15-40	0-23	\|NP-6	
		\| fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	10-14	\| Sandy loam,		\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		50-100	\|35-75	15-40	0-23	\| NP-6
		\| fine sandy												
		\| loam, gravelly												
		loamy sand \|												
	14-28	\| Sandy loam,		\| SC, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-3	\|55-100		50-100	\|35-80	\|20-45	0-26	\| NP-8
		\| fine sandy												
		\| loam, gravelly												
		loam \|												
	28-34	\|Gravelly loamy	\| GM, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-100	20-80	5-25	0-23	\| NP-6	
		\| sand, very	\| SM, SP-SM											
		\| gravelly												
		\| coarse sand,												
		\| sand												
	34-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-25	\|30-100		25-100	15-65	0-15	0-14	NP
		\| to very	\| SP, SP-SM											
		\| gravelly												
		\| coarse sand												
383B:														
Mahtomedi----	0-5	\| Loamy sand	\| SC-SM, SM	\|A-2	0	0-3	\|85-100		75-100	\|40-75	\|20-30	0-28	\| NP-10	
	5-8	\|Sand, coarse	\|SP-SM, SM	\|A-2, A-3	0	0-3	\| 85-100		75-100	\|35-75	5-30	0-23	\|NP-6	
		\| sand, loamy   coarse sand												
	8-15	\|Gravelly coarse		\|SM, SP-SM	\|A-1	0	0-15	60-95	\| 50-90	25-65	2-15	0-23	\|NP-6	
		\| sand, coarse												
		\| sand, gravelly												
		\| sand, sand												
	15-30	\| Gravelly sand,	\|SM, SP-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-15	60-95	150-90	\|25-65	2-15	0-23	\|NP-6		
		\| coarse sand,												
		sand												
	30-60	\|Gravelly sand, coarse sand	\| SM, SP-SM	$\|\mathrm{A}-3, \mathrm{~A}-1, \mathrm{~A}-2\|$	0	0-15	55-95	\| 50-90	\|25-65	0-15	0-23	\| NP-6		
		coarse sand												

Table 22.--Engineering Index Properties--Continued

| Map symbol <br> and <br> soil name | Depth | USDA texture | Classification |  | Fragments |  | Percentage passing sieve number-- |  |  |  | Liquid <br> limit | \| Plas|ticity |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\mid$ \| | >10 | 3-10 |  |  |  |  |  |  |
|  |  |  | Unified | AASHTO | inches | \|inches| | \| 4 | 10 | 40 | 200 |  |  |
|  | In | \| | |  | \| | | Pct | Pct |  |  |  |  | Pct |  |
|  |  |  |  | \| | |  |  |  |  |  |  |  |  |
| 383C: |  |  |  | \| | |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | \| Loamy sand | \|SC-SM, SM | \|A-2 | 0 | 0-3 | \|85-100| | 75-100 | 40-75 | 20-30 | 0-28 | \|NP-10 |
|  | 5-8 | \| Sand, coarse | \|SP-SM, SM | \|A-2, A-3 | 0 | 0-3 | \| 85-100| | 75-100 | \|35-75 | 5-30 | 0-23 | \|NP-6 |
|  |  | sand, loamy |  |  |  |  |  |  |  |  |  |  |
|  |  | coarse sand |  |  |  |  |  |  |  |  |  |  |
|  | 8-15 | \|Gravelly coarse| | SM, SP-SM | \|A-1 | 0 | 0-15 | \|60-95 | \| 50-90 | \| 25-65 | 2-15 | 0-23 | \|NP-6 |
|  |  | \| sand, coarse | |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand, sand | |  |  |  |  |  |  |  |  |  |  |
|  | 15-30 | \| Gravelly sand, | \|SM, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-15 | \|60-95 | \| 50-90 | \| 25-65 | 2-15 | 0-23 | \|NP-6 |
|  |  | coarse sand, |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand |  |  |  |  |  |  |  |  |  |  |
|  | 30-60 | \| Gravelly sand, | \|SM, SP-SM | $\mid$ A-3, A-1, A-2 | 0 | 0-15 | 155-95 | \| 50-90 | \|25-65 | 0-15 | 0-23 | \|NP-6 |
|  |  | \| coarse sand |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 383D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi- | 0-5 | \| Loamy sand | \|SC-SM, SM | \|A-2 | 0 | 0-3 | \| 85-100| | 75-100 | \|40-75 | 120-30 | 0-28 | \| NP-10 |
|  | 5-8 | \| Sand, coarse | \|SP-SM, SM | \|A-2, A-3 | 0 | 0-3 | \| 85-100| | 75-100 | \|35-75 | 5-30 | 0-23 | \|NP-6 |
|  |  | sand, loamy |  |  |  |  |  |  |  |  |  |  |
|  |  | coarse sand |  |  |  |  |  |  |  |  |  |  |
|  | 8-15 | \|Gravelly coarse| | SM, SP-SM | \|A-1 | 0 | 0-15 | 160-95 | \| 50-90 | \| 25-65 | 2-15 | 0-23 | \|NP-6 |
|  |  | sand, coarse |  | - |  |  |  |  |  |  |  |  |
|  |  | \| sand, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand, sand | |  |  |  |  |  |  |  |  |  |  |
|  | 15-30 | \| Gravelly sand, | \|SM, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-15 | 60-95 | \| 50-90 | \| 25-65 | 2-15 | 0-23 | \| NP-6 |
|  |  | coarse sand, |  |  |  |  |  |  |  |  |  |  |
|  |  | sand |  |  |  |  |  |  |  |  |  |  |
|  | 30-60 | \|Gravelly sand, coarse sand | \|SM, SP-SM | $\|\mathrm{A}-3, \mathrm{~A}-1, \mathrm{~A}-2\|$ | 0 | 0-15 | \|55-95 | \| 50-90 | \| 25-65 | 0-15 | 0-23 | \|NP-6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit	Plasticity index	
			Unified	AASHTO	$\begin{array}{\|c\|c\|} \hline>10 & 3-10 \\ \mid \text { inches } & \text { inches } \\ \hline \end{array}$									
							\| 4	10	40	200				
	In	$\mid$ \|		\|	Pct	Pct					Pct			
		\|		\|		\|								
392C:														
Makwa-------	0-8	\| Stony muck	\| ${ }^{\text {PT }}$	\|A-8	7-25	0-25	\|80-100		75-100	-	---	---	---	
	8-16	\|Very gravelly	\| SM, ML	\|A-2, A-4	7-16	0-37	\|21-67	\|18-66	\| 16-63	12-52	\| 25-48	2-9		
		\| loam, very												
		cobbly silt												
		\| loam,												
		extremely									\|			
		gravelly sandy									\|			
		\| loam, very										I		
		\| gravelly sandy									,			
		\| loam,												
		\| extremely												
		\| cobbly silt												
		loam												
	16-43	Stratified	\|GC, GM, GC-GM		A-1, A-2-4	6-15	\| $13-26$	\|11-44	8-42	---	--	\|17-36	3-17	
		extremely												
		\| gravelly												
		\| coarse sandy												
		\| loam to												
		\| extremely												
		\| gravelly sandy									\|			
		\| clay loam												
	43-65	\|Extremely		\|GC, GM, GC-GM		A-1, A-2-6,	6-15	\|12-36	13-61	9-60	7-57	3-33	\| 17-40	3-21
		gravelly sandy		A-2-4										
		loam, \|												
		extremely												
		\| cobbly sandy												
		\| clay loam,									\|			
		\| extremely												
		\| cobbly sandy												
		\| loam,												
		\| extremely												
		\| gravelly sandy												
		clay loam \|												
	65-80	\|Stratified silt		CL, CH	\|A-6, A-7	0	0	100	100	\| 90-100		70-95	\| 29-57	\|13-36
		\| clay												
396B:														
Friendship---	0-4	\| Sand	\| SM		0	0	\| 95-100		90-100	\|60-75	5-15	0-23	\|NP-3	
	4-29	Sand	\| SM	\|A-2, A-3	0	0	\|95-100		90-100	\|60-75	5-15	0-20	\|NP-4	
	29-60	Sand	\| SM	\|A-2, A-3	0	0	\| 95-100		90-100	\|60-75	5-15	0-18	\| NP-1	
Wurtsmith----	0-6	\| Sand	\| SM	\|A-2, A-3	0	0	\|85-100		75-100	\|50-70	5-15	0-14	NP	
	6-33	Sand	\| SM	\|A-2, A-3	0	0	\|85-100		75-100	\|50-70	5-15	0-14	NP	
	33-60	Sand	\| SM	\|A-2, A-3	0	0	\|85-100		75-100	\|50-70	5-15	0-14	NP	

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
			Unified	AASHTO	$\left\lvert\, \begin{array}{c\|} \mid>10 \\ \mid \text { inches } \end{array}\right.$	$\left.\begin{array}{\|c\|} \mid 3-10 \\ \mid \text { inches } \end{array} \right\rvert\,$								
							4	10	40	200				
426C:	In		\|	\|		Pct	Pct					Pct		
			\|	\|										
				1										
Emmert------	0-1	\| Loamy sand	\|SC-SM, SM	\|A-2-4	0-2	0-15	$\|80-100\|$	\|75-100		40-70	\|15-25	0-24	\| NP-6	
	1-5	\| Gravelly loamy	\|GW, GM, SM	\|A-2, A-1	0-2	0-15	\| 30-55	\| 25-50	15-30	1-20	0-23	\| NP-6		
		coarse sand,												
		\| very gravelly												
		\| sand, very		1										
		\| gravelly		1										
		\| coarse sand,		1										
		\| gravelly loamy			\|									
		\| sand												
	5-24	\|Very gravelly		\|GW, SM, GM	\|A-2, A-1	0-2	0-15	\| 30-55	\| 25-50	15-30	1-20	0-22	\|NP-6	
		coarse sand,												
		\| gravelly loamy		\|										
		\| sand, very			\|									
		\| gravelly sand,		\|										
		\| gravelly loamy			\|									
		\| coarse sand		$\|\quad\|$										
	24-60	\|Very gravelly	\| GW	\|A-1	0-2	0-15	\| 30-55	\| 25-50	10-30	0-5	0-16	\| NP-1		
		\| coarse sand,												
		\| very gravelly												
		\| sand		\|										
				$\|\quad\|$										
Mahtomedi---	0-5	\| Loamy sand	\| SC-SM, SM	\|A-2	0	0-3	\| 85-100		\|75-100		\|40-75	\|20-30	0-28	\| NP-10
	5-8	\| Sand, coarse	\|SM, SP-SM	\|A-2, A-3	0	0-3	\| 85-100		\|75-100		\|35-75	5-30	0-23	\| NP-6
		\| sand, loamy												
		\| coarse sand												
	8-15	\|Gravelly coarse		\|SM, SP-SM	\|A-1	0	0-15	\|60-95	\| 50-90	\|25-65	2-15	0-23	\| NP-6	
		sand, coarse												
		sand, gravelly\|												
		\| sand, sand												
	15-30	\| Gravelly sand,	\|SM, SP-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-15	\|60-95	50-90	\|25-65	2-15	0-23	\|NP-6		
		coarse sand, sand		\| ${ }^{\text {- }}$, $\mathrm{A}-2, \mathrm{~A}-3 \mid$										
	30-60		\|SM, SP-SM	$\|\mathrm{A}-3, \mathrm{~A}-1, \mathrm{~A}-2\|$	0	0-15	\| 55-95	\| 50-90	\| 25-65	0-15	0-23	NP-6		
		coarse sand												
Menahga------	0-1	\|Slightly	$\mid \mathrm{PT}$	\|A-8	0	0	100	100	---	-	---	---		
		\| decomposed		$\mid$ \|										
		\| plant material												
	$1-2$$2-25$	\| Loamy sand					\| 95-100		\| 80-100		\|0-75	\|15-30	0-26	
		\| Sand, loamy	\| SM	\|A-2, A-3	0	0	\| 95-100		\| 85-100	55-75	\| 5-20	0-14	NP	
		\| sand												
	25-80	\|Sand, coarse	\| SM	A-2, A-3	0	0	\|95-100		\| 85-100	55-70	5-15	0-14	NP	
		\| sand												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit	Plasticity index		
					$\begin{array}{\|c\|c\|} \hline>10 & 3-10 \\ \mid \text { inches } & \text { inches } \\ \hline \end{array}$										
			Unified	AASHTO			4	10	40	200					
	In			\|	Pct	Pct					Pct				
430A:															
Freya-------	0-11	\| Loamy fine sand		SC-SM	\|A-2-4	0	0	100	100	60-95	\|15-30	0-26	\| NP-6		
	11-32	\|Fine sand,	\|SC-SM, SM,	\|A-2-4	0	0	100	100	60-95	10-35	0-23	\| NP-6			
		\| loamy fine	\| SP-SM												
		sand													
	32-47	\| Loamy fine	\|SC-SM, SM	\|A-2-4	0	0	100	\| 93-100		60-95	\|15-35	0-23	\| NP-6		
		\| sand, fine													
		sand													
	47-66	\| Clay	\| CH	\|A-7-6, A-7	0	0	100	\| 93-100	$\|90-100\|$	\|75-95	\|67-86	\|44-59			
	66-72	\| Clay	$\mid \mathrm{CH}$	\|A-7, A-7-6	0	0	100	\| 93-100		$\|90-100\|$	\|75-95	\|67-86	\|44-59		
	72-80	\|Clay, silty	\| CH	\|A-7, A-7-6	0	0	100	\| 93-100	\| 90-100		\|75-95	\| 58-86	\| 36-59		
		clay													
439B:															
Graycalm----	0-3	\| Loamy sand	\| SM	\|A-2	0	0-5	\| 95-100		80-100	40-75	15-30	0-26	\|NP-6		
	3-22	\| Sand, loamy	\| SM, SP-SM	\|A-2	0	0-5	\| 95-100		80-100	\|40-75	5-30	0-23	\|NP-6		
		\| sand													
	22-35	\| Sand, loamy	\| SM	\|A-2, A-3	0	0-5	\| 95-100		80-100	40-75	5-30	0-23	\| NP-6		
		\| sand													
	35-60	\|Stratified sand		\| SM	\|A-2, A-3	0	0-5	\| 95-100		80-100	\|40-80	5-30	0-27	\| NP-10	
		\| to loamy sand													
Menahga-----	0-1	\|Slightly	\| PT	\|A-8	0	0	100	100	---	---	---	--			
		\| decomposed													
		\| plant material													
	1-2	\| Loamy sand			0	0	\| 95-100		\| 80-100		\|40-75	\|15-30	0-26	\| NP-6	
	2-25	\| Sand, loamy	\| SM	\|A-2, A-3	0	0	\| 95-100		\| 85-100	\|55-75	5-20	0-14	NP		
		\| sand													
	25-80	\| Sand, coarse	\| SM	\|A-2, A-3	0	0	\| 95-100		85-100	55-70	5-15	0-14	NP		
		\| sand													
439C:															
Graycalm----		\| Loamy sand	\| SM	\|A-2	0	0-5	\| 95-100		\| 80-100		\|40-75	\|15-30	0-26	\| NP-6	
	3-22	\| Sand, loamy	\|SM, SP-SM	\|A-2	0	0-5	\| 95-100		\| 80-100		\|40-75	5-30	0-23	\| NP-6	
		\| sand													
	22-35	$\begin{aligned} & \text { \| Sand, loamy } \\ & \text { sand } \end{aligned}$	\| SM	\|A-2, A-3	0	0-5	\| 95-100		\| 80-100		\|40-75	5-30	0-23	\| NP-6	
	35-60	\|Stratified sand		\| SM	\|A-2, A-3	0	0-5	\| 95-100		\| 80-100		\|40-80	5-30	0-27	\| NP-10
		\| to loamy sand													

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification				Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index			
					Fragments										
					>10	3-10									
			Unified	AASHTO	inches	inches	\| 4		10	40	200				
	In				Pct	Pct					Pct				
442C:															
Haugen	0-4	\|Sandy loam	\|SC-SM, SM	\|A-2-4, A-4	0-5	0-7	\| 85-100		\|75-98	\| 50-70	20-40	\|19-32	3-9		
	4-15	\| Sandy loam,	\|SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\| 55-100		50-90	\| $35-85$	15-65	\|16-28	1-9		
		\| gravelly sandy													
		\| loam, fine													
		\| sandy loam,													
		\| gravelly loam													
	15-23	\| Gravelly sandy	\|SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\|55-100		50-90	\| 35-75	15-45	\|16-28	1-9		
		\| loam, sandy													
		\| loam, fine													
		\| sandy loam,													
		\| gravelly loam													
	23-35	\| Gravelly sandy	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\|55-100		50-90	\| 35-75	15-45	\| 16-27	2-10		
		\| loam, sandy													
		\| loam, gravelly													
		\| fine sandy													
		\| loam													
	35-49	\| Sandy loam,	\|SC, SM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-1\|$	0-5	0-7	\| 55-100		150-90	\| 35-75	15-45	\|17-28	3-10		
		gravelly sandy	\|SC, SM	A-2, A-4, A-1											
		loam, fine													
		\| sandy loam													
	49-79	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2	0-5	0-7	\|55-100		50-90	\| 35-75	15-45	\|18-30	4-12		
		\| loam, sandy													
		\| loam, fine													
		\| sandy loam													
	79-80	\| Gravelly sandy	\|SC, SC-SM, SM		\|A-1, A-2, A-4		0-5	0-7	\| 55-100		150-90	\| $35-75$	15-45	\|17-27	3-10
		l loam, sandy													
		loam, fine													
		\| sandy loam													
Greenwood-	0-6	\| Peat	\| PT	A-8	0	0	100	100	100	100	-	NP			
	6-60	\| Mucky peat	\| PT	A-8	0	0	100	100	100	100	---	NP			



Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

| Map symbol <br> and <br> soil name | Depth | USDA texture | Classification |  | Fragments |  | Percentage passing sieve number-- |  |  |  | \|Liquid <br> \|limit | \| Plas|ticity |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | \| | $\begin{array}{\|c\|c\|} \hline>10 \mid 3-10 \\ \mid \text { inches } & \text { inches } \end{array}$ |  |  |  |  |  |  |  |
|  |  |  | Unified | 1 AASHTO |  |  | 4 | 10 | 40 | 200 |  |  |
|  | In |  | \| | \| | Pct | Pct |  |  |  |  | Pct |  |
|  |  |  | \| | \| |  |  |  |  |  |  |  |  |
| 484A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Greenwood--- | 0-6 | \| Peat | \| PT | \|A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | NP |
|  | 6-60 | \| Mucky peat | \| PT | \|A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | NP |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beseman----- | 0-36 | \| Muck | $\mid \mathrm{PT}$ | \|A-8 | 0 | 0 | 100 | 100 | -- | --- | --- | --- |
|  | 36-60 | \|Silt loam, | \| CL, CL-ML, | \|A-4, A-2-4 | 0 | 0-2 | \|80-100| | 65-100 | 40-100 | \|25-90 | \|20-33 | 4-13 |
|  |  | loam, sandy | \| SC-SM |  |  |  |  |  |  |  |  |  |
|  |  | loam |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 485C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lupton- | 0-65 | \| Muck | $\mid \mathrm{PT}$ | \|A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | NP |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tawas-------- | 0-31 | \|Muck | \| PT | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
|  | 31-60 | \|Fine sand, | \|SM, SP-SM, | \|A-2-4 | 0 | 0 | 100 | \|70-100 | 65-90 | \|10-30 | 0-23 | \| NP-6 |
|  |  | coarse sand, | \| SC-SM |  |  |  |  |  |  |  |  |  |
|  |  | loamy sand, |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand, loamy |  |  |  |  |  |  |  |  |  |  |
|  |  | \| fine sand, |  | \| |  |  |  |  |  |  |  |  |
|  |  | \| gravelly sand |  | \| |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 495B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg--- | 0-9 | \| Loamy sand |  |  | 0 | 0 \| | \| 95-100| | 95-100 | \|70-75 | \|20-25 | 0-14 | NP |
|  | 9-28 | \| Sand, loamy | \|SM | \|A-2 | 0 | 0 | \|95-100| | 95-100 | \|70-75 | \|20-25 | 0-14 | NP |
|  |  | \| sand |  |  |  |  |  |  |  |  |  |  |
|  | 28-48 | \| Clay | \| CH | \|A-7 | 0 | 0 | 100 | 100 | \| 85-100| | 85-100 | \|64-90 | \| $40-60$ |
|  | 48-80 | \| Sand | \|SM | \|A-2 | 0 | 0 | 100 | 100 | \| 50-70 | 5-15 | 0-19 | \| NP-2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum----- | 0-3 | \| Loamy sand | \| SC-SM, SM | \|A-2-4 | 0 | 0 | \|90-100| | \|85-100 | \|60-80 | \|15-25 | 0-23 | \| NP-6 |
|  | 3-32 | $\begin{aligned} & \text { Sand, loamy } \\ & \text { sand } \end{aligned}$ | \|SC-SM, SM | \|A-2-4, A-3 | 0 | 0 | \| 90-100| | \|85-100 | \|70-95 | 5-20 | 0-23 | \| NP-6 |
|  | 32-75 | \|Sand, loamy sand | \|SC-SM, SM | \|A-2-4, A-3 | 0 | 0 | \|90-100| | 85-100 | \|70-95 | 5-20 | 0-23 | \|NP-6 |
|  | 75-80 | \| Sand | \| SM | \|A-2-4, A-3 | 0 | 0 | \|90-100| | 85-100 | 55-75 | 5-15 | 0-21 | \|NP-4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Perida------ | 0-9 | \| Loamy sand | \| SM | \|A-2 | 0 | 0 | \|90-100| | 80-100 | \|60-75 | \|15-25 | 0-14 | NP |
|  | 9-43 | \| Sand, loamy | \| SM | \|A-2 | 0 | 0 | \|90-100| | \|80-100 | \|60-75 | \|15-25 | 0-14 | NP |
|  |  | sand, fine |  |  |  |  |  |  |  |  |  |  |
|  | 43-45 | \| Loamy sand, | \| SM | \|A-2 | 0 | 0 | \| 90-100| | \|80-100 | \|60-75 | 15-25 | 0-14 | NP |
|  |  | sand, fine |  |  |  |  |  |  |  |  |  |  |
|  |  | \| sand |  |  |  |  |  |  |  |  |  |  |
|  | 45-60 | \|Clay, silty | \| CH | \|A-7 | 0 | 0 | 100 | 100 | \| 90-100| | 75-100 | \|64-90 | \|40-60 |
|  |  | \| clay |  |  |  |  |  |  |  |  |  |  |
|  | 60-74 | \|Silty clay, | \| CH | \|A-7 | 0 | 0 | 100 | 100 | \| 90-100| | 75-100 | \|64-90 | \| $40-60$ |
|  |  | \| clay |  |  |  |  |  |  |  |  |  |  |
|  | 74-80 | \| Sand | \| SM | \|A-2-4, A-3 | 0 | 0 | \|90-100| | \|85-100 | \|55-75 | 5-15 | 0-14 | NP |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

$\begin{gathered} \text { Map symbol } \\ \text { and } \\ \text { soil name } \end{gathered}$	Depth	USDA texture	Classification				Percentage passing sieve number--				Liquid   limit	Plasticity index	
					Fragments								
					>10	3-10							
			Unified	AASHTO	inches	\|inches		4	10	40	200		
	In			\|		Pct	Pct					Pct	
		\|			\|								
542B:													
Haugen, very stony------				\|									
	0-4	\|Sandy loam	\| SC-SM, SM	\|A-2-4, A-4	0-5	0-7	85-100\|	\|75-98	\| 50-70	\| 20-40	19-32	3-9	
	4-15	\|Sandy loam,	\|SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	55-100\|	50-90	\| 35-85	\|15-65	16-28	1-9	
		\| gravelly sandy											
		\| loam, fine			\|								
		\| sandy loam,											
		gravelly loam											
	15-23	\| Gravelly sandy	\|SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	55-100\|	50-90	\|35-75	15-45	16-28	1-9	
		\| loam, sandy											
		loam, fine											
		\| sandy loam,											
		\| gravelly loam											
	23-35	\| Gravelly sandy	\|SC-SM, SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	55-100\|	50-90	\|35-75	15-45	16-27	2-10	
		\| loam, sandy											
		loam, gravelly											
		fine sandy \|											
		loam											
	35-49	\|Sandy loam,	\|SC, SM	\|A-2, A-4, A-1		0-5	0-7	55-100	50-90	\|35-75	\|15-45	17-28	3-10
		gravelly sandy	\|SC, SM	\| ${ }^{\text {2, }}$ A-1, $\mathrm{A}-1$									
		\| loam, fine											
		\| sandy loam											
	49-79	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2	0-5	0-7	55-100\|	50-90	\|35-75	15-45	18-30	4-12	
		\| loam, sandy											
		loam, fine											
		\| sandy loam											
	79-80	\| Gravelly sandy	\|SC, SC-SM,	\|A-1, A-2, A-4		0-5	0-7	55-100\|	50-90	\|35-75	\|15-45	17-27	3-10
		\| loam, sandy											
		loam, fine											
		sandy loam											


Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   limit	Plasticity index	
			Unified	AASHTO	$\begin{array}{\|l\|} \mid>10 \\ \mid \text { inches } \end{array}$	$\begin{array}{\|c\|} \hline 3-10 \mid \\ \text { inches } \end{array}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
		\|											
Haugen	0-7	\| Sandy loam	\| SC-SM, SM	A-2-4, A-4	0-5	0-7	\|85-100	75-98	\| 50-70	\| 20-40	19-32	3-9	
	7-15	\| Sandy loam,		\| SM, SC-SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0-5	0-7	\| 55-100	50-90	\| 35-85	\|15-65	16-28	1-9
		gravelly sandy											
		\| loam, fine											
		\| sandy loam,											
		\| gravelly loam											
	15-23	\| Gravelly sandy	\|SM, SC-SM	\|A-1, A-2, A-4		0-5	0-7	\|55-100	50-90	\| 35-75	\|15-45	\|16-28	1-9
		\| loam, sandy											
		\| loam, fine											
		\| sandy loam,											
		\| gravelly loam											
	23-35	\| Gravelly sandy	\|SC-SM, SM	\|A-1, A-2, A-4		0-5	0-7	\|55-100	50-90	\| 35-75	\|15-45	\|16-27	2-10
		\| loam, sandy											
		\| loam, gravelly											
		\| fine sandy											
		loam											
	35-49	\| Sandy loam,	\|SC, SM	\|A-2, A-4, A-1		0-5	0-7	55-100	50-90	\| 35-75	\|15-45	17-28	3-10
		\| gravelly sandy											
		\| loam, fine											
		\| sandy loam											
	49-79	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2	0-5	0-7	55-100	50-90	\| 35-75	\|15-45	18-30	4-12	
		\| loam, sandy											
		loam, fine											
		sandy loam											
	79-80	\| Gravelly sandy	\|SC, SC-SM	A-1, A-2, A-4\|	0-5	0-7	\|55-100		50-90	\| 35-75	\|15-45	17-27	3-10
		\| loam, sandy											
		\| loam, fine											
		\| sandy loam											

Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
			\|											
					>10	3-10								
			Unified	AASHTO	inches	inches	4	10	40	200				
	In			\|	Pct	Pct					Pct			
				\|										
615B:				\|										
	0-3	\|Sandy loam	\| SC, SM	\|A-2-4, A-4	0	0-5	\| 85-100		\| 80-100		55-80	25-45	0-28	\| NP-9
	3-15	\|Sandy loam,	\|SC, SM	\|A-2-4, A-4	0	0-5	\| 85-100		\| 80-100		55-80	25-45	0-28	\| NP-9
		\| fine sandy												
		loam		\|										
	15-31	\| Loamy sand,	\| SM, SP-SM	\|A-3	0	0-5	\| 55-100		\| 50-95	\|20-75	0-30	0-21	\| NP-4	
		coarse sand, gravelly sand,												
		gravelly sand,												
		very gravelly												
		\| loamy sand		\|										
	31-36	\| Gravelly loamy	\|SM, SP-SM	\|A-3	0	0-5	\| 55-100		50-100	20-75	0-30	0-21	\| NP-4	
		\| sand, coarse			\|									
		\| sand, gravelly			\|									
		\| sand, very			\|									
		\| gravelly loamy			\|									
		\| sand												
	36-60	\|Stratified sand		\|GP, GP-GM,	$\mid \mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3$	0	0-5	\| 30-100		\|25-95	\|15-65	0-15	0-14	NP
		\| to very		SP, SP-SM										
		\| gravelly		\|										
		\| coarse sand												
				\|										
615C:Cress				\|										
	0-3	\|Sandy loam	\| SC, SM	\|A-2-4, A-4	0	0-5	\| 85-100		\| 80-100		\|55-80	25-45	0-28	\|NP-9
	3-15	\|Sandy loam,	\|SC, SM	\|A-2-4, A-4	0	0-5	\| 85-100		\| 80-100		55-80	25-45	0-28	\| NP-9
		\| fine sandy												
		\| loam												
	15-31	\| Loamy sand,	\|SM, SP-SM	\|A-3	0	0-5	\| 55-100		\| 50-95	\|20-75	0-30	0-21	\| NP-4	
	15-31	coarse sand,	SM, SP-SM				\|55-100			20-75				
		\| gravelly sand,												
		\| very gravelly		\|										
		\| loamy sand		\|										
	31-36	\|Gravelly loamy	\|SM, SP-SM	\|A-3	0	0-5	\| 55-100		\| 50-100		20-75	0-30	0-21	\| NP-4
		sand, coarse		-										
		\| sand, gravelly			\|									
		\| sand, very		\|										
		\| gravelly loamy			\|									
		\| sand												
	36-60	\|Stratified sand		\|GP, GP-GM,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-5	\| 30-100		\|25-95	\|15-65	0-15	0-14	NP
		\| to very		\| SP, SP-SM										
		\| gravelly		\|										
		\| coarse sand			\|									
				1										

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit	\|ticity   \|index	
			Unified	AASHTO	$\left\|\begin{array}{c\|c}\|c\| & 3-10 \\ \mid \text { inches } \mid \text { inches } \mid\end{array}\right\|$									
							4	10	40	200				
	In		\|			Pct	Pct					Pct		
			\|							\|				
621A:														
Bjorkland-	0-2	\| Peat	$\mid \mathrm{PT}$	A-8	0	0	100	100	-	---	---	-		
	2-8	\| Muck	\|PT	A-8	0	0	100	100	--	---	---	---		
	8-14	$\mid$ Fine sand	\|SC-SM, SP-SM,	A-3, A-2-4	0	0	100	\| 98-100	50-90	5-35	0-20	\| NP-4		
			SM											
	14-25	\|Fine sand,	$\|S C-S M, ~ S P-S M$,	A-3, A-2-4	0	0	100	\| 98-100	50-90	5-35	0-20	\|NP-4		
		\| sand, loamy	\| SM											
		\| sand, loamy												
		\| fine sand												
	25-34	\|Loamy fine	\|SP-SM, SC-SM,	A-2-4, A-3	0	0	100	\| 98-100	50-90	5-35	0-22	\|NP-5		
		sand, loamy	\| SM											
		sand, fine												
		\| sand, sand												
	34-38	\|Clay, silty	$\mid \mathrm{CH}$	A-7, A-7-6	0	0	100	\| 98-100	90-100	75-95	58-86	\| 36-59		
		\| clay												
	38-80	\|Clay, silty	\| CH	A-7-6, A-7	0	0	100	\| 98-100	90-100	75-95	58-86	\| $36-59$		
		\| clay												
623A:														
Capitola-	0-5	\|Muck	$\mid \mathrm{PT}$	\|A-8	0	0	100	100	100	100	---	NP		
	5-7	\|Silt loam, loam		\|CL, CL-ML	\|A-4	0-5	0-7	\|80-100		75-100	60-100	50-90	23-26	6-8
	7-22	\|Silt loam,		\| CL-ML, SC-SM,	A-2-4, A-4	0-5	0-7	\| 80-100		75-100	45-100	20-90	0-28	\| NP-9
		\| loam, sandy	\| CL, ML, SC,											
		\| loam, fine	SM											
		\| sandy loam												
	22-33	\| Sandy loam,	\|SC, SM	$\|\mathrm{A}-1-\mathrm{b}, \mathrm{A}-2-4$,	0-5	0-7	\|60-100		\|50-90	\| 30-90	15-70	0-26	\| NP-8	
		\| fine sandy		$\|\mathrm{A}-4\|$										
		\| loam, gravelly												
		loam \|												
	33-60	\| Sandy loam,	\| SM, SC-SM	A-1-b, A-2-4	0-5	0-7	60-100\|	50-90	\|30-60	15-35	0-21	\| NP-4		
		\| fine sandy												
		\| loam, gravelly												
		\| sandy loam												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plas-   ticity index	
					$\begin{array}{\|l\|l\|} \hline>10 & 3-10 \\ \mid \text { inches } & \text { inches } \\ \hline \end{array}$								
			Unified	AASHTO			4	10	40	200			
	In				Pct	Pct					Pct		
			,										
669D:													
Fremstadt, stony	0-5	\| Loamy sand	\|SC-SM, SM	A-2-4	0-3	0-15	\|75-100	70-95	\| 35-70	10-30	0-28	NP-7	
	5-33	\| Loamy sand,	\|SC-SM, SM	A-2, A-3,	0-3	0-15	\|75-100	\|70-95	\| 30-70	5-25	0-24	NP-6	
		\| sand		A-1-b									
	33-37	\|Sandy loam,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	70-100	65-95	\| 30-70	\| 15-35	\|16-27	2-10
		loamy sand,											
		\| gravelly loamy											
		sand \|											
	37-45	\| Loamy sand,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	70-100	65-95	\| 30-70	\| 15-35	0-27	NP-10
		\| sandy loam,											
		\| gravelly loamy											
		sand \|											
	45-70	\| Loamy sand,	\|SC-SM, SM	A-1-b, A-2	0-3	0-15	\|70-100	\|65-95	\| 30-70	\| 15-25	0-23	NP-6	
		$\begin{aligned} & \text { gravelly loamy } \\ & \text { sand } \end{aligned}$											
	70-80	\| Loamy sand,	\| SC-SM, SM	A-1-b, A-2	0-3	0-15	\| 70-100	\|65-95	\| 30-70	\|15-25	0-23	NP-6	
	-80	\| gravelly loamy	\|SC-SM, SM	A-1-b, A-2			70-100	\|	-	\|15-25			
		\| sand											
Pomroy--------- \|	0-3	\| Loamy sand	\| SM	A-2-4	0	0-7	100	\|75-100		40-70	\|15-30	0-26	NP-7
	3-30	\| Sand, loamy	\|SP-SM, SM	A-3, A-2-4	0	0-7	100	\| 75-100		40-70	5-30	0-25	NP-7
		\| sand											
	30-45	\| Sandy loam	\|SM, SC-SM, SC		A-2	0	0-7	180-95	\|75-90	\|45-65	\| 25-35	16-30	2-12
	45-80	\| Sandy loam	\|SM, SC-SM, SC		A-2	0	0-7	\| 80-95	\|75-90	\|45-65	\| 25-35	0-27	NP-10
671B:													
$\begin{gathered} \text { Spoonerhill, } \\ \text { stony------ } \end{gathered}$													
	0-3	\|Sandy loam	\|SC, SC-SM, SM		A-2, A-4	0-2	0-15	\| 85-100	\|80-95	\| 55-75	\| 25-40	0-20	NP-10
	3-12	\| Gravelly sandy	\|SC, SC-SM, SM		A-1-b, A-2,	0	0-15	\|60-100	\| 50-95	\|35-75	\| 15-40	0-20	NP-10
		\| loam, loamy		A-4									
		$\begin{aligned} & \mid \text { sand, gravelly\| } \\ & \text { loamy sand } \end{aligned}$											
	12-16	\| Gravelly loamy	\|SC, SC-SM,	A-1-b, A-2	0	0-15	\|60-100		50-95	\| 35-75	\|10-30	0-20	NP-10
		sand, loamy	SM, SP-SM										
		\| sand, sandy											
		loam											
	16-34	\| Loamy sand,	\|SC, SC-SM,	A-1-b, A-2	0	0-15	\|60-100	50-95	\| 35-75	\| 10-25	0-20	NP-10	
		\| sand, gravelly		SM, SP-SM									
		loamy sand \|											
	34-46	\|Sand, loamy $\mid$ sand, gravelly\| $\mid$ loamy sand	$\begin{aligned} & \mid S C, \quad \text { SC-SM, } \\ & \left\lvert\, \begin{array}{ll} \text { SM, SP-SM } \end{array}\right. \end{aligned}$	A-1-b, A-2	0	0-15	\|60-100	50-95	\|35-75	\| 10-25	0-20	NP-10	
	46-80	\| Gravelly loamy	\|SC, SC-SM,	A-1-b, A-2	0	0-15	60-100	50-95	135-75	10-25	0-20	NP-10	
		$\begin{array}{\|l} \text { sand, loamy } \\ \text { \| sand, sand } \end{array}$	\| SM, SP-SM										
		sand, sand											



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	Plasticity index		
			Unified	AASHTO	$>10$   inches	$\left\lvert\, \begin{gathered} 3-10 \\ \mid \text { inches } \end{gathered}\right.$								
							4	10	40	200				
	In	$\mid$ \|	\|		\|	Pct	Pct					Pct		
		\|	\|		\|									
Moppet------	0-4	\|Fine sandy loam		CL, CL-ML,	\|A-2-4, A-4	0	0	100	100	\| 60-95	30-65	\|21-26	4-8	
			\| SC, SC-SM											
	4-10	\|Fine sandy	\|CL, ML, SC,	\|A-4	0	0	100	100	\| 75-100		40-85	\|18-28	3-9	
		\| loam, loam,	SM											
		silt loam												
	10-39	\|Fine sandy	\| CL, ML, SC,	\|A-4	0	0	100	100	\| 75-100		40-85	18-28	3-9	
		\| loam, loam,	SM											
		\| silt loam												
	39-60	\|Gravelly sand,	\|SM, SP, SP-SM		A-4, A-2-4,	0	0	55-100	50-100	15-95	2-50	15-21	NP-4	
		fine sand,		\| $\mathrm{A}-1-\mathrm{b}$										
		\| loamy fine												
		\| sand												
Fordum------	$0-6$$6-18$	\|Silt loam	\| CL, ML, CL-ML	\|A-4, A-6	0	0-7	80-100\|	75-100	$\|70-100\|$	\|65-85	\|20-35	3-15		
		\|Silt loam, fine		\|CL, ML, SC,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-15	60-100\|	50-100	\| 35-100		15-85	0-30	3-10
		sandy loam,	\| SM											
		\| mucky sandy												
		\| loam, gravelly												
		loam \|												
	18-30	\| Fine sandy	\| CL, ML, SC,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-15	60-100	50-100	$\|30-100\|$	15-85	0-30	3-10		
		\| loam, silt	\| SM											
		\| loam, mucky												
		\| sandy loam,												
		\| gravelly loam												
	30-60	\|Sand, very	\|SP-SM, GP,	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$	0	0-15	30-100	25-100	7-95	1-50	0-14	NP		
		\| gravelly loamy	SM, SP											
		\| fine sand,												
		\| gravelly												
		\| coarse sand,												
		\| fine sand												

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{array}{\|l\|l\|} \mid l i q u i d \\ \mid l i m i t ~ \end{array}$	Plasticity index	
					>10	3-10							
			Unified	AASHTO	inches	inches	4	10	40	200			
	In				Pct	Pct					Pct		
$\begin{aligned} & \text { 896A: } \\ & \text { Wurtsmith--- } \end{aligned}$													
	0-6	Sand	SM, SP-SM	A-2	0	0	90-100	75-100\|	40-70	5-15	0-24	NP-2	
	6-33	\|Sand, coarse	SM, SP, SP-SM\|	A-1, A-2, A-3	0	0	90-100	\|80-100		25-70	3-15	0-14	NP
		sand, loamy sand											
	92-60	Sand, coarse sand	SM, SP, SP-SM\|	A-1, A-2, A-3	0	0	90-100	\|80-100		25-70	3-15	0-14	NP
$\begin{aligned} & \text { 980A: } \\ & \text { Soderbeck- } \end{aligned}$	0-4											5-9	
		$\begin{aligned} & \text { \|Very gravelly } \\ & \text { loam } \end{aligned}$	SM	A-2-4	2-7	15-50	20-60	15-55	15-50	10-40	24-39		
	4-18	$\mid$ Extremely   gravelly loam,   very gravelly   sandy loam,   extremely   cobbly sandy   loam, very   cobbly coarse   sandy loam,   extremely   gravelly   coarse sandy   loam	$\begin{array}{\|l} \mid \text { SC, GC-GM, } \\ \text { SC-SM, GC } \end{array}$	A-2-4	2-7	15-50	15-60	10-55	5-50	1-35	\|22-30	7-12	
	18-28	\|Extremely gravelly coarse sandy loam, very gravelly sandy loam, extremely cobbly sandy loam, very cobbly coarse sandy loam, extremely gravelly loam	$\begin{array}{\|l} \mid \text { GC, } \\ \hline \end{array}$	A-2	2-7	15-50	15-60	10-55	5-50	1-35	22-30	7-12	
	28-42	Extremely	GM	A-1-a	2-7	30-50	15-45	10-40	5-30	0-20	0-14	NP	
		gravelly											
		coarse sand,											
		extremely											
		gravelly loamy											
		coarse sand,											
		extremely											
		gravelly sand,											
		extremely											
		cobbly coarse											
		sand,											
		extremely cobbly loa											
		coarse sand											
	42-55	Bedrock	SP	---	---	---	---	---	---	---	---	---	
	55-80	Bedrock	---	---	---	---	---	---	---	---	---	---	

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued

| Map symbol <br> and <br> soil name | Depth | USDA texture | Classification |  | Fragments |  | Percentage passing sieve number-- |  |  |  | \|Liquid <br> \|limit | \| Plas|ticity |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Unified | AASHTO | $>10$ $3-10$ <br> inches inches |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 4 | 10 | 40 | 200 |  |  |
|  | In |  |  | \| | Pct | Pct |  |  |  |  | Pct |  |
|  |  |  |  | \| |  |  |  |  |  |  |  |  |
| 3125A: |  |  |  | \| |  |  |  |  |  |  |  |  |
| Meehan------ | 0-5 | \| Loamy sand | \| SM | \|A-2 | 0 | 0 | \| 95-100| | \|90-100 | 60-75 | \|15-25 | \|16-29 | 1-6 |
|  | 5-8 | \| Sand | \| SM | \|A-2 | 0 | 0 | \|95-100| | \|90-100 | 60-75 | 5-15 | 0-19 | \| NP-2 |
|  | 8-28 | \| Sand | \| SM | \|A-2 | 0 | 0 | \| 95-100| | \|90-100 | \|60-75 | 5-15 | 0-19 | \| NP-2 |
|  | 28-60 | \| Sand | \| SM | \|A-2, A-3 | 0 | 0 | \| 95-100| | 90-100 | 60-70 | 5-15 | 0-18 | \| NP-1 |
|  |  |  |  | \| |  |  |  |  |  |  |  |  |
| 3126A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Wurtsmith---- | 0-9 | \| Loamy sand | \| SM | \|A-2 | 0 | 0 | \| 85-100| | 75-100 | 55-75 | \|20-30 | 0-35 | \|NP-6 |
|  | 9-37 | \| Coarse sand, | \| SM | \|A-2, A-3 | 0 | 0 | \| 85-100| | 75-100 | \|50-70 | 5-15 | 0-19 | \| NP-2 |
|  |  | \| sand |  |  |  |  |  |  |  |  |  |  |
|  | 37-60 | \| Sand, coarse | \| SM | \|A-2, A-3 | 0 | 0 | \|85-100| | 75-100 | \|50-70 | 5-15 | 0-14 | NP |
|  |  | \| sand |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | \| |  |  |  |  |  |  |  |  |
| 3312B: |  |  |  | \| |  |  |  |  |  |  |  |  |
| Glendenning, very stony- |  |  |  | \| |  |  |  |  |  |  |  |  |
|  | 0-5 | \| Sandy loam | \|SC-SM, SM | \|A-2, A-4 | 0-5 |  | $\|80-100\|$ | 75-98 | \| 50-60 | \|25-45 | \|15-25 | \| NP-5 |
|  | 5-15 | \| Sandy loam, | \|SC-SM, SM | \|A-2, A-4 | 0 | 0-15 | \|55-100| | \|50-98 | \| 35-75 | \|15-40 | 15-25 | \|NP-5 |
|  |  | \| fine sandy | |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15-20 | \|Sandy loam, | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0-15 | \|55-100| | \|50-98 | \| 35-75 | \|15-40 | \| 15-28 | \| NP-5 |
|  |  | \| fine sandy |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | loam \| |  |  |  |  |  |  |  |  |  |  |
|  | 20-26 | \| Sandy loam, | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0-15 | \| 55-100| | \|50-98 | \| 35-75 | \|15-40 | \|15-28 | \| NP-5 |
|  |  | fine sandy |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam |  |  |  |  |  |  |  |  |  |  |
|  | 26-40 | \| Sandy loam, | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0-15 | \| 55-100| | 50-98 | \| 35-75 | \|15-40 | \|15-25 | \| NP-10 |
|  |  | \| loam, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | \| fine sandy | |  |  |  |  |  |  |  |  |  |  |
|  |  | loam |  |  |  |  |  |  |  |  |  |  |
|  | 40-65 | \| Sandy loam, | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0-15 | \|55-100| | 50-98 | \| 35-75 | \|15-40 | 15-25 | \| NP-10 |
|  |  | \| loam, gravelly| |  |  |  |  |  |  |  |  |  |  |
|  |  | \| fine sandy | |  |  |  |  |  |  |  |  |  |  |
|  |  | \| loam |  |  |  |  |  |  |  |  |  |  |
|  | 65-80 |  | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0-15 | \|55-100| | 50-98 | \|35-75 | 15-40 | \|15-25 | \| NP-5 |
|  |  | gravelly fine |  | \| |  |  |  |  |  |  |  |  |
|  |  | \| sandy loam |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued



