NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheresScientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 10(exp 6) g to 7 x 10(exp -12) g in size. Using long averaging times, particles as small as 0.7 to 4 x 10(exp 11) g were weighted to resolutions in the 5 to 9 x 10(exp -13) g range. The drive circuit and optics systems were developed beyond what was anticipated in the contract, and are now virtually flight prototypes. There is already commercial interest in the developed capability of measuring picogram mass losses and gains. One area is contamination and outgassing research, both measuring picogram losses from samples and collecting products of outgassing.
Document ID
19930006501
Acquisition Source
Legacy CDMS
Document Type
Contractor Report (CR)
Date Acquired
September 6, 2013
Publication Date
April 1, 1988
Subject Category
Astrophysics
Report/Patent Number
NASA-CR-190868
NAS 1.26:190868
Accession Number
93N15690
Funding Number(s)
CONTRACT_GRANT: NAS7-962
CONTRACT_GRANT: SBIR-08.03-4520
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available