Table 22.--Engineering Index Properties--Continued

Map symbol   and   soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plas\|ticity	index	
			Unified	AASHTO	$\begin{array}{\|l\|l\|} \|>10\| 3-10 \mid \\ \mid \text { inches } \mid \text { inches } \mid \end{array}$									
							4	10	40	200				
3510B:	In				Pct	Pct					Pct	\|		
Pomroy---------\|	0-3	\| Loamy sand	\| SM	A-2-4	0	0-7	100	\| 75-100	40-70	15-30	0-26	\|NP-7		
	3-30	$\begin{aligned} & \text { \| Sand, loamy } \\ & \text { sand } \end{aligned}$	\|SP-SM, SM	A-3, A-2-4	0	0-7	100	\|75-100	\|40-70	5-30	0-25	\| NP-7		
	30-45	\| Sandy loam	\|SM, SC-SM, SC		A-2	0	0-7	\| 80-95	\|75-90	\| 45-65	25-35	\|16-30	2-12	
	45-80	\|Sandy loam	\|SM, SC-SM, SC		A-2	0	0-7	\| 80-95	\| 75-90	\| 45-65	\|25-35	0-27	\| NP-10	
Fremstadt------\|	0-5	\| Loamy sand	\|SC-SM, SM	\|A-2-4	0-3	0-15	\|75-100		\|70-95	\|30-75	15-30	0-28	\| NP-7	
	5-33	\| Loamy sand,	\|SC-SM, SM	A-2, A-1-b	0-3	0-15	\|75-100		70-95	\|30-75	15-30	0-24	\| NP-6	
		\| sand	\|											
	33-37	\| Sandy loam,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\|30-60	10-40	\|16-27	2-10
		loamy sand, gravelly loamy												
		sand												
	37-45	\| Loamy sand,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\| 30-60	10-40	0-27	\|NP-10
	37-45	sandy loam,												
		gravelly loamy												
	45-70	\|Loamy sand,	\|SC-SM, SM	A-1-b, A-2	0-3	0-15	\|70-100		65-95	130-50	10-30	0-23	NP-6	
		gravelly loamy sand												
	70-80	\| Loamy sand,	\|SC-SM, SM	\|A-1-b, A-2	0-3	0-15	\| 70-100		\|65-95	\|30-50	10-30	0-23	\|NP-6	
		gravelly loamy												
		\| sand												
Fremstadt, stony\|	0-5	\| Loamy sand	\|SC-SM, SM	\|A-2-4	0-3	0-15	\|75-100		\|70-95	\| 30-75	15-30	0-28	NP-7	
	5-33	\|Loamy sand, sand	\|SC-SM, SM	A-2, A-1-b	0-3	0-15	\|75-100		10-95	\|30-75	15-30	0-24	\| NP-6	
	33-37	\| Sandy loam,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\| 30-60	10-40	16-27	2-10
		\| loamy sand,												
		\| gravelly loamy												
		\| sand												
	37-45	\| Loamy sand,	\|SC, SC-SM, SM		A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\|30-60	\|10-40	0-27	\| NP-10
		sandy loam,												
		\| gravelly loamy												
		sand												
	45-70	\| Loamy sand,	\| SC-SM, SM	\|A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\| 30-50	10-30	0-23	\|NP-6	
		gravelly loamy sand												
	70-80	\| Loamy sand,	\|SC-SM, SM	\|A-1-b, A-2	0-3	0-15	\|70-100		\|65-95	\| 30-50	\|10-30	0-23	\|NP-6	
		\| gravelly loamy												
		sand												



Table 22.--Engineering Index Properties--Continued


Table 22.--Engineering Index Properties--Continued


Table 23.--Physical Properties of the Soils
(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated)

Map symbol and soil name	Depth	Clay		Permeability			Organic matter	Erosion factors			\|Wind   \|erodi-   \|bility   group	Wind   erodi-   bility   index	
			Moist		\| Available	Linear							
			bulk		water	extensi-							
			density		capacity	bility		Kw	Kf	T			
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct						
					\|								
3A:													
Totagatic------------- \|	0-4	0-0	0.15-0.45	6.00-20	0.35-0.45	---	55-85	. 02	. 02	5	8	0	
	4-8	0-10	\|1.40-1.65	6.00-20	0.05-0.15	0.0-2.9	0.0-0.5	. 10	. 15				
	8-17	0-10	1.40-1.65	6.00-20	0.05-0.15	0.0-2.9	0.0-0.5	. 10	. 15				
	17-28	0-10	\|1.40-1.65	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-10	. 10	. 15				
	28-46	0-10	\|1.40-1.65	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-10	. 10	. 15				
	46-70	0-10	\|1.40-1.65	6.00-20	0.02-0.10	0.0-2.9	0.0-0.5	. 10	. 15				
	70-80	0-10	1.40-1.65	6.00-20	$\|0.02-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15				
Bowstring------------- \|	0-38	0-0	\|0.10-0.35	0.20-6.00	\|0.35-0.45		---	70-90	. 02	. 02	3	8	0
	38-47	0-10	1.40-1.65	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15				
	47-80	0-0	\|0.10-0.35	0.20-6.00	0.35-0.45	---	70-90	. 02	. 02				
Ausable-------------- \|	0-10	0-0	\|0.15-0.45	0.20-6.00	0.35-0.45	---	55-85	. 02	. 02	2	8	0	
	10-60	1-10	1.50-1.70	6.00-20	\|0.05-0.07		0.0-2.9	0.0-0.5	. 02	. 02			
12A:													
Makwa----------------- \|	0-8	0-0	\|0.15-0.35	0.20-6.00	\|0.23-0.38	---	75-100	. 02	. 02	3	8	0	
	8-16	5-15	1.25-1.45	0.60-6.00	$\|0.06-0.16\|$	0.0-2.9	4.0-10	---	---				
	16-43	6-25	\|1.25-1.45	0.60-6.00	\|0.06-0.10		0.0-2.9	0.2-0.8	---	-			
	43-65	6-30	1.60-1.70	0.60-2.00	\|0.05-0.09		0.0-2.9	0.0-0.5	---	---			
	65-80	20-50	1.65-1.85	0.06-0.20	\|0.20-0.22		0.0-2.9	0.0-0.5	---	---			
22A:													
Comstock------------- \|	0-8	8-22	\|1.35-1.55	0.60-2.00	0.20-0.24	0.0-2.9	2.0-4.0	. 37	. 37	5	5	56	
	8-15	8-20	\|1.40-1.65	0.60-2.00	$\|0.20-0.22\|$	0.0-2.9	0.0-1.0	. 43	. 43				
	15-21	15-28	\|1.40-1.65	0.60-2.00	$\|0.18-0.22\|$	3.0-5.9	0.0-0.5	. 43	. 43				
	21-34	18-30	\|1.40-1.65	0.60-2.00	$\|0.18-0.22\|$	3.0-5.9	0.0-0.5	. 43	. 43				
	34-44	8-20	\|1.40-1.70	0.60-2.00	$\|0.12-0.22\|$	0.0-2.9	0.0-0.5	. 37	. 37				
	44-60	8-20	\|1.40-1.65	0.20-0.60	0.12-0.22	0.0-2.9	0.0-0.5	. 37	. 37				
27A:													
Scott Lake------------- \|	0-10	6-15	\|1.35-1.70	0.60-2.00	0.12-0.14	0.0-2.9	2.0-3.0	. 24	. 24	4	3	86	
	10-17	6-15	\|1.40-1.70	0.60-2.00	\|0.11-0.13		0.0-2.9	0.0-0.5	. 32	. 32			
	17-24	8-17	\| 1.40-1.70	0.60-2.00	\|0.11-0.13		0.0-2.9	0.0-0.5	. 24	. 24			
	24-31	2-12	\|1.45-1.70	2.00-6.00	$\|0.02-0.10\|$	0.0-2.9	0.0-0.5	. 17	. 17				
	31-80	1-6	\|1.55-1.80	6.00-20	\|0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15			
28B:													
Haugen, very stony----\|	0-4	6-14	1.40-1.65	0.60-2.00	\|0.12-0.14		0.0-2.9	1.0-3.0	. 24	. 24	5	8	0
	4-15	4-14	\|1.40-1.70	0.60-2.00	$\|0.08-0.19\|$	0.0-2.9	0.5-1.0	. 24	. 24				
	15-23	4-14	\|1.40-1.70	0.60-2.00	\|0.08-0.19		0.0-2.9	0.5-1.0	. 24	. 24			
	23-35	5-15	\|1.40-1.70	0.60-2.00	$\|0.05-0.16\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	35-49	6-16	\|1.40-1.70	0.20-0.60	$\|0.05-0.13\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	49-79	8-18	\|1.40-1.70	0.20-0.60	$\|0.05-0.13\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	79-80	6-15	1.80-1.90	0.01-0.06	\|0.02-0.05		0.0-2.9	0.0-0.5	. 24	. 24			
Haugen---------------- \|	0-7	6-14	1.40-1.65	0.60-2.00	0.12-0.14	0.0-2.9	1.0-3.0	. 24	. 24	5	3	86	
	7-15	4-14	\|1.40-1.70	0.60-2.00	\|0.08-0.19		0.0-2.9	0.5-1.0	. 24	. 24			
	15-23	4-14	\|1.40-1.70	0.60-2.00	$\|0.08-0.19\|$	0.0-2.9	0.5-1.0	. 24	. 24				
	23-35	5-15	\|1.40-1.70	0.60-2.00	$\|0.05-0.16\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	35-49	6-16	\|1.40-1.70	0.20-0.60	\|0.05-0.13		0.0-2.9	0.0-0.5	. 24	. 24			
	49-79	8-18	\|1.40-1.70	0.20-0.60	$\|0.05-0.13\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	79-80	6-15	\|1.80-1.90	0.01-0.06	\| 0.02-0.05		0.0-2.9	0.0-0.5	. 24	. 24			

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion factors |  |  | \|Wind |erodi-| |bility |group | \|Wind |erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | g/cc | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt, very stony---\| | 0-4 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 4-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65\| | 0.60-6.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt | 0-8 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 8-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65\| | 0.60-6.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Haugen, very stony---- | 0-4 | 6-14 | 1.40-1.65 | 0.60-2.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 4-15 | 4-14 | 1.40-1.70\| | 0.60-2.00 | \|0.08-0.19| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-23 | 4-14 | 1.40-1.70\| | 0.60-2.00 | \|0.08-0.19| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 23-35 | 5-15 | 1.40-1.70\| | 0.60-2.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 35-49 | 6-16 | 1.40-1.70\| | 0.20-0.60 | \|0.05-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 49-79 | 8-18 | 1.40-1.70\| | 0.20-0.60 | \|0.05-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 79-80 | 6-15 | 1.80-1.90\| | 0.01-0.06 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Haugen | 0-7 | 6-14 | 1.40-1.65 | 0.60-2.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 7-15 | 4-14 | 1.40-1.70\| | 0.60-2.00 | \|0.08-0.19| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-23 | 4-14 | 1.40-1.70\| | 0.60-2.00 | \|0.08-0.19| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 23-35 | 5-15 | 1.40-1.70\| | 0.60-2.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 35-49 | 6-16 | 1.40-1.70\| | 0.20-0.60 | \|0.05-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 49-79 | 8-18 | 1.40-1.70\| | 0.20-0.60 | \|0.05-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 79-80 | 6-15 | 1.80-1.90\| | 0.01-0.06 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt, very stony---\| | 0-4 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 4-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65 | 0.60-6.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt | 0-8 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 8-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65\| | 0.60-6.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 38A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt-------------- \| | 0-8 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \| 0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 8-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65 | 0.60-6.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 38B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt--------------- \| | 0-8 | 4-10 | 1.50-1.60\| | 0.60-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 8-10 | 3-12 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | 1.70-1.80\| | 0.60-6.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | 1.65-1.75\| | 0.60-6.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | 1.55-1.65 | 0.60-6.00 | $\|0.02-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Permeability	$\begin{array}{\|l} \text { Available } \\ \text { water } \\ \text { \|capacity } \end{array}$	Linear   extensi-   bility	Organic   matter	\|Erosion factors			Wind erodibility\| group	\|Wind erodibility index	
								Kw	Kf	T			
	In	Pct	$\mathrm{g} / \mathrm{cc}$	$\mathrm{In} / \mathrm{hr}$	In/in	Pct	Pct						
38C:													
Rosholt	0-8	4-10	\|1.50-1.60		0.60-6.00	\|0.12-0.14	0.0-2.9	1.0-3.0	. 24	. 24	4	3	86
	8-10	3-12	\|1.70-1.80		0.60-6.00	\|0.05-0.16	0.0-2.9	0.0-1.0	. 24	. 24			
	10-14	5-14	\|1.70-1.80		0.60-6.00	\|0.05-0.16	0.0-2.9	0.0-1.0	. 24	. 24			
	14-28	6-15	\|1.65-1.75	0.60-6.00	0.06-0.19	0.0-2.9	0.0-0.5	. 24	. 24				
	28-34	4-12	\|1.55-1.65		0.60-6.00	\|0.02-0.10	0.0-2.9	0.0-0.5	. 10	. 17			
	34-60	1-6	\|1.55-1.80		6.00-20	\|0.01-0.07	0.0-2.9	0.0-0.5	. 10	. 15			
38D:													
Rosholt	0-8	4-10	\|1.50-1.60		0.60-6.00	0.12-0.14	0.0-2.9	1.0-3.0	. 24	. 24	4	3	86
	8-10	3-12	\|1.70-1.80		0.60-6.00	\|0.05-0.16	0.0-2.9	0.0-1.0	. 24	. 24			
	10-14	5-14	\|1.70-1.80		0.60-6.00	\|0.05-0.16	0.0-2.9	0.0-1.0	. 24	. 24			
	14-28	6-15	\|1.65-1.75		0.60-6.00	\|0.06-0.19	0.0-2.9	0.0-0.5	. 24	. 24			
	28-34	4-12	\|1.55-1.65		0.60-6.00	0.02-0.10	0.0-2.9	0.0-0.5	. 10	. 17			
	34-60	1-6	\|1.55-1.80		6.00-20	0.01-0.07	0.0-2.9	0.0-0.5	. 10	. 15			
42D:													
Amery	0-3	4-12	\|1.05-1.25		0.60-2.00	\|0.12-0.14	0.0-2.9	1.0-3.0	. 24	. 24	5	3	86
	$3-22$	4-15	\|1.50-1.70		0.60-2.00	\|0.09-0.19	0.0-2.9	0.0-0.5	. 24	. 24			
	22-34	4-14	\|1.65-1.90		0.20-0.60	0.07-0.16	0.0-2.9	0.0-0.5	. 24	. 24			
	34-41	4-15	\|1.65-1.90		0.20-0.60	0.07-0.16	0.0-2.9	0.0-0.5	. 24	. 24			
	41-57	6-17	\|1.65-1.90		0.20-0.60	0.07-0.16	0.0-2.9	0.0-0.5	. 20	. 28			
	57-71	6-17	\|1.65-1.90		0.20-0.60	0.07-0.16	0.0-2.9	0.0-0.5	. 20	. 28			
	71-80	4-15	\|1.80-2.00		0.02-0.20	0.02-0.05	0.0-2.9	0.0-0.5	. 28	. 28			
43B:													
Antigo	0-9	8-15	\|1.25-1.55		0.60-2.00	\|0.20-0.24	0.0-2.9	1.0-3.0	. 37	. 37	4	5	56
	9-12	8-15	\|1.35-1.55		0.60-2.00	\|0.20-0.22	0.0-2.9	0.0-1.0	. 43	. 43			
	12-19	8-17	\|1.55-1.65		0.60-2.00	\|0.16-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	19-28	8-17	\|1.55-1.65		0.60-2.00	\|0.16-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	28-31	2-17	$\|1.55-1.70\|$	0.60-2.00	0.05-0.19	0.0-2.9	0.0-0.5	. 24	. 24				
	31-33	2-17	\|1.55-1.70		0.60-2.00	0.05-0.19	0.0-2.9	0.0-0.5	. 24	. 24			
	33-60	0-5	\|1.55-1.80		6.00-20	0.01-0.07	0.0-2.9	0.0-0.5	. 10	. 15			
43C:													
Antigo	0-9	8-15	\|1.25-1.55		0.60-2.00	\|0.20-0.24	0.0-2.9	1.0-3.0	. 37	. 37	4	5	56
	9-12	8-15	\|1.35-1.55		0.60-2.00	\|0.20-0.22	0.0-2.9	0.0-1.0	. 43	. 43			
	12-19	8-17	\|1.55-1.65		0.60-2.00	0.16-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	19-28	8-17	\|1.55-1.65		0.60-2.00	0.16-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	28-31	2-17	$\|1.55-1.70\|$	0.60-2.00	0.05-0.19	0.0-2.9	0.0-0.5	. 24	. 24				
	31-33	2-17	\|1.55-1.70		0.60-2.00	\|0.05-0.19	0.0-2.9	0.0-0.5	. 24	. 24			
	33-60	0-5	\|1.55-1.80		6.00-20	0.01-0.07	0.0-2.9	0.0-0.5	. 10	. 15			
63A:													
Crystal Lake-	0-8	8-20	\|1.35-1.55		0.60-2.00	\|0.20-0.24	0.0-2.9	2.0-4.0	. 37	. 37	5	5	56
	8-12	8-20	\|1.40-1.60		0.60-2.00	\|0.20-0.22	0.0-2.9	0.0-1.0	. 43	. 43			
	12-20	15-27	\|1.40-1.60		0.60-2.00	\|0.18-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	20-32	18-30	\|1.50-1.60		0.60-2.00	\|0.18-0.22	3.0-5.9	0.0-0.5	. 43	. 43			
	32-60	8-20	\|1.40-1.65		0.20-0.60	\|0.20-0.22	0.0-2.9	0.0-0.5	. 37	. 37			
63B :													
Crystal Lake-	0-8	8-20	\|1.35-1.55		0.60-2.00	\|0.20-0.24	0.0-2.9	2.0-4.0	. 37	. 37	5	5	56
	8-12	8-20	\|1.40-1.60		0.60-2.00	\|0.20-0.22	0.0-2.9	0.0-1.0	. 43	. 43			
	12-20	15-27	\|1.40-1.60		0.60-2.00	\|0.18-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	20-32	18-30	$\|1.50-1.60\|$	0.60-2.00	\|0.18-0.22	3.0-5.9	0.0-0.5	. 43	. 43				
	32-60	8-20	\|1.40-1.65		0.20-0.60	\|0.20-0.22	0.0-2.9	0.0-0.5	. 37	. 37			
63C:													
Crystal Lake--	0-8	8-20	\|1.35-1.55		0.60-2.00	\|0.20-0.24	0.0-2.9	2.0-4.0	. 37	. 37	5	5	56
	8-12	8-20	\|1.40-1.60		0.60-2.00	\|0.20-0.22	0.0-2.9	0.0-1.0	. 43	. 43			
	12-20	15-27	\|1.40-1.60		0.60-2.00	\|0.18-0.22	0.0-2.9	0.0-0.5	. 43	. 43			
	20-32	18-30	$\|1.50-1.60\|$	0.60-2.00	\|0.18-0.22	3.0-5.9	0.0-0.5	. 43	. 43				
	32-60	8-20	\|1.40-1.65		0.20-0.60	\|0.20-0.22	0.0-2.9	0.0-0.5	. 37	. 37			

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist <br> bulk <br> density | Permeability | $\begin{array}{\|l\|} \text { \| Available } \\ \text { \| water } \\ \text { \|capacity } \end{array}$ | \| Linear |extensibility | Organic matter | Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 82B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cutaway---------- | 0-10 | 2-14 | \|1.45-1.55| | 6.00-20 | \|0.10-0.12| | 0.0-0.0 | 0.5-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 10-21 | 2-14 | \|1.50-1.60| | 6.00-20 | \|0.09-0.11| | 0.0-0.0 | 0.2-0.8 | --- | --- |  |  |  |
|  | 21-24 | 6-18 | \|1.50-1.60| | 2.00-6.00 | 0.15-0.17\| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 24-35 | 16-28 | \|1.45-1.55| | 0.60-2.00 | 0.16-0.19\| | 3.0-5.9 | 0.0-0.5 | - | --- |  |  |  |
|  | 35-53 | 14-26 | \|1.55-1.70| | 0.60-2.00 | 0.16-0.19\| | 0.0-2.9 | 0.0-0.5 |  |  |  |  |  |
|  | 53-80 | 12-24 | \|1.55-1.80| | 0.20-2.00 | 0.15-0.19\| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Branstad--------- | 0-9 | 9-17 | \|1.50-1.60| | 0.60-2.00 | \|0.13-0.18| | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 9-14 | 11-23 | \|1.55-1.65| | 0.60-2.00 | 0.10-0.19\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 14-20 | 13-25 | \|1.55-1.65| | 0.60-2.00 | $\|0.10-0.19\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 20-45 | 13-25 | \|1.55-1.65| | 0.60-2.00 | 0.10-0.19\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 45-55 | 13-25 | \|1.55-1.70| | 0.60-2.00 | 0.12-0.19\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 55-68 | 13-25 | \|1.55-1.70| | 0.60-2.00 | 0.12-0.19\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 68-80 | 13-25 | \|1.55-1.80| | 0.20-2.00 | \|0.12-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 82C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cutaway---------- | 0-10 | 2-14 | \|1.45-1.55| | 6.00-20 | \|0.10-0.12| | 0.0-0.0 | 0.5-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 10-21 | 2-14 | \|1.50-1.60| | 6.00-20 | \|0.09-0.11| | 0.0-0.0 | 0.2-0.8 | - | --- |  |  |  |
|  | 21-24 | 6-18 | \|1.50-1.60| | 2.00-6.00 | \|0.15-0.17| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 24-35 | 16-28 | \|1.45-1.55| | 0.60-2.00 | \|0.16-0.19| | 3.0-5.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 35-53 | 14-26 | \|1.55-1.70| | 0.60-2.00 | \|0.16-0.19| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 53-80 | 12-24 | \|1.55-1.80| | 0.20-2.00 | 0.15-0.19\| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Branstad--------- | 0-9 | 9-17 | \|1.50-1.60| | 0.60-2.00 | 0.13-0.18\| | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 9-14 | 11-23 | \|1.55-1.65| | 0.60-2.00 | 0.10-0.19\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 14-20 | 13-25 | \|1.55-1.65| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 20-45 | 13-25 | \|1.55-1.65| | 0.60-2.00 | $\|0.10-0.19\|$ | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 45-55 | 13-25 | \|1.55-1.70| | 0.60-2.00 | \|0.12-0.19| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 55-68 | 13-25 | \|1.55-1.70| | 0.60-2.00 | 0.12-0.19\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 68-80 | 13-25 | \|1.55-1.80| | 0.20-2.00 | $\|0.12-0.19\|$ | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 83A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Smestad---------- | 0-10 | 2-12 | \|1.40-1.60| | 6.00-20 | \|0.10-0.12| | 0.0-0.0 | 1.5-3.5 | . 15 | . 15 | 5 | 2 | 134 |
|  | 10-32 | 2-12 | \|1.55-1.65| | 6.00-20 | \|0.09-0.11| | 0.0-0.0 | 0.2-0.8 | - | - |  |  |  |
|  | 32-37 | 7-19 | \|1.60-1.70| | 0.60-2.00 | \|0.15-0.17| | 0.0-2.9 | 0.0-0.5 |  | --- |  |  |  |
|  | 37-57 | 60-80 | \|1.30-1.40| | 0.01-0.06 | $\|0.08-0.12\|$ | 9.0-12.0 | 0.0-0.5 |  |  |  |  |  |
|  | 57-80 | 55-75 | \|1.30-1.40| | 0.01-0.06 | \|0.08-0.12| | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 85B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Taylor---------- | 0-9 | 10-20 | \|1.35-1.55| | 0.60-2.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 43 | . 43 | 3 | 3 | 86 |
|  | 9-14 | 10-40 | \|1.45-1.55| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 0.2-0.8 | --- | --- |  |  |  |
|  | 14-25 | 60-85 | \|1.35-1.45| | 0.01-0.06 | \|0.09-0.11| | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  | 25-32 | 55-80 | \|1.40-1.55| | 0.01-0.20 | \|0.08-0.12| | 9.0-12.0 | 0.0-0.5 |  |  |  |  |  |
|  | 32-60 | 50-80 | \|1.45-1.55| | 0.01-0.20 | $\|0.08-0.12\|$ | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 85C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Taylor---------- | 0-9 | 10-20 | \|1.35-1.55| | 0.60-2.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 43 | . 43 | 3 | 3 | 86 |
|  | 9-14 | 10-40 | \|1.45-1.55| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 0.2-0.8 | --- | - |  |  |  |
|  | 14-25 | 60-85 | \|1.35-1.45| | 0.01-0.06 | \|0.09-0.11| | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  | 25-32 | 55-80 | \|1.40-1.55| | 0.01-0.20 | \|0.08-0.12| | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  | 32-60 | 50-80 | \|1.45-1.55| | 0.01-0.20 | $\|0.08-0.12\|$ | 9.0-12.0 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 86A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Indus------------ | 0-9 | 28-40 | \|1.20-1.40| | 0.20-0.60 | \|0.19-0.23| | 3.0-5.9 | 1.0-4.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 9-21 | 60-85 | \|1.30-1.40| | 0.02-0.06 | \|0.12-0.16| | 13.5-18.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 21-25 | 55-85 | \|1.30-1.40| | 0.02-0.06 | \|0.12-0.16| | 13.5-18.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 25-39 | 50-85 | \|1.30-1.50| | 0.02-0.06 | \|0.10-0.14| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 39-60 | 50-85 | \|1.30-1.50| | 0.02-0.06 | $\|0.10-0.14\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist <br> bulk <br> density | Permeability | $\begin{array}{\|} \mid \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 86A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Alango | 0-9 | 28-40 | \|1.20-1.40| | 0.20-0.60 | \|0.19-0.23| | 3.0-5.9 | 1.0-4.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 9-10 | 30-45 | \|1.25-1.45| | 0.20-0.60 | \|0.18-0.22| | 6.0-8.9 | 0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 10-28 | 60-85 | \|1.30-1.40| | 0.02-0.06 | \|0.12-0.16| | 13.5-18.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 28-60 | 50-85 | \|1.35-1.45| | 0.02-0.06 | \|0.10-0.15 | 10.5-18.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 60-80 | 50-85 | \|1.35-1.45| | 0.02-0.06 | \|0.10-0.15| | 10.5-18.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 89A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Wildwood- | 0-12 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.45| | --- | 25-99 | . 02 | . 02 | 3 | 2 | 134 |
|  | 12-17 | 40-55 | \| 1.35-1.45| | 0.06-0.20 | \|0.00-0.04| | 6.0-8.9 | 1.0-3.0 | . 28 | . 28 |  |  |  |
|  | 17-24 | 60-80 | \|1.35-1.45| | 0.06-0.20 | \|0.00-0.04| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 24-60 | 60-75 | \|1.40-1.55| | 0.01-0.20 | \|0.00-0.04| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 96B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg | 0-9 | 1-8 | 1.35-1.65\| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 | 4 | 1 | 220 |
|  | 9-28 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70| | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 3-8 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 96C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg- | 0-9 |  | \|1.35-1.65| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 | 4 | 1 | 220 |
|  | 9-28 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70| | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 3-8 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 96D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg- | 0-9 | 1-8 | \|1.35-1.65| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 | 4 | 1 | 220 |
|  | 9-28 | 1-8 | \| 1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70| | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 3-8 | \| 1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga | 0-2 | 0-8 | \|1.40-1.65| | 6.00-20 | \|0.06-0.08| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 2-25 | 0-15 | \|1.25-1.60| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | \|1.50-1.65| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga | 0-1 | 0-0 | \|0.15-0.30| | 6.00-20 | \|0.55-0.65 | \| --- | 65-85 | . 02 | . 02 | 5 | 1 | 220 |
|  | 1-2 | 0-8 | \|1.40-1.65| | 6.00-20 | \|0.06-0.08| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 |  |  |  |
|  | 2-25 | 0-15 | \|1.25-1.60| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | 1.50-1.65\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga | 0-1 | 0-0 | \|0.15-0.30| | 6.00-20 | \|0.55-0.65| | \| --- | 65-85 | . 02 | . 02 | 5 | 1 | 220 |
|  | 1-2 | 0-8 | \|1.40-1.65| | 6.00-20 | \|0.06-0.08| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 |  |  |  |
|  | 2-25 | 0-15 | \|1.25-1.60| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | 1.50-1.65\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 120B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Kost | 0-9 | 1-5 | \|1.30-1.50| | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 0.5-2.0 | . 05 | . 05 | 5 | 1 | 220 |
|  | 9-25 | 1-5 | \|1.30-1.50| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.5-2.0 | . 15 | . 15 |  |  |  |
|  | 25-36 | 0-5 | \|1.40-1.60| | 6.00-20 | \|0.06-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 36-42 | 0-5 | \|1.40-1.60| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 42-60 | 0-5 | \|1.40-1.60| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist <br> bulk <br> density | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \mid \text { water } \\ \mid \text { capacity } \end{array}$ | $\begin{array}{\|c} \text { Linear } \\ \mid \text { extensi- } \\ \text { \| bility } \end{array}$ | Organic matter | Erosion factors |  |  | Wind erodi\|bility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 127D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Amery | 0-3 | 4-12 | \|1.05-1.25| | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 3-22 | 4-15 | \|1.50-1.70| | 0.60-2.00 | 0.09-0.19 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 22-34 | 4-14 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 34-41 | 4-15 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 41-57 | 6-17 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 |  |  |  |
|  | 57-71 | 6-17 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 |  |  |  |
|  | 71-80 | 4-15 | \|1.80-2.00| | 0.02-0.20 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt | 0-4 | 4-10 | \|1.50-1.60| | 0.60-6.00 | 0.12-0.14 | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 4-10 | 3-12 | \|1.70-1.80| | 0.60-6.00 | 0.05-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | \|1.70-1.80| | 0.60-6.00 | 0.05-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | \|1.65-1.75 | 0.60-6.00 | 0.06-0.19 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | \|1.55-1.65| | 0.60-6.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | \| 1.55-1.80| | 6.00-20 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 127E: |  |  |  |  |  |  |  |  |  |  |  |  |
| Amery | 0-3 | 4-12 | \|1.05-1.25| | 0.60-2.00 | \|0.12-0.14 | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 3-22 | 4-15 | \|1.50-1.70| | 0.60-2.00 | \|0.09-0.19 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 22-34 | 4-14 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 34-41 | 4-15 | \|1.65-1.90| | 0.20-0.60 | \|0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 41-57 | 6-17 | \|1.65-1.90| | 0.20-0.60 | \|0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 |  |  |  |
|  | 57-71 | 6-17 | \|1.65-1.90| | 0.20-0.60 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 |  |  |  |
|  | 71-80 | 4-15 | \|1.80-2.00| | 0.02-0.20 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rosholt | 0-4 | 4-10 | \|1.50-1.60| | 0.60-6.00 | 0.12-0.14 | 0.0-2.9 | 1.0-3.0 | . 24 | . 24 | 4 | 3 | 86 |
|  | 4-10 | 3-12 | \|1.70-1.80| | 0.60-6.00 | \|0.05-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 10-14 | 5-14 | \|1.70-1.80| | 0.60-6.00 | \|0.05-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 24 |  |  |  |
|  | 14-28 | 6-15 | \|1.65-1.75| | 0.60-6.00 | \|0.06-0.19 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 28-34 | 4-12 | \|1.55-1.65| | 0.60-6.00 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 |  |  |  |
|  | 34-60 | 1-6 | \| 1.55-1.80| | 6.00-20 | \|0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 151A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bluffton | 0-8 | 10-22 | \|1.35-1.55| | 0.60-2.00 | \|0.16-0.24 | 1.0-2.9 | 3.0-7.0 | . 32 | . 32 | 5 | 5 | 56 |
|  | 8-19 | 10-22 | \|1.55-1.70| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 19-22 | 10-25 | \|1.55-1.70| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 22-26 | 10-25 | \|1.55-1.70| | 0.20-2.00 | 10.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 26-38 | 10-25 | \|1.55-1.70| | 0.20-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 38-60 | 10-25 | \|1.55-1.70| | 0.20-2.00 | 0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 152A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Alstad- | 0-9 | 6-18 | \|1.35-1.55| | 0.60-2.00 | \|0.16-0.24 | 0.0-2.9 | 2.0-5.0 | . 32 | . 32 | 5 | 5 | 56 |
|  | 9-15 | 4-16 | \|1.45-1.65| | 0.60-2.00 | \|0.09-0.22 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-18 | 13-25 | \|1.55-1.65| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.1-0.8 | . 24 | . 24 |  |  |  |
|  | 18-24 | 15-30 | \|1.55-1.65| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.1-0.8 | . 24 | . 24 |  |  |  |
|  | 24-49 | 18-32 | \|1.55-1.70| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 49-60 | 13-17 | \| 1.55-1.80| | 0.20-2.00 | \|0.09-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 154E: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cushing- | 0-5 | 6-18 | \|1.35-1.55| | 0.60-2.00 | \|0.16-0.24 | 0.0-2.9 | 2.0-5.0 | . 32 | . 32 | 5 | 3 | 86 |
|  | 5-15 | 4-16 | \|1.45-1.65 | 0.60-2.00 | \|0.09-0.22 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-33 | 11-27 | \|1.55-1.65| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.1-0.8 | . 24 | . 24 |  |  |  |
|  | 33-57 | 18-30 | \|1.55-1.65| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.1-0.8 | . 24 | . 24 |  |  |  |
|  | 57-65 | 18-30 | \|1.55-1.70| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 65-73 | 18-30 | \|1.55-1.70| | 0.60-2.00 | \|0.09-0.18 | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 73-80 | 13-17 | $\|1.55-1.80\|$ | 0.20-0.60 | \|0.09-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Permeability	$\begin{aligned} & \text { \|Available } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$	Linear extensibility	Organic   matter	Erosion factors			\|Wind   \|erodi-   \|bility   \|group	\|Wind   erodi-   bility   index												
								Kw	Kf	T														
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct																	
189A:																								
Siren------------	0-9	10-25	\|1.45-1.55		0.60-2.00	\|0.15-0.24		0.0-2.9	3.0-4.0	. 24	. 24	5	5	56										
	9-13	5-20	\|1.45-1.60		0.60-2.00	\|0.07-0.24		0.0-2.9	0.0-0.5	. 24	-													
	13-20	15-35	\|1.45-1.60		0.60-2.00	\|0.06-0.19		0.0-2.9	0.0-0.0	. 24	-													
	20-43	40-60	\|1.35-1.50		0.06-0.60	\|0.08-0.12		6.0-9.0	0.0-0.0	. 28	. 28													
	43-80	40-60	\|1.35-1.50		0.06-0.60	0.08-0.12	6.0-9.0	0.0-0.0	. 28	. 28														
193A:																								
Minocqua---------	0-4	0-0	\|0.15-0.45		2.00-6.00	\|0.35-0.45			30-60	. 02	. 02	4	8	0										
	4-15	10-17	\|1.50-1.60		0.60-2.00	0.11-0.19	0.0-2.9	0.0-2.0	. 37	. 37														
	15-28	7-17	\|1.40-1.70		0.60-2.00	\|0.06-0.19	0.0-2.9	0.0-0.5	. 32	. 32														
	28-60	0-5	\|1.55-1.80		6.00-20	\|0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15													
337A:																								
Plover-----------	0-10	3-8	\|1.35-1.65		0.60-2.00	\|0.13-0.18		0.0-2.9	2.0-3.0	. 28	. 28	5	3	86										
	10-13	5-15	\| 1.40-1.70		0.60-2.00	\|0.15-0.19		0.0-2.9	0.5-1.0	. 24	. 24													
	13-18	5-18	\|1.40-1.70		0.60-2.00	\|0.15-0.19		0.0-2.9	0.5-1.0	. 24	. 24													
	18-32	10-18	\| 1.50-1.70		0.60-2.00	\|0.12-0.17		0.0-2.9	0.5-1.0	. 24	. 24													
	32-60	5-12	\|1.50-1.70		0.20-0.60	0.11-0.22	0.0-2.9	0.0-0.5	. 24	. 24														
368B:																								
Mahtomedi--------	0-5	2-15	\|1.40-1.60		6.00-20	\|0.09-0.11		0.0-2.9	0.5-1.0	. 10	. 10	5	2	134										
	5-8	0-10	\|1.40-1.50		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 10													
	8-15	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	15-30	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	30-60	0-10	1.45-1.75\|	6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10														
Cress------------	0-3	5-18	\|1.25-1.60		0.60-2.00	\|0.12-0.14		0.0-2.9	0.5-2.0	. 24	. 24	3	3	86										
	3-15	5-18	\|1.40-1.70		0.60-2.00	\|0.12-0.17		0.0-2.9	0.5-1.0	. 24	. 24													
	15-31	0-8	\|1.50-1.80		6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17													
	31-36	0-8	$\|1.50-1.80\|$	6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17														
	36-60	1-6	\| $1.55-1.80 \mid$	6.00-20	\|0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15														
368C:																								
Mahtomedi--------	0-5	2-15	\|1.40-1.60		6.00-20	\|0.09-0.11		0.0-2.9	0.5-1.0	. 10	. 10	5	2	134										
	5-8	0-10	\|1.40-1.50		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 10													
	8-15	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	15-30	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	30-60	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
Cress-------------	0-3		\|1.25-1.60		0.60-2.00	\|0.12-0.14		0.0-2.9	0.5-2.0	. 24	. 24	3	3	86										
	3-15	5-18	\|1.40-1.70		0.60-2.00	\|0.12-0.17		0.0-2.9	0.5-1.0	. 24	. 24													
	15-31	0-8	$\|1.50-1.80\|$	6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17														
	31-36	0-8	\|1.50-1.80		6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17													
	36-60	1-6	$\|1.55-1.80\|$	6.00-20	\|0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15														
368D:																								
Mahtomedi--------	0-5	2-15	\|1.40-1.60		6.00-20	\|0.09-0.11		0.0-2.9	0.5-1.0	. 10	. 10	5	2	134										
	5-8	0-10	\|1.40-1.50		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 10													
	8-15	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	15-30	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
	30-60	0-10	\|1.45-1.75		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 05	. 10													
Cress------------	0-3	5-18	\|1.25-1.60		0.60-2.00	\|0.12-0.14		0.0-2.9	0.5-2.0	. 24	. 24	3	3	86										
	3-15	5-18	\|1.40-1.70		0.60-2.00	\|0.12-0.17		0.0-2.9	0.5-1.0	. 24	. 24													
	15-31	0-8	$\|1.50-1.80\|$	6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17														
	31-36	0-8	\|1.50-1.80		6.00-20	\|0.02-0.10		0.0-2.9	0.0-0.5	. 17	. 17													
	36-60	1-6	$\|1.55-1.80\|$	6.00-20	\|0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15														

Table 23.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	```Moist bulk density```	Permeability	$\left.\begin{array}{\|c\|} \mid \text { Available } \\ \mid \text { water } \\ \mid \text { capacity } \end{array} \right\rvert\,$	Linear   extensibility	Organic matter	Erosion factors			Wind erodibility group	Wind   erodi-   bility   index		
								Kw	Kf	T				
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct							
368E:														
Mahtomedi	0-5	2-15	\|1.40-1.60		6.00-20	0.09-0.11\|	0.0-2.9	0.5-1.0	. 10	. 10	5	2	134	
	5-8	0-10	\|1.40-1.50		6.00-20	0.02-0.07\|	0.0-2.9	0.0-0.5	. 10	. 10				
	8-15	0-10	\|1.45-1.75		6.00-20	0.02-0.07\|	0.0-2.9	0.0-0.5	. 05	. 10				
	15-30	0-10	\|1.45-1.75		6.00-20	$\|0.02-0.07\|$	0.0-2.9	0.0-0.5	. 05	. 10				
	$30-60$	$0-10$	\|1.45-1.75		6.00-20	$\|0.02-0.07\|$	0.0-2.9	0.0-0.5	. 05	. 10				
Cress	0-3	5-18	\|1.25-1.60		0.60-2.00	0.12-0.14\|	0.0-2.9	0.5-2.0	. 24	. 24	3	3	86	
	3-15	5-18	\|1.40-1.70		0.60-2.00	0.12-0.17\|	0.0-2.9	0.5-1.0	. 24	. 24				
	15-31	0-8	\|1.50-1.80		6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17				
	31-36	0-8	\| 1.50-1.80		6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17				
	$36-60$	1-6	\|1.55-1.80		6.00-20	$\|0.01-0.07\|$	0.0-2.9	0.0-0.5	. 10	. 15				
380B:														
Cress	0-3	5-18	\|1.25-1.60		0.60-2.00	0.12-0.14\|	0.0-2.9	0.5-2.0	. 24	. 24	3	3	86	
	3-15	5-18	\|1.40-1.70		0.60-2.00	0.12-0.17\|	0.0-2.9	0.5-1.0	. 24	. 24				
	$15-31$	0-8	$\|1.50-1.80\|$	6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17					
	31-36	0-8	\| 1.50-1.80		6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17				
	36-60	1-6	\| 1.55-1.80		6.00-20	0.01-0.07\|	0.0-2.9	0.0-0.5	. 10	. 15				
Rosholt	0-8	4-10	\|1.50-1.60		0.60-6.00	\| 0.12-0.14		0.0-2.9	1.0-3.0	. 24	. 24	4	3	86
	8-10	$3-12$	\|1.70-1.80		0.60-6.00	\|0.05-0.16		0.0-2.9	0.0-1.0	. 24	. 24			
	10-14	$5-14$	\|1.70-1.80		0.60-6.00	$\|0.05-0.16\|$	0.0-2.9	0.0-1.0	. 24	. 24				
	14-28	6-15	\|1.65-1.75		0.60-6.00	0.06-0.19\|	0.0-2.9	0.0-0.5	. 24	. 24				
	28-34	4-12	\|1.55-1.65		0.60-6.00	0.02-0.10\|	0.0-2.9	0.0-0.5	. 10	. 17				
	34-60	1-6	$\|1.55-1.80\|$	6.00-20	0.01-0.07\|	0.0-2.9	0.0-0.5	. 10	. 15					
380C:														
Cress	0-3	5-18	\|1.25-1.60		0.60-2.00	0.12-0.14\|	0.0-2.9	0.5-2.0	. 24	. 24	3	3	86	
	3-15	5-18	\|1.40-1.70		0.60-2.00	0.12-0.17\|	0.0-2.9	0.5-1.0	. 24	. 24				
	15-31	0-8	$\|1.50-1.80\|$	6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17					
	31-36	0-8	\|1.50-1.80		6.00-20	0.02-0.10\|	0.0-2.9	0.0-0.5	. 17	. 17				
	36-60	1-6	$\|1.55-1.80\|$	6.00-20	\| 0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15				
Rosholt	0-8	4-10	\|1.50-1.60		0.60-6.00	0.12-0.14\|	0.0-2.9	1.0-3.0	. 24	. 24	4	3	86	
	8-10	3-12	\| 1.70-1.80		0.60-6.00	0.05-0.16\|	0.0-2.9	0.0-1.0	. 24	. 24				
	10-14	5-14	\|1.70-1.80		0.60-6.00	0.05-0.16\|	0.0-2.9	0.0-1.0	. 24	. 24				
	14-28	6-15	\|1.65-1.75		0.60-6.00	0.06-0.19\|	0.0-2.9	0.0-0.5	. 24	. 24				
	28-34	4-12	\|1.55-1.65		0.60-6.00	$\|0.02-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 17				
	34-60	1-6	$\|1.55-1.80\|$	6.00-20	$\|0.01-0.07\|$	0.0-2.9	0.0-0.5	. 10	. 15					
380D:														
Cress	0-3	5-18	\|1.25-1.60		0.60-2.00	\| 0.12-0.14		0.0-2.9	0.5-2.0	. 24	. 24	3	3	86
	3-15	5-18	\|1.40-1.70		0.60-2.00	$\|0.12-0.17\|$	0.0-2.9	0.5-1.0	. 24	. 24				
	15-31	0-8	\|1.50-1.80		6.00-20	$\|0.02-0.10\|$	0.0-2.9	0.0-0.5	. 17	. 17				
	31-36	0-8	\|1.50-1.80		6.00-20	$\|0.02-0.10\|$	0.0-2.9	0.0-0.5	. 17	. 17				
	36-60	1-6	\| 1.55-1.80		6.00-20	\| 0.01-0.07		0.0-2.9	0.0-0.5	. 10	. 15			
Rosholt	0-8	4-10	\|1.50-1.60		0.60-6.00	0.12-0.14\|	0.0-2.9	1.0-3.0	. 24	. 24	4	3	86	
	8-10	$3-12$	\| 1.70-1.80		0.60-6.00	$\|0.05-0.16\|$	0.0-2.9	0.0-1.0	. 24	. 24				
	10-14	5-14	\|1.70-1.80		0.60-6.00	\|0.05-0.16		0.0-2.9	0.0-1.0	. 24	. 24			
	14-28	6-15	\|1.65-1.75		0.60-6.00	$\|0.06-0.19\|$	0.0-2.9	0.0-0.5	. 24	. 24				
	28-34	4-12	\|1.55-1.65		0.60-6.00	0.02-0.10\|	0.0-2.9	0.0-0.5	. 10	. 17				
	34-60	1-6	$\|1.55-1.80\|$	6.00-20	$\|0.01-0.07\|$	0.0-2.9	0.0-0.5	. 10	. 15					
383B:														
Mahtomedi	0-5	2-15	\|1.40-1.60		6.00-20	\|0.09-0.11		0.0-2.9	0.5-1.0	. 10	. 10	5	2	134
	5-8	0-10	\|1.40-1.50		6.00-20	\|0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 10			
	8-15	0-10	\|1.45-1.75		6.00-20	$\|0.02-0.07\|$	0.0-2.9	0.0-0.5	. 05	. 10				
	15-30	0-10	\|1.45-1.75		6.00-20	$\|0.02-0.07\|$	0.0-2.9	0.0-0.5	. 05	. 10				
	30-60	0-10	\|1.45-1.75		6.00-20	$\|0.02-0.07\|$	0.0-2.9	0.0-0.5	. 05	. 10				

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available\| } \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic <br> matter | Erosion factors |  |  | \|Wind |erodi|bility| group | Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 383C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | 2-15 | 1.40-1.60\| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 0-10 | 1.40-1.50\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 8-15 | 0-10 | 1.45-1.75\| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 15-30 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 30-60 | 0-10 | 1.45-1.75\| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 383D |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | 2-15 | 1.40-1.60\| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 0-10 | 1.40-1.50\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 8-15 | 0-10 | 1.45-1.75\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 15-30 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 30-60 | 0-10 | 1.45-1.75\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 392C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rockmarsh | 0-1 | 0-0 | 0.15-0.30\| | 0.60-20 | \|0.45-0.55| | --- | 65-85 | . 02 | . 02 | 1 | 8 | 0 |
|  | 1-8 | 5-25 | 1.45-1.55\| | 0.60-20 | \|0.11-0.24| | 0.0-2.9 | 1.0-2.0 | . 15 | . 37 |  |  |  |
|  | 8-23 | 2-10 | 1.60-1.70\| | 0.60-20 | \|0.04-0.11| | 0.0-2.9 | 0.2-0.8 | . 10 | . 17 |  |  |  |
|  | 23-46 | 10-35 | 1.45-1.55 | 0.60-20 | \|0.07-0.17| | 0.0-2.9 | 0.0-0.0 | . 17 | . 24 |  |  |  |
|  | 46-80 | 5-20 | 1.80-1.85\| | 0.01-0.06 | $\|0.02-0.10\|$ | 0.0-2.9 | 0.0-0.0 | . 17 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dairyland | 0-1 | 0-0 | 0.15-0.30\| | 2.00-20 | \|0.45-0.55| | --- | 60-85 | . 02 | . 02 | 1 | 3 | 56 |
|  | 1-7 | 5-20 | 1.55-1.65\| | 2.00-20 | $\|0.07-0.11\|$ | 0.0-2.9 | 1.0-2.0 | . 02 | . 10 |  |  |  |
|  | 7-14 | 1-15 | 1.55-1.70\| | 2.00-20 | \|0.04-0.09| | 0.0-2.9 | 0.2-0.8 | . 15 | . 15 |  |  |  |
|  | 14-36 | 2-15 | 1.55-1.70\| | 6.00-20 | \| 0.04-0.07| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 36-49 | 2-15 | 1.55-1.70\| | 6.00-20 | \|0.04-0.07| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 49-80 | 5-30 | 1.80-1.85\| | 0.01-0.06 | \|0.01-0.05| | 0.0-2.9 | 0.0-0.0 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Makwa | 0-8 | 0-0 | 0.15-0.35\| | 0.20-6.00 | \|0.23-0.38| | --- | 75-100 | . 02 | . 02 | 3 | 8 | 0 |
|  | 8-16 | 5-15 | 1.25-1.45\| | 0.60-6.00 | \|0.06-0.16| | 0.0-2.9 | 4.0-10 | --- | --- |  |  |  |
|  | 16-43 | 6-25 | 1.25-1.45\| | 0.60-6.00 | \|0.06-0.10| | 0.0-2.9 | 0.2-0.8 | --- | --- |  |  |  |
|  | 43-65 | 6-30 | 1.60-1.70\| | 0.60-2.00 | \|0.05-0.09| | 0.0-2.9 | 0.0-0.5 |  | - |  |  |  |
|  | 65-80 | 20-50\| | 1.65-1.85\| | 0.06-0.20 | \|0.20-0.22| | 0.0-2.9 | 0.0-0.5 | - |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 396B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Friendship- | 0-4 | 2-6 | 1.50-1.65 | 6.00-20 | \|0.06-0.08| | 0.0-2.9 | 0.5-2.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 4-29 | 2-7 | 1.35-1.65\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 29-60 | 0-4 | 1.50-1.70\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wurtsmith | 0-6 | 0-10 | 1.30-1.65 | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 1.0-6.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 6-33 | 0-5 | 1.40-1.60\| | 6.00-20 | \|0.06-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 33-60 | 0-5 | 1.50-1.65\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Grayling- | 0-3 | 0-10 | 1.30-1.65 | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 1.0-6.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 3-15 | 0-10 | 1.30-1.65\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.3-0.5 | . 15 | . 15 |  |  |  |
|  | $15-23$ | 0-10 | 1.45-1.65\| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 23-60 | 0-10 | 1.45-1.65\| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 397A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Perchlake |  |  | 1.40-1.50\| | 6.00-20 | $\|0.10-0.12\|$ | 0.0-2.9 |  | . 10 | . 10 | 5 | 2 | 134 |
|  | 9-18 | 2-8 | 1.50-1.70\| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 18-42 | 2-8 | 1.40-1.65\| | 6.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 42-46 | 10-18 | 1.50-1.70\| | 6.00-20 | $\|0.11-0.19\|$ | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 46-60 | 2-8 | 1.50-1.65\| | 6.00-20 | \|0.05-0.09| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 399B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Grayling- | 0-3 | 0-10 | 1.30-1.65 | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 1.0-6.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 3-15 | 0-10 | 1.30-1.65\| | 6.00-20 | \| 0.05-0.07| | 0.0-2.9 | 0.3-0.5 | . 15 | . 15 |  |  |  |
|  | 15-23 | 0-10 | 1.45-1.65\| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 23-60 | 0-10\| | 1.45-1.65\| | 6.00-20 | $\|0.02-0.07\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | ```MMoist``` | Permeability | $\left\|\begin{array}{c} \text { Available } \\ \mid \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear <br> extensibility | Organic matter | Erosion factors |  |  | \|Wind |erodi|bility |group | \| Wind erodi|bility <br> index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 399C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Grayling------------- \| | 0-3 | 0-10 | \|1.30-1.65| | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 1.0-6.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | $3-15$ | $0-10$ | \|1.30-1.65| | $6.00-20$ | $\|0.05-0.07\|$ | $0.0-2.9$ | $0.3-0.5$ | . 15 | . 15 |  |  |  |
|  | 15-23 | 0-10\| | \|1.45-1.65| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 23-60 | 0-10 | \|1.45-1.65| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 399D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Grayling | 0-3 | 0-10 | 1.30-1.65\| | 6.00-20 | \|0.07-0.09| | 0.0-2.9 | 1.0-6.0 | . 02 | . 02 | 5 | 1 | 220 |
|  | 3-15 | 0-10\| | \|1.30-1.65| | 6.00-20 | \| 0.05-0.07| | 0.0-2.9 | 0.3-0.5 | . 15 | . 15 |  |  |  |
|  | 15-23 | 0-10\| | \|1.45-1.65| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 23-60 | 0-10 | \|1.45-1.65| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 406A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Loxley--------------- \| | 0-13 | 0-0 | \|0.30-0.40| | 6.00-20 | \|0.45-0.55| | --- | 70-90 | . 02 | . 02 | 3 | 8 | 0 |
|  | $13-60$ | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.45| | --- | 70-90 | . 02 | . 02 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 407A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Seelyeville---------- \| | 0-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | 0.35-0.45\| | --- | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Markey | 0-32 | 0-0 | \|0.15-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 55-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 32-60 | 0-10 | \| 1.40-1.65| | 6.00-20 | $\|0.03-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 410A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Seelyeville | 0-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.45| | - | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cathro | 0-28 | 0-0 | \|0.28-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 60-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 28-49 | 10-30\| | 1.50-1.70\| | 0.20-2.00 | \|0.11-0.22| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 49-60 | 10-30\| | 1.50-1.70\| | 0.20-2.00 | $\|0.11-0.22\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 419A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Seelyeville---------- | 0-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.45| | --- | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cathro---------------- \| | 0-28 | 0-0 | \|0.28-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 60-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 28-49 | 10-30\| | \| 1.50-1.70| | 0.20-2.00 | $\|0.11-0.22\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 49-60 | 10-30\| | 1.50-1.70\| | 0.20-2.00 | $\|0.11-0.22\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Markey--------------- \| | 0-32 | 0-0 | \|0.15-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 55-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 32-60 | 0-10 | 1.40-1.65\| | 6.00-20 | $\|0.03-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 421A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Dora | 0-12 | 0-0 | \|0.28-0.45| | 0.60-6.00 | \|0.35-0.45| | --- | 60-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 12-32 | 0-0 | \|0.28-0.45| | 0.60-6.00 | $\|0.35-0.45\|$ | --- | 60-85 | . 02 | . 02 |  |  |  |
|  | 32-36 | 27-40\| | $\|1.35-1.50\|$ | 0.20-0.60 | \|0.18-0.22| | 6.0-8.9 | 15-25 | . 43 | . 43 |  |  |  |
|  | 36-42 | 30-50\| | $\|1.50-1.75\|$ | 0.06-0.20 | $\|0.10-0.16\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 42-60 | 30-50\| | \|1.50-1.75| | 0.01-0.20 | $\|0.10-0.16\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Markey--------------- \| | 0-32 | 0-0 | \|0.15-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 55-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 32-60 | 0-10 | 1.40-1.65\| | 6.00-20 | \|0.03-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Seelyeville---------- \| | 0-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.45| | - | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 422A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Seelyeville---------- \| | 0-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.45| | --- | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cathro--------------- \| | 0-28 | 0-0 | \|0.28-0.45| | 0.20-6.00 | \|0.35-0.45| | --- | 60-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 28-49 | 10-30\| | \|1.50-1.70| | 0.20-2.00 | \|0.11-0.22| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 49-60 | 10-30\| | 1.50-1.70\| | 0.20-2.00 | $\|0.11-0.22\|$ | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rondeau-------------- \| | 0-44 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.48| | --- | 25-99 | . 02 | . 02 | 2 | 8 | 0 |
|  | 44-60 | 5-15 | 0.05-0.20\| | 0.01-0.20 | \| 0.20-0.22| | -- | - | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available\| } \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear <br> extensi- <br> bility | Organic <br> matter | \|Erosion factors| |  |  | \|Wind |erodi|bility| |group | \|Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 426B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Emmert | 0-1 | 1-10 | 1.55-1.65 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 1 | 2 | 134 |
|  | 1-5 | 1-10 | 1.55-1.80 | 20-60 | \|0.02-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 5-24 | 1-10 | 1.55-1.80 | 20-60 | \| 0.02-0.08| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 24-60 | 1-3 | 1.60-1.80 | 20-60 | \|0.01-0.03| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | 2-15 | 1.40-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 0-10 | 1.40-1.50 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 8-15 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 15-30 | 0-10 | 1.45-1.75 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 30-60 | 0-10 | 1.45-1.75 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga | 0-1 | 0-0 | 0.15-0.30 | 6.00-20 | \|0.55-0.65| | --- | 65-85 | . 02 | . 02 | 5 | 2 | 134 |
|  | 1-2 | 2-10 | 1.30-1.55 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 |  |  |  |
|  | 2-25 | 0-15 | 1.25-1.60 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | 1.50-1.65 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 426C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Emmert | 0-1 | 1-10 | 1.55-1.65 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 1 | 2 | 134 |
|  | 1-5 | 1-10 | 1.55-1.80 | 20-60 | \|0.02-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 5-24 | 1-10 | 1.55-1.80 | 20-60 | \| 0.02-0.08| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 24-60 | 1-3 | 1.60-1.80 | 20-60 | \|0.01-0.03| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | 2-15 | 1.40-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 0-10 | 1.40-1.50 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 8-15 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 15-30 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 30-60 | 0-10 | 1.45-1.75 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga | 0-1 | 0-0 | 0.15-0.30 | 6.00-20 | \|0.55-0.65| | --- | 65-85 | . 02 | . 02 | 5 | 2 | 134 |
|  | 1-2 | 2-10 | 1.30-1.55 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 |  |  |  |
|  | 2-25 | 0-15 | 1.25-1.60 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | 1.50-1.65 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 426D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Emmert |  | 1-10 | 1.55-1.65 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 1 | 2 | 134 |
|  | 1-5 | 1-10 | 1.55-1.80\| | 20-60 | \|0.02-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 5-24 | 1-10 | 1.55-1.80 | 20-60 | \|0.02-0.08| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 24-60 | 1-3 | 1.60-1.80 | 20-60 | \|0.01-0.03| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mahtomedi | 0-5 | 2-15 | 1.40-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 0-10 | 1.40-1.50 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 8-15 | 0-10 | 1.45-1.75 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 15-30 | 0-10 | 1.45-1.75 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  | 30-60 | 0-10 | 1.45-1.75 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Menahga- | $0-1$ | 0-0 | 0.15-0.30 | 6.00-20 | \|0.55-0.65| | --- | 65-85 | . 02 | . 02 | 5 | 2 | 134 |
|  | 1-2 | 2-10 | 1.30-1.55 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 |  |  |  |
|  | 2-25 | 0-15 | 1.25-1.60 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 25-80 | 0-10 | 1.50-1.65\| | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 430A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Freya | 0-11 | 1-10 | 1.55-1.65 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 1.0-2.0 | . 05 | . 05 | 4 | 2 | 134 |
|  | 11-32 | 1-10 | 1.55-1.70 | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-47 | 1-10 | 1.55-1.70 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 47-66 | 60-80 | 1.25-1.35 | 0.0015-0.06 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 66-72 | 60-80 | 1.25-1.35 | 0.0015-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 72-80 | 50-80 | 1.25-1.50 | 0.0015-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	```Moist bulk density```	Permeability	$\left.\begin{array}{\|c\|} \mid \text { Available } \\ \text { water } \\ \mid \text { capacity } \end{array} \right\rvert\,$	Linear   extensi-   bility	Organic matter	\|Erosion factors			Wind erodi\|bility group	Wind \|erodi	bility   index	
								Kw	Kf	T				
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct							
439B:														
Graycalm-	0-3	2-10	1.30-1.55	6.00-20	\|0.09-0.11		0.0-2.9	0.5-2.0	. 10	. 10	5	2	134	
	3-22	$0-10$	1.25-1.60\|	$6.00-20$	$\|0.05-0.10\|$	$0.0-2.9$	$0.0-0.5$	. 10	. 15					
	22-35	0-10	1.50-1.65	6.00-20	0.05-0.10\|	0.0-2.9	0.0-0.5	. 10	. 15					
	35-60	0-15	1.50-1.65\|	6.00-20	0.05-0.10\|	0.0-2.9	0.0-0.5	. 10	. 15					
Menahga	0-1	0-0	0.15-0.30\|	6.00-20	\|0.55-0.65		- --	65-85	. 02	. 02	5	2	134	
	1-2	2-10	1.30-1.55	6.00-20	$\|0.09-0.11\|$	0.0-2.9	0.5-2.0	. 10	. 10					
	2-25	0-15	1.25-1.60\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	25-80	0-10	1.50-1.65	6.00-20	\| 0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 15				
439C:														
Graycalm	0-3	2-10	1.30-1.55	6.00-20	\|0.09-0.11		0.0-2.9	0.5-2.0	. 10	. 10	5	2	134	
	3-22	0-10	1.25-1.60\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	22-35	0-10	1.50-1.65\|	6.00-20	\|0.05-0.10		0.0-2.9	0.0-0.5	. 10	. 15				
	$35-60$	$0-15$	1.50-1.65	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
Menahga	0-1	0-0	0.15-0.30	6.00-20	\|0.55-0.65		---	65-85	. 02	. 02	5	2	134	
	1-2	2-10	1.30-1.55\|	6.00-20	\|0.09-0.11		0.0-2.9	0.5-2.0	. 10	. 10				
	2-25	0-15	1.25-1.60\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	25-80	0-10	1.50-1.65	6.00-20	0.02-0.07\|	0.0-2.9	0.0-0.5	. 10	. 15					
$439 \mathrm{D}:$														
Graycalm-	0-3	2-10	1.30-1.55	6.00-20	\|0.09-0.11		0.0-2.9	0.5-2.0	. 10	. 10	5	2	134	
	3-22	0-10	1.25-1.60\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	22-35	0-10	1.50-1.65	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	35-60	0-15	1.50-1.65\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
Menahga	0-1	0-0	0.15-0.30	6.00-20	\|0.55-0.65		---	65-85	. 02	. 02	5	2	134	
	1-2	2-10	1.30-1.55\|	6.00-20	\|0.09-0.11		0.0-2.9	0.5-2.0	. 10	. 10				
	2-25	$0-15$	1.25-1.60\|	6.00-20	$\|0.05-0.10\|$	0.0-2.9	0.0-0.5	. 10	. 15					
	25-80	0-10	1.50-1.65\|	6.00-20	\| 0.02-0.07		0.0-2.9	0.0-0.5	. 10	. 15				
442C:														
Haugen	0-4	6-14	1.40-1.65	0.60-2.00	\|0.12-0.14		0.0-2.9	1.0-3.0	. 24	. 24	5	3	86	
	$4-15$	$4-14$	1.40-1.70\|	0.60-2.00	\|0.08-0.19		0.0-2.9	0.5-1.0	. 24	. 24				
	15-23	4-14	1.40-1.70\|	0.60-2.00	0.08-0.19\|	0.0-2.9	0.5-1.0	. 24	. 24					
	23-35	5-15	1.40-1.70\|	0.60-2.00	\|0.05-0.16		0.0-2.9	0.0-0.5	. 24	. 24				
	35-49	6-16	1.40-1.70\|	0.20-0.60	\|0.05-0.13		0.0-2.9	0.0-0.5	. 24	. 24				
	49-79	8-18	1.40-1.70\|	0.20-0.60	$\|0.05-0.13\|$	0.0-2.9	0.0-0.5	. 24	. 24					
	79-80	6-15	1.80-1.90\|	0.01-0.06	\| 0.02-0.05		0.0-2.9	0.0-0.5	. 24	. 24				
Greenwood-	0-6	$0-0$	0.30-0.40\|	6.00-20	\|0.55-0.65			55-75	. 02	. 02	3	7	38	
	6-60	0-0	0.10-0.25\|	0.60-6.00	$\|0.45-0.55\|$	\| ---	55-75	. 02	. 02					
443D:														
Amery -	0-3	4-12	\|1.05-1.25	0.60-2.00	\|0.12-0.14		0.0-2.9	1.0-3.0	. 24	. 24	5	3	86	
	$3-22$	$4-15$	\|1.50-1.70		0.60-2.00	\|0.09-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	22-34	4-14	\|1.65-1.90	0.20-0.60	$\|0.07-0.16\|$	0.0-2.9	0.0-0.5	. 24	. 24					
	34-41	4-15	\|1.65-1.90	0.20-0.60	$\|0.07-0.16\|$	0.0-2.9	0.0-0.5	. 24	. 24					
	41-57	6-17	\|1.65-1.90	0.20-0.60	\|0.07-0.16		0.0-2.9	0.0-0.5	. 20	. 28				
	57-71	$6-17$	\|1.65-1.90	0.20-0.60	$\|0.07-0.16\|$	0.0-2.9	0.0-0.5	. 20	. 28					
	71-80	4-15	\|1.80-2.00	0.02-0.20	\|0.02-0.05		0.0-2.9	0.0-0.5	. 28	. 28				
Greenwood-	0-6	0-0	\|0.30-0.40	6.00-20	\|0.55-0.65		---	55-75	. 02	. 02	3	7	38	
	6-60	0-0	\|0.10-0.25	0.60-6.00	\|0.45-0.55		---	55-75	. 02	. 02				
459A:														
Loxley-	0-13	0-0	\|0.30-0.40	6.00-20	\|0.55-0.65		---	70-90	. 02	. 02	3	8	0	
	13-60	0-0	\|0.10-0.35	0.20-6.00	\|0.35-0.45		---	70-99	. 02	. 02				

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \mid \text { water } \\ \mid \text { capacity } \end{array}$ | Linear <br> extensi- <br> bility | Organic <br> matter | Erosion factors |  |  | \|Wind |erodi-| |bility| group | \|Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | g/cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 471C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Emmert | 0-1 | 1-10 | 1.55-1.65 | 6.00-20 | 0.10-0.12\| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 1 | 2 | 86 |
|  | 1-5 | 1-10 | 1.55-1.80 | 20-60 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 5-24 | 1-10 | 1.55-1.80 | 20-60 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 24-60 | 1-3 | 1.60-1.80 | 20-60 | 0.01-0.03\| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 472A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rockmarsh | 0-1 | 0-0 | 0.15-0.30 | 0.60-20 | \|0.45-0.55| | --- | 65-85 | . 02 | . 02 | 1 | 5 | 48 |
|  | 1-8 | 5-25 | 1.45-1.55 | 0.60-20 | 0.11-0.24\| | 0.0-2.9 | 1.0-2.0 | . 15 | . 37 |  |  |  |
|  | 8-23 | 2-10 | 1.60-1.70 | 0.60-20 | 0.04-0.11\| | 0.0-2.9 | 0.2-0.8 | . 10 | . 17 |  |  |  |
|  | 23-46 | 10-35 | 1.45-1.55 | 0.60-20 | 0.07-0.17\| | 0.0-2.9 | 0.0-0.0 | . 17 | . 24 |  |  |  |
|  | 46-80 | 5-20 | 1.80-1.85 | 0.01-0.06 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.0 | . 17 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Clemens | 0-2 | 0-0 | 0.35-0.45 | 0.60-2.00 | 0.55-0.65 | --- | 30-80 | . 02 | . 02 | 3 | 8 | 0 |
|  | 2-7 | 10-25 | 1.45-1.55 | 0.60-2.00 | 0.10-0.12\| | 0.0-2.9 | 0.5-1.0 | . 20 | . 32 |  |  |  |
|  | 7-10 | 2-25 | 1.45-1.60 | 0.60-2.00 | 0.06-0.17\| | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 |  |  |  |
|  | 10-13 | 2-25 | 1.45-1.60 | 0.60-2.00 | 0.06-0.19\| | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 |  |  |  |
|  | 13-32 | 2-17 | 1.50-1.60 | 0.60-2.00 | 0.06-0.13\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 32-46 | 2-17 | 1.50-1.60 | 0.60-2.00 | 0.05-0.11\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 46-80 | 1-10 | 1.55-1.70 | 6.00-60 | 0.04-0.09\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 473A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Dairyland- | 0-1 | 0-0 | 0.15-0.30 | 2.00-20 | 0.45-0.55\| | --- | 60-85 | . 02 | . 02 | 1 | 3 | 56 |
|  | 1-7 | 5-20 | 1.55-1.65 | 2.00-20 | \|0.07-0.11| | 0.0-2.9 | 1.0-2.0 | . 02 | . 10 |  |  |  |
|  | 7-14 | 1-15 | 1.55-1.70 | 2.00-20 | \|0.04-0.09| | 0.0-2.9 | 0.2-0.8 | . 15 | . 15 |  |  |  |
|  | 14-36 | 2-15 | 1.55-1.70 | 6.00-20 | 0.04-0.07\| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 36-49 | 2-15 | 1.55-1.70 | 6.00-20 | 0.04-0.07\| | 0.0-2.9 | 0.0-0.0 | . 10 | . 15 |  |  |  |
|  | 49-80 | 5-30 | 1.80-1.85 | 0.01-0.06 | 0.01-0.05 | 0.0-2.9 | 0.0-0.0 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Skog | 0-1 | 0-0 | 0.15-0.40 | 2.00-6.00 | 0.35-0.45\| | --- | 30-80 | . 02 | . 02 | 3 | 3 | 56 |
|  | 1-6 | 10-17 | 1.50-1.60 | 2.00-6.00 | 0.08-0.13\| | 0.0-2.9 | 1.0-2.0 | . 15 | . 17 |  |  |  |
|  | 6-11 | 2-17 | 1.50-1.65 | 2.00-6.00 | 0.05-0.12\| | 0.0-2.9 | 0.2-0.8 | . 10 | . 17 |  |  |  |
|  | 11-27 | 2-12 | 1.55-1.70 | 6.00-60 | 0.04-0.09\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 27-38 | 2-12 | 1.60-1.80 | 6.00-60 | 0.01-0.09\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 38-80 | 0-5 | 1.60-1.80 | 6.00-60 | 0.01-0.06\| | 0.0-2.9 | 0.0-0.2 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 484A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Greenwood- |  | 0-0 | 10.30-0.40 | 6.00-20 | \|0.55-0.65| | - | $55-75$ | . 02 | . 02 | 3 | 7 | 38 |
|  | 6-60 | 0-0 | 0.10-0.25 | 0.60-6.00 | \|0.45-0.55| | --- | 55-75 | . 02 | . 02 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beseman | $0-36$ |  | 0.10-0.25 | 0.60-6.00 | 0.35-0.45\| | --- | 25-75 | . 02 | . 02 | 2 | 8 | 0 |
|  | 36-60 | 8-20 | 1.35-1.60 | 0.20-0.60 | 0.09-0.22 | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 485C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lupton- | 0-65 | 0-0 | 0.15-0.40 | 0.20-6.00 | 0.35-0.45\| | --- | 30-80 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tawas | 0-31 | 0-0 | 0.15-0.40 | 0.20-6.00 | 0.35-0.45\| | --- | 30-80 | . 02 | . 02 | 2 | 8 | 0 |
|  | 31-60 | 0-10 | 1.55-1.80 | 6.00-20 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 495B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg- | 0-9 | 6-8 | 1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | 1.45-1.70 | 0.01-0.20 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | 1.55-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum- | $0-3$ | 2-12 | 1.35-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 1.0-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 3-32 | 2-12 | 1.40-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-75 | 2-12 | 1.40-1.65 | 2.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 75-80 | 1-10 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist <br> bulk <br> density | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \mid \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic <br> matter | Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 495B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Perida----------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-43 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 43-45 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 45-60 | 50-80 | 1.45-1.70 | 0.01-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 60-74 | 50-80 | \|1.45-1.70| | 0.01-0.06 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 74-80 | 1-10 | 1.50-1.70\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 495C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg-------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | $0.0-0.5$ | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70| | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | \|1.55-1.70| | 6.00-20 | \| 0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum---------- | 0-3 | 2-12 | 1.35-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 1.0-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 3-32 | 2-12 | \|1.40-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-75 | 2-12 | \|1.40-1.65 | 2.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 75-80 | 1-10 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Perida----------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-43 | 0-8 | \|1.45-1.65 | 6.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 43-45 | 2-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 45-60 | 50-80 | \|1.45-1.70 | 0.01-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 60-74 | 50-80 | \|1.45-1.70| | 0.01-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 74-80 | 1-10 | \|1.50-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 495D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg-------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | 1.45-1.70 | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum---------- | 0-3 | 2-12 | \|1.35-1.60| | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 1.0-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 3-32 | 2-12 | \|1.40-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-75 | 2-12 | \|1.40-1.65 | 2.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 75-80 | 1-10 | 1.50-1.70\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Perida----------- | $0-9$ |  | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-43 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 43-45 | 2-8 | \|1.45-1.65 | 6.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 45-60 | 50-80 | \|1.45-1.70| | 0.01-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 60-74 | 50-80 | 1.45-1.70 | 0.01-0.06 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 74-80 | 1-10 | 1.50-1.70\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 496B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg-------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70 | 0.01-0.20 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 496C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg-------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | \|1.45-1.70| | 0.01-0.20 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 496D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Karlsborg-------- | 0-9 | 6-8 | \|1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-28 | 0-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-48 | 60-80 | 1.45-1.70 | 0.01-0.20 | $\|0.08-0.10\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 48-80 | 1-5 | \|1.55-1.70| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \text { \|extensi- } \\ \text { \| bility } \end{array}$ | Organic matter | \|Erosion factors |  |  | Wind erodi\|bility |group | \|Wind |erodibility <br> index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 557B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Shawano | 0-2 | 1-3 | \|1.00-1.35| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.5-1.0 | . 05 | . 05 | 5 | 1 | 220 |
|  | 2-4 | 1-3 | \|1.45-1.70| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 4-26 | 1-3 | \|1.45-1.70| | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 26-60 | 1-3 | \|1.50-1.70| | 6.00-20 | 0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 557C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Shawano | 0-2 | 1-3 | \|1.00-1.35| | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 0.5-1.0 | . 05 | . 05 | 5 | 1 | 220 |
|  | 2-4 | 1-3 | \|1.45-1.70| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 4-26 | 1-3 | \|1.45-1.70| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 26-60 | 1-3 | \|1.50-1.70| | 6.00-20 | 0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 557D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Shawano | 0-2 |  | \|1.00-1.35| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.5-1.0 | . 05 | . 05 | 5 | 1 | 220 |
|  | 2-4 | 1-3 | \| 1.45-1.70| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 4-26 | 1-3 | \|1.45-1.70| | 6.00-20 | \|0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 26-60 | 1-3 | \| 1.50-1.70| | 6.00-20 | 0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 586A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Chelmo | 0-9 | 3-8 | \|1.35-1.65| | 0.60-2.00 | 0.15-0.17 | 0.0-2.9 | 2.0-3.0 | . 28 | . 28 | 5 | 6 | 48 |
|  | 9-24 | 50-80\| | \|1.35-1.70| | 0.01-0.20 | 0.08-0.12 | 6.0-8.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 24-34 | 2-12 | \|1.40-1.65| | 2.00-6.00 | 0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 34-80 | 0-12 | \|1.40-1.65| | 6.00-20 | \| 0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 600A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Haplosaprists- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 2 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Psammaquents | --- | --- | -- | --- | - | - | --- | --- | --- | 2 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 615B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cress | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | \|0.12-0.17 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \| 1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \| 1.55-1.80| | 6.00-20 | \| 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 615C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cress | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | 0.12-0.17 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \|1.55-1.80| | 6.00-20 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 615D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cress | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | \|0.12-0.17 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \| 1.50-1.80| | 6.00-20 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \|1.55-1.80| | 6.00-20 | \|0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 620C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lundeen | 0-3 | 8-14 | \|1.45-1.55| | 0.60-2.00 | 0.22-0.24 | 0.0-3.0 | 1.0-3.0 | . 28 | . 28 | 2 | 5 | 56 |
|  | 3-16 | 8-14 | \|1.45-1.55| | 0.60-2.00 | 0.22-0.24 | 0.0-3.0 | 1.0-2.0 | --- | --- |  |  |  |
|  | 16-33 | 8-14 | \|1.45-1.55| | 0.60-2.00 | 0.20-0.22 | 0.0-3.0 | 0.5-1.0 | --- | --- |  |  |  |
|  | 33-80 | 0-0 | \| | --- | --- | --- | 0.0-0.0 | --- | -- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Haustrup- | 0-4 | 8-14 | \|1.45-1.55| | 0.60-2.00 | \|0.22-0.24 | 0.0-3.0 | 1.0-3.0 | . 28 | . 28 | 1 | 5 | 56 |
|  | 4-16 | 8-14 | \|1.45-1.55| | 0.60-2.00 | \| 0.22-0.24 | 0.0-3.0 | 1.0-2.0 | --- | --- |  |  |  |
|  | 16-80 | 0-0 | - \| | --- | \| --- | --- | 0.0-0.0 | --- | -- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop----- | 0-60 | 0-0 | --- | 0.0000-20 | --- | --- | 0.0-0.0 | --- | --- | - | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \|Available } \\ & \text { \| water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic <br> matter | Erosion factors |  |  | Wind \|erodi-| |bility| |group | \|Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 621A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bjorkland | 0-2 | 0-0 | 0.10-0.30\| | 6.00-20 | \|0.55-0.65| | --- | 65-90 | . 02 | . 02 | 4 | 8 | 0 |
|  | 2-8 | 0-0 | 0.15-0.40\| | 6.00-20 | \|0.35-0.45| | 0.0-2.9 | 30-80 | . 02 | . 02 |  |  |  |
|  | 8-14 | 1-7 | 1.55-1.70\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 14-25 | 1-7 | 1.55-1.70\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 25-34 | 3-9 | 1.55-1.70\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 34-38 | 50-80 | 1.25-1.50\| | 0.01-0.20 | \|0.08-0.12| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 38-80 | 50-80 | 1.25-1.50\| | 0.01-0.20 | \|0.08-0.12| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 623A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Capitola | 0-5 | 0-0 | 0.15-0.35\| | 2.00-6.00 | \|0.35-0.45| | --- | 50-80 | . 02 | . 02 | 4 | 8 | 0 |
|  | 5-7 | 12-16 | 1.25-1.45\| | 0.60-2.00 | \|0.16-0.24| | 0.0-2.9 | 3.0-10 | . 37 | . 37 |  |  |  |
|  | 7-22 | 8-17 | 1.35-1.60\| | 0.60-2.00 | \|0.09-0.22| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 22-33 | 8-16 | 1.40-1.90\| | 0.60-2.00 | \|0.07-0.16| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 33-60 | 5-10 | 1.70-1.90\| | 0.01-0.06 | \|0.03-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 624A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Ossme | 0-4 | 8-15 | 1.35-1.55\| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 2.0-3.0 | . 37 | . 37 | 4 | 5 | 56 |
|  | 4-6 | 5-14 | 1.40-1.60\| | 0.60-2.00 | \|0.20-0.22| | 0.0-2.9 | 0.0-1.0 | . 37 | . 37 |  |  |  |
|  | 6-11 | 6-16 | 1.40-1.65\| | 0.60-2.00 | \|0.20-0.22| | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 11-26 | 7-17 | 1.40-1.65\| | 0.60-2.00 | \|0.20-0.22| | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 26-34 | 7-17 | 1.40-1.70\| | 0.60-2.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 34-38 | 7-17 | 1.40-1.70\| | 0.60-2.00 | \|0.06-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 38-60 | 0-5 | 1.55-1.80\| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 631A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Giese | 0-1 | 0-0 | 0.15-0.35\| | 2.00-6.00 | \|0.35-0.45| | --- | 50-80 | . 02 | . 02 | 4 | 8 | 0 |
|  | 1-6 | 10-16 | 1.25-1.45\| | 0.60-2.00 | \|0.20-0.22| | 0.0-2.9 | 3.0-10 | . 32 | . 32 |  |  |  |
|  | 6-11 | 8-17 | 1.35-1.60\| | 0.60-2.00 | \|0.11-0.22| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 11-24 | 8-17 | 1.35-1.60\| | 0.60-2.00 | \|0.11-0.22| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 24-30 | 8-17 | 1.35-1.60\| | 0.60-2.00 | \|0.11-0.22| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 30-36 | 8-16 | 1.40-1.90\| | 0.06-0.20 | \|0.07-0.16| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 36-70 | 8-16 | 1.40-1.90\| | 0.06-0.20 | \|0.07-0.16| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 70-80 | 8-16 | 1.80-2.00\| | 0.01-0.06 | \|0.02-0.12| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 632A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Aftad | 0-10 | 3-8 | 1.35-1.65\| | 0.60-2.00 | \|0.14-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 10-29 | 3-12 | 1.45-1.70\| | 0.60-2.00 | \|0.09-0.19| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 29-36 | 6-14 | 1.50-1.70\| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 36-41 | 8-15 | 1.50-1.70\| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 41-60 | 5-12 | 1.50-1.70\| | 0.20-0.60 | \|0.11-0.22| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 632B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Aftad | 0-10 | 3-8 | 1.35-1.65\| | 0.60-2.00 | \|0.14-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 10-29 | 3-12 | 1.45-1.70\| | 0.60-2.00 | \|0.09-0.19| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 29-36 | 6-14 | 1.50-1.70\| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 36-41 | 8-15 | 1.50-1.70\| | 0.60-2.00 | $\|0.10-0.19\|$ | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 41-60 | 5-12 | 1.50-1.70\| | 0.20-0.60 | \|0.11-0.22| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 632C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Aftad | 0-10 | 3-8 | 1.35-1.65\| | 0.60-2.00 | \|0.14-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 10-29 | 3-12 | 1.45-1.70\| | 0.60-2.00 | \|0.09-0.19| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 29-36 | 6-14 | 1.50-1.70\| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 36-41 | 8-15 | 1.50-1.70\| | 0.60-2.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 41-60 | 5-12 | 1.50-1.70\| | 0.20-0.60 | \|0.11-0.22| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 634C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Drylanding- | 0-4 | 5-25 | 1.45-1.65\| | 0.60-2.00 | \|0.12-0.18| | 0.0-2.9 | 1.0-2.0 | . 32 | . 37 | 2 | 7 | 38 |
|  | 4-12 | 5-25 | 1.55-1.75\| | 0.60-2.00 | \|0.08-0.12| | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 12-80 | --- | , | --- | -- \| | --- | 0.0-0.0 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Permeability	$\begin{aligned} & \text { \|Available } \\ & \mid \text { water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$	Linear   extensi-   bility	Organic   matter	Erosion factors			\|Wind   \|erodi-   \|bility   \|group	\|Wind   \|erodi-   \|bility   \|index	
								Kw	Kf	T			
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct						
706A:													
Totagatic	0-4	5-15	1.30-1.55	6.00-20	\|0.15-0.17		0.0-2.9	1.0-2.0	. 28	. 28	5	3	86
	4-8	0-10	\|1.40-1.65	6.00-20	\|0.05-0.15		0.0-2.9	0.0-0.5	. 10	. 15			
	8-17	0-10	1.40-1.65	6.00-20	\|0.05-0.15		0.0-2.9	0.0-0.5	. 10	. 15			
	17-28	0-10	1.40-1.65	6.00-20	\|0.05-0.10		0.0-2.9	0.0-10	. 10	. 15			
	28-46	0-10	1.40-1.65	6.00-20	\|0.05-0.10		0.0-2.9	0.0-10	. 10	. 15			
	46-70	0-10	1.40-1.65	6.00-20	\| 0.02-0.10		0.0-2.9	0.0-0.5	. 10	. 15			
	70-80	0-10	1.40-1.65	6.00-20	\| 0.02-0.10		0.0-2.9	0.0-0.5	. 10	. 15			
715A:													
Mora	0-4	8-16	1.35-1.55	0.60-2.00	\|0.20-0.22		0.0-2.9	1.0-4.0	. 37	. 37	4	5	56
	4-9	5-12	1.40-1.60	0.60-2.00	\|0.12-0.22		0.0-2.9	0.5-2.0	. 37	. 37			
	9-14	8-18	1.40-1.60	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	14-36	10-18	1.50-1.70	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	36-46	5-16	1.60-1.80	0.60-2.00	\|0.11-0.16		0.0-2.9	0.0-0.5	. 24	. 24			
	46-80	5-16	1.80-2.00	0.01-0.06	\|0.00-0.04		0.0-2.9	0.0-0.5	. 24	. 24			
717B :													
Milaca	0-4	8-16	1.35-1.55	0.60-2.00	\|0.20-0.22		0.0-2.9	1.0-4.0	. 37	. 37	4	5	56
	4-13	5-12	1.40-1.60	0.60-2.00	\|0.12-0.22		0.0-2.9	0.5-2.0	. 37	. 37			
	13-17	8-18	1.40-1.60	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	17-43	10-18	1.50-1.70	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	43-80	5-16	1.80-2.00	0.01-0.06	\| 0.00-0.04		0.0-2.9	0.0-0.5	. 24	. 24			
717C:													
Milaca	0-4	8-16	1.35-1.55	0.60-2.00	\|0.20-0.22		0.0-2.9	1.0-4.0	. 37	. 37	4	5	56
	4-13	5-12	1.40-1.60	0.60-2.00	\|0.12-0.22		0.0-2.9	0.5-2.0	. 37	. 37			
	13-17	8-18	1.40-1.60	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	17-43	10-18	1.50-1.70	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	43-80	5-16	1.80-2.00	0.01-0.06	\|0.00-0.04		0.0-2.9	0.0-0.5	. 24	. 24			
720F:													
Haustrup-	0-4	8-14	1.45-1.55	0.60-2.00	\|0.22-0.24		0.0-3.0	1.0-3.0	. 28	. 28	1	5	56
	4-16	8-14	1.45-1.55	0.60-2.00	\| 0.22-0.24		0.0-3.0	1.0-2.0	-	---			
	16-80	0-0	---	---	--- \|	---	0.0-0.0	---	-				
Lundeen	0-3	8-14	1.45-1.55	0.60-2.00	\|0.22-0.24		0.0-3.0	1.0-3.0	. 28	. 28	2	5	56
	3-16	8-14	1.45-1.55	0.60-2.00	\|0.22-0.24		0.0-3.0	1.0-2.0	---	---			
	16-33	8-14	1.45-1.55	0.60-2.00	\|0.20-0.22		0.0-3.0	0.5-1.0	---	---			
	33-80	0-0		---	\| ---		---	0.0-0.0	---	--			
Rock outcrop-	0-60	0-0	---	0.0000-20	--- \|	---	0.0-0.0	---	---	-	8	0	
726B:													
Sissabagama	0-10	2-12	1.35-1.60	6.00-20	\|0.09-0.11		0.0-2.9	1.0-3.0	. 10	. 10	5	2	134
	10-31	2-12	1.40-1.65	6.00-20	\|0.05-0.10		0.0-2.9	0.0-0.5	. 15	. 15			
	31-45	2-12	1.50-1.65	6.00-20	\|0.05-0.10		0.0-2.9	0.0-0.5	. 17	. 17			
	45-80	5-15	1.50-1.65	0.20-0.60	\| 0.05-0.20		0.0-2.9	0.0-0.5	. 24	. 24			
742B:													
Milaca	0-4	5-15	1.35-1.55	0.60-2.00	\|0.12-0.14		0.0-2.9	1.0-4.0	. 24	. 24	4	3	86
	4-13	5-12	1.40-1.60	0.60-2.00	\|0.12-0.22		0.0-2.9	0.5-2.0	. 37	. 37			
	13-17	8-18	\|1.40-1.60	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24		\|	
	17-43	10-18	1.50-1.70	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	43-80	5-16	1.80-2.00	0.01-0.06	\|0.00-0.04		0.0-2.9	0.0-0.5	. 24	. 24			
742C:											\|		
Milaca	0-4	5-15	1.35-1.55	0.60-2.00	\|0.12-0.14		0.0-2.9	1.0-4.0	. 24	. 24	4	3	86
	4-13	5-12	1.40-1.60	0.60-2.00	\|0.12-0.22		0.0-2.9	0.5-2.0	. 37	. 37			
	13-17	8-18	1.40-1.60	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24		\|	
	17-43	10-18	1.50-1.70	0.60-2.00	\|0.11-0.19		0.0-2.9	0.0-0.5	. 24	. 24			
	43-80	5-16	1.80-2.00	0.01-0.06	\|0.00-0.04		0.0-2.9	0.0-0.5	. 24	. 24		\|	

Table 23.--Physical Properties of the Soils--Continued


Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | \|Available <br> \| water <br> \|capacity | Linear extensibility | Organic <br> matter | Erosion factors |  |  | \|Wind |erodi|bility |group | Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1070C: <br> Cress |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | \|0.12-0.14| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | \|0.12-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \|1.55-1.80| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1070D: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fremstadt---------- | 0-5 | 5-15 | \|1.35-1.60| | 2.00-20 | \|0.12-0.14| | 0.0-2.9 | 1.0-2.0 | . 20 | . 20 | 5 | 8 | 0 |
|  | 5-33 | 2-10 | \|1.45-1.80| | 2.00-20 | \|0.08-0.11 | 0.0-2.9 | 0.6-1.0 | . 15 | . 17 |  |  |  |
|  | 33-37 | 5-15 | \|1.50-1.80| | 2.00-20 | \|0.05-0.11 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 37-45 | 2-15 | \|1.50-1.80| | 2.00-20 | $\|0.05-0.11\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 45-70 | 2-10 | \|1.50-1.70| | 2.00-20 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 70-80 | 2-10 | \|1.50-1.70| | 2.00-6.00 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cress-------------- | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | \|0.12-0.14 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | \|0.12-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \|1.55-1.80| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1080B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Spoonerhill-------- | 0-3 | 2-15 | 1.35-1.70\| | 2.00-6.00 | \|0.12-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 5 | 8 | 0 |
|  | 3-12 | 2-15 | \|1.45-1.80| | 2.00-6.00 | \|0.06-0.14 | 0.0-2.9 | 0.5-1.0 | . 17 | . 24 |  |  |  |
|  | 12-16 | 2-15 | \|1.55-1.80| | 2.00-6.00 | \|0.05-0.13 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 16-34 | 2-10 | \|1.55-1.80| | 2.00-6.00 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 34-46 | 2-10 | \|1.80-1.85| | 0.20-0.60 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 46-80 | 2-10 | \|1.80-1.85| | 0.20-0.60 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Spoonerhill, stony-- | 0-3 | 2-15 | 1.35-1.70\| | 2.00-6.00 | \|0.12-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 5 | 8 | 0 |
|  | 3-12 | 2-15 | \|1.45-1.80| | 2.00-6.00 | \|0.06-0.14| | 0.0-2.9 | 0.5-1.0 | . 17 | . 24 |  |  |  |
|  | 12-16 | 2-15 | \|1.55-1.80| | 2.00-6.00 | \|0.05-0.13 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 16-34 | 2-10 | \|1.55-1.80| | 2.00-6.00 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 34-46 | 2-10\| | \|1.80-1.85 | 0.20-0.60 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 46-80 | 2-10 | \|1.80-1.85| | 0.20-0.60 | \|0.03-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cress-------------- | 0-3 | 5-18 | \|1.25-1.60| | 0.60-2.00 | \|0.12-0.14| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | 3 | 3 | 86 |
|  | 3-15 | 5-18 | \|1.40-1.70| | 0.60-2.00 | \|0.12-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-31 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 31-36 | 0-8 | \|1.50-1.80| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 36-60 | 1-6 | \|1.55-1.80| | 6.00-20 | \|0.01-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2002. |  |  |  |  |  |  |  |  |  |  |  |  |
| Udorthents, earthen dams |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2015. |  |  |  |  | \| |  |  |  |  |  |  |  |
| Pits |  |  |  |  | \| |  |  |  |  |  |  |  |
|  |  |  |  |  | \| |  |  |  |  |  | \| |  |
| 2050. |  |  |  |  | \| |  |  |  |  |  |  |  |
| Landfill |  |  |  |  | \| |  |  |  |  |  |  |  |
|  |  |  |  |  | \| |  |  |  |  |  |  |  |
| 3011A: |  |  |  |  | 1 |  |  |  |  |  |  |  |
| Barronett---------- | 0-9 | 8-22 | \|1.25-1.50| | 0.60-2.00 | \|0.20-0.26| | 0.0-2.9 | 3.0-10 | . 32 | . 32 | 5 | 5 | 56 |
|  | 9-16 | 8-20 | \|1.45-1.65| | 0.60-2.00 | $\|0.18-0.22\|$ | 0.0-2.9 | 0.0-2.0 | . 43 | . 43 |  |  |  |
|  | 16-34 | 18-27 | \|1.40-1.65| | 0.60-2.00 | \|0.18-0.22 | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 |  | \| |  |
|  | 34-60 | 8-20 | \|1.40-1.65| | 0.20-0.60 | \|0.12-0.22 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { Available } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | Linear <br> extensi- <br> bility | Organic <br> matter | Erosion factors |  |  | Wind \|erodi|bility group | \|Wind |erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3082E: |  |  |  |  |  |  |  |  |  |  |  |  |
| Braham- | 0-8 | 2-14 | 1.45-1.55 | 6.00-20 | 0.10-0.12 | 0.0-0.0 | 0.5-1.5 | . 10 | . 10 | 5 | 2 | 134 |
|  | 8-28 | 2-14 | \|1.50-1.60 | 6.00-20 | 0.09-0.11 | 0.0-0.0 | 0.2-0.8 | --- | - |  |  |  |
|  | 28-42 | 20-30 | \|1.45-1.55 | 0.20-2.00 | 0.15-0.19 | 3.0-5.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 42-48 | 12-24 | 1.55-1.65 | 0.60-2.00 | 0.15-0.19 | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  | 48-80 | 12-24 | 1.55-1.75 | 0.60-2.00 | 0.15-0.19 | 0.0-2.9 | 0.0-0.5 | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shawano | 0-2 | 1-3 | \| 1.00-1.35 | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 0.5-1.0 | . 05 | . 05 | 5 | 1 | 220 |
|  | 2-4 | 1-3 | \|1.45-1.70 | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 4-26 | 1-3 | \|1.45-1.70 | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  | 26-60 | 1-3 | 1.50-1.70 | 6.00-20 | 0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 05 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3114A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Saprists | 0-80 | 0-0 | \|0.10-0.25 | 0.20-5.95 | 0.35-0.45 | \| --- | 25-99 | . 02 | . 02 | 3 | 8 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aquents | 0-3 | 0-0 | \|0.10-0.35 | 6.00-20 | 0.35-0.55 | \| --- | 30-80 | . 02 | . 02 | 5 | 8 | 0 |
|  | 3-8 | 1-4 | \| 1.35-1.65 | 6.00-20 | 0.07-0.12 | 0.0-2.9 | 10-20 | . 10 | . 10 |  |  |  |
|  | 8-16 | 1-4 | \|1.70-1.80 | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.1-2.0 | . 15 | . 17 |  |  |  |
|  | 16-22 | 1-4 | 1.70-1.80 | 6.00-20 | 0.06-0.11 | 0.0-2.9 | 0.1-2.0 | . 15 | . 17 |  |  |  |
|  | 22-60 | 1-4 | \| 1.70-1.80 | 6.00-20 | 0.05-0.15 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aquepts | 0-4 | 0-0 | \|0.15-0.45 | 2.00-6.00 | 0.35-0.45 | \| --- | 30-60 | . 02 | . 02 | 4 | 8 | 0 |
|  | 4-15 | 10-17 | 1.50-1.60 | 0.60-2.00 | 0.11-0.19 | 0.0-2.9 | 0.0-2.0 | . 37 | . 37 |  |  |  |
|  | 15-28 | 7-17 | \|1.40-1.70 | 0.60-2.00 | 0.06-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 28-60 | 0-5 | \|1.55-1.80 | 6.00-20 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3125A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Meehan | 0-5 | 4-10 | 1.35-1.65 | 6.00-20 | 0.09-0.11 | 0.0-2.9 | 0.5-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-8 | 1-5 | \| 1.60-1.70 | 6.00-20 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 8-28 | 1-5 | \| 1.60-1.70 | 6.00-20 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 28-60 | 0-4 | \|1.60-1.70 | 6.00-20 | 0.02-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3126A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Wurtsmith- | 0-9 | 0-10 | \|1.30-1.65 | 6.00-20 | 0.07-0.09 | 0.0-2.9 | 1.0-6.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 9-37 | 0-5 | \|1.40-1.60 | 6.00-20 | 0.06-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 37-60 | 0-5 | \| 1.50-1.65 | 6.00-20 | 0.05-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3312B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Glendenning, very |  |  |  |  |  |  |  |  |  |  |  |  |
| stony----------- | 0-5 | 5-15 | 1.40-1.65 | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 4 | 8 | 0 |
|  | 5-15 | 4-14 | \|1.40-1.70 | 0.60-2.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-20 | 5-15 | \|1.40-1.70 | 0.60-2.00 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 20-26 | 5-16 | \|1.40-1.70 | 0.60-2.00 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 26-40 | 7-17 | \|1.65-1.90 | 0.20-0.60 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | $40-65$ | 7-17 | \|1.65-1.90 | 0.20-0.60 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 65-80 | 5-15 | \|1.80-2.00 | 0.01-0.06 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Glendenning- | 0-7 | 5-15 | \|1.40-1.65 | 0.60-2.00 | 0.12-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 4 | 8 | 0 |
|  | 7-15 | 4-14 | \|1.40-1.70 | 0.60-2.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-20 | 5-15 | \|1.40-1.70 | 0.60-2.00 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 20-26 | 5-16 | \|1.40-1.70 | 0.60-2.00 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 26-40 | 7-17 | \|1.65-1.90 | 0.20-0.60 | 0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 40-65 | 7-17 | \|1.65-1.90 | 0.20-0.60 | \|0.07-0.19 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  | 65-80 | 5-15 | \|1.80-2.00 | 0.01-0.06 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 17 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3336A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fenander- | 0-9 | 3-8 | \|1.35-1.65 | 0.60-2.00 | 0.15-0.17 | 0.0-2.9 | 2.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 9-15 | 5-15 | \|1.40-1.70 | 0.60-2.00 | 0.12-0.22 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 15-27 | 10-18 | \| 1.50-1.70 | 0.60-2.00 | 0.12-0.19 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 27-33 | 10-18 | \|1.50-1.70 | 0.60-2.00 | \|0.12-0.19 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 33-80 | 5-20 | \|1.40-1.80 | 0.20-0.60 | 0.08-0.16 | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \\ \hline \end{gathered}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \mid \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion factors |  |  | Wind \|erodi-| |bility| |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3403A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Loxley | 0-13 | 0-0 | 0.30-0.40 | 6.00-20 | \|0.55-0.65| | --- | 70-90 | . 02 | . 02 | 3 | 8 | 0 |
|  | 13-60 | 0-0 | 0.10-0.35 | 0.20-6.00 | \|0.35-0.45| | --- | 70-90 | . 02 | . 02 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beseman | 0-36 | 0-0 | 0.10-0.25 | 0.60-6.00 | \|0.35-0.45| | --- | 25-75 | . 02 | . 02 | 2 | 8 | 0 |
|  | 36-60 | 8-25 | 1.35-1.60 | 0.20-0.60 | 0.09-0.22\| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dawson | 0-8 | 0-0 | 0.15-0.30 | 6.00-20 | \|0.55-0.65| | --- | 65-85 | . 02 | . 02 | 2 | 8 | 0 |
|  | 8-38 | 0-0 | 0.15-0.40 | 0.20-6.00 | \|0.35-0.45| | --- | 65-85 | . 02 | . 02 |  |  |  |
|  | 38-40 | 0-15 | 1.55-1.75 | 0.60-2.00 | $\|0.18-0.20\|$ | 0.0-2.9 | 5.0-15 | . 37 | . 37 |  |  |  |
|  | 40-60 | 0-10 | 1.55-1.75 | 6.00-20 | 0.03-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3429B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lara | 0-10 | 2-10 | 1.55-1.65 | 2.00-20 | \|0.10-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 10-35 | 1-10 | 1.55-1.70 | 2.00-20 | $\|0.06-0.11\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 35-42 | 1-10 | 1.55-1.70 | 2.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 42-55 | 60-80 | 1.25-1.50 | 0.01-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 55-75 | 60-80 | 1.25-1.50 | 0.01-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 75-80 | 40-80 | 1.25-1.50 | 0.01-0.06 | 0.08-0.12\| | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3429C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lara | 0-10 | 2-10 | 1.55-1.65 | 2.00-20 | \|0.10-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 10-35 | 1-10 | 1.55-1.70 | 2.00-20 | $\|0.06-0.11\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 35-42 | 1-10 | 1.55-1.70 | 2.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 42-55 | 60-80 | 1.25-1.50 | 0.01-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 55-75 | 60-80 | 1.25-1.50 | 0.01-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  | 75-80 | 40-80 | 1.25-1.50 | 0.01-0.06 | $\|0.08-0.12\|$ | 6.0-8.9 | 0.0-0.0 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3446A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Newson | 0-3 | 0-0 | 0.10-0.35 | 6.00-20 | \|0.35-0.55| | --- | 30-80 | . 02 | . 02 | 5 | 8 | 0 |
|  | 3-8 | 1-4 | 1.35-1.65 | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 10-20 | . 10 | . 10 |  |  |  |
|  | 8-16 | 1-4 | 1.70-1.80 | 6.00-20 | $\|0.06-0.11\|$ | 0.0-2.9 | 0.1-2.0 | . 15 | . 17 |  |  |  |
|  | 16-22 | 1-4 | 1.70-1.80 | 6.00-20 | $\|0.06-0.11\|$ | 0.0-2.9 | 0.1-2.0 | . 15 | . 17 |  |  |  |
|  | 22-60 | 1-4 | 1.70-1.80 | 6.00-20 | $\|0.05-0.15\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3448B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum- | 0-3 | 2-12 | 1.35-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 1.0-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 3-32 | 2-12 | 1.40-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-75 | 2-12 | 1.40-1.65 | 2.00-20 | $\|0.05-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 75-80 | 1-10 | 1.50-1.70\| | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3448C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Grettum- | 0-3 | 2-12 | 1.35-1.60 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 1.0-3.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 3-32 | 2-12 | 1.40-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 32-75 | 2-12 | 1.40-1.65\| | 2.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 75-80 | 1-10 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3510B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Pomroy- |  | 2-10 | 1.55-1.65 | 6.00-20 | \|0.09-0.12| | 0.0-2.9 |  | . 10 | . 10 | 4 | 2 | 134 |
|  | 3-30 | 2-10 | 1.55-1.70 | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 30-45 | 5-18 | 1.65-1.90 | 0.60-2.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 17 |  |  |  |
|  | 45-80 | 3-15 | 1.65-1.90 | 0.60-2.00 | $\|0.08-0.13\|$ | 0.0-2.9 | 0.0-0.5 | . 24 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fremstadt | 0-5 | 2-12 | 1.55-1.65 | 2.00-6.00 | \|0.09-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-33 | 2-10 | 1.45-1.80 | 2.00-20 | \|0.08-0.11| | 0.0-2.9 | 0.6-1.0 | . 15 | . 17 |  |  |  |
|  | 33-37 | 5-15 | 1.50-1.80 | 2.00-20 | $\|0.05-0.11\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 37-45 | 2-15 | 1.50-1.80 | 2.00-20 | $\|0.05-0.11\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 45-70 | 2-10 | 1.50-1.70\| | 2.00-20 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 70-80 | 2-10 | 1.50-1.70 | 2.00-6.00 | $\|0.04-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \mid \text { water } \\ \mid \text { capacity } \end{array}$ | Linear <br> extensi- <br> bility | Organic <br> matter | Erosion factors |  |  | \|Wind |erodi-| |bility| group | \|Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/ hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3510B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fremstadt, stony- | 0-5 | 2-12 | 1.55-1.65 | 2.00-6.00 | \|0.09-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-33 | 2-10 | 1.45-1.80 | 2.00-20 | \|0.08-0.11| | 0.0-2.9 | 0.6-1.0 | . 15 | . 17 |  |  |  |
|  | 33-37 | 5-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 37-45 | 2-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 45-70 | 2-10 | 1.50-1.70 | 2.00-20 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 70-80 | 2-10 | 1.50-1.70 | 2.00-6.00 | \| 0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3510C: |  |  |  |  |  |  |  |  |  |  |  |  |
| Pomroy | 0-3 | 2-10 | 1.55-1.65 | 6.00-20 | \|0.09-0.12| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 3-30 | 2-10 | 1.55-1.70 | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 30-45 | 5-18 | 1.65-1.90 | 0.60-2.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 17 |  |  |  |
|  | 45-80 | 3-15 | 1.65-1.90 | 0.60-2.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fremstadt | 0-5 | 2-12 | 1.55-1.65 | 2.00-6.00 | \|0.09-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-33 | 2-10 | 1.45-1.80 | 2.00-20 | \|0.08-0.11| | 0.0-2.9 | 0.6-1.0 | . 15 | . 17 |  |  |  |
|  | 33-37 | 5-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 37-45 | 2-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 45-70 | 2-10 | 1.50-1.70 | 2.00-20 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 70-80 | 2-10 | 1.50-1.70 | 2.00-6.00 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fremstadt, stony- | 0-5 | 2-12 | 1.55-1.65 | 2.00-6.00 | \|0.09-0.12| | 0.0-2.9 | 1.0-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 5-33 | 2-10 | 1.45-1.80 | 2.00-20 | \|0.08-0.11| | 0.0-2.9 | 0.6-1.0 | . 15 | . 17 |  |  |  |
|  | 33-37 | 5-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 37-45 | 2-15 | 1.50-1.80 | 2.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 45-70 | 2-10 | 1.50-1.70 | 2.00-20 | \|0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  | 70-80 | 2-10 | 1.50-1.70 | 2.00-6.00 | \| 0.04-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3511A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bushville | 0-4 | 2-10 | 1.40-1.50 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 4-21 | 2-8 | 1.50-1.70 | 6.00-20 | \|0.06-0.09| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 |  |  |  |
|  | 21-24 | 8-16 | 1.55-1.80 | 0.60-2.00 | \|0.10-0.15| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 24-30 | 10-18 | 1.55-1.80 | 0.60-2.00 | \|0.10-0.15| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 30-45 | 8-16 | 1.65-1.80 | 0.60-2.00 | \|0.11-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 45-60 | 5-15 | 1.80-2.00 | 0.01-0.06 | \| 0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3516A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Slimlake- |  | 4-10 | 1.30-1.70 | 2.00-6.00 | \|0.12-0.14| | 0.0-2.9 | 1.0-3.0 | . 20 | . 20 | 3 | 3 | 86 |
|  | 6-17 | 4-10 | 1.40-1.70 | 2.00-6.00 | \|0.12-0.14| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 17-42 | 0-3 | 1.55-1.70 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 42-53 | 0-3 | 1.55-1.70 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  | 53-80 | 0-3 | 1.55-1.70 | 6.00-20 | \| 0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3625A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Lino- | 0-7 | 2-10 | 1.40-1.60 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 5 | 2 | 134 |
|  | 7-45 | 2-10 | 1.50-1.70 | 6.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 |  |  |  |
|  | 45-60 | 2-5 | 1.55-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3626A: |  |  |  |  |  |  |  |  |  |  |  |  |
| Crex- | 0-1 | 0-0 | 0.15-0.30 | 0.60-6.00 | \|0.55-0.65| | --- | 65-85 | . 02 | . 02 | 5 | 2 | 134 |
|  | 1-7 | 2-7 | 1.35-1.60 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-8.0 | . 10 | . 10 |  |  |  |
|  | 7-40 | 1-4 | 1.45-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 40-71 | 1-4 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 71-80 | 1-4 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3629B: |  |  |  |  |  |  |  |  |  |  |  |  |
| Perida | 0-9 | 6-8 | 1.35-1.65 | 6.00-20 | \|0.09-0.11| | 0.0-2.9 | 0.5-2.0 | . 10 | . 10 | 4 | 2 | 134 |
|  | 9-43 | 0-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 43-45 | 2-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  | 45-60 | 50-80 | 1.45-1.70 | 0.01-0.06 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 60-74 | 50-80\| | 1.45-1.70 | 0.01-0.06 | \|0.08-0.10| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 74-80 | 1-10 | 1.50-1.70 | 6.00-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 23.--Physical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated)

| Map symbol and soil name | Depth | \| Cation| exchange capacity | \|Effective cation|exchange |capacity | $\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$ | \|Calcium |carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 g | \|meq/100 g| | pH | Pct |
| 3A: |  |  |  |  |  |
| Totagatic----------- | 0-4 | 150-230 | --- | 4.5-6.5 | --- |
|  | 4-8 | 1.0-3.0 | --- | 4.5-6.5 | 0 |
|  | 8-17 | 1.0-3.0 | --- | 4.5-6.5 | 0 |
|  | 17-28 | 1.0-3.0 | - | 4.5-6.5 | 0 |
|  | 28-46 | 1.0-3.0 | -- | 4.5-6.5 | 0 |
|  | 46-70 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 70-80 | 1.0-3.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Bowstring----------- \| | 0-38 | 140-180 | --- | 5.6-8.4 | 0 |
|  | 38-47 | 1.0-3.0 | --- | 5.6-8.4 | 0 |
|  | 47-80 | 140-180 | - | 5.6-8.4 | 0 |
|  |  |  |  |  |  |
| Ausable------------- \| | 0-10 | 150-230 | --- | 5.1-7.3 | - |
|  | 10-60 | 1.0-9.0 | - | 6.1-7.8 | 0 |
|  |  |  | \| |  |  |
| 12A: |  |  |  |  |  |
| Makwa--------------- \| | 0-8 | 150-204 | --- | 5.1-7.3 | 0 |
|  | 8-16 | 12-28 | \| --- | 5.1-7.3 | 0 |
|  | 16-43 | 4.0-13 | , | 5.1-7.3 | 0 |
|  | 43-65 | 4.0-22 | \| --- | 5.1-7.3 | 0 |
|  | 65-80 | 14-36 | --- | 6.1-7.8 | 0 |
|  |  |  | \| |  |  |
| 22A: |  |  |  |  |  |
| Comstock------------ \| | 0-8 | 6.0-25 | --- | 4.5-7.3 | 0 |
|  | 8-15 | --- | 3.0-20 | 4.5-6.0 | 0 |
|  | 15-21 | --- | 3.0-25 | 4.5-6.0 | 0 |
|  | 21-34 | --- | 4.0-25 | 4.5-6.0 | 0 |
|  | 34-44 | --- | \| 2.0-25 | 4.5-6.0 | 0 |
|  | 44-60 | 2.0-15 | 2.0-25 | 5.1-7.3 | 0 |
|  |  |  |  |  |  |
| 27A: |  |  |  |  |  |
| Scott Lake---------- \| | 0-10 | 5.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 10-17 | 1.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 17-24 | 2.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 24-31 | 0.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 31-80 | 0.0-6.0 | -- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 28B: |  |  |  |  |  |
| Haugen, very stony---\| | 0-4 | 3.0-17 |  | 4.5-6.5 | 0 |
|  | 4-15 | 1.0-15 | \| -- | 4.5-6.0 | 0 |
|  | 15-23 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 23-35 | 1.0-15 | \| | 4.5-6.0 | 0 |
|  | 35-49 | 1.0-15 | \| | 5.6-6.5 | 0 |
|  | 49-79 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  | 79-80 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |
| Haugen-------------- | 0-7 | 3. 0-17 | \| | 4.5-6.5 | 0 |
|  | 7-15 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 15-23 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 23-35 | 1.0-15 | \| | 4.5-6.0 | 0 |
|  | 35-49 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  | 49-79 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  | 79-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | ```\|Effective cation- | exchange |capacity``` | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbon- <br> \| ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 g | \|meq/100 g | pH | Pct |
| 38C: |  |  |  |  |  |
| Rosholt--------- | 0-8 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 8-10 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 38D: |  |  |  |  |  |
| Rosholt--------- | 0-8 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 8-10 | 1.0-10 | -- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | - | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | - | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 42D: |  |  |  |  |  |
| Amery---------- | 0-3 | 3.0-15 | --- | 4.5-6.5 | 0 |
|  | 3-22 | --- | 1.0-15 | 4.5-6.0 | 0 |
|  | 22-34 | 1.0-15 | - | 5.1-6.5 | 0 |
|  | 34-41 | 1.0-15 | --- | 5.1-6.5 | 0 |
|  | 41-57 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 57-71 | 1.0-15 | --- | 5.1-6.5 | 0 |
|  | 71-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |
| 43B: |  |  |  |  |  |
| Antigo---------- | 0-9 | 4.0-20 | --- | 4.5-7.3 | 0 |
|  | 9-12 | 3.0-15 | --- | 4.5-6.5 | 0 |
|  | 12-19 | 3.0-15 | --- | 4.5-6.5 | 0 |
|  | 19-28 | 3. 0-15 | \| --- | 4.5-6.5 | 0 |
|  | 28-31 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 31-33 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 33-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 43C: |  |  |  |  |  |
| Antigo--------- | 0-9 | 4.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 9-12 | 3.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 12-19 | 3.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 19-28 | 3.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 28-31 | 0.0-15 | --- | 4.5-6.5 | 0 |
|  | 31-33 | 0.0-15 |  | 4.5-6.5 | 0 |
|  | 33-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 63A: |  |  |  |  |  |
| Crystal Lak | 0-8 | 6.0-25 | \| --- | 4.5-7.3 | 0 |
|  | 8-12 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 12-20 | --- | 3.0-25 | 4.5-6.0 | 0 |
|  | 20-32 | --- | 4.0-25 | 4.5-6.0 | 0 |
|  | 32-60 | 2.0-15 | 2.0-25 | 4.5-7.3 | 0 |
|  |  |  |  |  |  |
| 63B: |  |  |  |  |  |
| Crystal Lake | 0-8 | 6.0-25 | --- | 4.5-7.3 | 0 |
|  | 8-12 | 2.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 12-20 | --- | 3.0-25 | 4.5-6.0 | 0 |
|  | 20-32 | --- | 4.0-25 | 4.5-6.0 | 0 |
|  | 32-60 | 2.0-15 | 2.0-25 | 4.5-7.3 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation\|exchange |capacity | ```\|Effective | cation- | exchange |capacity``` | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | Calcium \|carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 g | \|meq/100 g | pH | Pct |
| 63C: |  |  |  |  |  |
| Crystal Lake---- | 0-8 | 6.0-25 | \| --- | 4.5-7.3 | 0 |
|  | 8-12 | 2.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 12-20 | --- | 3.0-25 | 4.5-6.0 | 0 |
|  | 20-32 | --- | 4.0-25 | 4.5-6.0 | 0 |
|  | 32-60 | 2.0-15 | 2.0-25 | 4.5-7.3 | 0 |
|  |  |  |  |  |  |
| 64A: |  |  |  |  |  |
| Totagatic------- | 0-4 | 150-230 | --- | 4.5-6.5 | - |
|  | 4-8 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 8-17 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 17-28 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 28-46 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 46-70 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 70-80 | 1.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Winterfield------ | 0-7 | 2.0-15 | \| --- | 5.6-7.8 | 0 |
|  | 7-60 | 1.0-5.0 | \| --- | 5.6-8.4 | 0 |
|  |  |  |  |  |  |
| 69C: |  |  |  |  |  |
| Keweenaw-------- | 0-2 | 3.0-9.0 | \| --- | 4.5-6.5 | 0 |
|  | 2-4 | 3.0-12 | \| --- | 4.5-6.5 | 0 |
|  | 4-16 | 1.0-9.0 | \| --- | 4.5-6.5 | 0 |
|  | 16-20 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 20-27 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 27-43 | 0.0-15 | --- | 4.5-6.5 | 0 |
|  | 43-75 | 0.0-15 | --- | 4.5-6.5 | 0 |
|  | 75-80 | 0.0-15 | \| --- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| Sayner---------- | 0-2 | 2.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 2-4 | 1.0-6.0 | - | 4.5-6.5 | 0 |
|  | 4-7 | --- | 2.0-8.0 | 4.5-6.0 | 0 |
|  | 7-14 | --- | 2.0-8.0 | 4.5-6.0 | 0 |
|  | 14-22 | 0.0-4.0 | - | 4.5-6.5 | 0 |
|  | 22-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Vilas------------ | 0-2 | 2.0-10 | \| --- | 4.5-7.3 | 0 |
|  | 2-4 | 1.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  | 4-11 | 2.0-9.0 | \| --- | 4.5-6.5 | 0 |
|  | 11-23 | 0.0-5.0 | --- | 4.5-6.5 | 0 |
|  | 23-32 | 0.0-3.0 | \| --- | 4.5-6.5 | 0 |
|  | 32-80 | 0.0-3.0 | - | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 69E: |  |  |  |  |  |
| Keweenaw-------- | 0-2 | 3.0-9.0 | \| --- | 4.5-6.5 | 0 |
|  | 2-4 | 3.0-12 | \| --- | 4.5-6.5 | 0 |
|  | 4-16 | 1.0-9.0 | --- | 4.5-6.5 | 0 |
|  | 16-20 | 0.0-15 | --- | 4.5-6.5 | 0 |
|  | 20-27 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 27-43 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 43-75 | 0.0-15 | --- | 4.5-6.5 | 0 |
|  | 75-80 | 0.0-15 | --- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| Sayner---------- | 0-2 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 2-4 | 1.0-6.0 | --- | 4.5-6.5 | 0 |
|  | 4-7 | --- | 2.0-8.0 | 4.5-6.0 | 0 |
|  | 7-14 | --- | 2.0-8.0 | 4.5-6.0 | 0 |
|  | 14-22 | 0.0-4.0 | --- | 4.5-6.5 | 0 |
|  | 22-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | \|Effective <br> cation- <br> \|exchange <br> \|capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 g | \|meq/100 g | pH | Pct |
| 69E: |  |  |  |  |  |
| Vilas----------- | 0-2 | 2.0-10 | --- | 4.5-7.3 | 0 |
|  | 2-4 | 1.0-6.0 | --- | 4.5-6.5 | 0 |
|  | 4-11 | 2.0-9.0 | --- | 4.5-6.5 | 0 |
|  | 11-23 | 0.0-5.0 | --- | 4.5-6.5 | 0 |
|  | 23-32 | 0.0-3.0 | --- | 4.5-6.5 | 0 |
|  | 32-80 | 0.0-3.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 82B: |  |  |  |  |  |
| Cutaway--------- | 0-10 | 2.0-14 | --- | 5.1-6.5 | 0 |
|  | 10-21 | 2.0-14 | -- | 5.1-6.5 | 0 |
|  | 21-24 | 4.0-23 | --- | 5.1-6.5 | 0 |
|  | 24-35 | 14-22 | --- | 5.6-7.3 | 0 |
|  | 35-53 | 8.0-18 | \| --- | 5.6-7.3 | 0-2 |
|  | 53-80 | 8.0-18 | \| --- | 7.4-8.4 | 1-3 |
|  |  |  |  |  |  |
| Branstad-------- | 0-9 | 7.0-16 | \| --- | 5.1-7.8 | 0 |
|  | 9-14 | 6.0-17 | --- | 5.1-7.8 | 0 |
|  | 14-20 | 7.0-19 | --- | 5.1-7.8 | 0 |
|  | 20-45 | 7.0-19 | --- | 5.1-7.8 | 0 |
|  | 45-55 | 7.0-19 | --- | 5.1-7.8 | 0 |
|  | 55-68 | 7.0-19 | --- | 6.6-8.4 | 0 |
|  | 68-80 | 7.0-19 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 82C: |  |  |  |  |  |
| Cutaway--------- | 0-10 | 2.0-14 | --- | 5.1-6.5 | 0 |
|  | 10-21 | 2.0-14 | --- | 5.1-6.5 | 0 |
|  | 21-24 | 4.0-23 | \| --- | 5.1-6.5 | 0 |
|  | 24-35 | 14-22 | \| --- | 5.6-7.3 | 0 |
|  | 35-53 | 8.0-18 | - -- | 5.6-7.3 | 0-2 |
|  | 53-80 | 8.0-18 | \| --- | 7.4-8.4 | 1-3 |
|  |  |  |  |  |  |
| Branstad-------- | 0-9 | 7.0-16 | \| --- | 5.1-7.8 | 0 |
|  | 9-14 | 6.0-17 | - | 5.1-7.8 | 0 |
|  | 14-20 | 7.0-19 | \| --- | 5.1-7.8 | 0 |
|  | 20-45 | 7.0-19 | --- | 5.1-7.8 | 0 |
|  | 45-55 | 7.0-19 | -- | 5.1-7.8 | 0 |
|  | 55-68 | 7.0-19 | \| --- | 6.6-8.4 | 0 |
|  | 68-80 | 7.0-19 | \| --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 83A: |  |  |  |  |  |
| Smestad | 0-10 | 4.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 10-32 | 2.0-10 | \| --- | 5.1-6.5 | 0 |
|  | 32-37 | 5.0-14 | \| --- | 4.5-7.3 | 0 |
|  | 37-57 | 42-57 | \| --- | 5.1-7.3 | 0 |
|  | 57-80 | 39-54 | --- | 7.4-8.4 | 3-7 |
|  |  |  |  |  |  |
| 85B: |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | \| --- | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | \| --- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 85C: |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | \| --- | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | -- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{aligned} & \text { \| Cation- } \\ & \text { \|exchange } \\ & \text { \|capacity } \end{aligned}$	Effective cationexchange capacity	Soil reaction	\|Calcium carbonate
	In	$\mid \mathrm{meq} / 100 \mathrm{~g}$	meq/100 g	pH	Pct
86A:					
Indus-----------	0-9	17-35	---	5.1-6.5	0
	9-21	30-60	---	5.6-7.3	0
	21-25	30-60	---	5.6-7.3	0
	25-39	25-55	---	7.4-8.4	5-30
	$39-60$	25-55	---	7.4-8.4	0-20
Alango----------	0-9	17-35	---	5.1-6.5	0
	9-10	15-25	---	5.1-7.3	0
	10-28	30-60	---	5.6-7.3	0
	28-60	25-55	---	7.4-8.4	10-30
	60-80	25-55	---	7.4-8.4	5-25
89A:					
Wildwood--------	0-12	140-200	--	5.1-6.5	0
	12-17	30-60	---	5.6-7.3	0
	17-24	30-60	---	5.6-7.3	0
	24-60	30-60	---	7.4-8.4	5-30
96B:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	$2.0-10$	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	-	4.5-6.5	0
96C:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	-	4.5-6.5	0
96D:					
Karlsborg-------	0-9	2.0-10	-	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	-	4.5-6.5	0
	48-80	1.0-5.0	---	4.5-6.5	0
100B:					
Menahga---------	0-2	1.0-8.0	-	4.5-5.5	0
	2-25	\| ---	2.0-4.0	4.5-5.5	0
	25-80	0.0-2.0	---	5.1-7.3	0
100C:					
Menahga---------	0-1	---	80-120	4.5-5.5	---
	1-2	1.0-8.0	---	4.5-5.5	0
	2-25	---	2.0-4.0	4.5-5.5	0
	25-80	0.0-2.0	---	5.1-7.3	0
100D:					
Menahga	0-1	---	80-120	4.5-5.5	---
	1-2	1.0-8.0	---	4.5-5.5	0
	2-25	\| ---	2.0-4.0	4.5-5.5	0
	25-80	0.0-2.0	---	5.1-7.3	0
		1			
120B:					
Kost-----------	0-9	1.0-7.0	---	5.1-7.3	0
	9-25	1.0-7.0	---	5.1-7.3	0
	25-36	0.0-4.0	---	5.1-7.3	0
	36-42	0.0-4.0	---	5.1-7.3	0
	42-60	0.0-4.0	---	5.6-7.3	0

Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | \| Cation| exchange |capacity |  | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbon- <br> \| ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | \|meq/100 g | pH | Pct |
| 127D: |  |  |  |  |  |
| Amery---------- | 0-3 | 3.0-15 | --- | 4.5-6.5 | 0 |
|  | 3-22 | --- | 1.0-15 | 4.5-6.0 | 0 |
|  | 22-34 | 1.0-15 | --- | 5.1-6.5 | 0 |
|  | 34-41 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 41-57 | 1.0-15 | -- | 5.1-6.5 | 0 |
|  | 57-71 | 1.0-15 | -- | 5.1-6.5 | 0 |
|  | 71-80 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |
| Rosholt--------- | 0-4 | 3.0-15 | - | 4.5-7.3 | 0 |
|  | 4-10 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 127E: |  |  |  |  |  |
| Amery----------- | 0-3 | 3.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 3-22 | --- | 1.0-15 | 4.5-6.0 | 0 |
|  | 22-34 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 34-41 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 41-57 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 57-71 | 1.0-15 | -- | 5.1-6.5 | 0 |
|  | 71-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |
| Rosholt--------- | 0-4 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 4-10 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 151A: |  |  |  |  |  |
| Bluffton-------- | 0-8 | 5.0-25 | \| --- | 5.6-7.8 | 0 |
|  | 8-19 | 4.0-25 | \| --- | 5.6-7.8 | 0 |
|  | 19-22 | 4.0-25 | \| --- | 7.4-8.4 | 0 |
|  | 22-26 | 4.0-25 | \| --- | 7.4-8.4 | 0 |
|  | 26-38 | 4.0-25 | \| --- | 7.4-8.4 | 0 |
|  | 38-60 | 4.0-25 | \| --- | 7.4-8.4 | 0 |
|  |  |  |  |  |  |
| 152A: |  |  |  |  |  |
| Alstad---------- | 0-9 | 5.0-25 | \| --- | 4.5-7.8 | 0 |
|  | 9-15 | 1.0-15 | \| --- | 4.5-7.8 | 0 |
|  | 15-18 | 2.0-20 | --- | 4.5-7.8 | 0 |
|  | 18-24 | 2.0-20 | \| --- | 6.6-8.4 | 0 |
|  | 24-49 | 4.0-25 | \| --- | 6.6-8.4 | 0 |
|  | 49-60 | 2.0-15 | --- | 7.4-8.4 | 1-10 |
|  |  |  | \| |  |  |
| 154E: |  |  |  |  |  |
| Cushing--------- | 0-5 | 5.0-25 | --- | 4.5-7.8 | 0 |
|  | 5-15 | 1.0-15 | --- | 4.5-7.8 | 0 |
|  | 15-33 | 2.0-20 | --- | 4.5-7.8 | 0 |
|  | 33-57 | 2.0-20 | - | 6.6-8.4 | 0 |
|  | 57-65 | 4.0-25 | --- | 6.6-8.4 | 5-15 |
|  | 65-73 | 4.0-25 | --- | 6.6-8.4 | 5-15 |
|  | 73-80 | 2.0-15 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth |  | \|Effective cation|exchange |capacity | Soil reaction | Calcium carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 185B: | In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | \|meq/100 g | pH | Pct |
| Tradelake------- | 0-9 | 9.0-20 | --- | 5.1-6.5 | 0 |
|  | 9-13 | 4.0-19 | --- | 5.1-6.5 | 0 |
|  | 13-21 | 4.0-19 | \| --- | 5.1-6.5 | 0 |
|  | 21-25 | 4.0-19 | --- | 5.6-7.3 | 0 |
|  | 25-48 | 35-57 | --- | 5.1-7.3 | 0 |
|  | 48-52 | 35-57 | --- | 5.1-7.3 | 0 |
|  | 52-80 | 1.0-7.0 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | --- | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | -- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 185C: |  |  |  |  |  |
| Tradelake------- | 0-9 | 9.0-20 | \| --- | 5.1-6.5 | 0 |
|  | 9-13 | 4.0-19 | - | 5.1-6.5 | 0 |
|  | 13-21 | 4.0-19 | --- | 5.1-6.5 | 0 |
|  | 21-25 | 4.0-19 | --- | 5.6-7.3 | 0 |
|  | 25-48 | 35-57 | \| --- | 5.1-7.3 | 0 |
|  | 48-52 | 35-57 | \| --- | 5.1-7.3 | 0 |
|  | 52-80 | 1.0-7.0 | - | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | \| --- | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | \| --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | --- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | - | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 185D: |  |  |  |  |  |
| Tradelake------- | 0-9 | 9.0-20 | --- | 5.1-6.5 | 0 |
|  | 9-13 | 4.0-19 | \| --- | 5.1-6.5 | 0 |
|  | 13-21 | 4.0-19 | --- | 5.1-6.5 | 0 |
|  | 21-25 | 4.0-19 | --- | 5.6-7.3 | 0 |
|  | 25-48 | 35-57 | \| --- | 5.1-7.3 | 0 |
|  | 48-52 | 35-57 | \| --- | 5.1-7.3 | 0 |
|  | 52-80 | 1.0-7.0 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | - - | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | \| --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | --- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |
| 185E: |  |  |  |  |  |
| Tradelake------- | 0-9 | 9.0-20 | --- | 5.1-6.5 | 0 |
|  | 9-13 | 4.0-19 | --- | 5.1-6.5 | 0 |
|  | 13-21 | 4.0-19 | --- | 5.1-6.5 | 0 |
|  | 21-25 | 4.0-19 | \| --- | 5.6-7.3 | 0 |
|  | 25-48 | 35-57 | - -- | 5.1-7.3 | 0 |
|  | 48-52 | 35-57 | - -- | 5.1-7.3 | 0 |
|  | 52-80 | 1.0-7.0 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Taylor---------- | 0-9 | 9.0-20 | \| --- | 5.6-7.3 | 0 |
|  | 9-14 | 8.0-29 | \| --- | 5.6-7.3 | 0 |
|  | 14-25 | 42-66 | \| --- | 5.1-7.8 | 0 |
|  | 25-32 | 39-57 | \| --- | 7.4-8.4 | 0-5 |
|  | 32-60 | 35-57 | --- | 7.4-8.4 | 1-10 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | $\begin{aligned} & \text { \| Cation- } \\ & \text { \|exchange } \\ & \text { \|capacity } \end{aligned}$ | Effective cationexchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | \|Calcium |carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | meq/100 g | pH | Pct |
| 189A: |  |  |  |  |  |
| Siren----------- | 0-9 | 11-26 | --- | 4.5-6.5 | 0 |
|  | 9-13 | 3.0-19 | --- | 4.5-6.5 | 0 |
|  | 13-20 | 3.0-25 | --- | 5.1-6.5 | 0 |
|  | 20-43 | 20-42 | --- | 5.1-8.4 | 0-1 |
|  | 43-80 | 20-42 | --- | 6.1-8.4 | 0-12 |
|  |  |  |  |  |  |
| 193A: |  |  |  |  |  |
| Minocqua-------- | 0-4 | 120-190 | --- | 4.5-7.8 | 0 |
|  | 4-15 | 2.0-20 | - | 4.5-7.8 | 0 |
|  | 15-28 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 28-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 337A: |  |  |  |  |  |
| Plover---------- | 0-10 | 5.0-10 | --- | 4.5-7.3 | 0 |
|  | 10-13 | --- | 2.0-15 | 4.5-6.5 | 0 |
|  | 13-18 | -- | 2.0-15 | 4.5-6.5 | 0 |
|  | 18-32 | --- | 2.0-15 | 4.5-6.5 | 0 |
|  | 32-60 | 1.0-10 | -- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| 368B: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | - | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | - --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | \| --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | -- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 368C: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | -- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | \| --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | - | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 368D: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | -- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation\|exchange capacity | ```\|fffective cation- | exchange |capacity``` | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbon| ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | \|meq/100 g| | pH | Pct |
| 368E: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | - | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | -- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 15-31 | - | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 380B: |  |  |  |  |  |
| Cress------------ | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Rosholt--------- | 0-8 | 3.0-15 | \| --- | 4.5-7.3 | 0 |
|  | 8-10 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | - | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | - | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 380C: |  |  |  |  |  |
| Cress------------ | 0-3 | 2.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | - | 4.5-6.0 | 0 |
|  | 15-31 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Rosholt--------- | 0-8 | 3.0-15 | \| --- | 4.5-7.3 | 0 |
|  | 8-10 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | - | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 380D: |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | \| --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | - | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Rosholt--------- | 0-8 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 8-10 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 10-14 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 14-28 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 28-34 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 34-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 383B: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | \| --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation- |exchange |capacity | Effective cationexchange capacity | $\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$ | \|Calcium |carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 383C: | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | meq/100 g\| | pH | Pct |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| 383D: |  |  |  |  |  |
| Mahtomedi------- | 0-5 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 5-8 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 8-15 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 15-30 | 0.0-6.0 | --- | 5.1-6.5 | 0 |
|  | 30-60 | 0.0-6.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| 392C: |  |  |  |  |  |
| Rockmarsh------- | 0-1 | 80-120 | --- | 5.1-7.3 | -- - |
|  | $1-8$ | $5.0-22$ | --- | 5.1-7.3 | 0 |
|  | 8-23 | 1.0-9.0 | --- | 5.1-7.3 | 0 |
|  | 23-46 | 10-25 | --- | 5.1-7.3 | 0 |
|  | 46-80 | 3.0-14 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Dairyland------- | 0-1 | 120-170 | --- | 5.1-7.3 | -- - |
|  | 1-7 | 3.0-10 | --- | 5.1-7.3 | 0 |
|  | 7-14 | 1.0-9.0 | --- | 5.1-6.5 | 0 |
|  | 14-36 | 1.0-8.0 | --- | 5.1-6.5 | 0 |
|  | 36-49 | 1.0-8.0 | --- | 5.1-6.5 | 0 |
|  | 49-80 | 3.0-15 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Makwa----------- | 0-8 | 150-204 | - | 5.1-7.3 | 0 |
|  | 8-16 | 12-28 | - | 5.1-7.3 | 0 |
|  | 16-43 | 4.0-13 | --- | 5.1-7.3 | 0 |
|  | 43-65 | 4.0-22 | --- | 5.1-7.3 | 0 |
|  | 65-80 | 14-36 | --- | 6.1-7.8 | 0 |
|  |  |  |  |  |  |
| 396B: |  |  |  |  |  |
| Friendship------ | 0-4 | --- | 1.0-4.0 | 4.5-7.3 | 0 |
|  | 4-29 | --- | 1.0-2.0 | 4.5-6.5 | 0 |
|  | 29-60 | --- | 1.0-2.0 | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| Wurtsmith------- | 0-6 | - | 2.0-14 | 3.5-5.5 | 0 |
|  | 6-33 | --- | 1.0-2.0 | 3.5-6.0 | 0 |
|  | 33-60 | - | 1.0-2.0 | 3.5-7.3 | 0 |
|  |  |  |  |  |  |
| Grayling | 0-3 | --- | 2.0-14 | 3.5-5.5 | 0 |
|  | 3-15 | --- | 1.0-4.0 | 3.5-5.5 | 0 |
|  | 15-23 | 1.0-2.0 | -- | 5.6-7.3 | 0 |
|  | 23-60 | 1.0-2.0 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| 397A: |  |  |  |  |  |
| Perchlake------- | 0-9 | 1.0-7.0 | --- | 4.5-6.5 | 0 |
|  | 9-18 | 1.0-4.0 | --- | 4.5-6.5 | 0 |
|  | 18-42 | 1.0-4.0 | --- | 4.5-6.5 | 0 |
|  | 42-46 | --- | 2.0-15 | 4.5-6.5 | 0 |
|  | 46-60 | 0.0-3.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 399B: |  |  |  |  |  |
| Grayling-------- | 0-3 | - | 2.0-14 | 3.5-5.5 | 0 |
|  | 3-15 | --- | 1.0-4.0 | 3.5-5.5 | 0 |
|  | 15-23 | 1.0-2.0 | - - - | 5.6-7.3 | 0 |
|  | 23-60 | 1.0-2.0 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | $\mid$ Effective <br> \| cation- <br> $\mid$ exchange <br> $\mid$ capacity$\|$ | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | \|meq/100 g | pH | Pct |
| 439B: |  |  |  |  |  |
| Graycalm-------- | 0-3 | --- | 4.0-10 | 3.5-6.5 | 0 |
|  | 3-22 | --- | 2.0-4.0 | 3.5-7.3 | 0 |
|  | 22-35 | --- | 1.0-5.0 | 3.5-7.3 | 0 |
|  | 35-60 | --- | 1.0-5.0 | 3.5-7.3 | 0 |
|  |  |  |  |  |  |
| Menahga | 0-1 | --- | $80-120$ $4.0-10$ | 4.5-5.5 $3.5-6.5$ | -- |
|  | 2-25 | --- | 2.0-4.0 | 4.5-5.5 | 0 |
|  | 25-80 | 0.0-2.0 | --- | 5.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 439C: |  |  |  |  |  |
| Graycalm-------- | 0-3 | --- | 4.0-10 | 3.5-6.5 | 0 |
|  | 3-22 | --- | 2.0-4.0 | 3.5-7.3 | 0 |
|  | 22-35 | --- | 1.0-5.0 | 3.5-7.3 | 0 |
|  | 35-60 | - | 1.0-5.0 | 3.5-7.3 | 0 |
| Menahga---------- | 0-1 | --- | 80-120 | 4.5-5.5 | --- |
|  | 1-2 | --- | 4.0-10 | 3.5-6.5 | 0 |
|  | 2-25 | --- | 2.0-4.0 | 4.5-5.5 | 0 |
|  | 25-80 | 0.0-2.0 | \| --- | 5.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 439D: |  |  |  |  |  |
| Graycalm-------- | 0-3 | --- | 4.0-10 | 3.5-6.5 | 0 |
|  | 3-22 | --- | 2.0-4.0 | 3.5-7.3 | 0 |
|  | 22-35 | --- | 1.0-5.0 | 3.5-7.3 | 0 |
|  | 35-60 | --- | 1.0-5.0 | 3.5-7.3 | 0 |
|  |  |  | \| |  |  |
| Menahga---------- | 0-1 | \| --- | 80-120 | 4.5-5.5 | - |
|  | 1-2 | --- | 4.0-10 | 3.5-6.5 | 0 |
|  | 2-25 | \| --- | 2.0-4.0 | 4.5-5.5 | 0 |
|  | 25-80 | 0.0-2.0 | \| --- | 5.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 442C: |  |  |  |  |  |
| Haugen---------- | 0-4 | 3.0-17 | - | 4.5-6.5 | 0 |
|  | 4-15 | 1.0-15 | - | 4.5-6.0 | 0 |
|  | 15-23 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 23-35 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 35-49 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  | 49-79 | 1.0-15 | - | 5.6-6.5 | 0 |
|  | 79-80 | 1.0-15 | -- | 5.6-6.5 | 0 |
|  |  |  | \| |  |  |
| Greenwood- | 0-6 | \| --- | 80-120 | 3.5-4.5 | 0 |
|  | 6-60 | \| --- | 150-200 | 3.5-4.5 | 0 |
|  |  |  | \| |  |  |
| 443D: |  |  |  |  |  |
| Amery----------- | 0-3 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 3-22 | \| --- | 1.0-15 | 4.5-6.0 | 0 |
|  | 22-34 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 34-41 | 1.0-15 | --- | 5.1-6.5 | 0 |
|  | 41-57 | 1.0-15 | --- | 5.1-6.5 | 0 |
|  | 57-71 | 1.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 71-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  | 1 |  |  |
| Greenwood | 0-6 | --- | 80-120 | 3.5-4.5 | 0 |
|  | 6-60 | --- | 150-200 | 3.5-4.5 | 0 |
|  |  |  | \| |  |  |
| 459A: |  |  |  |  |  |
| Loxley | 0-13 | \| --- | 50-100 | 3.5-4.4 | 0 |
|  | 13-60 | --- | 50-120 | 3.5-4.4 | 0 |
|  |  |  | \| |  |  |

Table 24.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cationexchange capacity	Effective cationexchange capacity	Soil reaction	Calcium \|carbonate
	In	\|meq/100	meq/100 g	pH	Pct
459A:					
Daisybay-------	0-7	---	140-200	3.5-4.4	0
	7-30	---	140-200	3.5-5.5	0
	30-35	---	140-200	4.6-6.0	0
	$35-80$	16-28	---	5.6-7.8	0-5
Dawson----------	0-8	-	80-120	3.5-4.4	0
	8-38	---	150-230	3.5-4.4	0
	38-40	10-25	---	3.5-4.4	0
	40-60	1.0-2.0	-	3.5-6.5	0
461A:					
Bowstring-------	0-38	140-180	---	5.6-8.4	0
	38-47	1.0-3.0	---	5.6-8.4	0
	47-80	140-180	-	5.6-8.4	0
465A:					
Newson----------	0-3	-	60-155	3.5-6.0	0
	3-8	--	1.0-7.0	3.5-6.0	0
	8-16	-	1.0-7.0	3.5-6.0	0
	16-22	-	1.0-7.0	3.5-6.0	0
	22-60	0.0-4.0	---	4.5-6.5	0
Meehan----------	0-4	---	2.0-15	3.5-7.3	0
	4-29	---	1.0-8.0	3.5-6.5	0
	29-60	---	0.0-4.0	3.5-7.3	0
469E:					
Bigisland-------	0-3	3.0-9.0	---	5.6-7.3	0
	3-13	2.0-7.0	---	5.6-7.3	0
	13-25	2.0-7.0	---	5.6-7.3	0
	25-47	2.0-7.0	---	5.6-7.3	0
	47-56	2.0-7.0	---	5.6-7.3	0
	56-80	3.0-19	-	6.1-7.3	0
Milaca----------	0-4	---	5.0-18	5.1-6.5	0
	4-13	3.0-11	---	5.1-6.5	0
	13-17	3.0-11	---	5.1-6.5	0
	17-43	4.0-11	---	5.1-6.5	0
	43-80	2.0-10	---	5.6-6.5	0-5
471B:					
Dairyland-------	0-1	120-170	-	5.1-7.3	--
	1-7	3.0-10	---	5.1-7.3	0
	7-14	1.0-9.0	---	5.1-6.5	0
	14-36	1.0-8.0	---	5.1-6.5	0
	36-49	1.0-8.0	---	5.1-6.5	0
	49-80	3.0-15	---	5.1-7.8	0
Emmert----------	0-1	2.0-11	---	5.1-6.5	0
	1-5	1.0-8.0	---	5.1-7.3	0
	5-24	1.0-7.0	---	5.1-7.3	0
	24-60	1.0-7.0	---	5.1-7.8	0
471C:					
Dairyland-------	0-1	120-170	---	5.1-7.3	---
	1-7	3.0-10	---	5.1-7.3	0
	7-14	1.0-9.0	---	5.1-6.5	0
	14-36	1.0-8.0	-	5.1-6.5	0
	36-49	1.0-8.0	---	5.1-6.5	0
	49-80	3.0-15	---	5.1-7.8	0

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | ```\|fffective cation- | exchange |capacity``` | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbon- <br> \| ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | \|meq/100 g| | pH | Pct |
| 471C: |  |  |  |  |  |
| Emmert---------- | 0-1 | 2.0-9.0 | --- | 5.1-6.5 | 0 |
|  | 1-5 | 1.0-8.0 | --- | 5.1-7.3 | 0 |
|  | 5-24 | 1.0-7.0 | -- | 5.1-7.3 | 0 |
|  | 24-60 | 1.0-7.0 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| 472A: |  |  |  |  |  |
| Rockmarsh-------- | 0-1 | 80-120 | -- | 5.1-7.3 | --- |
|  | 1-8 | 5.0-22 | --- | 5.1-7.3 | 0 |
|  | 8-23 | 1.0-9.0 | --- | 5.1-7.3 | 0 |
|  | 23-46 | 10-25 | --- | 5.1-7.3 | 0 |
|  | 46-80 | 3.0-14 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| Clemens--------- | 0-2 | 60-160 | \| --- | 5.1-7.3 | -- |
|  | 2-7 | 6.0-15 | --- | 5.1-7.3 | 0 |
|  | 7-10 | 2.0-15 | --- | 5.1-7.3 | --- |
|  | 10-13 | 2.0-15 | \| --- | 5.1-7.3 | --- |
|  | 13-32 | 2.0-11 | --- | 5.1-7.3 | 0 |
|  | 32-46 | 2.0-11 | --- | 5.1-7.3 | 0 |
|  | 46-80 | 1.0-6.0 | --- | 6.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 473A: |  |  |  |  |  |
| Dairyland------- | 0-1 | 120-170 | --- | 5.1-7.3 | --- |
|  | 1-7 | 3.0-10 | - | 5.1-7.3 | 0 |
|  | 7-14 | 1.0-9.0 | \| --- | 5.1-6.5 | 0 |
|  | 14-36 | 1.0-8.0 | --- | 5.1-6.5 | 0 |
|  | 36-49 | 1.0-8.0 | --- | 5.1-6.5 | 0 |
|  | 49-80 | 3.0-15 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| Skog | 0-1 | 60-160 | --- | 5.1-7.3 | 0 |
|  | 1-6 | 3.0-13 | --- | 5.1-7.3 | 0 |
|  | 6-11 | 2.0-11 | - | 5.1-7.3 | 0 |
|  | 11-27 | 1.0-7.0 | --- | 5.1-7.3 | 0 |
|  | 27-38 | 1.0-7.0 | --- | 5.1-7.3 | 0 |
|  | 38-80 | 1.0-7.0 | - | 5.6-6.5 | 0 |
|  |  |  | \| |  |  |
| 484A: |  |  |  |  |  |
| Greenwood------- | 0-6 | --- | 80-120 | 3.5-4.5 | 0 |
|  | 6-60 | \| --- | 150-200 | 3.5-4.5 | 0 |
|  |  |  |  |  |  |
| Beseman | 0-36 | --- | 50-150 | 3.5-4.4 | 0 |
|  | 36-60 | 3.0-15 | --- | 3.5-7.3 | 0 |
|  |  |  |  |  |  |
| 485C: |  |  |  |  |  |
| Lupton-- | 0-65 | 160-190 | --- | 4.5-7.8 | 0 |
|  |  |  |  |  |  |
| Tawas | 0-31 |  | --- |  |  |
|  | 31-60 | 1.0-7.0 | --- | 5.6-8.4 | 0 |
|  |  |  | \| |  |  |
| 495B : |  |  |  |  |  |
| Karlsborg------- | 0-9 | 2.0-10 | --- | 4.5-6.5 |  |
|  | 9-28 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 28-48 | 12-65 | \| --- | 4.5-6.5 | 0 |
|  | 48-80 | 1.0-5.0 | --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| Grettum- | 0-3 | --- | 2.0-15 | 3.5-7.3 | 0 |
|  | 3-32 | --- | 1.0-10 | 3.5-7.3 | 0 |
|  | 32-75 | --- | 1.0-10 | 5.1-7.3 | 0 |
|  | 75-80 | 1.0-9.0 | --- | 5.1-7.3 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cationexchange capacity	Effective cationexchange capacity	Soil reaction	Calcium carbonate
495B:	In	\|meq/100	meq/100 g	pH	Pct
Perida---------	0-9	2.0-10	---	3.5-7.3	0
	9-43	2.0-10	---	3.5-7.3	0
	43-45	2.0-10	---	3.5-7.3	0
	45-60	12-65	---	3.5-7.8	0
	60-74	12-65	---	3.5-7.8	0
	74-80	1.0-9.0	-	4.5-7.3	0
495C:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	---	4.5-6.5	0
Grettum---------	0-3	-	2.0-15	3.5-7.3	0
	3-32	---	1.0-10	3.5-7.3	0
	32-75	---	1.0-10	5.1-7.3	0
	75-80	1.0-9.0	---	5.1-7.3	0
Perida----------	0-9	2.0-10	---	3.5-7.3	0
	9-43	2.0-10	--	3.5-7.3	0
	43-45	2.0-10	---	3.5-7.3	0
	45-60	12-65	---	3.5-7.8	0
	60-74	12-65	---	3.5-7.8	0
	74-80	1.0-9.0	---	4.5-7.3	0
495D:					
Karlsborg-------	0-9	2.0-10	-	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	-	4.5-6.5	0
Grettum---------	0-3	---	2.0-15	3.5-7.3	0
	3-32	---	1.0-10	3.5-7.3	0
	32-75	-	1.0-10	5.1-7.3	0
	75-80	1.0-9.0	---	5.1-7.3	0
Perida----------	0-9	2.0-10	---	3.5-7.3	0
	9-43	2.0-10	---	3.5-7.3	0
	43-45	2.0-10	---	3.5-7.3	0
	45-60	12-65	-	3.5-7.8	0
	60-74	12-65	-	3.5-7.8	0
	74-80	1.0-9.0	---	4.5-7.3	0
496B:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	2.0-10	-	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	---	4.5-6.5	0
496C:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	---	4.5-6.5	0
496D:					
Karlsborg-------	0-9	2.0-10	---	4.5-6.5	0
	9-28	2.0-10	---	4.5-6.5	0
	28-48	12-65	---	4.5-6.5	0
	48-80	1.0-5.0	---	4.5-6.5	0

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation| exchange |capacity | $\mid$ Effective <br> \| cation- <br> \| exchange <br> \|capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | \|meq/100 g | pH | Pct |
| 497A: |  |  |  |  |  |
| Meenon--------------- \| | 0-9 | 2.0-10 | --- | 4.5-7.3 | 0 |
|  | 9-28 | 1.0-10 | --- | 4.5-7.3 | 0 |
|  | 28-41 | 10-70 | \| --- | 3.5-7.8 | 0 |
|  | 41-80 | 0.0-7.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 521A: |  |  |  |  |  |
| Dody----------------- \| | 0-3 | 40-100 | \| --- | 4.5-7.3 | 0 |
|  | 3-9 | 6.0-50 | -- | 4.5-7.3 | 0 |
|  | 9-20 | 1.0-15 | --- | 4.5-7.3 | 0 |
|  | 20-23 | 1.0-15 | \| --- | 4.5-7.3 | 0 |
|  | 23-47 | 10-65 | - | 4.5-6.5 | 0 |
|  | 47-58 | 1.0-15 | - | 4.5-6.5 | 0 |
|  | 58-80 | 1.0-15 | \| --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 523A: |  |  |  |  |  |
| Nokasippi-----------\| | 0-6 | 150-230 | - | 4.5-6.5 | 0 |
|  | 6-15 | 1.0-7.0 | \| --- | 4.5-6.5 | 0 |
|  | 15-22 | 1.0-7.0 | \| --- | 4.5-6.5 | 0 |
|  | 22-31 | 1.0-11 | --- | 5.1-7.3 | 0 |
|  | 31-45 | 2.0-10 | --- | 5.1-7.3 | 0 |
|  | 45-60 | 2.0-10 | \| --- | 5.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 529B: |  |  |  |  |  |
| Perida-------------- | 0-9 | 2.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 9-43 | 2.0-10 | \| --- | 3.5-7.3 | 0 |
|  | 43-45 | 2.0-10 | --- | 3.5-7.3 | 0 |
|  | 45-60 | 12-65 | --- | 3.5-7.8 | 0 |
|  | 60-74 | 12-65 | \| --- | 3.5-7.8 | 0 |
|  | 74-80 | 1.0-9.0 | \| --- | 4.5-7.3 | 0 |
|  |  |  |  |  |  |
| 531A: |  |  |  |  |  |
| Stengel-------------\| | 0-4 | 3.0-10 | \| --- | 4.5-7.3 | 0 |
|  | 4-20 | 1.0-10 | --- | 4.5-7.3 | 0 |
|  | 20-46 | 1.0-10 | --- | 4.5-7.3 | 0 |
|  | 46-50 | 1.0-10 | \| --- | 4.5-7.3 | 0 |
|  | 50-76 | 10-70 | --- | 3.5-7.8 | 0 |
|  | 76-80 | 0.0-7.0 | --- | 4.5-7.3 | 0 |
|  |  |  | \| |  |  |
| 542B: |  |  |  |  |  |
| Haugen, very stony--- | 0-4 | 3.0-17 | --- | 4.5-6.5 | 0 |
|  | 4-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-23 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 23-35 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 35-49 | 1.0-15 | - --- | 5.6-6.5 | 0 |
|  | 49-79 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  | 79-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  | \| |  |  |
| Haugen-------------- | 0-7 | 3. 0-17 | --- | 4.5-6.5 | 0 |
|  | 7-15 | 1.0-15 |  | 4.5-6.0 | 0 |
|  | 15-23 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 23-35 | 1.0-15 | \| --- | 4.5-6.0 | 0 |
|  | 35-49 | 1.0-15 | \| --- | 5.6-6.5 | 0 |
|  | 49-79 | 1.0-15 | - | 5.6-6.5 | 0 |
|  | 79-80 | 1.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation\|exchange |capacity | $\begin{aligned} & \text { \|Effective } \\ & \text { \| cation- } \\ & \text { \|exchange } \\ & \text { \|capacity } \end{aligned}$ | $\begin{array}{\|c} \text { Soil } \\ \mid \text { reaction } \end{array}$ | Calcium carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \| meq/100 | \|meq/100 g | pH | Pct |
| 557B: |  |  |  |  |  |
| Shawano--------- | 0-2 | 2.0-4.0 | -- | 4.5-7.3 | --- |
|  | 2-4 | 1.0-3.0 | - -- | 4.5-6.5 | --- |
|  | 4-26 | 1.0-3.0 | --- | 4.5-6.5 | --- |
|  | 26-60 | 1.0-3.0 | \| --- | 5.6-7.8 | --- |
|  |  |  | \| |  |  |
| 557C : |  |  |  |  |  |
| Shawano--------- | 0-2 | 2.0-4.0 | -- | 4.5-7.3 | --- |
|  | 2-4 | 1.0-3.0 | -- | 4.5-6.5 | --- |
|  | 4-26 | 1.0-3.0 | --- | 4.5-6.5 | --- |
|  | 26-60 | 1.0-3.0 | --- | 5.6-7.8 | --- |
|  |  |  | \| |  |  |
| 557D: |  |  |  |  |  |
| Shawano--------- | 0-2 | 2.0-4.0 | \| --- | 4.5-7.3 | --- |
|  | 2-4 | 1.0-3.0 | --- | 4.5-6.5 | --- |
|  | 4-26 | 1.0-3.0 | --- | 4.5-6.5 | --- |
|  | 26-60 | 1.0-3.0 | --- | 5.6-7.8 | --- |
|  |  |  | \| |  |  |
| 586A: |  |  |  |  |  |
| Chelmo---------- | 0-9 | 5.0-10 | --- | 5.1-7.3 | 0 |
|  | 9-24 | 10-65 | \| --- | 4.5-6.5 | 0 |
|  | 24-34 | 1.0-15 | - | 4.5-6.5 | 0 |
|  | 34-80 | 1.0-15 | -- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 600A: |  |  |  |  |  |
| Haplosaprists. |  |  |  |  |  |
|  |  |  | \| |  |  |
| Psammaquents. |  |  |  |  |  |
|  |  |  | \| |  |  |
| 615B : |  |  |  |  |  |
| Cress | 0-3 | 2.0-20 | --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | -- | 4.5-6.0 | 0 |
|  | 15-31 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | - | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 615C: |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | \| --- | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | --- | 4.5-6.0 | 0 |
|  | 15-31 | \| --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | \| --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 615D: |  |  |  |  |  |
| Cress----------- | 0-3 | 2.0-20 | - | 4.5-7.3 | 0 |
|  | 3-15 | 1.0-15 | - --- | 4.5-6.0 | 0 |
|  | 15-31 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 31-36 | --- | 0.0-7.0 | 4.5-6.0 | 0 |
|  | 36-60 | 0.0-6.0 | \| --- | 4.5-6.5 | 0 |
|  |  |  | \| |  |  |
| 620C: |  |  |  |  |  |
| Lundeen--------- | 0-3 | 3.0-19 | --- | 4.5-5.5 | 0 |
|  | 3-16 | 3.0-17 | \| -- | 4.5-5.5 | 0 |
|  | 16-33 | 2.0-15 | \| --- | 4.5-5.5 | 0 |
|  | 33-80 | --- | --- | --- | --- |
|  |  |  | \| |  |  |
| Haustrup-------- | 0-4 | 3.0-19 | --- | 3.5-6.0 | 0 |
|  | 4-16 | 3.0-17 | --- | 3.5-6.0 | 0 |
|  | 16-80 | --- | --- | --- | --- |
|  |  |  | \| |  |  |
| Rock outcrop. |  | \| | \| |  |  |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation\|exchange |capacity | Effective cation\|exchange capacity | Soil reaction | \|Calcium |carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | meq/100 g | pH | Pct |
| 621A: |  |  |  |  |  |
| Bjorkland------- | 0-2 | 130-180 | --- | 4.5-7.3 | 0 |
|  | 2-8 | 60-160 | --- | 4.5-7.3 | 0 |
|  | 8-14 | 1.0-9.0 | --- | 4.5-6.0 | 0 |
|  | 14-25 | 1.0-9.0 | --- | 4.5-6.0 | 0 |
|  | 25-34 | 1.0-9.0 | --- | 5.1-6.5 | 0 |
|  | 34-38 | 25-41 | --- | 5.1-9.0 | 0 |
|  | 38-80 | 25-41 | --- | 7.9-9.0 | 5-15 |
|  |  |  |  |  |  |
| 623A: |  |  |  |  |  |
| Capitola-------- | 0-5 | 100-155 | --- | 4.5-7.3 | 0 |
|  | 5-7 | 8.0-35 | -- - | 4.5-7.3 | 0 |
|  | 7-22 | 3.0-15 | --- | 4.5-7.3 | 0 |
|  | 22-33 | 2.0-15 | --- | 4.5-7.3 | 0 |
|  | 33-60 | 1.0-10 | --- | 5.1-7.8 | 0 |
|  |  |  |  |  |  |
| 624A: |  |  |  |  |  |
| Ossmer--------- | 0-4 | 6.0-20 | - | 4.5-7.3 | 0 |
|  | 4-6 | 1.0-15 | -- | 4.5-6.5 | 0 |
|  | 6-11 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 11-26 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 26-34 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 34-38 | 1.0-15 | --- | 4.5-6.5 | 0 |
|  | 38-60 | 0.0-6.0 | --- | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 631A: |  |  |  |  |  |
| Giese---------- | 0-1 | 100-155 | --- | 4.5-6.0 | 0 |
|  | 1-6 | $8.0-35$ | --- | 4.5-6.0 | 0 |
|  | 6-11 | 3.0-15 | -- - | 4.5-6.0 | 0 |
|  | 11-24 | 3.0-15 | --- | 5.1-6.5 | 0 |
|  | 24-30 | 3.0-15 | - | 5.1-6.5 | 0 |
|  | 30-36 | 2.0-15 | --- | 5.1-6.5 | 0 |
|  | 36-70 | 2.0-15 | --- | 5.6-7.3 | 0 |
|  | 70-80 | 1.0-10 | --- | 5.6-7.3 | 0 |
|  |  |  |  |  |  |
| 632A: |  |  |  |  |  |
| Aftad---------- | 0-10 | 3.0-10 | --- | 4.5-7.3 | 0 |
|  | 10-29 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 29-36 | 2.0-15 | --- | 4.5-6.5 | 0 |
|  | 36-41 | 2.0-15 | - | 4.5-6.5 | 0 |
|  | 41-60 | 1.0-10 | --- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| 632B: |  |  |  |  |  |
| Aftad---------- | 0-10 | 3.0-10 | --- | 4.5-7.3 | 0 |
|  | 10-29 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 29-36 | 2.0-15 | --- | 4.5-6.5 | 0 |
|  | 36-41 | 2.0-15 | --- | 4.5-6.5 | 0 |
|  | 41-60 | 1.0-10 | --- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| 632C: |  |  |  |  |  |
| Aftad- | 0-10 | 3.0-10 | --- | 4.5-7.3 | 0 |
|  | 10-29 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 29-36 | 2.0-15 | --- | 4.5-6.5 | 0 |
|  | 36-41 | 2.0-15 | --- | 4.5-6.5 | 0 |
|  | 41-60 | 1.0-10 | --- | 5.1-6.5 | 0 |
|  |  |  |  |  |  |
| 634C: |  |  |  |  |  |
| Drylanding------ | 0-4 | 6.0-22 | --- | 5.6-7.3 | 0 |
|  | 4-12 | 4.0-19 | --- | 5.6-7.3 | 0 |
|  | 12-80 | --- | --- | --- | --- |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | \| Cation|exchange |capacity | $\mid$ Effective <br> $\mid$ cation- <br> $\mid$ <br> exchange <br> \|capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium carbonate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | \|meq/100 g| | pH | Pct |
| 634C: |  |  |  |  |  |
| Beartree------------ \| | 0-1 | --- | --- | 5.6-7.3 | --- |
|  | 1-4 | --- | \| --- | 5.6-7.3 | --- |
|  | 4-16 | \| --- | - | 5.6-7.3 | --- |
|  | 16-80 | --- | \| --- | --- | --- |
|  |  |  | \| |  |  |
| Rock outcrop. |  |  | \| |  |  |
|  |  |  | \| |  |  |
| 635C: |  |  | \| |  |  |
| Drylanding---------- \| | 0-4 | 6.0-22 | I | 5.6-7.3 | 0 |
|  | 4-12 | 4.0-19 | --- | 5.6-7.3 | 0 |
|  | 12-80 |  | \| --- | --- | --- |
|  |  |  | \| |  |  |
| Beartree------------ | 0-1 | - --- | I | 5.6-7.3 | --- |
|  | 1-4 | - --- | \| --- | 5.6-7.3 | --- |
|  | 4-16 | --- | -- | 5.6-7.3 | --- |
|  | 16-80 | - | - | --- | --- |
|  |  |  | \| |  |  |
| Rock outcrop. |  |  | \| |  |  |
|  |  |  | \| |  |  |
| 648B: |  |  |  |  |  |
| Sconsin------------- \| | 0-4 | 8.3-13 | \| --- | 4.5-7.3 | 0 |
|  | 4-5 | 4.6-12 | --- | 4.5-6.5 | 0 |
|  | 5-10 | 4.6-12 | - | 4.5-6.5 | 0 |
|  | 10-18 | 4.6-12 | \| --- | 4.5-6.5 | 0 |
|  | 18-27 | 4.6-12 | --- | 4.5-6.5 | 0 |
|  | 27-34 | 5.5-14 | \| --- | 4.5-6.5 | 0 |
|  | 34-38 | 4.8-12 | \| --- | 4.5-6.5 | 0 |
|  | 38-60 | 1.0-5.5 | - | 4.5-6.5 | 0 |
|  |  |  |  |  |  |
| 669D: |  |  |  |  |  |
| Fremstadt, stony-----\| | 0-5 | 3.0-12 | \| | 4.5-7.3 | 0 |
|  | 5-33 | 2.0-10 | --- | 4.5-6.5 | 0 |
|  | 33-37 | 1.0-10 | --- | 4.5-6.5 | 0 |
|  | 37-45 | 1.0-10 | \| --- | 4.5-6.5 | 0 |
|  | 45-70 | 1.0-10 | \| --- | 5.6-6.5 | 0 |
|  | 70-80 | 1.0-10 | --- | 5.6-6.5 | 0 |
| Pomroy-------------- \| | 0-3 | 2.0-10 | --- |  |  |
|  | 3-30 | 1.0-9.0 | --- | 5.1-6.5 | 0 |
|  | 30-45 | 4.0-13 | --- | 5.1-6.5 | 0 |
|  | 45-80 | 4.0-13 | --- | 5.1-6.5 | 0 |
|  |  |  | , |  |  |
| 671B: |  |  | \| |  |  |
| Spoonerhill, stony---\| | 0-3 | 2.0-15 | I | 4.5-7.3 | 0 |
|  | 3-12 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 12-16 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 16-34 | 0.0-15 | \| --- | 5.1-6.5 | 0 |
|  | 34-46 | 0.0-15 | 1 | 5.6-6.5 | 0 |
|  | 46-80 | 0.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  | I |  |  |
| Spoonerhill---------\| | 0-3 | 2.0-15 | \| --- | 4.5-7.3 | 0 |
|  | 3-12 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 12-16 | 0.0-15 | \| --- | 4.5-6.5 | 0 |
|  | 16-34 | 0.0-15 | - --- | 5.1-6.5 | 0 |
|  | 34-46 | 0.0-15 | , | 5.6-6.5 | 0 |
|  | 46-80 | 0.0-15 | --- | 5.6-6.5 | 0 |
|  |  |  | \| |  |  |
| 706A: |  |  | \| |  |  |
| Winterfield---------\| | 0-7 | 2.0-15 | --- | 5.6-7.8 | 0 |
|  | 7-60 | 1.0-5.0 | --- | 5.6-8.4 | 0 |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cationexchange \|capacity	Effective cationexchange capacity	Soil reaction	\|Calcium carbonate
	In	meq/100 g	meq/100 g	pH	Pct
706A:					
Totagatic------	0-4	3.0-10	---	5.1-6.5	0
	4-8	1.0-3.0	-	4.5-6.5	0
	8-17	1.0-3.0	---	4.5-6.5	0
	17-28	1.0-3.0	---	4.5-6.5	0
	28-46	1.0-3.0	---	4.5-6.5	0
	46-70	1.0-3.0	-	4.5-6.5	0
	70-80	1.0-3.0	---	4.5-6.5	0
715A:					
Mora------------	0-4	--	5.0-18	5.1-6.5	0
	4-9	3.0-11	---	5.1-6.5	0
	9-14	3.0-11	---	5.1-6.5	0
	14-36	4.0-11	---	5.1-6.5	0
	36-46	2.0-10	---	5.6-6.5	0
	46-80	2.0-10	---	5.6-6.5	0-5
717B:					
Milaca----------	0-4	-	5.0-18	5.1-6.5	0
	4-13	3.0-11	---	5.1-6.5	0
	13-17	3.0-11	-	5.1-6.5	0
	17-43	4.0-11	-	5.1-6.5	0
	43-80	2.0-10	---	5.6-6.5	0-5
717C:					
Milaca---------	0-4	---	5.0-18	5.1-6.5	0
	4-13	3.0-11	---	5.1-6.5	0
	13-17	3.0-11	--	5.1-6.5	0
	17-43	4.0-11	-	5.1-6.5	0
	43-80	2.0-10	---	5.6-6.5	0-5
720F:					
Haustrup-------	0-4	3.0-19	-	3.5-6.0	0
	4-16	3.0-17	--	3.5-6.0	0
	16-80	-	---	---	--
Lundeen---------	0-3	3.0-19	--	4.5-5.5	0
	3-16	3.0-17	--	4.5-5.5	0
	16-33	2. 0-15	--	4.5-5.5	0
	33-80	-	---	---	--
Rock outcrop.					
726 B :					
Sissabagama-----	0-10	-	2. 0-15	4.5-7.3	0
	10-31	---	1.0-10	4.5-6.5	0
	31-45	2.0-4.0	---	4.5-6.5	0
	45-80	2.0-4.0	---	5.1-7.3	0
742B:					
Milaca----------	0-4	---	5.0-18	5.1-6.5	0
	4-13	3.0-11	---	5.1-6.5	0
	13-17	3.0-11	---	5.1-6.5	0
	17-43	4.0-11	---	5.1-6.5	0
	43-80	2.0-10	---	5.6-6.5	0-5

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cationexchange capacity | $\mid$ Effective <br> \| cation- <br> $\mid$ exchange <br> $\mid$ capacity$\|$ | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium |carbon- <br> \| ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 | /meq/100 g | pH | Pct |
| 742C: |  |  |  |  |  |
| Milaca---------- | 0-4 | --- | 5.0-18 | 5.1-6.5 | 0 |
|  | 4-13 | 3.0-11 | --- | 5.1-6.5 | 0 |
|  | 13-17 | 3.0-11 | --- | 5.1-6.5 | 0 |
|  | 17-43 | 4.0-11 | \| --- | 5.1-6.5 | 0 |
|  | 43-80 | 2.0-10 | --- | 5.6-6.5 | 0-5 |
|  |  |  |  |  |  |
| 742D: |  |  |  |  |  |
| Milaca--------- | 0-4 | --- | 5.0-18 | 5.1-6.5 | 0 |
|  | 4-13 | 3.0-11 | -- | 5.1-6.5 | 0 |
|  | 13-17 | 3.0-11 | --- | 5.1-6.5 | 0 |
|  | 17-43 | 4.0-11 | --- | 5.1-6.5 | 0 |
|  | 43-80 | 2.0-10 | --- | 5.6-6.5 | 0-5 |
|  |  |  | \| |  |  |
| 755A: |  |  |  |  |  |
| Moppet | 0-4 | --- | 6.0-20 | 3.6-6.0 | 0 |
|  | 4-10 | --- | 3.0-15 | 3.6-6.0 | 0 |
|  | 10-39 | --- | 3.0-15 | 3.6-6.0 | 0 |
|  | 39-60 | - | 1.0-10 | 3.6-6.5 | 0 |
|  |  |  |  |  |  |
| Fordum---------- | 0-6 | 10-45 | - | 4.5-8.4 | 0 |
|  | 6-18 | 3.0-20 | \| --- | 4.5-8.4 | 0 |
|  | 18-30 | 3.0-20 | --- | 4.5-8.4 | 0 |
|  | 30-60 | 2.0-6.0 | --- | 5.6-8.4 | 0 |
|  |  |  | \| |  |  |
| 771A: |  |  |  |  |  |
| Lenroot--------- | 0-4 | 2.0-11 | --- | 5.1-6.5 | 0 |
|  | 4-8 | 0.0-6.0 | \| --- | 5.1-6.5 | 0 |
|  | 8-14 | 0.0-6.0 | \| --- | 5.1-6.5 | 0 |
|  | 14-21 | 0.0-6.0 | \| --- | 5.1-6.5 | 0 |
|  | 21-80 | 0.0-6.0 | --- | 5.1-7.3 | 0 |
|  |  |  | \| |  |  |
| 812B: |  |  |  |  |  |
| Mora------------ | 0-4 | --- | 5.0-18 | 5.1-6.5 | 0 |
|  | 4-9 | 3.0-11 | \| --- | 5.1-6.5 | 0 |
|  | 9-14 | 3.0-11 | --- | 5.1-6.5 | 0 |
|  | 14-36 | 4.0-11 | --- | 5.1-6.5 | 0 |
|  | 36-46 | 2.0-10 | --- | 5.6-6.5 | 0 |
|  | 46-80 | 2.0-10 | --- | 5.6-6.5 | 0-5 |
|  |  |  | \| |  |  |
| 825A: |  |  |  |  |  |
| Meehan---------- | 0-4 | --- | 2.0-15 | 3.5-7.3 | 0 |
|  | 4-29 | --- | 1.0-8.0 | 3.5-6.5 | 0 |
|  | 29-60 | --- | 0.0-4.0 | 3.5-7.3 | 0 |
|  |  |  | \| |  |  |
| 896A: |  |  |  |  |  |
| Wurtsmith------- |  | --- | 2.0-15 | 3.5-7.3 | 0 |
|  | 6-33 | --- | 1.0-2.0 | 3.5-6.0 | 0 |
|  | 92-60 | --- | 1.0-2.0 | 3.5-7.3 | 0 |
|  |  |  | \| |  |  |
| 980A: |  |  |  |  |  |
| Soderbeck------- | 0-4 | 9.0-20 | --- | 5.6-7.3 | 0 |
|  | 4-18 | 5.0-9.0 | \| --- | 5.6-7.3 | 0 |
|  | 18-28 | 2.0-7.0 | --- | 5.6-7.3 | 0 |
|  | 28-42 | 1.0-3.0 | --- | 5.6-7.3 | 0 |
|  | 42-55 | --- | \| --- | --- | --- |
|  | 55-80 | --- | --- | --- | --- |
|  |  |  |  |  |  |

Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils--Continued


Table 24.--Chemical Properties of the Soils-Continued


Table 24.--Chemical Properties of the Soils--Continued


Table 25.--Soil Moisture Status by Depth
(Depths of layers are in feet. Absence of an entry indicates that the feature is not a concern or that data were not estimated. See text for definitions of terms used in this table)

| Map symbol and <br> soil name | \|Hydro-| logic group | January | February | March | April | May | June | July | August | \| September | October | November | December |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | \| | \| | \| |  |  | \| |  |  |  |  |  |
| 3A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Totagatic---- | A/D | 10.0-2.0: | 10.0-2.5: | 10.0-1.0: | 10.0-6.7: | \|0.0-6.7: | \|0.0-1.0: | 10.0-2.0: | 10.0-2.5: | \|0.0-1.5: | 10.0-0.5: | 10.0-6.7: | 10.0-0.5: |
|  |  | Moist | \| Moist | \| Moist | Wet | Wet | Moist | \| Moist | Moist | Moist | Moist | Wet | Moist |
|  |  | \|2.0-6.7: | \|2.5-6.7: | \|1.0-6.7: |  |  | \|1.0-6.7: | \|2.0-6.7: | \| 2.5-6.7: | \|1.5-6.7: | \|0.5-6.7: | --- | \|0.0-6.7: |
|  |  | Wet | \| Wet | Wet |  |  | Wet | \| Wet | Wet | Wet | Wet |  | Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bowstring---- | A/D | 10.0-2.0: | 10.0-2.5: | 10.0-1.0: | 10.0-6.7: | 10.0-6.7: | 10.0-1.0: | 10.0-2.0: | 10.0-2.5: | \|0.0-1.5: |  | 10.0-6.7: | 10.0-0.5: |
|  |  | Moist | \| Moist | \| Moist | \| Wet | \| Wet | \| Moist | Wet | \| Moist |
|  |  | \|2.0-6.7: | \|2.5-6.7 | \|1.0-6.7: |  | --- | \|1.0-6.7: | \|2.0-6.7: | \|2.5-6.7: | \|1.5-6.7: | \|0.5-6.7: | --- | \|0.0-6.7: |
|  |  | Wet | \| Wet | \| Wet |  |  | \| Wet |  | \| Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ausable----- | A/D | 0.0-2.0: | 10.0-2.5: | 10.0-1.0: | 10.0-6.7: | 10.0-6.7: | 10.0-1.0: | 10.0-2.0: | 10.0-2.5: | 10.0-1.5: | 10.0-0.5: | 10.0-6.7: | 10.0-0.5: |
|  |  | Moist | \| Moist | \| Moist | \| Wet | Wet | \| Moist | \| Moist | Moist | \| Moist | \| Moist | Wet | \| Moist |
|  |  | 2.0-6.7: | \|2.5-6.7: | \|1.0-6.7: |  | --- | \|1.0-6.7: | \|2.0-6.7: | \| 2.5-6.7: | \|1.5-6.7: | 10.5-6.7: | --- | 10.5-6.7: |
|  |  | Wet | Wet | Wet |  |  | Wet | \| Wet | Wet | Wet | Wet |  | Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Makwa------- | D |  | 10.0-2.5: | \|0.0-1.0: | 10.0-6.7: | 0.0-6.7: | 10.0-1.0: | 10.0-2.0: | 10.0-2.5: | \|0.0-1.5: | 10.0-0.5: | 10.0-6.7: | 10.0-0.5: |
|  |  | Moist | \| Moist | \| Moist | \| Wet | Wet | Moist | \| Moist | \| Moist | \| Moist | \| Moist | Wet | \| Moist |
|  |  | 2.0-6.7: | \|2.5-6.7 | \|1.0-6.7: |  | --- | \|1.0-6.7: | \| 2.0-6.7: | \|2.5-6.7: | \|1.5-6.7: | \|0.5-6.7: | --- | \|0.5-6.7: |
|  |  | Wet | \| Wet | \| Wet |  |  | \| Wet | \| Wet | Wet | \| Wet | \| Wet |  | \| Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Comstock----- | c | 10.0-2.5: | 10.0-2.5: | 10.0-2.5: | 10.0-0.5: | 10.0-1.0: | 10.0-2.5: | 10.0-2.5: | 10.0-4.0: | 10.0-5.0: | 10.0-2.0: | 10.0-1.0: | 10.0-2.0: |
|  |  | Moist | \| Moist | Moist |
|  |  | \|2.5-3.0: | \|2.5-3.5: | \| 2.5-5.0: | \|0.5-6.7: | \|1.0-6.7: | \| 2.5-6.7: | \| 2.5-6.7: | \|4.0-6.7: | \|5.0-6.7: | \|2.0-2.5: | \|1.0-2.5: | \|2.0-3.0: |
|  |  | Wet | \| Wet | \| Wet | \| Wet | \| Wet | \| Wet |
|  |  | \|3.0-6.7: | \|3.5-6.7: | \|5.0-6.7: | \| --- | --- | --- | \| --- | --- | --- | \|2.5-5.0: | \|2.5-5.5: | \|3.0-6.0: |
|  |  | Moist | \| Moist | \| Moist |  |  |  | \| |  |  | \| Moist | \| Moist | \| Moist |
|  |  | --- | --- | --- | --- | --- | --- | --- | --- | --- | \|5.0-6.7: | \| 5.5-6.7: | \|6.0-6.7: |
|  |  |  |  |  |  |  |  | \| |  |  | Wet | Wet | Wet |
|  |  |  | \| |  |  |  |  | \| |  |  |  |  |  |
| 27A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Scott Lake--- | B | 10.0-4.5: | 10.0-5.5: | 10.0-4.0: | 10.0-2.5: | 10.0-3.0: | 10.0-4.5: | 10.0-5.0: | 10.0-5.5: | 10.0-4.5: | 10.0-4.0: | 10.0-3.5: | 10.0-4.0: |
|  |  | Moist | Moist | \| Moist | \| Moist | Moist | Moist | \| Moist | Moist | Moist | \| Moist | Moist | \| Moist |
|  |  | 4.5-6.7: | \|5.5-6.7: | \|4.0-6.7: | \| 2.5-6.7: | \|3.0-6.7: | \|4.5-6.7: | \| 5.0-6.7: | \|5.5-6.7: | \|4.5-6.7: | \|4.0-6.7: | \| 3.5-6.7: | \|4.0-6.7: |
|  |  | Wet | \| Wet | \| Wet | \| Wet | Wet | \| Wet | \| Wet | Wet | \| Wet | Wet | \| Wet | \| Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |


Map symbol and soil name	$\begin{aligned} & \text { \|Hydro-\| } \\ & \mid \text { logic } \\ & \text { \|group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|		\|			\|	\|				
28B:													
Haugen, very stony------	C	10.0-6.7:	10.0-6.7:	\|0.0-2.0:	10.0-2.0:	10.0-3.0:	\|0.0-4.5:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-4.0:	10.0-4.5:
		Moist	Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist	\| Moist	\| Moist
				$\begin{aligned} & \text { 2.0-6.0: } \\ & \text { Wet } \end{aligned}$	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	---	---	---	\| ---	$\begin{aligned} & \mid 4.0-6.0: \\ & \mid \text { Wet } \end{aligned}$	\| 4.5-6.0 :
					\| Wet	Wet	Wet						\| Wet\| $6.0-6.7$ :
		---	---	\|6.0-6.7:	\|6.0-6.7:	6.0-6.7:	\|6.0-6.7:	---	---	---	---	6.0-6.7:	
				Moist	Moist	Moist	\| Moist					Moist	\|6.0-6.7:
													\|0.0-4.5:
Haugen-------	C	0.0-6.7:	10.0-6.7:	\|0.0-2.0:	10.0-2.0:	10.0-3.0:	\|0.0-4.5:	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	$\begin{aligned} & \mid 0.0-4.0: \\ & \text { Moist } \end{aligned}$	
		Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist		$\begin{gathered} \mid 0.0-4.5: \\ \text { Moist } \end{gathered}$
		---	---	$\begin{aligned} & \mid 2.0-6.0: \\ & \mid \text { Wet } \end{aligned}$	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	\| ---	\| ---	---	\| ---	$\begin{aligned} & \mid 4.0-6.0: \\ & \mid \text { Wet } \end{aligned}$	\| M.5-6.0:
					\| Wet		$\begin{aligned} & \text { \| Wet } \\ & \text { \| } 6.0-6.7: \end{aligned}$						\| Wet
		---	---	$\begin{gathered} \mid 6.0-6.7: \\ \text { Moist } \end{gathered}$	$\begin{aligned} & \mid 6.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	\|6.0-6.7:		---	---	---	---	6.0-6.7:	6.0-6.7:
						\| Moist	$\begin{aligned} & \mid 6.0-6.7: \\ & \mid \text { Moist } \end{aligned}$					Moist	Moist
Rosholt, very													
stony-------	B	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{gathered} \text { \|0.0-6.7: } \\ \mid \text { Moist } \end{gathered}$	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \text { Moist } \end{aligned}$	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{gathered} \text { \|0.0-6.7: } \\ \mid \text { Moist } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { 0.0-6.7: } \\ \mid \text { Moist } \end{gathered}\right.$	$\begin{aligned} & \mid 0.0-6.7: \\ & \text { Moist } \end{aligned}$
Rosholt-------	B	10.0-6.7:	$\left\lvert\, \begin{gathered} \text { 0.0-6.7: } \\ \mid \text { Moist } \end{gathered}\right.$	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Moist } \end{aligned}$			$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	0.0-6.7:	0.0-6.7:
		Moist						Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist
			\| Moist	\| Moist	Moist	\| Moist							
28C:													
Haugen, very	B \|	10.0-6.7:	\|0.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-4.0:	10.0-4.5:
stony													
		Moist	$\begin{array}{r} \text { Moist } \\ \hline--- \end{array}$	$\begin{aligned} & \text { Moist } \\ & \mid 2.0-6.0: \end{aligned}$	\| Moist								
					\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	\| ---	\| ---	---	--	\|4.0-6.0:	\| 4.5-6.0:
			\|	\| Wet									\| Wet
		-	--	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	---	\|6.0-6.7:	\|6.0-6.7:
				Moist	\| Moist	Moist	Moist					Moist	Moist
Haugen	c	10.0-6.7:	\|0.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-4.0:	\|0.0-4.5:
		Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist						
		-	---	\|2.0-6.0:	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	--	---	---	--	\|4.0-6.0:	\|4.5-6.0:
			\|	\| Wet	\| Wet	\| Wet	\| Wet					\| Wet	\| Wet
		---	---	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\| ---	---	---	---	\|6.0-6.7:	\|6.0-6.7:
			\|	Moist	\| Moist	Moist	Moist					Moist	Moist
Rosholt, very													
stony--	B	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:		10.0-6.7:	10.0-6.7:
		Moist	\| Moist	Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist				
Rosholt	B	10.0-6.7:	10.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		\| Moist											

Table 25.--Soil Moisture Status by Depth--Continued



Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name		January	February	March	April	May	June	July	August	\| September	October	November	December
	,		\|	\|									
189A:													
Siren--------	D	10.0-3.0:	\|0.0-3.0:	10.0-3.0:	10.0-0.5:	\|0.0-1.0:	10.0-2.5:	10.0-2.5:	10.0-6.7:	\|0.0-6.7:	\|0.0-2.0:	\|0.0-1.0:	\|0.0-2.0:
		Moist	Moist	\| Moist	\| Moist	Moist	\| Moist						
		\|3.0-3.5:	\|3.0-3.5:	\|3.0-5.0:	\|0.5-6.7:	\|1.0-6.7:	\|2.5-6.7:	\| 2.5-3.5:	---	---	\|2.0-3.5:	\|1.0-3.5:	\|2.0-3.5:
		Wet	\| Wet	\| Wet	Wet	Wet	Wet	Wet			\| Wet	\| Wet	\| Wet
		\|3.5-6.7:	\|3.5-6.7:	\|5.0-6.7:	---	---	---	\|3.5-6.7:	---	---	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:
		Moist	\| Moist	\| Moist				Moist			\| Moist	Moist	Moist
193A:													
Minocqua-----	\| B/D	10.0-2.0:	10.0-2.5:	10.0-1.0:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-2.0:	10.0-2.5:	10.0-1.5:	0.0-0.5:	0.0-6.7:	10.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	Moist	Moist	Moist	Moist	\| Moist	Wet	Moist
		\|2.0-6.7:	\| 2.5-6.7:	\|1.0-6.7:	---	---	\|1.0-6.7:	\| 2.0-6.7:	\|2.5-6.7:	\|1.5-6.7:	\|0.5-6.7:	---	\|0.5-6.7:
		Wet	Wet	Wet			Wet	Wet	Wet	Wet	\| Wet		Wet
337A:													
Plover------	C						10.0-2.5:			10.0-5.0:			
		Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist					
		\|2.5-3.0:	\|2.5-3.5:	\|2.5-5.0:	\|0.5-6.7:	\|1.0-6.7:	\|2.5-6.7:	\| 2.5-6.7:	\|4.0-6.7:	\|5.0-6.7:	\|2.0-2.5:	\|1.0-2.5:	\|2.0-3.0:
		Wet	\| Wet	\| Wet	\| Wet	Wet	\| Wet						
		\|3.0-6.7:	\| 3.5-6.7:	\|5.0-6.7:	---	---	---	---	---	,	\|2.5-5.0:	\|2.5-5.5:	\|3.0-6.0:
		\| Moist	\| Moist	\| Moist							\| Moist	Moist	\| Moist
		---	\| ---	--	---	-	-	--	--	---	\| 5.0-6.7:	\|5.5-6.7:	\|6.0-6.7:
			,								\| Wet	Wet	Wet
368B:													
Mahtomedi----	\| A	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7 :	\|0.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Dry	\| Dry	Moist	\| Moist	Moist	Moist
		--	\| ---	-	---	--	---	\|1.0-6.7:	\|1.5-6.7:	---	--	---	---
								Moist	\| Moist				
				\|									
Cress--------	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist						
368C:													
Mahtomedi----	A	\|0.0-6.7 :	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	\|0.0-1.5:	10.0-6.7:	10.0-6.7:		10.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Dry	\| Dry	\| Moist	\| Moist	\| Moist	Moist
		---	---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	Moist				
Cress--------	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist				


Map symbol   and   soil name	$\begin{aligned} & \text { \| Hydro-\| } \\ & \mid \text { logic } \\ & \text { \| group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
				\|									
368D:													
Mahtomedi----	\| A	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	10.0-6.7 :	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:
			Moist	\| Moist	Moist	Moist	Moist	\| Dry	\| Dry	\| Moist	Moist	\| Moist	\| Moist
		---	-		---	---	--	\|1.0-6.7:	\|1.5-6.7:	\| ---	\| ---	\| ---	\| ---
								Moist	\| Moist				
		\|0.0-6.7:	\|0.0-6.7:										
Cress	A			\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	\| Moist	Moist	Moist	Moist
Mahtomedi----	A	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	10.0-6.7:	0.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	\| Moist	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	\| Moist	\| Moist	Moist	\| Dry	Dry	Moist	Moist	Moist	Moist
			---	\| ---	---	---	---	$\begin{gathered} \mid 1.0-6.7: \\ \mid \text { Moist } \end{gathered}$	$\left\lvert\, \begin{aligned} & \mid 1.5-6.7: \\ & \mid \text { Moist } \end{aligned}\right.$	---	\| ---	---	\| ---
		\|0.0-6.7:											
Cress-------	- A		10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	0.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$
		\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist	
380B:													
Cress	A	10.0-6.7:	0.0-6.7:	0.0-6.7:	10.0-6.7:	0.0-6.7:	\|0.0-6.7 :	\|0.0-6.7:	\|0.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	10.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$
		\| Moist		\| Moist									
Rosholt------	B	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	$0.0-6.7:$	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		\| Moist	Moist	Moist	\| Moist								
380C:													
Cress-	A	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:		
		Moist	\| Moist	Moist									
Rosholt	B	10.0-6.7:	10.0-6.7 :	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist
380D:													
Cress--	A	10.0-6.7:	10.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	
		\| Moist	Moist	\| Moist									
Rosholt-	B	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	0.0-6.7 :	10.0-6.7:
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	Moist
383B:													
Mahtomedi--	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	
		\| Moist	\| Dry	\| Dry	\| Moist	\| Moist	Moist	\| Moist					
		-	-	\| ---	-	-	---	\|1.0-6.7:	\|1.5-6.7:	\| ---	\| ---	-	--
				\|				Moist	Moist				

Table 25.--Soil Moisture Status by Depth--Continued


Map symbol   and   soil name	$\begin{aligned} & \text { \| Hydro-\| } \\ & \text { \|logic } \\ & \text { \| group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|	\|									
396B:													
Grayling-	A	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$		\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:
				\| Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	Moist	Moist	\| Moist
		---	\| Moist	\| ---	---	---	---	0.0-6.7:		---	\| ---	---	---
				\|				Moist	\|1.5-6.7:				
Perchlake---	\| B	10.0-3.0:	10.0-4.0:	10.0-2.5:	10.0-0.5:	10.0-1.0:	10.0-2.5:	10.0-3.5:	10.0-4.0:	10.0-3.0:	\|0.0-2.0:		
		Moist	\| Moist	Moist	\| Moist								
		3.0-6.7:	\| $4.0-6.7$ Wet	\| 2.5-6.7:	\|0.5-6.7:	\|1.0-6.7:	\| 2.5-6.7:	\|3.5-6.7:	\|4.0-6.7:	\|3.0-6.7:	\|2.0-6.7:	2.0-6.7:	\|2.0-6.7:
				\| Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet
399B:													
Grayling----	A	0.0-6.7:	10.0-6.7:	0.0-6.7:	0.0-6.7:	10.0-6.7:	0.0-6.7:	0.0-1.0:	$0.0-1.5:$	0.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	0.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \text { Moist } \end{aligned}$
		Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist	\| Dry	\| Dry	\| Moist		\| 0.0-6.7:	
		---	\| ---	\| ---	---	---	---	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \text { \|1.5-6.7: } \\ & \mid \text { Moist } \end{aligned}$	\| ---	\|r--	---	Moist
399C:													
Grayling-	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:		10.0-6.7:	\|0.0-6.7 :
		$\begin{array}{\|c} \text { Moist } \\ \text {--- } \end{array}$			\| Moist	\| Moist	\| Moist	\| Dry	\| Dry	\| Moist	\| Moist	\| Moist	\| Moist
			$\|$Moist   - -	,	---	---	---	\|0.0-6.7:	$\begin{aligned} & \mid 1.5-6.7: \\ & \text { Moist } \end{aligned}$	---	---	---	---
								\| Moist					
				\|									
399D:													
Grayling-	A	10.0-6.7:	10.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-6.7:	$\left\lvert\, \begin{gathered} \text { 0.0-6.7: } \\ \mid \text { Moist } \end{gathered}\right.$	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		\| Moist		\| Dry	\| Dry	\| Moist	Moist	Moist	Moist				
		---	---	---	---	---	--	\|0.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	Moist				
406A :													
Loxley-	A/D	10.0-1.0:	10.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	10.0-0.5:	10.0-0.5:	10.0-6.7:	0.0-6.7:	10.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	Wet	\| Moist	\| Moist	\| Moist	Wet	Wet	\| Moist
		1.0-6.7:	\|1.0-6.7:	\|0.5-6.7:	---	-	---	10.5-6.7:	\|0.5-6.7:	10.5-6.7:	\| ---	--	\|0.5-6.7:
		Wet	\| Wet	\| Wet				Wet	\| Wet	\| Wet			\| Wet
407A:													
Seelyeville	A/D	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:			
		Wet	\| Wet	\| Wet	Wet	\| Wet	Wet	Wet	Wet	\| Wet	\| Wet	\| Wet	Wet
Markey----	A/D	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:		
		Wet	\| Wet										
410A:													
Seelyeville-	A/D	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	
		Wet	\| Wet	\| Wet	\| Wet	\| Wet							

Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \mid \text { Hydro-\| } \\ & \mid \text { logic } \\ & \text { \|group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|						\|				
426B:													
Mahtomedi----	A	$\begin{gathered} \text { 0.0-6.7: } \\ \text { Moist } \end{gathered}$	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
			Moist	\| Moist	Moist	Moist	\| Moist	Dry	\| Dry	Moist	\| Moist	Moist	Moist
		---	\| ---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	\| Moist				
Menahga-----	A	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	0.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	\|0.0-6.7:
		Moist	$\left\lvert\, \begin{array}{r}\text { Moist } \\ \text {-- }\end{array}\right.$	Moist	\| Moist	Moist	Moist	\| Dry				Moist	Moist
		---		---	-	---	---	\|1.0-6.7:	\|1.5-6.7:	Moist	---		---
								\| Moist	\| Moist	---		\| ---	
426C:													
Emmert-------	A	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	0.0-6.7:
		Moist ---	Moist---	\| Moist	\| Moist	Moist	\| Moist	$\begin{gathered} \text { Dry } \\ 1.0-6.7: \end{gathered}$	$\begin{aligned} & \text { Dry } \\ & 1.5-6.7: \end{aligned}$	Moist	\| Moist	Moist	\| Moist
				\| ---		---	\| ---			\| ---	---	---	---
								Moist	\| Moist				
Mahtomedi----	A	10.0-6.7:	$\left\lvert\, \begin{aligned} & \text { \| } \\ & \mid \text { Moist }\end{aligned}\right.$	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:
		\| Moist		\| Moist	\| Moist	Moist	Moist	$\begin{gathered} \text { Dry } \\ 1.0-6.7: \end{gathered}$	$\begin{aligned} & \text { \| Dry } \\ & 1.5-6.7: \end{aligned}$	Moist	\| Moist	Moist	Moist
			Moist ---	,	---	---	---				\| ---	---	---
								\| Moist	\| Moist				
Menahga-----	- A	10.0-6.7:	10.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-1.0:	0.0-1.5:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	$\begin{array}{\|r\|} \mid r o i s t \\ --- \end{array}$	$\begin{array}{\|c} \text { \| Moist } \\ ---\mid \end{array}$	\| Moist	$\begin{array}{\|r\|} \text { \| Moist } \\ \text { - } \end{array}$	$\begin{array}{\|c} \text { Moist } \\ \text {-- } \end{array}$	$\begin{gathered} \mid \text { Dry } \\ \mid 1.0-6.7: \\ \text { Moist } \end{gathered}$	$\begin{aligned} & \mid \text { Dry } \\ & \mid 1.5-6.7: \\ & \mid \text { Moist } \end{aligned}$		Moist   ---	\| Moist	Moist
										Moist ---		---	---
426D:													
Emmert-	A	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	0.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	\|0.0-6.7:   Moist	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{gathered} \text { \|0.0-6.7: } \\ \mid \text { Moist } \end{gathered}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$
						Moist	Moist	\| Dry	\| Dry				
		---	\| ---	\| ---	\| ---	---	---	\|1.0-6.7:	\|1.5-6.7:		\| ---	--	-
								\| Moist	\| Moist				
Mahtomedi	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	Moist	Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	Moist	Moist	Moist
		---	\| ---	---	---	---	- --	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								\| Moist	\| Moist				
Menahga-	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	\| Moist	Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	Moist	Moist	Moist
		---	\| ---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	\| ---	---	---
			\|					Moist	Moist				

Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\mid$ \|Hydro-   $\mid$   $\left\|\begin{array}{l}\text { logic } \\ \text { \|group }\end{array}\right\|$	January	February	March	April	May	June	July	August	\| September	October	November	December
				\|									
430A:													
Freya-------	-	10.0-2.5:	10.0-2.5:	10.0-2.5:	10.0-0.5:	\|0.0-1.0:	10.0-2.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-2.5:	10.0-2.5:	10.0-2.5:
		Moist	Moist	\| Moist	\| Moist	Moist	Moist						
		\|2.5-4.5:	\| 2.5-4.5:	\|2.5-4.5:	\|0.5-4.5:	\|1.0-4.5:	\|2.5-4.5:	---	---	---	$2.5-3.5:$	\|2.5-4.5:	\| 2.5-4.5:
		Wet	\| Wet	\| Wet	\| Wet	\| Wet	Wet				\| Wet	\| Wet	\| Wet
		\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	---	---	---	\|3.5-6.7:	\|4.5-6.7:	\|4.5-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist				\| Moist	Moist	Moist
439B:													
Graycalm----	\| A	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist			Moist	Moist	Moist	Moist
		---	\|--	--	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---		
								\| Moist	\| Moist				
Menahga-----	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist	Dry	Dry	Moist	Moist	Moist	Moist
		\| ---	,	\| ---	---	- --	---	\|1.0-6.7:	\|1.5-6.7:	---		,	,
								Moist	\| Moist				
$439 \mathrm{C}:$													
Graycalm-----	A	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	\| Moist	Moist	Moist
		---	\| ---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	--	---	---	---
								Moist	Moist				
Menahga-----	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist		\| Dry	Moist	\| Moist	Moist	Moist
		---	---	--	---	---	-	\|1.0-6.7:	\|1.5-6.7:	---		---	---
								Moist	\| Moist				
439D:													
Graycalm----	A	\|0.0-6.7 :	10.0-6.7:	10.0-6.7:		\|0.0-6.7:	10.0-6.7:	10.0-1.0:	\|0.0-1.5:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:
		Moist	\| Moist	Dry	Dry	\| Moist	\| Moist	\| Moist	Moist				
		--	---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	\| Moist				
Menahga-----	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	Moist	Moist	Moist
		---	\| ---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	\| Moist				
				1									


Map symbol   and   soil name	Hydrologic group	January	February	March	April	May	June	July	August	September	October	November	December
				\|			\|						
442C:													
Haugen------	B	0.0-6.7Moist	10.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-4.0:	10.0-4.5:
			Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist	\| Moist
		Moist	---	\|2.0-6.0:	\| 2.0-6.0:	\|3.0-6.0:	\| 4.5-6.0:	---	---	---	---	\|4.0-6.0:	\|4.5-6.0:
				\| Wet	Wet	Wet	Wet					\| Wet	\| Wet
		---	---	\|6.0-6.7:	$\mid$ \|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	---	6.0-6.7:   Moist	$\begin{aligned} & \mid 6.0-6.7: \\ & \mid \text { Moist } \end{aligned}$
						Moist	\| Moist						
										10.0-0.5:		0.0-6.7:	
Greenwood-	A/D	0.0-1.0:	10.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	10.0-0.5:				
		Moist	Moist	\| Moist	Wet	Wet	\| Wet	$\begin{aligned} & \text { Moist } \\ & \text { \|0.5-6.7 } \end{aligned}$	$\begin{aligned} & \text { Moist } \\ & \mid 0.5-6.7 \text { : } \end{aligned}$	\| Moist	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	Moist
		1.0-6.7:	\|1.0-6.7:	\| 0.5-6.7:						\|0.5-6.7:	---	---	\|0.5-6.7:
		Wet	\| Wet					\| Wet	Wet	\| Wet			Wet
443D:													
Amery	B	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	0.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	\| Moist
Greenwood	A/D	0.0-1.0:	0.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	0.0-0.5:	10.0-0.5:	10.0-6.7:	0.0-6.7:	10.0-0.5:
		Moist	Moist	Moist	Wet	Wet	Wet	Moist	Moist	Moist	Wet	Wet	\| Moist
		1.0-6.7:	\|1.0-6.7:	\|0.5-6.7:	---	---	\| ---	\|0.5-6.7:	\|0.5-6.7:	\|0.5-6.7:	---		\|0.5-6.7:
		\| Wet	\| Wet	\| Wet				Wet	Wet	Wet			Wet
459A:													
Loxley	A/D	0.0-1.0:	10.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-0.5:	10.0-0.5:	10.0-0.5:	10.0-6.7:	\|0.0-6.7:	0.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	Wet	Moist	\| Moist	\| Moist	Wet	Wet	\| Moist
		1.0-6.7:	\|1.0-6.7:	10.5-6.7:	-	--	--	10.5-6.7:	10.5-6.7:	\|0.5-6.7:	---	---	10.5-6.7:
		Wet	\| Wet	\| Wet				Wet	\| Wet	Wet			Wet
Daisybay-	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Wet	\| Wet	\| Wet	Wet	Wet	\| Wet	Wet	\| Wet	Wet	Wet	\| Wet	\| Wet
Dawson	A/D	10.0-0.5:	10.0-0.5:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	10.0-0.5:	10.0-0.5:	10.0-6.7:	10.0-6.7:	
		Moist	\| Moist	\| Moist	Wet	\| Wet	\| Wet	\| Moist	\| Moist	\| Moist	Wet	\| Wet	\| Moist
		0.5-6.7:	10.5-6.7:	10.5-6.7:	---	---	\| ---	10.5-6.7:	10.5-6.7:	10.5-6.7:	---	---	10.5-6.7:
		Wet	\| Wet	\| Wet				Wet	Wet	Wet			\| Wet
461A:													
Bowstring-	A/D	10.0-2.0:	10.0-2.5:	10.0-1.0:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-2.0:	10.0-2.5:	10.0-1.5:	10.0-0.5:	10.0-6.7:	10.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	\| Moist	Moist	\| Moist	\| Moist	Moist	Wet	\| Moist
		$\text { \| } 2.0-6.7 \text { : }$	\|2.5-6.7	\|1.0-6.7:	---	-	\|1.0-6.7	\|2.0-6.7	\|2.5-6.7:	\|1.5-6.7:	0.5-6.7:	---	10.5-6.7:
		\| Wet	\| Wet	\| Wet			\| Wet	Wet	Wet	Wet	Wet		Wet
465A:													
Newson-	A/D	0.0-2.0:	10.0-2.5:	10.0-1.0:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-2.0:	10.0-2.5:	10.0-1.5:	10.0-0.5:	10.0-6.7:	
		\| Moist	\| Moist	\| Moist	Wet	\| Wet	\| Moist	\| Wet	\| Moist				
		\|2.0-6.7:	\|2.5-6.7:	\|1.0-6.7:	---	---	\|1.0-6.7:	\|2.0-6.7:	\| 2.5-6.7:	\|1.5-6.7:	0.5-6.7:	\| ---	\|0.5-6.7:
		Wet	Wet	Wet			Wet	Wet	Wet	Wet	Wet		Wet

Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \text { \|Hydro- } \\ & \mid \text { logic } \\ & \mid \text { group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
				\|				\|					
465A:													
Meehan-------	\| B	10.0-3.0:	10.0-4.0:	10.0-2.5:	0.0-0.5:	10.0-1.0:	10.0-2.5:	10.0-3.5:	10.0-4.0:	10.0-3.0:	10.0-2.0:	10.0-2.0:	10.0-2.0:
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist
		\|3.0-6.7:	\|4.0-6.7:	\|2.5-6.7:	\|0.5-6.7:	\|1.0-6.7:	\|2.5-6.7:	\|3.5-6.7:	\|4.0-6.7:	\|3.0-6.7:	2.0-6.7:	\| 2.0-6.7:	\| 2.0-6.7:
		Wet	\| Wet	Wet									
469E:													
Bigisland----	B	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	\| Dry	\| Dry	Moist	Moist	Moist	\| Moist					
					\| ---	---	\| ---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								\| Moist	Moist				
Milaca-------	C	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.5:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:			10.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	\| Moist
		---	\| ---	,	2.0-3.5:	\|2.5-3.5:	\| ---	\| ---	---	---	---	\| 2.5-3.5:	\| ---
					\| Wet	\| Wet						\| Wet	
				\| ---	\|3.5-6.7:	\| 3.5-6.7:	\| ---	\| ---	---	---	---	\|3.5-6.7:	---
					\| Moist	Moist						Moist	
Dairyland----	C	10.0-4.0:	10.0-4.0:	10.0-3.5:	10.0-2.0:	10.0-2.5:	10.0-4.0:	10.0-6.7:	10.0-6.7:	10.0-4.0:	10.0-3.5:	10.0-2.5:	10.0-3.0:
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist
		4.0-4.5:	\|4.0-4.5:	\|3.5-4.5:	\| 2.0-4.5:	\| 2.5-4.5:	\|4.0-4.5:	\| ---	---	\|4.0-4.5:	\|3.5-4.5:	\| 2.5-4.5:	\|3.0-4.5:
		Wet	Wet	\| Wet	\| Wet	\| Wet	\| Wet			\| Wet	Wet	\| Wet	\| Wet
		4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	- --	---	\|4.5-6.7:	4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:
		Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	\|		Moist	Moist	Moist	\| Moist
Emmert------	A	10.0-6.7:	10.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist	\| Dry	\| Dry	Moist	Moist	Moist	\| Moist
		---	---	---	--	--	---	\|1.0-6.7	\|1.5-6.7:	---	---		
								\| Moist	\| Moist				
471C:													
Dairyland----	C	10.0-4.0:	10.0-4.0:	10.0-3.5:	10.0-2.0:	10.0-2.5:	10.0-4.0:	\|0.0-6.7:	10.0-6.7:	\|0.0-4.0:	10.0-3.5:	0.0-2.5:	10.0-3.0:
		Moist	\| Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	Moist	\| Moist	Moist	\| Moist	\| Moist
		4.0-4.5:	\|4.0-4.5:	\|3.5-4.5:	\|2.0-4.5:	\|2.5-4.5:	4.0-4.5:	\| ---	--	\|4.0-4.5:	\|3.5-4.5:	$2.5-4.5:$	\|3.0-4.5:
		Wet	\| Wet			\| Wet	Wet	\| Wet	\| Wet				
		\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\| 4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	--	--	\| 4.5-6.7:	4.5-6.7:	\|4.5-6.7:	\|4.5-6.7 :
		Moist	Moist	\| Moist	\| Moist	Moist	Moist			Moist	Moist	Moist	Moist
Emmert------	A	\|0.0-6.7	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Dry	\| Dry	Moist	Moist	Moist	Moist
		---	---	---	---	---	---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
					\|			\| Moist	Moist				

Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \text { \| Hydro-\| } \\ & \text { \|logic } \\ & \text { \| group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
					\|				\|				
472A:													
Rockmarsh----	D	10.0-2.5:	10.0-2.5:	10.0-1.5:	10.0-0.5:	10.0-1.0:	10.0-3.0:	10.0-6.7:	10.0-6.7:	10.0-3.5:	10.0-2.0:	10.0-1.0:	10.0-1.5:
		Moist	Moist	Moist	\| Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	\| Moist	Moist
		\| 2.5-4.0:	\| 2.5-4.0:	\|1.5-4.0:	\|0.5-4.0:	\|1.0-4.0:	\|3.0-4.0:	\| ---	\| ---	\|3.5-4.0:	\| 2.0-4.0:	\|1.0-4.0:	\|1.5-4.0:
		Wet	\| Wet			\| Wet	\| Wet	\| Wet	\| Wet				
		\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	---	\| ---	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:
		\| Moist			Moist	Moist	Moist	Moist					
Clemens-----	D	10.0-2.0:	10.0-2.0:	10.0-1.5:	10.0-0.5:	10.0-1.5:	10.0-2.0:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-3.0:	10.0-2.0:	10.0-2.0:
		\| Moist	Moist	Moist	Moist	Moist	\| Moist	Moist					
		\|2.0-6.7:	\|2.0-6.7:	\|1.5-6.7:	\|0.5-6.7:	\|1.5-6.7:	\|2.0-6.7:	\|2.0-6.7:	\|2.0-6.7:	\|3.0-6.7:	\|3.0-6.7:	\|2.0-6.7:	\|2.0-6.7:
		\| Wet											
473A:													
Dairyland----	c	10.0-4.0:	10.0-4.0:	0.0-3.5:	10.0-2.0:	0.0-2.5:	10.0-4.0:	10.0-6.7:	10.0-6.7:	0.0-4.0:	10.0-3.5:	10.0-2.5:	0.0-3.0:
		Moist	Moist	Moist	\| Moist	Moist							
		\|4.0-4.5:	\|4.0-4.5:	\|3.5-4.5:	\|2.0-4.5:	\| 2.5-4.5:	\|4.0-4.5:	---	\| ---	\|4.0-4.5:	\|3.5-4.5:	\|2.5-4.5:	\|3.0-4.5:
		Wet	Wet	\| Wet		\| Wet	Wet			Wet	\| Wet	\| Wet	
		\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	---	---	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7:	\|4.5-6.7 :
		\| Moist	Moist	Moist	\| Moist	Moist	Moist			Moist	Moist	\| Moist	Moist
Skog---------	c	10.0-4.5:	10.0-5.5:	10.0-4.0:	10.0-2.5:	10.0-3.0:		10.0-5.0:	10.0-5.5:				
		\| Moist	Moist	\| Moist	\| Moist	Moist							
		\|4.5-6.7:	\|5.5-6.7:	\|4.0-6.7:	\| 2.5-6.7:	\|3.0-6.7:	\|4.5-6.7:	\|5.0-6.7:	\|5.5-6.7:	\|4.5-6.7:	\|4.0-6.7:	\|3.5-6.7:	\|4.0-6.7:
		\| Wet	\| Wet	Wet	\| Wet	\| Wet	Wet	\| Wet					
484A:													
Greenwood----	A/D	10.0-1.0:	\|0.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	10.0-0.5:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	Wet	\| Moist	\| Moist	\| Moist	Wet	\| Wet	\| Moist
		\|1.0-6.7:	\|1.0-6.7:	10.5-6.7:	-		---	\|0.5-6.7:	10.5-6.7:	10.5-6.7:	---		10.5-6.7:
		Wet	\| Wet	\| Wet				Wet	Wet	Wet			Wet
Beseman------	A/D	10.0-1.0:	10.0-1.0:	10.0-0.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-0.5:	10.0-0.5:	\|0.0-0.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-0.5:
		Moist	Moist	Moist	Wet	Wet	Wet	Moist	\| Moist	Moist	\| Wet	\| Wet	\| Moist
		\|1.0-6.7:	\|1.0-6.7:	\|0.5-6.7:	\| ---	\| ---	---	10.5-6.7:	10.5-6.7:	\|0.5-6.7:	---		\|0.5-6.7:
		Wet	Wet	Wet				Wet	Wet	Wet			Wet
485C:													
Lupton------	D	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:
		Wet	Wet	Wet	\| Wet	Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet	Wet
Tawas-------	D	\|0.0-6.7:	0.0-6.7:	$10.0-6.7:$	10.0-6.7:	0.0-6.7:	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	0.0-6.7:	10.0-6.7:
		\| Wet	Wet	\| Wet	Wet	\| Wet	\| Wet						

Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued


Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	\|Hydrologic group	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|			\|	\|						
521A:													
Dody--------	C/D	10.0-0.5:	\|0.0-1.5:	10.0-4.0:	10.0-4.0:	10.0-4.0:	\|0.0-1.0:	10.0-2.0:	10.0-2.5:	10.0-2.5:	10.0-0.5:	0.0-4.0:	\|0.0-4.0:
		Moist	\| Moist	\| Wet	Wet	Wet	\| Moist	Moist	Moist	\| Moist	Moist	Wet	\| Wet
		\|0.5-4.0:	\|1.5-4.0:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|1.0-4.0:	\| 2.0-4.0:	\| 2.5-4.0:	\| 2.5-4.0:	\|0.5-4.0:	\|4.0-6.7:	\|4.0-6.7:
		Wet	\| Wet	Moist	Moist	Moist	\| Wet	Wet	Wet	\| Wet	Wet	Moist	Moist
		\|4.0-6.7:	\|4.0-6.7:	\| ---	---	\| ---	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	---	--
		\| Moist	\| Moist				\| Moist	Moist	Moist	Moist	Moist		
523A:													
Nokasippi----	$B / D$	\|0.0-1.5:	\|0.0-1.5:	\|0.0-1.0:	10.0-3.5:	10.0-3.5:	\|0.0-1.5:	10.0-3.0:	10.0-6.7:	\|0.0-1.5:	\|0.0-1.0:	0.0-6.7:	\|0.0-0.5:
		Moist	\| Moist	Moist	Wet	Wet	\| Moist	Moist	Moist	\| Moist	Moist	Wet	\| Moist
		1.5-3.5:	\|1.5-3.5:	\|1.0-3.5:	\| 3.5-6.7:	\|3.5-6.7:	\|1.5-3.5:	\|3.0-3.5:	---	\|1.5-3.5:	\|1.0-3.5:	---	10.5-3.5:
		\| Wet	\| Wet	\| Wet	\| Moist	\| Moist	\| Wet	\| Wet		\| Wet	\| Wet		\| Wet
		\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	-	---	\|3.5-6.7:	\|3.5-6.7:	---	\|3.5-6.7:	\| 3.5-6.7:	---	\|3.5-6.7:
		\| Moist	\| Moist	\| Moist			\| Moist	\| Moist		\| Moist	\| Moist		Moist
529B:													
Perida------	B	10.0-6.7:	10.0-6.7:	10.0-5.5:	10.0-3.5:	10.0-5.5:	10.0-5.5:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	Dry	Dry	Moist	Moist	Moist	\| Moist
		\| ---		\|5.5-6.0:	\|3.5-6.0:	\|5.5-6.0:	\|5.5-6.0:	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
				\| Wet	Wet	Wet		Moist	\| Moist				
		\| ---	-	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:		---	- --	---	---	\| ---
				Moist	Moist	Moist	\| Moist						
531A:													
Stengel------	B/D	10.0-2.0:	10.0-2.0:	\|0.0-1.0:	\|0.0-0.5:	10.0-0.5:	\|0.0-1.5:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-1.5:	0.0-1.5:	\|0.0-2.0:
		\| Moist	Moist	Moist	Moist	\| Moist	\| Moist	\| Moist					
		\|2.0-6.0:	\|2.0-6.0:	\|1.0-6.0:	\|0.5-6.0:	10.5-6.0:	\|1.5-6.0:	---	---	- --	\|1.5-6.0:	\|1.5-6.0:	\|2.0-6.0:
		\| Wet				\| Wet	\| Wet	\| Wet					
		\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:
		\| Moist				\| Moist	Moist	\| Moist					
542B:													
Haugen, verystony------													
	B	10.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	\|0.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-4.0:	\|0.0-4.5:
		\| Moist	Moist	\| Moist	Moist	Moist	\| Moist	\| Moist					
		---	---	\|2.0-6.0:	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	---	--	---	---	\|4.0-6.0:	$\mid 4.5-6.0:$
				\| Wet	\| Wet	\| Wet	\| Wet					\| Wet	\| Wet
		-	-	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	---	6.0-6.7:	\|6.0-6.7:
				Moist	\| Moist	\| Moist	\| Moist					Moist	Moist
Haugen-------	B	10.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-4.0:	\|0.0-4.5:
		\| Moist	\| Moist	Moist	\| Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	\| Moist
		\| ---	---	\|2.0-6.0:	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	--	---	---	--	\|4.0-6.0:	\|4.5-6.0:
				\| Wet	\| Wet	\| Wet	\| Wet					\| Wet	\| Wet
		\| ---	\| ---	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	-	---	--	---	6.0-6.7:	\|6.0-6.7
			\|	Moist	Moist	Moist	\| Moist			\|		Moist	Moist

Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \mid \text { Hydro-\| } \\ & \left\lvert\, \begin{array}{l} \text { logic } \\ \mid \text { group } \end{array}\right. \\ & \hline \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
				\|	\|		\|	\|					
542C:													
Haugen, verystony------													
	B	\| Morist	$\begin{gathered} \mid 0.0-6.7: \\ \text { Moist } \end{gathered}$	10.0-2.0:	10.0-2.0:	10.0-3.0:	\|0.0-4.5:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	0.0-6.7:	\|0.0-4.0:	\|0.0-4.5:
				\| Moist	\| Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist	\| Moist
		---	\| Moist	\| 2.0-6.0:	\|2.0-6.0:	\|3.0-6.0:	\|4.5-6.0:	---	---		---	\|4.0-6.0:	\|4.5-6.0:
					\| Wet	Wet	Wet			---		\| Wet	\| Wet
			-	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:				- -	\|6.0-6.7:	\|6.0-6.7:
				\| Moist	\| Moist	Moist	Moist					Moist	\| Moist
				0.0-2.0:	\|0.0-2.0:			0.0-6.7:	\|0.0-6.7:	1			
Haugen------	B \|	\|0.0-6.7:	10.0-6.7:			\|0.0-3.0:	\|0.0-4.5:			$\begin{gathered} \text { \|0.0-6.7: } \\ \text { Moist } \end{gathered}$		10.0-4.0:	
		Moist	Moist	\| Moist	\| Moist	\| Moist	\| Moist		$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$		$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$		$\begin{aligned} & \mid 0.0-4.5: \\ & \mid \text { Moist } \end{aligned}$
			\| ---	$\begin{aligned} & \text { \| } 2.0-6.0: \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \mid 2.0-6.0: \\ & \mid \text { Wet } \end{aligned}$	\|3.0-6.0:	\|4.5-6.0:			\| Moist	Moist	\|4.0-6.0:	
		---				\| Wet	\| Wet	\|		---	-	\| Wet	$\begin{aligned} & \text { \|4.5-6.0: } \\ & \mid \text { Wet } \end{aligned}$
		---	---	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	---	6.0-6.7:	$\begin{aligned} & \text { Wet } \\ & \text { \|6.0-6.7: } \end{aligned}$
				\| Moist	\| Moist	\| Moist	\| Moist					\| Moist	\|6.0-6.7:
544F:													
Menahga-	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	0.0-6.7:	0.0-6.7:	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \text { Moist } \end{aligned}$
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Dry	\| Dry	Moist		Moist	
		,	,	,	\| ---	---	\| ---	\|1.0-6.7:	$\begin{gathered} \text { \|1.5-6.7: } \\ \text { Moist } \end{gathered}$		---	---	$\begin{array}{\|c} \text { Moist } \\ \text {--- } \end{array}$
								\| Moist		---			
Mahtomedi----	A	10.0-6.7:		10.0-6.7:	10.0-6.7:	10.0-6.7:		0.0-1.0:	10.0-1.5:	10.0-6.7:	\|0.0-6.7 :	\|0.0-6.7:	$\begin{aligned} & \mid 0.0-6.7: \\ & \text { Moist } \end{aligned}$
		Moist	\| Moist		\| Moist	\| Moist	\| Moist	\| Dry		Moist	Moist	Moist	
				\| ---	\| ---	---	-	\|1.0-6.7 :	\|1.5-6.7:	---	---	---	---
								\| Moist	\| Moist				
553B:								1					
Branstad-	c	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-2.0:	\|0.0-2.0:	10.0-3.0:	\|0.0-4.5:	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-4.0:	10.0-5.5:
		Moist	Moist	Moist	Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist
		\| ---	\| ---	\| ---	\| 2.0-6.7:	\|2.0-6.7:	\|3.0-6.7:	\| 4.5-6.7:	---	---	---	\|4.0-6.7:	\|5.5-6.7:
	1 \|			\|	\| Wet	\| Wet	\| Wet	\| Wet				\| Wet	\| Wet
553C:													
Branstad-	c	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-4.0:	0.0-5.5:
		Moist	\| Moist	Moist	Moist	\| Moist	\| Moist						
		-	\| ---	-	\|2.0-6.7:	\|2.0-6.7:	\|3.0-6.7:	\|4.5-6.7:	--	---	---	\|4.0-6.7 :	\|5.5-6.7:
					\| Wet	\| Wet	\| Wet	\| Wet				Wet	\| Wet
553D:													
Branstad--	C	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.0:	10.0-3.0:	10.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-4.0:	\|0.0-5.5:
		Moist	Moist	Moist	\| Moist	Moist	\| Moist	\| Moist	Moist	\| Moist	Moist	\| Moist	\| Moist
		\| ---	\| ---	\| ---	\| 2.0-6.7:	\|2.0-6.7:	\|3.0-6.7:	\| 4.5-6.7:	- --	---	---	\|4.0-6.7:	\|5.5-6.7:
					\| Wet	Wet	\| Wet	\| Wet				Wet	Wet

Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\mid$ Hydro- $\|l\|$ \|logic group	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|			\|	\|						
555A :													
Fordum---------- \|	D	10.0-2.0:	10.0-2.5:	10.0-1.0:	10.0-6.7:	10.0-6.7:	10.0-1.0:	10.0-2.0:	10.0-2.5:	10.0-1.5:	10.0-0.5:	0.0-6.7:	10.0-0.5:
		Moist	\| Moist	\| Moist	Wet	Wet	\| Moist	Moist	Moist	\| Moist	Moist	Wet	\| Moist
		\| 2.0-6.7:	\|2.5-6.7:	\|1.0-6.7:			\|1.0-6.7:	\|2.0-6.7:	\| 2.5-6.7:	\|1.5-6.7:	\|0.5-6.7:	---	\|0.5-6.7:
		Wet	\| Wet	\| Wet		\|	\| Wet	\| Wet	\| Wet	\| Wet	Wet		\| Wet
557B:													
Shawano--------\|	A	\|0.0-6.7:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-1.0:	0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	0.0-6.7:	\|0.0-6.7:
		Moist	Moist	\| Moist	Moist	Moist	\| Moist	Dry	Dry	Moist	Moist	Moist	Moist
		\| ---	\| ---	\| ---	---	\| ---	\| ---	\|1.0-6.7:	\|1.5-6.7:	---	---	---	---
								Moist	\| Moist				
557C:													
Shawano--------\|	A	10.0-6.7:	10.0-6.7	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-1.0:	0.0-1.5:	10.0-6.7:	0.0-6.7:	0.0-6.7:	10.0-6.7:
		Moist	Moist	Moist	Moist	Moist	Moist	Dry	Dry	Moist	Moist	Moist	Moist
		---	\| ---	---	-	---	\| ---	\|1.0-6.7:	\|1.5-6.7:	---	---	--	---
								Moist	Moist				
557D:													
Shawano--------\|	A							10.0-1.0:	10.0-1.5:				
		Moist	\| Dry	\| Dry	\| Moist	\| Moist	Moist	\| Moist					
		\| ---	\| ---	\| ---	---	\| ---	\| ---	\|1.0-6.7:	\|1.5-6.7:	\| ---	---	---	---
							\|	Moist	Moist				
586A:													
Chelmo---------\|	D	\|0.0-1.5:	\|0.0-1.5:	\|0.0-1.5:	10.0-2.5:	10.0-2.5:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-1.5:	\|0.0-1.0:	10.0-2.5:	\|0.0-0.5:
		\| Moist	\| Moist	\| Moist	\| Wet		\| Moist	Moist	\| Moist	\| Moist	\| Moist	\| Wet	\| Moist
		\|1.5-2.5:	\|1.5-2.5:	\|1.5-2.5:	\|2.5-6.7:	\|2.5-6.7:	\|1.5-2.5:	--	---	\|1.5-2.5:	\|1.0-2.5:	2.5-6.7:	10.5-2.5:
		Wet	\| Wet	\| Wet	Moist	Moist	\| Wet			\| Wet	Wet	Moist	\| Wet
		\|2.5-6.7:	\|2.5-6.7:	\|2.5-6.7:	-		\|2.5-6.7:	---	---	\|2.5-6.7:	\| 2.5-6.7:	---	\|2.5-6.7:
		Moist	Moist	\| Moist			Moist			Moist	Moist		Moist
600A:													
Haplosaprists---\|	D		10.0-6.7:	10.0-6.0:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:		
		Wet	\| Wet										
Psammaquents----	D	10.0-6.7:	10.0-6.7:	10.0-6.0:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:	10.0-6.7:
		\| Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet					
615B:													
Cress----------- \|	A	\|0.0-6.7:					10.0-6.7:				\|0.0-6.7:		10.0-6.7:
		\| Moist	Moist	\| Moist	\| Moist	Moist	\| Moist						
615C:Cress---------	A												
		10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	
		Moist	Moist	\| Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist	Moist	\| Moist	Moist


Map symbol and   soil name	$\begin{aligned} & \text { \| Hydro- } \\ & \text { \| logic } \\ & \text { \| group } \end{aligned}$	January	February	March	April	May	June	July	August	September	October	November	December	
			\|				\|							
$\begin{aligned} & \text { 615D: } \\ & \text { Cress } \end{aligned}$		$0.0-6.7:$   Moist	$\begin{aligned} & \text { \|0.0-6.7: } \\ & \mid \text { Moist } \end{aligned}$			10.0-6.7:	\|							
	A			$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Moist } \end{aligned}$		10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	
						Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	Moist	
620C:	D	0.0-2.5:	\|0.0-2.5:	\|0.0-2.5:	10.0-2.5:	10.0-2.5:	\|0.0-2.5:	\|0.0-2.5:	\|0.0-2.5:	\|0.0-2.5:	10.0-2.5:	\|0.0-2.5:	10.0-2.5:	
Lundeen-----														
		Moist	\| Moist	Moist	Moist	Moist	\| Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	
		$\begin{aligned} & \mid 0.0-1.0: \\ & \mid \text { Moist } \end{aligned}$	10.0-1.0:		10.0-1.0:	0.0-1.0:		10.0-1.0:	0.0-1.0:					
Haustrup----	D						10.0-1.0:			0.0-1.0:	0.0-1.0:	10.0-1.0:	0.0-1.0:	
			Moist	\| Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	\| Moist	
Rock outcrop.			\|											
621A:														
Bjorkland----	D	10.0-3.5:	10.0-3.5:	10.0-4.5:	10.0-6.7:	10.0-6.7:	10.0-4.5:	10.0-3.5:	10.0-3.5:	10.0-3.5:	10.0-3.5:	0.0-3.5:	10.0-3.5:	
		Wet	\| Wet	Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet	
		\|3.5-6.7:	\|3.5-6.7:	\|4.5-6.7:	---	-	\|4.5-6.7:	\|3.5-6.7:	\| 3.5-6.7:	\|3.5-6.7:	\| 3.5-6.7:	3.5-6.7:	\|3.5-6.7:	
		Moist	\| Moist	Moist			\| Moist	Moist	Moist	\| Moist	Moist	Moist	\| Moist	
623A:														
Capitola-	B/D			\|0.0-1.0:	10.0-2.5:	10.0-2.5:	0.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-1.5:		\|0.0-2.5:		
		Moist	\| Moist	\| Moist	\| Wet	\| Wet	\| Moist	\| Wet	\| Moist					
	$\mid$ \|	\|1.5-2.5:	\|1.5-2.5:	\|1.0-2.5:	\| 2.5-6.7:	\| 2.5-6.7:	\|1.5-2.5:	---	---	\|1.5-2.5:	\|1.0-2.5:	\| 2.5-6.7:	\|0.5-2.5:	
		\| Wet	\| Wet	\| Wet	\| Moist	\| Moist	\| Wet			\| Wet	Wet	Moist	\| Wet	
	$\mid$ \|	\|2.5-6.7:	\|2.5-6.7:	\| 2.5-6.7:	---	\| ---	\| 2.5-6.7:	---	---	\| 2.5-6.7:	\| 2.5-6.7:	---	\| 2.5-6.7:	
	1 \|	\| Moist	\| Moist	\| Moist			\| Moist			\| Moist	Moist		\| Moist	
	\|													
624A:	1 \|													
Ossmer-	c	10.0-3.0:	10.0-4.0:	10.0-2.5:	10.0-0.5:	10.0-1.0:	10.0-2.5:	10.0-3.5:	10.0-4.0:	10.0-3.0:	10.0-2.0:	0.0-2.0:	10.0-2.0:	
		Moist	\| Moist	Moist	Moist	Moist	\| Moist	Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	
		\|3.0-6.7:	\|4.0-6.7:	\|2.5-6.7:	\|0.5-6.7:	\|1.0-6.7:	\| 2.5-6.7:	\|3.5-6.7:	\|4.0-6.7:	\|3.0-6.7:	\|2.0-6.7:	\|2.0-6.7:	\|2.0-6.7:	
	1	Wet	\| Wet	Wet	Wet	Wet	\| Wet	Wet	Wet	\| Wet	Wet	Wet	Wet	
631A:														
Giese-	B/D	10.0-1.5:	10.0-1.5:	10.0-1.0:	10.0-2.5:	10.0-2.5:	10.0-1.5:	10.0-6.7:	10.0-6.7:	10.0-1.5:	10.0-1.0:	10.0-2.5:	\|0.0-1.5:	
		Moist	\| Moist	Moist	Wet	Wet	\| Moist	Moist	Moist	\| Moist	Moist	\| Wet	\| Moist	
		\|1.5-2.5:	\|1.5-2.5:	\|1.0-2.5:	\| 2.5-6.7:	\|2.5-6.7:	\|1.5-2.5:	---	-	\|1.5-2.5:	\|1.0-2.5:	\| 2.5-6.7:	\|1.5-2.5:	
		Wet	\| Wet	\| Wet	Moist	\| Moist	\| Wet			\| Wet	Wet	\| Moist	\| Wet	
	$\mid$	\|2.5-6.7:	\|2.5-6.7:	\| 2.5-6.7:	---	-	\| 2.5-6.7:	---	---	\| 2.5-6.7:	\| 2.5-6.7:	---	\| 2.5-6.7:	
	1	Moist	\| Moist	Moist			\| Moist			Moist	Moist		Moist	
	\|													

Table 25.--Soil Moisture Status by Depth--Continued



Table 25.--Soil Moisture Status by Depth--Continued

Map symbol and   soil name	$\begin{aligned} & \text { \| Hydro- } \\ & \text { \|logic } \\ & \text { \| group } \\ & \hline \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
			\|			\|	\|						
715A:													
Mora--------	\| C	\|0.0-2.5:	\|0.0-2.5:	\|0.0-1.5:	10.0-0.5:	\|0.0-1.0:	10.0-2.5:	\|0.0-6.7:	\|0.0-6.7:	10.0-3.0:	\|0.0-2.0:	\|0.0-1.0:	\|0.0-1.5:
		Moist	\| Moist	Moist									
		\|2.5-3.5:	\|2.5-3.5:	\|1.5-3.5:	\|0.5-3.5:	\|1.0-3.5:	\|2.5-3.5:	---	---	\|3.0-3.5:	\|2.0-3.5:	\|1.0-3.5:	\|1.5-3.5:
		Wet	\| Wet	Wet	Wet	Wet	\| Wet			\| Wet	Wet	Wet	\| Wet
		\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	---	---	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:
		Moist	\| Moist	\| Moist	Moist	Moist	\| Moist			Moist	Moist	Moist	Moist
717B:													
Milaca-------	-	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-2.0:	\|0.0-2.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	10.0-2.5:	\|0.0-6.7:
		Moist	\| Moist	Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	Moist
		\| ---	,	---	\|2.0-3.5:	\|2.5-3.5:	---	--	---	\| ---	---	\|2.5-3.5:	---
					Wet	\| Wet						Wet	
		-	-	-	\|3.5-6.7:	\|3.5-6.7:	\| ---	--	---	---	---	\|3.5-6.7:	---
					Moist	Moist	\|					Moist	
							1						
717C:													
Milaca-------	c	\|0.0-6.7 :	10.0-6.7:	10.0-6.7:	10.0-2.0:	10.0-2.5:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-2.5:	
		Moist	\| Moist	Moist	\| Moist	Moist	\| Moist	\| Moist					
		\| ---	,	---	\|2.0-3.5:	\|2.5-3.5:	\| ---	---	---	\| ---	---	\|2.5-3.5:	\| ---
					\| Wet	\| Wet						\| Wet	
		\| ---	\| ---	---	\|3.5-6.7:	\|3.5-6.7:	\| ---	---	---	---	---	\|3.5-6.7:	\| ---
					Moist	\| Moist	\|					Moist	
							\|						
720F:													
Haustrup----	D	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	\|0.0-1.0:	0.0-1.0:	\|0.0-1.0:
		Moist	\| Moist	Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	Moist	\| Moist	\| Moist
Lundeen-------	D	\|0.0-2.5:	10.0-2.5:	10.0-2.5:	10.0-2.5:	10.0-2.5:		10.0-2.5:		10.0-2.5:			
		\| Moist											
Rock outcrop.	1 \|	\|	\|				\|						
							\|						
726B:													
Sissabagama--	A	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-2.5:	10.0-3.0:	\|0.0-3.5:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-4.0:	\|0.0-6.7:
		Moist	\| Moist	Moist	Moist	Moist	\| Moist	Dry	\| Dry	Moist	Moist	\| Moist	Moist
		-	-	-	\|2.5-5.0:	\|3.0-6.7:	\|3.5-6.7:	\|1.0-5.5:	\|1.5-6.7:	--	---	\|4.0-4.5:	---
					Wet	Wet	\| Wet	\| Moist	Moist			Wet	
		\| ---	\| ---	---	\| 5.0-6.7:	---	---	\|5.5-6.7:	---	---	---	\|4.5-6.7:	---
			\|		Moist	\|	\|	Wet				\| Moist	



Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \mid \text { Hydro-\| } \\ & \mid \text { logic } \\ & \text { \|group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December
				\|	\|		\|	\|					
812B:													
Mor	C	10.0-2.5:	10.0-2.5:	\|0.0-1.5:	10.0-0.5:	\|0.0-1.0:	\|0.0-2.5:	\|0.0-6.7:	\|0.0-6.7:	10.0-3.0:	10.0-2.0:	\|0.0-1.0:	\|0.0-1.5:
		Moist											
		\|2.5-3.5:	\|2.5-3.5:	\|1.5-3.5:	\|0.5-3.5:	\|1.0-3.5:	\|2.5-3.5:	\| ---	---	\|3.0-3.5:	\|2.0-3.5:	\|1.0-3.5:	\|1.5-3.5:
		Wet	Wet	\| Wet	\| Wet	Wet	\| Wet	\|		Wet	Wet	Wet	Wet
		\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:	\| ---	---	\|3.5-6.7:	\| 3.5-6.7:	\|3.5-6.7:	\|3.5-6.7:
		Moist	Moist	Moist	\| Moist	Moist	Moist			Moist	Moist	Moist	Moist
825A:													
Meehan------	\| ${ }^{\text {B }}$	10.0-3.0:	10.0-4.0:	10.0-2.5:	10.0-0.5:	\|0.0-1.0:	10.0-2.5:	10.0-3.5:	\|0.0-4.0:	10.0-3.0:	10.0-2.0:	\|0.0-2.0:	10.0-2.0:
		Moist	Moist	Moist	\| Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	Moist	\| Moist
		\|3.0-6.7:	\|4.0-6.7:	\| 2.5-6.7:	0.5-6.7:	\|1.0-6.7:	\| 2.5-6.7:	\|3.5-6.7:	\|4.0-6.7:	\|3.0-6.7:	\|2.0-6.7:	\| 2.0-6.7:	\|2.0-6.7:
		Wet											
896A:													
Wurtsmith---	A	10.0-4.0:	10.0-5.0:	10.0-3.5:	10.0-2.0:	\|0.0-2.5:	\|0.0-4.0:	10.0-0.5:	\|0.0-1.0:	10.0-3.5:	\|0.0-2.5:	\|0.0-3.0:	10.0-3.5:
		Moist	\| Dry	Dry	Moist	\| Moist	\| Moist	\| Moist					
		\|4.0-6.0:	\|5.0-6.0:	\|3.5-6.0:	\| 2.0-6.0:	\| 2.5-6.0:	\|4.0-6.7:	\|0.5-4.5:	\|1.0-5.0:	\|3.5-6.7:	\| 2.5-6.7:	\|3.0-6.7:	\|3.5-6.7:
		Wet	Wet	Wet	\| Wet	Wet	Wet	Moist	\| Moist	Wet	Wet	Wet	Wet
		---	---	\| ---	\| ---	---	\| ---	\|4.5-6.7:	\|5.0-6.7:	---	---	---	---
								Wet	Wet				
980A:													
Soderbeck----	D	10.0-2.5:	10.0-2.5:	\|0.0-1.5:	10.0-0.5:	\|0.0-1.0:	10.0-3.0:	\|0.0-6.7:	\|0.0-6.7:	10.0-3.5:	\|0.0-2.0:	\|0.0-1.0:	\|0.0-1.5:
		Moist	Moist	Moist	\| Moist	Moist	Moist	Moist	Moist	\| Moist	\| Moist	Moist	\| Moist
		\|2.5-4.0:	\| 2.5-4.0:	\|1.5-4.0:	\|0.5-4.0:	\|1.0-4.0:	\|3.0-4.0:	\| ---	---	\|3.5-4.0:	\|2.0-4.0:	\|1.0-4.0:	\|1.5-4.0:
		Wet	Wet	\| Wet		Wet				Wet	\| Wet	\| Wet	\| Wet
		4.0-6.7:	\|4.0-6.7	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	---	---	\|4.0-6.7:	\|4.0-6.7:	\|4.0-6.7:	4.0-6.7:
		Moist	Moist	Moist	Moist	Moist	Moist			Moist	Moist	Moist	Moist
1070C:													
Fremstadt----	A				10.0-6.0:		10.0-6.0:	\|0.0-6.0:	\|0.0-1.5:	\|0.0-6.0:	10.0-6.0:		\|0.0-6.0:
		Moist	\| Dry	\| Moist	\| Moist	Moist	Moist						
		-	-	---	---	--	---	---	\|1.5-6.0:	--	---	---	---
									Moist				
Cress-------	A	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	0.0-6.7:
		Moist	Moist	\| Moist	\| Moist	Moist	\| Moist	Moist	Moist	Moist	\| Moist	Moist	Moist
1070D:													
Fremstadt----	A	10.0-6.0:			10.0-6.0:	10.0-6.0:	10.0-6.0:	10.0-6.0:	10.0-1.5:	$10.0-6.0:$			
		Moist	\| Dry	\| Moist	Moist	\| Moist	\| Moist						
		---	\| ---	\| ---	\| ---	---	\| ---	\| ---	\|1.5-6.0:	\| ---	\| ---	\| ---	\| ---
			\|	\|	\|				Moist				
				\|									



Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\begin{aligned} & \mid \text { Hydro-\| } \\ & \mid \text { logic } \\ & \text { \|group } \end{aligned}$	January	February	March	April	May	June	July	August	\| September	October	November	December	
			\|	\|										
3082E:														
Braham-------	\| ${ }^{\text {B }}$	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	\|0.0-6.7:	
		Moist	\| Moist	Moist	Moist	Moist	Moist	\| Dry	\| Dry	Moist	\| Moist	\| Moist	\| Moist	
		---				---	---	1.0-6.7:	\|1.5-6.7:	---	\| ---	---	\| ---	
								Moist	\| Moist					
		$\mid 0.0-6.7 \text { : }$												
Shawano-----	\| A		\|0.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-1.0:	10.0-1.5:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	10.0-6.7:	
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	\| Dry	\| Dry	Moist	\| Moist	\| Moist	\| Moist	
		-		---	---	---	---	1.0-6.7:	\|1.5-6.7:	---	\| ---	\| ---	\| ---	
								Moist	\| Moist					
3114A:														
Saprists-----	- D	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	
		Wet	\| Wet	Wet	\| Wet	\| Wet	Wet	Wet	Wet					
Aquents-----	D	\|0.0-6.7:	$\begin{aligned} & \text { \| 0.0-6.7: } \\ & \text { \| Wet } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \text { \| } 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \text { \| } 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	10.0-6.7:	\|0.0-6.7:	\|0.0-6.7 :	10.0-6.7:	0.0-6.7:	10.0-6.7:	
								\| Wet	\| Wet	\| Wet	\| Wet	Wet	\| Wet	
Aquepts-----	D	$\begin{aligned} & \text { \| } 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	10.0-6.7:	10.0-6.7:	$\begin{aligned} & \text { \| } 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \text { \| 0.0-6.7: } \\ & \mid \text { Wet } \end{aligned}$	$\begin{aligned} & \mid 0.0-6.7: \\ & \mid \text { Wet } \end{aligned}$	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	10.0-6.7:	
			\| Wet	\| Wet				\| Wet	Wet	Wet	\| Wet	\| Wet	\| Wet	
					\| Wet	\| Wet	Wet							
Meehan------	A	10.0-3.0:	0.0-4.0:	10.0-2.5:	$\begin{aligned} & \text { \|0.0-0.5: } \\ & \mid \text { Moist } \end{aligned}$	\|0.0-1.0:	10.0-2.5:	10.0-3.5:	10.0-4.0:	10.0-3.0:		$\begin{aligned} & \mid 0.0-1.0: \\ & \mid \text { Moist } \end{aligned}$		
		$\begin{aligned} & \text { \| Moist } \\ & \text { \|3.0-6.7: } \end{aligned}$	\| Moist			$\begin{aligned} & \text { Moist } \\ & \text { 1.0-6.7: } \end{aligned}$	$\begin{gathered} \text { Moist } \\ \mid 2.5-6.7: \end{gathered}$	$\begin{aligned} & \text { Moist } \\ & \mid 3.5-6.7: \end{aligned}$	$\begin{aligned} & \text { Moist } \\ & \mid 4.0-6.7: \end{aligned}$	$\begin{aligned} & \text { Moist } \\ & \text { \|3.0-6.7 } \end{aligned}$			\| 0.0-2.0:	
			\| 4.0-6.7:	$\begin{aligned} & \text { \|2.5-6.7: } \\ & \mid \text { Wet } \end{aligned}$	0.5-6.7:						$\begin{aligned} & \text { Moist } \\ & \mid 2.0-6.7: \end{aligned}$			
		$\begin{aligned} & \text { \| } 3.0-6.7: \\ & \text { Wet } \end{aligned}$				Wet	Wet	Wet	\| Wet					
3126A:														
Wurtsmith-	A	10.0-4.0:	\|0.0-5.0:	10.0-3.5:	10.0-2.0:	10.0-2.5:	10.0-4.0:	\|0.0-0.5:	10.0-1.0:	\|0.0-4.0:	10.0-3.5:			
		\| Moist	\| Dry	\| Dry	\| Moist	\| Moist	\| Moist	\| Moist						
		\|4.0-6.7:	\| 5.0-6.7:	\|3.5-6.7:	\| 2.0-6.7:	\| 2.5-6.7:	\|4.0-6.7:	\|0.5-4.5:	\|1.0-5.0:	\|4.0-6.7:	\|3.5-6.7:	\|3.0-6.7:	\|3.5-6.7:	
		Wet	\| Wet	\| Wet	Wet	\| Wet	Wet	\| Moist	\| Moist	\| Wet	\| Wet	Wet	\| Wet	
		---	---	---	---	---	--	\|4.5-6.7:	\|5.0-6.7:	\| ---	\| ---	---	\| ---	
								Wet	Wet					
3312B:	\|		\|	\|										
Glendenning,														
very stony-	C	10.0-2.5:	\|0.0-2.5:	10.0-1.5:	10.0-0.5:	\|0.0-1.0:	10.0-3.0:	\|0.0-6.7:	10.0-6.7:	\|0.0-3.5:	10.0-2.0:	\|0.0-1.0:	\|0.0-1.5:	
		\| Moist	\| Moist	\| Moist	\| Moist	Moist	\| Moist							
	$\mid$ \|	2.5-5.5:	\|2.5-5.5:	\|1.5-5.5:	\|0.5-5.5:	\|1.0-5.5:	\|3.0-5.5:	---	---	\|3.5-5.5:	\|2.0-5.5:	\|1.0-5.5:	\|1.5-5.5:	
	$\mid$ \|	Wet	\| Wet	\| Wet	\| Wet	\| Wet				\| Wet				
	$\mid$ \|	\|5.5-6.7:	\|5.5-6.7:	\| 5.5-6.7:	\| 5.5-6.7:	\| 5.5-6.7:	\|5.5-6.7:	--	--	\|5.5-6.7:	\| 5.5-6.7:	\|5.5-6.7:	\|5.5-6.7:	
	\|		Moist	\| Moist	\| Moist	Moist	Moist	Moist			\| Moist	\| Moist	Moist	Moist

Table 25.--Soil Moisture Status by Depth--Continued

| Map symbol <br> and <br> soil name | \|Hydro-| <br> \|logic <br> group | January | February | March | April | May | June | July | August | \|September | October | November | December |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | \| |  |  | \| | \| |  |  |  |  |
| 3312B: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Glendenning-- | C | 10.0-2.5: | \|0.0-2.5: | 0.0-1.5: | 10.0-0.5: | 10.0-1.0: | 10.0-3.0: | 10.0-6.7: | 10.0-6.7: | 10.0-3.5: | 10.0-2.0: | 10.0-1.0: | \|0.0-1.5: |
|  |  | Moist | Moist | Moist | \| Moist | Moist |
|  |  | \|2.5-5.5: | \|2.5-5.5: | \|1.5-5.5: | \|0.5-5.5: | \|1.0-5.5: | \|3.0-5.5: | --- | \| --- | \|3.5-5.5: | \|2.0-5.5: | \|1.0-5.5: | \|1.5-5.5: |
|  |  | \| Wet | \| Wet | Wet | \| Wet | Wet | Wet |  |  | Wet | Wet | Wet | \| Wet |
|  |  | \|5.5-6.7: | \|5.5-6.7: | \|5.5-6.7: | \|5.5-6.7: | \|5.5-6.7: | \| 5.5-6.7: | --- | \| --- | 5.5-6.7: | \|5.5-6.7: | \|5.5-6.7: | \| 5.5-6.7: |
|  |  | Moist | Moist | Moist | \| Moist | Moist | Moist |  |  | Moist | Moist | Moist | Moist |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3336A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fenander----- | B/D | 0.0-1.5: | 10.0-5.5: | 10.0-2.5: | 10.0-6.7: | 10.0-6.7: | 10.0-6.7: | 10.0-2.0: | 10.0-2.0: | 10.0-4.0: | 10.0-1.5: | 10.0-2.5: | 0.0-0.5: |
|  |  | Moist | \| Moist | Wet | Wet | Wet | Wet | \| Moist | \| Moist | \| Moist | Wet | Wet | \| Moist |
|  |  | \|1.5-2.5: | \|5.5-6.7: | \| 2.5-6.7: | - | - | - | \|2.0-6.7: | \|2.0-6.7: | \|4.0-6.7: | \|1.5-4.0: | \|2.5-4.5: | \|0.5-2.5: |
|  |  | \| Wet | \| Wet | \| Moist |  |  |  | Wet | Wet | Wet | Moist | \| Moist | \| Wet |
|  |  | \|2.5-5.0: | --- | --- | - | --- | --- | --- | -- | - | \|4.0-6.7: | \|4.5-6.7 | \| 2.5-4.5: |
|  |  | \| Moist |  |  |  |  |  |  |  |  | \| Wet | Wet | \| Moist |
|  |  | \|5.0-6.7: | \| --- |  | \| --- | --- | --- | --- | --- | --- | \| --- | --- | \| 4.5-6.7: |
|  |  | \| Wet |  |  |  |  |  |  |  |  |  |  | Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3403A: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Loxley------ | A/D | \|0.0-1.0: | \|0.0-1.0: | 10.0-0.5: | 10.0-6.7: | 10.0-6.7: | 10.0-6.7: | 10.0-0.5: | 10.0-0.5: | \|0.0-0.5: | \|0.0-6.7: | 10.0-6.7: | \|0.0-0.5: |
|  |  | Moist | Moist | Moist | Wet | Wet | Wet | Moist | \| Moist | Moist | Wet | Wet | Moist |
|  |  | \|1.0-6.7: | \|1.0-6.7: | \|0.5-6.7: | \| --- | --- | --- | \|0.5-6.7: | \|0.5-6.7: | 10.5-6.7: | --- | --- | \|0.5-6.7: |
|  |  | \| Wet | \| Wet | \| Wet |  |  |  | \| Wet | \| Wet | \| Wet |  |  | \| Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beseman----- | A/D | 0.0-1.0: | 10.0-1.0: | 10.0-0.5: | 10.0-6.7: |  |  | 10.0-0.5: | 10.0-0.5: | 10.0-0.5: |  | 10.0-6.7: |  |
|  |  | \| Moist | \| Moist | \| Moist | \| Wet | \| Wet | \| Wet | \| Moist | \| Moist | \| Moist | \| Wet | \| Wet | \| Moist |
|  |  | \|1.0-6.7: | \|1.0-6.7: | \|0.5-6.7: | \| --- |  | --- | \|0.5-6.7: | \|0.5-6.7: | 10.5-6.7: | --- | --- | \|0.5-6.7: |
|  |  | Wet | Wet | Wet |  |  |  | \| Wet | Wet | Wet |  |  | \| Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dawson------- | A/D | 10.0-0.5: | 10.0-0.5: | 10.0-0.5: |  |  |  | 10.0-0.5: | 10.0-0.5: |  |  |  |  |
|  |  | \| Moist | \| Moist | \| Moist | \| Wet | \| Wet | \| Wet | \| Moist | \| Moist | \| Moist | \| Wet | \| Wet | \| Moist |
|  |  | \|0.5-6.7: | \|0.5-6.7: | \|0.5-6.7: | \| --- | --- | - | \|0.5-6.7: | \|0.5-6.7: | \|0.5-6.7: | --- | --- | \|0.5-6.7: |
|  |  | Wet | Wet | Wet |  |  |  | \| Wet | Wet | Wet |  |  | Wet |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3429B: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lara- | c | 10.0-6.7: | 10.0-6.7: | 10.0-3.0: | 10.0-1.5: | 10.0-3.0: | 10.0-3.5: | 10.0-1.0: | 10.0-1.5: | 10.0-6.7: | 10.0-6.7: | 10.0-6.7: | 10.0-6.7: |
|  |  | Moist | Moist | Moist | \| Moist | Moist | Moist | \| Dry | \| Dry | Moist | Moist | Moist | Moist |
|  |  | \| --- | \| --- | \| 3.0-4.0: | \|1.5-6.7: | \|3.0-5.0: | \|3.5-4.0: | \|1.0-6.7: | \|1.5-6.7: | --- | --- | --- | , |
|  |  |  |  | Wet | Wet | Wet | \| Wet | \| Moist | \| Moist |  |  |  |  |
|  |  | --- | --- | \|4.0-6.7: | --- | \|5.0-6.7: | \|4.0-6.7: | --- | --- | --- | --- | --- | -- |
|  |  |  | \| | Moist | \| | Moist | Moist |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 25.--Soil Moisture Status by Depth--Continued



Table 25.--Soil Moisture Status by Depth--Continued

Map symbol   and   soil name	$\mid$   $\mid$ Hydro-   $\left\|\begin{array}{l}\text { logic } \\ \mid \text { group }\end{array}\right\|$	January	February	March	April	May	June	July	August	\| September	October	November	December	
3629B:				,			\|							
Perida	A	10.0-6.7:	10.0-6.7:	10.0-5.5:	10.0-3.5:	10.0-5.5:	\|0.0-5.5:	\|0.0-1.0:	\|0.0-1.5:	\|0.0-6.7:	10.0-6.7:	\|0.0-6.7:	10.0-6.7:	
		Moist	Moist	\| Moist	Moist	Moist	Moist	Dry	Dry	Moist	Moist	Moist	Moist	
		---	---	\|5.5-6.0:	\|3.5-6.0:	15.5-6.0:	\|5.5-6.0:	\|1.0-6.7	\|1.5-6.7:	---	-	-	---	
				\| Wet	Wet	Wet	\| Wet	Moist	Moist					
		\| ---	-	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	\|6.0-6.7:	---	---	---	---	--	--	
				\| Moist	Moist	\| Moist	\| Moist							
3636B:				\|										
Plainbo-	B						\|0.0-2.5:	\|0.0-1.0:	\|0.0-1.0:					
		Moist	\| Moist	\| Moist	\| Moist	Moist	Moist	Dry	\| Dry	\| Moist	Moist	\| Moist	Moist	
		\| ---	\| ---	\| ---	---	---	\| ---	\|1.0-2.5:	\|1.0-2.5:	\| ---	---	---	\| ---	
								\| Moist	\| Moist					
3636C:				\|			\|							
Plainbo-	B	0.0-2.5:	10.0-2.5:	\|0.0-2.5:	\|0.0-2.5:	10.0-2.5:	10.0-2.5:	10.0-1.0:	10.0-1.0:	10.0-2.5:	10.0-2.5:	\|0.0-2.5:	10.0-2.5:	
		Moist	\| Moist	\| Moist	Moist	Moist	\| Moist	\| Dry	\| Dry	\| Moist	Moist	\| Moist	Moist	
		,	,	,	,		,	1.0-2.5:	\|1.0-2.5:	,			\| ---	
								Moist	Moist					
				\|										
M-w.	1 \|		,	\|										
Miscellaneous	\|			\|	\|									
water				\|										
	\|			\|	\|			\|						
w.	\|			\|	\|			\|						
Water	\|			\|	\|									
				\|										

(See text for definitions of terms used in this table. Absence of an entry indicates that data were not estimated)


Table 26.--Flooding Frequency and Duration--Continued



Table 26.--Flooding Frequency and Duration--Continued



Table 26.--Flooding Frequency and Duration--Continued



Table 26.--Flooding Frequency and Duration--Continued

Map symbol   and   soil name	January	February	March	April	May	\| June	July	August	\| September	October	November	December
soil name												
				\|								
426B:												
Emmert-	\| None											
Mahtomedi-	None	\| None										
		\| None			\| None	None	\| None					
Menahga-------	\| None		\| None	\| None								
426C:	None		\| None	\| None	None	\| None	\| None	None	None	\| None		\| None
Emmert-----		\| None									\| None	
		\| None										
	\| None											\| None
Menahga-------	\| None	\| None	$\mid$ None	\| None	$\mid$ None	$\mid$ None	$\mid$ None	\| None	\| None	\| None	\| None	
												\| None
		\|										
426D:		None	\| None	\|None	\| None	\| None	\| None			\|		None
Emmert   Mahtomedi	\| None							${ }^{\text {\| }}$ None		\| None	\| None	
		\| None	\| None	\|	\| None	\| None	None		\| None			
	None	\| None		\| None				\| None	\| None	\| None	\| None	None
Menahga--------	\| None	None										
430A :												\| None
	\|				\| None							
Freya	None	\| None	\| None	\| None							None	\| None
439B:		\|None	None	\| None	\| None	\| None	\| None					
Graycalm	\| None							\| None				
		\|										
Menahga----	None	\| None										
439C:												
Graycalm-	\| None											
Menahga--	\| None											
439D:												
Graycalm-	\| None											
Menahga-	\| None											
442C:												
Haugen-----	\| None											
Greenwood--	\| None											



Table 26.--Flooding Frequency and Duration--Continued

$\begin{gathered} \text { Map symbol } \\ \text { and } \\ \text { soil name } \end{gathered}$	January	February	March	April	May	June	July	August	\|September	October	November	December	
					\|				\|				
473A:													
Dairyland---	\| None	None	\| None	\| None	None	\| None	None						
	None	\| None	None	\|Rare   Brief	\| None	\| None	None	\| None	\| None	None	\| None	None	
Skog-													
484A:	\| None		\| None	None	\| None	\| None							
Greenwood		\| None											
	\| None	\| None	\| None	\| None	$\mid$ None	\| None	$\mid$ None	\| None	\| None	$\mid$ None	\| None		
Beseman												None	
					\| None		\| None						
485C:	None		\| None									None	
Lupton-		\| None											
	\| None	\| None	\| None	$\mid$ \| ${ }^{\text {None }}$	\| None	$\mid$ None	$\mid$ None	$\mid$ None	\| None	None	\| None		
Tawas												None	
495B:													
				None	None	None	None		$\rceil$			None	
Karlsborg	\| None	\| None						\| None	\| None		\| None		
			\| None	\|	\| None	\|	None			\| None			
Grettum-----	\| None	\| None	\| None	\| None		\| None		\|None	\| None	None			
					\| None		\| None						
	\| ${ }^{\text {\| None }}$	\| None	\| None	\| None				\| None	\| None	\| None	\| None	None	
495C:													
Karlsborg--	\| None	None											
Grettum-	\| None	None											
Perida----	\| None	None											
495D													
Karlsborg--	\| None	None											
Grettum-	\| None	None											
Perida-----	\| None	None											
496B:													
Karlsborg---	\| None	None											
496C:													
Karlsborg-	\| None	None	\| None	None									
496D:													
Karlsborg----	\| None	None	\| None	None									



Table 26.--Flooding Frequency and Duration--Continued



Table 26.--Flooding Frequency and Duration--Continued



Table 26.--Flooding Frequency and Duration--Continued

Map symbol	January	February	March	April	May	June	July	August	\| September	October	November	December
and					\|							
soil name		\|	1	\|	\|			\|				
		\|			\|			\|				
3114A:		\|										
Saprists---	\| None											
Aquents---	None	\| None										
Aquepts-	None	\| None										
3125A:												
Meehan----	None	\| None										
3126A:												
Wurtsmith--	None	\| None										
3312B:		\|			\|							
Glendenning,												
very stony--	\| None											
Glendenning-	None	\| None										
Fenander-	None	\| None										
3403A:		\|										
Loxley-	\| None											
Beseman-	None	\| None										
Dawson--	None	\| None	None									
3429B:												
Lara-	None	\| None										
3429C:												
Lara--	None	\| None										
3446A:												
Newson-----	None	\| None										
3448B:												
Grettum--	\| None											
3448C:												
Grettum--	\| None											


$\qquad$	January	February	March	April	May	June	July	August	\| September	October	November	December
			,			\|	\|					
3510B:			\|									
Pomroy--------- \|	None	None	\| None	None								
Fremstadt------\|	None	None	\| None	None								
Fremstadt, stony	None	None	\| None	None								
3510C:												
Pomroy--------- \|	None	None	\| None	None								
Fremstadt------\|	None	None	\| None	None								
Fremstadt, stony\|	None	None	\| None	None								
3511A:												
Bushville------\|	None	None	\| None	None								
3516A:												
Slimlake-------\|	None	\| None	None									
3625A:												
Lino-----------\|	None	\| None	None									
3626A:												
Crex-----------	None	\| None	None	\| None	None							
3629B:												
Perida----------\|	None	\| None	None									
3636B:												
Plainbo--------\|	None	\| None	None									
							\|					
3636C:												
Plainbo---------	None	None	\| None	None	\| None	None						
M-w.							\|					
Miscellaneous			\|			\|	\|					
water												
			\|			\|	\|					
w.			\|			\|	\|					
Water			\|			\|	\|					

Table 27.--Ponding Frequency, Duration, and Depth
(Depth refers to the depth, in feet, of the water above the surface. See text for definitions of terms used in this table. Absence of an entry indicates that no estimate was made)



Table 27.--Ponding Frequency, Duration, and Depth--Continued



Table 27.--Ponding Frequency, Duration, and Depth--Continued



Table 27.--Ponding Frequency, Duration, and Depth--Continued


Map symbol   and   soil name	January	February	March	April	May	June	July	August	\| September	October	November	December			
		\|	\|		\|	\|									
407A:   Markey		\|	I			$\mid$ \|									
	None	\| None	\|Occasional		\|Frequent	\| Frequent	\|Occasional		None	\| None	\| None	\| None	\|Occasional	None	
			\| Brief		\| Long	\| Long	\| Brief						\| Brief		
			Depth:	Depth:	Depth:	Depth:					Depth:				
			0.5	0.5	0.5	0.5					0.5				
410A:		\|													
Seelyeville	None	\| None	\|Occasional		\|Frequent	\| Frequent	\|Occasional	\| None	\| None	\| None	\| None	\|Occasional		\| None	
			Brief \|	\| Long	\| Long	\| Brief					Brief				
		\|	Depth:	Depth:	Depth:	Depth:					Depth:				
			0.5	0.5	0.5	0.5					0.5				
Cathro-------	None	\| None	\|Occasional		\|Frequent	\|Frequent	\|Occasional		\| None	\| None	\| None	\| None	\|Occasional	None	
			\| Brief		\| Long	\| Long	Brief					\| Brief			
			\| Depth:	Depth:	\| Depth:	\| Depth:					\| Depth:				
		\|	0.5	0.5	0.5	0.5					0.5				
		\|													
419A:	None	\| None													
Seelyeville-			\|Occasional				\|Occasional				\| None	None	$\left\lvert\, \begin{aligned} & \text { \|Occasional } \\ & \mid \text { Brief } \end{aligned}\right.$	\| None	
	None	1	\| Brief		Frequent Long	Frequent \| Long	\| Brief		None	\| None		-		\|	
			$\left\lvert\, \begin{aligned} & \text { Depth: } \\ & 0.5 \end{aligned}\right.$		\| Depth:	\| Depth:				Depth:					
					$0.5$	$0.5$					0.5				
				$0.5$											
Cathro------	\| None	\| None	\|Occasional		\|Frequent	\| Frequent	\|Occasional		None	\| None	\| None	\| None	$\left\lvert\, \begin{aligned} & \text { \|Occasional } \\ & \mid \text { Brief } \\ & \mid \text { Depth: } \\ & \mid 0.5\end{aligned}\right.$	\| None	
			\| Brief	\| Long	\| Long	\| Brief									
		\|	Depth:	Depth:	Depth:	Depth:									
			\| 0.5	0.5	0.5	\| 0.5									
Markey------	\| None	\| None	\|Occasional		\|Frequent	\| Frequent	\|Occasional			\| None	\| None	\| None	\|Occasional	None	
			$\begin{array}{\|l\|} \mid \text { Brief } \\ \mid \text { Depth: } \end{array}$	\| Long	\| Long	\| Brief		None				Brief	None		
				Depth:	Depth:	\| Depth:						Depth:	\|		
			$0.5$	\| 0.5	\| 0.5	\| 0.5					$\mid 0.5$ \|	\|			
421A:		1	\|												
Dora-	\| None	\| None	\|Occasional		\|Frequent	\| Frequent	\|Occasional		None	None	None	None	\|Occasional	None	
			\| Brief		\| Long	\| Long	\| Brief						\| Brief		
			\| Depth:	Depth:	Depth:	Depth:					Depth:				
			0.5	0.5	0.5	0.5					0.5				
Markey--	\| None	\| None	\|Occasional		\|Frequent	\|Frequent	\|Occasional		\| None	\| None	\| None	\| None	\|Occasional	None	
			\| Brief		L Long	Long	$\mid$ Brief \|					$\mid$ Brief \|			
	\|	\|	\| Depth:		Depth:	Depth:	\| Depth:						Depth:		
	\|	\|	\| 0.5	0.5	0.5	0.5			\|		0.5				

Table 27.--Ponding Frequency, Duration, and Depth--Continued



Table 27.--Ponding Frequency, Duration, and Depth--Continued


Map symbol   and   soil name	January	February	March	April	May	June	July	August	\| September	October	November	December
					\|			\|				
3448B:												
Grettum-------- \|	None	\| None										
3448C:												
Grettum--------	None	\| None	\| None	\| None	\| None	None	\| None	\| None	None	\| None	\| None	None
		$1$	None	\| None		\| None						
3510B:Pomroy---------	None	\| None									\| None	
		\| None	None									
Fremstadt------\|	None											
Fremstadt, stony	None	\| None	\| None	\| None	\| None	None	\| None	None				
3510C:		\| None	None									
Pomroy---------- \|	None											
Fremstadt-------		\| None	\| None					\| None	\| None			
	\| None			\| None	\| None	\| None	\| None			\| None	\| None	None
Fremstadt, stony	\| None	None										
3511A:	None		\| None	None								
Bushville------ \|		\| None										
3516A:	\| None	None	\| None			\| None						
Slimlake-------\|												
		\|		\|				\| None	None	\|	\| None	\| None
3625A:		-									I	
Lino------------	\| None	\| None	\| None	\| None		\| None	\| None	\| None	None	\| None	\| None	None
Lino----------3626A:					\| None							
	\| None	None										
Crex------------ \|												
3629B:												
Perida---------	\| None		\| None									
3636B:												
Plainbo--------	None	\| None										
3636C:												
Plainbo---------	None	\| None										
M-W.		\|										
Miscellaneous		\|			\|							
water		\|		\|	\|			\|			\|	

Table 27.--Ponding Frequency, Duration, and Depth--Continued

Map symbol and soil name	January	February	March	April	May	June	July	August	\| September	October	November	December
w.   Water												

Table 28.--Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated)


Table 28.--Soil Features--Continued


Table 28.--Soil Features--Continued


Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		Potential for	Risk of corrosion	
		Depth				Uncoated	
	Kind	\| to top	Initial	Total	frost action	steel	Concrete
		\| In	In	In			
		\|					\|
185D:							
Tradelake-------	---	>80	---	---	\| Moderate	\| High	Moderate
Taylor---------	---	>80	---	---	\| Moderate	\| High	Moderate
		\|					
185E:							
Tradelake	---	\| $>80$	---	---	\| Moderate	\| High	\| Moderate
		$1$					
Taylor---------	---	\| $>80$	---	---	\| Moderate	\| High	Moderate
189A:							
Siren-----------	---	>80	--	---	\| Moderate	\| High	High
193A:							
Minocqua	---	>80	---	---	\| High	\| High	\| Moderate
337A:							
Plover---------	---	>80	-	-	\| Moderate	Moderate	Moderate
368B:							
Mahtomedi-------	---	>80	-	---	\| Low	\| Low	Moderate
Cress------------	---	>80	---	---	\| Low	\| Low	\| Moderate
368C:							
Mahtomedi-------	---	>80	-	---	\| Low	\| Low	Moderate
Cress-----------	---	>80	---	---	\| Low	\| Low	Moderate
368D:							
Mahtomedi-------	---	>80	-	---	\| Low	\| Low	Moderate
		$\mid$					\|
Cress------------	---	>80	---	---	\| Low	\| Low	\| Moderate
368E:							
Mahtomedi-------	---	>80	- ---	-	\| Low	\| Low	Moderate
Cress-----------	---	>80	---	---	\| Low	\| Low	Moderate
380B:							
Cress------------	---	$>80$	---	---	\| Low	\| Low	\| Moderate
		\|					\|
Rosholt----------	---	\| $>80$	---	---	\| Moderate	\| Low	\| Moderate
							\|
380C:							
Cress------------	---	$\mid>80$	-	---	\| Low	\| Low	Moderate
Rosholt----------	---	>80	\| ---	---	\| Moderate	\| Low	\| Moderate
		\|	\|				\|
380D:							
Cress	---	\| $>80$	---	---	\| Low	\| Low	\| Moderate
		\|					I
Rosholt----------	---	\| $>80$	---	---	\| Moderate	\| Low	\| Moderate
		\|					
383B:							
Mahtomedi--------	---	>80	---	---	\| Low	\| Low	\| Moderate
		\|	$\mid$				\|
383C:							
Mahtomedi--------	---	$\mid>80$	---	---	\| Low	\| Low	\| Moderate
		\|	\|				
383D:							
Mahtomedi-------	---	\| $>80$	--- \|	---	\| Low	\| Low	Moderate

Table 28.--Soil Features--Continued


Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		Potential for	Risk of corrosion		
		Depth				Uncoated		
	Kind	\| to top	Initial	Total	\|frost action		steel	Concrete
		In	In	In			\|	
							\|	
426B:								
Emmert---------	---	>80	-	---	\| Low	\| Low	Moderate	
Mahtomedi------	---	>80	-	---	\| Low	\| Low	\| Moderate	
Menahga--------	---	$\mid>80$	---	---	\| Low	\| Low	High	
426C:								
Emmert---------	---	>80	-	---	\| Low	\| Low	Moderate	
Mahtomedi------	---	>80	--	---	\| Low	\| Low	Moderate	
							,	
Menahga--------	---	>80	---	---	\| Low	\| Low	High	
$42 \text { 6D: }$								
Emmert	---	>80	---	---	\| Low	\| Low	\| Moderate	
		\|			\|		\|	
Mahtomedi------	---	>80	---	---	\| Low	\| Low	Moderate	
Menahga--------	---	>80	---	---	\| Low	\| Low	\| High	
430A:								
Freya----------	---	>80	---	-	\| Low	\| Low	Moderate	
439B:								
Graycalm-------	---	>80	---	-	\| Low	\| Low	High	
Menahga--------	---	>80	-	---	\| Low	\| Low	High	
$439 \mathrm{C}:$								
Graycalm	---	$>80$	---	---	\| Low	\| Low	\| High	
		\|					$1$	
Menahga---	---	>80	---	---	\| Low	\| Low	\| High	
$439 \mathrm{D}:$								
Graycalm-----	---	>80	---	---	\| Low	\| Low	High	
Menahga--------	--	>80	---	-	\| Low	\| Low	High	
442C:								
Haugen---------	material	60-80	-	---	\| Moderate	\| Moderate	Moderate	
Greenwood-------	---	>80	-	---	\| High	Moderate	\| High	
443D:								
Amery-----------	material	60-80	---	---	\| Moderate	\| Low	\| Moderate	
		\|			\|		$1$	
Greenwood-------	---	>80	---	---	\| High	\| Moderate	\| High	
		\|						
459A:								
Loxley----	---	>80	6-18	50-55	\| High	\| Moderate	\| High	
		\|					\|	
Daisybay--------	---	>80	0-12	0-12	\| High	\| High	\| High	
Dawson-----------	---	>80	4-18	30-36	\| High	\| Moderate	\| High	
461A:								
Bowstring-------	---	>80	6-18	50-55	\| High	\| Moderate	Low	
465A:								
Newson----------------- \|	---	>80	---	---	\| Moderate	\| High	High	
					$1$			
Meehan---------------- \| --		>80	---	---	Low	\| Low	\| High	

Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		$\begin{aligned} & \text { Potential } \\ & \text { for } \end{aligned}$	Risk of corrosion	
		Depth				Uncoated	
	Kind	to top	Initial\|	Total	frost action	steel	Concrete
		In	In	In			
		\|					
469E:							
Bigisland-	Dense material	40-60	---	---	\| Low	\| Low	\| Moderate
Milaca-	Dense material	40-60	---	--	\| Moderate	\| Moderate	\| Moderate
		\|					
471B:							
Dairyland-	Dense material	40-60	--- \|	---	\| Low	\| Low	\| Moderate
		\|					
Emmert----	---	>80	---	---	\| Low	\| Low	\| Moderate
471C:							
Dairyland-	Dense material	40-60	-	-	\| Low	\| Low	\| Moderate
		\|					
Emmert----	---	>80	-	---	\| Low	\| Low	Moderate
		\|					
472A:							
Rockmarsh-	Dense material	40-60	---	---	\| Moderate	\| High	\| Moderate
		\|					
Clemens---	---	>80	---	-	Moderate	\| High	Moderate
		\|					
473A:							
Dairyland-	Dense material	40-60	---	---	\| Low	\| Low	Moderate
		I					
Skog-	---	>80	---	---	Low	\| Low	Moderate
484A:							
Greenwood-------	---	>80	---	---	\| High	\| Moderate	\| High
		\|					
Beseman--	---	>80	4-18	12-36	\| High	\| High	\| High
		\|					
485C:							
Lupton-	-	>80	6-18	-	\| High	\| Moderate	\| Low
		\|					
Tawas----------	---	>80	4-12	---	\| High	\| Moderate	\| Low
		\|					
495B:							
Karlsborg--	-	>80	---	-	\| Moderate	\| High	\| Moderate
		\|					\|
Grettum--	---	>80	---	---	\| Low	\| Low	\| Moderate
Perida---------	---	>80	---	---	\| Moderate	\| High	\| Moderate
		\|					
495C:							
Karlsborg--	---	>80	--- \|	---	\| Moderate	\| High	\| Moderate
		I					\|
Grettum---	---	$\mid>80$	---	---	\| Low	\| Low	\| Moderate
		,					
Perida---------	---	$\mid>80$	---	---	\| Moderate	\| High	\| Moderate
		\|					
495D:							
Karlsborg--	---	>80	---	---	\| Moderate	\| High	\| Moderate
		\|					\|
Grettum---------	---	$\mid>80$	---	---	\| Low	\| Low	\| Moderate
		I					
Perida----------	---	$\mid>80$	---	---	\| Moderate	\| High	\| Moderate
		1					
496B:							
Karlsborg-------	---	\| $>80$	---	---	\| Moderate	\| High	\| Moderate
		,					\|
496C:							
Karlsborg--------	---	\| $>80$	---	---	\| Moderate	\| High	\| Moderate

Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		$\begin{gathered} \text { Potential } \\ \text { for } \end{gathered}$	Risk of corrosion		
		\| Depth				Uncoated		
	Kind	\| to top	\|Initial		Total	frost action	steel	Concrete
		\| In	In	In				
496D:								
Karlsborg------	---	>80	---	---	\| Moderate	\| High	\| Moderate	
497A:								
Meenon----------	---	>80	---	---	\| Moderate	\| High	\| Moderate	
							j	
521A:								
Dody-	---	>80	---	---	\| High	\| High	\| Moderate	
523A:								
Nokasippi-	Dense material	30-50	--	---	High	\| High	Moderate	
$529 \mathrm{~B}:$								
Perida	---	$>80$	---	---	\| Moderate	\| High	\| Moderate	
531A:								
Stengel-	Abrupt textural	16-24	---	--	\| Low	\| High	Moderate	
	change							
542B:								
Haugen, very stony	Dense material	60-80	---	---	\| Moderate	\| Moderate	Moderate	
		\|						
Haugen----------	Dense material	60-80	---	---	\| Moderate	\| Moderate	\| Moderate	
542C:								
Haugen, very stony	Dense material	60-80	---	-	\| Moderate	\| Moderate	Moderate	
Haugen---------	Dense material	60-80	---	---	\| Moderate	\| Moderate	Moderate	
$544 \mathrm{~F}:$								
Menahga	---	$>80$	---	---	\| Low	\| Low	\| High	
Mahtomedi--	-	>80	---	---	Low	\| Low	Moderate	
553B:								
Branstad--------	---	>80	---	---	\| Moderate	\| Moderate	\| Moderate	
553C:								
Branstad	---	$>80$	---	---	\| Moderate	\| Moderate	\| Moderate	
553D:								
Branstad-------	---	>80	-	---	\| Moderate	\| Moderate	Moderate	
555A:								
Fordum----------	---	>80	---	---	\| High	\| High	\| Low	
557B:								
Shawano--------	---	>80	---	---	\| Low	\| Low	\| High	
557C:								
Shawano---------	---	>80	-	---	\| Low	\| Low	\| High	
Shawano----------	---	$\mid>80$	---	---	\| Low	\| Low	\| High	
586A:								
Chelmo----------	---	>80	---	---	\| High	\| High	\| Moderate	
600A:								
Haplosaprists.								
		\|						
Psammaquents.								

Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		$\begin{aligned} & \text { Potential } \\ & \text { for } \end{aligned}$	Risk of corrosion		
		Depth				Uncoated		
	Kind	to top	\|nitial		Total	frost action\|	steel	Concrete
		In	In	In				
		\|						
615B:								
Cress-	---	>80	---	---	Low	\| Low	\| Moderate	
		\|						
615C:								
Cress----------	---	>80	---	---	\| Low	\| Low	\| Moderate	
615D :								
Cress----------	---	>80	---	---	\| Low	\| Low	\| Moderate	
		\|						
620C:								
Lundeen	Bedrock (lithic)	20-40	---	-	\| High	\| Low	\| Moderate	
Lundeen								
Haustrup--	Bedrock (lithic)	10-20	-	---	\| Moderate	\| Low	\| Moderate	
Rock outcrop.								
		\|						
621A:								
Bjorkland-	---	>80	---	---	\| Moderate	Moderate	High	
		\|						
623A:								
Capitola-	Dense material	20-40	---	---	High	\| High	Moderate	
		\|						
624A:								
Ossmer-	---	>80	---	-	\| Moderate	\| Moderate	\| Moderate	
		\|						
631A:								
	Dense material	40-80	-	---	\| High	\| High	\| High	
		-						
		\|						
632A:								
Aftad---	---	>80	---	---	\| Moderate	\| Moderate	\| Moderate	
		\|						
632B:								
Aftad---	---	>80	-	---	\| Moderate	\| Moderate	\| Moderate	
		\|						
632C:								
Aftad----------	---	>80	---	---	\| Moderate	Moderate	Moderate	
		\|						
634C:								
Drylanding--	Bedrock (lithic)	10-20	---	---	High	\| Moderate	\| Low	
Beartree--	Bedrock (lithic)	10-20	---	---	High	\| High	\| Low	
Rock outcrop.								
		\|						
635C:								
Drylanding--	Bedrock (lithic)	10-20	-	---	\| High	\| Moderate	\| Low	
Beartree--	Bedrock (lithic)	10-20	--- \|	---	\| High	\| High	\| Low	
		\|						
Rock outcrop.								
		\|						
648B:								
Sconsin--------	Dense material	20-38	---	---	\| Moderate	\| Moderate	\| Moderate	
669D:								
Fremstadt, stony--	---	>80	---	---	\| Low	\| Low	\| High	
Pomroy---------------- \| Dense material		40-60	---	---	\| Moderate	\| Moderate	\| Moderate	

Table 28.--Soil Features--Continued


Table 28.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Subsidence		Potential for	Risk of corrosion			
		Depth				Uncoated			
	Kind	to top	\|Initial		Total	\|frost action		steel	Concrete
		In	In	In					
		\|							
1070D:									
Fremstadt--------------\|	---	>80	--- \|	---	\| Low	\| Low	Moderate		
		\|							
Cress------------------ \|	---	>80	--- \|	---	\| Low	\| Low	Moderate		
		\|							
1080B:									
Spoonerhill------------	---	>80	--- \|	---	\| Low	\| Low	Moderate		
		\|							
Spoonerhill, stony-----\|	---	>80	-	---	\| Low	\| Low	Moderate		
		\|							
Cress------------------ \|	---	>80	\| ---		--	\| Low	\| Low	Moderate	
		\|							
2002.									
Udorthents, earthen dams		\|							
		\|					\|		
		\|					I		
2015.		\|							
Pits		\|					\|		
		\|							
2050.		\|							
Landfill		\|							
		\|							
3011A:		\|							
Barronett-------------\|	---	>80	\| ---		---	\| High	\| High	Moderate	
		\|							
3082E:		1							
Braham-----------------	---	>80	\| ---		---	\| Low	\| Moderate	Moderate	
		\|							
Shawano--------------- \|	---	>80	\| ---	---	\| Low	\| Low	High		
		\|							
3114A:		\|							
Saprists--------------\|	---	>80	\| ---	-	\| High	\| Moderate	Moderate		
		\|							
Aquents---------------	---	\| $>80$	\| ---		---	\| Moderate	\| High	\| High	
		,					I		
Aquepts----------------\|	---	>80	-	---	\| High	\| High	Moderate		
		\|							
3125A:		\|							
Meehan----------------	---	>80	-	---	\| Low	\| Low	High		
		\|							
3126A:		\|							
Wurtsmith-------------\|	---	>80	\| ---	---	\| Low	\| Low	High		
		\|							
3312B:		\|							
Glendenning, very stony	Dense material	60-80	---	---	\| Moderate	\| Moderate	Moderate		
Glendenning	Dense material	60-80	---	---	\| Moderate	\| Moderate	Moderate		
		\|							
3336A:		\|							
Fenander--------------	---	\| $>80$	\| ---	---	\| High	\| High	Low		
		\|							
3403A:		\|	\|						
Loxley--------------- \|	---	\| $>80$	\| 6-18	50-55	\| High	\| Moderate	\| High		
Beseman--------------- \|		- $>80$							
	- --	\| $>80$	\| 4-18	12-36	\| High	\| Moderate	\| High		
		\|							
Dawson-----------------	---	\| $>80$	\| 4-18	30-36	\| High	\| Moderate	\| High		
		\|							
3429B:		\|							
Lara----------------\|	---	\| $>80$	---	---	\| Low	\| Low	\| High		
		\|							

Table 28.--Soil Features--Continued


## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Jenny, Hans. 1941. Factors of soil formation.
Johnson, Mark D. 2000. Pleistocene geology of Polk County, Wisconsin. Wisconsin Geological and Natural History Survey Bulletin 92.

Kotar, John, Joseph A. Kovach, and Gary Brand. 1999. Wisconsin forest statistics, 1996: Analysis by habitat type class. U.S. Department of Agriculture, Forest Service. North Central Research Station General Technical Report NC-207.

Kotar, John, Joseph A. Kovach, and Timothy L. Burger. 2002. Field guide to forest habitat types of northern Wisconsin. 2nd edition. Department of Forest Ecology and Management, University of Wisconsin-Madison.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/technical/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2003. Keys to soil taxonomy. 9th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

United States Department of Agriculture. 1961. Land capability classification. Soil Conservation Service. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. [Online at http://soils.usda.gov/technical/]

United States Department of Agriculture, Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. U.S. Department of Agriculture Handbook 296.

## Glossary

Many of the terms relating to landforms, geology, and geomorphology are defined in more detail in the "National Soil Survey Handbook" (available in local offices of the Natural Resources Conservation Service or on the Internet).

Ablation till. Loose, relatively permeable earthy material deposited during the downwasting of nearly static glacial ice, either contained within or accumulated on the surface of the glacier.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alluvium. Unconsolidated material, such as gravel, sand, silt, clay, and various mixtures of these, deposited on land by running water.
Alpha,alpha-dipyridyl. A compound that when dissolved in ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction implies reducing conditions and the likely presence of redoximorphic features.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Aspect. The direction toward which a slope faces. Also called slope aspect.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60 -inch profile or to a limiting layer is expressed as:


Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Basal till. Compact till deposited beneath the glacial ice.
Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K ), expressed as a percentage of the total cation-exchange capacity.
Base slope (geomorphology). A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the
lateral shape, forms an apron or wedge at the bottom of a hillside dominated by colluvium and slope-wash sediments (for example, slope alluvium).
Beach deposits. Material, such as sand and gravel, that is generally laid down parallel to an active or relict shoreline of a postglacial or glacial lake.
Beach ridge. A low, essentially continuous mound of beach or beach-and-dune material accumulated by the action of waves and currents on the backshore of a beach, beyond the present limit of storm waves or the reach of ordinary tides, and occurring singly or as one of a series of approximately parallel deposits. The ridges are roughly parallel to the shoreline and represent successive positions of an advancing shoreline.
Bedding plane. A planar or nearly planar bedding surface that visibly separates each successive layer of stratified sediment or rock (of the same or different lithology) from the preceding or following layer; a plane of deposition. It commonly marks a change in the circumstances of deposition and may show a parting, a color difference, a change in particle size, or various combinations of these. The term is commonly applied to any bedding surface, even one that is conspicuously bent or deformed by folding.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bench terrace. A raised, level or nearly level strip of earth constructed on or nearly on a contour, supported by a barrier of rocks or similar material, and designed to make the soil suitable for tillage and to prevent accelerated erosion.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Blowout. A saucer-, cup-, or trough-shaped depression formed by wind erosion on a preexisting dune or other sand deposit, especially in an area of shifting sand or loose soil or where protective vegetation is disturbed or destroyed; the adjoining accumulation of sand derived from the depression, where recognizable, is commonly included. Blowouts are commonly small.
Board foot. A unit of measurement represented by a board 1 foot wide, 1 foot long, and 1 inch thick.
Bog. Waterlogged, spongy ground, consisting primarily of mosses, containing acidic, decaying vegetation (such as sphagnum, sedges, and heaths) that develops into peat.
Boulders. Rock fragments larger than 2 feet ( 60 centimeters) in diameter.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
California bearing ratio (CBR). The load-supporting capacity of a soil as compared to that of standard crushed limestone, expressed as a ratio. First standardized in California. A soil having a CBR of 16 supports 16 percent of the load that would be supported by standard crushed limestone, per unit area, with the same degree of distortion.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.

Catena. A sequence, or "chain," of soils on a landscape that formed in similar kinds of parent material and under similar climatic conditions but that have different characteristics as a result of differences in relief and drainage.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality ( pH 7.0 ) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Catsteps. See Terracettes.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. See Redoximorphic features.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Clay spot (map symbol). A spot where the surface layer is silty clay or clay in an area where the surface layer of the surrounding soil is sandy loam, loam, silt loam, or coarser. Typically less than 4 acres.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Closed depression (map symbol). A shallow, saucer-shaped area that is slightly lower on the landscape than the surrounding area and is without a natural outlet for surface drainage. Typically less than 4 acres.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches ( 7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches ( 7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Colluvium. Unconsolidated, unsorted earth material being transported or deposited on side slopes and/or at the base of slopes by mass movement (e.g., direct gravitational action) and by local, unconcentrated runoff.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. See Redoximorphic features.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soilimproving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soilimproving practices in a conservation cropping system include the use of rotations
that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Coprogenous earth (sedimentary peat). A type of limnic layer composed predominantly of fecal material derived from aquatic animals.
Cord. A unit of measurement of stacked wood. A standard cord occupies 128 cubic feet with dimensions of 4 feet by 4 feet by 8 feet.
Corrosion (geomorphology). A process of erosion whereby rocks and soil are removed or worn away by natural chemical processes, especially by the solvent action of running water, but also by other reactions, such as hydrolysis, hydration, carbonation, and oxidation.
Corrosion (soil survey interpretations). Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Cross-slope farming. Deliberately conducting farming operations on sloping farmland in such a way that tillage is across the general slope.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Culmination of the mean annual increment (CMAI). The average annual increase per acre in the volume of a stand. Computed by dividing the total volume of the stand by its age. As the stand increases in age, the mean annual increment continues to increase until mortality begins to reduce the rate of increase. The point where the stand reaches its maximum annual rate of growth is called the culmination of the mean annual increment.
Cut or fill area (map symbol). A small area where the original soil profile has been altered by the addition or removal of more than about 1 foot of soil material. Includes former pits that have been reclaimed. Each symbol represents one area or several closely grouped areas totaling less than 4 acres.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Decreasers. The most heavily grazed climax range plants. Because they are the most palatable, they are the first to be destroyed by overgrazing.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is fan shaped and nearly flat; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.

Dense layer (in tables). A very firm, massive layer that has a bulk density of more than 1.8 grams per cubic centimeter. Such a layer affects the ease of digging and can affect filling and compacting.
Depression. Any relatively sunken part of the earth's surface; especially a low-lying area surrounded by higher ground. A closed depression has no natural outlet for surface drainage. An open depression has a natural outlet for surface drainage.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Disintegration moraine. A drift topography characterized by chaotic mounds and pits, generally randomly oriented, developed in supraglacial drift by collapse and flow as the underlying stagnant ice melted. Slopes may be steep and unstable. Abrupt changes between materials of differing lithology are common.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Drainageway. A general term for a course or channel along which water moves in draining an area. A term restricted to relatively small, linear depressions that at some time move concentrated water and either do not have a defined channel or have only a small defined channel.
Drift. A general term applied to all mineral material (clay, silt, sand, gravel, and boulders) transported by a glacier and deposited directly by or from the ice or transported by running water emanating from a glacier. Drift includes unstratified material (till) that forms moraines and stratified deposits that form outwash plains, eskers, kames, varves, and glaciofluvial sediments. The term is generally applied to Pleistocene glacial deposits in areas that no longer contain glaciers.
Drumlin. A low, smooth, elongated oval hill, mound, or ridge of compact till that has a core of bedrock or drift. It commonly has a blunt nose facing the direction from which the ice approached and a gentler slope tapering in the other direction. The longer axis is parallel to the general direction of glacier flow. Drumlins are products of streamline (laminar) flow of glaciers, which molded the subglacial floor through a combination of erosion and deposition.
Dry spot (map symbol). A small area of moderately well drained to excessively drained soil within a poorly drained or very poorly drained area of mineral soil, or a somewhat poorly drained to excessively drained soil within a map unit consisting mainly of organic soil. Each symbol represents one area or several closely grouped areas totaling less than 4 acres.
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
End moraine. A ridgelike accumulation produced at the outer margin of an actively flowing glacier at any given time.

Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian deposit. Sand-, silt-, or clay-sized clastic material transported and deposited primarily by wind, commonly in the form of a dune or a sheet of sand or loess.
Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Erosion pavement. A surficial lag concentration or layer of gravel and other rock fragments that remains on the soil surface after sheet or rill erosion or wind has removed the finer soil particles and that tends to protect the underlying soil from further erosion.
Erosion surface. A land surface shaped by the action of erosion, especially by running water.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Most commonly applied to cliffs produced by differential erosion.
Escarpment, bedrock (map symbol). A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Exposed material is hard or soft bedrock.
Escarpment, nonbedrock (map symbol). A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Exposed material is nonsoil or very shallow soil.
Esker. A long, narrow, sinuous, steep-sided ridge of stratified sand and gravel deposited as the bed of a stream flowing in an ice tunnel within or below the ice (subglacial) or between ice walls on top of the ice of a wasting glacier and left behind as high ground when the ice melted. Eskers range in length from less than a kilometer to more than 160 kilometers and in height from 3 to 30 meters.
Fan remnant. A general term for landforms that are the remaining parts of older fan landforms, such as alluvial fans, that have been either dissected or partially buried.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fine textured soil. Sandy clay, silty clay, or clay.

Firebreak. An area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the movement of firefighters and equipment. Designated roads also serve as firebreaks.
Flaggy soil material. Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches ( 15 to 38 centimeters) long.
Flood plain. The nearly level plain that borders a stream and is subject to flooding unless protected artificially.
Flood-plain landforms. A variety of constructional and erosional features produced by stream channel migration and flooding. Examples include backswamps, floodplain splays, meanders, meander belts, meander scrolls, oxbow lakes, and natural levees.
Flood-plain splay. A fan-shaped deposit or other outspread deposit formed where an overloaded stream breaks through a levee (natural or artificial) and deposits its material (commonly coarse grained) on the flood plain.
Flood-plain step. An essentially flat, terrace-like alluvial surface within a valley that is frequently covered by floodwater from the present stream; any approximately horizontal surface still actively modified by fluvial scour and/or deposition. May occur individually or as a series of steps.
Fluvial. Of or pertaining to rivers or streams; produced by stream or river action.
Footslope. The concave surface at the base of a hillslope. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest habitat type. An association of dominant tree and ground flora species in a climax community.
Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur in the form of outwash plains, valley trains, deltas, kames, eskers, and kame terraces.
Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are bedded or laminated.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Graded stripcropping. Growing crops in strips that grade toward a protected waterway.
Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.

Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravel pit (map symbol). An open excavation from which soil and underlying material have been removed and used, without crushing, as a source of sand or gravel. Typically less than 4 acres.
Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Gravelly spot (map symbol). An area where the surface layer has more than 35 percent, by volume, rock fragments that are mostly less than 3 inches in diameter within an area that has less than 15 percent rock fragments. Typically less than 4 acres.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A small channel with steep sides caused by erosion and cut in unconsolidated materials by concentrated but intermittent flow of water. The distinction between a gully and a rill is one of depth. A gully generally is an obstacle to farm machinery and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hard to reclaim (in tables). Reclamation is difficult after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.
Head slope (geomorphology). A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.
Hill. A generic term for an elevated area of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline. Slopes are generally more than 15 percent. The distinction between a hill and a mountain is arbitrary and may depend on local usage.
Hillslope. A generic term for the steeper part of a hill between its summit and the drainage line, valley flat, or depression floor at the base of a hill.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue. $L$ horizon.-A layer of organic and mineral limnic materials, including coprogenous earth (sedimentary peat), diatomaceous earth, and marl.

A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
$B$ horizon.-The mineral horizon below an $A$ horizon. The $B$ horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these. C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C.
Cr horizon.-Soft, consolidated bedrock beneath the soil.
$R$ layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Ice-walled lake plain. A relict surface marking the floor of an extinct lake basin that was formed on solid ground and surrounded by stagnant ice in a stable or unstable superglacial environment on stagnation moraines. As the ice melted, the lake plain became perched above the adjacent landscape. The lake plain is well sorted, generally fine textured, stratified deposits.
Igneous rock. Rock that was formed by cooling and solidification of magma and that has not been changed appreciably by weathering since its formation. Major varieties include plutonic and volcanic rock (e.g., andesite, basalt, and granite).
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Increasers. Species in the climax vegetation that increase in amount as the more desirable plants are reduced by close grazing. Increasers commonly are the shorter plants and the less palatable to livestock.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake
rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

Less than 0.2 .............................................. very low	
0.2 to 0.4	
0.4 to 0.75 ...................................... moderately low	
0.75 to 1.25 ........................................... moderate	
1.25 to 1.75 .................................. moderately high	
1.75 to 2.5	... high
ore than	very high

Interfluve. A landform composed of the relatively undissected upland or ridge between two adjacent valleys containing streams flowing in the same general direction. An elevated area between two drainageways that sheds water to those drainageways.
Interfluve (geomorphology). A geomorphic component of hills consisting of the uppermost, comparatively level or gently sloping area of a hill; shoulders of backwearing hillslopes can narrow the upland or can merge, resulting in a strongly convex shape.
Intermittent stream. A stream, or reach of a stream, that does not flow year-round but that is commonly dry for 3 or more months out of 12 and whose channel is generally below the local water table. It flows only during wet periods or when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Invaders. On range, plants that encroach into an area and grow after the climax vegetation has been reduced by grazing. Generally, plants invade following disturbance of the surface.
Iron depletions. See Redoximorphic features.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are:
Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders. Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction. Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements. Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
Island (map symbol). A small area of mineral soil within a body of water and above the normal water level. Each symbol represents one island or several closely grouped islands totaling less than 4 acres.

Kame. A low mound, knob, hummock, or short irregular ridge composed of stratified sand and gravel deposited by a subglacial stream as a fan or delta at the margin of a melting glacier; by a supraglacial stream in a low place or hole on the surface of the glacier; or as a ponded deposit on the surface or at the margin of stagnant ice.
Karst (topography). A kind of topography that formed in limestone, gypsum, or other soluble rocks by dissolution and that is characterized by closed depressions, sinkholes, caves, and underground drainage.
Knoll. A small, low, rounded hill rising above adjacent landforms.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Lake plain. A nearly level surface marking the floor of an extinct lake filled by well sorted, generally fine textured, stratified deposits, commonly containing varves.
Lake terrace. A narrow shelf, partly cut and partly built, produced along a lakeshore in front of a scarp line of low cliffs and later exposed when the water level falls.
Landslide. A general, encompassing term for most types of mass movement landforms and processes involving the downslope transport and outward deposition of soil and rock materials caused by gravitational forces; the movement may or may not involve saturated materials. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Large stones (in tables). Rock fragments 3 inches ( 7.6 centimeters) or more across. Large stones adversely affect the specified use of the soil.
Leaching. The removal of soluble material from soil or other material by percolating water.
Levees, single side slope (map symbol). Embankments for confining or controlling water. Typically constructed along the banks of a river to prevent overflow onto lowlands.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension ( 33 kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loess. Material transported and deposited by wind and consisting dominantly of siltsized particles.
Low strength. The soil is not strong enough to support loads.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Marl. An earthy, unconsolidated deposit consisting chiefly of calcium carbonate mixed with clay in approximately equal proportions; formed primarily under freshwater lacustrine conditions but also formed in more saline environments.
Mass movement. A generic term for the dislodgment and downslope transport of soil and rock material as a unit under direct gravitational stress.

Masses. See Redoximorphic features.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement at depth in the earth's crust. Nearly all such rocks are crystalline.
Mine spoil. An accumulation of displaced earthy material, rock, or other waste material removed during mining or excavation. Also called earthy fill.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. A kind of map unit that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Moraine. In terms of glacial geology, a mound, ridge, or other topographically distinct accumulation of unsorted, unstratified drift, predominantly till, deposited primarily by the direct action of glacial ice in a variety of landforms. Also, a general term for a landform composed mainly of till (except for kame moraines, which are composed mainly of stratified outwash) that has been deposited by a glacier. Some types of moraines are disintegration, end, ground, kame, lateral, recessional, and terminal.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance—few, common, and many; size—fine, medium, and coarse; and contrast-faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Mudstone. A blocky or massive, fine grained sedimentary rock in which the proportions of clay and silt are approximately equal. Also, a general term for such material as clay, silt, claystone, siltstone, shale, and argillite and that should be used only when the amounts of clay and silt are not known or cannot be precisely identified.
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of 10 YR $6 / 4$ is a color with hue of $10 Y R$, value of 6 , and chroma of 4.
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. See Redoximorphic features.
Nose slope (geomorphology). A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is
predominantly divergent. Nose slopes consist dominantly of colluvium and slopewash sediments (for example, slope alluvium).
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Very low	ess than 0.5 percent
Moderately low	... 1.0 to 2.0 percent
Moderate	... 2.0 to 4.0 percent
High	... 4.0 to 8.0 percent
Very high	more than 8.0 percent

Outwash. Stratified and sorted sediments (chiefly sand and gravel) removed or "washed out" from a glacier by meltwater streams and deposited in front of or beyond the end moraine or the margin of a glacier. The coarser material is deposited nearer to the ice.
Outwash plain. An extensive lowland area of coarse textured glaciofluvial material. An outwash plain is commonly smooth; where pitted, it generally is low in relief.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, that has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedisediment. A layer of sediment, eroded from the shoulder and backslope of an erosional slope, that lies on and is being (or was) transported across a gently sloping erosional surface at the foot of a receding hill or mountain slope.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet ( 1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Perennial water (map symbol). A small, natural or constructed lake, pond, or pit that contains water most of the year. Each symbol represents one area of water or several closely grouped areas of water totaling less than 4 acres.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

permeable .......................... less than 0.0015 inch	
Very slow ................................ 0.0015 to 0.06 inch	
Slow ............................................ 0.06 to 0.2 inch	
Moderately slow .............................. 0.2 to 0.6 inch	
Moderate .............................. 0.6 inch to 2.0 inches	
Moderately rapid .......................... 2.0 to 6.0 inches	
Rapid ........................................... 6.0 to 20 inches	
ry rapid	more than 20 inches

pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.
Pitted outwash plain. An outwash plain marked by many irregular depressions, such as kettles, shallow pits, and potholes, which formed by melting of incorporated ice masses; common in Wisconsin and Minnesota.
Pitting (in tables). Pits caused by melting around ice. They form on the soil after plant cover is removed.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plateau (geomorphology). A comparatively flat area of great extent and elevation; specifically, an extensive land region that is considerably elevated (more than 100 meters) above the adjacent lower lying terrain, is commonly limited on at least one side by an abrupt descent, and has a flat or nearly level surface. A comparatively large part of a plateau surface is near summit level.
Plowpan. A compacted layer formed in the soil directly below the plowed layer.
Poletimber. Hardwood trees ranging from 5 to 11 inches in diameter and conifers ranging from 5 to 9 inches in diameter at breast height.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Pore linings. See Redoximorphic features.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Rangeland. Land on which the potential natural vegetation is predominantly grasses, grasslike plants, forbs, or shrubs suitable for grazing or browsing. It includes natural grasslands, savannas, many wetlands, some deserts, tundras, and areas that support certain forb and shrub communities.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed as pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is
neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultra acid	. less than 3.5
Extremely acid	3.5 to 4.4
Very strongly acid	4.5 to 5.0
Strongly acid	.. 5.1 to 5.5
Moderately acid	... 5.6 to 6.0
Slightly acid	6.1 to 6.5
Neutral	.. 6.6 to 7.3
Slightly alkaline	...... 7.4 to 7.8
Moderately alkaline	... 7.9 to 8.4
Strongly alkaline	.. 8.5 to 9.0
Very strongly alkalin	9.1 and higher

Redoximorphic concentrations. See Redoximorphic features.
Redoximorphic depletions. See Redoximorphic features.
Redoximorphic features. Redoximorphic features are associated with wetness and result from alternating periods of reduction and oxidation of iron and manganese compounds in the soil. Reduction occurs during saturation with water, and oxidation occurs when the soil is not saturated. Characteristic color patterns are created by these processes. The reduced iron and manganese ions may be removed from a soil if vertical or lateral fluxes of water occur, in which case there is no iron or manganese precipitation in that soil. Wherever the iron and manganese are oxidized and precipitated, they form either soft masses or hard concretions or nodules. Movement of iron and manganese as a result of redoximorphic processes in a soil may result in redoximorphic features that are defined as follows:

1. Redoximorphic concentrations.-These are zones of apparent accumulation of iron-manganese oxides, including:
A. Nodules and concretions, which are cemented bodies that can be removed from the soil intact. Concretions are distinguished from nodules on the basis of internal organization. A concretion typically has concentric layers that are visible to the naked eye. Nodules do not have visible organized internal structure; and
B. Masses, which are noncemented concentrations of substances within the soil matrix; and
C. Pore linings, i.e., zones of accumulation along pores that may be either coatings on pore surfaces or impregnations from the matrix adjacent to the pores.
2. Redoximorphic depletions.-These are zones of low chroma (chromas less than those in the matrix) where either iron-manganese oxides alone or both iron-manganese oxides and clay have been stripped out, including:
A. Iron depletions, i.e., zones that contain low amounts of iron and manganese oxides but have a clay content similar to that of the adjacent matrix; and
B. Clay depletions, i.e., zones that contain low amounts of iron, manganese, and clay (often referred to as silt coatings or skeletans).
3. Reduced matrix.-This is a soil matrix that has low chroma in situ but undergoes a change in hue or chroma within 30 minutes after the soil material has been exposed to air.

Reduced matrix. See Redoximorphic features.
Regolith. All unconsolidated earth materials above the solid bedrock. It includes material weathered in place from all kinds of bedrock and alluvial, glacial, eolian, lacustrine, and pyroclastic deposits.
Relief. The relative difference in elevation between the upland summits and the lowlands or valleys of a given region.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as bedrock disintegrated in place.
Rill. A very small, steep-sided channel resulting from erosion and cut in unconsolidated materials by concentrated but intermittent flow of water. A rill generally is not an obstacle to wheeled vehicles and is shallow enough to be smoothed over by ordinary tillage.
Riser. The vertical or steep side slope (e.g., escarpment) of terraces, flood-plain steps, or other stepped landforms; commonly a recurring part of a series of natural, steplike landforms, such as successive stream terraces.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Rock outcrop (map symbol). An exposure of bedrock at the surface of the earth. Not used where the named soils of the surrounding map unit are shallow over bedrock. Each symbol represents one exposure or several closely grouped exposures totaling less than 4 acres.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Sandy spot (map symbol). An area where the surface layer is loamy fine sand or coarser within an area where the surface layer of the named soils in the surrounding map unit is very fine sandy loam or finer. Typically less than 4 acres.
Sanitary landfill (map symbol). A small area of accumulated waste products of human habitation. The area can be above or below natural ground level. Typically less than 4 acres.
Sapling. A tree ranging from 1 to 5 inches in diameter at breast height.
Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saturated hydraulic conductivity ( $\mathrm{K}_{\text {sat }}$ ). See Permeability.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Sawtimber. Hardwood trees more than 11 inches in diameter and conifers more than 9 inches in diameter at breast height.
Scarification. The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
Sedimentary rock. A consolidated deposit of clastic particles, chemical precipitates, or organic remains accumulated at or near the surface of the earth under normal
low temperature and pressure conditions. Sedimentary rocks include consolidated equivalents of alluvium, colluvium, drift, and eolian, lacustrine, and marine deposits. Examples are sandstone, siltstone, mudstone, claystone, shale, conglomerate, limestone, dolomite, and coal.
Seedling. A tree less than 1 inch in diameter at breast height.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock that formed by the hardening of a deposit of clay, silty clay, or silty clay loam and that has a tendency to split into thin layers.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Short, steep slope (map symbol). A narrow area of soil that is at least two slope classes steeper than the surrounding map unit.
Shoulder. The convex, erosional surface near the top of a hillslope. A shoulder is a transition from summit to backslope.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope (geomorphology). A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel. Side slopes are dominantly colluvium and slope-wash sediments.
Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay ( 0.002 millimeter) to the lower limit of very fine sand ( 0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Siltstone. An indurated silt having the texture and composition of shale but lacking its fine lamination or fissility; a massive mudstone in which silt predominates over clay.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Sinkhole. A closed, circular or elliptical depression, commonly funnel shaped, characterized by subsurface drainage and formed either by dissolution of the surface of underlying bedrock (e.g., limestone, gypsum, or salt) or by collapse of underlying caves within bedrock. Complexes of sinkholes in carbonate-rock terrain are the main components of karst topography.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100 . Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.
Slope alluvium. Sediment gradually transported down the slopes of mountains or hills primarily by nonchannel alluvial processes (i.e., slope-wash processes) and characterized by particle sorting. Lateral particle sorting is evident on long slopes. In a profile sequence, sediments may be distinguished by differences in size and/or specific gravity of rock fragments and may be separated by stone lines.

Burnished peds and sorting of rounded or subrounded pebbles or cobbles distinguish these materials from unsorted colluvial deposits.
Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief and by the passage of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

$\text { ..... } 1.0 \text { to } 0.5$	
Medium sand ....................................... 0.5 to 0.25	
Fine sand .......................................... 0.25 to 0.10	
Very fine sand ..................................... 0.10 to 0.05	
Silt .................................................. 0.05 to 0.002	

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the $A, E$, and $B$ horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. In a vertical cross section, a line formed by scattered fragments or a discrete layer of angular and subangular rock fragments (commonly a gravel- or cobble-sized lag concentration) that formerly was draped across a topographic surface and was later buried by additional sediments. A stone line generally caps material that was subject to weathering, soil formation, and erosion before burial. Many stone lines seem to be buried erosion pavements, originally formed by sheet and rill erosion across the land surface.
Stones. Rock fragments 10 to 24 inches ( 25 to 60 centimeters) in diameter if rounded or 15 to 24 inches ( 38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Strath terrace. A type of stream terrace; formed as an erosional surface cut on bedrock and thinly mantled with stream deposits (alluvium).
Stream terrace. One of a series of platforms in a stream valley, flanking and more or less parallel to the stream channel, originally formed near the level of the stream; represents the remnants of an abandoned flood plain, stream bed, or valley floor produced during a former state of fluvial erosion or deposition.
Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Stubble mulch. Stubble or other crop residue left on the soil or partly worked into the soil. It protects the soil from wind erosion and water erosion after harvest, during
preparation of a seedbed for the next crop, and during the early growing period of the new crop.
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter a hardpan or claypan.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches ( 10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Swale. A slight depression in the midst of generally level land. A shallow depression in an undulating ground moraine caused by uneven glacial deposition.
Terminal moraine. An end moraine that marks the farthest advance of a glacier. It typically has the form of a massive arcuate or concentric ridge, or complex of ridges, and is underlain by till and other types of drift.
Terrace (conservation). An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Terrace (geomorphology). A steplike surface, bordering a valley floor or shoreline, that represents the former position of a flood plain, lake, or seashore. The term is usually applied both to the relatively flat summit surface (tread) that was cut or built by stream or wave action and to the steeper descending slope (scarp or riser) that has graded to a lower base level of erosion.
Terracettes. Small, irregular steplike forms on steep hillslopes, especially in pasture, formed by creep or erosion of surficial materials that may be induced or enhanced by trampling of livestock, such as sheep or cattle.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.
Till. Dominantly unsorted and nonstratified drift, generally unconsolidated and deposited directly by a glacier without subsequent reworking by meltwater, and consisting of a heterogeneous mixture of clay, silt, sand, gravel, stones, and boulders; rock fragments of various lithologies are embedded within a finer matrix that can range from clay to sandy loam.
Till plain. An extensive area of level to gently undulating soils underlain predominantly by till and bounded at the distal end by subordinate recessional or end moraines.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.

Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Tread. The flat to gently sloping, topmost, laterally extensive slope of terraces, floodplain steps, or other stepped landforms; commonly a recurring part of a series of natural steplike landforms, such as successive stream terraces.
Upland. An informal, general term for the higher ground of a region, in contrast with a low-lying adjacent area, such as a valley or plain, or for land at a higher elevation than the flood plain or low stream terrace; land above the footslope zone of the hillslope continuum.
Valley fill. The unconsolidated sediment deposited by any agent (water, wind, ice, or mass wasting) so as to fill or partly fill a valley.
Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
Varve. A sedimentary layer or a lamina or sequence of laminae deposited in a body of still water within a year. Specifically, a thin pair of graded glaciolacustrine layers seasonally deposited, usually by meltwater streams, in a glacial lake or other body of still water in front of a glacier.
Very stony spot (map symbol). An area in which 0.1 to 3.0 percent of the surface is covered by rock fragments more than 10 inches in diameter within an area that does not have rock fragments on the surface. Typically less than 4 acres.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Weathering. All physical disintegration, chemical decomposition, and biologically induced changes in rocks or other deposits at or near the earth's surface by atmospheric or biologic agents or by circulating surface waters but involving essentially no transport of the altered material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wet spot (map symbol). An area of somewhat poorly drained to very poorly drained soil at least two drainage classes wetter than the named soils in the surrounding map unit. Each symbol represents one wet area or several grouped wet areas totaling less than 4 acres.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

## Where To Get Updated Information

The soil properties and interpretations included in this survey were current as of October 2005. More current information may be available from the Natural Resources Conservation Service (NRCS) Field Office Technical Guide at Spooner, Wisconsin, or online at www.nrcs.usda.gov/technical/efotg. The data in the Field Office Technical Guide are updated periodically.

More current information may also be available through the NRCS Soil Data Mart Web site at http://soildatamart.nrcs.usda.gov or the Web Soil Survey at http://websoilsurvey.nrcs.usda.gov/app

Additional information about soils and about NRCS is available through the Wisconsin NRCS Web page atwww.wi.nrcs.usda.gov

For further information, please contact:
USDA, Natural Resources Conservation Service
Spooner Service Center
800 North Front Street
Spooner, WI 54801-1350
Phone: 715-635-8228


[^0]:    * Less than 0.1 percent.

